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Abstract

Finite state models of concurrent systems grow exponentially as the
number of components of the system increases. This is known widely as
the state explosion problem in automatic verification. and has limited
finite state verification methods to small systems. To avoid this prob-
lem. a method called symbolic model checking is proposed and studied.
This method avoids building a state graph by using Boolean formulas
to represent sets and relations. :\ variety of properties characterized by
least and greatest fixed points can be verified purely by manipulations
of these formulas using Ordered Binary Decision Diagrams.

Theoretically, a structural class of sequential circuits is demon-
strated whose transition relations can be represented by polvnomial
space OBDDs. though the number of states is exponential. This re-
sult is born out by experimental results on example circuits and sys-
tems. The most complex of these is the cache consistency protocol of a
commercial distributed multiprocessor. The symbolic model checking
technique revealed subtle errors in this protocol, resulting from com-
plex execution sequences that would occur with very low probability in
random simulation runs.

In order to model the cache protocol. a language was developed for
describing sequential circuits and protocols at various levels of abstrac-
tion. This language has a synchronous dataflow semantics. but allows
nondeterminism and supports interleaving processes with shared vari-
ables. A system called SMV can automatically verify programs in this
language with respect to temporal logic formulas. using the symbolic
model checking technique.

A\ technique for proving properties ot inductively generated classes
of linite state systems is also developed. The proot is checked rutomat-
ically, but requires a user supplied process called a process invariant
to act as an inductive hypothesis. An invariant s developed for the
distributed cache protocol. allowing properties of systems with an ar-
bitrary number of processors to be proved.

Finally. an alternative method is developed for avoiding the state
explosion in the case of asynchronous control circuits. This technique
is based the nnfolding of Petri nets. and is used to check for hazards in
a distributed mutnal exclusion cirenit.
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Chapter 1

Introduction

There are several practical reasons for applying formal verification meth-
ods to computer systems. The most obvious is the high cost of correct-
ing errors in digital designs. This cost has been increasing with the ris-
ing level of integration in digital circuit technology. [t can be decreased
to an extent in application specific designs by the use of programmable
device technologies, but at least for the present, programmable logic
has distinct disadvantages in performance and area. Thus. there is a
growing demand for design methodologies that can yield correct de-
signs on the first fabrication run. Design errors that are discovered
hefore fabrication can also be quite costly. however. in terms of the en-
gineering effort required to correct the error. and the resulting impact
on devclopment schedules. At present. the best tools available to engi-
neers for finding errors before fabrication are simulators. which model
the behavior of a system tor predetermined or random input patterns.
The engineer using simulation is faced with two ill-characterized and
increasingly intractable problems. The first is creating a set of input
patterns that are sutficient to expose any incorrect behavior of the sys-
tem. and the second is determining the correct output of the syvstem
under these conditions. to be compared with the simulated output. In-
creased density of integration has allowed higher level functions such as
network protocols to be implemented in hardware. and as a result. the
problems of simulation have become critical. What seems to be needed
is a precise vet understandable way of specifving correct behavior. and
an exhaustive method of determining that the svstem model satisties

[l




12 CHAPTER I. INTRODUCTION

this specification for all input patterns. This is the meaning of formal
verification.

A formal verification framework has three basic elements - a math-
ematical model of the system to be verified. a formal language :. . fram-
ing the correctness problem, and a methodology for proving the state-
ment of correctness. One characteristic that many automatic verifica-
tion methodologies have in common is that they require an exhaustive
search of the state space of the model. Owing to simple combinatorics.
the size of this state space can be. and usually is. exponential in the
size of the system being modeled. This exponential growth in the state
space. known as the state erplosion problem is the limiting factor in
applving automatic verification methodologies to large svstems.

This thesis is directed toward solutions for the state explosion prob-
lem. This is essentially a question of methodology. but before we can
discuss methodology. we need to discuss somc of the models and for-
malisms that are commonly used in formal verification of hardware.

1.1 Background

The problem of hardware verification is in some ways similar to. and
in other ways different from the problem of proving correctness of pro-
grams. Digital systems are most similar to what Pnueli has charac-
terized as reactive programs [Pnu36], in that they receive input and
produce output in a continuous interaction with their environment.
rather than computing a single result and halting. In additi 'n. the he-
havior of digital systems is concurrent in the extreme. since every gate
in the system is simultaneously evaluating its output as a function of
its inputs,

1.1.1 Temporal logic

For reasoning about concurrent. reactive programs. Pnueli proposed
the use of a formal system originally studied bv philosophers. called
temporal logic {Pnu?7. Pnu36. MP31. Kro37]. In a temporal logic. the
usual operators of propositional logic are augmented by fense operators.
which are used to form assertions about changes in time. One can
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assert. for example. that if proposition p holds in the present, then
proposition ¢ holds at some instant in the future, or at some instant in
the past. The temporal modalities can be combined to express fairly
complex statements about past. present and future. For example “if p
holds in the present. then at some instant in the future. p will have held
in the past.” A temporal system provides a complete set ot axioms and
inference rules for proving all validities in the logic for a given model of
time. such as partially ordered time. linearly ordered time. dense time.
and even branching time.

Temporal logic is powerful enough to define a semantics for pro-
grams which captures not only the traditional before and after con-
ditions of Floyd-Hoare styvle program proving, but also a wide variety
of temporal properties of programs. such as termination. possible ter-
mination. termination under fair scheduling of concurrent processes.
etc. [CE8la. BAMPSI1]. In the hardware area. Malachi and Owicki
used temporal logic to give a concise specification of the conditions
necessary for an asynchronous circuit to be speed independent [MOS!].
Bochmann used temporal logic to give a semantics for self timed cir-
cuits, and used this system to verify a corrected version of an arbiter
circuit [Sei80a). Formal proofs of this kind are extremely tedious and
difficult, however. and computationally intractable to automate. To
simplify the hand proot. Bochmann used a somewhat oversimplified se-
mantics for the circuit elements (neglecting gate delay) and as a resuit.
missed a bug in the design. which was demonstrated by Dill [D('36].

A more practical application of temporal logic in hardware veri-
fication. called model checking. was introduced by Clarke and Emer-
son [CE81b] and independently by Quielle and Sifakis [QS81]. [nstead
of proving the validity of a logical formula for all models. a model
checker determines the truth value of the formula in a specific finite
model. For branching time logic. the model checking problem is com-
putationally tractable. even though the validity problem is intractable.
Here an important distinction between hardware and software svstems
comes into play - hardware svstems are finite-state. This allows the
proof procedure to be automated using model checking, while maintain-
ing the formal elegance of temporal logic for specifying correct behavior.

The method of (larke and Emerson first builds a complete state
graph of the svstem from a description in an appropriate langnage.
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The truth value of a formula in the logic is determined by an algorithm
which propagates formulas in this state graph until a fixed point is
reached. Besides being fast and fully automatic, this technique has the
advantage that it can produce state sequences as counterexamples when
the formula being checked is false. This has made it possible to find
bugs in a number of small but fairly subtle circuit designs [BCDM86,
BCD86]. including the one verified by Bochmann.

For linear time logic. there is a decision procedure that translates a
formula into an automaton by means of a tableau construction [RUT1,
CE81b, BAMPS1]. This construction is similar the the semantic tab-
leaux method of constructing proofs in standard logic [Smu68|. Each
state in the tableau is associated with a set of formulas which are true
in that state. Since the number of states in the tableau is exponential
in the size of the formula. the method is not practical for proofs about
very large systems. However, the tableau method can be used in a
model checking framework, yielding an algorithm which is exponential
in the size of the formula but linear in the size of the model [LP85].

1.1.2 Automata theoretic models

An alternative to the temporal logic framework is to cast the correct-
ness problem in terms of a relation between the external or observable
behaviors of two processes. One way to define this relation is by con-
sidering the set of all possible sequences of communications between
processes. For example. in the L-automata model of Kurshan [Kur36].
these sequences are defined by the language of an w-automaton. Cor-
rectness is framed as the containment of the language of one automaton
in the language of another. This asvmmetric relation makes it possible
to "underspecify” a system. that is. to leave some choices open to the
designer. The use of automata on infinite strings makes it possible to
express liveness properties. For instance. one can easily construct an
automaton whose language is the set of all infinite strings such that
every time a message is sent on some channel. one is eventually re-
ceived. Language containment between «-automata can be established
by an algorithm which searches for cycles in the state space of a product
automaton.

Van de Snepscheut [vd$33] and Dill [Dil88] have used trace the-
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ory to model speed independent circuits [Sei30b]. A trace is simply a
history of the communications between a process and its environment.
The trace sets of two process can be combined in a way which mod-
els communication between the two processes by synchronizing signals
sent and received on the same channel. Dill’s system is a circuit alge-
bra which has both a structural interpretation (describing the physical
connection of wires) and a trace theoretic interpretation (describing
the communications along those wires). The actual trace sets are de-
fined by the languages of finite automata (in this case. automata on
finite strings. hence liveness cannot be modeled). A relationship called
conformance between two processes determines when one process can
safely be substituted for the other in all environments. Conformance
can be tested by a polynomial algorithm which searches the state space
of a finite automaton derived from the two processes.

In the Calculus of (‘'ommunicating Systems (C'CS) [Mil30]. Milner
takes a different approach in which external behavior is modeled by a
tree rather than a set of sequences. The way CCS models communi-
cation is not well suited to modeling hardware. since in CCS a signal
cannot be sent until a receiver is ready to receive it. In hardware. a re-
ceiver cannot generally prevent a signal from being sent. Also, in C'CS.
communication is always between two processes. while in hardware sig-
nals are often broadcast to many receivers. A calculus specialized to
circuits called CIRCAL [Mil83] was developed to remedy these prob-
lems. The notion of correctness in process calculi is called observational
equivalence, meaning that an observer cannot distinguish between two
processes by any experiment. This notion of correctness is extremely
strict. since it doesn’t allow the specifier to leave any choice up to
the designer regarding the externally visible behaviors. Observational
equivalence can- be proved by establishing a relation called bisimula-
tion between the two processes. For finite state processes. there is an
polvnomial time algorithm for bisimulation which is very similar to
the coarsest partitioning algorithms used for state machine minimiza-
tion [NH84].

All of these methods can be viewed as variations on the theory of
finite automata. tailored for modeling certain properties of a particu-
lar class of systems. In fact. the antomata theoretic approach is not
very far from the temporal logic approach in practice. The difference
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is mostly a question of notations, since the tableau method provides a
way of translating a temporal logic formula into an automaton. Al-
though temporal logic is not as expressive as automata in characteriz-
ing classes of sequences. it has been shown by Wolper that temporal
logic can be extended using right linear grammars to make it as ex-
pressive as automata without increasing the complexity of the decision
procedure {Wol33]. ('larke and Kurshan have also proposed a branch-
ing time logic in which the temporal operators are defined by finite
w-automata [CGR3Y].

What all of the above systems have in common is that correctness.
once formalized. can be determined by an algorithm that searches the
entire state space of a finite state model. Such methods have the ad-
vantage of being fullv automatic, but invariably suffer from the state
explosion problem.

1.2 Scope of the thesis

This thesis explores methods of state space search that avoid the state
explosion problem by not explicitly representing the states of the model.
To do this. some revolutionary new techniques are borrowed from the
area of switching function analysis. In this domain. a combinational ex-
plosion also arises. since the number of input combinations to a Boolean
function is exponential in the number of inputs. New techniques for
Boolean comparison avoid this problem by representing Boolean func-
tions with a reduced torm of decision graph called an Ordered Binary
Decision Diagram (OBDD) [Bry36]. These decision graphs provide a
compact canonical form for Boolean functions. To apply this idea to
temporal verification. we observe that if the state of a svstem is rep-
resented by a vector of Boolean variables. then a set of states can be
represented by a Boolean function which returns true for all states in
the set. Similarlv. a relation «+ Ry between states can be represented
bv a Boolean function of two sets of variables. one set representing «x
and the other representing y. In this wav. a model checking algorithm
can be developed which uses OBDDs to represent sets and relations.
Borrowing terminology from Brvant. this technique is called symbolic
model checking. since symbolic variables ave used 1o represent the com-
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ponents of the system state rather than numeric values. Using symbolic
model checking, we can can automatically verify some regularly struc-
tured systems with literally astronomical numbers of states.

The principle contributions of this work are detailed below:

The symbolic model checking method. A technique is developed for
state space search using Ordered Binary Decision Diagrams. We show
that any algorithm that can be expressed in a fixed point logic called
the Mu-Calculus can be computed using this method. These include al-
gorithms for all of the correctness notions enumerated above. including
('TL model checking (with tairness constraints), the linear time tableau
method. conformance. observational equivalence. language containment
for w-automata, Mealy machine equivalence. and others. From a the-
oretical point of view. a structural class of sequential circuits is iden-
tified whose transition relations can be represented by a polynomially
bounded OBDDs. This theoretical result is born out by experiments on
classes of regularly structured circuits. for which the time used by the
symbolic model checking method is found to be polynomially bounded
in the circuit size. In addition. some experiments are reported using
symbolic model checking to compute the equivalence relation between
states of a finite state machine. Several techniques are advanced which
improve the efficiency of this computation in practice.

The SMV system. A symbolic model checking system called SW 1V is
presented. This syvstem permits the automatic verification of programs
written in a specialized language for describing concurrent finite state
svstems and protocols. This language is somewhat similar to LUS-
TRE [CHPPS7] in its synchronous dataflow semantics. but has several
unique aspects. For example. it allows systems to be modeled non-
deterministically for purposes of abstraction. it allows arbitraryv inter-
leaving of concurrent processes. and it allows programs to.be annotated
with assertions in branching rime temporal logic.

Formal verification of the Fncore (Jigamar cache consistency pro-
tocol. The cache consistency protocol of a distributed shared-memorv
multiprocessor called the Encore (iigamax is modeled in the SMV lan-
guage and verified using the svmbolic model checker. Running in min-
ntes. the svmbolic model checker discovered errors in this system which
were not discovered by simulation. in spite of the very large state space
of the model [MS91]. This experiment shows that the model checking
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technique can be used etfectively in an industrial setting tor highly com-
plex systems. [t also sheds light on issues involved in modeling such
protocols as finite state systems. and the kinds of errors that can be
found by model checking that are not likely to be found by simulation.

Induction over processes. \ partially automated method of induc-
tion i1s described for proving properties of parameterized classes of de-
signs. The method applies to a variety of process models. requiring of
the model only certain simple algebraic properties. The SMV svstem
is extended to support proof by induction. allowing some properties of
the Gigamax cache protocol to be verified for configurations of arbitrary
size.

Verification using occurrence nets. An alternative method for avoid-
ing the state explosion is examined. This technique avoids considering
all of the possible interleavings of concurrent actions by using a partially
ordered representation of behavior called an occurrence net [NPW31].
This method is used to verify that a design for an asynchronous dis-
tributed mutual exclusion circuit is hazard free (this example is also
used for the symbolic model checking method). Using this technique,
we also find empirically that the run time is polynomial in the number
of components of the system, while the number of states is exponential.

1.3 Related research

Since the state explosion problem 1s ubiquitous in the verification of
computer systems and protocols. many researchers in the area have
studied 1t.

1.3.1 Reduction

The most common approach is based on reduction - reducing the cor-
rectness problem to a similar problem in a smaller state space. This is
generally done by replacing processes in the model by smaller processes
that have similar or identical communication behavior. T'he most gen-
eral framework for this kind of reduction is that of Kurshan [Kurd7].
Using homomorphic reductions of w-automaton models. it is possible
to simplify not only the internal state of a process. but also its external
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communications. In this methodology. one generally builds a hierarchy
of reductions, in which processes at the lowest level are reduced. then
combined at the next higher level and further reduced. etc. Kurshan
advocates building this hierarchy from the top down. so that the most
abstract models can be verified bhefore details are filled in at the next
lower level.

.\ hierarchical approach was also taken by Dill in his trace theoretic
svstem for speed independent circuits [Dil88]. In this case. the reduc-
tion is obtained mostly by hiding internal signals of a module. There is
no provision for abstracting the signals by which the module commu-
nicates with its environment. That is. communication always remains
at the same level. that of digital signal transitions.

The reduction approach is generally not automatic. Usually, the
recduced process is obtained in an «ad hoc manner. and the validity of
the reduction is then tested automatically. Some methods have been
proposed for obtaining reduced processes automatically, however. For
example. in a method called compositional model checking, a state min-
imization procedure is used to obtain a reduced process that is equiv-
alent to the original process with respect to observation via its inputs
and outputs {CLM89b. CLM89a]. This reduction preserves the truth
value of all formulas in a suitable logic. Graf and Steffen have also stud-
ted minimization with respect to a suitable notion of equivalence as a
reduction technique [{GS91]. Minimization techniques are fairly strict
in terms of the required relation hetween the original and reduced pro-
cesses. however. As a result. the reduction that can be obtained using
these techniques is not generally as great can bhe obtained using more
flexible but unautomated methods.

The svmbolic model checking technique is not reallv an alternative
to reduction methods. but is complementary to them. In general. the
larger the state space that can be searched automatically. the less the
need for reduction. For example. Dill used a reduction (constructed by
hand) to verify a speed independent distributed mutual exclusion ring
circuit [Dil33]. Using svmbolic model checking. there is no need for a
reduction ~ the verification time is polynomial in the size of the ring (cf.
chapter 2). On the other hand. symbolic model checking techniques can
be used to implement the validity test for reductions (¢f. chapter 3).
hence the two techniques can be combined.
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1.3.2 Induction

In systems of many identical processes, it is sometimes possible to re-
duce an arbitrary number of processes to a single process while retain-
ing certain properties of interest. For example, Browne. Clarke and
Grumberg proposed a reduction technique of this sort which preserves
the truth value of formulas in a suitably restricted logic with process
quantifiers [BCG86]. Unfortunately, the reduction. a form of bisimula-
tion, had to be established by hand. There was no automated way of
checking it. Kurshan and McMillan proposed an inductive method of
establishing the reduction that could be checked automatically [KM389).
The method is also less restrictive in terms of the properties that can
be proved since it does not rely on bisimulation. This method is used
in chapter 3. A similar method was described independently by Wolper
and Lovinfosse [WL89]. Another inductive technique has been de-
scribed by Shtadler and Grumberg {SG89]. This technique is somewhat
more flexible in that it treats networks generated by context free gram-
mars. but is limited to bisimulation as a reduction technique. A more
detailed comparison of these methods can be found in chapter 3.

