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Section 1

INTRODUCTION

An objective of the present research program was to develop a finite-element based
procedure for analysis of free-edge delamination specimens using through-the-thickness
elements and including both stretching and bending effects. This necessitates the use of
multilaver plate theories which can simultaneously consider bending and stretching.
Mualtilaver plate theories have been developed using assumptions on displacements or on
stresses. The former cluss of theories may be classified into two groups, viz.,

1. Theories based upon assumed variation of displacement as a polynomial in the
transverse coordinate over the entire thickness.
2. Theories based on assumption of piecewise linear variation of displacements
over the thickness with 'nodes’ at the interfacial surfaces.
The first group of the displacement theories has been found to be inadequate for repre-
sentation of behavior of compocsite laminates where the material properties along fiber
are significantly different from those in the directions across fiber. The second group
of theories, catled the discrete laminate theories, apparently is a better candidate for
further consideration. These discrete laminate theories have been described by Srinivas
[1] and Sun and Whitney [2), among others, and solution schemes have been proposed.
However, for arbitrary geometry and a largs number of layers one has to resort to
numerical procedures. The finite element method has been extensively used for the
analysis of plates ( e.g. Reddy [3] and [4], Davis [5] among others).
Davis and Mawenva {5] proposed a general finite element formulation using

quadratic, isoparametric, multilayer plate elements which allowed layers to deform




locally with no restriction imposed on the relative properties of the constituent layers.
Since this formulation considers the transverse shear deformation in all layers, it is
applicable to any arbitrarily layered plate. However, the stresses are discontinuous across
the interfaces.

As a starting point in the present research program, Davis and Mawenya’s approach
was used to develop a finite element solution for analysis of laminated plates. Davis
and Mawenya did not give details of the theoretical and numerical formulation they
used. In this report, the theory is restated in variational form, and an extension of
the general variational theory is specialized for implementation in a finite element
computer program. Its effectiveness for analysis of plates and also its inadequacy in
modelling stresses in free-edge delamination specimens are noted.

Section Il contains a summary of the equations governing bending and stretching
of laminated plates. In this section, the Kinematic, equilibrium, and constitutive
equations for a lamina are derived based on an extension of Mindlin's theory of plates.
The displacement field is assumed such that the rotation of each lamina is an
additional variable independent of transverse deflection. The set of coupled field
equations and interlaminar continuity conditions is written as a self-adjoint matrix of
operators. Consistent boundary conditions are identified, and a general variational
formulation for the purpose of finite element approximation to the problem s
developed.  Section I} discusses the finite element formulation and computer
implementation of the theory. Some illustrative examples and comparisons of results
against some alternative solution schemes are discussed in section IV. This section also
includes application of the procedure developed to analyse a multi-layer free-edge

delamination specimen.




Section II

BENDING AND STRETCHING OF LAMINATED PLATES

2.1 INTRODUCTION

Structural elements composed of an arbitrarv number of orthotropic layers can be
approximated by finite element procedures. In these composite elements, each layer may
have different thickness and/or elastic properties and different orientation of axes of
material symmetry. In the following, we summarize the governing equations for

bending of plates based on the following assumptions.

1. Loads are carried primarily by bending and stretching of the plate.
2. Sliding of one layer past another is impossible.
3. Plane sections normal to the undeformed surface of each layer remain plane

but not necessarily normal in the deformed configuration and the in-plane dis-
placements vary linearly over each layer.

4. The transverse displacement is independent of the transverse coordinate i.. the
transverse strain vanishes.

S. Deformations and rotations are small and the material is linear elastic so that
the linear theory of elasticity is applicable.

Since the neutral axis is a priori unknown, bending and stretching are coupled with

respect to an arbitrary plane of reference.

With the above assumptions, using the rectangular Cartesian reference frame, the
kinematic field variables consist of three displacement components for an arbitrary
point on a reference surface defined by a constant value of the transverse coordinate

in the reference (undeformed) configuration along with the values of the rotations of




segments of the ray along the transverse axis through this point defined by intersection
with interlaminar surfaces. The number of field variables, therefore, is 2m+3 where

m is the tota] number of layers.

2.2 EQUATIONS GOVERNING BENDING AND STRETCHING OF LAMINATED

PLATES

2.2.1 Introduction

The generalized equilibrium equations represent the integral, over the thickness, of
the three-dimensional equilibrium equations and of the first moment of the equilibrium
equation. The constitutive equations are stated for a linear elastic monoclinic material.
For implementation in a Ritz type finite element approximation procedure, the problem
is formulated as a set of self-adjoint field equations with consistent boundary operators.
The index notation is used throughout. Latin indices take on the range of values 1, 2,
and 3 whereas Greek indices take values 1 and 2. Subscripts following a subscripted
comma denote partial differentiation with respect to the coordinates defined by the
subscripts. Summation on repeated indices is implied except where indicated otherwise.
A pair of indices within parentheses denotes the symmetric part of the tensor described
by the subscripts and a single super- or subscript within parentheses denotes 'no sum'’
on that index.

The actual displacement vector at any point is a function of the coordinates (x,)
of the plate. Assumpfion of transverse displacement being independent of the

transverse coordinate x, makes it a function of (x.) only.




2.2.2 Kinematics

Components of the displacement vector for each lamina, assuming linear variation
of inplane displacement over the thickness of the lamina (Fig. 1), can be stated in the
form:

Wx) = v ) + 58 x) e))

K N _ 0 _
u, (x) = u (x ) = ulx)
lHere a rectangular Cartesian frame ol reference is used. X' are components of the

displacement vector, and v’ are the 'inplune’ displacements at the kth interface. ¢’

are the components of the rotation of the kth laver in the a—3 planes. For infinites-

imal elastic deformation ie., gu—’<<], the strain-displacement relationship is:
X
J
€ = 1w +u)=u @
(¥ e G.j)
Therefore,
)y . &) W), ) _ (k) ) )
af V(o.B)+x3 ¢(u.ﬁ) - eoB+x3 Kap
) _ 1, ()
€y = 0 +6.) (3)
w) _ _
€3 €, =0
where
)y _ )y _ 1, ()
€ =Vom = 3 Vost Ve (4)

&)y _ gy 1, ) )
Kap = Plopy = 5 Pug t Pp.)

Oy
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Figure I Configuration of a multilayer composite plate.




2.2.3 Equilibrium Equations

The three-dimensional equations of motion including body forces are:

o_(k) +f(~“=P(k) ;l'(ik) (5)

17, ¢

where o, are components of the Cauchy stress tensor and f, those of the body force

per unit volume. Equation (§) is difficult to satisfy exactly. To eliminate the

dependence on the coordinate x,, (5) can be restated in the form
Ty
f(o’.:‘,-,\'.'*ft"“l)(“ ;“.I‘Xx‘-:))n dx‘:' =0, n=0,1,...00. (6)
O

As an approximation. in gencral. (6) is enforced only for n=0,1. Higher order theories

would use higher values on n as well. Equation(é) for n=0 is:

a. For i=1,2, setting «'(x) = v"Ax,) + x*'¢*(x,) following (1)
g “ 1 “ a 3 a 3 g

H

PG L0, AR ) k) ) Ry Uy (6
j(a +o +f° -p v, —p (x3)¢°)dx3 =0

aff U al3
(4]
or
) L) k) (1) k) ) k) (k)
N et(o, =0 )+ F —P v —R ¢ =0 ¢)
where
Ty
wy _ Gl
Nog= | o..dx, (8)
(4]
t
Fif’:j.f:)dx';) 9
0
and
Iy
(LR = [ e ax (10)

=




b. For i=3.
(A) (x) (1)
f( o}o 331 f‘— )d’l _“
or

Qgi_‘_(on(k) —(l))_'_F(A) Pu) = (k) =0

where

U) U) m
u‘

0

U) f u) u)
0

For n=1, ie., taking the first moment, considering i=1,2.
1

aﬂ,ﬁ 013.3

or
Mff;,p“k a:(:f)—fo)+G(:)— RO .\;(:)—1(“ '432,”=0
where
t
M= [otiay
0
,
o= [ fox0as
0
and

t
6 _ jp(k)(x(;))zdx(;)
0

In the approximate the.ry considered, the first moment equation for i=3 is ignored.

o 4o OB R ) )y g (K N k)
[( +j‘a —p v, —p (x; )@ )xy )dx,’ =

(11)

(12)

(13)

(14)

15)

(16)

17)




To eliminate the time derivatives in (7), (11), and (14) and to include the initial
conditions, convolution of both sides of the equations with, g(t)=t, a function of time
is performed [8) and [9]. Equations (7), (11), and (14) can then be written in the

following form:

(k) k) k) () k) o ok) (k) , (&)
g N M+g*(o°,3 —0 g F —P g* v ~R gt ¢ =0 (18)
g,QLL:_,_g*(on(A) —(L))_’_g*F(l) P(A)g,, --(x-)zo (19)
M(l) g*ou *Q(”"" *G(U (« )g* 'v'(:)_l((-)g* &(ol)=0 (20)

where (*) represents the convolution product. Evaluating the convolution integrals for

terms involving time derivatives

MCrye)
&t W f ge-1) wlx r)dr

0

4
= f (¢-7) w¥dr
0

= :w“"(xp.o) +wx - w“"(xﬁ,o) (21)

where W*Xx,0) and w*Ax,0) are, respectively, the initial conditions for transverse

velocity and displacement. Similarly,

g V= =90 00— vk 0+ v a0 (22)

g d = z¢‘“(x 0= x 0 + o (23)
Let

X9 = PO v Ux, 0-w(x  0)) (24)

Y =P = 5% 0v x  0- RY — £ $x 0}, 0)] (25)

2= -RO1= 500 0~ 2 O = 11 =1 60 0x  0)—4 2 x 10)] (26)

Substituting (24) through (26) into (18) through (20




(4) ou) (1) u; o)

g0 +gr D4 g1 =P e X =0 27
g*Nu;ﬁ+ *(g” (;)_ (“)+g*l' (u (u R(x)¢(t)+y(x) (28)
g*M(“ +1, g"‘d +{&) g*Q“)+g*Gf:)—R“)v:) (A)¢(l)+Z(l) (29)

Egs. (27) through (29) are the spatial equilibrium equations for the motion of each

lamina of the laminated plate in terms of laminar force resultants.

