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Abstract

Finite state models of concurrent systems grow exponentially as the
number of components of the system increases. This is known widely as
the state explosion problem in automatic verification, and has limited
finite state verification methods to small systems. To avoid this prob-
lem. a method called symbolic model checking is proposed and studied.
This method avoids building a state graph by using Boolean formulas
to represent sets and relations. A variety of properties characterized by
least and greatest fixed points can be verified purely by manipulations
of these formulas using Ordered Binary Decision Diagrams.

Theoretically, a structural class of sequential circuits is demon-
strated whose transition relations can be represented by polynomial
space OBDDs. though the number of states is exponential. This re-
sult is born out by experimental results on example circuits and sys-
tems. The most complex of these is the cache consistency protocol of a
commercial distributed multiprocessor. The symbolic model checking
technique revealed subtle errors in this protocol, resulting from com-
plex execution sequences that would occur with very low probability in
random simulation runs.

In order to model the cache protocol, a language was developed for
describing sequential circuits and protocols at various levels of abstrac-
tion. This language has a synchronous dataflow semantics, but allows
nondeterminism and supports interleaving processes with shared vari-
ables. A system called SMV can automatically verify programs in this
language with respect to temporal logic formulas. using the symbolic
model checking technique.

.\ technique for proving properties of indmctivelv generated (-lasses
of finite state svsterns is also developed. The proof is checked .mtomat-
ically, but requires a user supplied process called a procr.,s in variant
to act as an inductive hypothesis. An invariant is developed for the
distributed cache protocol. allowing properties of sylems with an ar-
bitrary nmmber of processors to le proved.

Finally, an alternative method is developed for avoiding the state
explosion in the case of asynchronous control circuits. This technique
is based the unfolding of' Petri nets. and is iused to check for hazards in
it ,listributed mutual exclusion circitit.
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Chapter 1

Introduction

There are several practical reasons for applying formal verification meth-
ods to computer systems. The most obvious is the high cost of correct-
ing errors in digital designs. This cost has been increasing with the ris-
ing level of integration in digital circuit technology. [t can be decreased
to an extent in application specific designs by the use of programmable
device technologies, but at least for the present, programmable logic
has distinct disadvantages in performance and area. Thus, there is a

growing demand for design methodologies that can yield correct de-
signs on the first fabrication run. Design errors that are discovered
before fabrication can also be quite costly. however, in terms of the en-
gineering effort required to correct the error. and the resulting impact
on d,,opment schedules. At present. the best tools available to engi-
neers for finding errors before fabrication are simulators, which model
the behavior of a system for predetermined or randoin input patterns.
The engineer using simulation is faced with two ill-characterized and

increasingly intractable problems. The first is creating a set of input

patterns that are stilficient to expose any incorrect behavior of the sys-
tem. and the second is letermining the correct output of the system
uindler these conditions. to be compared with the simulated output. In-
creased density of integration has allowed higher level functions such as
network protocols to be implemented in hardware. and as a result, the
problems of simulation have become critical. What seems to be neede(l
is a. precise yet understandable way of specifying correct )ehavior. and
an Oxhaustive inethod of leterniiiiing that the sYstem niolel satislies
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this specification for all input patterns. This is the meaning of formal
verification.

A formal verification framework has three basic elements - a math-
ematical model of the system to be verified, a formal language I fram-
ing the correctness problem, and a methodology for proving the state-
ment uf correctness. One characteristic that many automatic verifica-
tion methodologies have in common is that they require an exhaustive
search of the state space of the model. Owing to simple combinatorics.
the size of this state space can be, and usually is. exponential in the
size of the system being modeled. This exponential growth in the state
space. known as the state explosion problem is the limiting factor in
applying automatic verification methodologies to large systems.

This thesis is directed toward solutions for the state explosion prob-
lem. This is essentially a question of methodology, but before we can
discuss methodology, we need to discuss some of the models and for-
malisms that are commonly used in formal verification of hardware.

1.1 Background

The problem of hardware verification is in some ways similar to. and
in other ways different from the problem of proving correctness of pro-
grams. Digital systems are most similar to what Pnueli has charac-
terized as reactive programs [Pnu86], in that they receive input and
produce output in a continuous interaction with their euvironment,
rather than computing a single result and halting. In additi n. the be-
havior l digital systems is concurrent in the extreme. sinc(, every gate
in the system is simultaneously evaluating its output as a function of

its inputs.

1.1.1 Temporal logic

For reasoning about concurrent. reactive programs. PNueli proposed
the use of a formal system originally studied by philosophers. called
temporal logic [Pnu77. PnuS6. MPSI. Kro87]. In a temporal logic, the
usual operators ot propositional logic are augmented by ft n. ovrators.

whicl are ise I to forn assertions about changes in ine. ()ne can
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assert, for example, that if proposition p holds in the present, then
proposition q holds at some instant in the future, or at some instant in
the past. The temporal modalities can be combined to express fairly
complex statements about past. present and future. For example "if p
holds in the present. then at some instant in the future. p will have held
in the past." A temporal svstem provides a complete set of axioms and
inference rules for proving all validities in the logic for a given model of
time. such as partially ordered time. linearly ordered time, dense time.
and even branching time.

Temporal logic is powerful enough to define a semantics for pro-
grams which captures not only the traditional before and after con-
ditions of Floyd-Hoare style program proving, but also a wide varietv
of temporal properties of programs. such as termination, possible ter-
mination, termination under fair scheduling of concurrent processes.
etc. [CE81a, BAMPS1]. In the hardware area, Malachi and Owicki
used temporal logic to give a concise specification of the conditions
necessary for an asynchronous circuit to be speed independent [MO81].
Bochmann used temporal logic to give a semantics for self timed cir-
cuits, and used this system to verify a corrected version of an arbiter
circuit [SeiSOa]. Formal proofs of this kind are extremely tedious and
difficult, however. and computationally intractable to automate. To
simplify the hand proof. Bochmann used a somewhat oversimplified se-
mantics for the circuit elements (neglecting gate delay) and as a result.
missed a bug in the lesign. which was demonstrated bv Dill [DC86].

A more practical application of temporal logic in hardware veri-
fication, called ,nodcl c 'cking. was introduced by ( 'larke and Eier-
son [CESIb] and independently by Quielle and Sifakis [QSSIl. Instead
of proving the vallity of a logical formula for all models, a no Iel
checker determines the Irtth value of the formula in a specific fnite
model. For branching time logic, the model checking prol)len is coM-
putationally tractable. even though the validity problem is intractable.
Here an important distinction between hardware and software systenis
comes into play - hardware systems are finite-state. This allows the
proof procedure to be automated tsing model checking, while maintain-
ing the formal elegance of temporal logic for specifying correct behavi<Or.

The metho, of' (Clarke and Emerson first 1),milds a coinplete state(
graph of the svsten fron a lescription in an appropriate hianglag;e.
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The truth value of a formula in the logic is determined by an algorithm
which propagates formulas in this state graph until a fixed point is
reached. Besides being fast and fully automatic, this technique has the
advantage that it can produce state sequences as counterexamples when
the formula being checked is false. This has made it possible to find
bugs in a number of small but fairly subtle circuit designs [BCDM86,
BCD861. including the one verified by Bochmann.

For linear time logic, there is a decision procedure that translates a
formula into an automaton by means of a tableau construction [RU71,
CE81b, BAMP81]. This construction is similar the the semantic tab-
leaux method of constructing proofs in standard logic [Smu68]. Each
state in the tableau is associated with a set of formulas which are true
in that state. Since the number of states in the tableau is exponential
in the size of the formula, the method is not practical for proofs about
very large systems. However, the tableau method can be used in a
model checking framework, yielding an algorithm which is exponential
in the size of the formula but linear in the size of the model [LP85).

1.1.2 Automata theoretic models

An alternative to the temporal logic framework is to cast the correct-
ness problem in terms of a relation between the external or observable
behaviors of two processes. One way to define this relation is by con-
sidering the set of all possible sequences of communications between
processes. For example. in the L-automata model of Kurshan [Kur86],
these sequences are defined by the language of an ,.;-automaton. Cor-
rectness is framed as the containment of the language of one automaton
in the language of another. This asymmetric relation makes it possible
to umnderspecify" a system, that is. to leave some choices open to the
designer. The use of automata on infinite strings makes it possible to
express liveness properties. For instance, one can easily construct an
automaton whose language is the set of all infinite strings such that
every tune a message is sent on some channel, one is eventually re-
ceived. Language containment between '-automata can be established
by an algorithm which searches for cycles in the state space of a product
autontaton.

Van ,de Snepscheut [vdSS3] and )ill [DiI88] have used trace the-
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orv to model speed independent circuits (Sei80b]. A trace is simply a
history of the communications between a process and its environment.

The trace sets of two process can be combined in a way which mod-
els communication between the two processes by synchronizing signals

sent and received on the same channel. Dill's system is a circuit alge-
bra which has both a structural interpretation (describing the physical

connection of wires) and a trace theoretic interpretation (describing
the communications along those wires). The actual trace sets are de-
fined by the languages of finite automata (in this case, automata on

finite strings, hence liveness cannot be modeled). A relationship called
conformance between two processes determines when one process can
safely be substituted for the other in all environments. Conformance

can be tested by a polynomial algorithm which searches the state space
of a finite automaton derived from the two processes.

In the Calculus of Communicating Systems (CCS) [Mil80], Milner
takes a different approach in which external behavior is modeled by a
tree rather than a set of sequences. The way CCS models communi-

cation is not well suited to modeling hardware. since in CCS a signal
cannot be sent until a receiver is ready to receive it. In hardware. a re-
ceiver cannot generally prevent a signal from being sent. Also. in CCS.
communication is always between two processes, while in hardware sig-
nals are often broadcast to manv receivers. A calculus specialized to
circuits called CIRAL [Mil83] was developed to remedy these prob-

lems. The notion of correctness in process calculi is called observational
equivalence, meaning that an observer cannot distinguish between two

processes by any experiment. This notion of correctness is extremely
strict, since it doesi allow the specifier to leave any choice up to
the designer regardliri, the externally visible behaviors. Observational
equivalence can. be proved by establishing a relation called 1isirn ala-
lion between the two processes. For finite state processes. there is an

polynomial time algorithm for bisimulation which is very similar to
the coarsest partitioning algorithms used for state machine ininimiza-

tion [NH84].
All of these methods can be viewed as variations on the theorv of

finite automata. tailored for modeling certain properties of a particu-
lar class of systems. In fact. the automata theoretic approach is not
very far from the ternporal logic approach in practice. The difference
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is mostly a question of notations, since the tableau method provides a
way of translating a temporal logic formula into an automaton. Al-
though temporal logic is not as expressive as automata in characteriz-
ing classes of sequences. it has been shown by Wolper that temporal
logic can be extended using right linear grammars to make it as ex-
pressive as automata without increasing the complexity of the decision
procedure [WoI83]. ('larke and Kurshan have also proposed a branch-
ing tine logic in which the temporal operators are defined by finite
. -autoinata [CGK8[\91].

What all of the above systems have in common is that correctness.
once forlnalized. can be determined by an algorithm that searches the
entire state space of a fnite state model. Such methods have the ad-
vantage of being fully automatic. but invariably suffer from the state
explosion iroblem.

1.2 Scope of the thesis

This thesis explores methods of state space search that avoid the state
explosion problem by not explicitly representing the states of the model.
To do this. some revolutionary new techniques are borrowed from the
area of switching function analysis. In this domain, a combinational ex-
plosion also arises, since the number of input combinations to a Boolean
function is exponential in the number of inputs. New techniques for
Iloolean comparison avoid this problem by representing Boolean finc-
tions wit hi a reduced form of decision graph called an OrderedI Binary
Decisio l)iagramn (OBDD) [Brv86l. These decision graphs provide a
,'0otpact caioim ical fort for Boolean functions. To apply tiiis idea to
leiniporal verilication. we observe that, if the state of a svs leni is rep-
resented I) v a vector of Boolean variables. then a set of states can be
represented Ib a Boolean function which returns true for all states ill
Ihe swt. Similarly. a relation ,rRy1 between states can be represented
bv a Boolean hnction of two sets of variables. one sot representing ,r
and the oil her rptresenting y. li this way. a timodel cliecking algorithm
can Ibe developed which uses OBDIDs to represent sets anl1 relations.
lBorrowing t cruinology fron 13rvant. this techniqiu is called Y .mbolw
1oolel 'hcli, ig. since symbolic variables are ,used Ito represent Ilie 4,OIl-
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ponents of the system state rather than numeric values. Using symbolic
model checking, we can can automatically verify some regularly struc-
tured systems with literally astronomical numbers of states.

The principle contributions of this work are detailed below:
The symbolic model checking method. A technique is developed for

state space search using Ordered Binary Decision Diagrams. We show
that any algorithm that can be expressed in a fixed point logic called
the Mu-Calculus can be computed using this method. These include al-
gorithms for all of the correctness notions enumerated above, including
CTL model checking (with fairness constraints), the linear time tableau
method, conformance. observational equivalence, language containment
for ,;-automata, Mealy machine equivalence, and others. From a the-
oretical point of view. a structural class of sequential circuits is iden-
tified whose transition relations can be represented by a polynomially
bounded OBDDs. This theoretical result is born out by experiments on
classes of regularly structured circuits. for which the time used bv the
symbolic model checking method is found to be polynomially bounded
in the circuit size. In addition. some experiments are reported using
symbolic model checking to compute the equivalence relation between
states of a finite state machine. Several techniques are advanced which
improve the efficiency of this computation in practice.

The SMV system. A symbolic model checking system called SAW is
presented. This system permits the automatic verification of programs
written in a specialized language for describing concurrent finite state
systems and protocols. This language is somewhat similar to LIS-
TRE [CHPPS7] in its synchronous dataflow semantics. but has several
,nique aspects. For example. it allows systenis to be modeled ,,on-
determini.stically for purposes of abstraction, it allows arbitrary inter-
leaving of concurrent processes. and it allows programs to be annotate([
with assertions iII branching time temporal logic.

Formal verification of the Encore G'igamax cache consistency pro-
tocol. The cache consistency protocol of a distributed shared-memory
multiprocessor called the Encore Gigamax is modeled in the SMV ]an-
guage and verified using the symbolic model checker. Running in miiin-
utes. the symbolic model checker discovered errors in this system which
were not discovered by simulation, in spite of the very large state space
of the model [MS9l]. This experiment shows that the nodel (heckine
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technique can be used effectively in an industrial setting for highly com-

plex systems. It also sheds light on Issues Involved in mnodeling such
p~rotocols as finite state systems. and the kinds of errors that can be
found by model checking that are not likely to be found by simulation.

[fldUCtiofl Over P~rocesses. A. partially automated method of induic-
tion is described for proving properties of p~aramneterized classes of dle-
signs. T[he method applies to a variety of process models, requiring of
the modlel only certain simple algebraic properties. The SMIV system
is, extended to support proof lby indluction. allowving some p~roperties of
the Gigamiax cache protocol to be verified for configurations of arbitrary
size.

Verifiation ustiq occitrrenice netts. An alternative method for avoid-
Ing the state exp~losion is examined. This technique avoids considering
all of the possible interleavings of concurrent actions by using a partially
ordered rep~resenitationi of' behavior called an occurrence net [.NPWSL].
This method is utsed to verify that a design for an asynchronous dis-
tributed mutual excluIsion circuit is hazard free (this example is also
used for the symbolic model checking method). Using this technique,
we also find empirically that the run time is polynomial in the number
of components of the system, while the number of states is exponential.

1.3 Related research

Since the state explosioni prolblemn is tlbiquitoiis in thle verification of
Coiptter svsteiiis and~ protocols. miany researchers in lie area have
studiedl it.

1.3.1 Reduction

The mlost co)nliniof a pproach is based oti rtcdIutiori - rediii g the cor-
rectness pi-o1beiii to a similar problem in a smaller stIate space. This is
generally done by replacinig processes III the model by smialler processes
that have sinuli hr or Idlent ical coinifiiictiofl behavior. [lie mnost gen-
eral framnework fbr this kitil of' reduictioin is t hat of 1Kin- shaii ilK urS7TI
(I ig /I01 Off)OpI, Icf 1(ll1(ti.s of ,:-atttoiatoii ,iiod els. it Is p)ossible

to( Sitliplif V lt otI li ItI( (111oral stalie of it I)I'oc(-' . imt ilso its external
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communications. In this methodology, one generally builds a hierarchy
of reductions, in which processes at the lowest level are reduced, then
combined at the next higher level and further reduced. etc. Kurshan
advocates building this hierarchy from the top down. so that the most
abstract models can be verified before details are filled in at the next
lower level.

.A hierarchical approach was also taken by Dill in his trace theoretic
system for speed independent circuits [Dil88]. In this case. the reduc-
tion is obtained mostly by hiding internal signals of a module. There is
no provision for abstracting the signals by which the module commu-
nicates with its environment. That is. communication always remains
at the same level, that of digital signal transitions.

The reduction approach is generally not automatic. Usually. the
reduced process is obtained in an ad hoc manner, and the validity of
the reduction is then tested automatically. Some methods have been
proposed for obtaining reduced processes automatically, however. For
example. in a method called compositional model checking, a state min-
imization procedure is used to obtain a reduced process that is equiv-
alent to the original process with respect to observation via its inputs
and outputs [CLM89b. CLM89a]. This reduction preserves the truth
value of all formulas in a suitable logic. Graf and Steffen have also stud-
led minimization with respect to a suitable notion of equivalence as a
reduction technique [(-;S9tj. Minimization techniques are fairly strict
in terms of the required relation between the original and reduced pro-
cesses, however. As a result. the reduction that can be obtained using
these techniques is not generally its great can be obtained using more
flexible but unautomated methods.

Fhe symbolic niodel checking technique is not really an alternative
to reduction methods. but is complementary to them. In general. the
larger the state space that can be searched automatically, the less the
need for reduction. For example. Dill used a reduction (constructed by
hand) to verify a speed independent distributed mutual exclusion ring
circuit [Dil88]. I sing symbolic model checking, there is no need for a
reduction -the verification time is polynomial in the size of the ring (cf.
chapter 2). On the other hand. symbolic model checking techniques can
be itsed to implement the validity test for reductions (cf. chapter 5).
hence the two techniques cant b cornbined.
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1.3.2 Induction

In systems of many identical processes, it is sometimes possible to re-
duce an arbitrary number of processes to a single process while retain-
ing certain properties of interest. For example, Browne. Clarke and
Grumberg proposed a reduction technique of this sort which preserves
the truth value of formulas in a suitably restricted logic with process
quantifiers [BCG86I. Unfortunately, the reduction. a form of bisimula-
tion, had to be established by hand. There was no automated way of
checking it. Kurshan and McMillan proposed an inductive method of
establishing the reduction that could be checked automatically [KM89].
The method is also less restrictive in terms of the properties that can
be proved since it does not rely on bisimulation. This method is used
in chapter 5. A similar method was described independently by Wolper
and Lovinfosse [WL89]. Another inductive technique has been de-
scribed by Shtadler and Grumberg [SG89]. This technique is somewhat
more flexible in that it treats networks generated by context free gram-
mars. but is limited to bisimulation as a reduction technique. A more
detailed comparison of these methods can be found in chapter 5.

1.3.3 Other symbolic methods

Coudert and Madre have described a method for verifying finite state
machines using Ordered Binary Decision Diagrams which is similar to
symbolic model checking [CBM89]. The symbolic model checking tech-
nique was developed in t987. The technique of (oudert and Madre
appears to have been developed two years later (Cou911 bitt iridepen-
(lentlv. There are several differences of approach between the two
methods. Symbolic model checking is directed mostly toward prov-
ing temporal properties of finite state systems. whereas Coudert and
Madre have concentrated mostly on proving equivalence of determinis-
tic Mealy machines (though they also discuss temporal logic (cV'NB911).
Testing Mealy machine equivalence is useful. for example. when one is
mapping a design from one technology to another, but is a fairly lim-
ited form of verification, since the specification is at the same level
of detail as the implementation. Also. in this work. we consider the
performance of algorithms mostly in terms of asymptotic behavior for
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regularly structured classes of systems, while Coudert and iMadre have
considered mostly a set of benchmark circuits for synthesis. This makes
it difficult to determine how well their technique scales with circuit size.
Finally, Coudert and Madre have not as vet reported any results for
testing equivalence of two different implementations of the same finite
state machine. In practice. they have only used symbolic techniques to
generate the set of reachable states of a finite state machine. This infor-
mation is useful for test generation and sequential synthesis [TSL+90.
but these experiments provide no information about how well the tech-
nique works for verification. On the other hand. the symbolic model
checking technique has been applied to the verification of an industrial
design for a distributed cache consistency protocol (cf. chapter -1). .\
more detailed description of the work of Coudert and Madre. and oth-
ers using OBDDs for se4lential circuit verification, can be tound in
chapter 2.
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Chapter 2

Symbolic model checking

As mentioned in the introduction, a formal verification s-. -tem has sev-
eral basic elements. First. we require a model. A model is an imaginary
universe, or more generally, a class of possible imaginary universes. To
make our model meaningful. we require a theory that predicts some
or all of the possible observations that might be made of the model.

An observation generally takes the form of the truth or falsehood of a
predicate, or statement about the model. Finally, to verify something
meaningful about the model, we require a methodology for proving state-
ments that are true in the theorv.

In program proving, the universe is a totallv imaginary one. driven

bv mechanisms (the compiler and hardware) of which the programmer
has no knowledge. [ie logician is free to assign any semantics at all
to programs. provided the compiler writer and hardware designer agree
to implement them. hi.s makes program proving an artificial science.

in the sense that our theory is true because we say it is. In contrast. a
hardware verificatioti systern requires a model of a real physical system.

The underlying physical mechanism is still invisible to its (we can only
postulate its existence). but we can empirically construct a model which
predicts the necessary observations with a sufficient degree of accuracy
for our purposes (the veritication of digital circuits). It turns out that
the required degree of accuracy is not very large. Though quite accurate
models are possible. using partial (lifferential equations to describe the
time evolution of fields arid particle densities, a stitable design Style
makes it possible to coflsider only the digital ( one or zero) value of

23
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voltages, ignoring entirely the exact voltage within the digital ranges,
and the time it takes to switch from one range to another. Depending on
the design style (eg.. synchronous or self timed), different models may

be appropriate. In certain rare cases, we may have to use differential
equations to model the analog behavior of circuits (for example, when
metastability arises). In this thesis, though, we will consider only fairly
abstract models of circuits as finite state machines. Thus. we return to
the science of the artificial. wherein we choose the theory to suit our
needs. but with the understanding that a method exists for translating
our models into real systems.

The kind of theory that emerges for the model depends to a large ex-
tent on the kind of experiments the observer is able to perform. For ex-
ample. in traditional program proving systems. the observer is allowed
to set up the initial state of the program, wait for the program to ter-
minate. and then examine the final state. The theory of this model can
be expressed in a kind of before-and-after logic whose axioms determine
the semantics of programs. For example. in Floyd-Hoare logic [Hoa69],
the formula

{true} x := x = y}

;s an axiom: for any initial condition. after the program x := y termi-
nates. .r and y have the same value. The fact that no other variables
change value in the process can also be expressed as an axiom:

{- = al r := y I- = a}

provided neither z nor a depend on .r.
In this system, if the program fails to terminate (diverges), the

observer must simply wait forever, it.. no observation is possible. One
might ask whether waiting forever is not itself an observation, that
is. should it not be possible to state in the semantics that a given
program terminates or doesn't terminate for a given initial condition?
This point can be argued either way for programs (since knowing that
a program terminates before infinity is not very practical information).
However. for digital systems (or reactive svsteis in general). it is clear
that simple before and after conditions are not a sufficient theory; first
of all termination for these systems is not well defined, and moreover
the iieaning of what these systems are supposed to do is inseparably
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linked with the evolution of events in time [Pnu77].' What we need is
a formal theory in which we can reason about temporal aspects of a
system's behavior.

2.1 Temporal logic

Temporal logic (or ttnse logic) is a system devised by philosophers ex-
pressly for making statements about changes in time [Bur84]. In tem-
poral logic, the formula Fq is true in the present if q is true at some
moment in the future. Similarly Pq is true in the present if q is true
at some moment in the past. These tense operators, F and P, have
duals which are generally given their own names. The formula Gq is
equivalent to -F-,q, meaning that q is true at every moment in the
future. The formula Hq is equivalent to -P-q, meaning that q is true
at every moment in the past. These operators can give surprisingly
concise expressions of sentences with complex tense structures. For ex-
ample. q =* FPq can be interpreted as "if q holds in the present. then
at some time in the future q will have held in the past".

The usual model theoretic semantics given to temporal logic (and
other modal logics) is the so-called possible worlds semantics. A frame in
this semantics consists of a class S of states through which the system
evolves, and a relation < representing temporal order. A model is a

frame with a valuation L. which assigns truth or falsehood to every
atomic proposition (propositional letter) in every state.2 The truth or
falsehood of temporal formulas is relative to the present state. For
example, the forntula Fq is true in state .s iff there exists a state t such
that p is true in state t and .s < f. Similarly Pq is true in state .s ilf
there exists a state / such that p is true in state t and f < .5. Notice that
a temporal formula acts like an open sentence, with one free parameter
representing the present state. Thus it defines a class of states in which
the formula is true. Similarly, a state defines a class of formulas which
are true in that state.

The question of termination is in arty event not undecidable fbr hardware sys-
tems. since they are not computation universal (only programs are).

2 These are usually ,alled Kripke frames and Kripke models, after one of the first
mathematicians to ,ive a model theoretic interpretation of modal logic.
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The choice of axioms in the logic can be used to characterize the
temporal ordering relation <. For example, the following axioms (in
addition to the propositional tautologies) exactly characterize those
frames whose < relation is a partial order (transitive and antisymmet-
tic) [BurS4]:

('(p = q) =: (Gp G Gq) (2.1)

H(p > q) t (Hp Hq) (2.2)

p GPp (2.3)

p HFp (2.4)

One inference rule (in addition to modus ponens) is required: by tem-

poral generalization. if ct is provable, we infer that Ga and Ha (that
is, a tautology must hold true at all times, or perhaps, the rules of
sound inference (1o not change with time). By specializing this system
slightly, we can obtain logics characterizing a variety of models of time.
including linear time. discrete time, and branching (non-deterministic)
time. All of these results can be found in tBurS4l.

2.1.1 Linear time

We usually think of time as a linearly ordered set, measuring it either
with the real numbers or the natural numbers. A frame is linearly
ordered if. in addition to lheing partially ordered, it is total. 'e.. for all
states .s. t. either . , t. . = t. or t < .s. The temporal frames in which
< is a linear order can be characterized by simply adding the following
two axioms to the basic set (they are time reversal duals):

FtPq) ( P tq V q V Fq) (2.5)

PFq) (Pq V q V Fq) (2.6)

Linear temporal logic is usually extended by the until operator and
the siflC operator. Informally. p "I q states that p will hold at some
moment iII tue timtire. intil which time q will hold at all moments.

Sirmilarly. 1) . q states that 1) held at some moment in the past. since
which time q has held at all moments. More precisely, p U q is true in

state . If I here is some state I such that s < / and q is true in state /
aul for all . t < /. p is true in state it.
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Q .2 Discrete time

It is common in engineering to model time as a discrete sequence (mea-
sured bv the integers). Discrete dynamics are commonly used, for ex-
ample, in signal processing and synchronous digital systems. A discrete
frame is one in which every state has an immediate successor and an
immediate predecessor. The linear discrete frames can be characterized
by adding the following two axioms to those for linear time logic:

p A Hp FHp (2.7)

p A Gp PGp (2.8)

It is useful in a discrete linear temporal logic to define a nzext time
temporal operator. The formula Xq is true in state .s when there is an
immediate successor of x in which q is true. A state t is an immediate
successor of s if . < t and there does not exist a state u such that
s < u < t. Thus. Xq is exactly equivalent to false (T q, so its addition
does not increase the expressiveness of the logic.

2.1.3 Branching time

A branching frame is one in which the temporal order < defines a
tree which branches toward the future. Thus. every instant has a
unique past. but an indeterminate future. This is an inherently non-
deterministic model of time. and hence is well suited. for example, for
defining a semantics of non-,ieterministic programs. \ frame is tree
ordered when for all states s. t,. it. if t < .s and it < .s then t < it. I = it
or / > it. In other words. the past of everY state is linearly ordered.
TFhe tree ordered frames can be characterized bv simply dropping (2.6)
from the axioms of linear time logic.

'hough pure tense logic can exactly characterize the branching time
frames, it leaves something to be desired in expressing properties of
non-deterministic prograni. [or example, it is common in dehning the
semantics of these programis to say that a program a)orts ill it must
inevitably abort. lhis functionality can be implemente(I by backtrack-
ing. Similarlv. a 11on- ,htrIi nistic Tumring machine terminates if it may
)ossibly terminate. T'iese notions of in(vitabilitv and possililitv are
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not represented in an ordinary tense logic. They can be incorporated,
however. by combining notions from temporal logic and modal logic.

We would like to interpret the branching structure of time as mean-
ing that each instant of time has many possible futures, and that as time
evolves from present to future, these possibilities are reduced. Thus,
in the past, there existed possible futures which are now precluded.
This interpretation gives rise to notions of necessity (inevitability) and
possibility in tense logic [Tho84]. We think of the truth or falsehood of
tense formulas as being relative to a given branch of the tree ordered
frame (one possible evolution of time into the future). A branch is de-
fined as a maximal linearly ordered set of states. We will write q[s. b]
if q holds in state s in branch b. Thus. Fq[s. b iff there exists a state
t in b such that s < t and q[t,b]. Similarly, Pq[s.b iff there exists a
state t in b such that t < s and q[t. b]. The notion that q is necessarily
true is represented by the formula Aq. We will say Aq.s. b] iff for all
branches b' containing s. q[s, b']. The notion that q is possibly true is
represented by the formula Eq. We will say Eq[s, b) iff for some branch
' containing s, q[s, b'I. Notice that A and E provide a kind of second

order quantification over maximal linearly ordered subsets.3

According to this semantics for modal branching time logic, there
may be possibilities in the past that are foreclosed in the present. For
example. q => HAFq is not valid. The fact of q in the present does
not imply the necessity of q in the past. Thus, modal branching time
logic might be termed the logic of regret. The logic can also express
useful semantic properties of non-deterministic programs [BAMPS1].
For example. if q represents the fact of a program terminating, then
inevitable termination is expressed by the formula A-Fq (necessarily in
the future /). Possible termination is expressed by EFq (possibly in the
future q). If the proposition p represents a correct output of the pro-
gram. then (inevitable) partial correctness is expressed bv the formula
.4G(q = p) (necessarily invariantly. termination implies correctness).
The somewhat odd but definable notion of possible partial correctness
is expressed by E(;(q = p). Note that Pq. APq and EPq are all log-
icallv e quivalent. since the past of a state is the same for any branch.

:( 'lasswcally. the symbol 03 is used to represent necessity. and ,' is used to repre-

.-Writ possibility. 'he symbols .- and E are used here for consistency with [ILA N PsiJ.
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Also note that A and E are dual. since Aq is equivalent to -E-,q.

2.2 The temporal logic CTL

The temporal logic (TI. is a subset of modal branching time logic de-
fined by Clarke and Emerson [CESlb]. The acronym stands for Corn-
putation Tree Logic.' In ('TL. temporal operators occur only in pairs
consisting of A or E. followed by F. G. U or X. Thus, past time oper-
ators are not allowed. and tense operators cannot be combined directly
with the propositional connectives.

2.2.1 Syntax and semantics of CTL

The syntax of CTL formulas is given as follows:

1. Every atomic proposition is a CTL formula.

2. If f and g are CTL formulas, then so are

-'.f, (f A g). AXf, EXf, A(fUg), E(flrg)

The remaining operators are viewed as being derived from these
according to the following rules:

V =A -y)

I "q = .l(true U y )
II"y = E(true U y)

Sf =-E(true U -f)

(,'f = -. l(true U -f)

The truth or falsehood of formulas is defined with respect toi a
Kripke model. blt in a sli,,htlv non-standard way. For ('TL. the flodel
is a triple (.S. R. L). where ' is the set of states. R is the transition
relation and L is the valuation. The transition relation is the set of

'CTL is actually a .e bset of a more general temporal logic described in [ Es LW.
4dopting tile ,syntax ,ABAMPAIJ.
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all pairs (s. t) such that t is an immediate successor of s. A branch-
ing model (a.k.a. computation tree) can be obtained by starting at a
designated state s and unwinding the graph (S, R) into an infinite tree
(provided every state has at least one successor). The semantics for
(TL given below is equivalent to the standard semantics with respect
to this infinite tree. 5

A path of a model K = (S, R, L) is an infinite sequence of states
(s0, sI. l ... .) E S'W such that each successive pair of states (si. si+,) is
an element of R. Every path is maximal linearly ordered subset of the
tree structure unwound from so.

The notation K. s f means that the formula f is true in state s
of Kripke model K. In the sequel, where the model is unambiguous,
we will write simply s f. The interpretation of a CTL formula f
with respect to a Kripke model K is given below, by recursion over the
structure of formulas:

,s H p iff L(s)(p), where p is an atomic proposition
s=-'f iff s f

.4=fAg iff s fandsHg
• H AXf iff for all paths (so, sI,...). s, H f
so H EXf iff for some path (s0, s .... ), s, Hf

So H A(f U g) iff for all paths (so, s,...), for some i.
si H g and
for all j < 1. si H f

H E(f U g) iff for some path (so. s,.... ). for some i.
si H g and
for all j < i.,j f

2.2.2 Fixed point characterization of CTL

Emerson and Clarke (CE8ta] showed that various branching time prop-
erties of programs can be characterized as extremal fixed points of ap-
propriate continuous functionals. Later. they introduced the logic CTL,
and showed that its operators can be characterized in this way [CESIb].
This characterization led to an efficient algorithm for the model check-
ing problem - determining whether a given ('TL formula is satisfied in

5With ,mejt additional distinction: in (TL. the future is taken to include the
present. I hold. if p ohs in the present tWlen so does lp.
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a given state of a finite Nripke model.
To obtain the fixed point characterization, we will identify each

CTL formula f with {s I s H f}. the set of states in which the formula
is true. In this way. fbr example, true denotes the empty set. false
denotes S, and every subset of S represents an equivalence class of
formulas.6 Let P(S) be the set of subsets of S. P(S) forms a lattice
under union and intersection. This lattice is ordered by set inclusion.
where P C Q if and only if P U Q = Q. A functional r[Y] is a formula
with one uninterpreted propositional letter Y. This defines a function
'P(S) -* P(S). where r(P) is obtained by taking P for Y in 7. By
definition:

1. r is monotonic when P C Q implies (P) g r(Q).

