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SYSfEM RELIABILITY BY SIMULATION: RANDOM HAZARDS VERSUS IMPORTANCE SAMPLING
Chi Hyuck Jun
Department of Industrial Engineering
Pohang Institute of Science and Technology
Pohang, Korea
and
Sheldon M. Ross®
Department of Industrial Engineering and Operations Research

University of California, Berkeley

Abstract: Two approaches for si. .lating the reliability function are
considered - one using the total hazard estimator and the other using
importance sampling. It is shown both for the Wheatstone Bridge system and
also for a triangular system that the total hazard estimator has significantly

smaller variance when compared both to the standard importance sampling

estimator and also to an improved version of it.
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1. INTRGDUCTIGN

Consider an n component system in which each of the n components is

either working or is failed. Let, for i=1,...,n
1 if component i is failed
Xi = 0 otherwise
The vector X = (Xl""’xn) is called the state vector. Suppose also that the

system is itself either working or failed, and that there exists a

nondecreasing function ¢ such that
1 if the system is failed under X

OX) = o otherwise.
Assuming that the Xi are independent random variables with
P{xi = 1} =4
the problem of interest will be to use simulation to estimate
ps = P{9(X) = 1}

We will be interested in the above in the case where Py is very small and

so the usual raw simulation estimator will need an extremely large number of

simulations to obtain an estimator having a small error (relative to pf). We

will consider 2 variance reducing approaches - namely using the random hazard
estimator developed by Ross [3] and using importance sampling. The final

section compares the efficiency of these approaches for 2 different systems.

2. THE TOTAL HAZARD ESTIMATOR

Suppose that the minimal cut sets - these are minimal sets of components
whose failure ensures the system's failure - can be determined for the system
under study. The hazard approach suggested in [3] is to simulate all of the

components of one of these minimal cut sets - call it C1 - and let the first




random hazard - call it h1 -be the probability that all of these components

are failed; that is

1 =1 g

If all of these simulated components are not failed then determine a minimal
cut set for the system conditional on the results of this first simulation.
(In other words, if you had an initial list of all the minimal cut sets then
eliminate any of these minimal cut sets which contain a working component of
C1 and remove from the other minimal cut sets any failed comporent of Cl' Now
eliminate any of these sets which contain any other one as a subset.) Choose
one of these (conditional) minimal cut sets - call it Cy - and simulate its
components. The second random hazard is

hy = I q.
2 . i
1eC2

Continue in this manner until either all of the components of a (conditional)
minimal cut set are failed or until there are no more minimal cut sets. If

there were a total of r minimal cut sets that were simulated then the total

hazard estimator of p¢ is given by

r
e
It was shown in [3] that H is an unbiased estimator of Ps-

The above leaves open the question of which minimal cut set to simulate.
Sometimes the minimal cut sets will not all be known and additional
computation is necessary to determine them. In this case it is probably best
to find any minimal cut set - by whatever algorithm is most convenient - and
then simulate that one. If all the minimal cut sets are available then, as a

rule of thumb, we recommend simulating the one which has the largest

\
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probability of having all of its components failed. A partial motivation for

this rule of thumb is provided by the following example.

Example 2a: Consider a 2 component system which is failed if either of its
components fail - this is called a series system. For this system each
component is a minimal cut set. The total hazard estimator which first

simulates component 1 can be expressed as

i = qq + q2I
where
1 with probability 1-q4
I 0 otherwise
Hence,

2
Var(H) = q5q,(1-q)
By symmetry the variance of the hazard estimator when component 2 is first
simulated is q%qz(l—qz) ; and it is easy to see that Var(H) is thus

minimized when we simulate the component having largest q; first.

3. THE IMPORTANCE SAMPLING APPROACH

The importance sampling approach is to estimate Ps by simulating random
variables X, which are 1 or 0 not with probabilities q; but with some other
probabilities ﬂi , i=1,...,n. The estimator

n
Inp = $(X) T .t (gt
1=

n
X, 1-X.
ilzll ﬂi 1 (1_ﬂi) 1

which is called the importance sampling estimator, is also an unbiased




estiﬁator of pg (see [4]). The B, are usually chosen so that there is a
reasonably large probability (usually around 0.5) that ¢(X) = 1.

To get an idea as to the choice of the ﬂi that will result in the
importance sampling estimator having a small variance, suppose that all of the
q; are equal to q which is very small. Suppose also that the simulations will
be done with all of the ﬂi equal to some value, call it 4. One way of choosing
J is to choose it so that the maximal possible value of the estimator Imp is
as small as possible. Now the estimator Imp is given by

Inp = 6(0) (o/&)™ ([1-a)/[1-A)™ i
Since q will be much smaller than # and since ¢(X) will equal O when the set
of failed components does not contain a minimal cut set it follows that the
largest possible value of Imp will occur when ZXi is equal to the number of
components in the smallest minimal cut set. That is, Imp will be maximal when
all of the components in the smallest sized minimal cut set are failed and all
of the other components are not failed. Hence, if we let m denote the size of
the smallest minimal cut set then

Imp < (a/8)"([1-q]/[1-A])™ "

The choice of f§ minimizing the right hand side of the above inequality is
given by f = m/n . Such a choice of f will result in a small variance of the

importance sampling estimator.