2.2.4 Constitutive Equations

2.2.4.1 Stress-Strain Relations for Linear Elastic Materials

A material is said to be ideally elastic if the material completely recovers its
original shape upon the removal of the forces causing the deformation. The generalized
Hooke's law relates the nine components of stress and the nine components of strain
by a linear relation. Assuming an initially unstressed reference configuration, and a
rectangular Cartesian reference frame, this can be expressed as:

o,=E .., (30)

where E, ,, are components of fourth rank isothermal elasticity tensor. Owing to
symmetry of O, ie., in the absence of body couples, we have:

E =E._ (31)

ijkt Jikt
Furthermore since €,=¢€,:

E _=E. (32)

ijkil ijlk
If a strain energy function exists then

E , =Ey (33)

For a monoclinic system with two orthogonal planes of symmetry the stress-strain
relations for any layer k in the reduced form with respect to a global plane of

reference (second rank tensors written in vector form) are:
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ohl [N Bl
0(;2) P(;Z)Il P(z‘z'zz
el [, 2,
oh P o
ol o o
o (B B

E.U)

ll33

(&)
E "233

Eu)

3333

0 E(k)

2323

k)
0 E(|323
E(k)

1233

(4) ()

Y E e
0 I:(:;IZ (2‘2)
N
Bp0 |odd
Exxka)n 0 26(3
Y E(I‘Z)IZ (1‘2)

Lquation (34) can be written in the indicial form as:

W o W W
of E Byﬁeyl'+l‘oﬂ33 33
) _ ~Aqdl) (0
o, = 21,Mﬂ '3
K _ KK ) )
033 = Eg306,0 1 Eyzzi€,

Solving (37) for € and substituting into (35)

(&) _ yold) (&) £) \k)
O™ opyaéya"'E(opsa 33
where
)
L) (k) E(aﬂ33 EM)
oyt = Eapys = TGy “33y6
3333
and
)
7 E 533
0833 73]
Eyys4

Substituting (3) into (38), (36), and (37):

w) _
of

(l:) E(l:)
(k) E(k) (&) E(L)

We note here that the assumption of )’

k) (&)
afyeyb + E(

a3yl

(k) (k)+E(k) (A)

opys X3 Kap

( (k)+¢(‘:))

aﬁJ3

&) (L) E(L) (k)
33y8 yb 33yb X3 yb

3333 33
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(34)

(35)

(36)

37

(38)

(39)

(40)

(41)

(42)

(43)

constant over the thickness of each lamina,




implies ) (x,)=w"Yx)), €5 =0. This would result in the terms containing €5

dropping from (43). We also note that this would mean that (37) and (35) would

(3] (%)

not contain €y and, therefore, there would be no question of eliminating €;; between

these two equations. However, most plate theories suffer from this defect viz. €, is

eliminated in the constitutive equations (35) through (37) but is set equal to zero in

the equation for o, i.e., (43).

2.2.4.2 Constitutive Relations for Force and Moment Resultants
Substituting o) from (35) into (8) and (15) and carrying out the integration, the

following equations are obtained:

(k) ) ) (K} (k)

N s = Asgyeeys T Bogyinys (34)

M:.(; = B, pyse(:;"'D( p,axi‘g (45)
where

Ko = [ B 5.8 1055 »
Substituting o' from (42) into (12), and carrving out the integration gives:

09 = 6% (w4 %) “n

o o3y3

where

G = j'E«) (n (48)

0373 0373

The quantities MY, 0% N are the ‘laminar resuitants. It is to be noticed that
whereas corresponding quantities for the entire laminate are obtained by simple addition

of 0¥ and N¥), M_, is the total moment including contribution due to N% | ie.,

z (l) (49)

12




n

_ (4
N, = YN, (50)

[
_ H (‘) n (‘)
M =2 M +3¥ N, T, (51)
k=1 k=1
where T, is the distance of thc center of the kth layer from the point of application

of the resultant N,

2.2.5 The Interlaminar Continuity Equations

For the continuity of tractions and displucements to be satisfied

iy [

g .'=0, (52)
Vbl = (53)
wm = w(ul) (54)
and
o =ay” (55)
where
a¥’ = components of the shearing stress at the top of the kth layer.
o' = components of the shearing stress at the bottom of the (k+1)th layer.
v* = components of the in-plane displacement for the kth interface.
@' = components of the rotation of the kth layer.

2.2.6 Summary of Field Equations in Convolution Form

For self-adjointness of the set of operators consisting of those appearing in the
kinematics equations, the constitutive relations, the equilibrium equations, and the
continuity equations, poting that the equilibrium equations had to be transformed (27)
through (29), it is necessarv to express the remaining field equations in convolution

form as well. 1e.
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a.

W) e

J:quilibrium Equations ((27) through (29))

Vi (g

(4) e (
g0, ., +g‘(o‘n —o,, Jtg ¥, =P +X =0

) (&) () (&) (£) 14) (4) () W) _
g*Noﬂ-ﬁ+g*(Uo3 _003 )+g*}‘n -r v(\ —R d)u +Y =0

) +{t) (4) (4) () &) ) (&) (&)
g’*MmM+t‘_g’*cra3 —g‘*Qu +g*Go —R v, -1 ¢0 +7 =

b. Kinematic Relations ((2) through (4))

C.

w _ 1 (1) (*)
ge,, = _2’3*(V.../<+vn,u)

wy _ 1 ) (i)

Ky T 38*(‘1’“.& té,.)
e, = g W+

Constitutive lquations ((44), (45) and (47))

() _ ) &) (%)
g"NaB - g*Aoﬁyf)eyb +g*BoBy6Kyb

(k) _ (&) (&) ()
g*Moﬁ - g*BoBybey& +g¥DaBy6Ky8

(k) _ %) )
g0, = g*Gﬁﬂ(zeﬂ)

d. Continuity Equations ((52) through (55))

+4) ~(h+1)

80, =80,

(k+1)

(L) W) _
gv o+, g’gbo =g*v,

g*w“) - g,w(x«l)
HE) 1)
f“ss . 3*033

The field operators, for layer k, in self-adjint form are:

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)




{4

-PT o gt -R"" 0 0 0 0 0
) (f)
O g'Aa.g 0 gBuy, O 0 0 0
gL g* 0 0 0 0 0 0 0
kY 0 o -1“0 gL 0 0 -g*
(&) (&)
(=) FPesnw 0 0 gDugpgt 0 0 0 (69)
0 0 0 -g*L g* 0 0 0 0
0 o 0 0 0 o -F“ o 3*5‘3-
0]
(£)
0 0 0 0 0 0 0 -8*G,, , &*
00 0 g 0 0 - _(% g* 0

where

(8 9 45

=1 9
L=36, s 0

The domain of the operators is the direct-sum space, under the convolution product, of

the spaces consisting of admissible v, N ¢ &% ME wh 2% ,0%, in that
order. The operators in (69) are the ones in (57), (62), (59), (58), (63), (60), (56), (64),
and (61) excluding those associated with interlaminar tractions. The displacement
continuity (66) and (67) can be directly incorporated in the system of equations. At
the same time, addition of operators associated with the interlaminar traction completes
the set of field equations for the system. Traction continuity ((65) and (68)) is

implicitly satisfied by using only one set of tractions for each interface. The system

set of field equations then has the form:

(A") (") 1 (P44}
0
(8 (o] ¢ (o) :p}}“’
(€Y 147 (8] (0] W™ | Lo
: ) : = (70)
’ ' ‘ i ] {P}(N-l)
(N- 3T N (N-1)
[()] [B ] [O]l\) ! [((\? {o;\) } {0}
[ (A P ) (P ™)
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or, svymbolically,

XUyt = {z}

Here
. 001000 00
Bf=ff 00U (71)
000 00g 00
»_|[e000000 00
=€ (12
() 0 00000-g*00 )
W = <0 N L2 o
UNWT _ ) _-ik)
o'} = <05 ,0,,> (74)
{PY = < =v",0,0,g560 =2 0,0,g 1~ x" 0,05 (75)
{of = <0,0> (76)
@ = <g2¢7,0,0,0,0,0,¢%;,0,0> (77)
™) = <-g0.",0,0,—1,6%0.",0,0,-g%0,".0,0> (78)
0
R

Continuity of tractions is ensured explicitly by using the interfacial traction as the

-(k) k1)

field variable [c")] in the manner expressed by (70), ie., 0" = o3 pa

and o,, do not
appear as field variables. The operators [B“’],IC'"*)) and their adjoints [B“7T ,[C*T
represent coupling between field equations for the lavers and the continuity of
interlayer displacements. Explicitly, for the interface between the kth and the (k+1xth

fayer; these have the form
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‘(kl
| ()
all
T
Vos LK) k)
(%) ar;-)
F 0 [ o
X @ |k
° 0 (k) ") k)
k et
(af® 1,8° 0 lo) Mg 86, =2
o o KO o
0 ) Ze(l) 0
i o3 g POy %)
0 & Ik(k) 3
0o o0 @ 0
0 o0 “3) 0
001,600 00000 0 20000 00 00 :’“ o
{3
0000 0 0,000 0 0 0000 o o0f3® |19
v 0 ‘(ykon E,}-flkal)_).(kd)
O 0 p(.(wl) €)
o 0 B o
Ak+1)
o 0 f\‘f,‘,;l Gtk
jo) 0 0 faf4-D gtkeD e
0O 0 « g
(k1)
o -z Ko
WETRIRNIRY
o 0 Ak & Fls X
0O o «B 0
o 0 w(k#l) lO
o o0 (k+1) )
Zem3 X
Q(kd)
a
(k+1)
a3
(k+1)
a3