2. r is U-continuous when P, C P2 C ... implies r(UiPi) = Ui7(P,).

.3. r is n-continuous when P D P2 _ ... implies r(niPi) = ni"(Pi).

When the set S is finite, every increasing chain of subsets has a maxi-
mum element, and every decreasing chain has a minimum element. As
a result, in the finite case. monotonicity implies both U-continuity and
fl-continuity.

A fixed point of r is any P such that r(P) = P. Tarski [Tar55]
showed that a monotonic functional always has a least and a greatest
fixed point with respect to inclusion ordering:

Theorem 1 (Tarski-Knaster) Whenever r[Y] is monotonic. it has
a lfast fixed point. (l,,oted pY.r[Y] and a greate.s fixed point. denoted
V1 V>r[l. WH'en 7-(Y1 I., (d%( U-o r/no. p1K r-jY] =U,> (fle

7hen 7[Y] is also f--'ontinuoU.s. vY.7[Y] = n,>,TL'(true).

We can now characterize the CTL operators in terms ot fixe(l points
of appropriate functionals:

Theorem 2 (Clarke-Emerson) Provided S is finite.

'jThis is essentially an algebraic interpretation of logic, where we enibed the
fornmlas of the logic in a Boolean algebra (P(S). 0. 1. n. U. -). with i) represent-
ing (conjunction. u representing lisjinction and - (set complenent representina,
negation



:32 CHAPTER 2. SYMBOLIC MODEL CHECKING

1. EFp = jti.(p V EXY)

2. EGp = vY.(p A EXY)

3. E(q [ p) =tlK.(p v (q A EXY))

There is a standard algorithm for computing the least [greatest]
fixed point of a monotonic functional. This is clone by starting with
false [true] and iterating the functional until a fixed point is reached.
as shown below. Assuming S is finite, this procedure terminates in at
most 1,51 + I iterations with the least [greatest] fixed point of r[Yj:

to compute /£l'.r[Y] {or VY.r[Y]} •
let V = false: {or Y = true}
(10

let Y' = V. V' r[Y]

until P'= V:
return Y

Theorem 3 Given a finite set S. and a monotonic functional r[Y],
the standard fixed point algorithm computes itY.T[Y] {or Vur[Y]} in
at most ISI + I iterations.

Proof Since r is monotonic. 7O[false] C 7
1 [false] C r[false] ...

The longest strictly increasing chain of subsets of S' has length ISI + 1.
Hence. there must be an 1 sauch that 0 < i < 1.51 and r'[false] =
7 +i [falsel (otherwise there would be a strictly increasing chain of length
IS]1 + 2). Hence. the algorithm terminates after at most ]5] + I itera-
tions. For any such i. U,>orJ falsej = T['alsel. Hence. bY tleorem 1.

= -r'[false].
[or the greatest fixed point, substitute true for false. - for C. and

decreasing for increasing in the above argument. E1

Having a fixed point characterization of the CTL operators allows us
to Ilse the standard fixed point algorithm to determine the set, of states
of it iven miodel in which a. ('TI. formula is trute. As an example.
consider comptiting EFp in the following Kripke model:7

We represent a kripke model pictorially by drawing tile -1raph S. 1?) and Ia-
beliiig ''a l state witlh tile ;itltomic ropositions which are true iII that state.
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Since SI = 4. the number of iterations required to produce the fixed

point is at most 4. Therefore. let us compute T[false] for i = ... 4.
where r(] = p V EXY. After the first iteration, we have r'[falsel =

p V EXfalse =p:

After the second iteration. we have r2 [false] = p V EXp:

After the third iteration, we have r3 [false] = p V EX(p V EXp):

which is a fixed point, since the next iteration, r 4[false] produces the
same result. Notice that at each iteration i, we have the set of states .o

such that there exists a path (so, st, s-,.... ) where p is true at some state
less than i. This algorithm can be thought of as a backward breadth
first search of the graph. In the end. we have labeled exactly the set of

states on a path to a state labeled with p.

As a second example. consider computing E(;p in the following

Kripke model:

\fter Ihe tirst iteral ion. we have 7 tr rIl' = p A ". tI'i =
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After the second iteration. we have r2 [true] = p /\ EXp:

After the third iteration. we have r3[true] = p A EX(p A E.Yp):

This is the greatest fixed point, since the next iteration r1[truel pro-
duces the same result. Notice that at iteration i. we have the set of
states such that there exists a path of length 1 where every state satisfies
p. When we reach a fixed point, every state in the set has a successor
in the set satisfying p. hence for every state in the set, there exists an
infinite path where p is always true.

The operators E, E( U" ) and EG are actually sufficient to char-
acterize the entire logic, since the remaining operators can be derived
from these three according to the following rules:

F p = E(true U p)

.Xp = 'E. 'p
(;p= E F-p

b lfq = -1L() p E -(, -\ ) 1'A - 1 -

For this reason. in the sequel. we will consider only the operators
E.\. 1-'( U ) and EG. However. for completeness. here are the fixed
point hlaracterizations of the remaining operators:

.l(;p = "Y.pA.A)

.lIq U p) 1 .1 V (qA , .IXV)
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The fixed point characterization provides an effective algorithm for
the model checking problem. In fact, a more efficient algorithm exists.

based on breadth first search and the calculation of strongly connected
components in the graph ('. R) [CES86]. Both of these algorithms
suffer from the state explosion problem. however: it is necessarv to

construct the complete state graph of the system being modeled before
model checking can be applied. Since the number of states of a system
grows exponentially in the number of its components. these algorithms
can only be applied to small systems.

2.3 Symbolic CTL model checking

In the previous section. we equated a CTL formula with the set of states
in which the formula is true. We showed how the CTL operators can
thus be characterized as fixed points of certain monotonic functionals
in the lattice of subsets, and how these fixed points can be computed
iteratively. In this section. we equate sets and relations with Boolean
formulas, and show how set theoretic operations such as union. inter-
section and image can be characterized in terms of Boolean operations.
This allows the CTL model checking algorithm to be implemented using
well developed automatic techniques for manipulating Boolean formu-
las. Since the state graph is symbolically represented by a Boolean
formula. there is no need to actuallv construct it as an explicit data
structure. Hence. the slate explosion )roblem can be avoiled.

2.3.1 Quantified Boolean formulas

Quantifiedl Boolean Formulas (QI3F) are ail extension of propositional
logic allowing quantifiers over propositional variables. Given a set V of
propositional variables. QBF(V) is the least set of formulas such that

[. true and false are formulas.

2. every variable iii V is a 'ornitila.

:3. if p and q are tforinilas. then so are 1) V q and -). and

1. If p is tortiii ,la " is in 1 . then ]1'. p is a formula.
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A truth assignment is a function V -- {false, true}. We equate each
QBF formula with the set of truth assignments that satisfy the for-
mula. *fhus. true represents the set of all truth assignments. false the
empty set. and a propositional variable v represents the set of all truth

assignments a such that a(v) = true. In addition.

1. a E (p V q) if and only if a E p or a E q,

2. a E (-p) if and only if a i p, and

3. aE (1,. p) iff a(v ,true) E p or a(v false) E p.

It is useful to define an operator for QBF that substitutes a formula
for a variable. If p and q are QBF formulas, and v is a variable, then
let a E p( ,-- q) if and only if a(v - (a E q)) E 1. Note that
quantification can be defined in terms of substitution. since 3v. p =

p(t, , false) V p(, -- true).
Quantification and substitution can also be defined for vectors of

variables. If W = (w . . , wk) is an n-tuple of propositional variables
and Q = (ql, .  qn) an n-tuple of formulas. then let

1. a E 3I V.p iff for someb: W --, B. a(tvi - b(wvi)) G p and

2. a E p(lI" , Q) iff a(w, t - (a E qi)) E p.

2.3.2 Representing sets and relations

The state of a concurrent system is generally modeled as vector where
each rcoin)oieltn represents the state of onie component of thle system.
For tlihe moment. let us make the simplifying assumption that all of
the state components are Boolean valued, as is generally the case in

digital systems. A state of the system can therefore be viewed as a
trut i assigtnizent to a set of propositional variables V = { ct ..... 1, }.
I'nder this itnterpretation,. every QBF formula over the set of state
variables V denotes a set of states. 1c.. the set of truth assignments
whi<ch satisf'v the formula. For example. if we have two state variables
I aMI b. then tie formula a V I) represents all t he states iM wiich ( is
T ill ( ) I, iS I rile.
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In order to represent a binary relation with a QBF formula, we
introduce two ordered sets of variables V = {vt,...,v2} and P' =

{. v'V}. The set V" represents the left argument of the relation.
and the set V' represents the right argument. By this arrangement. a
QBF formula R over the variables V U V' stands for a binary relation
R'. the set of pairs (.r. y) in (V' , B)2 such that

(r.! ) E H' iff.r(tv/ !J(i)) E R (2.9)

As an example. if we have two state variables, a and b. then the QBF
formula a A b' represents all ordered pairs of states such that a is true
in the first state. and 6 is true in the second state.

Using this representation, we can express a variety of standard set
theoretic operations in ternis of the QBF connectives. For example. the
union of two sets represented by A and B is A V B. their intersection
is A A B and the complement of .4 is -'A.

The image R'(Q) of a set Q via a binary relation R' is the set of
all y such that for some x E Q, (x.y) E R'. If R is a QBF formula
representing a relation R', and Q is a QBF formula representing a set.
then

R'(Q) = (3v. (R A Q))(V' , V) (2.10)

We can prove this by simply expanding the definitions of the QBF
operators. as follows:

j E (]1. (R A Q))(V' -- V)
iff

exstxV I --i. q(, E IV. (H A Q)
Iff

exists x : 13- s.t. !107' / i ) u - -.r0{,J) - /S HA

exists .x I B s.t. (.r. y) E R' and .r (2
Iif

.Y E H'(Q)

As an example. le(i Q ,I / and R? = a A '. Then

H(Q) = (]i.. ((a A ') A (a V ))(I" - I)



:18 CHAPTER 2. SYMBOLIC MODEL CHECKING

= (V(a A b'))(V'V)

= b'(V' 4-- V)
=b

Tie inverse image R-'(Q) of a set Q via a binary relation R is the
set of all .x such that for some y E Q, R(r, !I). If R is a QBF formula
representing a relation, and Q is a QBF formula representing a set.
then

R'-'(Q) = 3V. (R A Q(V ( V')) (2.11)

This can be shown by a derivation similar to the one above.

2.3.3 CTL formulas

We now have the necessary mechanics to represent Kripke structures
using QBF formulas, and to characterize the CTL operators over these
symbolically represented Kripke structures using QBF operators. In
fact, it is only necessary to characterize the CTL operator EX. since the
logical connectives have identical meanings in both logics, and the re-
maining CTL operators have already been characterized as fixed points
of functionals using only EX and the logical operators.

To represent a Kripke structure symbolically, we will assume two
sets of variables V = {v, ... t,,} and V' = {v't .t}. and a QBF
formula I? on V U V' to represent the transition relation. This induces
a Kripke structnre KvvR = (.5, R'. L) where

. The state set .,' is the set of truth assignments I - B.

2. "'The transition relation R' is the relation Represente(l bY the for-
inula R. according to (2.9).

3. [he valuation L yields the truth value of each variable r, in each
state .,;. That is. for all 'i E V. L(s)(r) = .,(vj).

11he complete proce(lure ot'r symbolic model checking is characterized
by he following theorem:

Theorem 4 L t I = {It'. . ... , } I ai " {V ...... } / 1iSjoin/

,t.t o]' P r1(1ble.-. lI H be (a B1".form u/u ot I.VU I ". ,rid lt t I"I".1? br
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the induced Kripke model. In this model, for all CTL formulas p and

s =p iff s E p. where p E V (2.12)

s pv ( iff s E(pVq) (2.13)

s -p iff .E (-p) (2.14)

S EXp iff .G (3V'. (R A p(V,,-- V'))) (2.15)

. E(q V p) if .E Y (pV (q A EXY)) (2.16)

s EGp iff sE v Y. (pA EXY). (2.17)

Proof. The first three are trivial matters of definition. For (2.15).
when we equate a formula with the set of states satisfying it. EXp is
just R'-(p), which is equal to 3V'. (RA p(V V')). The last two are
just theorem 2. C3

The above theorem shows that we can solve the model checking
problem - ie.. determining whether a given state in a symbolically
represented Kripke structure Kv.v,.R satisfies a formula f - purely by
manipulations of Boolean formulas. A key point is that the Kripke
structure itself is never built. Instead it is symbolically represented
by a QBF formula. As an example. consider a system with one state
variable b. Let the transition relation be represented by the formula
R = bV b'. and let state ., be (b -- false). The induced Kripke structure

{b,}.R is depicted below:

bfalIse btu

Let's say we want to determine whether or not .j EX-b. According
to theorem 4. we can evaluate the formula EN-b as follows:

EN-I 3b'.( I? A ( -b)(b '))

= 1b'.((bv ') A (-b'))

3b'.(bA -4)
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Hence, bv theorem 4. s H EX-b iff the assignment (b *-- false) satisfies
b. which is false.

Now consider the problem of whether or not .s EF6. Using the
standard fixed point algorithm, we get

rT[falsel = b V EXfalse
= 6

r2[false] bV EXb

bv 3b'.((bV b') A ')
= true

r3 [ialse] = ! V EXtrue

= true

A fixed point is reached after two iterations. Hence. ,F EFh iff the
truth assignment (b +- false) satisfies true, which is true.

Note that when computing least (or greatest) fixed points of T. 2"+ 1

iterations are required in the worst case. where n is the number of
propositional state variables. This is the length of the longest possible
strictly increasing (or decreasing) chain of subsets of S (not including
the empty set), plus one extra iteration to detect the fixed point. In
practice. however, the number of iterations required to reach a fixed
point can be quite small.

2.3.4 Binary Decision Diagrams

It shot1(1 Il he lear that to make the symbolic model chiecking technique
pracl i'aI. aII I'flicient automated method foi maniipulat in 1 Boolean for-
intilas is re piired. Fortunately. a variety of suclh techniques have been
developed for the purpose of synthesizing digital circuits or comparing
the tinct ionalitv of digital circuits. These techniques may involve ap-
plying a set of rewriting rules to convert a given formula into a normal
form.. \ternativelv. a data structure mav be ilsed to represent the for-
rIla as a IB3oolean filnction. For example. a iBooleai hiiction 11may be

'Nor ial ly. when we discussing switching func tions., we think )ri a IBoolean fbr-
ida as reprosented bv a fiinction rather than the set of sat isfvi il truth a.ssign-

jIniils , 111 Ih t1)r. i;i . A Boolhan formula J" over an wdertd ,t .)t variables
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represented by a truth table, or by a set of "cubes- which cover the
truth table of the function, or by a binary decision tree. Each repre-
sentation has associated procedures for applying Boolean operations.
Any method of manipulating Boolean formulas that can implement the
operations p A q, p V q, -p, 3V'.p and p(V -- V') can be used in sym-
bolic model checking. By far the most effective method known to date.
however, is the Ordered Binary Decision Diagram method developed
by Bryant (Bry86].

Ordered Binary Decision Diagrams are a form of reduced decision
graph that give compact canonical representation for Boolean formu-
las. They have been used extensively for comparison of switching
functions [BBB+87. FB89]. The OBDD canonical representation for a
Boolean function can be derived by reducing a related structure called
an ordered decision tree. In an ordered decision tree, the value of the
function is obtained by descending the tree from the root to a leaf. At
each node along the path, one descends to the left child if the value of
the variable labeling the node is 0, and to the right child the value is 1.
Each leaf of the tree is labeled with a value 0 or 1 which gives the result
of the function. The tree is said to be ordered if the variables always
occur in the same order along any path from root to leaf. In this case,
reading the leaves from left to right, one obtains the truth table of the
function.

As an example. an ordered decision tree for the function a A bV cA d
is depicted in figure 2.1.

The canonical OBDD form is a directed acvclic graph which can be
obtained from the ordered decision tree bv the following two steps:

1. ('ombine any isoniorphic subtrees into a single tree.

2. Eliminate any nodes whose left and right children are isomorphic.

Steps I and 2 can be applied in a bottom up fashion. to yield the
canonical OBDD representation in linear time. Bryant called this op-
eration Reduce. The size of the resulting graph is strongly dependent

V =... } induces a function f : {0. 11 - {0,I}I i, the obvious wtav
f'(xi ..... x,,) I iff Ihe truth assignment (r,, - x,) satisfie, f. The two views
are qiiivalent. hit the lunct iOnal representation seems to be iiore standard in rhe
,'ont,xt ot" Boolean mainilation1.
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0

0 0 0 1 000111

0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1

Figure 2.1: Ordered Decision Tree

on the order of the variables. This variable ordering, however, is the
key to obtaining the reduced form. This is what distinguishes OBDDs
from the more general class of Binary Decision Diagrams described by
Akers [Ake78].

As an illustration of reduction to canonical form. consider the the
ordered decision tree of figure 2.1. The three nodes marked ' " are
roots of isomorphic subtrees. Thus. they can be combined into a single
subtree. In addition. from the node marked "+", one arrives at the
same sitbtree when descending to the left or right (ie.. independently of
the value of h). hence this vertex does not affect the value of the function
and may be eliminated. The result of applying the Redtcc operation
to the tree of of figure 2.1 is depicted in depicted in figure 2.2. Note
the significant reduction in the utirmber of vertices, resulting essentially
from reundancv in the truth table of the function.

The canonical OBDDs are a subclass of DAGs (directed acyclic
graphs) where each leaf is labeled bl) 0 or I. and each non-leaf is labeled
by a variable. It is most convenient to define this class inductively, by
building lari'ge DA(;s from smaller ones. For this reason. we will number
the variables from the btrott tip. ' In the sequel. the term dimension
will be iused to henote the highest variable index occurring in a DAG.

I nfortunat ely, this is the opposite of the numbering adopted by Bryant. but it
mjakes th, l)ro) l'.N ,A,awr.
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a

01

0 d

Figure 2.2: Ordered Binary Decision Diagram

We will simultaneously define the class of DAGs which are canonical
OBDDs and the functions they denote, by induction on the dimension:

Definition 1 Let V be an n-tuple (vI, v2,. . ,v) of variables. The
class OBDD(V) consists of the terminals 0 and 1. and a collection of
triples in S x OBDD(S) x OBDD(S) called non-terminals. With each
dement p of OBDD(V). tre associate a dimension d. where 0 < d _
i. and a Boolean f'unction J' : Bf n B. The class OBDD(S) i.s the
lea.5t such that. for all .r {0. 1} "

1. I) E OBDD( I ). ,, = 0. and fJ)(.) = 0.

2. 1 E OBDD(V). (/1 1. lnd =(c) 1.

.1. i] I and h t distinct tilrntrts o] OBDD(V1). where d < I < n
,111d dh < 1. th,11 th0 triple i = (r, ,. h) 1.S also in OBDD(IV.
, = i a n d

.I = iJ .r, 0

'l/ (;i.r) if x., = I

Vi th regard to canonici tv. the salient aspects of the ai)ove (leinit ion
are that, a triple ( I,.l.h) is a canonical OBDD only if I and 1h are
,listli) t and i is greater than the dimensions of / and h (the variable
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ordering requirement)."" One important consequence of this is that fP,
the function represented by a DAG p, does not depend on any variables
of index greater than dp:

Lemma 1 For all p E OBDD(V), for all dp < i < n. J'P(vi 0- ) =
1' v ).

Proof By induction over d. We assume tile statement of the
theorem holds for all q such that d. < dp. The terminal cases. p = 0

and p = t are trivial. For the non-terminal case. let p = (t'j. 1. h). where
j < i. Now consider two cases. vj 0 and v2 = 1. In the first case.
fp(vi - 0) = fi(vi - 0) and fp(.- 1) = f -(vi 1). These are equal
by inductive hypothesis, since d, < i. The other case. v, = I is similar,
with 'h for J1.

It is not difficult to show that OBDDs canonically represent the
Boolean functions. That is, each Boolean function is represented by
exactly one OBDD. We show first that there are no two distinct OB-
DDs representing the same function, and second, that every Boolean
function is represented by some OBDD. The following theorem is es-
sentially (tue to Bryant [Bry86], although the formalization is different,
and as a result, it is hoped, the proof is substantially simpler.

Theorem 5 (Bryant) If p and p' are elements of OBDD(V), then
Ap = .A implies p = P;

Proof] Bv simultaneous induction over ,Ip and d'. \Ve assume the
statement of the theorem holds for all i1 and q'. where d < tip and
d1, < dp,. Suppose that ]'p = p,:

Consider first the case where dp = d1p,. Either p and q are both
terminals. (in which case p = p' = 0 or p = p' = 1) or they are both
non-terminals. p = (vi. 1. h) and p' = (v,, 1'. h'). For non-terminals, we

"°There is an alternative formulation of OBDDs due to Clarke [KC901 which does
not require l and h to be distinct, but requires that i = d + I = dh + 1. In this case.
the OBDD for a function f is exactly the minimal DFA recognizing the language
{x E {0. I" I f(x) = 1}. Thinking of OBDDsas minimal DFAs can provide useful
insights into the complexity of representing cvrtain 'lasses of functions as kt)DDs.
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have jj = fp(v- I) = ,(., ,-- 0) = fl,, and similarly fh = fp(vi

f,,(Ui, 1) . ence. by induction. I = ' and h = h'. so

P= p
Second. consider the case where dP > dp/. It follows that p is a

non-terminal (vi. 1.h). Further. by the previous lemma. fp,(ui +-) =

fp,(c, - 1). Therefore. jp( ', 0) = f(,, ,- 1), so ]I = Jfh. By
induction, then. I = h. rhis is a contradiction. however, since if I and
h are not distinct. then p is not it OBDD(V).

A symmetric argument applies to the case dp < dp,. [E

Theorem 6 Giv n a ftnctioa f: Bn - B. there exists p E OBDD(V)
such that fp = f.

Proof. By induction on i. the greatest number such that f(ci
0) 0 f(vi - 1). By inductive hypothesis, there exist q and r in
OBDD(V) such that ],, = f(t', 0) and fr = f(vi +1 ). Further. (I
and r are distinct, since f(ti -0 ) #4 f(vi - 1). Thus, let p = (v,.q. r).

Because each function is represented by a unique OBDD. testing
two OBDDs for functional equality can be accomplished in constant
time. This property of OBDDs is useful for determining when a fixed
point has been reached in the standard fixed point algorithm.

The .1ppl0 algorithm

Bryant describes ain algorit hi called Apply. which applies an arl)itra'Y
Boolean operation * to two OBDDs. The operation * can be any of
the 16 Boolean functions of two variables - Apply computes the natu-
ral extension of * to two Boolean functions. Given two tnon-terminal
(1BDDs p and q. the AplY algorithm breaks the problem of computing
r == p * q into two -ubproblems oil the children of /) and 4/.

'Fake first the case where ,, = ,1.. Let p = /1 ,. I,,) and / =

V,,.l7 7). It is e'asily shown that

0 r ), - 0) (, ,---))eq(r 1)) = /., and



46 CHAPTER 2. SYMBOLIC MODEL CHECKING

Sr(v,- 1) =p(vi 1)eq(vi 1) =hphq.

Thus. we create two subproblems I = 1P 0 I. and h = h e h. On
the other hand. suppose that p = (vi, 1P. hp) and q = (,J. Iq,/1), where
I> j. In this case. q(vi <-- 0) = q(v, <- 1) = q. So,

* r(v, -0) = p(vi 4-- 0) * q = 1Peq and

* rV,,- 1) =P(t,, 4- t) q=h eq.

Therefore. we create two subproblems 1 = 1P * q and h = hP eq. The
remaining case. i < J, is symmetric.

The sibproblems are solved recursively to obtain I = r( v- 0) and
h = r(c, - 1). From these two cofactors. we can derive r. If I and
h are equal. then r = h = 1. If they are distinct, then r = (vil. 1 h).
Finally, if ) and q are both terminals. Apply simply uses the truth table
for e.

Since each subproblem of dimension d can generate two subproblems
of dimension d - 1, it might seem that this algorithm is exponential. It
can be made polynomial, however, by applying dynamic programming.
Notice that each subproblem iF determined by a pair of OBDDs p' and
q' which are descendants of p and q respectively. Hence, the maximum
number of distinct subproblems is the product of the size of p and the
size of q. By keeping a hash table of triples (p, q, r), we can reduce
the number of recursive calls to IpI .Jq. Bryant shows that this upper
bound is tight. since there exist functions p and q for which the size of
r is pj - jqj.

The ('ompo.sf algorithm

Bryant also gives an algorithm called Compose which computes p(vi
q), where p and q are OBDDs. and 1,, is a variable. The algorithm is
easily adapted r simultaneous substitution of a vector of variables.
Hence. given that

1VL.P = p(v, 0) V p(v, .). (2.18)

the conlipose procedure ,-oih1 be ised to implement both the variable
"mmbstitittiot) operation p(V , P) and the existential (uanltihcation
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operation 3V'.p needed for symbolic model checking. On the other
hand. a much more efficient procedure can be obtained bv combining
the quantification and conjunction operations in the expression for E.\p
into a single OBDD operation computing 3V'.(p A q). Applying the
quantifiers in a bottom-up fashion as the conjunction subproblems are
solved results in a substantial reduction in the size of the intermediate
results by reducing the number of variables.

The .AndExists algorithm

This algorithm, which we will call .-tndExists is basically a modification
of Apply. Let r be the OBDD representing the function 3V'.(p A q).
We compute r by generating subproblems 1 and h in the same manner
as if using the Apply algorithm for = A. When the results of the
subproblems are obtained. if the leading variable vi is a component of
V'. the result is r = I V h (see equation 2.18). This result is obtained
by calling Apply with e = V. On the other hand. if ui does not occur
in V'. then the result is the same as for Apply: if I = h. then r = I = h,
else r = (vi, 1, h).

Thr .otivation for this algorithm is to avoid producing the entire
OBD for pAq. which has 2n variables, where n is the number of state
variables of the model. This is (lone by applying existential quantifi-
cation to the results of sitbproblems as soon as they become available.
yielding a result with only n variables. Empirically. this provides a
substantial savings in space.

:\s in the .pply algoritlhm. a table of triples (p. q. r) is used to avoil
resolving previously computed subprolens. The maximun size of this
table is 1pi' fqf. Iowever. tirilike in the Appl!J algoritin. the recursive
calls cannot be execlitted in constant time. This is because each call
may require a V operation to be performed. .\t present. the author
is uinaware of a bound on the complexity of .1 udE.rists better than
O(1Pt" !q" 2a n). which is simply he number of V problems to be solved
Sp1" IqJ in the worst case) itnes the square of the largest possible OB1)1)
size. 2'. In practice, this number of operations has riot been observed.
5o one might conjectiire that there is a tighter bound. It seems unlikely
that a polynomial bo,i will be founi. however. since it is easily shown
Ihat. if vector existenit al 1 anit ilicattjoli () I) 13)l)s (an be complited ill
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V1

V'2

Figure 2.3: Variable ordering for :3-SAT reduction

polYnomial time, then P = NP.
The proof of this is by reduction from 3-SAT. as follows: Let f=

11 A t, A .. tk be a 3-SAT formula, that is, ti = (xi V y, V :,), where xi,
y, and :, are positive or negative literals. The OBDD representation of
each t, has no more than :3 non-terminals. Now introduce new variables

=ul (v'.. L'uv'). corresponding to the terms of f, and let

f'=,t V (ty' A -j)
I~i~k J<l

For a sulitab~le %-,riable ordering, the OBDD representing J" hias no more
han IA- non-terminals (see figure 2.3). hience can be built in polynomial

time. Thfornitila I is satisfiable iff ]V'.' :A I. Thus. i131.].' can be
computedl in polynomial time, then P = NP.

Aani asidec. it is not dlifficult (though a bit tedious) to show that the
symbolic CTL model checking p~rob~lem is PS PACE-complete. To show
PSPA( E-hardness. one starts with a p~olynomhial space bounded Turing
machine. introduces a suifficient number of Boolean variables to encode
the entire tape. lus the pointer and the finite control, then expresses
the transition relation of the entire system as a QBF formula. ro show
that die prob~lem is in PSPACE. one can show that the p~roblem can
be reduced to sat isfiability of a QBF formula of polynomial size. u[sing
the Sitraitesqaring- technique of Burch. tt al. [BC(MI+)O]. Details
arie left, to t he ""a ler.
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2.4 Examples

Although the worst case complexity of symbolic model checking is high
(using OBDDs or other Boolean function representations), in practice
the worst case complexity is rarely achieved, and the symbolic technique
can in some cases be dramatically more efficient than previous methods.
As an illustration of this. let's look at two hardware examples - a
synchronous fair bus arbiter. and an asynchronous distributed mutual
exclusion ring circuit (the one studied by David Dill in his thesis [Di188]

and designed by Alain Martin [MarS5]).

2.4.1 Synchronous state machines

For a synchronous finite state machine, the transition relation can be
given as a conjunction of Boolean formulas. each determining the new
state of one register as a function of its old state and the inputs. Let
V = {V, '2 . v } be a set of Boolean variables representing the state
of the registers in the circuit. and let W = {w1 , W2 ..... W.} be a set
of variables representing the values of the inputs to the circuit. For all
i = I ... n, let f[V, W1 define the value of register i in the next state,
in terms of V and W. The transition relation of the state machine can
be expressed as a Boolean formula in the following form:

R = /I ?,. where R, = (v, = f IV. ']). (2.19)

In general. for models of synchronous systems, the transition relation
is a conjunction of formiulas representing the individual components
of the system, since tranitions of the components are .iuinitaneous.
The outputs of the state machine can be given as Boolean functions of
the inputs and registers. These functions can be substituted for atomic

propositions in (TL formulas. so there is no need to introduce variables
to represent the outputs.

As an example of a synchronous state machine, we will consider
a synchronous buts arbiter circuit. The purpose of the bus arbiter is
to grant access on each clock cycle to a single client almlong a ijuim1iber

of clients contending for the Ise of a bus (or o)ther resource). I'he
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token out override in grant out

req In ack out

1T

token in override out grant in

Figure 2.4: Cell of synchronous arbiter circuit

inputs to the circuit are a set of request signals reqo... reqkl. and the

outputs are a set of acknowledge signals acko... ackk-l. Normally, the
arbiter asserts the acknowledge signal of the requesting client with the
lowest index. However, as requests become more frequent. the arbiter is
designed to fall back on a round robin scheme, so that every requester is
eventually acknowledged. This is done by circulating a token in a ring
of arbiter cells, with one cell per client. The token moves once every
clock cycle. If a given client's request persists for the time it takes for
the token to make a complete circuit, that client is granted immediate

access to the bus.

The basic cell of the arbiter is depicted in figure 2.4.1. This cell
is repeated k times. as shown in figure 2.1.t. Each cell has a request
input and an acknowledge output. The grant output of cell i is passed
to cell I + 1. and indicates that no clients of index less than or equal
to i are requesting. Hence, a cell may assert its acknowledge output
if its grant input is asserted. Each cell has a register T which stores
a one when the token is present. The T registers form a circular shift
register which shifts up one place each clock cycle. Each cell also has a
register 11 (for "'waiting") which is set to one when the request input
is asserted and the token is present. The register remains set, while the
request persists. until the token returns. At this time. the cell's override
and acknowledge outputs are asserte(l. The override ,nal propagates
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0

req~ 0 ~ b ack

req o ~~ ack~

:to oi o

req0  :ti 00 gj'****i ack

Figure 2.5 Configuration of the synchronous arbiter circuit

through the cells below, negating the grant input of cell 0, and thus
preventing any other cells from acknowledging at the same time. The
circuit is initialized so that all of the W' registers are reset and exactly
one T register is set.

The desired properties of the arbiter circuit are:

1. No two acknowledge outputs are asserted simultaneously

2. Every persistent request is eventuially acknowvledged

:1. Acknowledge is niot assertedl without request

Expressed in CTL. they are:

1. A1 , AG1c-(ack, A ack,)

2. A, AGAF(req, ==; ack,)

31. At A6'(ack, z-- req1)

Using the s 'ymbolic ( TL mnodel checking procedtire. we can dleter-
ii ie whether the design hais thlese p~ropert ies. for a given fli iiinl)r of
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cells. Figure 2.6 plots the performance of the symbolic model check-
ing procedure for this example in terms of several measures: the size
of the transition relation in OBDD nodes. the total run time (on a
Sun3. running an implementation in the C language), and the maxi-
mum number of OBDD nodes used at any given time." We observe
that as the number of cells in the circuit increases, the size of the tran-
sition relation increases linearly (in section 2.5. we will prove a theorem
that shows why this is the case). The execution time is well fit by a
quadratic curve. The number of reachable states. however, explodes
exponentially (note the logarithmic scale on the reachable states axis).

