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ABSTRACT

In this project, we have investigated the Brownian motion taking place in ordered and
disordered media using various complementary approaches. These include the analysis
of the eigenvalues and eigenvectors of the transition probability matrix (which repre-
sents both the media geometry and the kinetics of Browmian motion). This matrix is
typically a large, random, Markov matrix and is shown to possess eigenspectrum with
scaling properties which has been analyzed numerically. Secondly, the same matrix has
been used to evaluate autocorrelation functions directly and exactly taking advantage of
high speed vector computation. Thirdly, the Langevin approach to diffusion has been
extended to incorporate the anomalous diffusion on fractal media. Lastly, the frequency
dependent conductivity of inhomogeneous media has been investigated using a persis-
tent random walk model and the aforementioned numerical technique of the calculation
of step autocorrelation functions. This last work has already revealed the unexpected
effects of the interplay between the mean free path of the diffusing particle (carrier), the
carrier density, and the length scale of inhomogeneity in the media. This work represents
what we believe to be the coherent efforts to understand the diffusion and transport in
disordered media.
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In the past 30 months, we have carried out a detailed study of the diffusive transport in

ordered (but not uniform) and disordered media from a number of different perspectives.

We have summarized below some of the results of this project. It is clear that we have

only scratched the surface of this very important and complex problem in cluster science,

and we hope to continue this research after the termination of the grant.

I. Eigenspectrum of Transition Probability Matrix

First, we have conducted a study of the eigenspectrum of the transition probability

matrix W (which describes both the geometry of the medium and the particular kinetics

of diffusion). In this project, we considered the discrete-time random walk on a cluster

formed on a discrete lattice by randomly diluting the lattice with independent proba-

bility 1 - p. The remaining sites (fraction p) then form connected components where

the connectivity is defined by nearest neighbor bonds between remaining sites. These

connected sets are simply the percolation clusters, 1 and we have studied the Markov ma-

trix W which corresponds to the so-called myopic and blind ant random walks2 on these

clusters.
3-s

On the one hand, the random walk confined to a critical percolation cluster (i.e., at

p = pc) is known to execute anomalous diffusion," and on the other hand, if the disorder
is weak (i.e., p > pc), a long time tail appears, e.g., in the velocity autocorrelation

function.' In the past, these different regimes were studied mostly separately (often by

disjoint group of researchers) using rather different approaches. Our current study of the

eigenspectrum of W puts the two regimes on the same footing and enables the discussion

of the crossover between them from the unified point of view.

For example, the density of the eigenvalues n(A) can be shown to be essentially

the inverse Laplace transform of the probability for the random walk to return to the

starting point. s'9 The latter scales as function of time as t- ./ 2 where x = d, (the spectral

dimension'0 ) at p = pc, while for p > pc, the scaling exponent is x = d (the spatial

dimension). Thus we expect

n(A) - IlnAI - 1  (1)

where the last exponent is about -1/3 in both two and three dimensions at p,, crossing

over to 0 and 1/2 for p > pc in two and three dimensions respectively. These scaling

relations have indeed been confirmed and is illustrated in Fig.1. Similarly, the velocity

autocorrelation function can be related to the Laplace transform of a function w(A)

(related to n(A) and to the eigenvectors for A), and thus the scaling exponent for the
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long-time tails can be related to the behavior of r(A) as JAI -, 1. Such scaling relations

have also been numerically confirmed by our eigenspectrum analyses. 4,5

II. Exact Enumeration of Autocorrelation Functions

Second, an exact enumeration approach"" was used to study the various autocor-

relation functions of the Brownian motion as well as other related problems. In this

approach, all Brownian paths on a finite cluster are summed exactly by simply multiply-

ing the matrix W repeatedly to the appropriate initial state (which is constructed from

the initial probability distribution for the position of the random walker and the quantity

of interest to calculate). Clearly, this method is ideally suited to the high speed vector

computations, allowing the calculation of autocorrelations easily for 10s time steps or

more. Such calculations were performed to show and analyze the persistent oscillations

in the myopic ant random walk on bipartite clusters"1 3 as well the as distinct transient

regimes on close-packed lattices.13 We have established this method as the basic generic

method to compute almost any autocorrelation function very efficiently and thus allow-

ing the comparison with other t,eoretical or numerical calculation of these functions.