2.2.7 Self-adjointness of the Operator Matrix
For the operator matrix [X] to be self-adjoint, a sufficient condition is that the
elements of X satisfy the relationship

< f,,X'.Jgj > = <gl,Xﬁ.f’. > p+ Boundary terms
where <, >, is a bilinear mapping over the space of functions defined over the

region R. The elements of X satisfy this requirement in the sense of inner product

defined as

<f.g> = [ f0gar
R

Specifically, if the operator matrix A" is self-adjoint and (B, [B“T);, (C* [C*T)

constitute adjoint pairs, [X] is self-adjoint. Considering A,, and A,, for the kth layer,
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based on Green's theorem (Kreyszig [1979]):

(L) (k) - () («)
<V, 8 Nogg> 00 =~ <Nego 8 Vi)™ oo (80)

(&) (&)

(£) (&)
+ <Nm‘3'r)ﬁ,g’*vo >542m+ <v, g*N

af nﬂ > stik)

*) (k)y (*) Wy
+ <N _gM5.8 (V) >s‘;’+ <w, ,g"(Nap)nB>#)

Similarly for A, and A

() ) - ) )
<Py B M s> 0 =T <M 58" ¢'<u.m>pm (81)

(&) (1) (L) )
+ <M°’ﬁnﬂ,g*¢" >s(“+ <¢, ,g*Manb>§“,
4 Y

(k) (N () Uy
+<M ;1.8 ) >s:,,,+ <@, M N>,
, Sy

and for A, and A,

(k) (k) - (k) (k)
<w ’rQM >R(k) == <Qa !g‘wn >R(k) (82)
(£) (£) (*) (k)
+<Qa Ny &' W >s6+ <w ,g*Q n°'>s‘"
s

(k)

+<Q¥n Wy > ot < w, g (0¥ n > go

The remaining elements of [A]*’ constitute algebraic operators which are self-adjoint or
consist of adjoint pairs. The adjointness of [B*] and [B*T, and of [C*")} and [C“T is

obvious.

2.28 Consistent Boundary Conditions
Referring to Sandhu [1975], consistent boundary conditions for the problem are:
gC Ny ==gNyn, o 5
FCOM =—gMn, on 5P
gl =— g0 on SP (83)

g‘C(;)v(:) = g‘OS)nB on S(,“

18




LK) @) ()
gClo, =g'd, M on S,

%) (K) )

g*C(6 W= gt on S,

where C°,C,CP,CP.CY, and C are the consistent boundary operators and
(&) k) __ olk) () _ &) (k) _ olk)
SPusY = sPusy = sVusY = §

() m ) _ K)  ol6) Q) o~ GHA)
SNS, =85, NS, " =85,'NS"=¢
Explicitly,
WY _ ) )
C,=C =C = uR

LY ) )
(,2 ‘C4 —(,b =My

Corresponding internal jump discontinuity conditions are:
8 p
£) 5y _ AL) )
g"(C‘l N =—g*(g" ) on S,
) 2 Ky _ k) (%)
g*(C(3 M) =—g(gy) on S,
£} k) A6) )
g (V0¥ = —g2 @Yy on s%
g COVy =g on sY (84)
g CVYy =g g%y on ¥
g*(d:)w(“)' =g*(g'(‘f)) on S('(:.)
Here 81,85, ....S." represent surfaces imbedded in the interior of the region R. A
prime over any quantity denotes the jump in that quantity across the surface of
interest, e.g.
’ + —
f=f-f
where + denote the two sides of the interior surface. Quantities g'f'), i=1, 2, .., 6,

denote the specified values of the jump discontinuities.
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2.3 VARIATIONAL FORMULATION OF THE PROBLEM

2.3.1 The Basic Variational Formulation

Based on (A.20), the self-adjoint form of the field equations given in (70) the
boundary conditions (83), and the jump discontinuity conditions (84), the governing
function for the variational principle is:

N
- (k) L&) (k) (k)
Q=3 <u ATu -2p >,
k=1

-1 N
. ) -
+Y <uV B0 > ,“+Z<u‘“,c‘” o> (2.85)

k=2

Iy

N-1
. N .
+ Z < G(A).B(A) u(A)+C(A+|)u(A+|) >R(A)

D @5 g <y

—-2<u ,G'(N) > + Boundary terms
Substituting (70), (83), and (84) into (85), the explicit form of the function including

the boundary and the discontinuity conditions is:

(£) ) (Iz) (&) (£) (&)
+< eaﬂ,-g“A aBys y6+g‘N -g*'B aﬁy&xyb>k(k)

(k) (&)

%)
+<N(u g"‘v( p)+g*eaﬂ

(k) (lz) (L) k) (&) (k) (4) (&) (k)
+<¢a o -1 ¢ +g*MaM—g‘Q +2g*G +2Z27°> )
(k) (&) (k) (&) (l) (I:)
+<K.g —g*B aByd€ys -gD afy 76+g‘M ®

(l)

k) (¢)
+<M(°,p- 8*¢( p)+g' uﬁ (k)

#<w® o PR gl g pO 2X“)>Rm

(L) (4)

+<2e8) — G ‘“)+g*Q o
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+< (l) g*¢(‘) +g*(26(£) (k)}
N-1
(%) +k) (k) () (k) o)
(<9, 800>t <B g0 > yF <whgrall> o)
k=1

(%) (k) (k)
+Y A<y, \—gto, >t <w —gars > W

-1
+(k) (&) (&) (Aﬂ) +{k) ) (k+1)
+2:{<o'03 vt gt —gtv, > ot <Oy gtw —gtw >Rw}

(l) (1)

gt > L 2<w

(l)
8Y 03>

R

(M) N ) (N) +(N) (N) +HN)
—2<v ,-gto > —2<¢, -ty gto R(N)—2<w y—8* 0, >R(N)

+z{< WO g cON “)+2ﬁ“;1), sm+<Nu) g,,(d:)vg)__zog)%))w
2

+ <@, g“(C(;)Ime+2ﬂmnB)>s(k)+ <M‘” NCP P 26" )>s(,,

+<w? g0 +20, "a)>s‘*’+ < 0¥, WP -20%9)> )

S?)

N
+ T A< v PNy 42800 >t < Nep 8(CYvy =200 0>
k=1 u

+ <¢?),g‘((d;) (&)) +2H'(t)ﬂ5)>§k)+<M(“ 8,((6..(1) (l)) 2¢.(k)nﬂ)>

s(k)

+<w g (€O 420, 1)> ot <0F,gUC W ~2000)> )
S 6

Here we have used the notation 0¥ for o**" as explicitly stated in (52) and (55).
n

Theorem: The Gateaux differential of the function ! defined by (86) vanishes if

and only if (70) along with (83) and (84) are satisfied.
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Proof.
Let {z}={",& NY 82 &8, MO, %, e),00, 0%, 0%’} be an admissible state

corresponding to the set of field variables

&) )y _ (k) (Iz) (k) (l:) (k) (k) (k) k) (k) (k)
{ ’ } { aﬂ'N ¢ aﬁ' uﬁ'w ’eorJQ ’ a3’ }

Gateaux differential of the governing function (86) along the path & provided the
limit exists, is
(L)

5 Q(u)-2{< P, g Nogg =PV KO8  v20 FO+2Y"> (2.87)

L=}

9] &) (£)_p(4)
*N(OB.B kao ~R ¢0 >R(I:)

() ) (x ) (4) )

w8 A >

U)
s &8N opys8 €y 8 B g K s A®

(t) g‘N‘k) —g A(I:) z(L) (l) K_.(k)>

afyb yb afyb "yb " p0

&) (k) (k) k) k)
+ <N grel) - g («45)>x“)+<N(° g~ w,>ku,

(k) ) (&) (&) k) (k) (k) £)
+<pd oMY~ 0 ROV - IP¢P 42060 4220 >
® g ® 0 _ pO-6) _ (0).408)
+ <6, g My, g0 - R - 1Y% >

k) &) (k) (k) (k) (k)
+<R(ap'g'M(ap"3*B oBys €ys —gD ofyb y6>k(k)

(t) M(k) B(I:) _(k) —g* D(L) R(k) >

ofyd 76 aByb "y T gl
k) o) 0 ®) (k)
+ <M 8 Ky = 8 By > ot < Mg 8%~ 8 %) >

+< Wu).g"Q:l—Pu)Wu)*' 23*1;43&)+ 2X(k) > S+ < wl) fdk) (lc)w(k) >

+< 2 (k) g,Q(t) g'G“)

) ® n (k) (&)
a3y3 (26,30 > ot <2, -g'G (e ) >

al3y3

k) (&) (&) (&)
+<00 2 Qe g ¢~ W) >

+<Q(“ g*(zg(()) g*¢(l) g,_(l) “)
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N-1

+(k) (&) +(A ) <) +(L)
+ Y i< g0l >t <P, 4,800 > o, +<W gtoy
k=1

R(k)

(I:) +k) (k) +k) o
18Ty > ot <P T3>yt <w,gT, >x‘"}

N
k) (&) (&) ~k
A< —g o )> L <wl gl >
k=2

-(/:) (&) (&)
-g'T,, (k) T<w ', = g0y, >Rm}

W)y ) W _ x ko) “{h) ) (+1)
+Z{<U‘°3 gVt gr gt v > wt <Ty, gw - gt w > w

+ <o g 4y g grft D ot <o) gt - g*w“"”>k(k)}
< polV> > .- D gl >,
=2 <fomv"8'°':;v)>mm"2 <¢Lm Ng*“;(;v) > m—2 <", - a;(;,) '
+Z{< (k) N(k)ﬂp+2ﬁ(k)"lp)>sm (() N(ﬁ")p s‘“’
+ <N(:;. v(k),np 29(“"73 ot < N“) 8’“’“)"5 @

) ) ) ( (&
+ <M. g9l m, =260 > 4+ < M:;,g*as"

s(‘k) o nB > sst)