To obtain polynomial performance for this example. it was necessary
to add a wrinkle to the symbolic model checking algorithm. In the first
experiment it was found that although most of the specification was
checked quickly, the time required to check property 2 for cell 0 doubled
each time a cell was added. The reason for this is rather remarkable.
Consider a function called Rotate. which returns true for a pair of n
bit binary numbers when one number can be obtained from the other
by a rotation of j bits. There is no variable ordering which yields an
efficient OBDD for this function for all j. 2  In fact, a very similar
function occurs in computing the set of states satisfying the formula
AF(req0 => acko), where the two binary numbers are given by the
W and T registers respectively. Note that, for cell 0. request implies
acknowledge exactly when no other cell has both W, and T registers
set. The T registers rotate once per clock cycle. Thus. req0 =,- ack0 is
necessarily true j steps in the future exactly when there is no other cell
i for which I, A T,-jmodk- The OBDD representing this set of states
grows exponentially in the number of cells.

This illustrates a fairly general phenomenon: circuits ! end to be
"*well behaved" in the part of their state space which is reachable from
the initial state. but not elsewhere. In the case of the synchronous
arbiter. only states with one T register set are reachable. However.

'The latter number should be regarded as being accurate only to within a factor
of two. since the garbage collector in the implementation scavenges for unreferenced
nodes only when the number of nodes doubles.

l-'This ,-an be shown using the technique of [Bry9l]. It is suflfcient that for
any variable order there is some rotation such that when the order is ciut in half.
information proportional to n must be l),ssed from one half to tlie other.
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the symbolic model checking technique considers all states. including
states with multiple tokens. A good solution to this problem in general
is first to compute the set of reachable statos. and then to restrict all
of computations of the CTL model checking algorithm to those states.
Since the reachable states are closed under the transition relation. this
has no effect on the truth value obtained for formulas at the initial
state. In particular, this solves the problem of the bus arbiter circuit,
since in its reachable state space, the T registers cannot represent an
arbitrarv binary number.

The set of reachable states is the least fixed point of

r[Y] = [ V R(Y)

where [ is the set of initial states. Applying the standard fixed point
algorithm in this case effectively yields a forward breadth first search of
the state space. BY computing the reachable states first and then using
this set to restrict the (CTL model checking algorithm, we obtain the
polynomial run time results described above. This technique is also
used for other experiments described in the sequel. unless otherwise
noted.

2.4.2 Asynchronous state machines

In an asynchronous state machine, there is no global clock to which
all state changes are synchronized. This makes designing correct asyn-
chronous circuits considerably more challenging than designing correct
synchronous circuits. We will consider two plausible models of asvn-
chronous state machines. In the first. which we will call tl:: si;rulta-
leoul.s model, any or all state variables may change state in a given

transition. Each state component makes an independent and non-
deterministic choice regarding whether to change value or not. In the
second model, which we will call the interleaving model, only one state
component changes value in a given transition. The choice of which
component changes value is non-deterministic.13 In either model, we

"\ discussion of which state machine model is more suitable for circuit design

is beyond the scope of this work. In general, conditions would hav to be imposed
n 'ither iio, Ie in order to make it implementable in a given design style. For
,liscussion f ;isynchronons lesign techniques. see [MB59. Sei8Ob].
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consider an asynchronous state machine composed of n gates. We will

use state variable vi to stand for the output of gate i. and fi[V. ,V] to

represent the function computed by gate i (where V is the set of state
variables, and VV the set of inputs).

In the simultaneous model, the transition relation can be repre-

sented bv a formula in the form:

R= A Rj. where H, = ( f[V. WI]) V (v,' = vi). (2.20)
1<i<n

For any transition an( any state variable t'i, either the new value of
I,, is determined by f[V. WV. or it is the same as the old value. Note
that this differs from the synchronous model (2.19) in which every state
variable is reevaluated at every transition.

In the interleaving model, the transition relation can be represented
by a formula in the form:

V R,, where R, = i i  fjV. W]) A (A,,,(' * vj)) (2.21)

In any transition, for some state variable vi, the new value of vi is
determined by f[V, W], and the remaining variables keep their old
value. Note that in this case. the transition relation is represented

by a disjunction of component relations rather than a conjunction.
In general. for models of parallel processes whose actions interleave

arbitrarily, the transition relation is disjunctive. If this is the case. we

can make an easy optimization in the symbolic model checking tech-

1lique: we observe that lie set of states reachable by one step of the
system is the union of tlie sets of states reachable by one step of each

Individual componei. Ihis is retlected in the fact that existential
qlantification distribu1tes over lisjpunction. Thus:

E.\IN Eli". '(V ,) A p(I '-- "))

=VV'. (?, Ap(V i-- V))

I sing tihis eqiialit. we can a void computing the transition relation of
the system and iislvi i ise only lie transition relations of the !:,hi-
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Figure 2.7: One cell of the DME circuit

vidual processes. This technique is called early quantification 4 
- by

rearranging the computations. we apply quantification before the logi-
cal disjunction operation. Heuristically, quantification tends to reduce
OBDD size. since it reduces the number of variables. Hence. the size
of the intermediate results is usually reduced (though the final result is
the same).

Our example of an asynchronous state machine is the distributed
mutual exclusion (DME) circuit of Alain Martin [Mar85]. It is a speed-
independent circuit [Sei8Ob] and makes use of special two-way mutual
exclusion circuits as components. Figure 2.7 is a diagram of a single cell
of the distributed mutual-exclusion ring. The circuit works by passing
a token around the ring, via the request and acknowledge signals Ir
and la on the left and rr and ra on the right. A user of the DME gains
exclusive access to the resource via the request and acknowledge signals
tir antd tia.

The specifications of the DME circuit are as follows:

1. No two tsers are acknowledged simultaneously.

2. .\ii acknowledgment is not output without a re(liest.

3. \n acknowledgment is not removed while a r'equtest persists.

14 Th, .IndEzxists algorithm of section 2.3.1. which combines conjunction and

uiiantification in a bottomi-ilp manner is also am' 'xazmiple of early quantification.
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4. All requests are eventually acknowledged.

We will consider only the first specification. regarding mutual exclusion.
The others are easily formulated in CTL, although the last requires the
use of fairness constraints (see section 2.6.1) to guarantee that all gate
delays are finite. The formalization of the mutual exclusion specifica-
tion is

A AG-( itai A uaj)

Now let's look at the performance of the symbolic model checking
algorithm in checking this formula. for both a simultaneous and an
interleaving model of the circuit. For the interleaving model, we use
the early quantification technique. Figure 2.8 plots the relative per-
formance for the simultaneous model (method I) and the interleaving
model (method 2). Part (a) shows the run time as a function of the
number of DME cells. part (b) shows the total storage used (measured
in OBDD nodes) and part (c) shows the number of nodes used to rep-
resent the transition relation. For the moment, disregard the curves for
method 3. The experiment was run for up to 7 cells of the simultaneous
model (limited by space) and up to 10 cells of the interleaving model
(limited by time). Part (b) of the figure shows the substantial space
advantage of the interleaving model. and fi'om part (c), we can see that
most of the difference is accounted for by the savings in representing the
transition relation using early quantification. In both cases. the space
used is linear in the number of cells. However. we note that the increase
in run time appears to be cubic for the simultaneous model, but quartic
for the interleaving niodei. It would seem that if enough storage were
available to continue the curve for method 1. the two curves wouldl meet
in the neighborhood of 10 cells.

The different asymptotic performance for the simultaneous and in-
terleaving models can be understood by looking at the OBDDs that
occur in the fixed point iterations computing the reac)able states. Fig-
ure 2.9 plots the ,size of the largest such OBDD for each method. We
can see clearly that the size is increasing linearly for the simultane-
Otis model, but iiadratically for the interleaving model. This is a
phenomenon which occurs generally when comparing simultaneous rs
riterleaving iro(lels. It can be ii n(lerstood l)v considering a very simple
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system composed of n processes. each with states 0 and 1. and each
alternating non-deterministically between these two states. If we start
the svstem with all processes in state 0, what do we observe after k
steps'? In the simultaneous case. after one step, all possible states are
reachable. In the interleaving case. however, after k steps. all global
states with at most k I's are reachable. This is a symmetric function.
As Bryant noted [BryS6], all symmetric functions can be represented by
a quadratic size OBDDs. The symmetry results from the fact that in
an interleaving model, exactly one state component changes in a given
transition. and the choice is arbitrary. In general. after k steps of such
a model, the number of steps taken by each state component sums to k.
Hence. in the set of states reachable after k steps, there is an induced
correlation between the states of otherwise independent processes.

The simultaneous model appears to be inferior to the interleaving
model from a symbolic model checking point of view. owing to the large
amount of space required to represent the transition relation. Most
of this. however, can be attributed to a phenomenon we observed in
the previous example: systems tend to be well behaved only in their
reachable state space. In the symbolic model checking technique, we
represent the transition relation over the entire state space. Although
representing only the reachable transitions might be more efficient, we
seem to be caught in Catch 22: we need to represent the transition
relation to compute the set of reachable states. We can avoid this
problem by incrementally computing only as much of the transition
relation as is necessary to compute the next iteration of the fixed point
algorithm. Recall that the reachable state set is the least fixed point of
r[Y] = I V V( ). By rearranging the fixed point computation slightly.
we only iieedl represent I? correctly for those transitions (,r y). where x"
is on the "frontier" of the search:

rt" 1(false) = r(false) V R(r'(false))

= r'(false) V R(r'(false) - r'- (false))

At each iteration. we can reevaluate the formula I? over the set of states
r'(falsej - r'-(false). This can be done by restricting each stibformula
using either the logical and or using the Restrict operator of Coud-
ert. Maldre adml ]Berthet (see section 2.8). This resul ts in a sequence
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of approximations to the transition relation which are substantially
more compact than the complete transition relation. although we must
reevaluate R at each iteration. rather that evaluating it once at the
beginning. We will call this method 3.

In part (a) of figure 2.8. we see that the time used by this method.
while still cubic. is a substantial improvement over the previous method
for the simultaneous model (method 1). More importantly, the space
used is dramatically improved, allowing a model with a larger number
of cells to be checked. The method overtakes the interleaving model in
run time at about 8 cells, owing to its better asymptotic performance.

Figure 2.10 plots the number reachable states as a function of the
number of cells (the numbers are indistinguishable for the two models).
The number of reachable states grows exponentially in the number
of cells. though not as rapidly as the total number of states. which
is 21" . The key point is that for all three methods, the space and
time necessary for the symbolic model checking method is polynomial
in the number of cells. Thus. the state explosion problem has been
avoided. The overall time complexity of 0(n3 ) for the simultaneous
model derives from three factors: a linear increase in the transition
relation OBDD. a linear increase in the state set OBDDs obtained
in the fixed point iterations. and a linear increase in the number of
iterations. For the interleaving model. the quadratic increase in the
state set OBDDs results in an overall 0(n " ) time complexity. On the
other hand. the number of reachable states increases roughly a factor
of ten with each added cell.

It is not immnediatelY clear that either the interleaving or simulta-
rieous model is [)re erable in general. Interleaving models seem to be
better when the number of as. ichronolis processes is small. and si ,iuil-
taneous when the number is large. [lhe cache consistency protocol of
chapter I is an example (f a large system with a fairly small number of
complex asynchronous processes. This is an appropriate application of
an interleaving model.

The polynomial perforniance of the symbolic nodel checking algo-
rithmn. in spite of the exponential increase in states. makes it possible to
analyze fairly large instantiations of the two example circuits it he svii-
chronoits arbiter and the l)XIl' circuit). It shluIld be possible to verify
these and sirilal ( ircill s t',r aMY r'asonabie fixed niiitiber of cells. This
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begs the question - how many cells do we need to analyze to be guar-
anteed that the design is correct for any number of cells? Intuitively,
for sufficiently large n. a sequence of n + I cells should be equivalent
in some sense to a sequence of n cells. But in what sense equivalent?
This problem is dealt with in chapter 5. where we consider induction
over processes.

2.5 Graph width and OBDDs

In this section. we consider the asymptotic growth of OBDDs repre-
senting certain topological classes of circuits. This analysis explains
some of the performance results of the previous section.

In 1989. Berman proved a bound on the OBDD size needed to rep-
resent circuits of bounded width. A circuit has bounded width if its
elements can be arranged in a linear order such that any cut through
the order crosses at most a bounded number of wires w. called the width
of the circuit. There exists a variable ordering such that the OBDD
size is bounded by n2w. where n is the number of primary inputs of the
circuit. This result applies only if the order is "topological". meaning
essentially that the direction of all the wires follows the ordering. Here.
this result is generalized, to show that if t, bounds the number wires
through any cut in the forward direction. and tv, bounds the number

in the reverse direction, then the OBDD size is bounded by n2° 2
Lf

.

For the case where r,, = 0. this is the same as Berman's result. I'sing
this result. we can linearly bound the OBDD representation for the
transitiott relation of circuits like the arbiter and the DME ring. which
have linear arrangements with a bounded umtber of wires throirgli any
crosss sect.1oln.

Fujita states that tree circuits tising only AND. OR and XOR gates
have linearly boiinded OBDD representations [F.MIK9!0. Here, we show
that a more general class of circuits with bounded "'tree width" and
arbitrary function elements have polynomially bounded OBDDs. The
essence of the argument is to show Ihat these circuits can be arranged

in a linear order with i a width that is logarithinic In the un mber of
,tates. hiis v ields a boun 1 on the OBDD sze which is i)olynomial n
the iililler ()f o, gales.
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2.5.1 Bounded width circuits

Let L = (G, <) be a linear order on the gates of a circuit. We classify
the primary inputs and outputs of the circuit as special instances of
gates in order to simplify the definitions, and assume that the primary
output is at the top of the order. Given an order L. we will say that
the Jorward cross section of the circuit at gate g is the set of wires
connected to an output of some gate gi and an input of some gate g2
such that g, < g and g < 92. The reverse cros.s section is the set of
wires connected to an output of some gate g, and an input of some gate

g2 such that 92 < y and q < gi. We assume that no wire is connected
to the outputs of two distinct gates. so these two sets are disjoint. We
also assume that there are no cycles in the circuit. to insure that the
circuit computes a function. The order L is said to be topological when
all of the reverse cross sections are empty.

The forward width of the circuit under order L. denoted wf. is the
maximum size of the forward cross section at any gate y. Similarly, the
reverse width of the circuit under order L, denoted tv, is the maximum
size of the reverse cross section at any gate g.

The cross section of an OBDD at level i is the set of nodes labeled
with variable vi. Note that in this section, we will number the variables
of the OBDD from the top down, since this makes the proofs simpler.
The width ivp of an OBDD p is the maximum size of any cross section
of p. The size of an OBDD is the sum of the sizes of its cross sections.
Thus. the OBDD size if bounded bv n- wi. where o is the number of
variables.

It is easily shown That t he size of t,, cross section of an OBI)D at
level i Is the number of listinct functions

'p,: , ..... .') = I...... , ..........

which depend on ',. where x = (xi ...... r,-,) is a Boolean vector and J'
is the function represented by p. This observation leads to the following
theorem bon(li ng ilhe size of an 0131)) in terms of the forward and
reverse widths of tlie (rciit it represents:

Theorem 7 If a r, ,lv oinputing lit'tion f has Jorvtrd 'th ,r
(111d rrerse nudth i',. /Or o , linar ordfr L. th thl rr is ,i (1)?0 I) )
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Figure 2.11: Proof of bounded width theorem

p representing function f of size bounded by n2I 2' " , where n is the
number of inputs of the circuit.

Proof. Associate the variables vl,... , vn of the OBDD with the
inputs of the circuit, such that for all i < j< ti < v.. We can bound
the size of the ith cross section of the resulting OBDD as follows. Let
X. = (X I ...... r-I) be a Boolean vector. Split the circuit in half by
choosing any gate g such that tUi-I __ y < vi, letting Y be the forward
cross section at y and Z the reverse cross section. This situation is

depicted in figure 2.11. For any given value of x, Y is a function of
Z. aml I his fIntion d0etermines .fr.( . c, ). The number of Boolean
functions with IZI inputs and V1 outputs is 2 1"2I12 1' (to see this. count
the number of entries in the truth table). This bounds the total number
of distinct tunctions fr. which in turn bounds the width of the OBDD
representing f at level i. We know that jYl < ,v1 and IZI <_ ,.. Thus.
the overall OBDD size is bounded by n 2 " 2f" ' []

This bo1nd is linear in the number of inputs. exponential in the
forward width and doubly exponential in the reverse width. [he douible
exponential wa)p1,ars to be necessarv. This can be shown ,using the



2.5. GRAPH WIDTH AND OBDDS 65

'hidden weighted bit" function of (Bry9I] as a counterexample. This
circuit can be ordered in such a wav that between any two inputs there
is a cross section with O(log2 n) wires in each direction, yet there is
an exponential lower bound on its OBDD size. If we could bound the
OBDD size with a single exponential in both the forward and reverse
widths, the OBDD size would be O(n 2 

k ong 2 ) n 0(nk+') where k is a
constant.

The theorem is concerned with a single output of a combinational
circuit, but it can also be applied to the transition relation of a sequen-

tial circuit. To do this. we simply transform the sequential circuit into
a combinational circuit which computes the transition relation of the
sequential circuit. This is lone bv adding a pair of inputs tui and t,
to represent the old and new values of each state component. Since
the transition relation of the circuit is the conjunction of the transition

relations of its components. we can do this while increasing the width
of the circuit bv only one wire in the forward direction as depicted in
figure 2.12. Thus, for bounded width sequential circuits (even with
wires in both directions), the size of the OBDD representing the tran-
sition relation is linear in ni + n,, where ni is the number of inputs and
n, is the number of state components. The synchronous arbiter cir-
cuit and the DME circuit of the previous section provide experimental
confirmation of this.

\Ve have shown for a certain structural class of circuits that the
representation of the transition relation is linearly bounded in the size

of the circuit. We should note that in the symbolic model checking
algorithm, we also use OBIDDs to represent the set of states labeled with
a given CTL formula. Unfortunately, we cannot expect to polynomially
bound the size of the OBDDs representing these sets based purely on
structural considerations. The simplest example of this is probably a
circuit that inputs a binary number. stores one copy of it. then serially
rotates the original by an arbitrary number of bits. This circuit has the
simplest structure we might hope for that has any communication at
all between the components. yet there is no variable order which Yielhls
a compact OBDD for the reachable state set of this circuit, since it

implements the rotate function. The same argument would apply to
a serial multiplier circuit. In general. if a circuit computes it flinctioll
serially ;iich ,ainoi be represented by a compact OBDD. then we
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Figure 2.12: Computing a conjunctive transition relation

cannot expect the symbolic model checking algorithm using OBDDs to
be efficient.

2.5.2 Bounded tree-width circuits

In the previous section. we considered the OBBD representation of
circuits whose gates can be arranged in a sequence with a bounded
number of wires in each cross section. Now we consider the slightly
more general class of circuits which can be can be arranged in a tree
with a )otuided( width property. This is not to say that the topology of
the circuit imust be a tree: rather. it must be possible to lay a spanning
tree over Ihe circuit in such a way that the width of the circuit across
any arc of the spanning tree is bounded. This notion of bounded tree-
width is deli ne(l as follows.

Let ' (. <) be a tree order over the gates of a circuit. where
' < y il[ .q' is a descendant of g. Let h be the branching degree of F (7ie..

the muaxituitm number of children of any gate).. s before, the forward
cross section at node g is the set of wires connectintg an olitput of Yi
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and an input of 92 such that g, <_ g and g < 92. Similarly, the reverse
cross section of T at node y is the set of wires connecting an output of
gi and an input of 92 such that g2 <_ g and g < g1 . The forward width
of the tree tWf is the size of the largest forward cross section. while the
reverse width vr is the size of the largest reverse cross section.

For the moment, let us consider the case tv = 0. and let the width
w stand for the forward width:

Lemma 2 For any topological tree order T (G. <), with width wv and
branching degree b > I. there is a topological linear order L = (G. <'),
with width w' < w(b - l)log2 GI.

Proof By induction over J-;. the number of gates. The base
case. JGI = t. is trivial. .\ssume the theorem holds for all circuits of
size less than Gl. Let g be the root of the tree. and let G, ..... Gk
be the subtrees of the root. where k < b. and IGl .-. < lGkl. By
inductive hypothesis. there exist linear orders Li = (G, <,) of width
wvi < w(b - 1)log2 1Gil, for all 1 < i < k. Let L = (G, <') be the
extension of these orders such that Gk <' G, <'C 1 <' g, as depicted in
figure 2.13. The width ' of L is bounded by maxl<i<k(wi + (k - i)w).
Therefore. for some 1.

wv' < w; + (k- i)w

In the case k = i. we have

Ic' < ,.k < 1 ,,- I )loq 2 IC6 < ( ?(b - I )log2CjG

Otherwise. I < , and

iL' < wtk - i + (b- 1)log 2 IG, I)

-. 110 - 1) log 2 (2' lG, )

hiere, we note that (2, (,z<_..!_,I)/(k-,+ j) << I/k -,+ I.

k-

,' 1_ (h-I l1og2 ( + 1C



68 CHAPTER 2. SYMBOLIC MODEL CHECKING

w

G1

Figure 2A13: Arrangement of bounded width tree

We note that since i > I and k < b. k - IK b - 1. Therefore 2b_1 < 2.
k-,

Further. since 1< k. k - I + I > 2. Thus 2F__ < 1. Therefore.

IV' < Iv(b - 1) log.2 1GI

Thie t heorem says that froin any topological tree order of width
IC' WC ''ani derive a linear ordler of width wr' < '( b - 1. ) log, 16'1 It

follow,, b).y the previouis theorem that the OBDD size is )oide~ld l)v

PCT - U 2 ( = ~LI where i? Pil e nn ltube'r Of prliniary
['hii~ liis bound is polynlomial in t he size oA the cli rclit, for a lixed

wid t h id branching factor.
Now we tiurn to the question of tree orders that are riot topological

ff.biu nde( t lee- width circuits with bo0th forward and1 reverse wvires).
In t Iiis caise, at logarithmic 1)0 nid onl the wvidth of othle linear order L is
niot iiifficietit.. because thle ()B DD ,ize can be lou NvY exponenitial iin thle

nuini1ber. of 1-t i'(1st wires.

\V cmsill obtain at Fpolriotnial b~ounfd i ii. however. b)y converting
;k I I've rwdered circuidt w', r'eve rse wi 2'S into ai hirict iiid ll e(ilvalent
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tree ordered circit wit Ii on ly forward wires:

Lemma 3 If T = (G>. <) I is aI tree order, orer a circuit cornputing ]Ulle-
lion f. wLith jor-ward width w1 and rever-se wvidth ivr then there IS (I
ciruit comnputing! J' with topological tref or-der, T' = '. 0' offorivard

id(th ic Ktf"

Proof. (onsider HI. it sulbtree rootedi at grate h. letting V be the
forwvardi cross section at h. and Z the reverse (ross section at h. Let
h 1, hk be the children of h. and let V1 ... ,k and Z1  . .Zk be
their respective forward and reverse cross sections. Trhis situation is
depicted in figure 2.14. Let the output functions computedl by 11 be

V f(z. I...k)

and for I < I < Ak. let

Z, r,(Z.Y'j.....Yk)

f,(ZL)

We show by Induction over 1111 that there exists a tree circutit H' of
forward width 0v~ < ivf2 and reverse width iv = 0. computing the
fiunc tions

J' = /x.1. V,.... 'k). fo r x ~ 0. 1 }ZlI

Note that J', is simiply row x III the truth table for V . Sinice there aire

21ZI possible valunes of .r. aiid JI, hi. has comnponients . t Ie num11ber ot,

o t puts of H' is11/
By inductive liv pothlesis. there exist circuits IIP for IK/

"atis, n I h i il~J 1a I -ornipi rg the fiuct ions

I/, f .*(r). for x.t J() I i }Z,I

Now. let It be a "all, comlifii Jug a-ccordling to thle following -"vsl n

()f equnationis:
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Figure 2.14: A non-topological tree order

Let H1' be the tree ordered circuit obtained by taking h' as the root.
and lI ..... H' as the children of the root. The reverse width at the
root is 0. since J',, does not depend on Z. and the forward width at
the root is 11"121zl. Hence. using the inductive hypothesis. w' = 0 and
w < wiv2'f. If h is the root node of G. then H' computes the same
function as G. F1

This gives us the following theorem. bounding the OBDD size for
tree ordered circuits with both forward and reverse wires:

Theorem 8 If circuiti ( computting flnction f ha. jor.iard ,vidth
1V'f 111(! e'ersf width cr fbr some tree order T of branchinq degree
b > 1. then there is an OBDD repres nting function . of size bounded

b (;!I _2 1 her 1 th i omnbI r of' .prim ary inputs oj th- circuit.

Proof .\ccording to lemma 3. for any tree ordered circuit of
forward width i,' and reverse width ir... we can construct a topological
tree ordlered circi t of width I(, < ivf 2 r . wh tile same
fu|nction. IBv lem ma 2. this circuit has a topological linear order L of
wi(lth at most 11" <, '() - l)(oq21(;. By Iheoreni 7. there is an OBDD
or I lie ,irculit of size otulded b

112"" < 1t2,'l6-1 1))2 I 1;I

2" I'- Ii log-, I
;
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iv 2 r( -1

Hence. in the case of bounded tree width circuits (of a fixed branch-
ing dlegree), we also find that the OBDD size can be bounded pol-
tinially in the size of the circuit. In this case. the exponent of n is
related to both the width and the branching factor. Clearly, for this
bound to be of any p~ractical interest. w1 must be small, and w, must
be very small. Nonetheless. the theorem demonstrates a more general
topological class of circuits with asymptotically compact OBDDs than
was previously known.

2.6 Mu-Calculus model checking

The Mu-Calculus [ParT41 is a logic based on extremal fixed points that
is strictly more expressive than CTL,'5 and can also express a variety
of properties of transition systems, such as reachable state sets. state
equivalence relations. and language containment between automata. A
symbolic model checking algorithm for this logic allows all of these
properties to be computed uising OBDDs [B3CM+9O].

The Mut-Calculuis augments the ordinary predicate calculus in two
ways. First. it allows terms to stand for relations. If f. is a formula
inl which variables x' and y are free. then 1* characterizes a relation
1h li et of all p~airs I x. !J) satisfying J'. This relation is denoted in the
Ni u-C(alciil us bv tlie tern Ax. .]. Second. the NI i-( alcnilus allows its
to express least andl _,reatest fi xedl points. If -,is a term. and V is at
relational ( predicate ) Symbiol, then 7 IS Said to b~e formally mfonlotonlic

in] V if V alwax's occiir's un1der anl even number of negfations in r. In
his case, 7 has least and greatest fixed points with respect to 1' wich

are (lenote(I lil. 7-and v. -r. A fixed point~ of 7 with respect to V is at
r-elationl whlich Yields It self M ien stibstit ittedl for all free occurrences of

In rl .

5 Emersoni anid Let [I. .51 ",ave a miodd Ic! eckinig algorith in for a somiewhat I ilrer-
-nt vf'jsioc,) t4 he \NII-( drinlis. mid showed that I here are forintilas inI his Iomic f hat
,mi t ,e~x[r,.ssI (1 I . %V1re lejye thle relonnal \lmn-( 'alcjltis t' P'ark [Pa;r7i 11
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.-\ structure in the Mu-Calculus consists of a set D (the domain), a
valuation o for the individual symbols {a. bc.... } and a valuation ?v for
the relational symbols IA. B. C.... }. The valuations assign an element
from the domain to each individual symbol. and a set of n-tuples from
the domain to each relational symbol. The meaning of an n-ary term
r is a set of n-tuples which we will denote r[o, 0,]. The 0-arv terms will
be called simply propositions. and denote truth values.

The terms of the ,lu-Calculus are the least set such that:

t. Every relational symbol is a term.

2. If 7 is an n-arv term and (v . . . . . ,) are individual symbols, then
.,, ) is a proposition.

3. If r"- and 7, are n-arv terms. then so are -r 1 and ( r V ,).

1. If p is a proposition. and v is an individual symbol, then 3c. p is
a proposition.

5. If p is a proposition and (vl..... v,) are individual symbols, then
Av1 . . . . . ,. p is an n-ary term.

6. If r is an n-arv term and Y is an n-ary relational symbol, where
r is formally monotonic in Y, then /iY. r and VY. r are n-ary
terms.

7. The usual abreviations are iised for A. 0. V. etc.

The semantics of Mu-Calculus terms are lefined as follows:

1It[. i.'] = ,l'(t). where R is a relational symbol.

2. r......,,,)[o.,.'J is true iff ( o(,'). 0( , )) is in r1. U).

:. (--,,o. ,. = - [o.,. w 7 V = u7] 71 7[0. U].

1. (Iv. p)[o. ct'j is true if for some .r E 'D. 1,[o(,' - . ). ,'j is true.

5. (.\ l ..... ., p)[o. u, is the set of o-t utples (r ...... r,,) :- P such

that i'4o( i', .u, ). 1:' is true.

i. (/11". 70[o. .'. where T is an n-arv term. is the least set D' "
s1ch that 7[( o. .'(V' )j. (1,vY. 7)[0. .-] is the greatest such
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2.6.1 Applications of the Mu-Calculus

The Mlu-Calculus is quite expressive. as can be seen by the following
compendium of applications. To begin with, given a binary relation R.
the image of a set Q C-' v ia R is

R(Q) = Ay. 3.r. (R(x. y) A Q(x))

The set reachable from Q in any number of steps of R (including 0) is

R*(Q) = itYV. (Q V R(Y))

The transitive (irreflexive) closure of the relation R? is

R+ = tY. [ R VAx. z. 3y. (Y (..y) A Y(y.Z))]

CTL and fairness constraints

The interpretation of the operators of CTL in a Kripke model (D. R. L)
can be characterized in the Mlu-Calculus as follows:

E-Vp = Ax. 3 y. (R(x, y) Ap(y))

EFp = ItY. (p VEXY)

EC; = vY. (pA EXY)

E(q U [p) =/ItY. (p V ( q A EX Y))

In addlition to t hese standard operators. we (,an also characterize thle

(11 operators i ider fl'in? SS (0Cor1at nts.fairness con)riti nt Ini its

siplest formi is a condi tion that is assumed~ to lioldliihi e ofteni

along all coniputation paths. Such cond~itionls can be uised to enforce

fair scheduling of processes and access to resources. They are not dit-
rectly expressible in ('L. since the tense operators F andl G cannot

be d .irectly combined. Instead. we restrict the path quianitifiers ofC(TI.
to applY onlY to those paths along which each forlali In a set C ' holds
infinitely often. To (list ingitish these constrainied path quantifiers frot
orli nary p)ath qutantifiers, we sitI1scrlpt t hern with C '. ThIus. . (j, where

CIs a set of ('TI formunlas and f* Is at linear formula. means that for*
all paths. If each forimia ()f C 'Is trite inninitelv often. then J, is trite.
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Similarly. the formula Ec'f means that there exists a path such that
each formula of (' is true infinitely often and f is true. Here, we con-
sider only the CTL operators with existential path quantifiers. since
the operators with universal quantifiers can be derived from these.

The formula EC(-;p is true when there is some path in which p is
true in every state, and each element of C is true infinitely often. Let

7 = pA Ex AE(Y U (V A c)).
C E C,

We argue as follows that ECGp is the greatest fixed point of r. First.
if V is a lixed point. then every state in V satisfies p. and further. has
a nontrivial path remaining in V which leads to a state satisfying each
fairness constraint. lence. a looping path can be constructed satisfying
each intinitelY often without exiting '. Thus V C EcGp. On the other
hand. suppose V = Ec.Gp. Since every state in V has a path touching
each fairness constraint infinitelv, as does each state along that path. it
follows that every state in Y can reach every fairness constraint without
exiting . -Thus V C 7(Y]. Therefore. EcGp is the greatest fixed point
of r. The set of states satisfying EcGp is expressed in the Mu-Calculus
as

v 1. (pA EX A E(Y F (Y A c)))
,:EC'

The reniaiinI,, operators under fairness constraints can be characterized
in ternis of .('p. as follows:

l' .p = EX(p A E .(; trnie)

L'cFp = E(N J,) E(.(; til'te)

E(q U p) = E(q U' (pi\ L.(; true))

Emerson arid Lei [E-LS6] give a characterization in the Nhiu-(alcrrlus of
(''TL iruder a mnore general class of fairess conistraints. Each constraint
in t Iis cheine ruej'tires that one condition holds infinitelv often or a

second con liition holds tin itelv oftln (for example. either acknowledge
h 10( 15 iii I ' ,, oh ( . o0 rej Iuest holds tni lelY often).
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Simnulation relations

Two states xc and y of t a lripke structure are said to be bisimidlar if:

L ,and y agree onl t lie atomnic propositions.

2. everv successor of .r is linmilar to at successor of Yi and

:1 every successor of Y is lbislimuular to a successor of x.

Two states are hisimutlar i1' and onlIY if theY satisfy the same set ot
(TL ~ ~ ~ 1 fomua [B-sl fIu are the atomic propositions.

lihen t hie lbisj mulat ion relit Ion can biIe expressed lin the !\ I -(alcu his as
follows:

Bistin = v1 A. AX.Y A ~ a(
I <g <k

ANVi'. I R(.x.') 3 y'.( R(y. y') A V(.r'. y')))

AVy'. MRy. y') -3 x'.(R(.x') A Y(.r'. y))))

where we have, as usual, identified each atomic proposition with the
,4et of state,, in which it is t rue. There is also an asynimetric notion ot
'i iwi tat io1 we sayv t lialt t ate x inmuilates a state y, If:

au.~ T ilJa-f (iiI UI lit, aloj)ili( I)Iolosit 10o1i.

.2. e i ~lie (I ,'Kiiiutte ) SUiCCOS50 t1, ..

If rtate x ilniiat es t;it at/. thlen y~ sanslies eve- f orriiia ,at istied hYL
r in aI dialect of ( H, ,a ;Iled -7- .IL, which allow, on1 vi iiv;)sa pat
1uantites I -s Fs ii bisiuuat ion and -,knniat ion relat ion x

ke uised as at form1 (d, \frilitatt)II. )r it cani be ulsed to lest a1boiraIct bus

1'1ill conilpo'sil ionl inut Ilmi clieckin,- t eciniquies ( . I).'1)[ . ['lie
-illi('ll, I dea c tdil I' hc "xi('I (l to l ls wit It laboled raIstiu .