Example 3a: Consider a system in which m=n/2 . In this case we see that the

importance sampling estimator which simulates the components using the value

p=1/2 is such that

Imp < (2q)n/2(2_2q)n/2 N (4q)n/2 for q small




As we will show below, this implies that
Var(Imp) < (4q)"/4
To see how impressive this is suppose, for instance that q=.01 and n=10. Then
since the smallest minimal cut set is of size 5 it follows that
P 2 (-01)5
and so the variance of the raw simulation estimator, which is equal to
pf(l-pf) , is such that
Var(Raw estimator) > 10710
On the other hand,

Var(Imp) < (.04)19/4 = 2.62 x 10715

The above example made use of the following result which, iiough possibly

well-known, we have not found in the literature.

Proposition 1: If X is a random variable such that 0 < X < a then
Var(X) < E[X]{a - E[X]} < a%/4
Proof: Let Y be a random variable such that

a with probability E[X]/a
0 othervise

Y =
Now
2, _ 2
E[Y?] = E[aX] 2 B[X]
and since E[Y] = E[X] we thus have
Var(Y) > Var(X)
The result now follows since, with p=E[X]/a,

Var(Y) = ap(1-p) < a’/4




The importance sampling estimator can be improved (in the sense of having
its variance reduced) by not initially simulating all of the components but
rather only those in a (conditional on the results up to that point) minimal
cut set (as in the case of the hazard estimator). If the sets Cl""’Cr are
simulated and the system is failed then the improved importance sampling

estimator would be given by

Inp Inp = §(X) N(q;*i(1-q5)'"4)

n(s;*i(1-p) )
where the products are not over all components but only those whose values
were actually simulated. As the usual importance sampling estimator is the
product of the improved importance sampling estimator and an independent
random variable having mean 1 it will necessarily have a larger variance than
the improved version (which, of course, does come with a computational cost

since we must determine, at each stage, a minimal cut set).

Remark: The use of the importance sampling estimator is not new to this paper,
see for instance [1] and [2] and the references quoted therein. However, the

approach for choosing f and the improved version appear to be new.

4. THE COMPARISON

We will compare the variance of the hazard estimator and that of the
importance sampling estimator for 2 systems. For both systems we will take
;=9 for all i. The first system, often referred to as the Wheatstone Bridge

System, can be pictorially represented as in Figure 1.




FIGURE 1: THE BRIDGE SYSTEM

Its minimal cut sets are {1,2}, {1,3,5}, {2,3,4}, and {4,5}. Table 1 presents
the variance of the various estimators for this system. These variances were

obtained analytically.

TABLE 1. VARIANCES OF ESTIMATORS FOR THE BRIDGE SYSTEM

q
0.001 0.01 0.05 0.1 0.2 0.5
pe 2.002x10°% 2.020x10"% 0052 L0215 .0886 5

11 5 044x10°7 2.431x10°% 2.84x10°3 2.61x10°2 .559

Var(Imp Imp) 6.510x10" 12 6.226x10°8 3.244x10% 4.32x10°% 5.47x10°% .162

Var(Imp)  5.351x10°

Var(Hazard) 1.996x10°12 1.960x10°8 1.125x10°° 1.61x10°% 2.04x10°3 .047




Figure 1: The Bridge System

Figure 2: The Triangle System




Notes: The importance sampling estimator used § = 2/5. Imp Imp is the
improved importance sampling, and for this estimator f=.56 (which
was seen by computation to result in the smallest variance for

this estimator) was used.

Conclusion: The hazard estimator had the smallest variance. It ranged

from roughly 27 times better (for small q; to 12 times better
(for large q) than the importance sampling estimator, and was
roughly 3 times better than the improved importance sampling

estimator. All of these estimators were far better than the

raw simulation estimator whose variance is pf(l-pf).

The second system we will consider is represented in Figure 2.




FIGURE 2: THE TRIANGLE SYSTEM

The variances of the estimators, obtained by a simulation of 100,000

replications, are given in Table 2.

TABLE 2: VARIANCES OF ESTIMATORS FOR THE TRIANGLE SYSTEM

q
0.001 5.01 0.1 0.2
pe 2x10” 6 9x10™4 2.03x10°2  8.3x10°2
Var(Imp Imp) 4.97x10°11  4.85x10°7 4.02x10°%  6.04x10™2

Var(Hazard)  1.82x10°21  3.22x10'12  1.06x1079  3.54x107%

Notes: Imp Imp used f=2/9




Conclusion: The total hazard estimator was far superior. Indeed its variance

was smaller than that of the raw simulation estimator - whose variance is

5

pf(l-pf) - by a factor of approximately 101 , and smaller than that of the Imp

Imp estimator by a factor of approximately 2.7x1010.

Remark: For both systems the smallest sized cut set rule was used to decide

which minimal cut set to simulate.
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