( (
+ <o g (~0¥n_+ 2Qf:’na)>s,,,- < w(").g'Qf)nﬁsw
H S

+ <08 g (W ~20%9 ) >t < o gwn > > w)
6

N
+ T <W = (NEY m 42N my)> =< v gt (Wen, > e

k=1

+ <N ey n - 2008 M6)> w* <NO.g&Fyn, > o




+ <3, g~ (MEY M, + 208 ) )> o™ < oo g (M) m, > o
+ <M. g (@, - 28 ny) > ot < Mg @), >
+ < (- Q¥ m_+2(0 ) n)> =< w g @)n > e
+< Q‘:).g’((ww)' nﬂ—z(w“'))' n,) >s‘;’ +< Qf),g*(w("))' n°>s§“’}

Similar to equations (80) through (82), the following relationships hold

“) N(:;B > =T “) Nm +<vu), ﬁ‘)nﬁ s
<¢{:)-8*M(:;ﬁ e <¢L‘; g*ﬁ(:g >t <¢(“ g*Mg;’f)ﬁ
WO T > == w005t <00 >,

<N Vg > 0 =~ <Niggn 7.5 o+ <NGp.g%,7m,>

Mu) (o.ﬁ) R(k) = <Mf:ﬂ?.ﬂ’g*$u>)z“’+ < Mf:;.g*ﬁ, s >S“’

(k) (k)

<Q§’.g‘w‘;’>km= —< QW > wt <@g w0n, >,

where S® = Boundary of R® U internal surfaces in R*®. Using these to eliminate

” _,), w‘" Nf,‘,’ ™ M?,",, and Qf,‘:’, from the Gateaux differential, one can write

N
8,0W) =2 F <o, g Nl - PV R4 4+ g FO 4> (2.88)

k=1

(t) &) (1) (4) (&)
N‘ g"‘A ap,{,g' 8‘8 aﬁy&xyb>k(k)

k) (l) (&)
+<N(aa’ g‘ q'ﬁ)>k(k)

(
+ <¢(k) f'Mf:;p g,Ql: (k) (lz) I(Ic)¢(k)+g,ck)+z(t) R”

_(t) (k) (k) (() (%) (k)
Rop'8 Mog—8" B g€, —8" D" 0K >

P

&) (A) (&)
+ < M‘aﬂ' B g*¢(° B) (k’
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(k) _ (l

+<w g 0"

+g*l(£)+x(t)> -

(&) (&) (&) &)
+<2€ ,,80, —¢'GC 0373(2673»#’

+<Q(k) g*(ze(k)) g*¢(k) g* (I.)

N-1
k) +k) (k) +&) (k) «k)
R T 070> ot <P grory >+ <W oyl > )
k=1
—(A) (k) -k
+22{<V R‘“+<W v_g*033>R(k)}

k) (k) () (/.u) +(k) () (4+1)
+2Z{<v BV, HLE B g, > gt <Ty g W —gtw >

R(k)
k=1

“)g"O'(” R! 2<W(l) g*O’_(l)

(N) +(N) (N) «N) (N) +N)
—2<Va ,-g"a’w3 & 2<¢ Ng"crm3 R‘”’-2<W ,—g*aas >1‘”’

»
23 {< Vf:),g'( NS; ng+ ﬁ(")np bs‘"

k) (k) £
+<N(°,pv§'(" N~ 90,7)5)>S§.)

+<? g (- M pnp+)91("nﬁ)> e

) (k) %)
+ <M. n,— 8, ) >
4

(
+< w“)'g'(—Q:)no+Qana)>s§l)

&) (&) (k)
+<Q‘a g{w n,—® "70)>5w
6

N
2 FL <9 g =N mg + By D>
k=1 !

) (&) .
+ <N Py —(o! 5>
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+ <3 g (= (M + (B )n)>
3

+ <M, g @ Iy — (6 ) mp) > w

+<w g (=@, +Q@) n)> 4
S

+< Q(:)’g*((w(l‘))t no _(w(l’)); na ) >s(k)

Linearity of the bilinear mapping < , > implies that §,Q(u) vanishes if all of
equations (70), (83), and (84) are satisfied. Also. nondegenerateness of the bilinear
mapping < , > implies that the Gateaux differential in equation (88) would vanish,
along an arbitrary path {@}, only if all the field and continuity equations and the

corresponding boundary conditions are satisfied.

2.3.2 Extended Variational Formulation

The solution of (70) must belong to the admissible domain of the operators for the
functional (86) to be meaningful. Using (A.21) along with (A.22) relaxation of the
order of differentiability of either component of the following pairs is possible, viz.,

(Q, or w), (M 0r @), and (N 0r v,). However, relaxation of differentiability could

not be done on both components of a pair. Some possibilities are indicated by (80)
throughd (82). Using these equations to eliminate one or the other of the adjoint pair
of operators results in reduction of the differentiability requirement on some of the
admissible field variables. This provides a basis for extension of the variational princi-
ple to a domain where the differentiability requirements are selectively relaxed. These
extended variational formulations also provide the basis for certain useful specializations
to reduce the number of field variables. To develop these extensions, it is convenient

to rearrange the terms in (86) to write the governing function as:
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STEP 1
For example, eliminating N_,, in (89) by using (80), the domain of N} is extended

from C' to C', and the function has the form
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STEP 2

Eliminating MY, in (90) using (81) leads to
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STEP 3

Eliminating Q) in (91) using (82) results in:

N
- (&) &) (&) (&) (k) £)
0, =23 (<) 2 FO+YY> +<¢.067+2>

k=1

(l)g* L)+X(A)

> o)

+Z{<v

(L)

(A) LA) R(t)¢(t) >

¢

(&) (‘)

R(k)

(&) (&)

t<e, ~g*A aBysEys —g'B aBy6'ys >R<’"

+2 <Nm g"em 8*"':,)5)> )

+< ¢(£) (L)vg)_l(t)¢(t-)>km

+ <x“) - g Bu)oﬂy& (;8) g D(“nﬂy6 (:5)>Ru)

+2< Mu;’g* « g*¢::)ﬂ) u)+ <w(”,—P(“w(“ >

31

—ZW(")) >

oy

)>.(L)

21

> .(A)
41

&) l(l‘)
-2%77) > &0

6

}

R(k)




® «) )
+ <22 ,,—g*GC 03)_33*(26),3)>R(k)

+2 <Q(K) g*(2e(l)) g*¢(l) * U)>R(k)} (92)
(t) +(k) (n +(1) (L) +(L)
+ Z{< 80> <ol gol > (+<wgold> )
(k) (k) ) -k
+ Y A<v  —g* > wt<w ,--g*0'33>R(k,}
- ( (
(L) %) ) _ RYRNY () (4) Lo (ked)
+Z{<0' g¥v, +i &P, —gtv + >R“_,+ <0, .g'w —gFw >R“:)}
(1) (l) ()
-2<v g0, -—2<w ,g”u’33 >
(A) +(N) (N) *(N) 4( A )
+2<v_ T gto, (~)+2<¢ L850, (N)+2<w +g* R‘N"
(k) (&) (%) (3]
+Z{ <v ﬂ"ﬁ>sw+<N s Mgs 28V, =9, )>

+ <¢(l) 2g*ﬁ( 'ﬂﬁ g(“+ <M(x)na,2g,(¢(x) u))>

6

) (k) (k) ( (&)
+<w?2g 00, > o+ <0, 280 -9 > )
S

(lz) k) («) (£} _ Alk)y
+2{ <v 28N ;m, 3“,+ <N 28% 00 =00 ) >
k=1 2

(&) «k) ) (*) ()
+ <4, .28* B ym, > w* <M. 2648 —8,) > 4
L]

+<w?,2000m, > o+ <0, 2% W=y > )
Si

&




2.3.3 Some Specialization
The function defined by (92) has no differentiability constraints on the stress
resultants N_,,M_;,Q,. This function also leads to certain useful specializations by

identically satisfying some of the field equations. Assuming that in (92), continuity of

w* is identically satisfied ie. normal displacement is restricted to be constant through

the thickness, ie., w* = w for all k (67),
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If the Kkinematic relations (59) through (61) are identically satisfied, equation (93) leads

to:
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If the kinematic boundary conditions in (83) and (84) are identically satisfied, equation

(94) reduces to
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Then, if the constitutive relations (62) through (64) are identically satisfied, Q(u)

specializes to
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If the interlaminar displacement continuity, (66), is identically satisfied, (96) reduces to:
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is no longer independent for k= 1, 2, .., n. Furthermore, if surface shear

tractions, surface shear couples, body forces, and body couples are neglected, ie.
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Explicitly, replacing, v\’ using the continuity of the displacements across the interface,

(1)

by v’ and ¢, Q, is written as:
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If inertia terms are ignored ie. for the static problem, it is not necessary to take

convolution. Then, the governing function is the functional:
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ne loads or couples applied to surfaces in the

N“,ﬁ“ and Q“ vanish. This gives the governing functional as
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This specialization, dropping the convolution with g(t), was used to set up the finite

element approximation discussed in the next section.
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Section 11l

FINITE ELEMENT FORMULATION

3.1 INTRODUCTION
The finite element method subdivides a given region R in an n-dimensional

euclidean space into a number of disjoint open subregion (elements) R,e=1,2,....m
] ] g

such that

R=1im YF® (102)
Here a superscripted bar over a quantity denotes its ‘closure’ i.e.