'Ifa t t 11I.S)I .t1 af)ru I I-11, 'AT ' :Ill )1CT whc at it th,;Tt iii
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Language containment

The Mu-('alculus can can express the relation of language containment
between two deterministic w-automata. For the sake of simplicity, we
consider only deterministic Biichi automata, which are not complete
for the class of ,-regular languages. but it is not substantially more
difficult to handle more general classes of deterministic automata. such
as Street automata.

.\ finite deterministic Bichi automaton consists of a set of states
K. an initial state po E K, an alphabet E. a set of transitions A C
K x Ex K. and an acceptance set B C K. The transition relation is
such that. for any state p and symbol qT. there is exactly one q for which
\(p. a*. q). The automaton accepts an infinite sequence 7C E-" iff the

sequence of states p. where A(pi, ai, pi+i) holds for all i. passes through
the acceptance set B infinitely often. The set of sequences accepted by
an automaton Al is called the language of M and denoted 1(.1).

To determine whether the language of a Bfichi automaton M is
contained in the language of a Bfichi automaton M' (with the same
alphabet). we define a Kripke structure representing the product of M
and ' and write a formula in CTL which is true if and only if every
sequence accepted by AI is also accepted by M' [CDK90]. This formula
can be evaluated using its Mu-Calculus characterization.

The product is defined by its transition relation R, and set of initial
states .40. Let

2. HS P\.' (s = po) A 1" = ).

There is a sequence in the language of .11 but not in the language
of A' if and only if there is an path of the product passing through
13 infinitely often, but not through B' infinitely often. Thus. (M) C
12(.1') ifr

.\nother possible approach to t he language containment problem
makes itse of the transitive closure of the transition relation. First. we
remove from the product stri icture all transitions that t.:- in or end
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with a state in B'. That is. let

T = \.s..s'. r. r'i(..s'. r. r') A -,B'(s') A B(r')]

The transitive closu re ,,f this relation is

= ,,Q[,A..,'. ,.. , .' ..,'. ,..,.' V , z,,. ,,'fQ (. .' . it') A Q(t,. it'. ,.. ,']]]

This is the set of all pairs .r. ! of states of tie product such that x
can reach y without passing through B'. This holds for the pair ( 1.x I
if and only if .r is on a rnot passing through B'. If there is any
such .c in B. and .x is reachable. then there is a path passing through
B but not B' infinitely often. hence there is a sequence in C(M). but
not in C(O'). The converse is also trite. Hence. CO .I) C C(.1') if and
oniv if -EFA.\. s'. A ... ' . B(.,)). '[he EF operator call also
)e evaluated using tlie t ransitive closure, since

EF'p = Ax. (p(xa) V 3 y. (R+(x.y) A p(y)))

2.6.2 Symbolic algorithm

By devising a symbolic model checking procedure for the Mu-Calculus.
we can quickly establish symbolic algorithms for all of the above prop-
erties. If we assume that the domain is Bk. a symbolic model checking
algorithn is easilv establislied. bv translating forinulas into a Boolean
.Xl u-(alculus wihere the ,liuuaiii is j uust B = { false. true}. This is ,lone
I)V replacing every individiial symbol a bv a k,-tuple of individltal svm-
bols I'll. 1, . .... . 1Hiw. ti-ai'v lermn traiislaoes to a kit-try termi.
In Ihe Boolean XiII- ,l, 1a we c'an represent tertis 1)V Ioolh'a for-
inida., by intro ul 'inti a le\%, set oflhu inv Individual symbols ,1 j.,1 ....
to represent relational paraniet ers..\i1 n -arl Wr1I 7 is represented( IbLY

a formula ii,.'j slO(wh lht

IX...... 1 7 0. )*.

' "l ...... ,'., x ...t r t

;1%,f,'n 1-1. WC, Call: ,Ortl lp t it< fOrrtvtla, r<eprf'se t iz a termin t fe Boholean
\11-0 'd itlt- lbV t' CII',' It' ,t ,,vITr its r , I .< T" c1<' lret. as l1,)l,+,,vs:
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1. T'he value of relational variable .4 is iw,(A).

2. The logical connectives and quantifiers are evaluated by the cor-
responding QBF operations.

3. The value of an n-arv term A(v,..... c,,). r is

4. The value of the proposition r(Li ..... v,). where r is an n-arv

term . is r[ '](di -- '1 ..... dn 4-- , .

5. The n-arv relational terms ;lO. r and VY' 7 are evaluated using
the standard fixed point algorithm.

Because the variables are Boolean valued, we can implement all of the
above using the operations of QBF. with OBDDs as our representa-
tion. The symbolic Mu-Calculus model checking algorithm is shown
in pseudo-code form in figure 2.15. Using this algorithm, any quantity
that can be characterized in the Mu-Calculus can be computed using
the symbolic model checking technique. with the possibility that a com-

binational explosion can be reduced or avoided. This also allows us to
use the expressive powers of the Mu-Calculus in describing and manipu-
lating symbolic algorithms, with the understanding that the translation
from .Mu-Calculus to a svmbolic algorithm is merely mechanical.

2.7 Computing equivalence relations

In this section. we consider the problem of computing a symbolic rep-
resentation of the equivalence relation between the states of two finite
state machines. or between states of the same machine. In the former
case. the relation <an be tised to determine the equivalence of the two

machines. while iM the latter case. as Lin f/ al. have observed [LTN90,
the self equivalence relation can be itsed in optimizing tlhe logic or reg-
ister ulsage of1 the machine.
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function eval(i-. I.')

case
r a relational variable: return U(7)

7 = -p: return -eval(p. u)
7 = p V q: return eval(p. t') V eval(q. t.)

7 = 3w. q: return ]tw. eval(p. .)
r = til. p: return -ixedpoint( Y. , ( Y - false))
7 = VY. p: return fixedpoint(Y.p,i-,(Y -- true))

end case

end function

function fixedpoint(Y.p. :)
V' = eval(p. t.')

if V' = i,.( ) then return P
else return Nliedpoint( /).p.t.-( - "))

end function

I1lie 2.1 -7: Svmlbolhc \l-( ahiiithis molel checking alorii hw.



so CHAPTER 2. SYMBOLIC MODEL CHECKING

2.7.1 State equivalence

We use a standard notion of the equivalence of states of finite Mealy
machines. Two states are equivalent if and only if for all input se-
quences. they yield the same output sequence. The following is an
alternate characterization: equivalence is the greatest relation between
states such that if ,r is equivalent to y. then for all inputs, the output
in state .r is equal to the output in state y. and the successor state of
,X Is e(quivalent to the successor state of !. Let b(.r. z) be the function
which determines the next state. as a function of current state x and
current input z. and let -(.v. z), be the function that determines the
current output. In the Mu-Calculus. the equivalence relation R, is

R i = H. Ax. !. Vz. (,(.r. :) = -j(y, z) A R(6(x. ), 6 (y. s))) (2.22)

Vsing the standard fixed point approach. we can evaluate this relation
by a sequence of approximations R 0 , RI...., where Ri is the set of state
pairs which are equivalent for all input sequences of length 1. This
sequence is characterized by the recurrence

R, = Ar, y. Vz. (-I(x. s) z)) (2.23)

and
R,+, = ,x.y. Vs. (R,(.r.y) A Ri(b(x.z).6(y,z))) (2.24)

This is simply the standard 0(71-) algorithm for computing state equiv-
alence of [ealv machines. The problem of determining whether two
Mealy machines are equivalent in their initial states ('an be approached
in two ways either their equivalence relation can be computed. or the
state space of t heir product can be exhausted 1 a forward search. The
number of iterations required for the former approach (can I)e substan-
tially less. however. In the trivial case of an u-bit counter. the number
of iterations in the forward search is is exponential in ni. while one step
suffices to reach a fixed point in the equivalence calculation. since all
states are distinguished bv their outputs.

It, is immediately seen that the crucial step in calculation 2.21 is the
substitittion of vector functions (.r. s ) and (y. z) into fl. The most
obvious way to accomplish this is to use Bryant's ('ornpo. algorithm.
Some , i"" possible methods are introdmced in this sect ion. (Computing
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the OBDD representation for a composition of functions is anl NP-hiard
problem (cf., section 2.3.4). thus wve expect no good general solutions
to the problem. Another tractability issue is whether the approxima-
tions to the equivalence relation canl be compactly represented using
OBDDs. There is no guarantee of this, of course. but there is some
reason to believe, a1 prion. that it may often be the case. First of all.
for single-machine equivalence, If all distinct -states are dlist]iguishable.
thlen the eqIuivalence relation is thle identity relation. which canl be rep-

resentedl as by a linear size OI3DD. provided the component variables of
.I and y are Interleaved in the variable ordering. It also seems plausible
that the equivalence relation wvill often he simply a logical conjunction
of independent relations, each corresponding to some modutlar compo-
nent of the system. In this case, the OBDD representation will also
he compact, provided thle variable ordlering conforms to the modular
structure of the machine. InI anyv case. we will see examples of fail
complex machines whose equivalence relations are expressedl compactly
in OBDD form.

Algorithm using restrictions

Because of the basic dlifficulty of computing compositions of OBDDs.
it is useful to have some restrictions on the result in order to be able
to solve the problem. Fortunately. the dlecreasing; nature of the series
of appr-oxIiat ions defined in1 2.21 provides a constraint onl thle result of
lie subist it utioni. ,rice each approximation R,+ is st rict lY conitained I II

1?,. \Ve caniiuse Ihis fatct bY rewrit Ing 2.2 1 as

= A. q'i. iHi . ~NRH i.z).~hj zj ~ lH)) (2.2-5

where " representl I l1e lb .,1,cI operat or tll imljiced 1) ( utidert . Miadre

anid B~ert het [(A3MlS)1. l1iiis opera tion produ tces a fu uci ion w hichi agrees
With1 H, (M.r. o q ver t hie set /?. attemlpt Ing to mini n1rlize t hev
()B 1)1 size. Thle re t rict loll can be u sedl to varviug advantage. delpendI-
IIIg oni the algaori hini used for siib)5: t litili.

Iterative abstraction algorithm-

.\ notlher way, to priovideg aI rest rict lonl (il thle eqilival1eulce reclat loll is 111-t
1) linl I li riva1.1( at k)l] ol an abstractedl llclilit. \V4. fllfMse thc
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abstraction in such a wav that the equivalence relation of the abstract
machine is strictly weaker than the equivalence relation of the original
machine. Thus, we can compute the equivalence relation of the abstract
machine first. and use it as a restriction in computing the equivalence
relation of the original machine. In particular, we can abstract the
machine by choosing a subset V of the state variables, and at each
approximatio1 quantifying out the remaining variables existentially.
That is. let I" be the complement of V. and let

R' = Ax. y. ]V". V:. (I(x.z) = ,,(y. z)) (2.26)

and

i+_, = A.\.,.y. ]l ". V .(Ri"(.r. y) A(Ri (6(.r.- 6(yj. R, R )) (2-27)

It is trivial to see that each approximation in the series Rv is strictly
weaker than the corresponding approximation in R. It follows that Rv ,

the greatest fixed point, is weaker than R,. Therefore. we can restrict
the entire calculation of R, to only those state pairs satisfying Rv . In
addition. we can use a series of subsets V1 C V2 C ".. . IC, where Vk is
the set of all state variables, restricting the first approximation in each
series R' to the eqiuivalence relation for the previous subset. Thus, we
let

1< = A Ax. 3V . Vs. (-,(x. z) = -'(y. z) (2.28)

and

R'+, = A...,y. 3V'. v_-. ( ,(.R .y) A (R ,() ,..-). 6 ( . I) R,)

(2.29)
We will refer to this a3; the iterative abstraction algorithm for comput-
ing the ,i ivahence relation. Bv adding only a few variables to each
sUccessive silbset. we can in some cases obtain fairiy strong restriction.
which allows tlhe substitution uo Lbe computed more efficiently. In other
cases the equivalence relation obtained for the abstractel machine may
be trivial, since abstracting out the variables in I" may result in all
machine states appearing equivalent at the outputs. This is especially
likely if the abstracted variables hold important control inforrmation
that enables mnachine registers to be observed at t he outputs. Nonethe-
less. we can slhow cases where this incremental approach is greatly more
efficient Hau the basic algorithim.
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2.7.2 Methods for functional composition

This section considers methods for substituting functions for variables
in OBDDs. This operation is referred to by Bryant as Cornpose. It is
the syntactic mechanism corresponding to functional composition. As
,1ich. it has a numirber of applications apart from finding the equivalence
relation of finite state machines, including the evaluation of ('TL for-
mulas iBFS9bj. Most of the algorithms presented here for this purpose
have been modified to take as an extra argument a restriction on the re-

tmt. in the hope that efficiency can be obtained bv combining these two
,perations. We consider the problem of calculating f(y . . ,) ' t.
where f. y. j, anid h are all Boolean functions.

"bottom-up" substitution

Fhis is the method originally proposed by Bryant for his Compose al-
gorithm. but with a restriction on the result. In this method, we view
each OBDD node in . as a gate. which computes the function 'if v,
then h else I" or equivalently, (-vi A 1) V (vi A h). Having substituted
the functions g.,. . . , g, for the variables in I and h, we can then com-
pute the result for f using the standard V and A operators. The basic
bottoin-up algorithm is

function bot toin-jip( J. ?)
i f /' a leaf then ret rn /i"
if lmttiom-,ii) f.l I? ha> alreal Fe,,fl solvel then re11 ,r 11 ollitiou
else ] is t triple ,',.). .;,

/ 1) 1 i(t I -tll)I . I

retu rn ( -q, ', I 1,' h ) . I?

end

No I' i lhat, Ihe t''rim tim ,)pvrator i s lsel a (e i :-,to , ,) t 1 i1l1)lif%

-)11Js.i , ,robcll 1,, s,,,t ,,od o,11% ill(( th,.]11b I



84 CHAPTER 2.5 YMBOLICAMODEL (C1HECKING

Domain partitioning

The domain partitioning strategy is so named because it (divides the
prolem into two subproblems by partitioning the dlomain of the func-
tions yi .. y according to the value of one of the variables. The
operation proceeds in several steps.

First, we observe that if any of fl.... g, are constants. we can
immediatelv substitute these values into f,. since substituition by a con-
stant is a linear time operation which can only reduce the size of the
OBDD. We rise the fact that if y, = c. where c is 0 or L. then

'.Yn,--,Y) =f (vi - c( ... YJ(2.30)

Next. we observe that we can elimiat an ruetpsto nwIc

I .loes riot dependl. thus olbtaihing a smaller prtoblem with the same
result. We can determine the set of variables on which f (depends in
linear time. since f depends on vi if and only if vi appears in some node
in f.

If at this point the function f has been reduced[ to a constant. we are
(lone. Otherwise. we split the problem into two cases and recurse. We
choose the first variable vi occurring in g, ... g, and apply Shannon's
expansion. obtaining two subproblems

/ J(Y I c1, 0) .... 0))0'
h = f(yi(er I)-

As III u)t her () BD algorithms. thle result is an OBD D r' ',. .h)
proided~ h I. otherwise r h I. Needlless to say. we use a hash
able. caching i hie results of stibprobherns so t hiat the same surbproblem

is niot "olved twice. WVith caching. the complexity of the algorithm is
W(f I Li! yH*

MA P u in~rse ot tlie rest riction I? in this algori thini is st rai ghtforward.
If H = 0. Ii je restIdt can be an1Y hi nct ion at all. so we siply retur rn 0.
FEach I irrie we p~artition the problemi into subproblems. we also split R
into two caises. I?(rt, -0) andl 1?)r - 1 ). The restrict ion hias the etfect
Of1 (lit Iiri'a s(f dire recrirsioni each tinie a Ii leaf Is reached In R.
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Sequential substitution

This is perhaps the simplest approach to substitution; it transforms
a simultaneous substitution problem into a sequence of substitutions.
This is done by replacing each variable ui in the OBDD for f by a new
variable v'. Having done this. it is safe to perform the substitutions of
each function gi for vi in any order. since none of the functions gi ..... g,
depends on any variable being substituted. Substitution of a function
fbr a single variable can be accomplished as follows:

-- yj) = 3t,'. [(v' -== g,) A f] (2.31)

This approach can also make effective use of a restriction. The
restriction operator operator may in fact be applied after each substi-
tution step if desired. potentially reducing the size of the intermediate
results. In the case of the iterative abstraction algorithm, the fact that
some of the variables in the result will later be quantified out existen-
tially can also be put to use. We can move the existential quantifiers for
these variables inside the conjunction. thus quantifying the abstracted
variables out of the term (v' -== gi) before applying the conjunction.
This may weaken our result somewhat. since [3x. a] A [3x. b] is weaker
than 3x.[a A b], but it can produce significant reductions in the size of
the intermediate results. The final result of the equivalence algorithm
is ,nchanged. since it is computed with no variables abstracted.

2.7.3 Experimental results

This section presents the results of applying the various equivalence
relation algorithms to several example state machines. with a range

of complexity. The results are compared to published results for the
same circuits by Touati 0 al. (computing only the reachable states)
and Lin t al. (cornpiaing the equivalence relation). In all cases. it
is self-equivalence that is calculated. It would be interesting to have
some results in this section on calculating the state equivalence relation
between two dIifferent 11n!plenntations of a giyen nachine. blut linfor-

trinately. sllch examliles were lacking. The three lifferent approac lies
to ()13DD suibstitntion are co1pared. for each example. \Vhere pos-

*ible. the lire('t a iol'i11111 1", sed. otherwise. Ihe iterative albst racliou
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machine 1tnt d result b-ut d- p seq Toutati Lin
___________ (nodes) (secs) (ecs) J(ecs) (secs) (secs)

F_____ ____ 361 204> IOK 2415 290:3 ___

cpb32 iter 95 45.5 14.4 .54.4 t4.1 I12.10
key iter 167 :342 1738 884 .5706 175.20
mninmaxi (. h dr S9 197 255 204 _______

ininmax20 dir .59 3.0 41.5 6.7 _________

minmax-30 (hr 89 6.2 9.0 15.7____

TFable 2.1: Equivalence calculation times

algorithm is utsed. For example. the state equivalence relation for the
machine sbc was calculated uising iteration. but could not be calculated
(irectly. Table 2.1 gives the total execution time in seconds. while
table 2.2 gives the total number of OBDD nodes used.'17 The latter
numbers are not very reliable, since they depend to some extent on ar-
bitrary choices about wvhen to scavenge unused cells and cache entries.
However, if the available memory limit of 190,000 nodes is exceeded,
it is certain that all of the nodes in use were necessary for the com-
puttation. since all available nodes were scavenged when the memory
limit was reached. The columns -give the following information: the
niame of the circit. the method utsed (direct or iterative t. the size of
the equivalence relation. and the timne or space needed for each of the
three silhst it tion miet hods (bottom-up. (lornaiin part itionig. andl se-

(luiential . The times are for a LISP implementation running on a I
XII P rini nicompitter. The final two columns give the results obtained
by Foujati 0 al. and Lin 0 al. for the same circuit. These times are for

Claniguage i mp)lementat ions running on a DEC 5400) and~ II.I 116000
respective 

l v. ,
It would seemi thlat for the circuits cpb. key and milinmax. which have

reguilar stnrictitres wvit h no control registers. there is no clear choice as to

7:,-t j~j V fntion graphs wvit h negated arrs were tiusd Ibr tills ealcula-
tion Bl17l.T hence the nuirber oft nodes mnav be slightly stialler than what would

iiried ing OIIDDs.
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machine mtd result b-u d-p seq
e_ I (nodes) (nodes) (nodes) [(nodes)

sbc iter 361 22184 34609
cpb32 iter 95 8202 4225 11295
key iter 167 13328 24868 11563
minmaxtO dir 89 16589 17815 17566
minmax20 dir 59 8538 8492 9190
minmax30 dir 89 11952 11886 10001

Table 2.2: Equivalence calculation space

which substitution algorithm is best. The bottom-up algorithm tends
to provide the best performance with the least memory usage, but there
are a number of exceptions. The machine sbc, which is somewhat more
complex, is a more interesting case. Here bottom-up and sequential
both provide fairly efficient solutions, although the iterative method
was required in both cases to solve the problem. The domain partition-
ing approach fails to terminate after 10,000 seconds. In the first stage
of the iterative algorithm, domain partitioning produced over 100.000
subproblems for a final result of approximately 100 nodes. Obviously,
many different subproblems with identical results are being solved. The
difficultv is that there is no easy way to identify equivalent problems.
It is worth mentioning the the limit on the size of the cache for this
method was 5000 entries. With an unbounded cache, the performance
of the algorithm may be much better (a matter of theoretical interest
at best, since an unbounded cache cannot be provided). It should also
be noted that the results for minmax are somewhat anomalous, since
the 10-bit version seems to be substantially more complex than the 20-
and 30-bit cases. This is explained by the fact that the output func-
tions of these different versions were not the same. In the 20- and 210-
bit versions. the outputs appear to depend only on the -last" register.
and not the "'mmi" and 'max" registers. It is also interesting to observe
that for minmax10. not all of the states are distinguishable. that is. the
Pcquivalence relation is not the identitv.
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Comparing these results to those of Touati et al., it is interesting to
note that the self-equivalence relation can be computed in less time than
the reachable states for sbc and key (taking into account the difference
in machines speeds of roughly a factor 10, the equivalence method seems
to be about one order of magnitude faster for sbc, and two orders of
magnitude faster for key). Of course, the information obtained by the
two methods is not the same. It seems. however, that in some cases
where the set of reachable states is not obtainable, the equivalence
computation may still provide useful information for logic optimization.
The results of Lin et al. seem to be roughly comparable for the machines
key and cpb32 (again, taking into account the difference in machine
speeds). It is not clear from the Lin et al. article which substitution
method was used. since two were mentioned. The one benchmark for
which the iterative method was required to produce a result was sbc,
but unfortunately Lin et al. do not report a figure for this machine.
Also. because of the fact the the 20- and 30-bit versions of minmax
had modified output functions, it is not possible to compare figures
for this benchmark. As a result of these ambiguities. it difficult to
draw conclusions about the effectiveness of the iterative abstraction
method, except to say that in one case (sbc) it was the only method
that successfully computed the equivalence relation.

2.8 Related research

The author first experimented with the use of OBDDs to represent
sets of states and transition relations in 1987. building the first sym-
bolic model checker for CTL. Various heuristic improvements to the
basic technique were developed, including the OBDD algorithm com-
bining existential quantification and conjunction (cf. section 2.3.4). and
the technique of early quantification for disjunctive transition relations
(cf. section 2.4.2). Extending this work. Burch. Clarke. Long, McMil-
Ian. Dill and Hwang described a symbolic model checking procedure
for the propositional Mu-Calculus. which could be used for a varietv
of purposes. including CTL model checking, testing various process
equivalences, testing language containment of ,z-automata. and check-
ing satisfiabilitv of LTL formulas [BCM+90]. In 1989. the author used
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the model checking technique to verify the cache consistency protocol
of the Encore Gigamax multiprocessor (see chapter 4). In the process,
a model checking system called SMV was developed, along with an
associated description language (see chapter 3).

In 1989, the idea of using the OBDD representation for verification
of finite state machines appears to have been independently developed
by Coudert, Madre and Berthet [CBM89], who used it in their PRIAM
system for testing equivalence of finite state machines. They represent a
finite state machine by a pair of vector Boolean functions. The function
6(v, w) yields the next state vector as a function of the current state
vector v and the input vector w. The function A(v, w) yields the output
vector as a function of v and w. The equivalence of two state machines is
tested by creating a combined machine in which both machines receive
the same input vector, and the output is a single bit which is true if and
only if the output vectors of the two machines are equal. The reachable
states of this combined machine are computed. If in all reachable states
the output is true, the two machines are equivalent, since no input
sequence can produce differing output sequences from the two machines.

The set of reached states is computed as the limit of an increasing
series of approximations. starting with the initial state. The set of
states reachable in one step from a set S is computed by a function
called Imag, where [mag(6. S) = {s I 3v, w : v E 5'. 6(v. w) = .s}. Most
of Coudert. Madre and Berthet's efforts are applied to computing the
[rnag function without resort to representing the transition relation as
an OBDD. which they claim is generally intractable. Their approach
begins by reducing the problem of computing the image of a set via a
function. to computing the range of a function. This is (lone ising an
OBDD operation called ('onstrain. The C('on.tran operator takes two

Boolean functions f and y. and returns a function I' = ('onstrainif.g I
with the following property: for all x'. J"(x') = f(x). where .r is the
nearest Boolean vector to X' (according to a suitable ,distance metric)
such that q(.r) = 1. If we let 6' = Constrain6..5'). then the image of .
via D is just the range of 6'.

(.'oudert and Madre suggest two methods for computing the rang4e of
t'. The first is called range partitioning. In this approach. we pick the
lowest remaining variable in the ordering (call it v,). and. and ,divid e
the problem into two sitbproblems. depending on the output of functionl

al
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6'. Thus.

(Range(6'))(v, 0 0) = Range( Constrain(6', -6 ))

(Range(6'))(vi 1) = Range( Constrain(6', 6))

Note that for any function f,

Constrain(f. f) = I and

Constrain(f. -'f) = 0

so each recursion effectively eliminates one component function of 6'.
The recursion terminates when all of the components of 6' are constants.

The other approach. called domain partitioning, is to divide into
subproblems based on the value of one of the inputs to 6'. Thus.

Range(6') = Range(6'(vi - 0)) V Range(6'(v' I ))

Again. the recursion terminates when all of the components of 6' are
constants.

Both of these strategies are special cases of a general strategy where
one chooses a cover, which is a pair of functions hi and h2 such that
hi \/ h. = L. and then computes the recursion

Ranye(6') = Range ( onstrain( 6'. hj)) V Ranget ConstrainW'. h,))

In the case of range partitioning. hi = o' and h, = -'. In the case of
domain partitioning, h, = v, and h., = --L'. It is suggested that other
covers may he useful as well. As with other OBDD techniques. a table
of pairs i'. Razgef ')) is kept to avoid solving the same subproblem
twice. [his table is not as effective as the in the case of the standard
OBDD operations. however, since the number of possible subproblems
is exponential in the number of state variables. Coudert andi Madre
suggest several optimizations for increasing the hit rate in this table.

A fiurther optimization introduced b' Coudert and Madre is to use
an OBDD function called Restrict to reduce the size of the reached state
set before applying the [ma operator. The Ilestrct operator rakes two
functions f and y. and produces a function f' = Restrtct(f.y) such that
for all .r. If 1(.r) = I.then J"(x) = ](.r ). otherwise f'(x) is arbitrarv.
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Usually (but not always), the size of f' is less than the size of f. We
note that if Ri is the set of states reachable after 1 steps of the machine,
then

R+i = Ri V [mag(SR,)
= Ri V lmag(6, Restrict(Ri,, -Ri 1 ))

As a result, the size of the arguments of Imag can sometimes be reduced
using Restrict.

Coudert and Madre report experimental results for computation
of the set of reachable states for a variety of small sequential circuits
(mostly ISCAS'8 sequential benchmark circuits). Computing the set of
reached states can be useful for generating test patterns or "don't care"
condition: for logic optimization [TSL+90]. Unfortunately. Coudert and
Madre do not use their techniques to actually test the equivalence of
two state machines, so it is unknown whether the technique is useful
for this purpose. They have not studied the asymptotic performance of
their techniques for classes of circuits, so it is not possible to determine
whether their optimizations yield asymptotic improvements.

A variant on the symbolic model checking technique for CTL was
proposed by Bose and Fisher [BF89b]. Their technique, which is lim-
ited to deterministic finite state machines, also represents the tran-
sition relation of the machine bv a vector of Boolean functions 6.
and uses Bryant's Cornpose operation to compute EXp = p(v -

,). They (1o not report experimental results using this technique for
practical circuits. A similar technique was proposed by (ioudert and
Mladre ICMB911.

Other researchers have proposed techniques to avoid constructing
the transition relation. For example. Burch. Clarke and Long use early
,iiantification (cf. section 2.4.2) for both disjunctive and conjunctive
transition relations rB(L9lb. BCL91al. They use the term "partitioned
transition relations" for this. The technique is somewhat limited in the
case of conjunctive transition relations. because existential quantifica-
*ion orly distributs over conjunction in the special case when one of
the conjincts does not ,leperid on the variable being (liantified. Nev-

. 'nterniationai Symposunm on ( 'irctts and Svstenms
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ertheless, there are cases where the support of the component relations
is sufficiently disjoint to make this technique effective.

The basic technique is the following: assume we wish to com-
pute 3y. Ai fi, where v = (vI,... , vk) is a vector of variables and
f = (fl,..fi) is a vector of Boolean functions. Since conjunction
is associative and commutative, we can combine these functions in any
order we choose. In addition, if at any time there is a variable occurring
in only one function, we can quantify that variable out, since 3w. (pA q)
is equivalent to (3w.p)A q when q does not depend on w. Since quantifi-
cation tends to reduce OBDD size by reducing the number of variables.
the strategy is to combine the functions in such an order that variables
can be quantified out as soon as possible.

Burch Clarke and Long use a fixed order determined by the user
for combining the functions. They show that this is quite effective
for pipelined data path circuits. and an asynchronous stack circuit,
improving the asymptotic performance as the circuit size increases. For
the DME circuit. the asymptotic performance of this method was not
as good as a method using a disjunctive transition relation. but it can
be more efficient for small rings. 9 [t was found most efficient to group
the components of the transition relation and combine each group in
advance, thus avoiding some computation at each step.

For disjunctive transition relations (interleaving models), Burch.
Clarke and Long introduce a modified search order that tends to reduce
the representation of the reached state set. In a breadth first search.
the representation of this set is complicated by the fact that the after n
steps. the number of steps taken by each process is constrained to sum
to n. This produces an artificial correlation between the states of oth-
erwise independent processes (cf. sectikn 2. .2). To counter this. one
can modify the search order. searching first all of the states reachable
by transitions of one subset of the system processes, then the next.
and repeating this process until a fixed point is reached. This tech-
nique. called -modified breadth first search". was effective in reducing
the OBDDs representing the reached state sets for an asynchronous
stack circuit. but was found not to be as effective as the -conjunctive
partitioning~ method. For the DME circuit. the modified breadth first

t9 Pprsonal communicatlon.
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search method was faster up to about 16 cells, but had slower asymp-
totic performance. The grouping of processes into subsets was manual.

Another OBDD based technique for computing the reachable states
of a machine was introduced by Touati et al. [TSL+90]. They also
use a conjunction of component relations to represent the transition
relation, along with early quantification. However, they combine this
technique with the Constrain operation of Coudert et al.. This reduces
the problem of computing the image of a set via a relation to that of
computing the codomain of a relation. A series of approximations A
to the reachable states is computed, such that

Ai+, = A, V Ay. 3x. (A Constrain(Rj,Ai))(x,y)

where R is a vector of component relations, each relation determining
the new state of one state variable. Touati et al. find this technique
to be superior to using the transition relation directly and to using the
Imag operation of Coudert et al. for computing the reachable states of
the benchmark circuits minmax and sbc, somewhat slower for key, and
roughly the same for cpb.32.4. It would be interesting to know for the
cases where an improvement was obtained, how much was due to the use
of Constrain and how much to the use of early quantification. Touati
et al. have also suggested partitioning complex next-state functions
into the composition of a sequence of smaller functions. This could be
useful for circuits containing multipliers, or other functions which have
no compact OBDD representation.

Touati. Brayton and Kurshan report a technique for testing lan-
guage containment of A-automata using OBDDs [TBK9I1. They use
the L-automaton model of Kurshan [KurS6l, and an algorithm similar
to the one described in section 2.6.1 using the transitive closure of the
transition relation. No experimental results using this technique are
available.

Another way that one can test equivalence of two finite state ma-
chines is by computing the equivalence relation on states. as described
in section 2.7. Lin et al. also describe OBDD based algorithms tbr
computing this relation [LTN90]. A comparison of the methods (-an be
found in section 2.7. Lin et al. describe how the equivalence relation
can be used for computing -don't care" conditions for logic optiniza-
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tion. In a later paper [LN91], Lin shows how this relation (represented
as an OBDD) can be used for state minimization, using an operator
which takes an equivalence relation and returns a relation which maps
every state onto the least element of its equivalence class.

Bryant and Seger have taken an an approach to formal verification
using OBDDs based on symbolic simulation [Bry88. BBS90. BS90. The
symbolic simulator is similar to an ordinary logic simulator, except that
the inputs are symbolic values (variables) rather than numeric values,
and the outputs are given as symbolic functions in terms of these vari-
ables. These functions are represented by OBDDs. The simulation
method gains a great deal in efficiency by using an abstract interpre-
tation of the circuit model. This abstraction uses a lattice consisting
of the three values 0. 1 and X. where X is the least upper bound of 0
and 1. The circuit operations such as AND and OR are abstracted in
such a way as to be monotonic with respect to this lattice. Therefore.
the output of the abstract simulation is always an upper bound on the
output of the concrete simulation. In many cases. a large number of
the inputs and initial values of state variables can be replaced by X
without sacrificing the particular circuit property being proved. The
art in this technique is to decompose the specification in such a way
that each part can be verified using only a small number of symbolic
values and X everywhere else. The simulation technique is limited to
a logic with only next-time operators. These formulas can be verified
using symbolic simulations of finite execution sequences. This rules out
proving properties such as liveness. fairness or deadlock freedom, but
allows safety properties to be proved using invariants.

Bose and Fisher have demonstrated a technique for using repre-
sentation functions to verify sequential circuits using OBDDs 'BFS9aJ.
A representation function maps each state oL the impiementation to
state of the specification (which is also a circuit). Symbolic simulation
techniques can be used to show a kind of single step equivalence be-
tween the implementation and specification vis (i vis this relation. As
in the method of Bryant and Seger. this proof can be decomposed into
parts in such a way that each part requires only a small number of
symbolic variables, with the remaining circuit nodes initialized to X.
Typically. an invariant is also required. since the single step equivalence
only holds over the reachable state space of the implementation. This
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technique is also limited in that it cannot prove liveness or deadlock
properties.