1.3.3 Other symbolic methods

Coudert and Madre have described a method for verifving finite state
machines using Ordered Binary Decision Diagrams which is similar to
symbolic model checking [CBM89]. The symbolic model checking tech-
nique was developed in 1987. The technique of Coudert and Madre
appears to have been developed two vears later [{CouYl} but indepen-
dently. There are several differences of approach between the two
methods. Symbolic model checking is directed mostly toward prov-
ing temporal properties of finite state systems. whereas Coudert and
Madre have concentrated mostly on proving equivalence of determinis-
tic Mealy machines (though they also discuss temporal logic [("MB91]).
Testing Mealy machine equivalence is useful. for example. when one is
mapping a design from one technology to another. but is a fairly lim-
ited form of verification. since the specification is at the same level
of detail as the implementation. Also. in this work. we consider the
performance of algorithms mostly in terms of asvmptotic behasvior for
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regularly structured classes of systems. while Coudert and Madre have
considered mostly a set of benchmark circuits for synthesis. This makes
it difficult to determine how well their technique scales with circuit size.
Finally, Coudert and Madre have not as vet reported any results for
testing equivalence of two different implementations ot the same finite
state machine. In practice. they have only used symbolic techniques to
generate the set of reachable states of a finite state machine. This infor-
mation is useful for test generation and sequential svnthesis [TSL*90).
but these experiments provide no information about how well the tech-
nique works for verification. On the other hand. the svmbolic model
checking technique has heen applied to the verification of an industrial
design for a distributed cache consistency protocol (cf. chapter 4). A
more detailed description of the work of C'oudert and Madre. and oth-
ers using OBDDs for sequential civcuit verification. can be found in
chapter 2.
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Chapter 2

Symbolic model checking

As mentioned in the introduction. a formal verification system has sev-
eral basic elements. First. we require a model. A model is an imaginary
universe, or more generally. a class of possible imaginary universes. To
make our model meaningful. we require a theory that predicts some
or all of the possible observations that might be made of the model.
An observation generally takes the form of the truth or talsehood of a
predicate, or statement about the model. Finally, to verify something
meaningful about the model, we require a methodology for proving state-
ments that are true in the theorv.

In program proving, the universe is a totallv imaginary one. driven
bv mechanisms (the compiler and hardware) of which the programmer
has no knowledge. The logician is free to assign any semantics at all
to programs. provided the compiler writer and hardware designer agree
to implement them. This makes program proving an artificial science.
in the sense that our theory is true because we sav it 1s. In contrast. a
hardware verification svstern requires a model of a real physical system.
The underlving physical mechanism is still invisible to us (we can only
postulate its existence). but we can empirically construct a model which
predicts the necessary ohservations with a sufficient degree of accuracy
for our purposes (the verification of digital circuits). [t turns out that
the required degree of accuracy is not very large. Though quite accurate
models are possible. using partial differential equations to describe the
time evolution of lields and particle densities. a suitable design stvle
makes it possible to consider onlv the digital (one or zero) value of
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voltages. ignoring entirely the exact voltage within the digital ranges,
and the time it takes to switch from one range to another. Depending on
the design stvle (eg.. synchronous or self timed), different models may
be appropriate. In certain rare cases. we may have to use differential
equations to model the analog behavior of circuits (for example. when
metastability arises). In this thesis. though. we will consider only fairly
abstract models of circuits as finite state machines. Thus. we return to
the science of the artificial. wherein we choose the theorv to suit our
needs. but with the understanding that a method exists for translating
our models into real systems.

The kind of theory that emerges for the model depends to a large ex-
tent on the kind of experiments the observer is able to perform. For ex-
ample. in traditional program proving systems. the observer is allowed
to set up the initial state of the program. wait for the program to ter-
minate. and then examine the final state. The theory of this model can
be expressed in a kind of before-and-after logic whose axioms determine
the semantics of programs. For example. in Floyd-Hoare logic [Hoa69],
the formula

{true} ¢ = y {z = )
is an axiom: for any initial condition. after the program r := y termi-

nates. .r and y have the same value. The fact that no other variables
change value in the process can also be expressed as an axiom:

&

{z=a} =y {z=0a}

provided neither = nor a depend on .

In this svstem. if the program fails to terminate (diverges). the
observer must simply wait forever. ie.. no observation is possible. One
might ask whether waiting forever is not itself an observation. that
is. should it not be possible to state in the semantics that a given
program terminates or doesn’t terminate tor a given initial condition?
This point can be argued either way for programs (since knowing that
a prograin terminates before infinity is not very practical information).
However. for digital systems (or reactive systems in general). it is clear
that simple before and after conditions are not a sufficient theory; tirst
of all termination for these svstems is not well defined. and moreover
the meaning of what these svstems are supposed to o is inseparably
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linked with the evolution of events in time [Pnu77].! What we need is
a formal theory in which we can reason about temporal aspects of a
svstem’s behavior.

2.1 Temporal logic

Temporal logic {or tense logic) is a system devised by philosophers ex-
pressly for making statements about changes in time [Bur34]. In tem-
poral logic. the formula F¢ is true in the present if ¢ is true at some
moment in the future. Similarly Pgq is true in the present if ¢ is true
at some moment in the past. These tense operators, F' and P, have
duals which are generally given their own names. The formula (¢ is
equivalent to —F-q, meaning that ¢ is true at every moment in the
tuture. The formula H¢ is equivalent to =P —¢, meaning that ¢ is true
at every moment in the past. These operators can give surprisingly
concise expressions of sentences with complex tense structures. For ex-
ample. ¢ = F Pq can be interpreted as “if ¢ holds in the present, then
at some time in the future ¢ will have held in the past”.

The usual model theoretic semantics given to temporal logic (and
other modal logics) is the so-called possible worlds semantics. A frame in
this semantics consists of a class S of states through which the system
evolves. and a relation < representing temporal order. A model is a
frame with a valuation L. which assigns truth or falsehood to every
atomic proposition (propositional letter) in every state.? The truth or
falsehood of temporal formulas is relative to the present state. [or
example. the formula Fq is true in state s iff there exists a state ¢ such
that p is true in state f and s < . Similarly. Pq is true in state s iff
there exists a state / such that pis true in state t and t < 5. Notice that
a temporal formula acts like an open sentence. with one free parameter
representing the present state. Thus it defines a class of states in which
the formula is true. Similarly. a state defines a class of formulas which
are true in that state.

"The question of termination is in any event not undecidable for hardware svs-
tems. since they are not computation universal (only programs are).

“These are usually called Kripke frames and Kripke models. after one of the first
mathematicians to give a model theoretic interpretation of modal logic.
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The choice of axioms in the logic can be used to characterize the
temporal ordering relation <. For example. the following axioms (in
addition to the propositional tautologies) exactly characterize those
frames whose < relation is a partial order (transitive and antisymmet-
ric) [Burd+]:

Glp = q) = (Gp= Gq) (2.1)
H(p=q)= (Hp= Hq) (2.2)
p= GPp (2.3)
p= HFp (2.4)

One inference rule (in addition to modus ponens) is required: by tem-
poral generalization. if o is provable. we infer that (ra and Ha (that
is. a tautology must hold true at all times. or perhaps. the rules of
sound inference do not change with time). By specializing this svstem
slightly. we can obtain logics characterizing a variety of models of time.
including linear time. discrete time, and branching (non-deterministic)
time. All of these results can be found in [Bur34].

2.1.1 Linear time

We usually think of time as a linearly ordered set, measuring it either
with the real numbers or the natural numbers. A frame is linearly
ordered if. in addition to being partially ordered. it is total. /e.. for all
states s.f. etther s <~ t, s =t or t < s. The temporal tframes in which
< is a linear order can be characterized by simply adding the following
two axioms to the bhasic set (thev are time reversal duals):

(FPq)= (PgVvqVv Fq) (2.5)
(PFq)= (PqVv gV Fq) (2.6)

Linear temporal logic is usually extended by the until operator and
the since operator. Informally. p {7 ¢ states that p will hold at some
moment in the fture. until which time ¢ will hold at all moments.
Similarly. p S ¢ states that p held at some moment in the past. since
which time ¢ has held at all moments. More preciselv. p {7 ¢ is true in
state s if there is some state t such that s < f and ¢ is true in state f.
and for all s < v < 1. pis true in state w.
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2,2 Discrete time

It 1s common in engineering to model time as a discrete sequence (mea-
sured by the integers). Discrete dynamics are commonly used. for ex-
ample. in signal processing and synchronous digital systems. A discrete
frame is one in which every state has an immediate successor and an
immediate predecessor. The linear discrete frames can be characterized
by adding the following two axioms to those for linear time logic:

pANHp= FHp (2.7)

pAGp= PGp (2.3)

It is useful in a discrete linear temporal logic to define a nert time
temporal operator. The formula X¢ is true 1n state s when there is an
immediate successor of «r in which ¢ is true. A state ¢ is an immediate
successor of s if s < ¢ and there does not exist a state u such that
s < u < t. Thus. Xgq is exactly equivalent to false [/ ¢, so its addition
does not increase the expressiveness of the logic.

2.1.3 Branching time

A branching frame is one in which the temporal order < defines a
tree which branches toward the tuture. Thus. every instant has a
unique past. but an indeterminate tuture. This is an inherently non-
deterministic model of time. and hence 1s well suited. for example, tor
defining a semantics of non-deterministic programs. .\ frame is tree
ordered when for all states s.t.u it t < s and u < sthent <u .t =u
or + > u. In other words. the past ol every state is linearly ordered.
The tree ordered frames can be characterized by simply dropping (2.6)
from the axioms of linear time logic.

Though pure tense logic can exactly characterize the hranching time
frames. it leaves something to be desired in expressing properties of
non-deterministic programs. For example. it is common in detining the
semantics of these programs to say that a program aborts iff it must
inevitably abort. This tunctionality can be implemented by backtrack-
ing. Similarly. a non-deterministic Turing machine terminates it it may
possibly terminate. These notions ol nevitability and possibility are
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not represented in an ordinary tense logic. They can be incorporated,
however. by combining notions from temporal logic and modal logic.
We would like to interpret the branching structure of time as mean-
ing that each instant of time has many possible futures. and that as time
evolves from present to future, these possibilities are reduced. Thus,
in the past. there existed possible futures which are now precluded.
This interpretation gives rise to notions of necessity (inevitability) and
possibility in tense logic [Tho84]. We think of the truth or falsehood of
tense formulas as being relative to a given branch of the tree ordered
frame (cne possible evolution of time into the future). A branch is de-
fined as a maximal linearly ordered set of states. We will write ¢[s. b]
if ¢ holds in state s in branch b. Thus. Fg[s.b] iff there exists a state
t in b such that s < ¢ and ¢[t.b]. Similarlv. Pg[s. 8] iff there exists a
state ¢ in b such that f < s and q[t.b]. The notion that ¢ is necessarily
true is represented by the formula Aq. We will say Ag(s. b] iff for all
branches 4’ containing s. q[s.#]. The notion that q is possibly true is
represented by the formula Eq. We will say Eq[s. b} iff for some branch
b’ containing s. ¢[s, b']. Notice that A and E provide a kind of second
order quantification over maximal linearly ordered subsets.?
According to this semantics for modal branching time logic, there
may be possibilities in the past that are foreclosed in the present. For
example. ¢ = HAFq is not valid. The fact of ¢ in the present does
not imply the necessity of ¢ in the past. Thus, modal branching time
logic might be termed the logic of regret. The logic can also express
useful semantic properties of non-deterministic programs [BAMPS1].
For example. if ¢ represents the fact of a program terminating, then
inevitable termination is expressed by the tormula A Fq (necessarily in
the tuture ). Possible termination is expressed bv £ Fq (possibly in the
future ¢). If the proposition p represents a correct output of the pro-
gram. then (inevitable) partial correctness is expressed by the tormula
AG(q = p) (necessarily invariantly. termination implies correctness).
The somewhat odd but definable notion of possible partial correctness
is expressed by £(7/(q = p). Note that Pq. APq and E Pq are all log-
ically equivalent. since the past of a state is the same for anv branch.

#'lassically. the symbol O is used to represent necessity. and < is used to repre-
sent possibility. The symbols A and £ are used here for consistency with [BAMPS1].
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Also note that A and E are dual. since Aq is equivalent to ~E£—q.

2.2 The temporal logic CTL

The temporal logic ("TL is a subset of modal branching time logic de-
fined by Clarke and Emerson [CE81b]. The acronym stands for Com-
putation Tree Logic.' In C'TL. temporal operators occur only in pairs
consisting of A or £. {ollowed by F. G. " or X. Thus. past time oper-
ators are not allowed. and tense operators cannot be combined directly
with the propositional connectives.

2.2.1 Syntax and semantics of CTL

The syntax of CTL formulas is given as follows:

. Every atomic proposition is a CTL formula.

2. If f and ¢ are ('TL formulas, then so are

-fo (fAhg) AXS EXS, A(fUg), E(fUg)

The remaining operators are viewed as being derived from these

according to the following rules:

vy
AFy
11y
A
EGf

—(=f A y)
Altrue {7 g)
E(true [ y)
-~FE(true [T = f)
~A(true {7 ~f)

The truth or falsehood of formulas 1s defined with respect to a
Kripke model. but in a slightly non-standard way. For C'TL. the model
15 a triple (S.R.L). where N is the set of states. R is the transition

relation and L is the valuation.

The transition relation is the set of

*CTL is actually a subset of a more general temporal logic deseribed in [CES1a).
adopting the syntax of (BAMPR1].
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all pairs (s.t) such that ¢ is an immediate successor ot s. A branch-
ing model (a.k.a. computation tree) can be obtained by starting at a
designated state s and unwinding the graph (5. R) into an infinite tree
(provided every state has at least one successor). The semantics for
('TL given below is equivalent to the standard semantics with respect
to this infinite tree.

A path of a model K = (5, R, L) is an infinite sequence of states
(50.51.52...) € S such that each successive pair of states (s;.s;41) is
an element of R. Every path is maximal linearly ordered subset of the
tree structure unwound from sgq.

The notation A.s = f means that the formula f is true in state s
of Kripke model K. In the sequel, where the model is unambiguous,
we will write simply s | f. The interpretation of a CTL formula f
with respect to a Kripke model K" is given below. by recursion over the

structure of formulas:
skEp iff L(s)(p), where p is an atomic proposition
sE-f ff skES
sEfAg ff sEfandsEg
so = AXSf iff for all paths (so,51,...). 851 E f
so E EXf iff for some path (sg,81,...),31 F f
so B A(f U g) iff for all paths (sg, s1,...), for some 1.
s; =g and
forall y<i.s, = f
so E E(f U g) iff for some path (sg.sy....). for some ¢.
s; = ¢ and
forall y<i s, E=f

2.2.2 Fixed point characterization of CTL

Emerson and Clarke [CE81a] showed that various branching time prop-
erties of programs can be characterized as extremal fixed points of ap-
propriate continuous functionals. Later. they introduced the logic CTL.
and showed that its operators can be characterized in this way [("ES1b].
This characterization led to an etficient algorithm for the model check-
ing problem - determining whether a given ('TL formula is satisfied in

With one additional distinction: in ('TL. the future is taken to include the
present. Thus. if p holds in the present. then so does Fp.
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a given state of a finite Kripke model.

To obtain the fixed point characterization, we will identify each
(CTL formula f with {s | s = f}. the set of states in which the formula
is true. In this wav. for example, true denotes the empty set. false
denotes S, and every subset of S represents an equivalence class of
formulas.® Let P(S) be the set of subsets of S. P(S) forms a lattice
under union and intersection. This lattice is ordered by set inclusion.
where P C Q if and only it PUQ = Q. A functional r[Y] is a formula
with one uninterpreted propositional letter Y. This defines a function
P(S) — P(S). where 7(P) is obtained by taking P for ¥ in 7. By
definition:

1. 7 is monotonic when P C (Q implies 7(P) C r{Q).
2. 1 is U-continuous when P, C P, C -+ implies 7(U; P;) = U;T( P).
3. Tis N-continuous when P, 2 P, D .- implies 7(N; P;) = N, 7( P;).

When the set S is finite. every increasing chain of subsets has a maxi-
mum element, and every decreasing chain has a minimum element. As
a result, in the finite case. monotonicity implies both U-continuity and
N-continuity.

A fixed point of 7 is any P such that 7(P) = P. Tarski [Tar33]
showed that a monotonic functional always has a least and a greatest
fixed point with respect to inclusion ordering:

Theorem 1 (Tarski-Knaster) Whenever r[Y| is monotonic. it has
a least fired point. denoted pY.7{Y)] and a greatest fired point. denoted
vY. (Y], When r[Y] 5 also U-continuous, @Y.7[Y] = Usort(false).
When t{Y] is also N-continuous. vY.7{Y] = Niso7!(true).

We can now characterize the ('TL operators in terms ot fixed points
of appropriate functionals:

Theorem 2 (Clarke-Emerson) Provided S is finite.

