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Section I

INTRODUCTION

An objective of the present research program was to develop a finite-element based

procedure for analysis of free-edge delamination specimens using through-the-thickness

elements and including both stretching and bending effects. This necessitates the use of

multilaer plate theories wkhich can simultaneously consider bending and stretching.

Maltila yer plaie theories have been developed using assumptions on displacements or on

stresses. The former class of theories may be classified into two groups, viz.,

1. Theories based upon assumed variation of displacement as a polynomial in the

transverse coordinate over the entire thickness.

2. Theories based on assumption of piecewise linear variation of displacements

over the thickness with 'nodes' at the interfacial surfaces.

The first group of the displacement theories has been found to be inadequate for repre-

sentation of behavior of composite laminates where the material properties along fiber

are significantly different from those in the directions across fiber. The second group

of theories, called the discrete laminate theories, apparently is a better candidate for

further consideration. These discrete laminate theories have been described by Srinivas

[1] and Sun and Whitney [21 among others, and solution schemes have been proposed.

However, for arbitrary geometry and a larg- number of layers one has to resort to

numerical procedures. The finite element method has been extensively used for the

analysis of plates ( e.g. Reddy [3] and [41 Davis [5] among others).

Davis and Mawenya [5) proposed a general finite element formulation using

quadratic, isoparametric. multilayer plate elements which allowed layers to deform



locally with no restriction imposed on the relative properties of the constituent layers.

Since this formulation considers the transverse shear deformation in all lavers, it is

applicable to any arbitrarily layered plate. However, the stresses are discontinuous across

the interfaces.

As a starting point in the present research program, Davis and Mawenya's approach

was used to develop a finite element solution for analysis of laminated plates. Davis

and Mawenya did not give details of the theoretical and numerical formulation they

used. In this report, the theory is restated in variational form, and an extension of

the general variational theory is specialized for implementation in a finite element

computer program. Its effectiveness for analysis of plates and also its inadequac" in

modelling stresses in free-edge delamination specimens are noted.

Section II contains a summary of the equations governing bending and stretching

of laminated plates. In this section, the kinematic, equilibrium, and constitutive

equations for a lamina are derived based on an extension of Mindlin's theory of plates.

The displacement field is assumed such that the rotation of each lamina is an

additional variable independent of transverse deflection. The set of coupled field

equations and interlaminar continuity conditions is written as a self-adjoint matrix of

operators. Consistent boundary conditions are identified, and a general variational

formulation for the purpose of finite element approximation to the problem is

developed. Section III discusses the finite element formulation and computer

implementation of the theory. Some illustrative examples and comparisons of results

against some alternative solution schemes are discussed in section IV. This section also

includes application of the procedure developed to analyse a multi-layer free-edge

delamination specimen.
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Section II

BENDING AND STRETCHING OF LAMINATED PLATES

2.1 INTRODUCTION

Structural elements composed of an arbitrary number of orthotropic layers can be

approximated by finite element prxedures. In these composite elements, each layer may

have different thickness and/or elastic properties and different orientation of axes of

material symmetry. In the following, we summarize the governing equations for

bending of plates based on the following assumptions.

1. Loads are carried primarily by bending and stretching of the plate.

2. Sliding of one layer past another is impossible.

3. Plane sections normal to the undeformed surface of each layer remain plane

but not necessarily normal in the deformed configuration and the in-plane dis-

placements vary linearly over each layer.

4. The transverse displacement is independent of the transverse coordinate i.e. the

transverse strain vanishes.

5. Deformations and rotations are small and the material is linear elastic so that

the linear theory of elasticity is applicable.

Since the neutral axis is a priori unknown, bending and stretching are coupled with

respect to an arbitrary plane of reference.