Long and Grumberg have introduced an abstraction technique us-
ing OBDDs which is more general than simply introducing X val-
ues [CGL92I. Their technique uses an OBDD to express the relation
between the abstract and concrete domains. The abstract transition
relation is automatically derived using OBDD techniques from the con-
crete transition relation. This can be done in a compositional way to
reduce the number of symbolic variables that are required. A variety
of abstractions have been put to use in this way. For example, a binary
number can be represented by its remainders modulo a set of relatively
prime numbers. This has allowed the use of the Chinese remainder the-
orem to prove the correctness of a multiplier circuit. In another case.
a single bit was used to represent whether a given binary number in a
circuit is equal to a given symbolic binary value. In this way the entire
function of the arithmetic unit was abstracted away, allowing a data
pipeline circuit with 64 64-bit registers to be verified. This abstrac-
tion technique is quite general. and is closely related to more classical
abstraction techniques [Kur87]. The difference is that function graph
methods are used to actually compute the abstract transition relation.
rather than giving this relation a priori.
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Chapter 3

The SMV system

The SMV system is a tool for checking finite state systems against
specifications in the temporal logic CTL. The input language of SMV
is designed to allow the description of finite state systems that range
from completely synchronous to completely asynchronous, and from the
detailed to the abstract. One can readily specify a system as a syn-
chronous Mealy machine, or as an asynchronous network of abstract,
nondeterministic processes. The language provides for modular hierar-
chical descriptions, and for the definition of reusable components. Since
it is intended to describe finite state machines, the only basic data types
in the language are finite scalar types. Static, structured data types
can also be constructed. The logic CTL allows a rich class of temporal
properties, including safety, liveness, fairness and deadlock freedom. to
be specified in a concise syntax. SMV uses the OBDD-based symbolic
model checking algorithm to efficiently determine whether specifica-
tions expressed in CTL are satisfied.

The primary purpose of the SMV input language is to provide a
symbolic description of the transition relation of a finite Kripke struc-
ture. Any propositional formula can be used to describe this relation.
This provides a great deal of flexibility, and at the same time a cer-
tain danger of inconsistency. For example. the presence of a logical
contradiction can result in a deadlock - a state or states with no suc-
cessor. This can make some specifications vacuously true. and makes
the description unimplementable. While the model checking process
can be used to check for dJeadlocks, it is best to avoid the problem

97
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when possible by using a restricted description style. The SMV system
supports this by providing a parallel-assignment syntax. The semantics
of assignment in SMV is similar to that of single assignment data flow
languages. A program can be viewed as a system of simultaneous equa-
tions, whose solutions determine the next state. By checking programs
for multiple assignments to the same variable, circular dependencies,
and type errors. the compiler insures that a program using only the
assignment mechanism is implementable. Consequently, this fragment
of. the language can be viewed as a hardware description language, or
a programming language. The SMV system is by no means the last
word on symbolic model checking techniques, nor is it intended to be a
complete hardware description language. It is simply an experimental
tool for exploring the possible applications of symbolic model checking
to hardware verification.

3.1 An informal introduction

Before delving into the syntax and semantics of the language. let us
first consider a few simple examples that illustrate the basic concepts.
Consider the following short program in the language.

MODULE main
VAR

request : boolean;
state : {ready,busy;

ASSIGN
init(state) ready;
next(state) case

state = ready & request busy;
I : {ready,busy};

esac;
SPEC

AG(request -> AF state = busy)

The input file describes both the model and the specification. The
model is a Kripke structure, whose state is defined by a collection of
state variables, which may be of Boolean or scalar type. The variable
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request is declared to be a Boolean in the above program, while the
variable state is a scalar. which can take on the symbolic values ready
or busy. The value of a scalar variable is encoded by the compiler
using a collection of Boolean variables. so that the transition relation
may be represented by an OBDD. This encoding is invisible to the user.
however.

The transition relation of the Kripke structure, and its initial state
(or states), are determined by a collection of parallel assignments (a
system of simultaneous equations). which are introduced by the key-
word ASSIGN. In the above program, the initial value of the variable
state is set to ready. The next value of state is determined by the
current state of the system by assigning it the value of the expression

case
state = ready % request : busy;
I. : {ready,busy};

esac;

The value of a case expression is determined by the first expression
on the right hand side of a (:) such that the condition on the left hand
side is true. Thus, if state = ready & request is true. then the result
of the expression is busy. otherwise, it is the set {ready,busy}. When
a set is assigned to a variable, the result is a non-deterministic choice
among the values in the set. Thus. if the value of status is not ready.
or request is false (in the current state), the value of state in the next
state can be either ready or busy. Non-deterministic choices are useful
for describing systems which are not yet fully implemented (ie.. where
some design choices are left to the implementor). or abstract models of
complex protocols. where the value of some state variables cannot be
completely determined.

Notice that the variable request is not assigned in this program.
This leaves the SMV system free to choose any value for this variable.
giving it the characteristics of an unconstraired input to the system.

The specification of the system appears as a formula in CTL under
the keyword SPEC. The SMV model checker verifies that all possible
initial states satisfy the specification. In this case. the specification is
that invariantly if request is true. then inevitably the value of state
is busy.
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The following program illustrates the definition of reusable modules
and expressions. It is a model of a 3 bit binary counter circuit. Notice
that the module name "main" has special meaning in SMV, in the same
way that it does in the C programming language. The order of module
definitions in the input file is inconsequential.

MODULE main
VAR

bitO counter-cell(1);
bitl counter-cell(bitO.carry-out);
bit2 :counter-cell(bitl.carry-out) ;

SPEC
AG AF bit2.carry-out

MODULE counter_ cell (carry, in)
VAR

value : boolean;
ASSIGN

init(value) 0;
next(value) value + carryjin mod 2;

DEFINE
carry-out := value & carry-in;

In this example, we see that a variable can also be an instance of a
user defined module. The module in this case is countercell, which
is instantiated three times, with the names bitO, bitt and bit2. The
counter cell module has one formal parameter carry-in. In the instance
bitO. this formal parameter is given the actual value 1. In the instance
biti. carryin is given the value of the expression bitO . carry-out.
This expression is evaluated in the context of the main module. How-
ever, an expression of the form a.b denotes.component b of module a.
just as if the module a were a data structure in a standard program-
ming language. Hence, the carry-in of module bitl is the carry-out
of module bitO. The keyword DEFINE is used to assign the expres-
sion value & carry-in to the symbol carry-out. Definitions of this
type are useful for describing Mealy machines. They are analogous to
macro definitions, but notice that a symbol can be referenced before it
is defined.
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The effect of the DEFINE statement could have been obtained by
declaring a variable and assigning its value, as follows:

VAR
carry-out : boolean;

ASSIGN
carry-out := value & carry-in;

Notice that in this case. the c turent value of the variable is assigned.
rather than the next value. Defined svrfibols are sometimes preferable to
variables, however, since they don't require introducing a new variable
into the OBDD representation of the system. The weakness of defined
symbols is that. they cannot be given values non-deterministically. An-
other difference between defined symbols and variables is that while
variables are statically typed, definitions are not. This may be an ad-
vantage or a disadvantage, depending on your point of view.

In a parallel-assignment language. the question arises: -What hap-
pens if a given variable is assigned twice in parallel?" More seriously:
"What happens in the case of an absurdity, like a := a + 1; (as op-
posed to the sensible next (a) = a + 1; )?" In the case of SMV, the
compiler detects both multiple assignments and circular dependencies.
and treats these as semantic errors, even in the case where the corre-
sponding system of equations has a unique solution. Another way of
putting this is that there must be a total order in which the assignments
can be executed which respects all of the data dependencies. The same
logic applies to defined symbols. As a result. all legal SMV programs
are realizable.

By default. all of the assignment statements in an SMV program
are executed in parallel and simultaneously. It is possible. however, to
define a collection of parallel processes. whose actions are interleaved
arbitrarily in the execution sequence of the program. This is useful
for describing communication protocols, asynchronous circuits. or other
systems whose actions are not synchronized (including synchronous cir-
cuits with more than one clock). This technique is illustrated by the
following program. which represents a ring of three inverting gates.

MODULE main
VAR
gatel : process inverter(gate3.output);
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gate2 : process inverter(gatel.output);
gate3 : process inverter(gate2.output);

SPEC
(AG AF gatel.out) & (AG AF !gatel.out)

MODULE inverter (input)
VAR

output : boolean;
ASSIGN

init(output) 0;
next(output) !input;

A process is an instance of a module which is introduced by the key-
word process. The program executes a step by non-deterministically
choosing a process. then executing all of the assignment statements in
that process in parallel. It is implicit that if a given variable is not as-
signed by the process. then its value remains unchanged. Because the
choice of the next process to execute is non-deterministic, this program
models the ring of inverters independently of the speed of the gates.
The specification of this program states that the output of gatet os-
cillates (le., that its value is infinitely often zero. and infinitely often
1). In fact. this specification is false, since the system is not forced to
execute every process infinitely often, hence the output of a given gate
may remain constant, regardless of changes of its input.

In order to force a given process to execute infinitely often. we can
use a fairness constraint. A fairness constraint restricts the attention
of the model checker to those execution paths along which a given CTL
formula is true infinitely often. Each process has a special variable
called running which is true if and only if that process is currently
executing. By adding the declaration

FAIRNESS
running

to the module inverter. we can effectively force every instance of
inverter to execute infinitely often, thus making the specification true.

One advantage of using interleaving processes to describe a sys-
tem is that it allows a particularly efficient OBDD representation of
the transition relation. We observe that the set of states reachable by
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one step of the program is the union of the sets of states reachable by
each individual process. Hence, rather than constructing the transi-
tion relation of the entire system, we can use the transition relations of
the individual processes separately and the combine the results (cf. sec-
tion 2.4.2). This can yield a substantial savings in space in representing
the transition relation.

The alternative to using processes to model an asynchronous circuit
would be to have all gates execute simultaneously, but allow each gate
the non-deterministic choice of evaluating its output, or keeping the
same output value. Such a model of the inverter ring would look like
the following:

MODULE main
VAR
gatel inverter(gate3.output);
gate2 : inverter(gate2.output);
gate3 inverter(gatel.output);

SPEC
(AG AF gatel.out) & (AG AF !gatel.out)

MODULE inverter (input)
VAR

output : boolean;
ASSIGN

init(output) 0;
next(output) !input union output;

The union operator allows us to express a nondeterministic choice
between two expressions. Thus. the next output of each gate ran be
either its current output, or the negation of its current input - each
gate can choose non-deterministicallv whether to delay or not. .ks a
result. the number of possible transitions from a given state can be
as high as 2n. where i is the number of gates. This sometimes (but
not always) makes it more expensive to represent the transition rela-
tion. The relative advantages of interleaving and simultaneous models
of asynchronous systems are discussed in section 2.1 .2.

.-\s a second example of processes. the following program uses a
variable semaphore to implement mutual exclusion between two asvn-
chronous processes. Each process has four states: idle. entering.
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critical and exiting. The entering state indicates that the process
wants to enter its critical region. If the variable semaphore is zero, it
goes to the critical state, and sets semaphore to one. On exiting its
critical region, the process sets semaphore to zero again.

MODULE main
VAR

semaphore : boolean;
procl : process user;
proc2 : process user;

ASSIGN
init(semaphore) 0;

SPEC
AG !(procl.state = critical & proc2.state = critical)

MODULE user
VAR

state : {idle,entering,critical,exiting};
ASSIGN

init(state) idle;
next(state)

case
state = idle : {idle,entering};
state = entering & !semaphore : critical;
state = critical :critical,exiting};
state = exiting idle;
1 : state;

esac;
next (semaphore) =

case
state = entering 1;
state = exiting 0;
1 : semaphore;

esac;
FAIRNESS
running

If any specification in the program is false. the SMV model checker
attempts to produce a counterexample. proving that the specification is
false. This is not always possible. since formulas preceded by existential
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path quantifiers cannot be proved false by a showing a single execution
path. Similarly, subformulas preceded by universal path quantifier can-
not be proved true by a showing a single execution path. In addition,
some formulas require infinite execution paths as counterexamples. In
this case, the model checker outputs a looping path up to and including
the first repetition of a state.

-In the case of the semaphore program. suppose that the specification
were changed to

AG (procl.state - entering -> AF procl.state = critical)

In other words. we specify that if procl wants to enter its critical
region. it eventually does. The output of the model checker in this
case is shown in figure 3. 1. The counterexample shows a path with
procl going to the entering state. followed by a loop in which proc2
repeatedly enters its critical region and the returns to its idle state.
with procl only executing only while proc2 is in its critical region.
This path shows that the specification is false. since procl never enters
its critical region. Note that in the printout of an execution sequence.
only the values of variables that change are printed, to make it easier
to follow the action in systems with a large number of variables.

Although the parallel assignment mechanism should be suitable to
most purposes. it is possible in SMV to specify the transition relation
directly as a propositional formula in terms of the current and next
values of the state variables. .\nv current/next state pair is in the
transition relation if and only it the value of the formula is one. Simi-
larly, it is possible to give the set of initial states as a formula in terms of
only the current state variables. These two functions are accomplished
by the TRANS and INIT statements respectively. As an example. here
is a description of the three itiverter ring using only TRANS and [NIT:

MODULE main
VAR
gatel inverter(gate3.output);
gate2 inverter(gatel.output);
gate3 inverter(gate2.output);

SPEC
(AG AF gatel.out) & (AG AF !gatel.out)
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specification is false

AG (procl.state = entering -> AF procl.s... is false:

.semaphore = 0

.procl.state = idle

.proc2.state = idle

next state:
[executing process .procl]

next state:
.procl.state = entering

AF procl.state = critical is false:

[executing process .proc2]

next state:

[executing process .proc2]
.proc2.state = entering

next state:
[executing process .procl]
.semaphore = 1
.proc2.state = critical

next state:
[executing process .proc2]

next state:
[executing process .proc2]
.proc2.state = exiting

next state:
.semaphore = 0

.proc2.state = idle

Figure :3.: Model checker output for semaphore example
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MODULE inverter (input)
VAR

output boolean;
INIT

output = 0
TRANS

next(output) = !input I next(output) = output

According to the TRANS decaration. for each inverter, the next value
of the output is equal either- to the negation of the input, or to the
current value of the output. Thus, in effect, each gate can choose non-
deterministically whether or not to delay. The use of TRANS and INIT
is not recommended, since logical absurdities in these declarations can
lead to unimplementable descriptions. For example, one could declare
the logical constant 0 (false) to represent the transition relation, re-
sulting in a system with no transitions at all. However, the flexibility
of these mechanisms may be useful for those writing translators from
other languages to SMV.

To summarize, the SMV language is designed to be flexible in terms
of the stvles of models it can describe. It is possible to fairly concisely
describe synchronous or asynchronous systems, to describe detailed de-
terministic models or abstract nondeterministic models. and to exploit
the modular structure of a system to make the description more con-
cise. It is also possible to write logical absurdities if one desires to. and
also sometimes if one does not desire to, using the TRANS and INIT dec-
larations. By using only the parallel assignment mechanism, however.
this problem can be avoided. The language is designed to exploit the
capabilities of the symbolic model checking technique. As a result the
available data types are all static and finite. No attempt has been made
to support a particular model of communication between concurrent
processes (eg., synchronous or asynchronous message passing). In ad-
dition. there is no explici' support for some features of communicating
process models such as sequential composition. Since the full generality
of the symbolic model checking technique is available through the SMV
language. it is possible that translators from various languages. process
models' and intermediate formats could be created. In particular. ex-
isting silicon compilers could be itsed to translate high level languages
with rich feature sets into a low level form (such as a Mealy machine)
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that could be readily translated into the SMV language.

3.2 The input language

This section describes the various constructs of the SMV input lan-
guage, and their syntax.

3.2.1 Lexical conventions

An atom in the syntax described below may be any sequence of char-
acters in the set {A-Z,a-z,0-9,_,-}, beginning with an alphabetic
character. All characters in a name are significant, and case is signif-
icant. Whitespace characters are space. tab and newline. Any string
starting with two dashes (k--") and ending with a newline is a com-
ment. A number is any sequence of digits. Any other tokens recognized
by the parser are enclosed in quotes in the syntax expressions below.

3.2.2 Expressions
Expressions are constructed from variables, constants. and a collection
of operators, including Boolean connectives, integer arithmetic opera-
tors. and case expressions. The syntax of expressions is as follows.

expr
atom ;; a symbolic constant
I number ;; a numeric constant
lid ;; a variable identifier
I "!" expr ;; logical not
I exprl "&" expr2 ;; logical and
I exprl "I" expr2 ;; logical or
I exprl "->" expr2 ;; logical implication
I exprl "<->" expr2 ;; logical equivalence
I expr1. '=" expr2 ;; equality
I expri "(" expr2 ;; less than
I exprl "> expr2 ;; greater than
I exprl "<=" expr2 ;; less that or equal
I exprl "> expr2 ;; greater than or equal
I exprl "+" expr2 ;; integer addition
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I exprl "-" expr2 ;; integer subtraction
I exprl "*" expr2 ;; integer multiplication
I exprl "I" expr2 ;; integer division
exprl "mod" expr2 ;; integer remainder

I "next" "C" id ")" ;; next value
set.expr ;; a set expression
case-expr ;; a case expression

An id. or identifier, is a svnibol or expression which identifies aa
object. such as a variable or defined symbol. Since an id can be an
atom, there is a possible ambiguity if a variable or defined symbol has
the same name as a symbolic constant. Such an ambiguity is flagged
by the compiler as an error. The expression next (x) refers to the value
of identifier x in the next state (see section :3.2.3). The order of parsing
precedence from high to low is

*,-

mod
=,<,>,<=,>=

i

->,<->

Operators of equal precedence associate to the left. Parentheses
may be used to group expressions.

.-\ case expression has the syntax

case-expr ::
"case"

expr.al ":" exprbl ";
expr.a2 ":" expr-b2 ";'

"esac"

A case expression rewirns the value of the first expression on the
right hand side. such that the corresponding condition on the left hand
side is true. Thus. if expr-al is true. then the result is expr.bl. Oth-
erwise. if expra2 is trie, then the result is expr-b2. etc. If none of
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the expressions on the left hand side is true, the result of the case
expression is the numeric value 1. It is an error for any expression on
the left hand side to return a value other than the truth values 0 or 1.

A set expression has the syntax

set.expr
1{11 vall ",11 val2 ," . "}"

I exprl "in" expr2 ;; set inclusion predicate
I expri "union" expr2 ;; set union

A set can be defined by enumerating its elements inside curly braces.
The elements of the set can be numbers or symbolic constants. The
inclusion operator tests a value for membership in a set. The union
operator takes the union of two sets. If either argument is a number or
symbolic value instead of a set. it is coerced to a singleton set.

3.2.3 Declarations

The VAR declaration

A state of the model is an assignment of values to a set of state variables.
These variables (and also instances of modules) are declared by the
notation

decl :: "VAR"
atoml ":" typel ","

atom2 ":" type2 ","

The type associated with a variable declaration can be either Boolean.

scalar. or a user defined module. .\ type specifier has the syntax

type boolean
11"{" vail ", val2 ", .. ""

I atom [ "(" expri " expr2 "," ... ")" ]
I "process" atom C "(" expri " expr2 "," ... ")" ]

val atom I number

A variable of type boolean can take on the numerical values 0 and
I (representing false and true. respectively). In the case of a list ol
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values enclosed in set brackets (where atoms are taken to be symbolic
constants), the variable is a scalar which can take any of these val-
ties. Finally, an atom optionally followed by a list of expressions in
parentheses indicates an instance of module atom (cf. section 3.2.4).
The keyword process causes the module to be instantiated as an asvn-
chronous process (cf. section 3.2.6).

The ASSIGN declaration

An assignment declaration has the form

decl "ASSIGN"
destl "= expri ,

dest2 ":" exPr2

dest :: atom
I "init .(" atom ")"

I "next" "('" atom '')"

On the left hand side of the assignment, atom denotes the cur-
rent value of a variable. init(atom) denotes its initial value, and
next(atom) denotes its value it the next state. If the expression on
the right hand side evaluates to an integer or symbolic constant. the
assignment simply means that the left hand side is equal to the right
hand side. On the other hand. if the expression evaluates to a set, then
the assignment means that the left hand side is contained in that set.
It is an error if the value of the expression is riot contained in the range
of the variable on the left hand side.

In order for a program to be implementable. there must be some
order in which the assignments can be executed such that no variable
is assigned after its value is referenced. This is not the case if there
is a circular dependency among the assignments in any given process.
[fence. such a condition is an error. In addition, it is an error for a
variable to be assigned more than once simultaneously. To be precise,
it is an error if:

t. the next or current value of a variable is assigned more than once
in a given process. or
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2. the initial value of a variable is assigned more than once in the
program, or

3. the current value and the initial value of a variable are both as-
signed in the program, or

4. the current value and the next value of a variable are both as-
signed in the program. or

5. there is a circular dependency, or

6. the current value of a variable depends on the next value of a
variable.

The TRANS declaration

The transition relation R of the model is a set of current state/next
state pairs. Whether or not a given pair is in this set is determined by
a Boolean valued expression. introduced by the TRANS keyword. The
syntax of a TRANS (leclaration is

decl :: "TRANS" expr

It is an error for the expression to yield any value other than 0 or t.
If there is more than one TRANS declaration, the transition relation is
the conjunction of all of TRANS declarations.

The INIT declaration

The set of initial states of the model is determined by a Boolean ex-
pression under the INIT keyword. The syntax of a INIT declaration
is

decl :: "INIT" expr

It is an error for the expression to contain the next() operator.
or to viekd any value other than 0 or 1. If there is more than one
INIT declaration. the initial set is the conjunction of all of the INIT
declarations.
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The SPEC declaration

The system specification is given as a formula in the temporal logic
CTL, introduced by the keyword SPEC. The syntax of this declaration
is

decl :: "SPEC" ctlform

A CTL formulahas the syntax

ctlform
expr ;; a Boolean expression
"!" ctlform ;; logical not
ctlforml "&" ctlform2 ;; logical and
ctlforml "I" ctlform2 ;; logical or
ctlforml "->" ctlform2 ;; logical implies
ctlforml "<->" ctlform2 ;; logical equivalence
"E" pathform ;; existential path quantifier
"A" pathform ;; universal path quantifier

The syntax of a path formula is

pathform ::
"X" ctlform ;; next time
"F" ctlform ;; eventually
"G" ctlform ;; globally
ctlforml "U" ctiform2 ;; until

The order of precedence of operators is (from high to low)

E,A,X,F,G,U

!

Operators of equal precedence associate to the left. Parentheses
may be used to group expressions. It is an error for an expression in a
(JTL formula to contain a next() operator or to return a value other
than 0 or 1. If there is more than one SPEC declaration, the specification
is the conjunction of all of the SPEC declarations.
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The FAIR declaration

A fairness constraint is a CTL formula which is assumed to be true
infinitely often in all fair execution paths. When evaluating specifica-
tions, the model checker considers path quantifiers to apply only to fair
paths. Fairness constraints are declared using the following syntax:

decl :: "FAIR" ctlform

A path is considered fair if and only if all fairness constraints de-
clared in this manner are true infinitely often.

The DEFINE declaration

In order to make descriptions more concise, a symbol can be associated
with a commonly used expression. The syntax for this declaration is

decl :: "DEFINE"
atoml "." expri ";"

atom2 " expr2 ";"

When every an identifier referring to the symbol on the left hand
side occurs in an expression, it is replaced by the value of the expression
on the right hand side (not the expression itself). Forward references
to defined svmbols are allowed, but circular definitions are not allowed.
and result in an error.

3.2.4 Modules

A module is an encapsulated co*Gection of declarations. Once defined. a
module can be reused as many times as necessary. Modules can also be
parameterized. so that each instance of a module can refer to different
data values. A module can contain instances of other modules. allowing
a structural hierarchy to be built. The syntax of a module is as follows.

module
C "OPAQUE" ]
"MODULE" atom E "(" atoml " ," atom2 "," ... ')" ]

decl1
dec12
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The optional keyword OPAQUE is explained in the section on identi-
fiers. The atom immediately following tile keyword MODULE is the name
associated with the module. Module names are drawn from a separate
name space from other names in the program, and hence may clash
with names of variables and definitions. The optional list of atoms in
parentheses are the formal parameters of the module. Whenever these
parameters occur in expressions within the module, they are replaced
by the actual parameters which are supplied when the module is in-
stantiated.

A instance of a module is created using the VAR declaration cf.
section 3.2.3). This declaration supplies a name for the instance. and
also a list of actual parameters. which are assigned to the formal pa-
rameters in the module definition. kn actual parameter can be any
legal expression. It is an error if the number of actual parameters is
different from the number of forrnal parameters. The semantics of mod-
Ule instantiation is similar to call-lby-reference. For example, consider
the following program fragment:

VAR
a boolean;
b foo(a);

MODULE foo(x)
ASSIGN

X 1;

The variable a is assigned the value 1. Now consider the following
program:

DEFINE
a : 0;

VAR
b : bar(a);

MODULE bar(x)

DEFINE
a :- 1;
y := X;



116 CHAPTER 3. THE SMV SYSTEM

In this program. the value assigned to y is 0. Using a call-by-name
(macro expansion) mechanism, the value of y would be 1, since a would
be substituted as an expression for x.

Forward references to module names are allowed, but circular ref-
erences are not. and result in an error.

3.2.5 Identifiers
An id. or identifier. is an expression which references an object. Objects
are instances of modules, variables, and defined symbols. The syntax
of an identifier is as tollows.

id ::
atom
I id ... atom

An atom identifies the object of that name as defined in a VAR or
DEFINE declaration. If a identifies an instance of a module, then the
expression a.b identifies the component object named b of instance a.
This is precisely analogous to accessing a component of a structured
data type. Note that an actual parameter of module instance a can
identify another module instance b. allowing a to access components of
b. as in the following example:

VAR
a foo(b);
b bar(a);

MODULE foo(x)
DEFINE

C :=-X.p I x.q;

MODULE barWi)
VAR
p boolean;
q boolean;

Here. the value of c is the logical or of p and q. If the keyword
OPAQUE appears before a module (definition. then the variables of an in-
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stance of that module are not externally accessible. Thus, the following
program fragment is not legal:

VAR
a : fooo;

DEFINE
b := a.x;

OPAQUE MODULE foo()
VAR

x : boolean;

3.2.6 Processes

Processes are used to model interleaving concurrency. with shared vari-
ables. A process is a module which is instantiated using the keyword
process (cf. section 3.2.3). The program executes a step by non-
deterministically choosing a process. then executing all of the assign-
ment statements in that process in parallel. simultaneously. Each in-
stance of a process has special variable Boolean associated with it called
running. The value of this variable is 1 if and only if the process in-
stance is currently selected for execution. The rule for determining
whether a given variable is allowed to change value when a given pro-
cess is executing is as follows: if the next value of a given variable is
not assigned in the currently executing process. l)tit is assigned in some
other process. then the next value is the same as the current value.

3.2.7 Programs

The syntax of an SMV program is

program

module 1
module2

There must be one module with the name main and no formal pa-
rameters. The module main is the one instantiated by the compiler.
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3.3 Formal semantics

In this section we assign a formal semantics to SMV programs. In
essence, a program is viewed as a system of equations whose solutions
determine the transition relation and initial states of a Kripke structure.
In fact. this semantics assigns meaning to some programs which are not
actually accepted by the compiler due to the rules regarding multiple
assignments and circular dependencies. Here, we define a semantics for
a subset of the language which does not include the process keyword.
This subset will be called SMV.O. The semantics of SMV.0 is syntax
directed - tile denotation of a program is a function of the denotations
of its syntactic components. It is also compositional with regard to
hisimulation and simulation. as we will prove in chapter .5. This makes
it possible to use compositional proof methods for verifying SMV.0
programs. including induction over the structure of programs. The
semantics for SMV.l. which includes the process keyword. is given in
appendix A.

3.3.1 The model

The set N of names, is the set of all character strings madei up of
the letters. the digits. the underscore and the minus sign characters.
beginning with a letter. The store L = Lv U L[.! is made tip of two
disjoint. countablv infinite sets of locations Lt and L1-. We will call
the former the visible locations, and the latter the hidden locations.
The set of locations L is defined recursively. It is the least set such
that

1. if n E .N. then n E Lv. and

2. if I E Lv and n E .V. then l.n E Lv. and

3. if I E Lv. then .1 E LH.

The set, of values V is the union of the integers in the range [-2-". "23 - [1
and N. the set of names. .-\ state x : L - V is a function from locations
to values. Let .S = L - , be the set of all possible states.

If p is a declaration, then its denotation jp] is a triple (T. I. l). The
T component is a partial function from L to the finite subsets of V.
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If I is a location, then T(1), when defined, is the type of 1 - the set of
values that can be assigned to location I. The component I C S is the
set of initial states. Finally, the component R C S x S is the transition
relation.

In the following sections. we define the denotations of the various
kinds of declarations. We then define a composition operator I1 which
gives the denotation of a program in terms of its declarations.

3.3.2 Expressions

An expression denotes a function from states to finite subsets of V.
according to the following rules:

. If v is a value. then rj,(x = { }.

2. If f is a location, then j1j(.x') = {x(t) }.

3. If e 1. e2 are expressions. and o is one of

+.-.*./,mod. >. >=. <. <=, . -. <->

then

lto e.,(x) = jIjol(vi. t,.) I v E le 1i(x). v,, E !{e.2 j(.r)}1

4. If e is an expression. then

5. if e t, C2 are expressions.

6. union [f(x) =-ci U e 

6. If t-. t, are expressionls.

~ n ~j(C
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The functions denoted by +, -, *, / are the usual functions of arith-
metic modulo 2"2. The function denoted by mod is the positive re-
mainder of division rood " . The functions denoted by the relational
operators >. >=. < and <= return 0 when the relation is false and 1 when
the relation is true. and are defined for numeric values only. For non-
numeric values, they return I. The equality operator = is defined for
all values. and returns 0 when they are unequal. and I when they are
equal. The fmctions denoted by the Boolean operators are & (for and).
I (for or). ! (for not). -> (for implies) and <-> (for logical equivalence)
are defined only bor the values 0 and 1. and return I otherwise.

3.3.3 Assignments and definitions

There is no winmanlic difference between assignments and definitions.
If I is a location. and t is an expression. then the assignment I
denotes a triple (T. 1. R). where

L. T= 0

2. 1 =

3 P = {1..r. 'A E >' 1(')E H](.r)}

The assignment next(l):= -: denotes a triple 1. I. R) where

I. T=

2. 1=

3. R = (x. ) (y)2 k- e I(,.)}

The assignment initl1) := e: denotes a triple (T. 1. R) where

L. T=

2. 1 = /(.x) I I(.)}

3. R =
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3.3.4 Variable declarations

If ! is an identifier and V1, t,- . . v, are values, then

VAR :{

denotes a triple (T, 1, R) where

1. T = {(. {vi.... c,,

2. 1= {.. E S I x(l) E {,f ...

3. = {(x.;j) ,5' I 5 r(1).ij(l) E v..

3.3.5 Renaming

Let 0 : L -- L be a function froin locations to locations. This in turn
induces a map D on states, such that for all states ,r and locations 1.

' (.x)(il) = .rt oW )).

If N! = (T.I.R). then let o(M) =(T.'.R') where

1. T'(6(1)) = T(U),

2. '= {.r I (,x) E J} and

:3. R'= {(x.y) I ( (.r).'U l _ }.

Note that the definition of T does not make sense if o maps two loca-
tions with different types onto the same location. In this case. o( A[)
is a type error. There are two Liles regarding the renaming function o
which must be respected to allow compositional reasoning about S.NV
programs. These are:

I. A hidden location cannot be renamed to a visible location. and

2. Two distinct locations cannot be mapped to the same hidden
location.

These rules are respected by the SMV.O semantics. Notice that it is
allowable to rename visible locations to hidden locations. In this way.
we can accomplish both hiling and renaming with the same operator.
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3.3.6 Parallel composition

The parallel composition of two processes M !, 'V2 is formed in two
steps. First. a renaming is applied to map the hidden locations of M1

and X12 onto disjoint spaces. Then the union of the type functions T
and the intersections of the initial sets I and the transition relations
R are taken. Clearly. this does not make sense if the T components
do not agree oin the type of some location, since the union would not
be a function. Formally, let M, = (TI, 1, RI) and . 2 = (T2., , R).
Let n. and n-, be two distinct names. For i E 1, 2, let oi(l) = ni.1 for
all I E LH and 6i(l) = I otherwise, and let M' = 6(Mi). The parallel
composition M = ,1 1 N12 is defined as follows:

1. T =Tu T',
2. 1 11nI!

:3. R R n R"'

If dl 1 .. 1 dk are declarations, then Jdl d, ... dki is the parallel
composition

11(11 Jd2J 1 . 11 JdkI

3.3.7 Instantiation

Suppose that module A is defined as follows:

MODULE .4(nt, i 2 ..... k) D

where na. n2... nk are distinct names and D is a sequence of declara-
tions. Let r. L. -2,. 1k be visible locations. Let o be a renaming. such
that. for all I E Lv.

1. for all I < I < k: o(ni) = I,, and o(ni.1) = 1'.1.

2. for all n C N - {n 1, ..... n k}, o(n) = -'.n. and o(n.1) = r.n.l.

3. Q(.I) = .1
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Then IVAR r : A(11, 12,. k); )] = o( D).
On the other hand. suppose that A is defined as follows:

OPAQUE MODULE A(nin 2, ... nk) D

where ni, nl2..k are distinct names and D is a sequence of declara-
tions. Let r. 11, 12 ..... Ik he visible locations. Let m and m2 be distinct
names in N. Let 6 be a renaming. such that, for all I E Lv,

1. for all I < i < k: o(n, ) = ,. and o(ni.l) = ,.1,

2. for all it E N - Int,, .... k;}, o(n) = rm.n. and o(n.l) =

.in1 .n.l.

