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1. INTRODUCTION

Consider an n component system in which each of the n components is

either working or is failed. Let, for i=l,...,n

1 if component i is failed
X - 0 otherwise

The vector X = (X1,. ...Xn) is called the state vector. Suppose also that the

system is itself either working or failed, and that there exists a

nondecreasing function 4 such that
1 if the system is failed under X

= 0 otherwise.

Assuming that the X. are independent random variables with

P{X i = 1} = qi

the problem of interest will be to use simulation to estimate

Pf = P{(X) = 11

We will be interested in the above in the case where Pj is very small and

so the usual raw simulation estimator will need an extremely large number of

simulations to obtain an estimator having a small error (relative to pf). We

will consider 2 variance reducing approaches - namely using the random hazard

estimator developed by Ross [3] and using importance sampling. The final

section compares the efficiency of these approaches for 2 different systems.

2. THE TOTAL HAZARD ESTIMATOR

Suppose that the minimal cut sets - these are minimal sets of components

whose failure ensures the system's failure - can be determined for the system

under study. The hazard approach suggested in [3] is to simulate all of the

components of one of these miaiimal cut sets - call it C1 and let the first



random hazard - call it hI -be the probability that all of these components

are failed; that is

h 1  qi
ic 1

If all of these simulated components are not failed then determine a minimal

cut set for the system conditional on the results of this first simulation.

(In other words, if you had an initial list of all the minimal cut sets then

eliminate any of these minimal cut sets which contain a working component of

C1 and remove from the other minimal cut sets any failed component of C1. Now

eliminate any of these sets which contain any other one as a subset.) Choose

one of these (conditional) minimal cut sets - call it C2 - and simulate its

components. The second random hazard is

h2 = i 1 qi

6 2
Continue in this manner until either all of the components of a (conditional)

minimal cut set are failed or until there are no more minimal cut sets. If

there were a total of r minimal cut sets that were simulated then the total

hazard estimator of pf is given by

r
H= Eh.

i=1
It was shown in [3] that H is an unbiased estimator of pf.

The above leaves open the question of which minimal cut set to simulate.

Sometimes the minimal cut sets will not all be known and additional

computation is necessary to determine them. In this case it is probably best

to find any minimal cut set - by whatever algorithm is most convenient - and

then simulate that one. If all the minimal cut sets are available then, as a

rule of thumb, we recommend simulating the one which has the largest



probability of having all of its components failed. A partial motivation for

this rule of thumb is provided by the following example.

Example 2a: Consider a 2 component system which is failed if either of its

components fail - this is called a series system. For this system each

component is a minimal cut set. The total hazard estimator which first

simulates component 1 can be expressed as

H = ql + q2I

where

1 with probability 1-ql

= 0 otherwise

Hence,

Var(H) = q q(1-q!)

By symmetry the variance of the hazard estimator when component 2 is first

q~q2(1-q2) ; and it is easy to see that Var(H) is thussimulated is q q( -2

minimized when we simulate the component having largest qi first.

3. THE IMPORTANCE SAMPLING APPROACH

The importance sampling approach is to estimate pf by simulating random

variables Xi which are 1 or 0 not with probabilities qi but with some other

probabilities fi , i=l,...,n. The estimator
n

Imp = ) qii (1-qi)- Xi
i=1

1- X.

which is called the importance sampling estimator, is also an unbiased



estimator of pf (see [4]). The /3i are usually chosen so that there is a

reasonably large probability (usually around 0.5) that (X) = 1.

To get an idea as to the choice of the #i that will result in the

importance sampling estimator having a small variance, suppose that all of the

qi are equal to q which is very small. Suppose also that the simulations will

be done with all of the #i equal to some value, call it P. One way of choosing

P is to choose it so that the maximal possible value of the estimator Imp is

as small as possible. Now the estimator Imp is given by

Imp = 4(X) (q/#) x i ([1-q]/[1-p])n - xi

Since q will be much smaller than P and since 4(X) will equal 0 when the set

of failed components does not contain a minimal cut set it follows that the

largest possible value of Imp will occur when EX i is equal to the number of

components in the smallest minimal cut set. That is, Imp will be maximal when

all of the components in the smallest sized minimal cut set are failed and all

of the other components are not failed. Hence, if we let m denote the size of

the smallest minimal cut set then

Imp < (q/#)m([1-q]/ [-#]) n - m

The choice of P minimizing the right hand side of the above inequality is

given by / = m/n . Such a choice of / will result in a small variance of the

importance sampling estimator.