With the above assumptions, using the rectangular Cartesian reference frame, the

kinematic field variables consist of three displacement components for an arbitrary

point on a reference surface defined by a constant value of the transverse coordinate

in the reference (undeformed) configuration along with the values of the rotations of

3



segments of the ray along the transverse axis through this point defined by intersection

with interlaminar surfaces. The number of field variables, therefore, is 2m+3 where

m is the total number of layers.

2.2 EQUATIONS GOVERNING BENDING AND STRETCHING OF LAMINATED

PLATES

2.2.1 Introduction

The generalized equilibrium equations represent the integral, over the thickness, of

the three-dimensional equilibrium equations and of the first moment of the equilibrium

equation. The constitutive equations are stated for a linear elastic monoclinic material.

For implementation in a Ritz type finite element approximation procedure, the problem

is formulated as a set of self-adjoint field equations with consistent boundary operators.

The index notation is used throughout. Latin indices take on the range of values 1, 2,

and 3 whereas Greek indices take values 1 and 2. Subscripts following a subscripted

comma denote partial differentiation with respect to the coordinates defined by the

subscripts. Summation on repeated indices is implied except where indicated otherwise.

A pair of indices within parentheses denotes the symmetric part of the tensor described

by the subscripts and a single super- or subscript within parentheses denotes 'no sum'

on that index.

The actual displacement vector at any point is a function of the coordinates (x,)

of the plate. Assumption of transverse displacement being independent of the

transverse coordinate x3 makes it a function of (x,) only.

4



2.2.2 Kinematics

(omponents of the displacement vector for each lamina, assuming linear variation

of inplane displacement over the thickness of the lamina (Fig. 1), can be stated in the

form:

U (x V ( ) + x(k)(4)(
(xf) (A) x) 1

(x 3 0 .30 A

Hfere a rectangular Cartesian frame of reference is used. ulk) are components of the

displacement vector, and v" are the 'inplane' displacements at the kth interface. -,1

are the components of the rotation of the kth layer in the a-3 planes. For infinites-

imal elastic deformation i.e., -' < < 1, the strain-displacement relationship is:
ax)

6 = 'u ilu. (2)
" 2 ": . =Id

Therefore,

(A) (A.) ( (() (A.) (A) (A)
C V(0,A) + 3 ( e., +X3 K,

() (A.)
a3 = (u3, +0.) (3)

U) C 0
33 633

where

(A) (A) 1 IA) , (A)(

(-) (A) I ,.)+( ))

5
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2.2.3 Equilibrium Equations

The three-dimensional equations of motion including body forces are:
(kC) + (k ? )-, -) .(5)

where o, are components of the Cauchy stress tensor and f, those of the body force

per unit volume. Equation (5) is difficult to satisfy exactly. To eliminate the

dependence on the coordinate x3, (5) can be restated in the form

U A -W (X (6
+ P u Xx )"dx = 0, n=O,1,. oo. (6)

As an approxim;tion. in general. (6) !s enforced only for n--0,1. Higher order theories

would use hioher values on n as wkell. Equation(6) for n=O is:

a. For i=1,2, setting ux) v'(x)+ '"A(X) folowing

(- ( ) , ()pO) ,A) , A ( ,)- ( )

or +a 3+f' p)~)j)dx =0
',Pl o3.3 " a 3 3

or

W -) -(W) A. ) () .(A) ( ()=

N +(o-* ~O)+F -P vC -R 0 (7)

where

N"wh fa, dx,, (8)

F" = dx (9)
0

and

(I-R f)= x3 d 00/

' ' R" ) = " p" (l, ' ) dx. ')(lo



b. For i=3.

-rk  
(
A ) (A ) () () )dxA)0

0

or

Q (k) + (o r k) - T ._)+ F W ) (k ) w u")= o ( )
a 033 33 3

where

k
P(A) /X) dX(A) (12)

(A) do A) aA (13)

0

For n=l, i.e., taking the first moment, considering i=1,2.