.. o(.1) = .ni.J

Then JVAR r : .*1(I, I ..... 1k): = , '.

3.3.8 Specifications

Each program is associated with a lNripke structure which determines
the truth value of CTL formulas in the specification. The atomic propo-
sitions in this case are all the Boolean valued expressions. The Kripke
structure associated with it program whose dlenotation is the triple
(T. I. R) is a l\ripke model K = iS,. R. L') where

1. S is the set of states defined above.

2. R is the transition relation, and

3. if (- is an expression. i lien

L'[c_, = {, I je(.) = {t}}

The specification is a fornula fin (TL with fairness constraints. It is
satisfied exactly when K. , # f for all ., i I.
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Chapter 4

A Distributed Cache
Protocol

In this chapter, we look at an application of the SMV symbolic model
checker to a cache consistency protocol developed at Encore Computer
Corporation for their Gigamax distributed multiprocessor [MS9 1]. This
protocol is of interest as a test case for automatic verification for two
reasons. First. it is not a theoretical exercise, but a real design. which
is driven bv considerations of performance and economics, as well as
the usual constraints of industrial design, such as compatibility with
existing hardware and software. Second. this protocol is a good example
of a system where random simulation methods are ineffective in finding
design errors.

The Gigamax is a distributed. shared memory multiprocessor. in
which the processors are grouped into clusters. Each cluster has a local
bus. and uses bus snooping [AB861 to maintain cache consistency within
the cluster. In addition, each cluster has an interface called a (1 I(.
which links the cluster into a network. The UIC keeps the caches in the
cluster consistent with the rest of the network by acting as both a bus
snooper and a bus master on behalf of the remote clusters, using a table
which keeps track of the remote status of all cache blocks from the local

main memory. This allows it to intervene in bus transactions which
affect remotely owned blocks. and to send appropriate invalidation or
call back requests to the network. The network is organized into a
hierarchy, as depicted in figutre I.I. The global bus. at the top ot the

125
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global bus

cluster bus

M P P M P P....

Figure 4.1: Gigamax memory architecture

hierarchy, has one UIC connected to each cluster. These UICs record
the status of all cache blocks which are present in the corresponding
cluster. This eliminates the need for directory pointers in main memory.
at the possible expense of a bottleneck in the global bus.

Protocols such as this are difficult to debug using simulation. in part
because the order of events such as cache misses and message arrivals
in various parts of the system is unpredictable. Subtle errors some-
times require a long sequence of such events to manifest themselves.
Since the number of such sequences is combinatoric, the probability of
such a sequence occurring in a random simulation rapidly vanishes as
the sequence length increases. Nevertheless, for the design process to
stabilize, it is necessary to provide timely information about errors to
the design team. since the greater the delay in discovering an error. the
greater is the disruption required to fix it. Ideally. a protocol should be
error free before a hardware (or software) implementation is considered.
Otherwise. the options for fixing the errors will be greatly limited by
cost considerations, and the likelihood of the design change introducing
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other errors will be high.
For this reason, we will consider the verification of the Gigamax

protocol at a high level of abstraction, neglecting many admittedly
important details of the implementation, such as the widespread use
of pipelining, or the link level protocol that communicates messages
between clusters. The basic method for building an abstract model
of a protocol is to introduce nondeterrninism in those cases where the
level of detail of the model is insufficient to uniquely determine the
outcome of an event, or where design decisions have been left open.
We will make a note of places in the model where nondeterminism has
been used in this way. and in what way the state of an implementation
might correspond to the state of the abstract model.

4.1 The Protocol

The purpose of a cache consistency system is to provide the illusion
to the programmer of a distributed computer that all processors in
the system have access to a shared global store. This illusion must
he provide(l despite the fact that the physical storage is distributed.
To reduce the latency of access to the distributed main storage. each
processor is provided with a local cache - a semi-associative store. which
holds a collection of memory blocks recently used by the processor. The
time required to access to this store is less than to access main storage.
An access to a memory block stored in the cache is called a hit. while
an access to a memory block not stored in the cache is called a miss.
A miss requires an access to main storage (which may be remoteL to
retrieve the required memory block and enter it in the cache. This mav
result in the replacement of another block in the cache. to make room
for the'block being entered in the cache. If the replaced block has been
modified while in the cache. it must be returned to main storage. This
is called a copy back operation.

The first cache consistency protocols for multiprocessors were called
bus .snoopinq protocols [AB861. They required that the processors in
the system be connected bv a bus. or other broadcast medium. In a
bus snooping system. each time a memory access occurs over the bus.
all of the caches are chocked to determine whether they contain the
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addressed block. If the block is present in a cache, a change in status
may be required. For example, if the block is present and modified, the
access must be stalled while the modified data are copied back to main
storage. In a more sophisticated protocol, the cache with the modified
data may supply the data directly to the requesting cache, without the
intermediary of main storage. In case of a memory access caused by
an attempt to modify the data, all caches in which the block is present
must invalidate. that is. remove the block from cache storage. This
insures that all cached copies of the block remain consistent.

The Gigamax protocol uses bus snooping techniques to maintain
consistency of the caches within a single cluster. Tle main difference
between the Gigamax snooping protocol and those described in (AB86]
is that the Gigamax uses a split transaction bus. This means that a
processor accessing memory over the bus first places a request on the
bus, and then frces the bus for other transactions while awaiting a
response. The bus snooping technique is not practical for large scale
multiprocessors. because the broadcast medium quickly becomes satu-
rated. For this reason. the Gigamax uses a message passing protocol to
maintain consistency between clusters. The split transaction bus pro-
tocol allows trathc to continue on the bus while messages are in transit
in the network.

Tile terminology used in the sequel is changed somewhat from the
Encore terminology, and the protocol is somewhat simplified to make
the presentation clearer. The basic protocol is preserved, however. in-
cluding a subtle error which was discovered by the SMV system. 'ihe
following is a description of the protocol. first in English. then in the
SMV input language. In the model, we consider only the status of a
single memory block. This is our first use of abstraction. and resilts in
nondeterminism in several places in the model.

4.1.1 Processors

Each memory block stored in each cache has an associated -tate. which
can be either in valid. shared, or owned. Alternative names for these
states would be absent, present. and modified, respectively. The shared
state indicates that there may be other processors which have this block
stored in their cache. Therefore. a block in the shared state ran be
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read by the processor, but not written, since writing might result in an
inconsistency between two caches. The owned state indicates that no
other processors have this block in their cache, and that the data in the
cache have been modified. Therefore, a block in the owned state can
be both read and written by the processor. The invalid state indicates
that the block is not present in the cache. Therefore. the block cannot
be read or written by the processor.

MODULE cache-device

VAR
state : {invalid,shared,owned};

DEFINE
readable ((state = shared) I (state = owned)) & !waiting;
writable (state = owned) & !waiting;

The split transaction bus snooping protocol works in the following
wav. \t each bus cycle, the bits arbiter chooses a processor among the
requesting processors to be the bus master. The remaining processors
are referred to as slaves. The master issues a cornmand on the bus. of
which there are three basic types. A read command is a request for a
given memory block, and is answered by a r.sponse command. A write
command stores data in main memorv, The write and response corn-
mands can be combine([ into a single command called a write-response.
which has the simultaneous ,frcct of supplying data to a requester and
storing it in main memory. Each command also signals the next state
that the bus master will enter. -thus. a read-owned command indicates
t hat the bus master intends to modify the data, and a read-shared in-
,licates that it does not..\ trite-shared indicates that the bus master
is writing data. but maintainingi a shared copy, while a write-invalid
indicates that it is not keeping the block ieg.. it is replacing it with
another block). The basic commands, and their uses are summarized
in table 4.1. We note that no e'xternal command is required to go from
tlie shared state to the invalid state. This occurs when a shared block
is removed to make room for another block in the cache. Since our
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model does not contain the states of any other blocks, we allow this re-
placement to occur nondeterministically, at any time. Thus we model
any possible cache replacement policy.

A slave, observing a command on the bus, may decide to modify its
state. For example, a slave observing a read-owned command changes
its state to invalid, since the bus master, entering the owned state, will
assume it has the only cached copy of the block. Correspondingly, a
slave in the owned state observing a read-shared command will change
to the shared state. A special command called invalidate is used to
invalidate all caches in the system. A slave observing this command
changes to the invalid state.

ASSIGN
init(state) invalid;
next(state)

case
abort state;
master

case
CMD = read-shared shared;
CMD - read-owned owned;
CMD = write-invalid invalid;
CMD a write-shared shared;
1 : state;

esac;
!master

case
CMD = read-owned invalid;
CMD = invalidate & !waiting : invalid;
CMD = read-shared & state = owned : shared;
state = shared & !waiting :shared,invalidj;
1 : state;

esac;
esac;

On receiving the command, each slave checks its own cache and
indicates the state of the block in its own cache by asserting the signals
reply-owned, and reply-waiting on the bIus. These are wired or signals.
meaning that the signal is observed to be asserted on the bus if one or
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from state command to state cause

invalid read-shared shared read miss
invalid read-owned I owned write miss

or shared
owned write-invalid invalid copy-back
owned write-resp-iuvalid invalid snoop read-owned
owned write-shared shared write-through
owned write- resp-s hared invalid snoop read-shared

Table 4. t: Summary of commands

more caches assert the signal. The reply-owned signal is asserted by a
slave when the block is in the owned state in the slave's cache. Reply-
waiting is asserted when the slave has previously requested the block.
and is waiting for a response. This signal will be discussed in more
detail shortly. The process of looking up the slave's state and signaling
on the bus is known as bus snooping. On observing a read command. a
slave in the owned state sets a flag called snoop. This causes the cache
to issue a write-response at a later bus cycle, supplying the data to the
requester. and simultaneously storing it in main memory. When this
happens. the snoop flag is reset.

An additional reply signal called ,'nply-st(Lll may be asserted by amy
slave. including main storage. if the slave if not ready to respond to the
command because some resource is biisy. If reply-stall is asserted, the
command is nullified.

DEFINE
reply-owned := state = owned;

VAR
snoop : boolean;

ASSIGN
init(snoop) 0;
next(snoop)
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case
abort snoop;
state * owned & CD = read-shared : 1;
state = owned & CMD = read-owned : 1;
CND = response : 0;
CMD = write-resp-invalid 0;
CMD = write-resp-shared 0;
1 : snoop;

esac;

After issuing a read command, the master releases the bus and waits
for a response. During this time. a flag called waiting is set. Normally.
if no slave asserts reply-owned. the response comes from main memory.
If any slave asserts reply-owned, however, main memory is inhibited.
allowing the slave to supply the data at a future cycle with a write-
response command.

NODULE bus-device

VAR
master : boolean;
cmd : {idle,read-shared,read-owned,cty-read,write-invalid,

write-shared,write-resp-invalid,write-resp-shared,
invalidate ,response};

waiting : boolean;
reply-stall : boolean;

ASSIGN
init(waiting) 0;
next waiting)

case
abort : waiting;
master & CMD = read-shared 1;
master & CMD = read-owned 1;

CMD = response 0;
CMD = write-resp-invalid 0;

CMD = write-resp-shared 0;
1 : waiting;

esac;
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A slave which is waiting for a given cache block responds to any
read command for that block by asserting reply-waiting. This nullifies
the read command and forces the master to retry at a later cycle.

DEFINE
reply-waiting := waiting;
abort := REPLY-STALL

I ((CMD = read-shared I CMD = read-owned)
& REPLY-WAITING);

The commands which may be issued by a processor when it is bus

master are a function e, Lhe state. For example, if the snoop flag is
set, the processor m,.y issue a write-response on the bus. From the
owned state. a )r cessor may issue a write-invalid command in order
to replace th- cache block with another. A processor in the shared state

may issue a read-owned in case of a write miss. and a processor in the
invalid state may issue either a read-shared or a read-owned command.
in case of a read miss and write miss respectively.

MODULE processor(CMD,REPLY-OWNED,REPLY-WAITING,REPLY-STALL,DATA)
ISA bus-device
ISA cache-device

ASSIGN
cmd

case
master k snoop & state = invalid : write-resp-invalid;
master & snoop & state = shared : write-resp-shared;
master & state = owned & !waiting write-invalid;
master & state = shared & !waiting read-owned;
master & state = invalid : {read-shared,read-owned};
1 : idle;

esac;

4.1.2 The local UIC interface

The UC is the interface from one cluster to another. UIC' come in
pairs. connected by a communication link. A LIC is said to be local
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for a given memory block if that block is found in main storage on the
same side of the link as the UIC. It is said to be remote if the memory
block is found in a main memory on the other side of the link. Thus,
for any memory block, one of the UICs in the pair is local, and the
other remote. The UIC determines whether it is local or remote by
address decoding. We consider the local case first. In this discussion.
local refers to any part of the system on the bus side of the UIC, and
remote refers to any part of the system on the link side of the UIC.

Viewed from the bus, the UIC behaves like a processor, with the
capability to issue and respond to commands. The UIC's cache records
the state (but not the data) of all blocks of the local main storage that
are present in remote caches. This allows the UIC to snoop the bus on
behalf of remote caches. The UIC performs this function in exactly the
same manner as the processors. The state of a block in the UIC changes
with commands issued in the same manner as the state of cache blocks
in processor caches.

The UIC receives command messages from from the link. and stores
them in one of two queues. The low priority queue is for read com-
mands, and the high priority queue is for all other commands. The
depth of the queues is arbitrary, but for now. we consider queues of
only one entry. A command in one of the queues is issued on the bus
when the UIC becomes master. If both queues are non-empty, the
command in the high priority queue is issued first. Provided the com-
mand is not aborted, the queue issuing the command is emptied. Since
the UIC becomes bus master at nondeterministic intervals, the delay
between the time a message arrives in the queue and is issued on tile
bus is arbitrary. This nondeterminism covers two abstractions made in
the model. First, it allows for any amount of latencv in the link level
protocol, which is not modeled. Second. it allows the time to issue
an arbitrary number of messages relating to other memory blocks that
may be queued ahead of the one message that is modeled.

MODULE receiver
VAR

hiq :none,response,write-shared,write-resp-shared,
write-invalid,write-resp-invalid, invalidate};

loq (none,read-owned,read-shared,cty-read};
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ASSIGN
cmd -

case
master & !(hiq = none) hiq;
master & !(loq = none) loq;
I : idle;

esac;
init(hiq) := none;
next(hiq)

case
!master I abort hiq;
1 : none;

esac;
init(loq) none;
next(loq)

case
!master I abort I !(hiq = none) loq;
1 : none;

esac;

The local UIC can senld conmnands to the link in response to com-
mands observed on the local bus. Whenever a read command is sent
to the link, it is entered in the remote (IC's low priority queue. If any
other command is sent to the link, it is entered in the remote tIC's
high priority queue. If the remote queue is full. the local bus cycle is
stalled.

MODULE sender
DEFINE

lopri sending in {read-shared,read-owned,cty-read};
hipri sending in {invalidate,response,write-shared,

write-invalid, write-resp-shared, write-resp-invalid};
ASSIGN

next(remote.hiq)
case

!abort & remote.hiq = none & hipri sending;
1 : remote.hiq;

esac;
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next (remote. loq) =

case
!abort & remote.loq = none & lopri : sending;
1 : remote.loq;

esac;
reply-stall

(hipri & !(remote.hiq = none) I
lopri & !(remote.loq = none)) union 1;

The local UIC sends command messages to the link in two cases.
The first is to invalidate or call back cache blocks in remote caches.
This occurs when the UIC is a slave and a read-owned or read-shared
is received on the bus. If the UIC is in the owned state, the read-
owned or read-shared is forwarded to tile link. This causes the remote
cache in the owned state to issue a write-resp-invalid or write-resp-
shared. returning the cache block to the local bus. If the UIC is in the
shared state, and a read-owned is received on the bus. an invalidate
command is forwarded to the link. This causes all remote caches to
go to the invalid state. Note that this may allow a processor on the
local bus to write before the invalidate command has reached all re-
mote caches. This is a possible violation of strict consistency, which is
tolerated for performance reasons. Hence. the protocol does not imple-
ment a strongly consistent memory model. The memory model which
the protocol does support will be discussed in more detail in the next
section.

The second case in which the local RlC sends a command to tile link
is when the UIC has issued a read-shared or read-owned and is waitingt
for a response. In this case. if the lC is a slave and a response. write-
resp-shared. or write-resp-invalidate is asserted on the bus. a response
is sent to the link.

MODULE local-UIC(remote,CMD,REPLY-OWNED,REPLY-WAITING,
REPLY-STALL,DATA)

ISA bus-device
ISA cache-device
ISA receiver
ISA sender
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DEFINE
sending

case
master : none;
CMD = read-shared & state = owned read-shared;
CMD = read-owned & state = owned read-owned;
CMD = read-owned & state = shared invalidate;
CMD = write-resp-invalid & waiting write-resp-invalid;
CMD = write-resp-shared & waiting write-resp-shared;
CMD = response & waiting response;
1 : none;

esac;

4.1.3 The Remote UIC interface

When the UIC is remote. it behaves as if it were a main storage
device. It accepts read-shared. read-owned, write-shared. and write-
invalid commands from the bus. and forwards them to the local UIC
via the link. When the response arrives in the high priority queue. it
issues the response on the bus. In addition, it can provide a special ser-
vice to caches on the local side. If the remote UIC issues a read-shared
or read-owned command. and there is no reply on the remote bus (ie..
no slave asserts reply-owned), it is assumed that the block was copied
back to main storage while the read command was in transit. The
remote [ -I(' therefore sends the read command back to the local side.
This operation is called a couirtesy read. The courtesy read will cause
the main store on the local bits to respond to the original requester.

MODULE remote-UIC(remote,CMD ,REPLY-OWNED ,REPLY-WAITING,

REPLY-STALL,DATA)
ISA bus-device
IqA receiver

ISA sender

DEFINE
sending

case
master
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case
CMD = read-shared & !REPLY-OWNED cty-read;
CMD = read-owned & !REPLY-OWNED cty-read;
1 : none;
esac;

!master
case
CMD = read-shared & !REPLY-OWNED read-shared;
CMD = read-owned & !REPLY-OWNED read-owned;
CMD = write-resp-invalid & waiting write-resp-invalid;
CMD = write-resp-shared & waiting write-resp-shared;
CMD = write-resp-shared & !waiting write-shared;
CMD = write-shared write-shared;
CMD = write-invalid write-invalid;
1 : none;
esac;

esac;
reply-owned := 0;

The text for the complete model in the SM\V language includes
such details as an abstracted model of main storage and the cluster
bus. which ties the above modules together. These are omitted here.
Each cluster is modeled as an asynchronous process. Hence, the early
quantification method for disjunctive relations can be used to avoid
constructing the global transition relation (cf. section 2.4.2).

4.1.4 Protocol example

As an example of the protocol in operation. consider the sequence of
events depicted in figures 4.2 and 4.3. In the figures. clusters I and 2 are
both remote (ze.. the memory block in question resides in some other
cluster). The sequence begins when a read miss occurs in a processor
in cluster 2, while a processor in cluster 1 is in the owned state. At this
point, the following sequence of events might occur:

1. The processor in cluster 2 issues a read-shared command on tlw
bus. and sets its waiting.flag.
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2. The UIC in cluster 2 sends the read-shared command up the
link, storing it in the low priority queue of the global bus UIC for
cluster 2.

3. The global bus UIC for cluster 2 issues the read-shared command
on the global bus, entering the shared state, and setting its wait-
ing flag.

4. Since the global bus U, [C for cluster I is in the owned state, it
asserts reply-owned. sends the read-shared command down the
link to cluster 1. enters the shared state, and sets its snoop flag.

5. The UIC in cluster I issues this read-shared command, entering
the shared state and setting its waiting flag.

6. The processor in cluster t in tile owned state asserts reply-owned.
enters the shared state, and sets its snoop flag.

7. The processor in cluster L issues a write-resp-shared command.
containing the block data. and clears its snoop flag.

S. The UIC in cluster I sends the write-resp-shared command up
the link, storing it in the high priority queue of of the global bus
UIC for cluster 1. and clears its waiting flag.

9. The global bus UIC for cluster I issues the write-response-shared
command on the global bus. and clears its waiting flag.

10. (a) The global bus t [C connected to main memory sends a write-
shared command containing the block data and (b) The global
bus UIC for cluster 2 sends a response command, clearing its
waiting flag.

It. The UIC in cluster 2 issues the response command.

[2. The requesting processor in cluster 2 stores the data in its cache.
and clears its waiting flag.
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global bus

initially own UIC
4) reply-owned asserted 3) read-shared issued
sends read-public ->shared, waiting
-> sharedsnoop

5) read-shared issued
->shared, waiting i UlC

cluster bus , 2) sends read-shared

M ... ... ..
initially own 1) read miss
6) reply-owned asserted issues read-shared
sends read-public ->shared, waiting
-.> sharedsnoop

Figure 4.2: Protocol example

global bus

SlOb) sends write-shared
UIC ... to main memory

9) issues write-resp 10a) sends response to requester
-> shared, clear snoop Fwaiting cleared

8) sends write-resp
waiting cleared L UIC

cluster bus 11) issues response

..... M P
7) issues write-resp 12)waiting cleared
->shared, clear snoop

Figure 4.3: Protocol example (cont.)
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4.2 Verifying the protocol

We now consider the problem of formal specification and verification of
the protocol. The properties we will be concerned with are:

1. freedom from deadlock.

2. sequential consistency. and

3. local safety conditions, related to diagnostics.

Using the symbolic model checking technique, we can verify these prop-
erties automatically, despite tile very large state space of the model. In
fact, the model checker discovered a fairly subtle bug in the protocol -
an execution sequence leading to a deadlocked state.

4.2.1 Freedom from deadlock

We will say that the protocol is deadlocked if it reaches a state in
which some processor is permanently blocked from receiving access to
the given memory block. Thus. our definition of deadlock takes in situ-
ations that might also be called livelock. in which the system continues
to loop infinitely, but without the possibility of making progress. We
can express this property in CTL with the following formula. which
must hold for all processors:

.4G( EFradable A EFrit-able) 14. 1)

In other words. it it always possible that the memory block will be-
come readable by the given processor. and always possible that it will
become writable. We can check this property using SMV by adding the
following specification to the processor module:

SPEC
AG(EF readable & EF writable)

The specification turns out to be false. aiid as a counterexample.
the model checker produces an execution trace leading to a deadlocked

tate. This is an actual bug in the original protocol which was found by
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the model checker, but not in behavioral simulations. The complexity
of the counterexample, and the unusual sequence of events that leads
to the deadlock should give some indication of why this error would
be unlikely to occur in random simulations. The time required to pro-
duce the counterexample was slightly under ten minutes running on a
Sun 3/60.

The steps of the counterexample are depicted in figures 4.4 to 4.6.
Cluster 1 is the local cluster, and clusters 2 and above are remote
clusters. We pick up the counterexample at a point where a processor
in cluster 2 is in the owned state:

1. A read miss occurs in a processor in cluster 1. This processor
issues a read-shared command on the bus. It enters the shared
state and sets its waiting flag.

2. Since the UIC in cluster 1 is in tile owned state. it asserts reply-
owned, enters the shared state. and sends a read-shared command
up the link. storing it in the low priority queue of the global bus
UIC for cluster 1.

3. A processor in cluster 3 also issues a read-shared command. As
a result, the global bus UIC for cluster 3 issues the read-shared
command on the global bus. entering the shared state. and setting
its waiting flag.

4. Since the global bus UIC for cluster 2 is in the owned state. it
asserts reply-owned. sends a read-shared command down the link
to cluster 2. enters the shared state. and sets its snoop flag.

5. The UIC in cluster 2 issues this read-shared command. entering
the shared state and setting its waiting flag.

6. The processor in cluster 2 in the owned state asserts reply-owned.
enters the shared state. and sets its snoop flag.

7. The processor in cluster 2 issues a write-resp-shared command.
containing the block data. and clears its snoop flag.
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8. The UIC in cluster 2 sends the write-resp-shared command up
the link, storing it in the high priority queue of of the global bus
UIC for cluster 1, and clears its waiting flag.

9. The global bus UIC for cluster 2 issues the write-response-shared
command on the global bus, and clears its waiting flag.

10. (a) The global bus UIC connected to main memory (cluster 1)
sends a write-shared command containing the block data and (b)
The global bus U71C for cluster 3 sends a response command.
clearing its waiting flag.

11. The UIC in cluster I issues the write-shared command.

12. The block data are stored in main memory.

13. A processor in cluster 3 again issues a read-shared command. As
a result, the global bus UK-C for cluster 3 issues the read-shared
command on the global bus. entering the shared state. and setting
its waiting flag.

14. Since read-owned is not asserted, the UIC for cluster I sends the
read-shared command down the link towards main memory.

At this point, the system is deadlocked. The original read-shared
command sent in step I in cluster 1 is still in the low priority queue
at th global bus level, but is stalled by the waiting flag set in the

global UIC for cluster :1. Similarly, the read-shared command sent by
cluster 3 is in the low priority queue in the cluster I UIC. but is stalled
by the waiting flag of the original requester. This is an example of the
classic deadlock situation which occurs when two processes attempt
to obtain locks on two resources (in this case two buses) in different
orders. Nonetheless. the sequence of events that lead to this situation
were sufficiently complex that the designers (lid not anticipate that the
situation coild occur. and simulations lid not produce it. In fact. the
deadlock situation was tomtid at a search depth of thirteen transitions.
A\t each step in this sequence. there were several alternatives that might
have averted the deadlock. Uhits it is possible. but unlikely that this
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initially owned
4) reply-owned asserted
sends read-shared
-> shared, snoop

global bus

3) read-shared issued

initially owned ->shared, waiting
2) asserts reply-owned
sends read-shared
->shared, snoop UIC UIC 5) read-shared issued

cluster bus waiting set

M P .M p...
1) read miss initially owned
issues read-shared 6) reply-owned asserted
->shared, waiting ->shared, snoop

Figure 4.A: Deadlock example

global bus
1Oa) sends write-shared 1 Ob) sends response

to main memory UIC ... clears waiting

9) issues write-resp
clears snoop

11) issues write-shared UIC UIC 8) sends write-resp
cluster bus clears waiting

SP . M...
12)stores data 7) issues write-resp

clears snoop

Figure 4.5: Deadlock example (cont.i
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global bus

14) sends read-public 13) issues read-shared
to main memory UIC ... -> shared, waiting

read-shared still
pending

can't issue read-public UIC UIC
cluster bus

M P.. M PP.

waiting still set

Figure 4.6: Deadlock example (cont.)

deadlock would be found by a random simulation run. or a simulation
run based on address traces.'

The fact the the model checker was able to print out automatically
an example of this deadlock highlights an important practical aspect
of the technique. Counterexamples are of perhaps even greater value
than a proof that the system is correct, since such a proof is based on
the assumption that the system is correctly modeled. and the specifica-
tion is correct and complete . \ couinterexample. however. provides an
important clue as to where a bug in the system lies. and how it might
be corrected.

4.2.2 Correcting the deadlock

The problem causing the deadlock is that the remote owner of the
memory block can write the data back to main memory while a read

'in fact. the number of possible transitions from a given state ranges from 6 to
12. The probability of a random simulation run executing this trace is therefore
in the range 6-13 = 7.7 - 10- I to 12-13 = 9.3 x 10-1.. The expected time for a
random simulation to exhibit this behavior would be somewhere between 2. 1 years
and 29 millenia, assuming the simulation could be carried out at 10.000 steps per
second.
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command from the local cluster is in transit to the remote cluster. The
write command crosses the read command in the mail, so to speak. A
remote request for the same block can then lock the global bus, leading
to deadlock. The Encore engineers corrected the deadlock problem in
the following way. The write command. when it reaches the local bus.
is converted by the UIC into a write-response command. This supplies
data to the local requester and frees the local bus. Unfortunately. it
also leaves an orphan read command in the system. If a read command
from the remote side is issued on the local bus. and a remote proces-
sor subsequently reaches the owned state. the orphan read command
will disrupt th protocol. To prevent this. when the orphan read is is-
sued. it is converted to a special command called echo-response. which
is sent back to the local cluster. The UIC in the local cluster stalls
any commands on the local bus until tile echo-response arrives, thus
guaranteeing that the orphan read command is destroyed.

The corrected model satisfies the absence of deadlock specification.
The performance of the SMV model checker in verifying this is plotted
in figure 4.7. for a model with 2 clusters, as the number of caches in
each cluster is increased from 2 to 6 (thus. in the largest model, there
are 12 caches and 4 UICs). Part (a) shows the run time as a function of
the number of caches per cluster. Part tb) shows the number of OBDD
nodes used overall, and for representing the transition relation. Part
(c) shows the number of reachable states of the model. Although the
run time points are well fit by a (juadratic curve, the actual asymptotic
performance is most likely cubic. as in the case of the synchronou.-
arbiter (cf. section 2.4.1). owing to linear increases in the transition
relation size. the number of fixed point iterations and the size of the
OBDDs representing fixed point approximations.

Since the number of bus wires running between successive caches
is fixed. we can apply theorem 7 to show that the transition relation
OBDD size must grow linearly in the number of caches. The fact that
the fixed point approximation OBDDs also grow linearlv bears further
examination, however. This phenomenon call be understood 'y consid-
ering the nature of the protocol. Imagine cutting a cluster bus in halt,
and consider how much information must be communicated from one
half of the bus to determine whether a given state of the systeni is ill
the reachable set or not. In fact. this amnount is fixed. independent ot
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the number of caches on the bus, since we need only know if there are
any caches in the shared state or the owned state on the other side of
the cut, and not in particular which caches these are or how many. As a
result, the number of OBDD nodes (representing the reached state set)
at the level corresponding to our cut is bounded.- This is characteristic
of bus snooping protocols, and other protocols which are "loosely cou-
pled", in the sense that one half of the system has bounded knowledge
of the state of the other half of the system.

As part (c) of the figure shows, the number of states of the system
increases exponentially with the number of caches per cluster. De-
spite this, the performance of the symbolic model checking algorithm
is polynomial. Thus, for this particular model and specification, we
have solved the state explosion problem.

4.2.3 Sequential consistency

When writing a formal specification for the Gigamax cache consistency
protocol. we need to consider the model of a distributed memory which
the Gigamax provides to the programmer. As mentioned previously, for
performance reasons the protocol does not maintain strict consistency
of the caches. A cache block in the shared state may be out of date
for a short time while an invalidate message is traversing the network.
This is tolerated, since maintaining strict consistency would require an
acknowledgment of invalidation to be collected from all caches in the
shared state before a cache block could be modified.

There are a number of distributed memory models that may be
supported by such a system. A totally ordered model is one in which
all processors observe all values written to the memory in the same
order. For example. in a totally ordered model. if the processors write
into a location the sequence of values 1,2.3 ..... then all processors
which read the location will observe any new values to be greater than
or equal to all previous values. We will show that the Gigamax protocol
has this property, for a one block system. In a partially ordered model.
values written may in some cases be observed in a different order by
different processors. Some guarantee of ordering is usually made. For

-For other applications of this kind o" argument, see [Bryg11.
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example, all writes must be observed in the same order relative to
special synchronization operations, or all writes by the same processor
must be observed in the same order. The latter model is supported
by the Gigamax protocol for writes to different cache blocks. Since
our model of the protocol only describes the behavior one cache block,
however, the model cannot be used to check this property.

Returning to the problem of total ordering of writes to the same
block, it might seem at first that there is no 'finite state" description
of a protocol that writes an unbounded sequence of values. We can
check the property, however, by using an abstraction. We do this by
choosing a value n, and storing in the model only one bit of information
- whether the data value is less than n or greater than or equal to n.
We then assume that the processors never write a value less than n
after a value greater than n has been written. and we show that a
processor never reads a value less than n after reading a value greater
than n. Since the value of n is arbitrary, it follows that all processors
read data values in non-decreasing order, satisfying the total ordering
requirement. We now consider how to model the system using this
abstraction. For each cache, we introduce a variable whose value is
0 when the data value is less than n and 1 when the date value is
greater than or equal to n. This variable may change whenever the
block is writable. but may only change from 0 to t. since we assume
the processors only increase the data value. The following SMV code
models the data held in the processor's cache:

MODULE data-device
VAR

data : boolean;
ASSIGN
next(data)

case
!master & waiting & CMD in {response,write-resp-invalid,

write-resp-shared} : DATA;
writable : data union 1;
1 : data;

esac;
DEFINE

data-enable := master & CMD in {response,write-resp-invalid,
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write-resp-shared,write-invalid};

Additionally, we introduce variables to represent the values on the
buses and the values in the high priority message queues. The low
priority queues hold only requests, which have no data value.

We would now like to prove that this abstract model of the data
path of the protocol satisfies the following specification in CTL. for all
processors:

AG[( readable A data > it) - A(;(- ,'-adablh A dala < n)] (4.2)

In other words. if ever a value greater or equal to n is observed, a value
less than n is never observed in tile future. We can check this using
SMV by adding the following specification to the processor module:

SPEC
AG(readable & data -> AG (readable -> data))

Figure 4.8 shows the performance of the symbolic model checking
algorithm in verifying this formula. again for a model with 2 clusters.
Part (a) of the figure shows the execution time. while part (b) shows
the amount of storage used. Notice that although the execution times
are roughly ten times those obtained for the model without data. t hey
are still cubic in the number of )roc('ors i)('r cluster.