"This is essentially an algebraic interpretation of logic. where we embed the
formulas of the logic in a Boolean algebra (P(5).0.1.N. U, ~). with N represent-
ing conjunction. U representing disjunction and — (set complement) representing
negation
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[. EFp=uY.(pVv EXY)
2 EGp=vY.(pNEXY)
3. E(q U py=uY.(pV(qgN EXY))

There is a standard algorithm for computing the least [greatest]
fixed point of a monotonic functional. This is done by starting with
false {true] and iterating the functional until a fixed point is reached.
as shown below. Assuming S is finite. this procedure terminates in at
most |S| + 1 iterations with the least [greatest] fixed point of r{Y]:

to compute uY.7[Y] {or vY.7[¥]} :
let ¥ = false: {or ¥ = true}
do
let ¥/ =Y.} = r[¥]
until ¥/ =Y
return Y

Theorem 3 Gliven a finite set S. and a monotonic functional 7{Y],
the standard fized point algorithm computes uY.7[Y] {or vY.7[Y]} in
at most |S| + 1 iterations.

Proof.  Since 7 is monotonic. °[false] C 7![false] C r*[false]- - -.
The longest strictly increasing chain of subsets of 5 has length |S] + 1.
Hence. there must be an ¢ such that 0 </ < |5] and 7[false] =
T+ {false] (otherwise there would be a strictly increasing chain of length
[S] + 2). Hence. the algorithm terminates after at most |S] + | itera-
tions. For anyv such i U,>g7/[false] = r'[false]. Hence. by theorem 1.

pY.r{Y] = 7 (false].

For the greatest fixed point. substitute true tor false. — for 'Z. and
decreasing for increasing in the above argument. O

H{aving a fixed point characterization of the C'TL operators allows us
to nse the standard fixed point algorithm to determine the set of states
of a given model in which a C'TL formula is true. \s an example.
consider computing £ Fp in the following Kripke model:"

“We represent a Kripke model pictorially by drawing the graph (5. R) and la-
beling each state with the atomic propositions which are trie in that state.
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QOO
Since |S| = 4. the number of iterations required to produce the fixed

point is at most 4. Therefore. let us compute r(false] for : = 1... 4.
where 7[¥] = pv EXY. After the first iteration, we have r'[false] =

pV E Xfalse = p:
QIO

After the second iteration. we have 7*{false] = pVv EXp:

@90

After the third iteration, we have r3[false] = pv EX(pV EXp):

@:_@’3—)@—-0
which is a fixed point. since the next iteration. 7[false] produces the
same result. Notice that at each iteration i. we have the set of states sq
such that there exists a path (so,s1.s2....) where pis true at some state
less than i. This algorithm can be thought of as a backward breadth

first search of the graph. In the end. we have labeled exactly the set of
states on a path to a state labeled with p.

As a second example. consider computing EC/p in the following
ikripke model:

p p p

After the Hrst iteration. we have r‘[trne] =pA L XNtrme =
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&8

After the second iteration. we have r#{true] = p A EXp:

P P P

After the third iteration. we have r3[true] = pA EX(p A EXp):
p p P

This is the greatest fixed point. since the next iteration r*[true] pro-
duces the same result. Notice that at iteration :. we have the set of
states such that there exists a path of length : where every state satisfies
p. When we reach a fixed point. every state in the set has a successor
in the set satisfving p. hence for every state in the set. there exists an
infinite path where p is always true.

The operators EX. E( " ) and EG are actually sufficient to char-
acterize the entire logic. since the remaining operators can be derived
from these three according to the following rules:

EFp = F(truel p)
ANp = -EX-p
Aip = ~ElF-p
Mg Upy = ~(E(=pl =g AN=p)v EG=p
For this reason. in the sequel. we will consider only the operators

EX. E( 1 )and EG. However. for completeness. here are the fixed
point characterizations of the remaining operators:

AGp = vYipA ANY)
Alqg U py = pYpvigAh AN
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The fixed point characterization provides an effective algorithm for
the model checking problem. In fact. a more efficient algorithm exists,
based on breadth first search and the calculation of strongly connected
components in the graph (S.R) [CES386]. Both of these algorithms
suffer from the state explosion problem. however: it is necessary to
construct the complete state graph of the svstem being modeled before
model checking can be applied. Since the number of states of a system
grows exponentially in the number ot its components. these algorithms
can only be applied to small systems.

2.3 Symbolic CTL model checking

In the previous section. we equated a ("TL formula with the set of states
in which the formula is true. We showed how the CTL operators can
thus be characterized as fixed points of certain monotonic functionals
in the lattice of subsets, and how these fixed points can be computed
iteratively. In this section. we equate sets and relations with Boolean
formulas. and show how set theoretic operations such as union. inter-
section and image can be characterized in terms of Boolean operations.
This allows the CTL model checking algorithm to be implemented using
well developed automatic techniques for manipulating Boolean formu-
las. Since the state graph is symbolically represented by a Boolean
formula. there is no need to actually construct it as an explicit data
structure. Hence. the state explosion problem can be avoided.

2.3.1 Quantified Boolean formulas

Quantitied Boolean Formulas (QBI7) are an extension of propositional
logic allowing quantifiers over propositional variables. Given a set V" of
propositional variables. QBEF(17) is the least set of formulas such that

[. true and false are formulas.
2. every variable in V' is a formula.
3. if p and ¢ are formulas. then so are p vV ¢ and —~p. and

Lol pis a formuda and o 0s in Vo then 3e. pis a formula.
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A truth assignment is a function V' — {false,true}. We equate each
QBF formula with the set of truth assignments that satisty the for-
mula. Thus. true represents the set of all truth assignments. false the
empty set. and a propositional variable v represents the set of all truth
assignments « such that a(v) = true. In addition.

l.«€(pVyq)ifand only if a € por a € ¢,
2. « € (—~p) if and only if « € p, and
3. « € (3v. p)iff a(v — true) € p or «(v — false) € p.

[t is useful to define an operator for QBF that substitutes a formula
for a variable. If p and ¢ are QBF formulas. and v is a variable. then
let @« € plv — ¢) if and only if «(v « (¢ € ¢q)) € p. Note that
quantification can be defined in terms of substitution. since Jv. p =
p(v — false) V p(v « true).

Quantification and substitution can also be defined for vectors of
variables. [f W = (wy,...,w) is an n-tuple of propositional variables

and Q = (q1,....¢a) an n-tuple of formulas. then let
1. « € 3W. piff for some b: W — B, a(w; — b(w;)) € p and

2w e p(l — Q) iff alw;, — (a € ¢;)) € p.

2.3.2 Representing sets and relations

The state ol a concurrent system is generally modeled as vector where
each component represents the state of one component of the syvstem.
For the moment. let us make the simplifving assumption that all of
the state components are Boolean valued. as is generally the case in
digital svstems. .\ state of the svstem can therefore be viewed as a
truth assignment to a set of propositional variables V' = {e1 ey, ... vn}
U'nder this interpretation. everv QBF formula over the set of state
variables 1 denotes a set of states. ¢e.. the set of truth assignments
which satisfy the formula. For example. if we have two state variables
a and b then the formula a v b represents all the states in which « is
true or his true.
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In order to represent a binary relation with a QBF tormula. we
introduce two ordered sets of variables V' = {v;,....v2} and V' =
{vi..... vy}. The set V' represents the left argument of the relation.
and the set V' represents the right argument. By this arrangement. a
QBF formula R over the variables V" U V' stands for a binary relation
R'. the set of pairs (.. y) in (V' — B)? such that

(e y) € RO x(v! — y(vi)) € R (2.9)

As an example. if we have two state variables. « and b. then the QBF
formula a A b represents all ordered pairs of states such that « is true
in the first state. and b is true in the second state.

Uising this representation. we can express a variety of standard set
theoretic operations in terms of the QBF connectives. For example. the
union of two sets represented by A and B is A vV B, their intersection
is A A B and the complement of A is ~.4.

The image R'(Q) of a set @ via a binary relation R’ is the set of
all y such that for some r € @, (r.y) € R. If Ris a QBF formula
representing a relation R’. and Q is a QBF formula representing a set.
then

R(Q)=(IV.(RAQ))V' « V) (2.10)

We can prove this by simply expanding the definitions of the QBF
operators. as follows:

y 2 3V (RA QDY — V)

iff
gl — g )Y € VIR A Q)
iff
exists £ : V. — B st y(vl — y(e))vi — c(v)) € RAQ
iff
exists v : V" — Bs.t. (r.y) € R and r € ()
id
y e R(Q)

As an example. ler Q = v/ hand R =a Ab. Then

RQ) = (3V. ({a AKYA (aVh))V — V)
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= AV (arA))V = V)
= BV < V)
= b

The inverse image R~'(Q) of a set () via a binary relation R is the
set of all .« such that for some y € Q. R(x.y). If Ris a QBF formula
representing a relation, and @ is a QBF formula representing a set.
then

RYQ)=3V.(RAQ(V « V")) (2.11)

This can be shown by a derivation similar to the one above.

2.3.3 CTL formulas

We now have the necessary mechanics to represent Kripke structures
using QBF formulas. and to characterize the C'TL operators over these
symbolically represented Kripke structures using QBF operators. In
fact, it is only necessary to characterize the CTL operator £.X. since the
logical connectives have identical meanings in both logics. and the re-
maining C'TL operators have already been characterized as fixed points
of functionals using only EX and the logical operators.

To represent a Ikripke structure symbolically. we will assume two
sets of variables V' = {v,....v,} and V' = {v]...., v’ }. and a QBF
formula R on VU V" to represent the transition relation. This induces
a Kripke structure KNy g = (S, R'. L) where

. The state set S is the set of truth assignments V" — 3.

2. The transition relation R’ is the relation represented by the tor-
mula R. according to (2.9),

3. The valuation L vields the truth value of each variable r, in each
state s. That is. for all »; € V. L(s)(r;) = s(v;).

The complete procedure for symbolic model checking is characterized
by the following theorem:

Theorem 4 Let V' = {o..... eot and Vo= {eloo ol b be disjoint
sets of rariables. let R be a QBEF formula on VUV and let KNyyop be
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the induced Kripke model. [n this model. for all CTL formulas p and
q:

skEp ff s€p. wherepeV (2.12)
sEPVq Y s€(pVyg) (2.13)
skE-p f s€(~-p) (2.14)
sEEXp ff se(3V.(RAPV «— V")) (2.15)
sEEqU p) ff sepY (pV(gN EXY)) (2.16)
sEEGp f sevY (pANEXY). (2.17)

Proof. The first three are trivial matters of definition. For (2.13).
when we equate a formula witu the set of states satisfving it. £Xp is
just R'~Y(p), which is equal to 3V'. (RA p(V «— V")). The last two are
just theorem 2. O

The above theorem shows that we can solve the model checking
problem - ie., determining whether a given state in a symbolically
represented Kripke structure My y: g satisfies a formula f ~ purely by
manipulations of Boolean formulas. A key point is that the Kripke
structure itself is never built. Instead it is symbolically represented
by a QBF formula. As an example. consider a system with one state
variable h. Let the transition relation be represented by the formula
R = hvb. and let state s be (b — false). The induced Kripke structure
Wiy y.p is depicted below:

b=false b=true

Let’s say we want to determine whether or not s = F.X—-h. According
to theorem 4. we can evaluate the formula E.X -5 as follows:

EX~b

i

AR A (=) — b))
= 3W.((bV YA (=)

= 3b.(bnr=H)

= b
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Hence. by theorem 4. s = £.X b iff the assignment (b — false) satisfies
b. which 1s false.

Now consider the problem of whether or not s |= EFh. Using the
standard fixed point algorithm. we get

r'[false] = bV EXfalse
= b
r[talse] = bV EXb
bv 3b.((bVv HYAH)
= true
rlialse] = bV EXtrue

= true

A fixed point is reached after two iterations. Hence. s &= EFb iff the
truth assignment (b «— false) satisfies true. which is true.

Note that when computing least (or greatest) fixed pointsof 7. 2" +1
iterations are required in the worst case. where n is the number of
propositional state variables. This is the length of the longest possible
strictly increasing (or decreasing) chain of subsets of & (not including
the empty set). plus one extra iteration to detect the fixed point. In
practice. however. the number of iterations required to reach a fixed
point can be quite small.

2.3.4 Binary Decision Diagrams

[t should be clear that to make the svmbolic model checking technique
practical. an etfictent automated method tor manipulating Boolean for-
mulas is required. Fortunatelv. a variety of such technigues have been
developed for the purpose of synthesizing digital circuits or comparing
the functionality of digital circuits. These techniques mav involve ap-
plving a set of rewriting rules to convert a given formula into a normal
form. Alternatively. a data structure may be nsed to represent the for-
mula as a Boolean function.® For example. a Boolean function may be

*Normally, when we discussing switching functions. we think of a Boolean for-
muda as represented by a function rather than the set of satistving truth assign-
ments of the formula. A Boolean formuin f over an ordered set of vanables
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represented by a truth table. or by a set of “cubes™ which cover the
truth table of the function. or by a binary decision tree. Each repre-
sentation has associated procedures for applying Boolean operations.
Any method of manipulating Boolean formulas that can implement the
operations pA ¢, pV q, =p, 3V’ .p and p(V « V') can be used in sym-
bolic model checking. By far the most effective method known to date.
however, is the Ordered Binary Decision Diagram method developed
by Bryant [Bry36].

Ordered Binary Decision Diagrams are a form of reduced decision
graph that give compact canonical representation for Boolean formu-
las. Thev have been used extensively for comparison of switching
functions [BBB*87. FB389]. The OBDD canonical representation for a
Boolean function can be derived by reducing a related structure called
an ordered decision tree. In an ordered decision tree. the value of the
function is obtained by descending the tree from the root to a leaf. At
each node along the path, one descends to the left child if the value of
the variable labeling the node is 0, and to the right child the value is .
Each leaf of the tree is labeled with a value 0 or | which gives the result
of the function. The tree is said to be ordered if the variables always
occur in the same order along any path from root to leaf. In this case,
reading the leaves from left to right, one obtains the truth table of the
function.

As an example. an ordered decision tree for the function ¢ AbV cAd
is depicted in figure 2.1.

The canonical OBDD form is a directed acvclic graph which can be
obtained from the ordered decision tree by the following two steps:

L. Combine any isomorphic subtrees into a single tree.
2. Eliminate any nodes whose left and right children are isomorphic.

Steps | and 2 can be applied in a bottom up fashion. to vield the
canonical OBDD representation in linear time. Bryant called this op-
eration Reduce. The size of the resulting graph is strongly dependent

Vo= e ) oinduces a function f o {01} — {0.1} in the obvious way:
fley. . ... L£n) = 1 iff the truth assignment (v; — »r,) satisfies f The two views
are equivalent. but the functional representation seems to be more standard in the
context of Boolean manipulation.
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0001000100011 1 11

Figure 2.1: Ordered Decision Tree

on the order of the variables. This variable ordering, however. is the
key to obtaining the reduced form. This is what distinguishes OBDDs
from the more general class of Binary Decision Diagrams described by
Akers [AkeT3|.

As an illustration of reduction to canonical form. consider the the
ordered decision tree of figure 2.1. The three nodes marked **” are
roots of isomorphic subtrees. Thus, they can be combined into a single
subtree. In addition. from the node marked “+”. one arrives at the
same subtree when descending to the left or right (/e.. independently of
the value of #). hence this vertex does not affect the value of the function
and may be eliminated. The result of applying the Reduce operation
to the tree of of figure 2.1 is depicted in depicted in figure 2.2. Note
the significant reduction in the number of vertices. resulting essentially
from redundancy in the truth table of the function.

The canonical OBDDs are a subclass of DAGs (directed acyclic
graphs) where each leaf is labeled by 0 or 1. and each non-leaf is labeled
by a variable. [t is most convenient to define this class inductively. by
building large DAGs from smaller ones. For this reason. we will number
the variables from the bottom up.” In the sequel. the term dimension
will be used to denote the highest variable index occurring in a DAG.

"Untortunately, this is the opposite of the numbering adopted by Bryant. but 1t
makes the proots clearer.
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Figure 2.2: Ordered Binary Decision Diagram

We will simultaneously define the class of DAGs which are canonical
OBDDs and the tfunctions they denote, by induction on the dimension:

Definition 1 Let V' be an n-tuple (vy,vq,...,v,) of variables. The
class OBDD(V') consists of the terminals 0 and 1. and a collection of
triples in S x OBDD(S) x OBDD(S) called non-terminals. With each
¢lement p of OBDD(V'). we ussociate a dimension dp,. where 0 < d, <
n. and a Boolean function f, : B — B. The cluss OBDD(S) is the
least such that. for all v & {0.1}":

[.0e OBDDIVY). dy =0, and fy(xr) =1,
21 0BDDV). dy =1t and [i{r) =1,

S if Uand h are distinet clements of OBDD(V). where d) < 1 < n
and dy < 1. then the triple r = (v, [ h) is also in OBDD(V).
d, =i and

[ fle) ife =0

/r(l) = lfh(‘lj) [j I = |

With regard to canonicity. the salient aspects of the above definition
are that a triple (v, (. h) is a canonical OBDD ounlyv it [ and / are
distinet and 1 s greater than the dimensions of / and A (the vartable
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ordering requirement).!® One important consequence of this is that f;,
the function represented by a DAG p. does not depend on any variables
of index greater than d:

Lemma 1 for all p € OBDD(VY), for all d, < i < n. fy(v; — 0) =
fp( Uy — l).

Proof. By induction over d,. We assume the statement of the
theorem holds for all ¢ such that ¢, < d,. The terminal cases. p = 0
and p = | are trivial. For the non-terminal case. let p = (v;.[. h). where
J < t. Now consider two cases. v; = 0 and v; = 1. In the first case.
folvi = 0) = filvi — 0) and fy(v; — 1) = fi(v;i « 1). These are equal
by inductive hypothesis. since d; < i. The other case. v, = | is similar,
with f, for f;. O

It is not difficult to show that OBDDs canonically represent the
Boolean functions. That is, each Boolean function is represented by
exactly one OBDD. We show first that there are no two distinct OB-
DDs representing the same function, and second, that every Boolean
function is represented by some OBDD. The following theorem is es-
sentially due to Bryant [Bry86], although the formalization is different,
and as a result. it is hoped, the proof is substantially simpler.