An example of such use is in the study of the effects of the anisotropy of the critical

percolation cluster 1 4, 5 where mean field calculations were compared with the exact ones

computed by the enumeration method.

Two extensions of this method we made are (1) to include the persistence of the

random walker (to account for the real time transport properties) and (2) to random

walks with traps. The first extension will be discussed later in describing our work on

frequency dependent conductivity in disordered networks. The second extension l 7 is

equivalent to the problem of so-called ideal chain where all trajectories of equal contour

length are weighted equal, thus making contact with work on the polymer chain statistics

in disordered media. In this project, we studied the conformational properties of the ideal

chain for the first time in a critically disordered medium and contrasted the behavior with

the corresponding one on some of the regular fractals."' For example, we have shown that

the size (R2 ) does have a power-law dependence on the number of steps N (unlike on

some regular fractals where the chain is localized by disorder) but the calculated Flory 1j

exponent v is much larger than the anomalous diffusion exponent l/d,,. This result is 0

interesting because it illustrates the role of entropy trapping, i.e., the fact that the highly ..........

connected regions of the medium contributes most of the statistical weight. 2
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I. Langevin Analysis of Anomalous Diffusion

Third, an extension of the Langevin approach' to the dynamics of anomalous diffu-

sion has been carried out."9 Starting from the basic relation for the velocity autocorrela-

tion function C,(t),

~(R(t)') = tI' C1, (u)du - j uC,(u)du, (2)

we can analyze what the leading behavior of (R2 ) will be as a function of the long-time

behavior of C ,(t). For example, if C,,(u) = o(u - 2) (i.e., goes to zero faster than U- 2 )
and fo' C.(u)du = Do > 0, then we have (R2) - 2Door. However, if C, decays more

slowly, additional possibilities arise. For example, if C1 (u) - Au - ' with 1 < X < 2

and f0° C.(u)du = 0, then we obtain both the cage effect, i.e., A < 0, and anomalous

diffusion: (R2 ) , t2- - . This result follows even when C. is modulated by a more slowly

decaying, oscillatory envelope.","9

The question is how to modify the usual Langevin approach to render it consistent

with such a slow decay of C,,. In this project, we have indicated a mean field approach

in which the effective long-time correlation (due to spatial correlation in medium) is

expressed by a time-dependent friction kernel a(t) in a generalized Langevin equation:

d -T ) f(t)
Sv(t) = - + - * (3)tr "

From this, we obtain the first and second fluctuation-dissipation theorems, which specify

the relationship between the velocity autocorrelation, random force autocorrelation, and

the friction kernel. In the case of the critical percolation disorder, a single parameter,

the decay exponent of the friction kernel, effectively replaces the fractal medium.

IV. Frequency Dependent Conductivity of Inhomogeneous Media

Fourth, we have combined the discrete-time discrete-space random walk with the lin-

ear response theory" to study the real, continuous time transport properties such as

the frequency dependent electrical conductivity. This approach reproduces the Drude-

like frequency dependence for homogeneous or ordered systems and in addition suggests
various interesting possibilities for disordered mixtures depending on parameters such

as the length-scale of disorder, the mean free path and the wncentration of the charge

carriers.

Within linear response theory, the conductivity c-(;e) at frequency w is proportional
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to the Laplace transform C,(iw) of the velocity autocorrelation discussed above. Thus,

(-) oc 6-1) W (R(t) 2) e-"- dt = D(w), as Y7 --# 0+ ,  (4)

To relate the continuous time t to the number of hopping events we use the continuous-

time random walk approach (CTRW). 2' The central concept in the CTRW is the waiting

time distribution, which is the probability distribution for the time that a particle waits

after one hop before attempting another hop. If there is no memory effect in the waiting

time, the appropriate distribution is simply a Poisson distribution. We then represent

the problem in terms of a discrete transition probability matrix W. The use of this W

then gives D(w) in terms of the step autocorrelation of a discrete hop random walk:

D(w) = iw l.(iw) (5
t(v(O)) + 2 Z(v(n) v(0)) (iW)n], (5)

ii=1

where -O(t) is the derivative of the waiting time distribution.