4.2.4 Correctness of diagnostics

In addition to the above specifications. it was also particularly useful
to check that the diagnostics built into the protocol never flagged an
error under normal operation of the protocol. Errors are flagged by the'
diagnostic system in each processor sjiI)svstein whenever a command
is observed on the bus which is inconsist ilit with the processor's local
state. Determining which conlman(l/stale combinations are normal.
and which are errors is difficult. and a number of errors of this type
were found in the protocol using the model checking technique.
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4.3 Evaluation

In verifying the Gigamax model with respect to the formal specifi-
cations, the symbolic model checker was able to perform an exhaus-
tive search of the model's state space without explicitly constructing
the global state graph. As a result, the state explosion problem was
avoided. In addition, the model checker exposed a number of subtle
errors in the design that were not found in simulation. These errors
were usually caused by events (eg.. cache misses and message arrivals)
occurring out of the normal sequence anticipated by the designers. This
type of error is difficult to find in random simulations. since the prob-
ability of a given sequence of random events occurring by pure chance
is in inverse exponential proportion to the length of the sequence. As
we have seen. the sequences necessary to produce protocol errors call
be quite long. As the design evolved to correct the errors found by
model checking, the model was easily adapted. and quickly provided
an analysis of any new errors introduced by design changes. This tends
to amortize the initial effort required to produce the protocol model.
The ability of the symbolic model checker to find errors quickly makes
it easier to experiment with alternative designs. and also helps to build
the designer's intuition about the behavior of the system. This is imii-
portant. because designers tend to concentrate on normal sequences of
events, and overlook the unusual sequences. The use of OBDDs in the
symbolic model checker made it possible to check a lnodel that would
have been very time consuming. or perhaps impossible to check lisinl
earlier algorithms.

At this point, the technique has a number of limitations. One him-
itation is the use of OBDDs. For example. while we find the OBDD
sizes growing polynomially in the number of caches in the (i.amuax
model, if we instead increase tile numb,,r of cache blocks and leave the
number of caches constant. we find the size of the OBDDs increasine
exponentially. As a result. it, was extremely difficult to check specihi-
cations of a svstem with just two cache blocks i some runs took up t,)
a week. and others never finished ). In these cases. the size of the 013-

DDs representing the fixed point approxinmations became intraci abix
large. When this happens. techniques such as early quantifticat iolu that
make the representation of the transition relat ion smalher are lit the mse.
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since they do not effect the size of the OBDDs representing fixed point
approximations.

Another major issue is implementation of the protocol. Clearly,
verification of the protocol itself is important, since a correct protocol
is a prerequisite for a correct implementation. This is, of course. only
half the story. Techniques are also needed to insure that the verified
protocol is implemented correctly in hardware. This can in fact be clone.
using a process of successive refinement of finite state systems that has
been studied extensively by [trshan (Kur871. The work of Bose and
Fisher [BF89a] is also an example of this. Unfortunately, the truth
of CTL formulas containing existential quantifiers is not necessarily
preserved by this kind of refinement. Thus. for example, though the
high level protocol may be deadlock free. a specific implementation of
the protocol may not be deadlock free'. In order for the implementation
to preserve all CTL properties of the protocol. the two would have to
be bisimular (cf. section 2.6.1). Since this is a very strong requirement.
it is not clear that the protocol couild in fact be implemented with
this degree of accuracy in an efficient way. For essentially this reason.
Grumberg and Long have studied the use of a subset of CTL using
only universal path quantifiers for hierarchical reasoning [GL91]. In
any event, though checking the absence of deadlock specification was
very useful in finding bugs in the protocol, we must attach a special
caveat to this result, since it does not guarantee that all reasonable
implementations of protocol will be deadlock free.

Finally. there is the problem of verifying a model with a finite num-
ber of processors. when there is no finite limit on the number of pro-
cessors that could in principle be added to the system. In practice, the
intended maximum nunber of processors is approximately [00. Even
using the symbolic model checking technique. however, checking a sys-
tem of 100 processors seems infeasible at present. and 1000 processors
is out of the question. To deal with systems with a very large nuni-

3 In fact. such a deadlock, involving an interaction between the memory and
processor subsystems was known to the Encore engineers. The memory system.
when busy. would stall any new r,,Iests. but the stalled request would still remain
in the memory systen's pipeline fbr t'our clock cycles. Thus. when the processor
retried the request four clock cycles later, it would be stalled again. and the process
would repeat indefinitely.
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ber of identical components, we can apply methods of induction over
processes. As in the case of successive refinement, induction methods
are not fully automatic - some human input is required in the form
of an inductive hypothesis. In the next chapter, we will deal with the
problem of induction over processes.



Chapter 5

Induction and model
checking

This chapter deals with the verification of systems that have an ar-
bitrary number of similar components. arranged in some inductively
defined structure. Systems of this type are commonplace - they oc-
cur in bus protocols and network protocols. 1/0 channels. and many
other structures that are designed to be extensible by adding similar
components. After using a model checking system to determine the
correctness of a system configured with a fixed number of processors or
other components. it is natural to ask whether this number is enough in
some sense to represent a system with any number of components. For
example. a cigaimax system can be built by connecting some arbitrary
number of cluster buses to a global bus. then filling each cluster bus
with an arbitrary number of processor cards. It is practically impossible
to verify using model checking methods alone that all possible config-
urations of the system satisfy the specifications. even given a physical
bound on the number of cards in a backplane. However. by supplying
an appropriate inductive hypothesis, we can in nianv cases reduce the
problem of verifying a system of arbitrary size to one of verifying a
system of fixed Size. The inductive hypothesis can take the form of a
finite state process.

.55
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5.1 The general framework

Induction over systems of processes can be put in a fairly general frame-
work. which is independent of the mechanics of the process model. rely-
ing only on certain algebraic properties of the operators for combining
processes. Let us assume that we have a collection of processes. and a
collection of operators acting on processes. In a typical process model.
we have some form of parallel composition operator. some form of oper-
ator for renaming signals, and perhaps a hiding operator. which makes
a given signal invisible to the outside. The exact choice of operators
is not material here. however. We require only that the operators be
monotonic with respect to a reflexive transitive relation < on processes.
The idea of this order is that if p < q. the p is in some sense more spe,-
cific. or more deterministic, than q. The properties we wish to verify
should be preserved as we descend the order.

As an example of induction on processes. suppose we have a parallel
composition operator 11 on processes. which is monotonic with respect
to a pre-order <. In this case. we can applY the following induction
rule:

1)< q

p I1 p q (

Think of the inequalities p q and q l p :- q as substitution rules.
If p < q. we can safely substitute p for any occurrence of q in a given

term. in the sense that we will only make the term lesser in the partial
order. Thus. we can always substiti te p for q on the lesser side of an
inequality. For example. if q 11) < q. we have

'I 1 I ) _< '/
(q il ,)) 11 1 < q

((q 11p) ji p) 1 1 q

If p - q. we can stibstitte p fot ,. givirti, . P...... P c.
call q a proc..-.ss intvariant. Other inluction rtl es can be .gener-aletI.
based ou other substitutions. For examhple. assume we have a parallel
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Figure 5.1: Processes generated by safe substition

composition operator 11 arid a renaming operator o, both monotonic
with respect to <. Then we have

o(q) I ," II p <- q
0((... ) 11 r 11 p) 11 r 11 p :-- q

Given a collection of substitution rules, we can inductively generate a
class of processes from any process q. For example. figure .5.1 depicts
the first few processes in the ('lass generated by the above induction
rule. Every process in the class is smaller than q in the partial order.
Thus, any properties of q which are preserved as we descend the partial
order are inherited by all the processes in the class. The key. then. is
to choose a partial order that preserves the properties we are interested
in verifying. The most straightforward way to do this is to choose a
class of properties that we wish to preserve, and then define the partial
order accordingly.

For example. suppose we wish to preserve all properties expressible
in the logic CTL. In this case, the partial order we obtain is a degenerate
one, which partitions the Kripke models into a set of incomparable
equivalence classes. To .,ee this. assume towards a contradiction that
p satisfies every CTL fornutla satisfied by q. and there is some formula
f satisfied by p but not by q. In this case. it follows that q satisfies
-f. This implies. however, that p satisfies -f. a contradiction. Hence.
if p < q, then p and q satisfy the same set of CTL formulas. Since
(TL characterizes Kripke models up to bisimulation [BCG87]. it follows
that p and q are bisimular. This is unfortunate, since we do not want
our induction framework to apply only to classes of Kripke structures
that are equivalent. In general. we would like to treat systems whose
behavior becomes more specific as we add processes to the system.

One way to do this is to use a subset of the logic. For example.
uitppose we choose to preserve those formulas which use only universal
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path quantifiers. This subset is called V-CTL [GL91]. A formula in CTL
is also in V-CTL if driving the negations in to the literals results in a
formula without the E path quantifier. Examples of V-CTL formulas
are

AG-EGp =_ AGAF-p
-EGEXp AFAX-p

Examples of CTL formulas which are not inI V-CTL are

AG-AFp = IGEG-)

-EGAXp =AFE.\-p

Clearly, if a formula f contains path quantifiers. then f and -'f cannot
both be in V-CTL. Grumberg and Long [GL91] have shown that if p
satisfies every V-CTL formula satisfied by q. then q simulates p. and
conversely. Simulation is easily shown to be reflexive and transitive.
Thus simulation is a pre-order suitable for inductive proofs of V-CTL
formulas. Let p S q iff. q Simulates p. This gives us the following
induction rule:

q~
p :S q

q I1,< q

as well as other rules engendered by various systems of safe substitii-
tions. Recall from section 2.6.1 that simulation is the areaiest relation
between the states of q and the states of 1) such that if x simulates q.
then:

. .r and y agree on the atomic proposi ions. and

2. every successor of y is simulated b a successor of .r.

A Kripke model q simulates f) if every initial state of p is simulated by
some initial state of q. Since this relation can be expressed as a greatest
fixed point in the Mu-Calculus. it can he(-, verified automatically isin,_,
the symbolic model checking techniqile. The fact that simulation i,
not symmetric allows ts more tlexibilitv in constructing svstenis uisinii
substitution rules than we would have using bisimulation.
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5.1.1 Induction in other models
We can set up an induction framework for a variety of models by es-
tablishing a pre-order and a set of monotonic process operators. For
models of concurrent automata (such as the s/r model [Kur85]), the
natural partial order is language containment.

In the s/r model, a process is an automaton which accepts infinite
strings over a Boolean algebra. There are two natural operators over
this class of processes. The automaton product operation simulates
parallel execution. while Boolean algebra homomorphisms can be used
to induce a renaming or abstraction of the variables by which processes
communicate. Kurshan shows that both of these operations respect
the relation of language containment between automata [Kur86]. An
example of induction in this framework can be found in [KM891.

Induction can also be applied inI process algebras like CCS (MilS01
which are based on two-way synchronization. In this case. there is a va-
riety of plausible process relations. including observational equivalence.
weak observational equivalence. and a number of pre-order relations on
processes. An induction example using the "may" pre-order for CCS
processes can also be found in [KM891.

5.2 Induction and SMV

An induction framework can be set up for the SMV.0 language, based
on either simulation or bisimulation. 'his framework includes two kinds
of process operators - the para'iel composition operator 11 and renam-
ings operators based on maps o from locations to locations. We will
show that both are monotonic with res')ect to simulation and bisiuiu-
lation.

5.2.1 Proving compositionality

Recall that semantically, an SM'v.0 program denotes a triple (T. [. R).
where T assigns types to locations. I is the set of initial states. and
R is the transition relation. Fhere are two basic process operators
provided by S.MIv: instantiation and parallel composition. An instanti-
ation results ftorn a ap ' on locations fa renaming). This renaming
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induces a map 6 from states of O(M) to states of AI, such that for
all locations 1, 4(x)(l) = x(0(l)). If M = (T. 1. R) is a process, then
O(M) = (T', I',R') where

1. T'(0(1))= T(l),

2. I'= {x I D(x) E I} and

3. R' = {(x,y) I (4D(x), 4(y)) E R}.

The rules for renaming require that no hidden location can be renamed
to a visible location, and no two distinct locations can be renamed
to the same hidden location. The following lemma and theorem show
that this definition of renaming is a suitable operation for inductive
reasoning using simulation or bisimulation:

Lemma 4 Let & be a legal renaming. and let 4 be the state map induced
by b. If x' = D(xl) and .'r agrees with .r. on the isible locations, then
there exists x, which agrees with .r on the risible locations, such that
X2 =

Proof. Construct .2 as follows: For every location 1. if I is in the
range of 6. then choose any I' such that I = o(l'). and let x2(1) = 1.,( 1').

Otherwise, let x2(l) = . 1 (l).
First we show that 4' = 'D(x2). For all locations I". if b(l") is visible.

then 1" must also be visible (since hidden locations cannot legally be
renamed to invisible locations). Let 1 = 6(1"). Since I is in the range
of D. there is some visible 1' such that / o(l') and .r,(l) = .X'/).

Since .ri and x' agree on the visible locations..r(1') = ,r'(1'). Since
= (xi), x'(l') = x(l) = .r'(l") = .'(/"). Thus 4(1")

On the other hand. if 6(l") is hidden. there exists no other location '
such that o(l') = 6(1"). since two locations cannot legally be renamed
to the same hidden location. Therefore 4( o(1")) = x'(1"). Thus. bY
definition 4 = b(.r2).

Second. we show that rI and .x. agree on the visible locations. Let /
be any visible location. If I is not in the range of o. then.r i(1) = x',( 1) by
construction. Otherwise. there is an I' such that o(l') = I and .re(I) =

,(1'). Since I' must be visible..c',(I'i = x'1 d') = .x1(o(1')t = .r 1(!).
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Theorem 9 Instantiation of SM V.0 modules is monotonic with respect
to simulation and bisimulation.

Proof. Imagine that we have two processes, M, and A12 , such that
M. 2 simulates M1 .

First, let x, and x.2 be states of k(M1 ) and 6(M2 ) respectively. We
show by induction that if .ri and X*2 agree on the value of all visible
locations, and if $D(x2 ) simulates 4(,c1 ), then .r2 n-simulates .cl, for all
Il,.

The basis case is trivial, since x, 0-simulates .£2 exactly when x,
and x2 agree on the value of all visible locations.

For the induction step, let (.rL.yl) be any transition of 6(Mt). By
definition, (D(xl), (yt)) is a transition of l1 . Hence, there exists a
transition (4(x.,), y') of A11 such that D(!/) simulates y.,. Since D(yi)
simulates ~y, D(yi) and y' agree on the visible locations. By the lemma.
there must exist Y12 which agrees with yt on the visible locations, such
that y' = ((y2). By inductive hypothesis. y2 (n - 1)-simulates Yi,
therefore X2 n-simulates xj.

Now we show that every initial state of ¢( Al1 ) is simulated by some
initial state of o(A!). A state .rl is initial in DA(MA) exactly when
4(xj) is initial in I. Let .r' = ¢(D17). If .' is initial in MI. then it
is simulated by some .' which is initial in .,. Since x' is simulated
by r.x, they agree on the values of the visible locations. Hence. by the
lemma. there exists .c, which agrees with r, on the visible locations.
such that .r. = (P(x). By the above argument. .rl is simulated by r.,.
Therefore. o(M1 ) is simulated by o(M,.).

We can prove that renaming respects bisimulation by the same ar-
gument. applied symmetricallY:

The parallel composition of SMV.0 programs is formed by taking
the union of the type functions T and the intersections of the initial sets
I and the transition relations R. after renaming the hidden variables
of each process onto disjoint spaces. We can show that this operation
is also suitable for inductive reasoning:

Theorem 10 Parallel composition of SVMV.O programs i.s monotonte
with respect to simiUation and bisimniti flon.
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Proof. Imagine that we have four processes, M, M2, MI and M2,
such that A1 is simulated by M 2 and MI is simulated by M.

Let 0 and 0' be the renamings associated with parallel composition.
These are identities over the visible locations, and map the hidden
locations onto disjoint ranges. Let 4) and ' be the induced state maps.
(Thus, given a state of a parallel composition M II M', 4) yields the
corresponding state of M and ' yields the corresponding state of 1l'.)
Let x, be a state of MA II M' and let x 2 be a state of 112 II I, We
show by induction that if 4)(xi) is simulated by )(x-2 ) and V'(x1 ) is
simulated by A'(x2), then x, n-simulates .r.2 . for all n.

For the base case, since o is the identity for the visible locations.
4)(x1 ) agrees with x,1 on the visible locations, as does 4)(x.,) with ,r,.
Since 4(xl) is simulated by 4(;.). they also agree. therefore .rl 0-
simulates z).

For the induction step, let t, = 4(xi), itu = '(x 1 ), it., -- P(,2).

112 = V'(X2). Let (xi,y 1 ) be a transition of M, II M'. and let tI, = D(yl)
and v' = V) (yi). By definition. (it,. vI) is a transition of M and (i'. v')
is a transition of M'. Since ul is simulated by i.2 and it' is simulated by
u', there must exist V2 and v such that ("2. _2 ) is a transition of M,.
(u', v) is a transition of .Vl2. sI is simulated by v,2 and v' is simulated
by u'2 . Now we construct y2. For all visible locations 1. let 92(l) = y1(l).
For all hidden locations I in the range of o. there is a unique I' such that
I = o(/'), since a renaming cannot legally niap distinct locations on to
the same hidden location. Let y-2(1) = 1'2(1'). Similarly. for all hidden
locations 1 in the range of o'. there is a unique 1' such that I = o'(I').
Let Y2(1) = s4(1'). By this construction. c, = (y2) and c', ,(_..i
Hence. by inductive hypothesis. . 2 !n - 1)-simulates .Y2. By definition.
(x2, y2) is a transition of M 2  I.1. Therefore .-, n-simulates .12.

Now we show that every initial state of M,.11 31' is simulated Iw
an initial state of .112 1 1'. Let .rI be an initial state of .1i1 I .11' and
let it = 4(tX1 ). a' = 4'(,r). By definition. it is initial in .11, and ua'
is initial in M'. Hence there exist i2 and U., such that it, is simulated
by it,. it' is simulated by it',. ., is initial in .1, and it' is initial in
.\I. We can construct r,) such that i,. = t.r and n, = V0'(.r_, in thc
same manner as we constructed 1, al)\e. By tle above argument. ,
is simulated b x.



5.2. INDUCTION AND SMV 163

We can prove that parallel composition respects bisimulation by the
same argument, applied symmetrically. 0

5.2.2 Computing simulation relations

Since the simulation and bisinmulation relations can be expressed in
the Mu-Calculus (cf. section 2.6.1). they can be computed using the
symbolic model checking technique. In this way, we can automatically
test whether substituting a given module p for another module q is safe.
in the sense of preserving all CTL or V-CTL properties.

There are a few techniques that can improve the efficiency of this
process. The simplest is to note that simulation between two states
implies that they agree on the values of the visible locations. There-
fore. there is no need to use separate OBDD variables to encode the
visible locations of the two processes when representing the simulation
relation. As with CTL model checking, we can compute the reach-
able state space of the two programs. and use these sets to restrict the
computation of the equivalence relation. In cases where the simula-
tion relation cannot be computed, we can instead compute a stronger
relation between the programs. which requires that all pairs of states
which are simultaneously reachable (reachable along paths which agree
on the visible locations) are i-simular. This relation can be tested by
a forward search of the reachable state space of the composition of the
two programs. In the case of deterministic programs (in which no two
successors of a given state agree on all of the visible locati, ns). this
amounts to a test of string language containment [CL91]. In either
approach, if the test fails, we can extract as a counterexample a pair
of paths, such that all corresponding states are 0-simul-ar. and the last
pair fails to be t-simular. This test can be used to formulate another
guess for the process invariant, until a sound invariant is found.

SMV supports induction in the following way. Each hypothesis of
an induction rule is of the form p _ q, where p and q are modules.
This is completely general. ,ince module p can be an arbitrary parallel
composition of instances of other modules. By inserting the declaration

SIMULATES p
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in module q, we cause the SMVV model checker to test whether q simu-
lates p and if not, to produce a counterexample.

5.2.3 Induction and SMV.1
Is it possible to extend the above framework to SMNV. which includes
interleaving processes? Unfortunately. the answer is no; Consider. for
example. the following two modules. which are bisimular:

MODULE a
VAR

x :boolean;
ASSIGN

init(x) :0;

next(x) :0;

MODULE b
x :boolean;

ASSIGN
init(x) :0;

next(x) x

Note. however, that if we substitute a for b in the following programi.
the resulting program is not bisinular to the original:

MODULE main
VAR
p :process b;

ASSIGN
next(p.x) 1

This is because process main miay intervene lbetween step, ot process
p. changing the valuie of p. x to 1. 1In thils stat e. whi is not reachable Inl
a or b alone, the two modules have dlifferenit behiavors. Hence parallel
composition in SMWV.1 does not respect hisiniulation (neithier does it
respect simulation (. This problemi is ai general fe(ature of languiaes Ithlut
'iupport Interleaving processes wit Ii siiare I vaiablh-i. It Is dlfi ciit . for-
example. to formulate a cofliposit iolril I-Il 1,01 tilr e kme.%-Io operatlor,
ot U NITY logic ['S .For thiis reaSoli. %Ve Wvill use oly tilie ~I
subset for induction over processes,.
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Figure 5.2: Substitution generating processors on bus

5.3 Example: The Gigamax protocol

In this section, we formulate a safe substitution rule that generates an
arbitrary number of Gigamax processors attached to a cluster bus. As
our invariant, we will use a single processor module attached to the
end of a cluster bus. The strategy will be to generalize this module by
adding nondeterminstic choice until it is able to simulate itself with one
additional processor attached. as viewed from the bus. The counterex-
amples produced by the model checker will provide cltes as to how the
proposed invariant should be generalized. After a correct invariant is
obtained, we can use this invariant to prove properties of the protocol
that hold independent of the number of processors on a cluster bus.

The general form of the substitution rule we use is depicted in fig-
ure 5.2. The SMV code representing the left hand side is shown in
figure figure 5.3. and the code for the right hand side (the invariant)
is shown in figure 5.-. In our first guess for the invariant, we will use
the original processor nodel from the previous chapter. Our approach
will be to acid behaviors i,.. non-determinism) to the processor model
,ntil we have a correct invariant.

Essentially. we are testing whether one processor can mimic the ac-
tions of two processors as seen from the bits. Checking this produces a
counterexample in which one of the two processors reaches the owned
state. then the second processor issues a read command. This behavior
cannot be produced by a single processor. To fix this problem. we can
modify the processor model so that a processor is allowed to issue a
read conmand in the owrd state. It then sets its own ..snoop- flag.
and enters the shared stlate oin a read-share. and the owned state oi
a read-owned. Testing this rnew Invariant produces another counterex-
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MODULE rule(CMD ,REPLY-OWNED ,REPLY-WAITING ,REPLY-STALL,
cmd,reply-owned,reply-waiting,reply-stall ,master)

VAR
b bus-connector(self,p);
p processor(CMD, REPLY-OWNED, REPLY-WAITING, REPLY-STALL);
q invariant(CMD, REPLY-OWNED, REPLY-WAITING, REPLY-STALL,
b.cmd,b.reply-owned,b.reply-waiting,b .reply-stall,b.master);

MODULE bus-connector(a,b)
ASSIGN b.master := a.master union 0;
DEFINE

cmd
case
a.master a.cmd;
b.master b.cmd;
1 :idle;

esac;
reply-owned :=a.reply-owned I b.reply-owned;
reply-waiting :=a.reply-waiting I b.reply-waitingl;
reply-stall :=a.reply-stall I b.reply-stalll;
master :=a.master I b.master;

Figure 5.3: Substittiloi rule foit addinig one processor-
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OPAQUE MODULE invariant (CMD ,REPLY-OWNED,REPLY-WAITING,

REPLY-STALL, cmd,reply-owned,reply-waiting,reply-stall ,master)
SIMULATES rule
VAR
b bus-connector(self,p);
p processor(CMD, REPLY-OWNED, REPLY-WAITING, REPLY-STALL);
t bus-terminator(CMD,REPLY-OWNED ,REPLY-WAITING,REPLY-STALL,
b.cmd,b.reply-owned,b.reply-waiting,b.reply-stallb.master);

MODULE bus-terminator(CMD,REPLY-OWNED,REPLY-WAITING,
REPLY-STALL, cmd,reply-owned,reply-waiting,reply-stall ,master);

ASSIGN
CMD := cmd;
REPLY-OWNED := reply-owned;
REPLY-WAITING := reply-waiting;
REPLY-STALL := reply-stall;

Figure 5.4: The invariant

ample in which the first processor reaches the owned state. then issues
a read command (thus setting its snoop and waiting bits). then the
second processor issues a read command. One processor alone cannot
produce this behavior, since it cannot issue a second read command
while its waiting flag is set. W' modify the processor model to allow
this behavior. Note that this is behavior is safe, since the second read
command is blocked by the waiting flag which is already set. With this
modification, we have a correct invariant.

[-'sing this invariant, we can check properties of the system in V
CTL, using the invariant in place of the processors on the cluster buses.
The substitution rule can be applied as many times as necessary to
produce a system with an arbitrary number of processors while pre-
serving all of the verified properties. We can also refer these properties
back to our original model by showing that the generalized processor
model simulates the original one. In order to verify properties such as
deadlock freedomn. however, which iuse existential path qIuantifiers. it
would be necessary to prove bisiinulation rather than simulation. This
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means that it would not be possible to use the strategy of generalizing
the original model until an invariant is reached. since the generalized
model would not be bisumulation equivalent to the original model.

5.4 Related research

A number of methods have been proposed in the past for extending
automatic verification to parameterized designs that have an arbitrary
number of similar or identical processes.

The first to approach this question were Browne. Clarke and Grum-
berg [BCG86], who extended tile logic CT. to a logic called inde.r.d

CTL. This logic allows the restricted use of process quantifiers as iII
the formula Vj f(i). which means that the formula f holds for some

process i. Restricting the use of these quantifiers and eliminating the
next-time operator makes it impossible to write a formula which call
distinguish the number of processes in a system. By establishing all
appropriate equivalence between a s'stem with n processes and a sys-

tem with n + 1 processes. one can guarantee that all systems satisfy
the same set of formulas in the indexed logic. This method was used to
establish the correctness of a mutual exclusion algorithm by exhibiting
a bisimulation relation between all it-process system and a 2-processes
system. and applying model checking to the 2-process system.

A disadvantage of the indexed CTL method is that the bisimulation
relation must be proved in an ad hoc manner. Finite state methods
cannot be used to check it because it is a relation between a finite-
state process and a process with an arbitrary number of states. Clarke
and Grumberg dealt with the problem of establisling a bisimulation b\-
introducing the notion of' a proct..s clo.,ur I'. This process ntst Ie
derived by hand. and have the property that .Air 11 P- is equivalent Io
.,,+1 I1 P for some small r. This can be verified mechanically. Shtadler
and Grumberg took this notion a step further by introducing niot work
grammars to describe classes of finite state system.s. This technique
used an indexed form of linear temporal logic, and re(luired that t li,

processes on the left and right hatnd sides of each grammar rule be
equivalent in an appropriate sense.

The requirement that all systems. generated I)- the granmmr I-be
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equivalent seems to be a rather strict limitation, however. The method
of this chapter, which uses a partial order rather than an equivalence,
was first proposed by Kurshan and McMillan [KM89], and simulta-
neously by Wolper and Lovinfosse [WL89]. Around the same time,
Burch was also applying a similar idea to Dill's trace theory for speed-
independent circuits.'

Another method for proving properties of systems of identical pro-
cesses is due to German and Sistla [GSJ. It uses a linear-time temporal
logic for specifications (again. the next-time operator is not allowed)
and is fully automatic. By means of a distinguished "control" process,
it is possible to check some global properties (although process quanti-
fiers are not present in the logic). Unfortunately, because the decision
algorithm is doubly exponential inl the process size, this method has
not been applied in practice.

A system called GORMEL has been created by Marelly and Grum-
berg, implementing the techniques of (SGS9]. GORMEL uses context
free grammars to describe systems of processes. This is fairly similar to
the use of module substutution rules in S-MV. There are a number of dif-
ferences between the systems, however. GORMEL is oriented towards
verification of distributed algorithms. It uses a model of transition sys-
tems with pairwise synchronized actions, as in CCS. This model is not
well suited for describing digital systems - first because most signals in
hardware are broadcast to more than one location, and second because
many signals are exchanged back and forth between components of a
system in a single clock cycle. The difficulty of reducing this two way
fxchange of many signals to a single atomic action would make it ex-
tremely cumbersome to create a ('('S-like model for a system like the
(;igamax.

Another difference is in the logic - GORMEL uses an indexed ver-
sion of LTL without next-time called LTL2 . .As in indexed CTL. it is
not possible to nest process quantifiers. Because of the ability to use
process quantifiers, it is possible to express some properties which are
not expressible in (TL. for example that if a proposition p is true in
-ome process. then it is ewntually true in all processes.

For the process relation. (,ORMEL uses a form of stuttering equiv-

Personal communication
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alence rather than simulation. This places fairly strong requirements
on the allowable grammar rules. In particular, it is not possible in such
a system to take the approach taken here of successively generalizing a
component process in order to obtain an invariant, since the required
relation between the left and right hand sides of the grammar rule is a
symmetric one. The GORMEL approach will work if the various sys-
tems generated by the grammar can be distinguished only by stuttering
(arbitrary repetition of the same state labeling).

A final difference between the systems is. of course, that SMV is
based on symbolic model checking methods. This is not clearly an
advantage, however, since the state explosion problem may not be very
severe for the small number of processes that tend to be involved in
induction rules.



Chapter 6

A partial order approach

In this chapter. we consider an alternative to the symbolic model check-
ng method which is also aimed at avoiding the state explosion prob-

lem. A number of researchers have observed that the arbitrary in-
terleaving of concurrent actions is a major contributor to the state
explosion problem. and that substantial efficiencies could be obtained
if the enumeration of all possible interleavings could be avoided. As
a result, several have proposed verification algorithms based on par-
tial orders [Val89. Val90. God90. GW91. PL89. PL90. YTK9l. The
method presented here is based on unfolding a Petri net into an acvclic
structure called an occurren'e net. The notion of Unfolding was intro-
duced by Nielsen. Plotkin and Winskel as a means for giving a con-
current semantics to nets, but in this case the goal is to avoid the
state explosion problem. An algorithm is introduced for constructing
the unfolding of a net. which terminates when the unfolded net rep-
resents all of the reachable states of the original net. The unfolding
is therefore adequate for testing reachability (to be more precise. co,-
erabdlity) and deadlock properties. It is shown using an asynchronouts
circuit example that the unfolding can be polynomial in the circuit
size while the state space is exponential. In contrast. the stubborn
sets method of Valmari [V189. Val901 and trace automaton method of
Codefroid [Cod90. (;Wtl are ineffective in reducing the state explo-
sion problem for asynchronoiis circuit models. because of the ubiquity
of confusion in such models. fi addition, because the unfolding method
is fully automatic, it has a certain advantage over behavior machines

171
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method of Probst [PL89. PL90], which requires a pomset grammar de-
scribing the circuit's behavior to be constructed by hand.

6.1 The unfolding operation

Briefly. an occurrence net is a Petri net without backward conflict (two
transitions outputting to the same place). and without cycles. Such
a net can be obtained from an ordinary place/transition net by aii
unfolding process. Figure 6.1 shows an example of a net and part of
its unfolding. Since the occurrence net it is acvclic and rooted. there is
a natural well founded (partial) order on the transitions and places of
the net. This order is called the dependency order. It is impossible for
a transition of the occurrence net to fire unless all of its predecessors
in the dependency order have fired.

The most important theoretical notion regarding occurrence nets is
that of a configuration. A configuration represents a possible partial
run of the net - it is any set of transitions that satisfies the following
conditions:

1. If any transition is in the configuration. then so are all of its pre-
decessors in the dependency order (a configuration is dou-n, ard
closed).

2. A configuration cannot contain two transitions in conflict. mean-
ing that both input from the same place.

An example of a configuration is shown in ligure 6.2. with element>
of the configuration filled in black. Two transitions in the tigure are
hatched in. Either of these transitions can be added to the black set to
form a new configuration. Adding any other transition would be illegal.
however, since it would either violate downward closure or conflict-
freeness.

In an unfolding. each transition corresponds to a transition of the
original net. and each place corresponds to a place of the original net.
'We can associate each configuration oft the unolding with a state mark-
ing) of the original net by sim ply identify ii those places whose tokei.,
are produced but riot consunied bY tie transitions in the contialyrat ion.
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a) Petri net b) Unfolded to occurrence net

Figure 6i. L: r nfolchng example.
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Figmre 6.2: ( ofiirat 1011o
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This set is marked with black dots in figure 6.2. Mapping this set back
onto the original net, we obtain the final state of the configuration.

The final theoretical notion we need regarding unfoldings is that
of a local configuration. The local configuration associated with any
transition consists of that transition and all of its predecessors in the
dependency order (that is. the downward closure of the transition as
a singleton). This is the set of transitions which necessarily are con-
tained in any configuration containing the given transition. Note that
a local configuration may not exist if this set contains two transitions
in conflict.

We are now ready to consider the problem of building a fragment
of the unfolding which is large enough to represent all of the reachable
markings of the original net. Building the unfolding itself is straight-
forward. The process starts with a set of places corresponding to the
initial marking of the original net. The unfolding is grown by finding a
set of places in the unfolding which correspond to the inputs (preset)
of a transition in the original net, then adding a new instance of that
transition to the unfolding, as well as a new set of places correspond-
ing to its outputs (postset). If the new transition has no conflicts in
its local configuration (more precisely, if it has a local configuration)
it is kept, otherwise it is discarded. This is because the existence of a
conflict means that the new transition can occur in no configurations
of the unfolding.