R=r o (103)
where JR° is the boundary of R'. Disjointness of these elements implies

R\ R=¢ if e=f (104)

A set of nodal points in Q defines the geometry of the elements. In the following
section a discretization of the domain by the finite element method is presented. The
formulation of the finite element is based on the variational principle governed by the

specialized functional €,

3.2 FINITE ELEMENT DISCRETIZATION

Let the field variables at any point within an element be represented by:
v ixp) = (H (xpHV )
(%) (Tl ()
$2%x) = (H(x oY) (105)

— 7 - 7
wx) = {H (x }{W)
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Here {M ), {11,},{H } are sets of interpolation functions relating the values of the
corresponding variable at the nodal points to an arbitrary point within the element and
(V) (@), and {W} are vectors of the apriori unknown values of v!',¢*’ , w at

the nodal points. Substitution of (105) into the governing functional (101) yields the

spatially discretized functional as:

a=3q
¢ 1

where, for N layers in the laminate:

A
Q, =-Y! f{v‘“”}’ on A NDH Y WV ek
T e
-1
+2 [ (ou JAVNE 1 ipi ) (&) ak
I k=]

k-1 k-1
i {* T gai ¢
+ }[' (E{Go}rti{DH¢})[A"](§:i (DH Y & DdR

+2 [ Y (on YBHDH ) (0] 4R
| 4

k-1
+2 f {©Y {DH ) [B“’](z:z,.{DH RECMP)S (106)
® =

+ f (@Y (i YD Hon ) et dr
.4

Y

(DH } (w}
+ [ <wi (el > C“NioH Y Au )Y lar )

e (H,) (o}

+2 [ (WY {H }P K
!

Here the symbol D) associated with I1 denotes appropriate differentiations; [A“’) [5*]

and [D"’] represent constitutive relations: and
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w _

vva

{DH Y A“UDH V' dk

k)
Rr

w _ * I e
K, = [ 1oH ) AN D Y ar
®

() * T 3

kS = f{DH¢}[A pH ) dr
) 4

k& = [pn Y8 UDn ) ar

Rt‘)

() (4) I .
Ky = f{1)11¢}[/; b ) dr
)

K

uy _ (€ : A ¢
Ky, = [ tpu 0" Npn ) dr
Rek)
k% = [{pH )c*"iDH ) ar
R'k)
) (& T ,p¢
k¥ = ){DHW}[G Wa ) dR
R

k) _ (& c
Ky, = EL{H¢}[G"]{H¢}’dR

R, = f (1 }P,dR
Rl’

where

[pH Y

[
ROC X

bH Y =)0 H,
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W,y

H' 0
wy=*
H¢
(H)={H)

Using the above definitions, equation (106) can be written as:

X il
Q =- ‘21{ WY IOV 2 IO 1 de )
, ~

A-1 -1
D MACRULIND IWRCH
i=]

i=1
k-1
2V KO + 240X (K1 T 1, 10))
i=1

+olY (k5 10" + WY (X2 1w}
HOO & T W)+ WY 1KY 110l
HolV kg 1o} ) (107)
+2{WY' R,
Gateaux differential of the governing functional (107), denoting by {V },{® }, {W} the

path of variations in {V }, {®}, {w} respectively, is:

N k-1
5,0, = -2 T UV Y KOV + VY (KO XY 1 (0D
i=1

k=1
k-1 ] k-1 ) k-1 ]
+ z e B (KT V) + z t B (KG, ) z t{0)

HPOT (OO + 180 (kT Vi)
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+EB (k) ](Zt @' })+(Zt ik, el

+ @Y 1K) HeWr+ WY (k) 1w)
¢ (&) (k) g
+@Y T W+ WY (k8 o)
3 (k) (&
+@Y (x5 1o} ) (108)

+2{WY R
The vanishing of the Gateaux differential §,Q (108) for arbitrary {V }, {®}, (W}

yields the following equations.

m

N
AT A-KE V)~ [K(”](szb D-(x e =0 (109)

vva
e=tWU=1

m

p3 z{ [KOT V- xS (z,,{o N-1x§ o)

e=1 k=] i=]

~ (&% VW) -1 1) ) . (110)

N k-1 k-1
+TA-F ko T v =3 o (k5 lZ' (@)~ Z' (Kool ] =
(=1 i=1 i=1

i=1
and

m

X
T | Z - 1w~k HeL 4R Y =0 (111)

e=1 Wi=])

Where the Z denotes the "direct stiffness” addition of contributions of all elements.

o)
Equations (109) through (111) can be written collectively in the following matrix
from.
(K1{U} = {R}

Here

nt

k)= 3 [T

e=1
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Rl
R,
{R} = )
R,
and
{u} =

where n is the total number of nodal

points in the svstem and we identify:

K” KIZ K:s K” .o Kl.nl .o K:..\' Kl..\wn K:,.\wz
Kzz Kzs K24 o Kz.m - Kz,zv Kz./vn Kz,mz
K33 Ksa - Ks.m - KS.N K3.1v+| Ks.zv*z
K“ - - Ka.m “ . Ku] K4.N+1 Ka,mz
KT = K
i+1,i+1
symmetric K NN K NN+ X NA+2
KN+|.NH K}Vu,,\uz
sz..\wz

where
~ (k)
&
Kll = Z[vad]
k=1
IA’12 =0

N
- (1) 0]
K:a =[x +‘nZ[Km]
=2

N
e n
K., = [K‘W,]+122[Kr¢ﬂ]
/=3
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{=N-1
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[ fAN-1 N
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(=N

(R )]
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LN 2
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(
Kll = Z[Kh/i(]
/-1

D
Ky = [KH;.«:]
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Kz.iﬂ = [ch)]

_ (N~2
KZ.N - {Ku@G )}

— (N1
KZ.N*I - [Kw¢C )]

— [
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it
K33 =[x

Ay’
_ (2 0
K, = t'[Kw]+l‘tZZ[K¢¢a]
=3

N
(i- ()]
Ky = ‘I[K;al,)]*"nt.'—n Z[K;»a]

I=i

N
(1) 2 (1)
awud P K 4 DK )
-2
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1N (A
Kyoaner = K GIHIK ]

UY = <vlw, 80,828, 08, >
and
X
0
R
wp

R}, =10 "

0

J

where the subscript j denotes the jth node.

3.3 SOLUTION PROCESS

Since the stiffness matrix is symmetric and banded, only the above-diagonal terms
in the global stiffness matrix are stored in the form of a rectangular matrix. The
first column of this matrix is the diagonal of the original matrix. The load vector is
set up according to (112). After the global stiffness matrix and load vectors are
assembled, the system of simultaneous equations is solved for the displacement degrees
of freedom using the Gaussian elimination process. The solution for nodal
displacements (87 of an element along with [B] matrix which is the clement
strain-displacement relation are used to calculate the stresses at the desired points of

the element. 1ie.,
€ =B& = 28‘8,
i=1

where n represents number of nodal points in the element.

oc=0B%

19




and [J] contains the elastic constants of the specific lamina. In (106) the specific [/]

is denoted by {DHY
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Section 1V

VERIFICATION AND APPLICATIONS

4.1 PROBLEM DESCRIPTION

The theory discussed in Sections 1l and IIl was implemented in a computer
program. ‘The computer program was written in lortran and designed to run on the
IBM3081 main-frame.

Light-noded serendipity, nine-noded Lagrangian, and four-noded Lagrangian quadri-
lateral isoparametric plate elements were used (Fig. 2). The nodal degrees of freedom
(the number of unknowns associated with each nodal point) depend upon the number
of layers in the laminate. If the number of layers is m, then the degree of freedom
is (2m+3) for each nodal point. This consists of three displacement components (u,v,w)
for a reference point on the ‘through the thickness' nodal point and rotations (¢, ¢,)
of each layer to describe completely the deformed geometry. Two versions of the pro-
gram were prepared. The first was an “incore” program wherein all the matrices
were generated and stored in core and the solution process did not require auxiliary
storage. This version was adequate for solution of example problems and verification
of the general approach. Later, a version was developed where the algebraic equations
were assembled and stored in blocks. This version was used for solution of a
22-laminae problem using the CRAY-XMP computer at the Ohio Supercomputer Center.
This implementation was verified by application to several example problems. These
examples included:

1. A simply supported square sandwich plate made of isotropic/orthotropic surface

lavers. The core was assumed to have a finite shear modulus but zero elastic




1
4 A 3 4 h
/ﬁ
4
&
1 (b 2

1 (a) 2
1. Element Q4: (a)Rectangular parent (b)lsoparametric counterpart

7 fG
8
1 2 3

(a)

2. Element Q8: (a)Rectangular parent (b)lsoparame ric counterpart

n

7 f
8 ol
1 2

(a) 1
3. Element Q9: (a)Rectangular parent (b)lsoparametnz counterpart

Figure 2@  Four, eight, and nine-noded quadrilateral element used.
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modulus in extension.
2. Free-edge delamination specimens
a. Angle-ply [+45]
b. Cross-ply [0/90]
The results were compared with available solutions. The etfect upon the accuracy of
the results of mesh refinement and sublayers subdivision was studied. The code was
used to determine stresses and deformations in a multi-ply free-edge delamination speci-

men.

4.1.1 Analysis of Plates

The multilaver plate finite element method was used to analyze a three layer,
sqyuare, simply supported sandwich plate uniformly loaded in the transverse direction.
The geometrical and material properties of the plates were (the top and bottom layers
are denoted by subscripts 1 and 3, the core by 2). This example was the same as
used by [$)

Plate dimensions;

Length of each side = 10 inches.

Thickness t| and ¢, of surface layers = 0.028 in
Thickness of core t, = 0.75 in
Material properties
a. Stiff layers are isotropic elastic.

E,=E,=10" b/in’

« G, = 3x10° W/in’
b. Stiff lavers are orthotropic elastic.

PN .
L"‘—l..]—l() Ib/in




E. = F = 4x10"biin’
G\vl = (;H-J ik ]'875x10(’ lb/mz
V,SV, = 0.3

4 40 . 2
G, ., = 3x10" Wb/in
4,0 . 2
G, _, = 12x10" W/in
l.oading
. 2
q=1 b/in
Due to double symmetry, only one quarter of the plate was analvzed in each case
(Fig. 3). When eight- and nine-noded elements were used four mesh discretiza ‘ons

viz.,, (1x1), (2X2), (4X4), and (8X8) were used. In the case of four-noded element, the

discretization for the quarter of the plate was extended to a finer (16x16) mesh.
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(One quarter of the plate)
Figure 3: Mesh configuration and boundary conditions for a quarter plate.
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4.1.2 Analysis of Four-Ply Free-Edge Delamination Specimens

The free-edge delamination specimen was treated as a special case of a plate
Fig(4). The boundary conditions considered were: fixed-fixed (longitudinal displacement
specified) at the longitudinal ends and free-free at the transverse edges. The results
for four-ply symmetric Jaminate with stacking [+45] and [0/90) were compared with
Pagano’s solution [10] which is based on a generalization of Reissner's theory. The
comparison covered only o .0, ,,and u,_ bhecause Pagano's solutions were available only
for these quantities.