Theorem 5 (Bryant) [f p and p' are elements of OBDD(V). then
fp = fo implies p=p/

Proof. By simultaneous induction over d, and .. We assume the
statement of the theorem holds for all ¢ and ¢'. where d, < d, and
dy < dy. Suppose that f, = f,

Consider tirst the case where d, = d,. Either p and ¢ are both
terminals. (in which case p = p’ = 0 or p = p’ = 1) or they are both
non-terminals. p = (v;. [Lh) and p’ = (v,,l'. h'). For non-terminals. we

*"There is an alternative formulation of OBDDs due to (larke [KC'90] which does
not require { and A to be distinct, but requires that i = d;+1 = dj, + 1. In this case.
the OBDD for a function f is exactly the minimal DFA recognizing the language
{re{n.1}" ] f(z) = 1}. Thinking of OBDDs as minimal DFAs can provide useful
insights into the complexity of representing certain classes of functions as UBDDs.
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have f; = f(vi — ) = fylry — 0) = fo. and similarly f, = f,(vi —
1) = fp(vi — 1) = fi. Hence. by induction. { = /" and h = /'. s0
p=p.

Second. consider the case where d, > d,. It follows that p is a
non-terminal (v;.[. k). Further. by the previous lemma. f,(v; « 0) =
fole, — 1). Therefore. f,(v, — 0) = fy(v, «— 1), so fi = fu. By
induction. then. [ = h. This is a contradiction. however, since if ! and
h are not distinct. then p is not in OBDD(V').

A symmetric argun:ent applies to the case d, < dy. O

Theorem 6 Given a function f: B* — B. there exists p € OBDD(V)
such that f, = f.

Proof. By induction on i. the greatest number such that f(v;, —
0) # f(vi « 1). By inductive hypothesis, there exist ¢ and r in
OBDD(V) such that f, = f(v, «— 0) and f, = f(vi « 1). Further. ¢
and r are distinct. since f(v; « 0) # f(v; — 1). Thus. let p = (v;.q.r).
()

Because each function is represented by a unique OBDD. testing
two OBDDs for functional equality can be accomplished in constant
time. This property of OBDDs is usetul for determining when a fixed
point has been reached in the standard fixed point algorithm.

The Apply algorithm

Brvant describes an algorithm called Apply. which applies an arbitrary
Boolean operation e to two OBDDs. The operation e can be any of
the 16 Boolean functions of two variables - Ipply computes the natu-
ral extension of e to two Boolean functions. (iiven two non-terminal
OBDDs p and ¢. the Apply algorithm breaks the problem of computing
r = peqinto two subproblems on the children of p and ¢.

Take first the case where d, = d,. Let p = (v, [, h,) and ¢ =
(v g hy). Ttis easily shown that

o rir, —0)=pir, —DNegr, —0)=/,0l and
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o riv, —l)=plvi —1)eqg(v; — 1) =h,eh,

Thus. we create two subproblems [ = [, e/, and h = h, e h,. On
the other hand. suppose that p = (v;,[;,h,) and ¢ = (v,.[,, hy), where
¢ > J. In this case. ¢(v; — 0) = g(v; — 1) = ¢. So.

o riv; —0)=p(r; —0)eqg=1{,0qand
o (v, —l)=plv, = 1)eg=hyeq.

Therefore. we create two subproblems [ = [, ¢ ¢ and h = h, e q. The
remaining case. ¢ < j, is symmetric.

The subprobiems are solved recursively to obtain [ = r(v; — 0) and
h = r(v, — 1). From these two cofactors. we can derive r. If [ and
h are equal. then r = h = [. If they are distinct, then r = (v;, . h).
Finally. if p and ¢ are both terminals. Apply simply uses the truth table
for e.

Since each subproblem of dimension d can generate two subproblems
of dimension d — 1, it might seem that this algorithm is exponential. It
can be made polynomial. however. by applying dynamic programming.
Notice that each subproblem is determined by a pair of OBDDs p’ and
¢’ which are descendants of p and ¢ respectively. Hence, the maximum
number of distinct subproblems is the product of the size of p and the
size of q. By keeping a hash table of triples (p.q.r), we can reduce
the number of recursive calls to |p| - |¢|. Brvant shows that this upper
bound is tight. since there exist functions p and ¢ for which the size of
ris |pl - {ql.

The (‘ompose algorithm

Bryant also gives an algorithm called C'ompose which computes p(v; —
q). where p and ¢ are OBDDs. and v, is a variable. The algorithm is
easilv adapted for simultaneous substitution of a vector of variables.
Hence. given that

Jvip = ple, — 0)V plo, — 1). (2.13)

the compose procedure conld be used to implement both the variable
substitution operation p(V — 1) and the existential quantification




2.3. SYMBOLIC C'TL MODEL CHECKING 17

operation 3V’.p needed for symbolic modei checking. On the other
hand. a much more efficient procedure can be obtained by combining
the quantification and conjunction operations in the expression for £ .Xp
into a single OBDD operation computing 3V7.(p A ¢). Applving the
quantifiers in a bottom-up fashion as the conjunction subproblems are
solved results in a substantial reduction in the size of the intermediate
results by reducing the number of variables.

The AndErxists algorithm

This algorithm. which we will call AndEzrists is basically a modification
of Apply. Let r be the OBDD representing the function IV7.(p A ¢).
We compute r by generating subproblems / and & in the same manner
as if using the Apply algorithm for ¢ = A. When the results of the
subproblems are obtained. if the leading variable »; is a component of
V7. the result is r = [V h (see equation 2.18). This result is obtained
by calling Apply with ¢ = V. On the other hand. if v; does not occur
in V. then the result is the same as for Apply: if { = h.thenr =1 = h,
else r = (v;, L, h).

The motivation for this algorithm is to avoid producing the entire
OBDUD for p A g. which has 2n variables. where n is the number of state
variables of the model. This is done by applying existential quantifi-
cation to the results of subproblems as soon as thev become available,
vielding a result with only n variables. Empirically. this provides a
substantial savings in space.

As in the Apply algorithm. a table of triples (p.q.r) is used to avoid
resolving previously computed subproblems. The maximum size of this
table is Ip] - [¢|. However. unlike in the Apply algorithm. the recursive
calls cannot be executed in constant time. This is because each call
may require a V operation to be performed. .\t present. the author
is unaware of a bound on the complexity of AndErists better than
O(|p]- lq] - 2#™). which is simply the number of V problems to be solved
(1pl-|q} in the worst case) times the square of the largest possible OBDD
size. 2%, In practice. this number of operations has not heen observed.
so one might conjecture that there is a tighter bound. It seems unlikely
that a polynomial bound will be found. however. since it is easily shown
that if vector existential quantification on OBDDs can be computed in
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0 -ty ity -1t
Figure 2.3: Variable ordering for 3-SAT reduction

polvnomial time, then P = NP.

The proof of this is by reduction from 3-SAT. as follows: Let f =
ty Ata A+t be a 3-SAT formula, that is. ¢t; = (£; V i V =,), where z;,
y: and z, are positive or negative literals. The OBDD representation of
each ¢, has no more than 3 non-terminals. Now introduce new variables

V' = (v].0),....0;). corresponding to the terms of f. and let
=V (=t.Avin A\ )
1<i<k 1<)<

For a suitable variable ordering, the OBDD representing f’ has no more
than & non-terminals (see figure 2.3). hence can be built in polvnomial
time. The tormula [ is satisfiable iff 3V'. f" # 1. Thus. if I3V, f” can be
computed in polvnomial time, then P = NP.

As an aside. it is not difficult (though a bit tedious) to show that the
symbolic C'TL model checking problem is PSPACE-complete. To show
PSPACE-hardness. one starts with a polyvnomial space bounded Turing
machine. introduces a sufficient number of Boolean variables to encode
the entire tape. plus the pointer and the finite control. then expresses
the transition relation of the entire system as a QBF formula. To show
that the problem is in PSPACE. one can show that the problem can
be reduced to satisfiability of a QBF formula of polynomial size. using
the “iterative squaring” technique of Burch. et al. [BCM*90]. Details
are left to the reader.
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2.4 Examples

Although the worst case complexity of symbolic model checking is high
{using OBDDs or other Boolean function representations). in practice
the worst case complexity is rarely achieved, and the symbolic technique
can in some cases be dramatically more efficient than previous methods.
As an illustration of this. let’s look at two hardware examples - a
svnchronous fair bus arbiter. and an asvnchronous distributed mutual
exclusion ring circuit (the one studied by David Dill in his thesis [Dil38]
and designed by Alain Martin [Mar35)).

2.4.1 Synchronous state machines

For a svnchronous finite state machine. the transition relation can be
given as a conjunction of Boolean formulas. each determining the new
state of one register as a function of its old state and the inputs. Let
V = {uv1,va,....v.} be a set of Boolean variables representing the state
of the registers in the circuit. and let W = {wy, ws,....wn} be a set
of variables representing the values of the inputs to the circuit. For all
i =1...n, let f,[V.W] define the value of register ¢ in the next state,
in terms of V' and W. The transition relation of the state machine can
he expressed as a Boolean formula in the following form:

R= A R. where R = (| = f[V.W]). (2.19)
=1

[n general. for models of svnchronous systems. the transition relation
is a conjunction of formulas representing the individual components
of the svstem. since transitions of the components are simultaneous.
The outputs of the state machine can be given as Boolean functions of
the inputs and registers. These functions can be substituted for atomic
propositions in ('TL formulas. so there is no need to introduce variables
to represent the ontputs.

As an example of a synchronons state machine. we will consider
a svnchronous bus arbiter cirenit. The purpose of the bus arbiter is
to grant access on each clock cvcle to a single client among a number
ol clients contending tor the use of a bus (or other resource). The
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token out ovemq'e in grant out
w
reqin > ' ack out
T 1/
1 A
token in override out grantin

[igure 2.4: ('ell of synchronous arbiter circuit

inputs to the circuit are a set of request signals reqy ... req._,. and the
outputs are a set of acknowledge signals acky ... acki—,. Normally, the
arbiter asserts the acknowledge signal of the requesting client with the
lowest index. However. as requests become more frequent. the arbiter is
designed to fall back on a round robin scheme, so that every requester is
eventually acknowledged. This is done by circulating a token in a ring
of arbiter cells. with one cell per client. The token moves once every
clock cycle. If a given client’s request persists for the time it takes for
the token to make a complete circuit. that client is granted immediate
access to the bus.

The basic cell of the arbiter is depicted in figure 2.4.1. This cell
is repeated A times. as shown in figure 2.1.1. Each cell has a request
input and an acknowledge output. The grant output of cell / is passed
to cell + + |. and indicates that no clients of index less than or equal
to ¢ are requesting. Hence. a cell may assert its acknowledge output
if its grant input is asserted. Each cell has a register T which stores
a one when the token is present. The T registers form a circular shift
register which shifts up one place each clock cycle. Each cell also has a
register IV (for “waiting™) which is set to vne when the request input
is asserted and the token is present. The register remains set while the
request persists. until the token returns. At this time. the cell’s override
and acknowledge outputs are asserted. The override ..gnal propagates
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Figure 2.5: Configuration of the synchronous arbiter circuit

through the cells below. negating the grant input of cell 0, and thus
preventing any other cells from acknowledging at the same time. The
circuit is initialized so that all of the W registers are reset and exactly
one T register is set.

The desired properties of the arbiter circuit are:

1. No two acknowledge outputs are asserted simultaneously
2. Every persistent request is eventually acknowledged
3. \cknowledge is not asserted without request
Expressed in C'TL. thev are:
Lo Ay, AG-(ack, A ack))
2. A\ AGAF(req, = ack,)
3. A AG(ack, = req,)

Using the svmbolic ("TL model checking procedure. we can deter-
mine whether the design has these properties. for a given number of
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cells. Figure 2.6 plots the performance of the symbolic model check-
ing procedure for this example in terms of several measures: the size
of the transition relation in OBDD nodes. the total run time (on a
Sun3. running an implementation in the C' language), and the maxi-
mum number of OBDD nodes used at any given time.'! We observe
that as the number of cells in the circuit increases. the size of the tran-
sition relation increases linearly (in section 2.5. we will prove a theorem
that shows why this is the case). The execution time is well fit by a
quadratic curve. The number of reachable states. however. explodes
exponentially (note the logarithmic scale on the reachable states axis).

To obtain polynomial performance for this example. it was necessary
to add a wrinkle to the symbolic model checking algorithm. In the first
experiment it was found that although most of the specification was
checked quickly. the time required to check property 2 for cell 0 doubled
each time a cell was added. The reason for this is rather remarkable.
Consider a function called Rotate. which returns true for a pair of n
bit binary numbers when one number can be obtained from the other
by a rotation of j bits. There is no variable ordering which yields an
eficient OBDD for this function for all j.!? In fact. a very similar
function occurs in computing the set of states satisfying the formula
AF(req, = acke), where the two binary numbers are given by the
W and T registers respectively. Note that. for cell 0. request implies
acknowledge exactly when no other cell has both W and T registers
set. The T registers rotate once per clock cycle. Thus. req, = acky is
necessarily true j steps in the future exactly when there is no other cell
¢ for which W, A Ti_,moax- The OBDD representing this set of states
grows exponentially in the number of cells.

This illustrates a fairly general phenomenon: circuits tend to be
“well behaved™ in the part of their state space which is reachable from
the initial state. but not elsewhere. In the case of the svnchronous
arbiter. only states with one T register set are reachable. However.

"I'The latter number should be regarded as being accurate only to within a factor
of two. since the garbage collector in the implementation scavenges for unreferenced
nodes only when the number of nodes doubles.

2This can be shown using the technique of (Bry9l]. It is sufficient that for
any variable order there is some rotation such that when the order is cut in half,
information proportional to n must be passed from one half to the other.
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the symbolic model checking technique considers all states. including
states with multiple tokens. A\ good solution to this problem in general
is first to compute the set of reachable states. and then to restrict all
of computations of the ('T'L model checking algorithm to those states.
Since the reachable states are closed under the transition relation. this
has no effect on the truth value obtained for formulas at the initial
state. In particular, this solves the problem of the bus arbiter circuit.
since in its reachable state space, the T registers cannot represent an
arbitrary binarv number. :

The set of reachable states is the least fixed point of

(Y] =TV R(Y)

where [ 15 the set of initial states. Applying the standard fixed point
algorithm in this case effectively vields a forward breadth first search of
the state space. By computing the reachable states first and then using
this set to restrict the ('TL model checking algorithm. we obtain the
polynomial run time results described above. This technique is also
used for other experiments described in the sequel. unless otherwise
noted.

2.4.2 Asynchronous state machines

In an asynchronous state machine. there is no global clock to which
all state changes are synchronized. This makes designing correct asyn-
chronous circuits considerably more challenging than designing correct
svnchronous circuits. We will consider two plausible models of asvn-
chronous state machines. In the first. which we will call the simulta-
neous model, any or all state variables mav change state in a given
transition. LEach state component makes an independent and non-
deterministic choice regarding whether to change value or not. In the
second model. which we will call the interleaving model. only one state
component changes value in a given transition. The choice of which
component changes value is non-deterministic.!® In cither model. we

A discussion of which state machine model is more suitable for circuit design
is heyond the scope of this work. In general. conditions would have to be imposed
on either model in order to make it implementable in a given design style. For
disenssion of asynchronous design techniques. see [MB5Y, Seis0b].
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consider an asynchronous state machine composed of n gates. We will
use state variable v; to stand for the output of gate i. and f,[V.W] to
represent the function computed by gate : (where V' is the set of state
variables. and W the set of inputs).

In the simultaneous model. the transition relation can be repre-
sented by a formula in the form:

R = /\ R:. where R, = (¢! < VLWV (v = vi). (2.20)

1<ikn

For any transition and any state variable v;, either the new value of
v, is determined by f,[V.W]. or it is the same as the old value. Note
that this differs trom the svnchronous model (2.19) in which every state
variable is reevaluated at every transition.

In the interleaving model. the transition relation can be represented
by a formula in the form:

\/ R, where R, = (v & fi[V.W])A (A u(v, &= v))) (2.:21)

In any transition, for some state variable v;, the new value of v; is
determined by f,[V,W], and the remaining variables keep their old
value. Note that in this case. the transition relation is represented
by a disjunction of component relations rather than a conjunction.

[n general. for models of parallel processes whose actions interleave
arbitrarily. the transition relation is disjunctive. If this is the case. we
can make an easy optimization in the symbolic model checking tech-
nigue: we observe that the set of states reachable by one step ot the
svstem is the union of the sets of states reachable by one step of each
individual component. This is reflected in the fact that existential
quantification distributes over disjunction. Thus:

EXp = 3V 0V RIA PV — 1))

t

VAV (R APV — V)

"sing this equality. we can avoid computing the transition relation of
the svstem and instead use only the transition relations of the indi-
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Figure 2.7: One cell of the DME circuit

vidual processes. This technique is called early quantification'* - by
rearranging the computations. we apply quantification before the logi-
cal disjunction operation. Heuristically, quantification tends to reduce
OBDD size. since it reduces the number of variables. Hence. the size
of the intermediate results is usually reduced (though the final resuilt is
the same).

Our example of an asynchronous state machine is the distributed
mutual exclusion (DME) circuit of Alain Martin [Mar35]. It is a speed-
independent circuit {Sei80b] and makes use of special two-way mutual
exclusion circuits as components. Figure 2.7 is a diagram of a single cell
of the distributed mutual-exclusion ring. The circuit works by passing
a token around the ring, via the request and acknowledge signals Ir
and la on the left and rr and ra on the right. A\ user of the DME gains
exclusive access to the resource via the request and acknowledge signals
ur and ua.

The specifications of the DME circuit are as follows:
L. No two users are acknowledged simultaneously.
2. An acknowledgment is not output without a request.