Example 3a: Consider a system in which m=n/2 In this case we see that the

importance sampling estimator which simulates the components using the value

P=1/2 is such that

Imp 5 (2q)n/2(22q)n/2 ; (4q)n/2 for q small



As we will show below, this implies that

Var(Imp) (4q)n/4

To see how impressive this is suppose, for instance that q=.01 and n=10. Then

since the smallest minimal cut set is of size 5 it follows that

Pf (.01)
5

and so the variance of the raw simulation estimator, which is equal to

pf(1-pf) , is such that

Var(Raw estimator) 10-10

On the other hand,

Var(Imp) (.04)10/4 = 2.62 x 10-15

The above example made use of the following result which, tiough possibly

well-known, we have not found in the literature.

Proposition 1: If X is a random variable such that 0 < X < a then

Var(X) E[X]{a - E[X]} < a2 /4

Proof: Let Y be a random variable such that

a with probability E[X]/a

0 otherwise

Now

E[Y2 ] - E[aX] ? E[X2]

and since E[Y] = E[X] we thus have

Var(Y) Var(X)

The result now follows since, with p=E[X]/a,

Var(Y) = a2p(1-p) < a2/4



The importance sampling estimator can be improved (in the sense of having

its variance reduced) by not initially simulating all of the components but

rather only those in a (conditional on the results up to that point) minimal

cut set (as in the case of the hazard estimator). If the sets C1,... ,Cr are

simulated and the system is failed then the improved importance sampling

estimator would be given by

Imp Imp = (X) f(qiXi(1-qi)1- Xi)

1(#i Xi(1- #i)1- Xi)

where the products are not over all components but only those whose values

were actually simulated. As the usual importance sampling estimator is the

product of the improved importance sampling estimator and an independent

random variable having mean 1 it will necessarily have a larger variance than

the improved version (which, of course, does come with a computational cost

since we must determine, at each stage, a minimal cut set).

Remark: The use of the importance sampling estimator is not new to this paper,

see for instance [1] and [2] and the references quoted therein. However, the

approach for choosing # and the improved version appear to be new.

4. THE COMPARISON

We will compare the variance of the hazard estimator and that of the

importance sampling estimator for 2 systems. For both systems we will take

qi=q for all i. The first system, often referred to as the Wheatstone Bridge

System, can be pictorially represented as in Figure 1.



FIGURE 1: THE BRIDGE SYSTEM

Its minimal cut sets are 11,2}, 11,3,5}, 12,3,4}, and 14,5}. Table 1 presents

the variance of the various estimators for this system. These variances were

obtained analytically.

TABLE 1. VARIANCES OF ESTIMATORS FOR THE BRIDGE SYSTEM

q

0.001 0.01 0.05 0.1 0.2 0.5

Pf 2.002x10-6 2.020x10 4  .0052 .0215 .0886 .5

Var(Imp) 5.351x10 1 1 5.044x10 7  2.431x10-4  2.84x10 3  2.61x10 2  .559

Var(Imp Imp) 6.510x10 12  6.226x10 8  3.244x10 5  4.32x10 4  5.47x10 3  .162

Var(Hazard) 1.996x10-12 1.960x10 8 1-125x10 5 1.61x10 4 2.04x10 3 .047
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Figure 1: The Bridge System
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Figure 2: The Triangle System



Notes: The importance sampling estimator used /l = 2/5. Imp Imp is the

improved importance sampling, and for this estimator #=.56 (which

was seen by computation to result in the smallest variance for

this estimator) was used.

Conclusion: The hazard estimator had the smallest variance. It ranged

from roughly 27 times better (for small q) to 12 times better

(for large q) than the importance sampling estimator, and was

roughly 3 times better than the improved importance sampling

estimator. All of these estimators were far better than the

raw simulation estimator whose variance is pf(1-pf).

The second system we will consider is represented in Figure 2.



FIGLU 2: THE TRIANGLE SYSTEM

The variances of the estimators, obtained by a simulation of 100,000

replications, are given in Table 2.

TABLE 2: VARIANCES OF ESTIMATORS FOR THE TRIANGLE SYSTEM

q

0.001 111101 0.1 0.2

Pf 2x106  2x10 4  2.03x10 2  8.3x10 2

Var(Imp Imp) 4.97x10 11  4.85x10 7  4.02x10 3  6.04x10 2

Var(Hazard) 1 .82x10- 21 3.22x10-12 1 .06X10 5  3.54x10 4

Noes Imp Imp used P3=2/9



Conclusion: The total hazard estimator was far superior. Indeed its variance

was smaller than that of the raw simulation estimator - whose variance is

pf(1-pf) - by a factor of approximately 1015, and smaller than that of the Imp

Imp estimator by a factor of approximately 2.7x10 10

Remark: For both systems the smallest sized cut set rule was used to decide

which minimal cut set to simulate.
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