The dimensions were specified as ab27 and b = 8h, where a, b, and h are
length, width, and thickness of each lamina, respectivelv. For proper comparison. the

material properties assumed were the same as in [10]).
6 .
E  =20x10" psi

E,, = E,, = 2.1x10° psi

22

=G .=G. = 6
G,,=G,, =G,, = .85x10° psi

12

Vi, =V 3=V, = 0.21

Following Pagano, N=2 indicates each lamina is treated as a single layer, and N=6
indicates that each lamina of thickness h is modeled by three sublayers with
thicknesses of h/3. For N=10 each lamina with thickness h is subdivided into five
sublayers. In going from three sublayers to {ive, only one of the sublayers was
subdivided into three new sublayers with thickness of h/9.

Two different types of mesh refinement were considered. In both types,
refinement was carried out in a manner such that the nodal points of the previous,
coarser mesh were a subset of the finer mesh. Refinement associated with longitudinal
direction was performed by dividing the domain in the longitudinal direction into the

stated number of equal length elements. In the case of the transverse direction, the




4
h Y4
E L -
Ve
A = constant plane
Figure 4:  Configuration for laminated coupon under uniaxial tension.
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refinement was in the form shown in Figs(5) and (6), 10 minimize the required
storage. In one sequence of refinements, shown in Fig(5), the width of the specimen
was first divided into five equal-width elements. Only the edge elements were refined
further, each time the edge elements being subdivided into three elements. This process
was continued. In the other sequence illustrated by Fig(6), an edge element was used
such that the (y/b) ratio for its center was 0.995. The remaining interior domain was
discretized into three strips. Refinement over the thickness was done on the central
sublayer while changing from N=6 to N=10, Fig(7¢) in order to get good estimates for

7,, and o,. On the other hand, to evaluate 7_. at the interface, discretization was

performed on the sublayer next to the interface, Fig.7d). Because of symmetric stacking

sequence, only two layers were used in the analysis.

4.1.3 Results of the Analysis
a. Rectangular Plates

Figs.(8) through (11) show a comparison of the approximate solution with that of
the sandwich plate theory as presented in [S] Fig(8) shows the convergence of the
central deflection of a sandwich plate with isotropic layers. Results using the Q8 and
the Q9 elements converge to the exact solution more rapidly than those from the Q4
element. The results obtained for one element, in the case of Q9 element, or four
elements in the case of Q8 elements, are superior to results obtained from 256 (16x16)
Q4 elements. Fig(9) shows that, for a given error limit, the amount of time needed
for Q8 and Q9 elements is considerably smaller than for Q4 elements. Results for a
sandwich plate with orthotropic layers are presented in Figs{(10) and (11). The same
observation, can be made as in the case of isotropic plates. The numerical results for
isotropic and orthotropic cases are presented .in Tables (1) and (2), respectively.

The program was also used to solve the isotropic problem where the shear

correction factor was ignored. The maximum central deflection for an 8x8 mesh, using
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P <

(a) Five subdivision across the width

v

(b) Nine subdivision across the width

v

(c) Thirteen subdivision across the width

g\

(etc.)

Figure 5: Sequence of mesh refinement across the width.




(a) Five subdivision across the width

Figure 6: Sequence of refinement across the width with a thinner edge ele-
ment.
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+45

-45

(a) Two sublayers (N=2)

+45

+45

+45

-45

-45

-45

(b) Six sublayers (N=6)

(c) Ten sublayers (N=10)

(d) Ten sublayers (N=10)

Figure 7:  Sequence of refinements over the thickness.

>y
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Figure 8 Number of subdomains along each side vs central deflection of a
square isotropic simply supported plate with No. of elements =

N
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Figure 9 CPU time vs error in central deflection with mesh refinement-
isotropic layers.
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Figure 10: Central deflection of a square orthotropic simply supported
sandwich plate.
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Figure 11 CPU time vs error in central deflection with mesh refinement-
orthotropic layers.
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Table I Numerical values for maximum deflection and the corresponding
CPU time for different types of elements(Isotropic case)

Number of Lhm
Elements Element Type CPU (Sec) imum deflection
1x1 0 0.046 0.000064402
2x2 Q4 0.154 0.00036986
4x4 Q4 0.605 0.00059685
8x8 Q4 2918 0.00069959
16x16 (0] 19.897 0.00072964
1x1 Qs 0.232 0.0006189
2x2 Qs 0.934 0.00073851
4x4 Qs 4.492 0.00073997
8x8 Q8 29.377 0.00074005
1x1 0.4 0.287 0.00073539
2x2 Q¥ 1.221 0.00074087
4x4 Q 6.516 0.00074008
8x8 Q 50.446 0.00074006

Series Solution 0.00074




Table 2: Numerical values for maximum deflection and the corresponding
CPU time for different types of elements(Orthotropic case)

Number of
Elements Elemeat Type CPU (Sec) Maximum deflection
1x1 Q4 0.046 0.00026536
2x2 Q4 0.146 0.00066988
4x4 (0] 0.591 0.0010218
8x8 Q4 2851 0.001167
16x16 Q4 19.071 0.0012078
1x1 Q8 0.228 0.0010439
2x2 Q8 0.954 0.0012194
4x4 Q8 4.497 0.0012215
8x8 Q8 29.467 0.0012216
1x1 QX 0.286 0.0012140
2x2 Q9 1.224 0.0012224
4x4 (0, 6.545 0.0012216
8x8 Q 50.267 0.0012216
Series Solution 0.00123
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Q8 element, was W_, = 0.00043601. The series solution for same problem gave almost
identical value. W __ = 0.00043605. Therefore, maximum deflection due to shear for

this plate would be:

W, = 0.000740 — 0.0004360 = 0.000304
max

b. Four-Ply Free-Edge Delamination Specimen

Values of o, presented in the subsequent sections were determined based on the
constitutive equations (36) and (37). Determination of these stress components is also
possible through the use of the equilibrium equations. lowever, inplane strain is
linear over an element and discontinuous at the nodal points, resulting in a
discontinuous set of inplane stresses. Furthermore, the numerical evaluation of o,
needs one numerical differentiation, and 0, needs two numerical differenti ion
Therefore, the use of numerical differentiation would not result in a satisfactory
estimate unless the number of elements in the y-direction is increased to a point where
the discontinuity of o,_, is reduced considerably. This would result in a very
expensive computational analysis. Therefore, it was more convenient to determine o,
from the constitutive relations.

i. Angle~— ply Laminate [+ 45]

Since the stresses were determined at the center of the elements, to determine the
predicted results at the center of the longitudinal dimension (x=L/2), an odd number

of elements were used when using Q8 or Q9 element. Because these elements have

midside nodes, displacements were also directly available at x= % In the case of Q4
element, two analyses had to be carried out. To obtain the solution for stresses, an
odd number of elements were used. However, as for the Q8 and Q9 elements, to

obtain the displacement results at (L./2), it was necessary to discretize the longitudinal

direction into an even number of elements. (odd number of nodal points) so that a
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set of nodal points would be located at x=§.

04 element

Fig. (12), shows plots of values of o, at mid-surface of the top lamina for mesh
refinement in the y-direction. The number of elements in the x-direction was kcpt
constant at 11 and over the thickness, each layer had constant rotation about the x-
and y-axes. As observed from the figure, accuracy of the axial stress is unaffected by
refinement in the y direction. However, the values do improve somewhat with
refinement in the Jongitudinal (x) direction (Figs. 13 and 14). Fig. (13) shows the
effect of refinement along x into 21 and 31 elements with the number of elements
along v Kept constant at 17. Fig. (14) shows the effect of refinement along x for 9
elements in the y-direction. Fig. (15) shows the effect of thickness refinement on o,
The results improve significantly with refinement near the free-edge. The same
observation can be made for 7, in Figs. (16) through (18) respectively. The calculated
values of o, improve slightly with refinement in the x-direction but are unaffected by
the refinement along the y and z-directions. Accuracy of 7, is not affected by
refinement in the longitudinal or the transverse directions, Figs. (19) through (21).

Accuracy of the stresses at the free-edge improves significantly with refinement
over the thickness, ie. as N is increased from 2 to 6. This refinement does not
troduce additional elements but increases the degree of freedom at each of the nodal
points by assuming rotation to be constant over a smaller portion of the thickness.
Comparison of results for different values of N indicates that N=6, in comparison to
N=2 and N=10, gives more accurate prediction for o, Fig. (15). Further refinement to
N=10, in comparison to N=2 and N=6, leads to better estimation of 7, Fig. (22) and
7.. Fig. (23). It should be mentioned that thickness refinement does not influence the
accuracy of stresses near Y.b=0. Stresses at the free-edge, however, are greatly

influenced.
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Figure 12: X-stress at the mid-surface of the top lamina with refinement

in v-direction; Angle-ply specimen.
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Figure 13 X-stress at the mid-surface of the top lamina with refinement
in x-d.rection: Angle plv specimen.
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X-stress at midsurface of the top laver with refinement in
x-direction; Angle-ply specimen, using edge elements.