3. An acknowledgment is not removed while a request persists.

YWThe AndErnists algorithm of section 2.3.1. which combines conjunction and
quantification in a bottom-up manner i1s also an »~xample of early quantification.
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ot

4. All requests are eventually acknowledged.

We will consider only the first specification. regarding mutual exclusion.
The others are easily formulated in CTL, although the last requires the
use of fairness constraints (see section 2.6.1) to guarantee that all gate
delays are finite. The formalization of the mutual exclusion specifica-
tion is

/\ AG-(ua; A ua;)

£

Now let’s look at the performance of the symbolic model checking
algorithm in checking this formula. for both a simultaneous and an
interleaving model of the circuit. For the interleaving model. we use
the early quantification technique. Figure 2.8 plots the relative per-
formance for the simultaneous model (method 1) and the interleaving
model (method 2). Part (a) shows the run time as a function of the
number of DME cells. part (b) shows the total storage used (measured
in OBDD nodes) and part {c) shows the number of nodes used to rep-
resent the transition relation. For the moment, disregard the curves for
method 3. The experiment was run for up to 7 cells of the simultaneous
model (limited by space) and up to 10 cells of the interleaving model
(limited by time). Part (b) of the figure shows the substantial space
advantage of the interleaving model. and from part (c), we can see that
most of the difference is accounted for by the savings in representing the
transition relation using early quantification. In both cases. the space
used 1s linear in the number of cells. However. we note that the increase
in run time appears to be cubic for the simultaneous model. but quartic
for the interleaving model. It would seem that if enough storage were
available to continue the curve for method 1. the two curves would meet
in the neighborhood of 10 cells.

The different asymptotic performance for the simultaneous and in-
terleaving models can be understood by looking at the OBDDs that
occur in the fixed point iterations computing the reachable states. Fig-
ure 2.9 plots the size of the largest such OBDD for each method. We
can see clearly that the size is increasing linearlv for the simultane-
ous model. but quadratically for the interleaving model. This is a
phenomenon which occurs generallv when comparing simultaneous e~
interleaving models. It can be nnderstood by considering a very simple
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system composed of n processes. each with states 0 and 1. and each
alternating non-deterministically between these two states. [f we start
the svstem with all processes in state 0, what do we observe after k
steps? In the simultaneous case. after one step. all possible states are
reachable. [n the interleaving case. however, after k steps. all global
states with at most & I’s are reachable. This is a symmetric function.
As Bryant noted [Brv36]. all symmetric tunctions can be represented by
a quadratic size OBDDs. The symmetry results from the fact that in
an interleaving model. exactly one state component changes in a given
transition. and the choice is arbitrary. In general. after & steps of such
a model. the number of steps taken by each state component sums to k.
Hence. in the set of states reachable after k steps, there is an induced
correlation between the states of otherwise independent processes.

The simultaneous model appears to be inferior to the interleaving
model from a symbolic model checking point of view. owing to the large
amount of space required to represent the transition relation. Most
of this. however. can be attributed to a phenomenon we observed in
the previous example: systems tend to be well behaved only in their
reachable state space. In the symbolic model checking technique, we
represent the transition relation over the entire state space. Although
representing only the reachable transitions might be more efficient, we
seem to be caught in Catch 22: we need to represent the transition
relation to compute the set of reachable states. We can avoid this
problem by incrementally computing only as much of the transition
relation as is necessary to compute the next iteration of the fixed point
algorithm. Recall that the reachable state set is the least tixed point of
(Y] = [V R(Y). By rearranging the fixed point computation slightly.
we only need represent R correctly for those transitions (.r.y). where x
15 on the “frontier™ of the search:

rtl(false) = r'(false) v R(7(falsej)
= r'(false) V R(r'(false) — r*~'(false))

At each iteration. we can reevaluate the formula 2 over the set of states
T'(false) — 7*~!(false). This can be done by restricting each subformula
using either the logical and or using the Restrict operator of Coud-
ert. Madre and Berthet (see section 2.8). This results in a sequence
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of approximations to the transition relation which are substantially
more compact than the complete transition relation. although we must
reevaluate R at each iteration. rather that evaluating it once at the
beginning. We will call this method 3.

I[n part (a) of figure 2.8. we see that the time used by this method.
while still cubic. is a substantial improvement over the previous method
for the simultaneous model (method 1). More importantly, the space
used is dramatically improved. allowing a model with a larger number
of cells to be checked. The method overtakes the interleaving model in
run time at about 3 cells. owing to its better asvmptotic performance.

Figure 2.10 plots ihe number reachable states as a function of the
number of cells (the numbers are indistinguishable for the two models).
The number of reachable states grows exponentially in the number
of cells. though not as rapidly as the total number of states. which
is 28" The key point is that for all three methods. the space and
time necessary for the symbolic model checking method is polynomial
in the number of cells. Thus. the state explosion problem has been
avoided. The overall time complexity of O(n®) for the simultaneous
model derives from three factors: a linear increase in the transition
relation OBDD. a linear increase in the state set OBDDs obtained
in the fixed point iterations. and a linear increase in the number of
iterations. For the interleaving model. the quadratic increase in the
state set OBDDs results in an overall O(n') time complexity. On the
other hand. the number of reachable states increases roughly a tactor
of ten with each added cell.

[t 1s not immediately clear that either the interleaving or simulta-
neous model is preferable in general. Interleaving models seem to be
better when the number of asynchronous processes is small. and simul-
taneous when the number is large. The cache consistency protocol of
chapter 11s an example of a large svstem with a fairly small number of
complex asynchronous processes. This is an appropriate application of
an interleaving model.

The polynomial performance of the symbolic model checking algo-
rithm. in spite of the exponential increase in states. makes it possible to
analyze fairly large instantiations of the two example circuits (the sva-
chronous arbiter and the DME circuit). It should be possible to verify
these and stmilat circuits for any reasonable fixed number of cells. Thas
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begs the question - how many cells do we need to analyze to be guar-
anteed that the design is correct for any number of cells? Intuitively,
for sufficiently large n. a sequence of n + | cells should be equivalent
in some sense to a sequence of n cells. But in what sense equivalent?
This problem is dealt with in chapter 5. where we consider induction
over processes.

2.5 Graph width and OBDDs

In this section. we consider the asvmptotic growth of OBDDs repre-
senting certain topological classes of circuits. This analysis explains
some of the performance results of the previous section.

In 1989. Berman proved a bound on the OBDD size needed to rep-
resent circuits of bounded width. A circuit has bounded width if its
elements can be arranged in a linear order such that any cut through
the order crosses at most a bounded number of wires w. called the width
of the circuit. There exists a variable ordering such that the OBDD
size is bounded by n2¥, where n is the number of primary inputs of the
circuit. This result applies only if the order is “topological”. meaning
essentially that the direction of all the wires follows the ordering. Here.
this result is generalized. to show that if wy bounds the number wires
through any cut in the forward direction. and w, bounds the number
in the reverse direction. then the OBDD size is bounded by n2vs?™"
For the case where w. = (. this is the same as Berman’s result. Using
this result. we can linearlv bound the OBDD representation for the
transition relation of circuits like the arbiter and the DME ring. which
have linear arrangements with a bounded number of wires through any
CTOSSS SeCLIoN.

Fujita states that tree circuits using only AND. OR and XOR gates
have linearly bounded QOBDD representations [F MK90]. Here. we show
that a more general class of circuits with bounded “tree width™ and
arbitrarv function elements have polvnomially bounded OBDDs. The
essence of the argument is to show that these cirenits can be arranged
in a linear order with a width that is logarithmic in the number of
sates. [his vields a bound on the OBDD <ize which is polvnomial
the number of gates,
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2.5.1 Bounded width circuits

Let L = ((G. <) be a linear order on the gates of a circuit. We classify
the primary inputs and outputs of the circuit as special instances of
gates in order to simplify the definitions. and assume that the primary
output is at the top of the order. Given an order L. we will say that
the forward cross section of the circuit at gate ¢ is the set of wires
connected to an output of some gate ¢, and an input of some gate ¢,
such that ¢y < ¢ and ¢ < ¢2. The reverse cross section is the set of
wires connected to an output of some gate ¢, and an input of some gate
g2 such that ¢ < g and ¢ < g,. We assume that no wire is connected
to the outputs of two distinct gates. so these two sets are disjoint. We
also assume that there are no cvcles in the circuit. to insure that the
circuit computes a function. The order L is said to be topological when
all of the reverse cross sections are empty.

The forward width of the circuit under order L. denoted wy. is the
maximum size of the torward cross section at any gate ¢. Similarly, the
reverse width of the circuit nnder order L, denoted w, is the maximum
size of the reverse cross section at any gate ¢.

The cross section of an OBDD at level i is the set of nodes labeled
with variable v;. Note that in this section, we will number the variables
of the OBDD from the top down. since this makes the proofs simpler.
The width w, of an OBDD p is the maximum size of any cross section
of p. The size of an OBDD is the sum of the sizes of its cross sections.
Thus. the OBDD size if bounded by n - w,. where n is the number of
variables.

It is easily shown that the size of the cross section of an OBDD at
level ¢ 1s the number of distinct functions

forlve . tn) = foleoooo T Lo

which depend on r,. where r = (ry...... r,-1) 15 a Boolean vector and |,
is the tunction represented by p. This observation leads to the following
theorem bounding the size of an OBDD in terms of the forward and
reverse widths of the cirenit it represents:

Theorem 7 [f « ciremit computing function [ has forward width 1o,
and reverse width . for some linear order L. then there is an OBDD




64 CHAPTER 2. SYMBOLIC MODEL CHECKING

output

T

Figure 2.11: Proof of bounded width theorem

p representing function f of size bounded by n2*1*"", where n is the
number of inputs of the circuit.

Proof. Associate the variables vy,...,v, of the OBDD with the
inputs of the circuit. such that for all : < j, v; < v;. We can bound
the size of the ith cross section of the resulting OBDD as follows. Let
o= (Iyj...... r._1) be a Boolean vector. Split the circuit in half by
choosing any gate ¢ such that v,_, < ¢ < v,. letting }" be the forward
cross section at g and Z the reverse cross section. This situation is
depicted in figure 2.11. For any given value of r. } is a function of
Z. and this function determines f.(r,..... ). The number of Boolean
functions with |[Z] inputs and Y| outputs is VI (1o see this. count
the number of entries in the truth table). This bounds the total number
of distinct tunctions f,. which in turn bounds the width of the OBDD
representing f at level . We know that |Y| <y and |Z] < w,. Thus.
the overall OBDD size is bounded by n -2%s2"" . O

This bonnd s linear in the number of inputs. exponential in the
forward width and doubly exponential in the reverse width. The double
exponential anpears to be necessary. This can be shown using the
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*hidden weighted bit” function of [Bry9l] as a counterexample. This
circuit can be ordered in such a way that between any two inputs there
is a cross section with O(log, n) wires in each direction, yet there is
an exponential lower bound on its OBDD size. If we could bound the
OBDD size with a single exponential in both the forward and reverse
widths, the OBDD size would be O(n25'%82") = O(n**!) where k is a
constant.

The theorem is concerned with a single output of a combinational
circuit, but it can also be applied to the transition relation of a sequen-
tial circuit. To do this. we simply transform the sequential circuit into
a combinational circuit which computes the transition relation ot the
sequential circuit. This is done by adding a pair of inputs v; and v]
to represent the old and new values of each state component. Since
the transition relation of the circuit is the conjunction of the transition
relations of its components. we can do this while increasing the width
of the circuit by only one wire in the forward direction as depicted in
figure 2.12. Thus, for bounded width sequential circuits {even with
wires in both directions). the size of the OBDD representing the tran-
sition relation is linear in n; + n,, where n; is the number of inputs and
ns is the number of state components. The synchronous arbiter cir-
cuit and the DME circuit of the previous section provide experimental
confirmation of this.

We have shown for a certain structural class of circuits that the
representation of the transition relation is linearly bounded in the size
of the circuit. We should note that in the symbolic model checking
algorithm. we also nse OBDDs to represent the set of states labeled with
a given ('TL formula. Unfortunately. we cannot expect to polvnomially
bound the size of the OBDDs representing these sets based purely on
structural considerations. The simplest example of this is probably a
circuit that inputs a binary number. stores one copy of it. then seriallv
rotates the original by an arbitrary number of bits. This circuit has the
simplest striucture we might hope for that has any communication at
all between the components. vet there is no variable order which vields
a compact OBDD for the reachable state set of this circnt. sinee it
implements the rotate function. The same argument would apply to
a serial multiplier circuit. In general. if a circuit computes a function
serially wiich cannot be represented by a compact OBDD. then we
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Figure 2.12: Computing a conjunctive transition relation

cannot expect the symbolic model checking algorithm using OBDDs to
be efficient.

2.5.2 Bounded tree-width circuits

In the previous section. we considered the OBBD representation of
circuits whose gates can be arranged in a sequence with a bounded
number of wires in each cross section. Now we consider the slightly
more general class of circuits which can be can be arranged in a tree
with a bounded width property. This is not to say that the topology of
the circuit must be a tree: rather. it must be possible to lay a spanning
tree over the circuit in such a way that the width of the circuit across
any arc of the spanning tree is bounded. This notion of bounded tree-
width is defined as follows.

Let I' = ((7. <) be a tree order over the gates of a circuit. where
g < g ifl ¢ is a descendant of ¢. Let b be the branching degree of T' (ie..
the maximum number of children of anv gate). As betore. the forward
cross section at node g is the set of wires connecting an output of ¢
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and an input of gy such that ¢, < ¢ and g < ¢o. Similarly, the reverse
cross section of T at node ¢ is the set of wires connecting an output of
¢1 and an input of ¢, such that g, < ¢ and ¢ < ¢;. The forward width
of the tree wy is the size of the largest forward cross section. while the
reverse width w, is the size of the largest reverse cross section.

For the moment. let us consider the case w, = 0. and let the width
w stand for the forward width:

Lemma 2 For any topological tree order T = (G. <), with width w and
branching degree b > 1. there is a topological linear order L = (G. <'),
with width w' < w(b — 1)log:|G].

Proof. By induction over |(7|. the number of gates. The base
case. |G| = 1. is trivial. \Assume the theorem holds for all circuits of
size less than |G|. Let ¢ be the root of the tree. and let G,..... G
be the subtrees of the root. where & < b. and |G| < --- < |Gi|. By
inductive hypothesis. there exist linear orders L; = (G, <;) of width
w; < wlb— Nlogy|Gil, for all 1 < i < k. Let L = (G,<’) be the
extension of these orders such that G, <’ --- <’ G; <’ g, as depicted in
figure 2.13. The width w' of L is bounded by maxi<i<k(wi + (k — i)w).
Therefore. for some :.

w' < ow (k= Dw
In the case k = i. we have
w < ek < eth = Dloga |Gl < wth — 1)logy |G
Otherwise. + < b and

!
iy

IN

wik =i+ (b—1)log, |G.])
wih — 1) log, (205F]67,)

(AN

Here. we note that [V, < (¥, <k|C )/ (k=7 +1) <G/ (k=14 1) 50

.

-

R = \
a
l l('|)

0w - wlh — l)l()g'2 (A 7
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Gy
Figure 2.13: Arrangement of bounded width tree

We note that since ! > | and & < b. k — 1 < b— 1. Therefore 2:—:—; < 2.

k=1t
26=T "
imz1 < L. Therefore.

w' < w(b—1)log, |G|

Further. since : < k. bk — ¢+ 1> 2. Thus

The theorem says that from any topological tree order of width
w we can derive a linear order of width w' < w(b — )log, |(7]. Tt
follows by the previous theorem that the OBDD size is bonnded by
p2w et = loga 6T — | Geth =1 Dwhere nois the number of primary
inputs. [his bound is polynomial in the size of the circuit tor a fixed
width and branching factor.

Now we turn to the question of tree orders that are not topological
(te.. bounded tree-width circuits with both forward and reverse wires).
[n this case. a logarithmic bound on the width of the linear order L is
not sulfficient. because the OBDD size can be doubly exponential in the
number of e rerse wires.

We can still obtain a polvnomial bound in n. however. by converting
a tree ordered cirenit witl reverse wires into a functionally equivalent
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tree ordered circuit with only forward wires:

Lemma 3 IfT = ((i. <) is « tree order over a circuit computing func-
tion f. with forward width w; and reverse width w,. then there s a
circuit computing | with topological tree order T' = ((v'. <) of forward
width 'y < w2

Proof. Consider [ . a subtree rooted at gate h. letting Y be the
forward cross section at h. and Z the reverse cross section at h. Let
Nyooon he be the children of A. and let Yj..... Yo and Z,..... Ze be
their respective forward and reverse cross sections. This situation is
depicted in hgure 2.14. Let the output functions computed by H be

Y o= f(Z. Y. .. Y
and for I <: < k. let

7. = r(Z.Yi... Yy
}t = fz(Zx)

We show by induction over |H| that there exists a tree circuit H' of
forward width w/, < 2" and reverse width w, = 0. computing the
functions

fo=fla Y. bi). for o € {0. [}7]

Note that f, is simply row .« in the truth table for Y. Since there are

2170 possible values of . and f, has |Y| components. the number of

ontputs of H' is |y 2",
By inductive hyvpothesis. there exist circuits ) for | < 0+ < k.
satisfving the width bound and computing the functions

o = [y for e & {0, l}‘in
Now. let A’ be a vate computing [, according 1o the following svstem

of equations:

rooo= o, fer b for bk




70 ('HAPTER 2. SYMBOLIC MODEL CHECKING

Figure 2.14: A non-topological tree order

Let H' be the tree ordered circuit obtained by taking A’ as the root.
and Hi..... H{ as the children of the root. The reverse width at the
root is 0. since f,. does not depend on Z. and the forward width at
the root is [¥]2/4!. Hence. using the inductive hypothesis. w’ = 0 and
wh < awp2*. 1f h is the root node of G. then H' computes the same
function as GG. O

This gives us the following theorem. bounding the OBDD size for
tree ordered circuits with both forward and reverse wires:

Theorem 8 If a circwitt (7 computing function [ has forward width
wy and reverse width w, for some tree order T of branching degree
h > 1. then there is an OBDD representing function f of size bounded
hy niCier "m0~ Dehere nois the number of primary inputs of the circuit.