For no memory in waiting time, the first term is in fact independent of w (giving

the DC result), the only possible w dependence coming from the second term. Such

dependence may be due to the long-range spatial correlations in a disordered medium, or

in a homogeneous (or ordered) medium, it may be due to the intrinsic correlation in the

hopping events, e.g., the persistence in the direction of velocity. Indeed such a persistent

random walk is needed to produce Drudelike w dependence as the latter is the consequence

of an exponential (and not 6 function) decay in the velocity autocorrelation. This may

be viewed as the result of a spatial coarse graining at the length scale a smaller than

the mean free path I of the charge carrier. For our work, then, a is the lattice constant,

and the important dimensionless parameter is the ratio i7 = a/I. For r1>> 1, the coarse-

grained Brownian motion is clearly diffusive and the usual uncorrelated random walk will

result, while for 77 < 1, there will be persistence effects.

We have constructed specific models of the persistent random walk whose diffusivity

D(w) in a homogeneous material can be cast in the Drudelike form and whose parameters

can be completely determined by the physical parameters D (DC diffusivity), rt, (trans-

port time), and the ratio q1.2" While D(w) for such a model can be analytically evaluated

for the homogeneous medium, a numerical evaluation becomes necessary if the medium is

inhomogeneous. For this purpose, we have modeled the persistence by suitably enlarging

the matrix W incorporating internal states (which describe how the particle has arrived

at the present position). In a two- or multi-phase medium, we need to set the time scale

for the hopping events using the maximum hopping rate in the whole sample as well as
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to define a suitable set of rules for scattering at the interfaces. The overall frequency

dependent diffusivity is then calculated by first evaluating the step autocorrelation func-

tion by exact enumeration using W and then substituting the result in Eq.(5). Then the

generalized Einstein relation gives the overall conductivity.

For the study of the effective conductivity of inhomogeneous media, it is often assumed

that only the bulk conductivities of the individual phases are important and further that

only the (transport) time scales control the latter. However, since

ne 2  121
T (6)

where n is the carrier density, these assumptions amount to neglecting the possible effects

of the carrier concentration and mean free path. If the typical sizes of the domains of

each phase are much larger than the mean free paths of the charge carriers, then the

effective DC conductivity will indeed be independent of how the conductivity of each

phase depends on n and I in the phase; however, this is not necessarily true for microscopic

or mesoscopic disorder 23 24 and for the AC properties.

As an example, we exhibit the following special case in Fig.2. The diffusivities for the

two phases A and B are equal and so are the transport times, but the carrier concentra-

tions satisfy nA/nB = 10', thus .rA/OaB = 10'. A site percolation realization is created

with the fraction PA of the poor phase on a square mesh of side L = 100 and an interface

scattering rule is implemented such that a charge carrier is effectively trapped within the

B phase with exit probability per step of - nA/rlB. The particularly interesting case

is when the persistence is very high, e.g., 17 = 0.01. Overall, the effective conductivity

tends to remain flat until relatively high frequency, partly because the decoupling of the

phases does not set in until such high frequencies because of the large mean free path.

Also, at the percolation threshold for the good phase B (PA = 0.40), there is a region

where a fractal power law can be observed. However, the most noteworthy feature is that

(1) for PA = 0.90, i.e., mixing 10 % of good phase into the poor phase, the conductivity

decreases, and (2) it remains lower than for PA = 1.00 for even higher fraction of the B

phase mixed in, at low frequencies. This can be interpreted ass the result of the drastic

reduction in the effective mean free path because the good phase is spread into isolated

traps. Clearly such effects could be seen only because the competition between the mean

free path and the disorder length scale has been included in the calculation.
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Figures

Fig. 1 Density n(A) of the eigenvalues for the transition probability matrix W of the

blind ant problem on the square lattice percolation cluster with periodic boundary

conditions. At p = Pc ; 0.593, the scaling exponent is close to d./2 - 1, while it

crosses over to a much flatter curve consistent with the exponent of zero.

Fig. 2 The real part of the frequency dependent diffusion conductivity for the highly

persistent random walk model of a two phase random mixture. PA is the fraction

of the poor phase where cAlaB = nA/nB 10 -'. The transport time and mobility

in the two phases are taken equal.
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