+ QU ELEMENT N=10 21XS
A QU ELEMENT N=B 21XS
O QU ELEMENT N=2 21XS8

~ PRAGANB N=6

3.20

3.00

h)/ 108 €, psi
2.80

3
2

2.60
L

o

2.40

. 20

“%.00 0.20 0

.40

Y/B

0.60 0.80 1. 00

Figure 15: X-stress at midsurface of top layver with thickness refinement:

Angle-plv specimen.
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Comparison of accuracy for dif ferent types of elements

Accuracy of the stresses calculated using different types of elements was compared
and the execution time for each case noted. Four, eight, and nine-noded elements were
used. Two different mesh sizes viz. 9x9 and 21x9, with edge elements were used
with four-noded elements (Fig. 6). For eight and nine-noded elements only a 9x9
mesh with ‘edge elements’, i.e. elements along the edge having very small dimension in
the y-direction, was used. The CPU times on the Cray X-MP/28 for this set of
problems are shown in Table (3). Fig. (24), for N=2, shows that the Q4 element “vith
the 21x9 mesh predicts the axial stress at the free edge with 11.47% error as compared
0 the Q8 element with 11.09% and Q9 element with 10.99%. For N=6, Fig. (25), th~
error for the Q4 element reduced to 2.68%, for Q8 to 2.22%, and for Q9 to 2.12¢ fr
Fig. (26), for N=10, the error for Q4 is 5.72% and for Q8 is 5.11%. Throughou:, tac
Q4 element gives significant error near Y/b=0. Comparison of inplane shear stress
shows that the results at the free edge are predicted with approximately same accurzcy
(Fig. (27) through (29)) by all the elements. In the case of 7,, (Fig. (30) through
(32)), Q4 with 9x9 and 21x9 mesh refinement gave practically the same results
throughout the width of the specimen showing that the system is rather insensitive to
refinement along the length of the specimen.

Further, Q8 and Q9 gave the same result at the free edge but were more accurate
than Q4. In Fig. (33), the longitudinal displacement predicted at X=L/2 and the top
surface of the specimen using Q8 element is shown for N=2, N=6, and N=10. In Fig.
(34) and (35) corresponding results are shown for N=2 and N=6 in the case of (9 and
Q4 elements. It is seen, Fig. (33), that for N=2 the displacements are slightly
overpredicted at the free edge and for N=6 and N=10 displacements are slightly
underpredicted. Though the results improve with refinement from N=2 to N=6, further

improvement with refinement to N=10 15 not realized.




Table 3: Comparison of CPU time on X-MP/28 for Q4, Q8. and Q9 ele-
ments.

CPU on X-MP/28
N Element Mesh (SEC)
9X9 1.82
Q4
21X9 4.479
2
Qs 9Xx9 16.555
Q9 9X9 28.181
9X9 16.961
Q4
21X9 40.279
6
Qs 9X9 190.222
Qo 9X9 323.116
9Xx9 60.755
Q4
10 21X9 145.421
Q8 9X9 704.333
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ii. Cross-ply laminate [0 '90].

Values of 7. and o, were calculated for four-laver cross-ply [0/90) using
equations (2.33) and (2.34) as was done in the case of 7, for the angle-ply laminate
[+45].

As shown in Fig. (36) mesh refinement in the y-direction does not Jead to any
noticeable improvement in the calculated values of 7. Fig. (37) indicates that
approximation of 7. is not dependent on axial refinement either. Results obtained for
refinement through the thickness, Iig. (38), for 11x17 mesh, 17 being the number of
elements along the y-direction, indicate that thiz refinement profoundly influences the
results. However, the traction-free boundary condition at the free edge is not satisfied
and, therefore, the solution does not match Paganos results. The calculated valu -

o, are in error up to 30% even with refinement, for y/b equal to 0.8. Near the

AY
free-edge, the error is quite large. The values of o,, determined from equation (37)
were either exactly zero or close to zero. This is clearly wrong and represents a sei,ous

limitation of the theory.

4.1.4 Analysis of 22-Layer Free-Edge Delamination Specimen

The procedure developed was applied to a 22-layer coupon with fiber orientation
of [(25.5/—25.5),/90] which was previously solved by Chang [11] and Dandan [12]
The laminate width and ply thickness were taken as 1.0 inch and 0.00505 inch,
respectively. The material properties of a lamina were the same as used in previous

investigations [11] [12}

E,, =19.26*10° (psi)

- — 6 .
E,,= E,;, =132*10 (psi)
G,,=G,, =G, =083"10°" (psi)
vV,= ¥, =¥, =035
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Pue to the symmetry of the laminate, it was only necessary to consider 11 lamina in
the analysis. Based on the analysis performed on the four-layer coupon specimen, it
was concluded that refinement along the x-direction improves the accuracy of the
results more effectively than the refinement along the y-direction. For this reason, the
22-layer specimen was discretized into 22 elements in the x-direction and 13 in the
y-direction. All elements have the same dimensions in the x-direction. However, in
the y-direction, the edge elements have a width of 0.005 inch, with the remaining por-
tion discretized shown in Fig. (6). The formulations in [11] and [12] were based on a
two-dimensional model dependent on v- and 7 coordinates only. In [12), 22 elements
were used in the z-direction and 14 in the yv-direction. In the present investigation,
the discretization is along the x- and y-coordinates. Therefore, it was not feasib. to
match the mesh with that used in [11] and [12].

To compare the results with those given in [12} and [11]}, two different analyses
were performed. In [12] the results are given at the center of each layers. In the
present investigation, O,, components are calculated at the centers of the laminae, and
based upon the effectiveness of the refinement over the thickness noticed in the
analysis of the four-layer specimen, each layer is divided into three sublayers, forming
a total of 33 layers. o, is calculated at the interface in the present investigation.
However, in order that these results be comparable to those obtained in [12] and [11]
at the center of the lamina, each layer must be subdivided into two sublayers, forming
a total of 22 layers, producing the necessary interfaces. An average axial strain of
(0.95414*10°) was applied, which is the same as applied by Chang [11]

Fig. (39) shows the cross-section of the upper half of the symmetric laminate and
defines the location for plotting of results. Fig. (40) and Fig. (41) show the
distribution of o, along the center of the 11th and the 5th layer for different (y/B)

ratios. The results obtained from FSDT match those obtained from the higher order
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element [11] and the axisymmetric model [12]. Similarly, Fig. (42) shows that o, at
the center of the 11th layer can be obtained accurately, though the concentration of
the stress at the free-edge does not match that obtained by the higher order element
{11] Distribution of o,, along R,, as shown in Fig. (43), closely follows the result
given in [11} However, the o, stresses determined from the FSDT are in considerable
error near the free edge. Figs. (44) to (47) show the plots for o, along R1, RS, Ré,
R11, and Figs. (48) to (50) indicate the o,. along RS, R6é, and R11. It is evident that
both o, and o are predicted reasonably well by the FSDT in the regions y/B<0.7.
However, for y B>09, the predicted stresses for o,. even result in signs different
from those in [11] Results for o, do not satisfy the free-edge stress at y/B = 10.
Figures (51) through (53) show the through-the-thickness distribution of o., o, and
o, along the free-edge. The results from the FSDT do not agree with those from [11]

and [12] and are, apparently, quite wrong. Furthermore, Figs. (54) to (57) show the

distribution of o_ along R1, RS, R6, and R11. The stress distribution obtained from

the present approach is quite different from that given by [12].
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Figure 39: Cross-section of the upper half of the 22-layer coupon.
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4.1.5 Summary and Conclusions

1.

The Q8 and Q9 elements are superior to the (4 element for the analysis of
plates. However, for analysis of coupons under uniform extension, the per-
formance of the Q8 and Q9 elements was comparable to the Q4 element.
The CPU times needed for the Q8 and Q9 were much greater than required
for the analysis using Q4 elements. Thus, the Q4 element appears to give the
better combination of accuracy and economy of computational effort for cou-
pons.

To improve the predicted results for o, and 7, at y/b=0, refinement along
the longitudinal direction seems to be most effective. However, the solution
at the free-edge depended upon thickness refinement. The best results at the
free-edge for o, were for N=6, while for 7., they were for N=10.

The results for 7,. and 7. did not improve significantly with refinement in
Xx- or y-directions. The thickness refinement improved the predicted results at
the free-edge for 7,., but did not satisfy the traction-free boundary condition
at the free-edge for 7.

The predicted results for o. are all either zero or close to zero for the four-
layer delamination specimens. However, for the 22-layer delamination speci-
men, they were oscillatory along the z-coordinate and quite different from the
results obtained by Chang [11]} and Dandan [12]

The predicted displacements for free-edge delamination specimens are close to
Paganos results. For N=2 the displacement results are slightly overpredicted,

and for N=6 and N=10, the displacements are slightly underpredicted.




Section V

DISCUSSION

In the present research program, the thecretical studies carried out have included
two distinct approaches to the problem of stress analysis of composite laminates. One
approach consisted of a specialization of the three-dimensional elastostatics theory to the
case of free-edge delamination specimens under uniform axial strain in which the stress
field is independent of the longitudinal coordinate. The other approach consisted of
development and application of theories of laminated plates to the problem of fre:-eige
delamination. The present report covers study of the applicability of the existing
"discrete laminate theory” as one of the first steps in the research program. This
investigation has served to establish the pattern for later efforts on improved theories
for study of free-edge delamination of composite laminates.

The equations of the discrete laminate theory are well known. Thes®@ have beea
included in this report for completeness and for the purpnse of pointing out the
theoretical assumptions inherent in the theory. Mawenya and Davis [§] had previously
presented a finite element implementation of the theory, but they provided no details
and did not apply the theory to free-edge delamination.

The equations of the discrete laminate theory, essentially treating a laminate plate
as a stacking of Mindlin plates, assumes linear variation of the in-plane displacements
over the thickness of each layer ensuring continuity of displacements at the interfaces.
As part of the present research effort, the equations have been written in matrix form
such that the matrix of operators is self-adjoint in an appropriate linear vector space.

The general formulation was written for the dynamic problem in the convolution
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product space and then, for the elastostatic problem, a special form was defined in the
inner product space. For such systems of equations, standard techniques are available
for the construction of variational principles and for identification of consistent
boundary operators. General variational formulations with extensions and useful
specializations have been explicitly developed for the problem. One specialized
variational formulation, correspcnding to the popular potential energy theory, has been
used to develop finite element procedures.