Proof. According to lemma 3. for any tree ordered circuit of
forward width wy and reverse width .. we can construct a topological
tree ordered cireuit of width w < 102" which computes the same
function. By lemma 2. this circuit has a topological linear order L of
width at most w’ < wih — D)logsi(7]. By theorem 7. there is an OBDD
for the cireuit of size bounded by

”.—)'u,’ - ”_lur(h—l)logz |65]

”.)u 20T (‘*—l)lug’_, e
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Hence. in the case of bounded tree width circuits (of a fixed branch-
ing degree), we also find that the OBDD size can be bounded polv-
nomially in the size of the circuit. In this case. the exponent of n is
related to both the width and the branching factor. Clearly, for this
bound to be of any practical interest. wy must be small. and w, must
be very small. Nonetheless. the theorem demonstrates a more general
topological class of circuits with asvmptotically compact OBDDs than
was previously known.

2.6 Mu-Calculus model checking

The Mu-Calculus [Par74] is a logic based on extremal fixed points that
is strictly more expressive than CTL,!> and can also express a variety
of properties of transition systems. such as reachable state sets. state
equivalence relations. and language containment between automata. A
symbolic model checking algorithm for this logic allows all of these
properties to be computed using OBDDs [BCM™*90].

The Mu-Calculus augments the ordinary predicate calculus in two
wayvs. First. 1t allows terms to stand for relations. If f is a formula
in which variables v and y are free. then f characterizes a relation -
the set of all pairs (.. y) satisfying f. This relation is denoted in the
Mu-Calculus by the term Aoy . f. Second. the Mu-Calculus allows us
to express least and greatest fixed points. If 7 is a term. and Y is a
relational (predicate) symbol. then 7 is said to be formally monotonic
m Y if ¥ oalwavs occurs nnder an even number of negations in 7. In
this case. r has least and greatest fixed points with respect to Y. which
are denoted pY. 7 and vY. 7. .\ fixed point of 7 with respect to Y is a
relation which vields itself when substituted for all free occurrences of
Yoinr.

“Emerson and Let [ELX6] gave a model checking algorithm for a somewhat differ-
ent version of the Mu-Caleulus. and showed that there are tormulas in this logie that
cannot be expressed i CTL. Hereo we nse the relational Mu-Cadenlus of Park [Paci 1]
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A structure in the Mu-Calculus consists of a set D (the domain). a
valuation o for the individual symbols {a.b,c....} and a valuation v for
the relational symbols {A.B.C....}. The valuations assign an element
from the domain to each individual symbol. and a set of n-tuples from
the domain to each relational symbol. The meaning of an n-arv term
T is a set of n-tuples which we will denote [0, v]. The 0-ary terms will
be called simply propositions. and denote truth values.

The terms of the Mu-Calculus are the least set such that:

L.

)

Ut

.

Every relational svmbol is a term.

[f 7 is an n-ary term and (vy..... v,) are individual svmbols. then
Ty ... ', ) 1s a proposition.

[t 7 and 7, are n-ary terms. then so are -7 and (7, V 7,).

[f pis a proposition. and v is an individual symbol. then Jv. p is

a proposition.

If p is a proposition and (v,,....v,) are individual symbols. then
Avg, ... Un. P 1S an n-ary term.

If 7 is an n-ary term and Y is an n-ary relational symbol. where
7 is formally monotonic in Y. then pY. 7 and vY. r are n-ary
rerms.

The usual abreviations are used for A. =. V. ¢fc.

The semantics of Mu-Calculus terms are defined as follows:

l.

R(o.] = w(R). where R is a relational symbol.

Ty v )ooe] is true iff (o(ey). . ... ofr,)) is in oo,
(=rifo.w] = D" = rlo.w]. (1, V m)]o. ] = 7o, el U no. ).
(3r. p)o.w] is true if for some r € D. plo(r — r). v is true.

(Neyoo. U p)[o. ] is the set of n-tuples (.. .. .. r,) & D" such
that plofr, — r,).u] is true.

Y m)[ooe] where T is an n-ary term. is the least set 5 Z D

such that 5 = rlo (Y — 9] (vY. 7){o. ] is the greatest such
.\'.
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2.6.1 Applications of the Mu-Calculus

The Mu-Calculus is quite expressive. as can be seen by the following
compendium of applications. To begin with, given a binary relation R.
the image of a set Q € D ria R is

R(Q) = \y. de. (R(x.y) A Q(x))
The set reachable from Q in any number of steps of R (including 0} is
R (Q) = pY. (QV R(Y))
The transitive (irreflexive) closure of the relation R is

R* = uY. [RV \a.z. Jy. (Y. y) AY(y.2))]

CTL and fairness constraints

The interpretation of the operators of CTL in a Kripke model (D. R. L)
can be characterized in the Mu-Calculus as follows:

EXp = Az. 3y (R(z.y)Aply))
EFp = uY. (pVvEXY)
EGp = vY. (pA EXY)

EiqlU p) = pY. (pVign EXY))

In addition to these standard operators. we can also characterize the
("TL operators under fairness constraints. \ fairness constraint in its
simplest form is a condition that is assumed to hold infinitely otten
along all computation paths. Such conditions can be used to entorce
fair scheduling of processes and access to resources. Thev are not di-
rectly expressible in ("TL. since the tense operators [ and (i cannot
be directly combined. Instead. we restrict the path quantifiers of C'TL
to apply onlv to those paths along which each formula in a set " holds
infinitely often. To distinguish these constrained path quantitiers from
ordinary path quantifiers. we subscript them with €', Thus. A f. where
("is a set of CTL formulas and f is a linear formula. means that for
all paths. il cach formula of € s true infnitely often. then s tene.
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Similarly. the tormula E.f means that there exists a path such that
each formula of (' is true infinitely often and f is true. Here. we con-
sider only the C'TL operators with existential path quantifiers. since
the operators with universal quantifiers can be derived from these.
The formula E~Gp is true when there is some path in which p is
true in every state, and each element of (' is true infinitely often. Let

Y] =pAEX N\ E(Y I (Y Ac)).

ceC

We argue as follows that E-Gp is the greatest fixed point of r. First.
if Y is a tixed point. then every state in Y satisties p. and further. has
a nontrivial path remaining in Y which leads to a state satistving each
fairness constraint. Hence. a looping path can be constructed satisfying
each infinitely often without exiting Y. Thus ¥ C E-(/p. On the other
hand. suppose Y = E~Gp. Since every state in ¥ has a path touching
each fairness constraint infinitely. as does each state along that path. it
follows that every state in Y can reach every fairness constraint without
exiting Y. Thus Y C r{Y]. Therefore. F~Gp is the greatest fixed point
of 7. The set of states satisfying EcGp is expressed in the Mu-Calculus
as

vY . (pANEX N\ E(Y U (Y Ac)))
ceC

The remaining operators under fairness constraints can be characterized
in terms of £-(ip. as follows:

EeXp = EX(pAEo(i true)
EcFp = EF(pAE-( true)
Eetqg U p) = Elql (pN Ec(i true))

Emerson and Lei [EL36] give a characterization in the Mu-Calculus of
C'TL nnder a more general class of fairness constraints. Each constraint
in this scheme requires that one condition holds infinitely often or a
second condition holds finitelv often (for example. either acknowledge
holds tnfintrelv <fren. or request holds tinitely often).
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~1
ot

Simulation relations
Two states & and y of a Kripke structure are said to be bisimular it:

l. @ and y agree on the atomic propositions.

2. every successor of o is bisimular to a successor of y and

3. everv successor ot i is bisimular to a successor of .r.

Two states are bisimular if and only if thev satisfy the same set of
C"TL formulas [BCGSTL Ity u,. ... (i) are the atomic propositions.
then the bisimulation relation can be expressed in the Mu-Caleulus as
follows:

Bisim = vY. \eoy. N\ (wlr) = aly)

1<e<h
AVE (R Y = 3y Ry Y)Y A Y (' ')
AYy' . (Riy.y')y = 3 (R(e. L YAY (L ')

where we have. as usual. identified each atomic proposition with the
set of states in which 1t 15 true. There is also an asvmmetric notion of
~simulation  we sav that a state r <imulates a state y if:

L.

rand y agree on The atomic propositions.

20 every suecessor ob s simmdated by a suceessor ol r.

If state o+ simulates state 4. then y satisties every formmla satistied by
ran a dialect of CTL called 7-CTLL which allows onlv universal path
quantifiers (GLY1TLY Testing bisimulation and simulation relations can
bhe used as a form of veriheation. or 1t can be used to test abstractions
nsed in compositional model cheeking techniques [CLNN9a, GLYU. The
~ame wdea can ecasily be extended to svstems with labeled transitions.

S faet, thas s also troe Be TR anextension of CTL whieh allows anrestrieted

hirear temporal formulas vo b preceded by path guantifiers
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Language containment

The Mu-Calculus can can express the relation of language containment
between two deterministic w-automata. [or the sake of simplicity. we
consider only deterministic Biichi automata. which are not complete
for the class of w-regular languages. but it is not substantially more
difficult to handle more general classes of deterministic automata. such
as Street automata.

A finite deterministic Biichi automaton consists of a set of states
K. an initial state po € K. an alphabet Y. a set of transitions \ C
KN x ¥ < K. and an acceptance set B C K. The transition relation is
such that. for any state p and symbol o. there is exactly one ¢ for which
A(p.o.q). The automaton accepts an infinite sequence o € ¥* iff the
sequence of states p. where \(p;, 0;, pi+1) holds for all ¢. passes through
the acceptance set B infinitelyv often. The set of sequences accepted by
an automaton .M is called the language of M and denoted L£(.M).

To determine whether the language of a Biichi automaton W is
contained in the language of a Biichi automaton W' (with the same
alphabet). we define a Kripke structure representing the product of M
and VI'. and write a formula in CTL which is true if and only if every
sequence accepted by .M is also accepted by MW’ [CDK90]. This formula
can be evaluated using its Mu-Calculus characterization.

The product is defined by its transition relation R, and set of initial
states Sy, Let

I R=\s.5.rr'. Jo. (As.o.r) AN N(s' o).
208 = Ascs (s = po) A ST = py)).

There is a sequence in the language of M/ but not in the language
of M'if and only if there is an path of the product passing through
B infinitely often. but not through B’ infinitely often. Thus. £(M) C
COM"Y Off

Sy = .‘*\(r'xl{\_,.s/‘ B(S)}F,\S.S’. [3,(.5")

Another possible approach to the language containment problem
makes use of the transitive closure of the transition relation. First. we
remove from the product structure all transitions that brzin or end
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with a state in B’. That is. let
T = \s.s' . r.r[Ris.s".r.r'YA=B'(5YA=B'(r")]
The transitive closure ol rhis relation is
T = pQAs s ro ! T S o)V e d[Q(s s uc Y N Qlucu’ D))

This is the set of all pairs (.. y) of states of the product such that «»
can reach y without passing through B’. This holds for the pair (r..¢)
if and only if & is on a cvele not passing through B’. If there is any
such & in B. and . is reachable. then there is a path passing through
B but not B’ infinitelv often. hence there is a sequence in £{.M). but
not in L(M’). The converse is also true. Hence. L( M) C L( M) if and
only if ~EFAs.s". (T*(s.5".5.5) A B(s)). The EF operator can also
be evaluated using the transitive closure. since

EFp= 2z (p(x)V 3y. (RY(z.y) A ply)))

2.6.2 Symbolic algorithm

By devising a symbolic model checking procedure for the Mu-Calculus.
we can quickly establish symbolic algorithms for all of the above prop-
erties. [f we assume that the domain is B*. a symbolic model checking
algorithm is easily established. by translating formulas into a Boolean
Mu-Caleulus where the domain is just B = {false.true}. This is done
by replacing every individnal svmbol « by a A-tuple of individual svm-
bols tayay o agy. Thas, every n-ary term translates to a kn-arv term.
In the Boolean Mu-Caleulus we can represent terms by Boolean tor-
mmlas by introducing a new set of dummy individual svmbols o, ..
to represent relational parameters. \n n-ary term 7 is represented by
a tormula 7(e) such that

Given e we can comprte the formula representing a term in the Boolean
Mu-Caleulus by recursion over its straceture, as follows:




78 CHAPTER 2. SYMBOLIC MODEL CHECKING

1. The value of relational variable A is v(A).

2. The logical connectives and quantifiers are evaluated by the cor-
responding QBF operations.

3. The value of an n-ary term \vy,....vn). T 1s
Tlej(vg — dy. .. .. vn — dy)
4. The value of the proposition 7(vy.....v,). where 7 is an n-ary
term. is T{w|(dy — m..... dp — vn).

3. The n-ary relational terms pY. 7 and vY. 1 are evaluated using
the standard fixed point algorithm.

Because the variables are Boolean valued. we can implement all of the
above using the operations of QBF. with OBDDs as our representa-
tion. The symbolic Mu-Calculus model checking algorithm is shown
in pseudo-code form in figure 2.15. Using this algorithm. any quantity
that can be characterized in the Mu-Calculus can be computed using
the svmbolic model checking technique, with the possibility that a com-
binational explosion can be reduced or avoided. This also allows us to
use the expressive powers of the Mu-Calculus in describing and manipu-
lating svmbolic algorithms. with the understanding that the translation
from Mu-Calculus to a svmbolic algorithm is merely mechanical.

2.7 Computing equivalence relations

[n this section. we consider the problem of computing a svmbolic rep-
resentation of the equivalence relation between the states of two finite
state machines. or between states of the same machine. In the former
case. the relation can be used to determine the equivalence of the two
machines. while in the latter case. as Lin «t al. have observed [LTN90],
the self equivalence relation can be used in optimizing the logic or reg-
ister nsage of the machine.
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function eval(7. )
case
7 a relational variable: return o (r)
r = —p: return —eval(p. )
7T = pV ¢ return eval(p. ) Veval(q. o)
7 = Jw. ¢: return Jw. eval(p. ')
7 = u}. p: return fixedpoint(Y .p.w(} «~ false))
T = vY. p: return fixedpoint(Y.p,w(Y — true))
end case
end function

function fixedpoint(Y .p.v")

Y = eval(p. )

if Y/ = (YY) then return }”

else return fixedpoint(Y p.o (Y — Y"))
end function

Figure 2.15: Svmbolie Ma-Caleulus model checking algorithm
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2.7.1 State equivalence

We use a standard notion of the equivalence of states of finite Mealy
machines. Two states are equivalent if and only if for all input se-
quences. thev vield the same output sequence. The following is an
alternate characterization: equivalence is the greatest relation between
states such that if ¢ is equivalent to y. then for all inputs. the output
in state & is equal to the output in state y. and the successor state of
£ is equivalent to the successor state of y. Let o(.r.z) be the function
which determines the next state. as a function of current state & and
current input z. and let v(z.z). be the function that determines the
_current output. In the Mu-Calculus. the equivalence relation R, is

R,=vR \e.y. Vz. (n(r.2) = vy 2) A R(6(x.2).0(y.2)))  (2.22)

Using the standard fixed point approach. we can evaluate this relation
by a sequence of approximations Rg, R;..... where R; is the set of state
pairs which are equivalent for all input sequences of length ;. This
sequence is characterized by the recurrence

Ry =Ae,y. V= (y(e.2) = y(y,2)) (2.23)

and

Ry =Ny V. (Ri{e.y) N R(6(x.2).0(y,2))) (2.24)

This is simply the standard O(n*) algorithm for computing state equiv-
alence of Mealy machines. The problem of determining whether two
Mealyv machines are equivalent in their initial states can be approached
in two wavs  either their equivalence relation can be computed. or the
state space of their product can be exhausted by a forward search. The
number of iterations required for the former approach can be substan-
tiallv less. however. In the trivial case of an n-bit counter. the number
of iterations in the forward search is 1s exponential in n. while one step
suffices to reach a fixed point in the equivalence calculation. since all
states are distinguished by their ontputs.

[t 15 immediately seen that the crucial step in calculation 2.21 is the
substitution of vector functions é(.r.z) and o(y.z) into R,. The most
obvious way to accomplish this is to use Bryant's (‘ompose algorithm.
Some other possible methods are introduced in this section. Computing
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the OBDD representation for a composition of functions is an NP-hard
problem (cf.. section 2.3.4). thus we expect no good general solutions
to the problem. Another tractability issue is whether the approxima-
tions to the equivalence relation can be compactly represented using
OBDDs. There is no guarantee of this. of course. but there is some
reason to believe. a priori. that it may often bhe the case. First of all.
tor single-machine equivalence. it all distinct states are distinguishable.
then the equivalence relation is the identity velation. which can be rep-
resented as by a linear size OBDD. provided the compouent variables of
v and y are interleaved in the variable ordering. It also seems plausible
that the equivalence relation will often be simply a logical conjunction
of independent relations. cach corresponding to some modular compo-
nent of the svstem. In this case. the OBDD representation will also
be compact. provided the variable ordering conforms to the modular
structure of the machine. In any case. we will see examples of fairlv
complex machines whose equivalence relations are expressed compactly

in OBDD form.

Algorithm using restrictions

Because of the basic difficulty of computing compositions of OBDDs.
it is useful to have some restrictions on the result in order to be able
to solve the problem. Fortunately. the decreasing nature of the series
of approximations defined in 2.21 provides a constraint on the result of
the substitution. since cach approximation 2, is strictly contained in
.. We can use this fact by rewriting 2.21 as

Ry =Xeoy. 720 iRyt AR e ) oty 20 L R {2.25)
where | represents the Festriet operator introduced by Coudert. Madre
and Berthet [CBMS9]. This operation produces a function which agrees
with R, (6(r.2). 00y, 21) over the set R, attempting to minimize the

OBDD size. The restriction can be used to varving advantage. depend-
ing on the algorithim nsed for substitution.