The key to termination of the unfolding is to identify a set of tran-
sitions of the unfolding to act as cutoff points. This set must have the
following property: any configuration containing a cutoff point must
be equivalent (in terms of final state) to some configuration containing
no cutoff points. From this definition, it follows that any successor of
a cutoff point can be safely omitted from the unfolding, without sacri-
ficing any reachable markings of the original net. To see this, suppose
we have built the unfolding only up to the cutoff points, in the sense
that any new transition we can add must have a cutoff point as a pre-
decessor. From this point on. any transition we add must be descended
from some cutoff point. Thus. any configuration we might add to the
infolding must have the same final state as some configuration already

present.
A sufficient condition for a transition to be a cutoff point is the
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following: the final state of its local configuration is the same as that of
some other transition whose local configuration is smaller. The proof
of this statement is as follows: suppose there are two transitions t and
t2 , whose local configurations have the same final state. with that of
t2 being smaller. Now imagine a configuration Ci (local or otherwise)
containing ti. We can obtain C1 from the local configuration of t1 by
adding the transitions in the difference one at a time, in an order con-
sistent with the dependency relation. According to our construction. at
each step of this process, there is a corresponding transition we can add
to the local configuration of t2 leading to the same final state. Hence.
we can build a configuration (2 containing t2 which has the same final
state. but is at least one transition smaller than C, since we started
from a smaller set. Thus if any configuration contains a cutoff point.
it is equivalent to a smaller configuration. Configurations cannot be
made arbitrarily small, however. so any configuration containing a cut-
off point must be equivalent to a configuration not containing a cutoff
point. Since all the reachable states are represented by configurations
containing no cutoff points, it is unnecessary to build the unfolding
beyond any cutoff point.

We can find the cutoff points by sinply keeping a hash table of all
transitions, indexed by the final state of the local configuration. If when
generating a transition, we find in the table a transition with equivalent
but smaller local configuration. we discard the new transition. We can
show. as follows, that this process is guaranteed to terminate if the
original net is bounded and finite. First. the depth of the unfolding

must be bounded by the number of number of reachable markings.
The depth of a given transition in the unfolding is the longest chain of
predecessors of that transition. Each transition in this chain has a local
configuration. and these local configurations forni a chain of increasing
size. If the depth of the given transition is greater than the number
of reachable markings of the original net. then by the pidgeon-hole

principle, two of these local configurations must have the same final
state. This cannot be. however. since in this case one of the transitions
in the chain would have been determined to be a cutoff point. If the
original net is bounded. it has a finite nuinl)er of reachable markings.
hence the depth of the unfolding is Iboinde, I. I lhe original net is tiniit'.
we can show by induction that the number of transitions at any ,tiven
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Figure 6.3: Dining philosophers net.

depth in the unfolding is finite. Hence the total number of transitions
generated by the unfolding process is finite.

As an example of termination. consider the net of figure 6.3. which
represents the dining philosophers paradigm. In this scenario, there
are n concurrent processes (philosophers). each of which must acquire
the use of two shared resources I forks) in order to execute its critical
section (eating spaghetti). The processes are organized in a ring. with
each neighboring pair sharing one resource. Figure 6. 1 shows the coin-
pleted unfolding for the case of three philosophers (n = 3). The cutoff
points are marked with an X. The local configuration of each of these
transitions is equivalent to the empty configuration. We observe that
the Size of the nnfolding is not only bounded. but is linear in the num-
ber of philosophers, while the nuitmber of states is exponential as shown
in table 6. .

Recall that in growing the( unfolding, it is necessarv to enumerate all
of the subsets of places which correspond to the inputs of transitions.
The complexity of' this is O( "), where n is the size of the unfolding. and

is the largest number )f ipuits of any transition. "This is.of course.
bounded by '. which is polvynornial given a h xed valte o i. In practice.
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Figure 6.4: Unfolding of the dining philosophers net.

number size of .unflolding number of

-of philosophers -(tr-ansIt~in) jreachable states

2 [ 22
:3 1:3 100
41 17i 466

521 216-1

Table 6. 1: 17rnfolding size anid number o states for Dining Philosophers
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however, the number of subsets which are considered can be reduced[
quite effecti-rely, using the following two techniques. First, suppose we
are entimerating the Suhsets: we need not add any place to the set if
the result wvouldl not be contalined in the set of inputs of any transi-
tion. Second whenever a place is added to the set. we can immiediately
eliminate f'romn consideration all of the places which have a predecessor
in conflict with a predecessor of the new element. since any transition
with both places as inputs would be dliscarded. We add transitions to
rihe net in order increasing size of the local configuration. so that we
(can use a hash table to determine whether or not each transition is a
cuttoff point. Thus. whenever a candidate f'or a transition in the un-
folding is generated. it is placed in1 a qlueue ordered by increasing local
configuration size. The places of the iiet are enumerated by pulling the
first element t' from this qu1eule. restina whether it is a cutoff point.
and if not, generating places for its outputs. Thie procedure terminates
when the queue of cani(lidlat~e transitions becomes empty. Figures 6.5
and 6.6 show a pseudo-code Imrplemnentation of this procedJure. Trie
pseudo-code is written somewhat inefficiently in places for simplicity.

In function Vnl-fold. the arguments P. T and .14) are the places.
transitions anid Initial miarkiit of the original net. Each place In the
unfolding is represented b1w a pair (place. pi'eds). where place Is the c'or-
responding place li the original tiet. and preds is the set of immedliate
priedlecessor transit ions lit lie itin ildinrg I note ithat sinrce there is rio
6ackward "oniflict . thre size of this -,et is at most onlei. Each transitionl
ini the unfolding i.- represented by a pair (htrns.p/rf/s) . where trans., is
,he ('orl'espotl iing I rarii trol l i thle original iiet . anl p) rds is thle set of
immed iate prede'esisor paesIII the ii ufobIi rig. Ih fit irction ret0i iris

.1rid T'I. the -set of place-s ;1i int rarisi t, ions. respect i xel%. of the uii ifobIi nit
f here is also a queute 0' .)f t rarisi t is to beC expanded1. arid a hash Itale
fHfash fable) ulsed for ilenitvif,110 (ii off points.

( overahli ity problemns can beo sol vvd itsinrg the ii niold ing in lie fol-
owing way.. [ti agirne we, Iavv ;I vet of places lit thle orn inal nlet. m id

We Wish to determniredI whlet her tilis set, can every be silmuIt ane-ousi v
triarked. \'VP slimply addt aI new transitiori to the niet. whose finpits
are,( t ie( givenl set, aridI lieni coist rul(t tie( unifolding. If th 'if Irt
'ontarnis anins aillice ()t this new Irainisit ionl. the set is c'over'ahite. '1nd(
it herwise flot.
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global P',T',Q'.HashTable[]
function Unfold(P,T,M0 )

P'= T' = Q' = 0: clear HashTable
for each p E M0 do

add p' = (p,0) to P'
GenTrans( {p'}. T)

end for
while the queue Q' is not empty do

pull the first t' off of Q'
if not IsCutoffPoint?(t') do

for each p in outputs of trans(t') do
add p' = (p,{t'}) to P'
GenTrans( {p'}. T)

end for
end if

end while
return(P'.T')

end function

procedure GenTrans( S'. T)
if not exists t E T such that placc(.") C input,, of t then return
if Predecessors(.5') has forward conflict then return
forall t E T do if place(S') = inputs of / then

add t' = (t..5') to set T'
insert t' in Q' in order of Local('onli-(t' V

end for
for all p' r P where p' older than any member of .5' do

GenTrans( S' U p'. T)
end procedure

Figure 6.5: Pseudo-code inplementat ion ,f ,0ioliJing proceduire
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function [sCutoffPoint?( t')
-' LocalConfig( t')

S'= FinalState(cl)
L= fHashTable[HashFun( S,)]

forall t', in L' do

2= Loca1Config(t')
if S11 = FinalState(C') and Size(C') < Size(C') then return( 1.)

end for
add t' to HashTable[ Hash Fu n(S,)]
return( 0)

end function

function LocaiConfig(tC)
ret urn( Predecessors( {t'}) nl T')

end

function Predecessors( 5')

S' = 5' U preds( 5')
uintil S' unchanged

Pind function

r uncin FinalState( C")
let S' be the set of all p' E P' such tiiat preds( p') C'
return(place(S' - preds(C')))

Pnd function

Figure 6.6: Pseudo-code. continued.
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a C b
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Figure 6.7: Translation from circuit to net

6.2 Application example

We now consider a more realistic example than the dining philosophers

- a speed-independent [Sei80b] circuit designed to implement a dis-

tributed mutual exclusion (DME) protocol. The circuit was designed

by Alain Martin [Mar85] and has been analyzed using li abstracted

trace theoretic model by Dill [DiI881. It was also used as an example

for the symbolic model checking met hod ii1 section 2.4.2.

Networks of logic gates in speed-independent circuits are readily
modeled by Petri nets. A network oft, gates can be modeled by a Petri
net of 0(n) places. When we model a network of gates as a Petri net.
we introduce two places for each input of each gate. One represents the
the input in a logic low state. while tlie other represents the input in

a logic high state. Transitions in the Petri net correspond to rising or

falling transitions of gate outputs. Aisina transition of a gate output
removes all the logic low tokens froni t li inIptits to which it is connected.

and places tokens on the correspondina logic-high places.

As an example. figure 6.7 shows le net fragment representing an

AND gate. When both inputs of the gate are at the logic high state. we
can move a token from the place representing logic low at the outptl
to the place representing logic hi,_h. Similarly. if either input is at the

logic low state. we can move a token from tle place representing logic

high at the output. to the place reprewell itI logic low.

:\ dvnamic hazard occurs. for examl.h'. If the AND gate's outplit i,

enabled to rise while one of the input., is ,eiabled to fall. The problet
of whether or not a lvnanic hiazard cai occ i call this be posed as 1
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coverability problem. Alternatively, since dynamic hazards correspond
to dynamic conflicts in the unfolding, the problem can be solved by
constructing the unfolding and examining it for dynamic conflicts. ie..
two transitions which are in conflict, and which may be simultaneously
enabled. The DME circuit also uses special two-way mutual exclusion
elements as components, which are immune to certain hazards. In
checking the DME ring for hazards, we ignore conflicts between rising
transitions of a mutual exclusion element's acknowledge outputs.

Table 6.2 shows the results of the occurrence net unfolding proce-
dure (ONU), and a depth-first traversal of the state space (DFT), for
the Petri net model of the circuit. for rings with one to five cells. The
depth of the occurrence net unfolding for the case of 5 cells was 141
transitions. The number of transitions in the ONU increases quadrati-
cally in the number of cells. This is because as the number of cells in
the ring increases, a request must be relayed through a greater number
of stages in order to obtain the token. in the worst case. At the same
time. the number of cells which are requesting also increases. The oc-
currence net therefore grows in both width and depth in proportion to
the number of cells. As we increase the number of cells in the ring.
the number of reachable global markings increases exponentially. For
this reason. it was only possible to apply DFT to a system of five cells.
before the available memory resources were exhausted. It is known.
however, from using OBDD based methods, that the number of states
increases asymptotically by slightly less than a factor ten for each added
cell.

How do these results compare other methods for avoiding the state
explosion problem" The trace theory approach of Dill (DiIS1 required
an abstract model of the arbiter cell to be created by hand. This reduces
the state explosion problem. but does not entirely solve it. since even
with the reduced model. the number of states still increases exponen-
tially with the number of components. Probst [PL90 reports a method
which requires quadratic space and time in the number of cells, but
also is not fullv automatic. Fhe methods of Valmari [Val89. Val901 and
Godefroid 1(;od90. GW)l and Yoneda [YTK91) cannot be effectivelv
applied to this example or to other speed in(lependent circuits. because
in all states. all enabled transitions are in conflict with some disabled
transition. Thus no transition can be statically guaranteed to be per-
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User
req lack

iesD

Figure 6.S: Distributed mutual exclusion circuit

sistent. Experiments by Holger Schlingloff' have confirmed this to be
the case. It is possible. perhaps, that some more clever static analvsis
technique could be used to show that some transitions are persistentr.
in which case these methods coulhl be appliedl to some effect.

Finally, in chapter 2. we saw that the symbolic modei clheckiru,_
method had cubic time comlplexitv" and linear space complexity, using
a simultaneous model. Burch anl Long: have obtained o( re' time
complexity for this circuit using symbolic model checking with a ruodi-
fied search order (cf. section 2.8). This method requires some hand op-
timization, however. In any' event, it appears that the symbolic model
checking method yields somewhat beotter ,asymptotic performance tor
the DME circuit, though both methods effectively solve the state ex-

plosion problem.

SPersonal communication
SPersonal communication
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number size of unfolding number of
of cells (transitions) reachable states

1 23 22
2 125 502
3 313 6579
4 604 75172
.5 101:3 802425

Table 6.2: Performance of ONU and DFT on hazard-detection problem
for the distributed mutual exclusion circuit

6.3 Deadlock and occurrence nets

Besides coverability, another interesting problem for Petri nets is the
question of deadlock. A terminal marking of a Petri net is one in
which no transitions are enabled. Reachability of a terminal (or dead-
locked) state cannot be framed in terms of the coverability problem.
However. since the unfolding represents all reachable markings, a net
has a reachable terminal marking if and only if its unfolding has a
reachable terminal marking. The problem of existence of a reachable
terminal marking of an occurrence net is NP-complete. This is eas-
ily shown by reduction from 3-SAT. To see this consider the formula
(x1 + y1 + z 1 )(x 2 + y2 + Z2) ... (, + !1 + z,) where each xi, y, and z, is
a positive or negative literal. Assume the formula has m variables. Let
the positive literals be l,...., 1,, and the negative literals be 1.
In polynomial time. we can construct a net which has a terminal mark-
ing if and only if the formula is satisfiable. The initial marking of the
net is a set of places { V. ',1 }. There is a place representing each
positive literal I,,._ 1, and each negative literal I.. For each
variable vi, there is a transition from vi to 1, and from vi to [,. For
each conjunct (x, + y, + z,). there is a transition c,, whose preset is
{,, y,, ;, }. In other words. the transition c, is enabled to fire if and
only if (x, + y, + z,) is false. Thus. some transition c, is enabled to fire
if and only if the whole formula is false. The postset of each transition

3Satisfiability of a Boolean forir ula in conjunctive normal form, with three lit-
erals in each conjunct.
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Figure 6.9: Reduction from :3-SA-T problem to a terminal marking prob-
lem.

c, is the single place {q}. and there is a transition from {q} to {'/}.

Thus. if any c, fires. the net may never reach a terminal marking. As a
result. there is a terminal marking of the net if and only if the formula

is satisfiable. For example. figure 6.9 shows the net constructed for tll
formula (a + b + ')(b + c + (I).

The reader may easily verify that the size of the unfolding of such
a net (up to the cutoff points) is linear in the size of the original ne.

In fact. it is essentially the same net. except the the place q occurs 1,
times in the unfolding. Since all reachable markings of the original net
occur as configurations of the unfolding. the unfolding has a terminal
marking if and only if the formula is satisfiable. Hence :3-SAT is P-timet

reducible to reachability of a terminal marking of an unfolding. Sin"
the configuration representina the terminal marking can be nuessed in

P-time in the size of the unfolding. and also t.sted in P-time. it follow,
that the problem is in NP. and hence NiP-complete.

Interestingly. however, the problemn is readily solved in practice even
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1 let B be the set of the cutoff points, T,
2 while B is not empty do
3 let t the the element of B with the fewest spoilers
4 if t has no spoilers, then backtrack
5 choose an element t' from the spoilers of t
6 add t' to T,
7 delete all transitions in conflict with T,
8 end do

Figure 6.10: Procedure to detect terminal marking.

for very large unfoldings, using an algorithm based on techniques of
constraint satisfaction search. The key observation which leads to this
algorithm is that there is no terminal marking exactly when all config-
urations the unfolding can reach some configuration containing a cutoff
point. This is simply because if there is no terminal marking, then all
configurations can reach a configuration which is arbitrarily large. A
configuration C' can reach a configuration containing transition t' if
and only if the union of C' and the local configuration of t' is a config-
uration. If it is not. then no set containing C' and t' is a configuration.
If the union is not a configuration. we will say that C' and t' are in
conflict. Hence. there is a terminal marking if and only if there is a
configuration which is in conflict with every cutoff point. The search
for such a configuration can be carried out using branch and bound
techniques. For example. if a configuration C' is in conflict with a cut-
off point t'. there must be a transition t' E C' which is in conflict with
some transition in the local configuration of t'. Such a transition t' will
be called a spoiler of t'.

There exists a configuration in conflict with all of the all of the
cutoff points (equivalently, there exists a terminal marking) if and only
if there exists a configuration containing a spoiler for every cutoff point.
The set of spoilers contained in this configuration will be called 1. The
algorithm of figure 6.10 uses branch and bound techniques to find such
a set T, if one exists.
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Note that in line 3 of the procedure, the cutoff point with the small-
est number of spoilers is chosen so that the number of choices in line 5
is minimized. Whenever a spoiler for a given cutoff point is chosen to
belong to T, in line 5, everything in conflict with T, is eliminated from
future consideration in line 7. Note that the cutoff points in conflict
with T, are also eliminated, which cuts down on the amount of future
branching. Whenever there is a cutoff point with no remaining spoilers.
the procedure backtracks. from line 4 to the most recent occurrence of
line 5 where there are remaining choices. If there are no remaining
choices, the procedure fails. Of course. when backtracking occurs. the
the net is also returned to the state it was in at the point where ex-
ecution is being resumed. This backtracking is easily implemented by
keeping a stack of the remaining choices for P in each iteration of the
loop. and marking each transition in the net with the level of the stack
at the time it was "removed". Interestingly. if the procedure terminates
successfully. the remaining net has the property that every path leads to
a terminal marking of the original net X. This makes it straightforward
to extract a path leading to a terminal marking.

Obviously. because of the backtracking. this procedure is exponen-
tial (as it must be. if P ' A(P). However. this is only the worst case.
The dining philosophers serve as an example of a case in which the
exponential complexity is avoided. In fact. the procedure finds the ter-
minal marking in time which is linear in the number of philosophers.
This is easily seen bv examining the unfolding of the Dining Philoso-
phers net in figure 6.4. There is one ciutoff point in this net for each
process. Initially. each of these transitions has two spoilers. which cor-
respond to the two resources required to enter the critical region bein
granted to the two neighboring processes. Regardless of which cutoff
point is used first. the symmetry is then broken as the part of the net
in conflict with one of the two spoilers is removed. This removes, inl
particular. the transition which granted one of the resources to the first
philosopher, hence one of its neighbors now has only one spoiler. so
there is only one choice available the next time line 5 is reached.Af-
ter this spoiler is added to T,. the remaining neighbor of the seconI
philosopher now has only one spoiler. This process continutes withoitt
backtracking until it has conie full circle and the terminal niarkint is
found. Note that if the cutoff point with t' fewest spoilers were not
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chosen in line 3, the procedure might have examined an exponential
number of candidates for T, before a valid one was found.

In fact, using nets representing communication protocols as exam-
ples, this procedure has been successfully been applied to unfoldings
with more than 3000 transitions and 1000 cutoff points, where some
cutoff points had as many as 50 spoilers. It is clear that the branch
and bound technique quickly narrows down the number of choices in
these examples.

6.4 Relation to AI techniques

The occurrence net unfolding method. as applied to the coverability
problem. was inspired by so-called "least commitment" strategies for
Al planning problems, especially nonlinear planning techniques. Like
these strategies, the method falls into the category of searching in the
space of solutions (ie.. covering sequences for a given set), rather than
the space of the problem (ie., the reachable markings). Each partially
constructed unfolding represents some set of possible partial solutions
which may be extended to a complete solution. As in other constraint
satisfaction search methods, the method tries to eliminate as early as
possible those partial solutions which cannot be extended to complete
solutions. This is clone in the unfolding procedure by the elimination
of candidate transitions which have no local configuration. and also
by the cutoff points, which effectively discard those partial solutions
which cannot be extended to a lowest cost (le., fewest transition) so-
lution. This is clone without unnecessarily committing to the order of
independent transitions. This makes the unfolding method somewhat
similar to constraint posting methods used in non-linear planning. Both
methods construct fairly similar structures, although non-linear plan-
ners. such as NOAH [Sac77I only represent one partial solution. while
the occurrence net represents all partial solutions. Non-linear planners
attempt to detect conflicts and eliminate them by posting additional
constraints on the solution or by modifying elements of the solution.
Non-linear planners also use heuristics to guide them towards a solu-
tion. and hence sometimes overconstrain the solution space and require
backtracking. For this reason. they are heuristically efficient. but would
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not be suitable for exhausting the solution space, as is required in au-
tomatic verification methods. In fact, NOAH is not even guaranteed to
find a solution where one exists. A later system called TWEAK [Cha87]
does guarantee a solution where one exists, but fails to terminate if no
solution exists. Since TWEAK does overconstrain the solution space.
exhaustive search could only be achieved by backtracking, even if a suit-
able termination condition were found. The unfolding procedure never
overconstrains the solution space, however, as conflicting transitions
may coexist in the unfolding. Hence. it (toes not backtrack.

6.5 Evaluation

When is unfolding a suitable strategy for problems in automatic veri-
fication? The most promising application is hazard checking for asyn-
chronous control circuits. In these circuits, the state explosion seems to
derive almost entirely from arbitrary interleavings of concurrent tran-
sitions. In such cases. the unfolding method can have a considerable
advantage over methods that search the entire state space..Note. how-
ever, that other methods based oil partial orders are not necessarily
effective in reducing the state explosion for these circuits. because of
the aforementioned problem of determining when transitions of the net
are persistent.

In general. any problem which call be posed in terms of ,'overabiltv
or deadlock in a Petri net model is a possible application of the in-
folding method. In addition, it is possible that heuristically efficienl
procedures can be found for deciding thle existence of an infinite firing
path in some A;-regular set, given an iiiifolding. In this case. specili-
cations framed as linear time temporal logic formulas. or -autlonliata
could be evaluated.
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Conclusion

What we have seen in the preceding chapters is that Ordered Binary
Decision Diagrams can be used as a representation in a wide variety
of automatic verification algorithms, in order to cope with the state
explosion problem. This can be done in a unified way by represent-
ing the algorithms in the Mu-Calculus fixed point notation. For fairly
diverse families of regularly structured systems, the CTL model check-
ing algorithm was observed to run in time and space which increased
polynomially in the size of the system, while the number of reachable
states increased exponentially. These results bear out a theoretical re-
sult bounding the OBDD representation of the transition relation for
such systems. Standard automatic verification algorithms would be un-
suitable for these examples because their complexity is proportional to
the number of reachable states.

Using OBDD based techniques. and a language suitable for the ab-
stract modeling of digital systems. it was possible to verify a fairly
complex industrial design for a cache consistency protocol. finding a
number of subtle errors in the process. The verification process is valu-
able not only because of the advantages of formalization and exhaustive
checking, but because it can find protocol errors more quickly than sim-
uilation. despite the exponential growth in states as the model increases
in size. The ability to isolate high level errors quickly shortens the loop
between design and verification, making it possible to experiment more
freely with alternative designs. and shortening the -'critical path" from
conceptualization to implementation.

[91
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By a technique of induction over processes. it is possible to prove
properties of a protocol which are independent of the number of pro-
cesses participating in the protocol. This type of proof requires a suf-
ficient understanding of the protocol on the part of the designer to
construct a process invariant. Invariants are difficult to find. but the
symbolic model checker provides an aid in this process by producing
counterexamples for unsound invariants. In the author's opinion. find-
ing a process invariant for a protocol is not only of value as a proof
technique -- the understanding of the protocol required to formulate
the invariant can lead to simpler and more elegant protocols. This is
another reason for formalizing and verifying a protocol before attempt-

ing to implement it.
The verification technique based on occurrence nets shows that OB-

DDs are not the only representation that can be used to avoid tile state
explosion problem. There are. in fact. certain advantages to the occur-
rence net based method for the example presented. since the memory
usage is small, and no hei ristic technique is required to produce a vari-
able ordering. Still. at this stage. the occurrence net method is certainly
not as well advanced as the svnibolic niodel checking method.

There are several areas where the current work falls short of the
goal of complete automatic verification of digital systems. In the case
of the Gigamax protocol. an abstract model of the protocol was veri-
fied and not the actual implementation. Verification of the implemen-
tation would have been impossible due to a lack of formal models of
the components of the system i.. standard devices. such as nIemorie .
registers. programmable logic, central processing units. 1tc.!. If such
models were available from the tmanufact urers. in principle the lm etliod
described in chapter .5 could be itsedi to .,how that the implementatioh
is simulated by the abstract model. [Hierarchical reasoning of this kill(
has been extensively studied by Iu rshan [urST. Umnfortunatelv. sin-
ulation does not preserve existential CTL properties such as absence
of deadlock. As mentioned previously. bisimulation equivalence, which
preserves all (TL properties. is too stronp_ for this purpose. since t lw
abstract models are necessarily non-,lt ernirist ic. and the actaml 1iii-
plementation cannot i and should not ) exhibit this mon-deterinnisl.
A practical technique of abstraction which preserves existeftial ('1I.
properties is needed if ex.stential properties are to be i)roved lisinti
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hierarchical reasoning.
There is also a need for heuristic strategies for generating process

invariants in inductive proofs. Marelly and Grumberg view the design
of the invariant as part of the design of the protocol. This is a use-
ful point of view, but some automated help beyond the generation of
counterexamples would be useful for this purpose.

Finally, this work concentrates on how to solve the verification prob-
* lem, once it has been formalized as the satisfaction of a temporal logic
formula by a finite model, or as an appropriate relation between finite
automata. There is, of course, a wide range of issues involved in for-
malizing the problem in the first place. For example, there is the ever
present danger that the specification itself is incorrect. In the case of
the very simple CTL formulas used to specify the Gigamax protocol,
this is perhaps not a severe problem. The abstraction that was used
to create a model for checking the sequential consistency property was.
however, not obviously correct.

In general, there is a clear need for complete mechanical checking
that the implementation of a processor or protocol matches the in-
tended architecture (user model). This requires first of all a definitive
model of the architecture - something that is currently lacking even for
standardized architectures in the public domain. Second there must be
a well defined criterion for determining what is a valid implementation
of the architecture. Loosely, an implementation of a processor is equiv-
alent to an architecture model if for all programs. the two machines
produce the same "answer". However, for many reasons, this equiva-
lence cannot be directly stated in terms of equivalence of finite state
machines. For one, most modern CPU architectures have no explicitly
defined notion of input and output. It is not adequate to view input
and output as the sequence of loads or stores observed at the memory
interface, since this sequence will differ among implementations (espe-
cially if the implementations contain cache memories, which is often the
case). Solutions to the formalization problem are needed, but cannot
be obtained by studying theoretical models alone. It is necessary to
carefullv consider what verification means in an engineering sense, as
well as a mathematical sense.

Despite the shortcomings of current verification technology, it is
clear that there are at least small areas of the problem space for which
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reasonable solutions exist, and these solutions can be put into practice
to positive effect in an industrial setting. Those involved in verification
research should perhaps take a closer look at engineering practice to
determine how well the verification solutions match up with real engi-
neering problems. This effort may lead not only to a more practical
theory of formal verification, but also to a rich source of theoretical
problems.



Appendix A

Semantics of SMV.1

This appendix defines the semantics of programs in the language SMV. 1.
which includes the subset SMV.0 plus the process keyword. In SMV.l.
we need to account for both the arbitrary interleaving of processes, and
the rules regarding when a variable may change value as a result of
executing a given process.

A.1 The model

The set N of names, is the set of all character strings made up of
the letters, the digits, the underscore and the minus sign characters,
beginning with a letter. The store L = Lv U LH is made up of two
disjoint. countably infinite sets of locations Lv and LH. We will call
the former the visible locations, and the latter the hidden locations.
The set of locations L is defined recursively. It is the least set such
that

1. if n E N, then n E Lv, and

2. if I E Lv and n E N, then L.n E Lv, and

3. if I E Lv, then .1 E LH.

The set of values V is the union of the integers in the range [-2 31 ,.231 - Li

and N, the set of names. A state x : L -V is a function from locations
to values. Let S = L , V be the set of all possible states.

195
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If p is a declaration, then its denotation (pJ is a quadruple (T, I, R, C).
The T component is a partial function from L to the finite subsets of
V. If 1 is a location, then T(1), when defined, is the type of I - the set
of values that can be assigned to location 1. The component I C S is
the set of initial states. The component R C S x S is the transition
relation. An asynchronous process is identified with a location r. which
has the value I in a given state exactly when the process is executing
in that state. The component C C L x L is the set of pairs (r. 1) such
that process r assigns the next value of location I.

A.2 Expressions
An expression denotes a function from states to finite subsets of I

according to tle following rules:

1. If v is a value, then [vj(,r) = {u-}.

2. If I is a location, then jI(.r) = {I()}.

3. If eI, e2 are expressions. and o is one of

+-. *, /m rod. >, >=. <. <=. =. &, I.->. <->

then

Tel 0 e2j(X) = f [01J(171- 1'2) 1I' i~~ t 1f(X)- I'l e jCA~(X)j

4. If e is an expression, then

5.eJ(r) = , c presi(x)s

5. If C1, e-2 are expressions.

l e, union = I, - I'2

6. If f . e,, are expressions.

ItIin t 2 j xI I ] i
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The functions denoted by +, -, *, / are the usual functions of arith-
metic modulo 232. The function denoted by mod is the positive re-
mainder of division mod 232. The function denoted by the relational
operators >, >, < and <= return 0 when the relation is false and 1 when
the relation is true, and are defined for numeric values only. For non-
numeric values, they return I. The equality operator = is defined for
all values, and returns 0 when they are unequal, and 1 when they are
equal. The functions denoted by the Boolean operators are & (for and).
I (for or). ! (for not), -> (for implies) and <-> (for logical equivalence)
are defined only for the values 0 and 1, and return . otherwise.

A.3 Assignments and definitions

There is no semantic difference between assignments and definitions.
If I is a location. and e is an expression. then the assignment I e:
denotes a quadruple (T, I, R. C'), where

L. T=O

2. I=S

3. R = {(x.,y) E .52 1(.r) E e(,r)}

4. C =

The assignment next(l) := e: denotes a triple (T. I. R) where

1. T=

2. = 5

3. ? = {(.c,y) E ' '2 .(running) : I(y) E e(x)}

4. C'= {(running, l)}

The assignment init(l) := e: denotes a triple (T, I, R) where

t. T=O

2. 1 = {.r ES I 1(x.) E tr)}

3. R = S'2

I. i'=0
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A.4 Variable declarations

If I is an identifier and v1 , V2,... , V are values, then

V AR I : VlV2,..., Vn};

denotes a quadruple (T, I. R, C) where

1. T= {(1,{vi, v2.... v,,})}

2. I = {x E S I x(l) E {v,v 2 .... V M})}

3. R = {(x,y) E S I x(l),y(I) E J{v.i '2 . ')}

4. C=@

A.5 Renaming

Let o : L -- L be a function from locations to locations. This in turn
induces a map 0 on states, such that for all states x and locations 1.

1 x)() = ,(0(1)).

If M = (T. I, R. C). then let o(.11) = (T'. 1'. R'. C') where

1. T'(0(1)) = T(1).

2. I' {.r I N-(r) E I and

3. R' = {(x,y) I (b(X), ((y)) E R}.

4. C'-- {(1(r).0(1)) I (r.1) E C}.

Note that the definition of T does not make sense if o maps two loc,-
tions with different types onto the same location. In this case. o( l) Is
a type error.
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A.6 Parallel composition

Let Mi = (Tt, I,, Ri, Ci) and M2 = (T2 , 12, R 2, C2 ). Let n and n 2 be

two distinct names. For I E 1,2, let Oi(l) = .ni.1 for all 1 E LH and

1() = I otherwise, and let Nl[ = ¢(Mi). The parallel composition

H = M, M2 i1f1 is defined as follows:

1. T =TuT

2. 1l1I nl12

3. R =, n R!

4. c = C'i U C!,

If d,d2, .... d are declarations, then Id, d, .. dki is the parallel

composition
Idi, II [,., 11 ... 1 dk]

A.7 Instantiation

Suppose that module A is defined as follows:

MODULE .4( a , n ....... n  B.) D

where n1 , n 2,....nk are distinct names and D is a sequence of declara-

tions. We first consider the variable declaration VAR r : (l, 12 . k);

where r. 11,l12,...k are visible locations. Let o be a renaming, such

that, for all 1 E Lv,

1. for all I < i < k: ,(nji = 1,. and o(ni.1) = l4.1.

2. o(.1)= .1

:3. for all n C_ N-{running. n 1. n.. . }. (D(n) = r.n. and o(n.1) =

r, n.1.

4. b(running) = running, o(running.!) = running.!
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Then [VAR r :A1,1,- 1) ()
Now we consider the declaration

VAR r :process A1,12.1)

Let 0 be a renaming, such that, for all 1 E Lv,

1. for all 1 < i'< k: 0(ni) 1j4, and d'(ni.l) 1j1

2. for all n E N - {nt, n2, . .. i-} 011) = r.n, and 0(n.1) .r 1 n!

3. 0(.1)= .1

Then [VAR r :process A(11, 12 ,. Ik):JJ 6 i(D).

A.8 Programs and interleaving

Suppose that module main is defined as follows:

MODULE main D

where D is a sequence of declarations andl [D] = (T. 1. R. C). The
number of processes executing in state .r Is

n,(x) = jjrj(x(r) = 1) A 31:- (r.1) E Ql.

The set of legal interleaving states is

Si x E S I t,(x) t}

The set of states in which location 1 is constrained to remain unchiangedl
Is

U(I) = x E S I [3r : (r. 1) E C]j A -'3r :[.1) E C A (x(r) =II

The denotation of the program Is a triple (T. 1'. R'). where

I. [P=[nlSt.

2. R' {(xjj) E R I x E SI A VI E L : (x 4- '(1) =;, x(l) = !()
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A.9 Specifications

Each program is associated with a Kripke structure which determines
the truth value of CTL formulas in the specification. The atomic propo-
sitions in this case are all the Boolean valued expressions. The Kripke
structure associated with a program whose denotation is the quadruple
(T, I, R) is a Kripke model K = (S. R, L') where

I. S is the set of states defined above.

2. R is the transition relation. and

3. if e is an expression, then

L'(e) = { E >1 [el(x) = {}}

The specification is a formula " in ('TL with fairness constraints. It is
satisfied exactly when K. so I for all so e I.
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