Three different isoparametric finite element interpolation schemes viz., the
four-point Lagrangian, the nine-point lLagrangian, and the eight-point serendipity, have
been implemented in a computer program written initially for an IBM 3081 mainframe
computer and later modified to run on a CRAY-XMP/28. These finite element
procedures were verified through application to homogeneous as well as sandwich plate
problems for which solutions are available. Their effectiveness in modelling the
stress-distribution in free-edge delamination specimens has been examined.

The present investigation indicated that the discrete laminate theory of laminated
plates is quite effective in modelling displacements in plates subjected to arbitrary
transverse loads. The shear effects can be allowed for satisfactorily. For such
problems, the higher order elements viz, the nine-point Lagrangian and the eight-point
serendipity, performed better than the simple four-point Lagrangian element. However,
for application to free-edge delamination, the entire approach is inadequate. The stress
dictribution obtained for the example problems was reasonably good with respect to
in-plane stresses, but the theory could not give reasonable estimates of the other three
components of stress. The traction-free edge condition could not be modelled. The
stresses had to be calculated directly from the stress-strain relationships because use of
equilibrium equations for determination of shear stress and transverse stress would

involve numerical differentiation of quantities for which estimates only at a finite
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number of points were available. Mesh refinement to get a sufficiently large number
of points would make the cost of analysis prohibitive.

The studies showed that refinement along the length or the width of the specimen
had relatively little effect on the quality of results. Refinement over the thickness
ie, subdivision of each lamina into a number of sublayers, helped improve accuracy.
This suggests that a distribution of in-plane stresses of an order higher than linear
over the thickness of each lamina might represent the actual stress distribution more
closely.

In order to satisfy the traction-free conditions along the free-edges, it is necessary
that edge tractions appear as field variables in the set of field equations. An
alternative, of course, is to use Lagrange multiplier technigues to enforce constraint

For direct use of equilibrium equations to determine the shear stresses and the
direct transverse stress, explicit introduction of interface tractions as field variables in
the theory would avoid the need for expensive numerical differentiations. Also this
would ensure continuity of traction across interfaces and perhaps yield better
approximation for the interfacial stresses.

The discrete laminate theory discussed in this report is based on assumptions
regarding transverse and in-plane displacements. An alternative is to assume variation
of in-plane stresses and to derive the other stress components through equilibrium
equations. If force resultants appear in the expressions for stresses, and are regarded as
field wvariables of the problem, the constitutive relationships for these need to be
established. If it is assumed that there is no interfacial slip, it would be impossible
for any layer to deform independently of the others. This would necessarily lead to a
coupling in the constitutive relations for the force resultants of individual layers.

Pagano's [10] theory which uses the assumption of linear variation of in-plane

stress components over the thickness of each laver or sublayer, satisfies equilibrium




pointwise, satisfies constitutive equations and interfacial continuity of tractions as well
as displacements, and can satisfy traction boundasy conditions for free-edge delamination
specimens exactly, appears to be an appropriate approach for determination of stress
fields in composite laminate plates with natural boundary conditions. The case of
free-edge delamination specimens is a specialization of the general theory. The theory
has been difficult to use because of the large number of field variables involved and
limitations on computational capabilities. A research effort directed towards
development of finite element models based on Paganos theory or development of other

metheds of solution of the set of differential equations could be useful.
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Appendix A

VARIATIONAL FORMULATION

Often, obtaining an approximate solution to a coupled boundary value problem
relies on appropriate variational formulation. Following Sandhu's [6] [7] [8] [9],
extension of Mikhlin's [13] basic variational theorem to coupled linear boundary value
problems including nonhomogenous boundary condition, we present here a summary of
the basic concepts for setting up the wvariational formulation applicable to the problem

of laminated plates.

A.1  PRELIMINARIES

A.1.1 Boundary Value Problem
Consider the boundary value problem

Au=jf onR (A1)

Cu=g onQR (A.2)
where @R is the boundary of the open connected region R in an euclidean space. R is
the closure of R. A and C are linear bounded operators. Let V, and V,, be linear
vector spaces defined on the regions indicated by the subscripts, and W,,W,, be dense
subsets in V, and V,,, respectively. Then the differential operators A and C can be
regarded as the transformations

AW, -V, (A3)

C:Wak-*VM
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A.1.2  Bilinear Mapping
Let V and S be linear vector spaces. A bilinear mapping B:VxV — § assigns to
each ordered pair of vectors u,v€V an element in S. Furthermore, bilinearity is
satisfied for u,,u,,v,,v,,u,veV, if
Blou, +u,,v) = aBlu,,v) + Blu,,v) (A4)
Blu,av, +v,) = aBu,v )+ Bu,v,) (A.S)
where o is scalar. For convenience, we shall use the notation.

BR(u,v)= <u.v>, (A6)

To set up a variationul formulation, svmmetric, nondegenerate bilinear mappings are

used, i.e.,

<up> = <v,u>, (A.7)
and

<u,v> =0 forall vif and only if u=0 (A.8)

A.1.3  Self-Adjoint Operator

An operator A’ on V is said to be the adjoint of A With respect to symmetric

bilinear mapping B,:VxV — S, where S is a linear vector space, if
<u,Av>, = <v,Au>,+D,(v,u) (A9)
for all u and v € V and where D,(u,v) represents quantities associated Wwith

boundary gR of R. If A= A’ then A is said to be self-adjoint. If A is a self-adjoint
operator, then D, (v,u) is antisymmetric, ie.,
Du(v.u) = -I)m,(u,v) (A.10)

Furthermore, A is said to be symmetric with respect to the bilinear mapping, if

<u,Av>, = <v,Au>, (A.11)

The boundary operator (O is said to be consistent with the self-adjoint operator A if
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D,(viu)= <uCv>, —<v,Cu>,

Al4 Gateaux Differential

If Q:V—8, where V is such that if u, @€l’, u+ AZ€V for scalar A,

the Gateaux differential of € (u) along a path & is defined by

5. 0G) = lim 2wt AD) — 0w
u A—0 A

where Z is referred to as the path.

A2 THEOREM
For the field equations (A.1) we define

Q) = <u,Au>,—2<u,f>,

The Gateaux differential of (] is:

(A.12)

(A.13)

(A.14)

8 Q) =lim <u+Ad,Alu+Ai)> =2 <u+Aid,f>—<u,Aud> +2<u,f> (A.15)

A—O A

<u,Ai>+ <u,Au>-2<u,f>

2<u,Au—f>

The Gateau> differential vanishes at the solution u=u, where Au —f=0. Conversly,

if §,Q(u) vanishes for all & nondegeneracyv of < , > implies Au,—f =0 If the range

of the bilinear mapping is the real line, vanishing of the function @ would imply its

minimum, maximum, or stationary value, depending upon the operator A being positive,

negative or semi-definite.
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A3 LINEAR COUPLED PROBLEMS

The above discussion for a single-valued function u can be extended to the case of
several variables. If there are n variables, V is defined as the direct sum

V=V 4V, 4 +V, (A.16)
and an element u €V is an n-tuple (u,,u4,,....,u,) with 4, €V, for i=1, 2, ., n. A
? bilinear mapping on V is defined as

<uv> = <upv >+ <u,v> +<u,v,> (A.17)

where < , '>R is defined for components u,,v, of {u},{v ]} respectively.

4

If the field and boundary condition of a linear coupled boundary value problem

are:
Z Au=f onR (A.18)
J=1
Zc,.juj =g on §R  i=12..n (A.19)
J=1

the governing functional based on Egs. (A.18) and (A.19) is

n

0W=3 <u,) Au—2f>+¥ <u,Y C u—2g>, (A20)
J=1 i=

i1 =1 J=1

The set of operators A, is said to be self-adjoint with respect to the bilinear mapping,

if
<v,.,ZAqu>R = <Zuj.Aj,.vl.>R+DaR(uj.vi) (A21)
=1 J=1
. where Dy (u,,v,) represents quantities associated with boundary @R of R. The boundary

operators C,, are said to be consistent with the field operator A, if

Du(uj,v‘.) = Z < uj,C'" v, >~ <v, ZC,.juj >z (A.22)
23

=1
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Appendix B

SOLUTION OF SANDWICH PLATE

B.1 PRELIMINARIES
Based on Plantema {14]. the series solution for sandwich plate was calculated. In
this case, the bending of plates is assumed to be due to bending of stiff lavers and the
shear deformation of the core layer, so that
w=w, +w (B.1)
where the transverse load is the only applied load and the stiff layers are isotropic. w,

satisfies the equation:

DV'w,=gq (B2)
where
b Et)
12(1 - %)

and w,_ satisfies the equation:
—-sV’w =¢ (B.3)
where

. (‘z“n)zc

t 2

2
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B.2 METHOD OF SOLUTION
For a simply supported rectangular plate the transverse displacement due to

bending may be represented by Fourier series in the form:

wxy) = ¥ ¥ a,5in 25 sin T (B.4)
m=1 n=1 a
and corresponding load by:
qlx,y) = Z. an sin 22 sin 2L (B5)
Multiplying both sides of (B.S) by sin M7 sin n;ry and integrating over the domain,

for g(x,y)= g,

= 1%
qmn = 2
m mn

Substituting (B.4) and (B.S) into (B2) and evaluating a,, wy(xy) is:

169, & « sin(mmx/a)sin (nwy/b)
“ 35

wlxy) =
o by T ~ &~ mnl(m/a)? + (n/b)’)

(m,n=1,3,...) (B.6)

Similarly, (B.3) can be solved to yield:

164, « = sin(mwx/a)sin (n1ry/b)
( ) ) = e— ( » = 1, 3, ene )
ey s Z ; mn{(m/a)? + (n/b)’) e

The series solution was obtained through summation of 151 terms in the case of
isotropic sandwich plate for a=b=10 inches and ¢,=10 lb/in’. In the orthotropic case

the results given by Mawenya and Davis [5] were used for comparison purposes.
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