Iterative abstraction algorithm

Another way to provide a restriction on the equivalence relation is first
tofind the equivalence relation of an abstracted machine. We choose the
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abstraction in such a way that the equivalence relation of the abstract
machine is strictly weaker than the equivalence relation of the original
machine. Thus. we can compute the equivalence relation of the abstract
machine first. and use it as a restriction in computing the equivalence
relation of the original machine. In particular, we can abstract the
machine by choosing a subset V of the state variables, and at each
approximation quantifying out the remaining variables existentially.
That is. let 1" be the complement of V', and let

Rlv = A\r.y. IV Vz (y(ae.2) = ‘,-'(,1;.:)) (2.26)
and
RYyy = Neoy. 3V (RY (e y) A(RY (8(e.2).8(y.2)) L RY)) (2.27)

[t is trivial to see that each approximation in the series RY is strictly
weaker than the corresponding approximation in R. It follows that RY,
the greatest fixed point. is weaker than R,. Therefore. we can restrict
the entire calculation of R, to only those state pairs satisfying RY. In
addition. we can use a series of subsets V{ C V, C .-+ C Vi where Vi is
the set of all state variables. restricting the first approximation in each
series R*" to the equivalence relation for the previous subset. Thus. we
let '

R = RY=1 A da.y. 3VE. Yz (5(2.2) = v(y.2)) (2.28)

and

Rily = Mooy, 3V 9z (R (eoy) AR (8(e.2).8(y.2)) L RIY)

(2.29)
We will refer to this as the iterative abstraction algorithm for comput-
mg the equivalence relation. By adding only a few variables to each
siiceessive subset. we can in some cases obtain fairly strong restriction.
which allows the substitution o be computed more efficiently. [n other
cases the equivalence relation obtained for the abstracted machine may
be trivial. since abstracting out the variables in 17" mav result in all
machine states appearing eqnivalent at the outputs. This is especially
likelv if the abstracted variables hold important control information
that enables machine registers to be observed at the outputs. Nonethe-
less. we can show cases where this incremental approach is greatlv more
efficient thau the basic algorithm.
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2.7.2 Methods for functional composition

This section considers methods for substituting functions for variables
i OBDDs. This operation is referred to by Brvant as Compose. [t is
the syvntactic mechanism corresponding to functional composition. As
sich. it has a number of applications apart from finding the equivalence
relation of finite state machines. including the evaluation of ("TL tfor-
mulas [BEF3Yb]. Most of the algorithins presented here for this purpose
have been modified to take as an extra argument a restriction on the re-
sult.in the hope that efficiency can be obtained by combining these two
operations. We consider the problem of calculating f(¢,..... dn) | R.
where f. g, ... ¢n and £ are all Boolean functions.

“bottom-up” substitution

This 1s the method originally propoused by Bryant for his (‘ompose al-
gorithm. but with a restriction on the result. In this method. we view
each OBDD node in f as a gate. which computes the tunction “if v,
then h else {" or equivalently, (—v; A1) V (v; A h). Having substituted
the functions g¢i....,¢, for the variables in [ and A, we can then com-
pute the result for f using the standard V and A operators. The basic
bottom-up algorithm is

function bottom-np( f. 1)
if [ is aleat then return f
if bottom-upt f. B has already been solved then retnrn old <olution
else . f is a triple (r,. fiL fi))
I'= bottom-upt f,. [?)
It = bottom-upt f,. I7)
return (=g, Ay sy, > by L R
end

Note that the restriction operator is nsed at cach step to simplify
the result. Since each subproblem is solved only once. the munber of

reenpsive calls to hottom ap s o1
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Domain partitioning

The domain partitioning strategy is so named because it divides the
problem into two subproblems by partitioning the domain of the func-
tions ¢y..... gn according to the value of one of the variables. The
operation proceeds in several steps.

First. we observe that if anv of ¢,..... ¢gn are constants. we can
immediately substitute these values into f. since substitution bv a con-
stant 1s a linear time operation which can only reduce the size of the
OBDD. We use the fact that if ¢; = ¢. where ¢ is 0 or 1. then

JAC/TE gn) = flvi = c)gr..... Jn) (2.30)

Next. we observe that we can eliminate any argument position on which
f Joes not depend. thus obtaining a smaller problem with the same
result. We can determine the set of variables on which f depends in
linear time. since f depends on v; if and only if v; appears in some node
in f.

If at this point the function f has been reduced to a constant. we are
done. Otherwise. we split the problem into two cases and recurse. We
choose the first variable v; occurring in ¢;... .. 9n. and apply Shannon’s
expansion. obtaining two subproblems

I' = flgile; —0). ..., galt, —0))
h flogte, — ... galvi — 1))

As in other OBDD algorithms. the result is an OBDD r = (. L. h).
provided / = h. otherwise r =/ = h. Needless to sav. we use a hash
table. caching the results of subproblems so that the same subproblem
1s not solved twice. With caching. the complexity of the algorithm is
O0f] < Tl

Making use of the restriction R in this algorithm is straightforward.
[f /¢ = 0. the result can be anyv function at all. so we simply return 0.
F.ach time we partition the problem into subproblems. we also spht R
into two cases. v, — () and R(r, — 1). The restriction has the effect
of cutting off the recursion each time a 0 leaf is reached in 7.
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Sequential substitution

This i1s perhaps the simplest approach to substitution; it transforms
a simultaneous substitution problem into a sequence of substitutions.
This is done by replacing each variable v; in the OBDD for f by a new
variable v]. Having done this. it is safe to perform the substitutions of
each function g; for v} in any order. since none of the tunctions ¢, . ... Gn
depends on any variable being substituted. Substitution of a function
for a single variable can be accomplished as follows:

flel =gy =20 [(v] &= gi) A f] (2.31)

This approach can also make effective use of a restriction. The
restriction operator operator may in fact be applied after each substi-
tution step if desired. potentially reducing the size ot the intermediate
results. In the case of the iterative abstraction algorithm. the fact that
some of the variables in the result will later be quantified out existen-
tially can also be put to use. We can move the existential quantifiers for
these variables inside the conjunction, thus quantifying the abstracted
variables out of the term (v <= g¢;) before applying the conjunction.
This may weaken our result somewhat. since {3z. a] A [3z. b] is weaker
than 3z.[a A b], but it can produce significant reductions in the size of
the intermediate results. The final result of the equivalence algorithm
1s unchanged. since it is computed with no variables abstracted.

2.7.3 Experimental results

This section presents the results of applving the various equivalence
relation algorithms to several example state machines, with a range
of complexity. The results are compared to published results tor the
same circuits by Touati ¢f «l. (computing only the reachable states)
and Lin et al. (computing the equivalence relation). In all cases. it
is self-equivalence that is calculated. [t would be interesting to have
somne results in this section on calculating the state equivalence relation
between two different implementations of a given machine. but unfor-
tunately. such examples were lacking. The three different approaches
to OBDD substitution are compared. {or each example. \Where pos-
sible, the direct algorithm 1s nsed. otherwise. the iterative abstraction
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machine mtd result b-u d-p seq | Touati Lin
(nodes) | (secs) | (secs) | (secs) | (secs) | (secs)

sbe iter 361 | 2054 | > 10K | 2415 2903

cpb32 iter 95| 45.5 4.4 344 4.1 ] 12.10

key iter 167 342 1738 384 3706 | 175.20

minmax10 | dir 39 197 255 204

minmax20 | dir 59 3.0 4.5 6.7

minmax30 | dir 39 6.2 9.0 15.7

Table 2.1: Equivalence calculation times

algorithm is used. For example. the state equivalence relation for the
machine sbc was calculated using iteration. but could not be calculated
directly. Table 2.1 gives the total execution time in seconds. while
table 2.2 gives the total number of OBDD nodes used.'” The latter
numbers are not very reliable. since they depend to some extent on ar-
bitrary choices about when to scavenge unused cells and cache entries.
However. if the available memory limit of 190.000 nodes is exceeded,
it is certain that all of the nodes in use were necessary for the com-
putation. since all available nodes were scavenged when the memory
limit was reached. The columns give the following information: the
name of the circuit. the method used (direct or iterative). the size of
the equivalence relation. and the time or space needed for each of the
three substitution methods (hottom-up. domain partitioning. and se-
quential). The times are for a LISP implementation running on a 1
MIP minicomputer. The final two columns give the results obtained
by Touati ¢f al. and Lin et al. for the same eircuit. These times are for
(" langnage implementations running on a DEC' 5400 and [BM R6000
respectivelv.

[t would seem that for the circuits cpb. kev and minmax. which have
regular structures with no control registers. there is no clear choice as to

“Aectually. function praphs with negated ares were used for this calcula-
tion [Bil87}. hence the number of nodes may be slightly smaller than what would
ve obtauned using OBDDs,
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machine mtd result b-u d-p seq
L | (nodes) | (nodes) | (nodes) | (nodes)
sbe iter 361 [ 22184 34609
cpb32 iter 95 | 8202 4225 11295
key | iter 167 13328 | 24368 11563
minmaxi0 | dir 39 16589 17815 17566
minmax20 | dir 39 | 8538 3492 9190
minmax30 | dir 39 11952 11886 10001

Table 2.2: Equivalence calculation space

which substitution algorithm is best. The bottom-up algorithm tends
to provide the best performance with the least memory usage. but there
are a number of exceptions. The machine sbc, which is somewhat more
complex, is a more interesting case. Here bottom-up and sequential
both provide fairly efficient solutions, although the iterative method
was required in both cases to solve the problem. The domain partition-
ing approach fails to terminate after 10,000 seconds. In the first stage
of the iterative algorithm, domain partitioning produced over 100.000
subproblems for a final result of approximately 100 nodes. Obviously.
many different subproblems with identical results are being solved. The
difficulty is that there is no easy way to identify equivalent problems.
[t is worth mentioning the the limit on the size of the cache for this
method was 3000 entries. With an unbounded cache. the performance
of the algorithm may be much better (a matter of theoretical interest
at best. since an unbounded cache cannot be provided). It should also
be noted that the results for minmax are somewhat anomalous. since
the 10-bit version seems to be substantially more complex than the 20-
and 30-bit cases. This is explained by the fact that the output func-
tions of these different versions were not the same. In the 20- and 30-
bit versions. the outputs appear to depend only on the "last” register.
and not the "min” and “max” registers. [t is also interesting to observe
that for minmax10. not all of the states are distinguishable. that is. the
equivalence relation is not the identity.
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Comparing these results to those of Touati et al., it is interesting to
note that the self-equivalence relation can be computed in less time than
the reachable states for sbc and key (taking into account the difference
" in machines speeds of roughly a factor 10, the equivalence method seems
to be about one order of magnitude faster for sbc, and two orders of
magnitude faster for key). Of course, the information obtained by the
two methods is not the same. [t seems. however. that in some cases
where the set of reachable states is not obtainable, the equivalence
computation may still provide useful information for logic optimization.
The results of Lin et al. seem to be roughly comparable for the machines
key and cpb32 (again, taking into account the difference in machine
speeds). It is not clear from the Lin et al. article which substitution
method was used. since two were mentioned. The one benchmark for
which the iterative method was required to produce a result was sbc,
but unfortunately Lin et al. do not report a figure for this machine.
Also. because of the fact the the 20- and 30-bit versions of minmax
had modified output functions, it is not possible to compare figures
for this benchmark. As a result of these ambiguities. it difficult to
draw conclusions about the effectiveness of the iterative abstraction
method, except to say that in one case (sbc) it was the only method
that successfully computed the equivalence relation.

2.8 Related research

The author first experimented with the use of OBDDs to represent
sets of states and transition relations in 1987. building the first sym-
bolic model checker tor CTL. Various heuristic improvements to the
basic technique were developed. including the OBDD algorithm com-
bining existential quantification and conjunction (cf. section 2.3.4). and
the technique of early quantification for disjunctive transition relations
(cf. section 2.14.2). Extending this work. Burch. Clarke. Long, McMil-
lan. Dill and Hwang described a symbolic model checking procedure
for the propositional Mu-Calculus. which could be used for a variety
of purposes. including CTL model checking. testing various process
equivalences. testing language containment of w-automata. and check-
ing satisfiability of LTL formulas [BCM*90]. In 1939. the author used
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the model checking technique to verify the cache consistency protocol
of the Encore Gigamax multiprocessor (see chapter 4). In the process,
a model checking system called SMV was developed, along with an
associated description language (see chapter 3).

In 1989, the idea of using the OBDD representation for verification
of finite state machines appears to have been independently developed
by Coudert, Madre and Berthet [CBM89], who used it in their PRIAM
system for testing equivalence of finite state machines. They represent a
finite state machine by a pair of vector Boolean functions. The function
6(v, w) vields the next state vector as a function of the current state
vector v and the input vector w. The function A(v.w) yields the output
vector as a function of v and w. The equivalence of two state machines is
tested by creating a combined machine in which both machines receive
the same input vector. and the output is a single bit which is true if and
only if the output vectors of the two machines are equal. The reachable
states of this combined machine are computed. If in all reachable states
the output is true, the two machines are equivalent, since no input
sequence can produce differing output sequences from the two machines.

The set of reached states is computed as the limit of an increasing
series of approximations. starting with the initial state. The set of
states reachable in one step from a set S is computed by a function
called mag, where [mag(d.5) = {s | Jv,w: v € 5. §(v.w) = s}. Most
of Coudert. Madre and Berthet's efforts are applied to computing the
[mag tunction without resort to representing the transition relation as
an OBDD. which thev claim is generally intractable. Their approach
begins by reducing the problem of computing the image of a set via a
tunction. to computing the range of a function. This is done using an
OBDD operation called (‘onstrain. The (Constrain operator takes two
Boolean functions f and ¢. and returns a tfunction f’ = Constraint f. y)
with the following property: for all z’. f'{z') = f(r). where r is the
nearest Boolean vector to ' (according to a suitable distance metric)
such that g(r) = 1. If we let &' = Constrain(d. S). then the image ot ~
via 0 is just the range of o'

(Coudert and Madre suggest two methods for computing the range of
o'. The first is called range partitioning. [n this approach. we pick the
lowest remaining variable in the ordering (call it v;). and. and divide
the problem into two subproblems. depending on the output of function
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6;. Thus.

(Range(é'))(vi — 0) = Range(Constrain(d’, —4'))
(Range(8'))(v; — 1) = Range(Constrain(§',6))

Note that for any function f,

Constrain(f,f) = | and
Constrain(f.—~f) = 0

so each recursion effectively eliminates one component function of §'.

The recursion terminates when all of the components of §’ are constants.
The other approach. called domain partitioning, is to divide into

subproblems based on the value of one of the inputs to ¢’. Thus.

Range(d') = Range(d'(v; — 0)) V Range(8'(v; — 1))

Again. the recursion terminates when all of the components of §’ are
constants.

Both of these strategies are special cases of a general strategy where
one chooses a cover. which is a pair of functions A, and A, such that
hy V hy = L. and then computes the recursion

Range(d') = Range( Constrain(d’. hy)) V Ranget Constrainid’. hs))

In the case of range partitioning. hy = ¢’ and ha = =9, In the case of
domain partitioning, iy = v; and h: = —v,. [t is suggested that other
covers may be useful as well. As with other OBDD techniques. a table
ot pairs 10’ Range(d')) is kept to avoid solving the same subproblem
twice. [his table 1s not as effective as the in the case of the standard
OBDD operations. however. since the number of possible subproblems
is exponential in the number of state variables. (‘oudert and Madre
suggest several optimizations for increasing the hit rate in this table.
A turther optimization introduced b (‘oudert and Madre is to use
an OBDD tunction called Restrict to reduce the size ot the reached state
set before applyving the /mayg operator. The Restrict operator takes two
functions f and ¢. and produces a function f' = Restrict{ f. ¢) such that
tor all . if y(x) = Lthen f/(x) = f(r). otherwise f’(r) is arbitrarv.
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Usually (but not always), the size of f’ is less than the size of f. We
note that if R, is the set of states reachable after : steps of the machine,
then

Ry = RV Imag(é, R;)
RV Imag(é, Restrict(R:, ~Ri_1))

As a result. the size of the arguments of /mag can sometimes be reduced
using Restrict.

Coudert and Madre report experimental results for computation
of the set of reachable states for a variety of small sequential circuits
{mostly [SCAS!® sequential benchmark circuits). Computing the set of
reached states can be useful for generating test patterns or “don’t care”
condition. for logic optimization [TSL*90]. Unfortunately. Coudert and
Madre do not use their techniques to actually test the equivalence of
two state machines, so it is unknown whether the technique is useful
for this purpose. They have not studied the asymptotic performance of
their techniques for classes of circuits, so it is not possible to determine
whether their optimizations yield asymptotic improvements.

A variant on the symbolic model checking technique for CTL was
proposed by Bose and Fisher [BF89b]. Their technique, which is lim-
ited to deterministic finite state machines, also represents the tran-
sition relation of the machine by a vector of Boolean functions 4.
and uses Bryant's (Compose operation to compute EXp = p(v; —
».). Thev do not report experimental results using this technique for
practical circuits. A similar technique was proposed bv (oudert and
Madre iCMBILL

Other researchers have proposed techniques to avoid constructing
rhe transition relation. For example. Burch. C'larke and Long use early
quantification (cf. section 2.4.2) for both disjunctive and conjunctive
rransition relations [BC'L91b. BCL91a]. They use the term “partitioned
rransition relations™ for this. The technique is somewhat limited in the
case of conjunctive transition relations. because existential quantifica-
rion only distributes over conjunction in the special case when one of
the conjuncts does not depend on the variable being quantified. Nev-

“nternational Symposium on Cicentts and Svstems
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ertheless, there are cases where the support of the component relations
is sufficiently disjoint to make this technique effective.

The basic technique is the following: assume we wish to com-
pute Jv. A, fi, where v = (v;,...,vx) is a vector of variables and
f =1(fi,....fm) is a vector of Boolean functions. Since conjunction
is associative and commutative, we can combine these functions in any
order we choose. In addition, if at any time there is a variable occurring
in only one function, we can quantify that variable out, since Jw. (pAgq)
is equivalent to (Jw.p)Aq when g does not depend on w. Since quantifi-
cation tends to reduce OBDD size by reducing the number of variables.
the strategy is to combine the functions in such an order that variables
can be quantified out as soon as possible.

Burch Clarke and Long use a fixed order determined by the user
for combining the functions. They show that this is quite effective
for pipelined data path circuits. and an asynchronous stack circuit,
improving the asymptotic performance as the circuit size increases. For
the DME circuit. the asymptotic performance of this method was not
as good as a method using a disjunctive transition relation. but it can
be more efficient for small rings.!® [t was found most efficient to group
the components of the transition relation and combine each group in
advance, thus avoiding some computation at each step.

For disjunctive transition relations (interleaving models). Burch.
("larke and Long introduce a modified search order that tends to reduce
the representation of the reached state set. In a breadth first search.
the representation of this set is complicated by the fact that the after n
steps. the number of steps taken by each process is constrained to sum
to n. This produces an artificial correlation between the states of oth-
erwise independent processes (cf. sectien 2.1.2). To counter this. one
can modily the search order. searching first all of the states reachable
by transitions of one subset of the svstem processes. then the next.
and repeating this process until a fixed point is reached. This tech-
nique. called "modified breadth first search”. was effective in reducing
the OBDDs representing the reached state sets for an asynchronous
stack circuit. but was found not to be as effective as the “conjunctive
partitioning” method. For the DME circuit. the modified breadth first

Y Personal communication.
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search method was faster up to about 16 cells, but had slower asymp-
totic performance. The grouping of processes into subsets was manual.

Another OBDD based technique for computing the reachable states
of a machine was introduced by Touati et al. [TSL*90]. They also
use a conjunction of component relations to represent the transition
relation, along with early quantification. However, they combine this
technique with the Constrain operation of Coudert et al.. This reduces
the problem of computing the image of a set via a relation to that of
computing the codomain of a relation. A series of approximations A;
to the reachable states is computed, such that

Aip1 = A; V Ay. 3z. (/\ Constrain(R;, A;))(z. y)
J

where R is a vector of component relations, each relation determining
the new state of one state variable. Touati et al. find this technique
to be superior to using the transition relation directly and to using the
Imag operation of Coudert et al. for computing the reachable states of
the benchmark circuits minmax and sbc, somewhat slower for key, and
roughly the same for cpb.32.4. It would be interesting to know for the
cases where an improvement was obtained, how much was due to the use
of Constrain and how much to the use of early quantification. Touati
et al. have also suggested partitioning complex next-state functions
into the composition of a sequence of smaller functions. This could be
useful for circuits containing multipliers. or other functions which have
no compact OBDD representation.

Touati. Brayvton and Kurshan report a technique for testing lan-
guage containment of w-automata using OBDDs [TBK91]. They use
the L-automaton model of Kurshan [Kur36], and an algorithm similar
to the one described in section 2.6.1 using the transitive closure of the
transition relation. No experimental results using this technique are
available.

Another way that one can test equivalence of two finite state ma-
chines is by computing the equivalence relation on states. as described
in section 2.7. Lin et al. alsa describe OBDD based algorithms for
computing this relation [LTN90]. A comparison of the methods can be
found in section 2.7. Lin et al. describe how the equivalence relation
can be nsed for computing “don’t care” conditions for logic optimiza-
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tion. In a later paper [LN91], Lin shows how this relation (represented
as an OBDD) can be used for state minimization, using an operator
which takes an equivalence relation and returns a relation which maps
every state onto the least element of its equivalence class.

Bryant and Seger have taken an an approach to formal verification
using OBDDs based on symbolic simulation [Bry88, BBS90. BS90]. The
symbolic simulator is similar to an ordinary logic simulator, except that
the inputs are symbolic values (variables) rather than numeric values,
and the outputs are given as symbolic functions in terms of these vari-
ables. These functions are represented by OBDDs. The simulation
method gains a great deal in efficiency by using an abstract interpre-
tation of the circuit model. This abstraction uses a lattice consisting
of the three values 0. 1 and X. where X is the least upper hound of 0
and l. The circuit operations such as AND and OR are abstracted in
such a way as to be monotonic with respect to this lattice. Therefore.
the output of the abstract simulation is always an upper bound on the
output of the concrete simulation. In many cases. a large number of
the inputs and initial values of state variables can be replaced by X
without sacrificing the particular circuit property being proved. The
art in this technique is to decompose the specification in such a way
that each part can be verified using only a small number of symbolic
values and X everywhere else. The simulation technique is limited to
a logic with only next-time operators. These formulas can be verified
using symbolic simulations of finite execution sequences. This rules out
proving properties such as liveness. fairness or deadlock freedom. but
allows saftety properties to be proved using invariants.

Bose and Fisher have demonstrated a technique for using repre-
sentation functions to verify sequential circuits using OBDDs {BF39a).
A representation function maps each state ol the impiementation to =
state of the specification (which is also a circuit). Symbolic simulation
techniques can be used to show a kind of single step equivalence be-
tween the implementation and specification vis @ vis this relation. As
in the method of Bryant and Seger. this proot can be decomposed into
parts in such a way that each part requires only a small number of
symbolic variables. with the remaining circuit nodes initialized to X.
Typically. an invariant is also required. since the single step equivalence
only holds over the reachable state space of the implementation. This
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technique is also limited in that it cannot prove liveness or deadlock
properties.

Long and Grumberg have introduced an abstraction technique us-
ing OBDDs which is more general than simply introducing X val-
ues [CGL92]. Their technique uses an OBDD to express the relation
between the abstract and concrete domains. The abstract transition
relation is automatically derived using OBDD techniques from the con-
crete transition relation. This can be done in a compositional way to
reduce the number of symbolic variables that are required. A variety
of abstractions have been put to use in this way. For example, a binary
number can be represented by its remainders modulo a set of relatively
prime numbers. This has allowed the use of the Chinese remainder the-
orem to prove the correctness of a multiplier circuit. In another case.
a single bit was used to represent whether a given binary number in a
circuit is equal to a given symbolic binary value. In this way the entire
function of the arithmetic unit was abstracted away, allowing a data
pipeline circuit with 64 64-bit registers to be verified. This abstrac-
tion technique is quite general. and is closely related to more classical
abstraction techniques [Kur37]. The difference is that function graph
methods are used to actually compute the abstract transition relation.
rather than giving this relation a priori.
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Chapter 3
The SMYV system

The SMV system is a tool for checking finite state systems against
specifications in the temporal logic CTL. The input language of SMV
is designed to allow the description of finite state systems that range
from completely synchronous to completely asynchronous, and from the
detailed to the abstract. One can readily specify a system as a syn-
chronous Mealy machine, or as an asynchronous network of abstract,
nondeterministic processes. The language provides for modular hierar-
chical descriptions, and for the definition of reusable components. Since
it is intended to describe finite state machines, the only basic data types
in the language are finite scalar types. Static, structured data types
can also be constructed. The logic CTL allows a rich class of temporal
properties, including safety. liveness, tairness and deadlock freedom. to
be specified in a concise syntax. SMV uses the OBDD-based symbolic
model checking algorithm to efficiently determine whether specifica-
tions expressed in CTL are satisfied.

The primary purpose of the SMV input language is to provide a
symbolic description of the transition relation of a finite Kripke struc-
ture. Any propositional formula can be used to describe this relation.
This provides a great deal of flexibility, and at the same time a cer-
tain danger of inconsistency. For example. the presence of a logical
contradiction can result in a deadlock - a state or states with no suc-
cessor. This can make some specifications vacuously true. and makes
the description unimplementable. While the model checking process
can be used to check for deadlocks, it is best to avoid the problem

97
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when possible by using a restricted description style. The SMV system
supports this by providing a parallel-assignment syntax. The semantics
of assignment in SMV is similar to that of single assignment data flow
languages. A program can be viewed as a system of simultaneous equa-
tions, whose solutions determine the next state. By checking programs
for multiple assignments to the same variable, circular dependencies,
and type errors. the compiler insures that a program using only the
assignment mechanism is implementable. Consequently, this fragment
of the language can be viewed as a hardware description language, or
a programming language. The SMV system is by no means the last
word on symbolic model checking techniques, nor is it intended to be a
complete hardware description language. It is simply an experimental
tool for exploring the possible applications of symbolic model checking
to hardware verification.

3.1 An informal introduction

Before delving into the syntax and semantics of the language. let us
first consider a few simple examples that illustrate the basic concepts.
Consider the following short program in the language.

MODULE main

VAR
request : boolean;
state : {ready,busy};

ASSIGN
init(state) := ready;
next(state) := case
state = ready & request : busy;
1 : {ready,busy};
esac;
SPEC

AG(request -> AF state = busy)

The input file describes both the model and the specification. The
model is a Kripke structure, whose state is defined by a collection of
state variables. which may be of Boolean or scalar type. The variable
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request is declared to be a Boolean in the above program, while the
variable state is a scalar. which can take on the symbolic values ready
or busy. The value of a scalar variable is encoded by the compiler
using a collection of Boolean variables. so that the transition relation
may be represented by an OBDD. This encoding is invisible to the user.
however.

The transition relation of the Kripke structure, and its initial state
(or states). are determined by a collection of parallel assignments (a
systemn of simultaneous equations). which are introduced by the key-
word ASSIGN. In the above program, the initial value of the variable
state is set to ready. The next value of state is determined by the
current state of the system by assigning it the value of the expression

case _
state = ready & request : busy;
1 : {ready,busy};

esac;

The value of a case expression is determined by the first expression
on the right hand side of a ( :) such that the condition on the left hand
side is true. Thus. if state = ready & requestis true. then the result
of the expression is busy. otherwise, it is the set {ready,busy}. When
a set is assigned to a variable. the result is a non-deterministic choice
among the values in the set. Thus. il the value of status is not ready.
or request is false (in the current state). the value of state in the next
state can be either ready or busy. Non-deterministic choices are usetul
tor describing systems which are not vet fully implemented (ie.. where
some design choices are left to the implementor). or abstract models of
complex protocols. where the value of some state variables cannot be
completely determined.

Notice that the variable request is not assigned in this program.
This leaves the SMV system tree to choose any value for this variable.
giving it the characteristics of an unconstrained input to the system.

The specification of the svstem appears as a formula in C'TL under
the kevword SPEC. The SMV model checker verifies that all possible
initial statés satisty the specification. In this case. the specification is
that invariantly if request is true. then inevitably the value of state
is busy.
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The following program illustrates the definition of reusable modules
and expressions. It is a model of a 3 bit binary counter circuit. Notice
that the module name “main” has special meaning in SMV, in the same
way that it does in the C programming language. The order of module
definitions in the input file is inconsequential.

MODULE main
VAR ’
bit0 : counter_cell(l);
bitl : counter_cell(bitO.carry_out);
bit2 : counter_cell(bitl.carry_out);
SPEC
AG AF bit2.carry._out

MODULE counter_cell(carry_in)
VAR
value : boolean;
ASSIGN
init(value) := 0O;
next(value) := value + carry_in mod 2;
DEFINE
carry._out := value & carry_in;

In this example, we see that a variable can also be an instance of a
user defined module. The module in this case is counter_cell, which
is instantiated three times. with the names bit0, bit1 and bit2. The
counter cell module has one formal parameter carry_in. In the instance
bitO0. this formal parameter is given the actual value L. In the instance
bitl. carryin is given the value of the expression bit0.carry.out.
This expression is evaluated in the context of the main module. How-
ever, an expression of the form «.b denotes.component b of module a.
just as if the module a were a data structure in a standard program-
ming language. Hence, the carry.in of module bit1 is the carry_out
of module bit0. The keyword DEFINE is used to assign the expres-
sion value & carry.in to the symbol carry_out. Definitions of this
tvpe are useful for describing Mealy machines. They are analogous to
macro definitions. but notice that a symbol can be referenced before it
is defined.
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The effect of the DEFINE statement could have been obtained by
declaring a variable and assigning its value, as follows:

VAR
carry_out : boolean;
ASSIGN
carry_out := value & carry_in;

Notice that in this case. the current value of the variable is assigned.
rather than the next value. Defined svmbols are sometimes preferable to
variables. however, since they don’t require introducing a new variable
into the OBDD representation of the svstem. The weakness of defined
symbols is that they cannot be given values non-deterministically. An-
other difference between defined svmbols and variables is that while
variables are statically typed. definitions are not. This may be an ad-
vantage or a disadvantage. depending on vour point of view.

[n a parallel-assignment language. the question arises: “What hap-
pens if a given variable is assigned twice in parallel?” More seriously:
“What happens in the case of an absurdity. like a := a + 1; (as op-
posed to the sensible next(a) := a + 1;)?” In the case of SMV. the
compiler detects both multiple assignments and circular dependencies.
and treats these as semantic errors. even in the case where the corre-
sponding system of equations has a unique solution. .\nother way of
putting this is that there must be a total order in which the assignments
can be executed which respects all of the data dependencies. The same
logic applies to defined symbols. As a result. all legal SMV programs
are realizable.

By default. all of the assignment statements in an SMV program
are executed in parallel and simultaneously. It is possible. however. to
cefine a collection of parallel processes. whose actions are interleaved
arbitrarily in the execution sequence of the program. This is useful
for describing communication protocols, asynchronous circuits. or other
systems whose actions are not synchronized (including synchronous cir-
cuits with more than one clock). This technique is illustrated by the
tollowing program. which represents a ring of three inverting gates.

MODULE main
VAR
gatel : process inverter(gate3.output);
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gate2 : process inverter(gatel.output);

gate3 : process inverter(gate2.output);
SPEC

(AG AF gatel.out) & (AG AF !gatel.out)

MODULE inverter(input)
VAR
output : boolean;
ASSIGN :
init(output) :
next(output) :

0;
'input;

A process is an instance of a module which is introduced by the key-
word process. The program executes a step by non-deterministically
choosing a process. then executing all of the assigninent statements in
that process in parallel. It is implicit that if a given variable is not as-
signed by the process. then its value remains unchanged. Because the
choice of the next process to execute is non-deterministic. this program
models the ring of inverters independently of the speed of the gates.
The specification of this program states that the output of gatel os-
cillates (:e., that its value is infinitely often zero. and infinitely often
1). In fact. this specification is false, since the system is not forced to
execute every process infinitely often. hence the output of a given gate
may remain constant, regardless of changes of its input.

In order to force a given process to execute infinitely often. we can
use a fairness constraint. A fairness constraint restricts the attention
of the model checker to those execution paths along which a given CTL
formula is true infinitely often. Each process has a special variable
called running which is true if and only if that process is currently
executing. By adding the declaration

FAIRNESS
running

to the module inverter. we can effectively force every instance of
inverter to execute infinitely often. thus making the specification true.

One advantage of using interleaving processes to describe a sys-
tem is that it allows a particularly efficient OBDD representation of
the transition relation. We observe that the set of states reachable by
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one step of the program is the union of the sets of states reachable by
each individual process. Hence, rather than constructing the transi-
tion relation of the entire system, we can use the transition relations of
the individual processes separately and the combine the results (cf. sec-
tion 2.4.2). This can yield a substantial savings in space in representing
the transition relation.

The alternative to using processes to model an asynchronous circuit
would be to have all gates execute simultaneously, but allow each gate
the non-deterministic choice of evaluating its output, or keeping the
same output value. Such a mnode! of the inverter ring would look like
the following:

MODULE main
VAR
gatel : inverter(gate3.output);
gate2 : inverter(gate2.output);
" gate3 : inverter(gatel.output);
SPEC
(AG AF gatel.out) & (AG AF 'gatel.out)

MODULE inverter(input)

VAR
output : boolean;
ASSIGN
init(output) := 0;
next(output) := !input union output;

The union operator allows us to express a nondeterministic choice
between two expressions. Thus. the next output of each gate can be
either its current output. or the negation of its current input - each
gate can choose non-deterministically whether to delay or not. \s a
result. the number of possible transitions from a given state can be
as high as 2". where n is the number of gates. This sometimes (but
not always) makes it more expensive to represent the transition rela-
tion. The relative advantages of interleaving and simultaneous models
of asvnchronous systems are discussed in section 2.1.2.

As a second example of processes. the following program uses a
variable semaphore to implement mutual exclusion between two asvn-
chronous processes. [lach process has four states: idle. entering.
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critical and exiting. The entering state indicates that the process
wants to enter its critical region. If the variable semaphore is zero, it
goes to the critical state, and sets semaphore to one. On exiting its
critical region, the process sets semaphore to zero again.

MODULE main
VAR
semaphore : boolean;
procl : process user;
proc2 : process user;
ASSIGN
init(semaphore) := 0;
SPEC
AG !'(procl.state = critical & proc2.state = critical)

MODULE user
VAR
"state : {idle,entering,critical,exiting};
ASSIGN
init(state)
next(state) :
case
state = idle : {idle,entering};

idle;

state = entering & !semaphore : critical;
state = critical : {critical,exiting};
state = exiting : idle;
1 : state;
esac;
next(semaphore) :=
case

state = entering : !;
state = exiting : O;
1 : semaphore;
esac;
FAIRNESS
running

[f any specification in the program is false. the SMV model checker
attempts to produce a counterexample. proving that the specification is
false. This is not always possible. since formulas preceded by existential
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path quantifiers cannot be proved false by a showing a single execution
path. Similarly, subformulas preceded by universal path quantifier can-
not be proved true by a showing a single execution path. In addition,
some formulas require infinite execution paths as counterexamples. In
this case, the model checker outputs a looping path up to and including
the first repetition of a state.

-In the case of the semaphore program. suppose that the specification
were changed to

AG (procl.state = entering -> AF procl.state 