W (, . ) + k.,) Wo -.0) (k), (A-), W()((.)d (

J"oe.Pa _3+ V, fJ ~X iX 3 l )dX 0,0- o(0- 3,3
"1  

3 3 3

or

(W +U&) (A)(A.) WK "(A) (A) -- (A)=

MGA +tk ao) - QQ +Go R v - " k =0 (14)

where

l(A) a () (,U) (,U)=/ -- o 13x 3  x 3  ( 1 5 )

G() x ( o )- (()
* ., 13 x3  (16)

and 
4

t

--k) =x (k )2 d x ) (17)

In the approximate the, ry considered, the first moment equation for i=3 is ignored.

8



To eliminate the time derivatives in (7), (11), and (14) and to include the initial

conditions, convolution of both sides of the equations with, g(t)=t, a function of time

is performed [8] and [91 Equations (7), (11), and (14) can then be written in the

following form:

eN*+g -(e( )-+g*Fe i =0 (18)
.(k) -- +(A) -(k) . _ (A-) ,(0) (.

4 g*Q")g *(,o, '33 -"33 ) .3 P/g " =0 (19)

g A A . ,o3 9 ) ,. G, ,/' -R l , g* " 0 (20)

where (*) represents the convolution prxiuct. Fivaluating the convolution integrals for

terms involving time derivatives

*(k=)Jo gt-r) (,r)dr

0

=f(t-_r) (k )dr
0

= - t;'('x 0,o) + w(k)(x ,t) -w )(x 00) (21)

where ,(kkxOO) and w°k)xa,o) are, respectively, the initial conditions for transverse

velocity and displacement. Similarly,

e* V) - (k (,,)-)(XWO) + V 0)(Xot (22)

Let

X U) = -p) [ t" ('Ax PO)_w(A)(X PO)) (24)

yu" = -P(k- tiO(X k.o)-v( )( x o)] .- R"-kt )(x o)--O)(x.)] (25)
) (k) t )W( (4) . 1_ (Il _ )_O A(

=-R tt'kx ,O)-v (x .O)]- I [-t [ -P x ,O)- 0(x,0)] (26)

Substituting (24) through (26) into (18) through (20):

9



*A) A" () 0) 1.. ,  ) P !' IW  
_ + X  

=(2+gg, -1 3 - (28)

g* N-AP+, *(a -a 3 )+ P, P , RO + 0(8

er, +gIk -*3vgQ& + g* Go R-r0 +Z- =0 (29)

Eqs. (27) through (29) are the spatial equilibrium equations for the motion of each

lamina of the laminated plate in terms of laminar force resultants.

2.2.4 Constitutive Equations

2.2.4.1 Stress-Strain Relations for Linear Elastic Materials

A material is said to be ideally elastic if the material completely recovers its

original shape upon the removal of the forces causing the deformation. The generalized

Hooke's law relates the nine components of stress and the nine components of strain

by a linear relation. Assuming an initially unstressed reference configuration, and a

rectangular Cartesian reference frame, this can be expressed as:

o"O = Efe.kI (30)

where E, are components of fourth rank isothermal elasticity tensor. Owing to

symmetry of o,,, i., in the absence of body couples, we have:

E i.j= E jiAI /(31)

Furthermore since e, -e:

Eifl Eijt k  (32)

If a strain energy function exists then

Esjkt = E41ij (33)

For a monoclinic system with two orthogonal planes of symmetry the stress-strain

relations for any layer k in the reduced form with respect to a global plane of

reference (second rank tensors written in vector form) are:

1()



() E( E(1) A) 0( ) ( )
I1 1111 1122 1133 1112 11

(A )  
0 0 E G) (4)

22 E2211 E2222 E-2233 0 2212 22

( ) E ( E - E . )  0 0 E ( )  (
A

)

33 _ 3311 3322 3333 3312 33
(k) 0 0 0 1 30 13 0  

2 e2(A)
232323 2313 23

(k) 0 0 0 ik3 E(*, 0 2 (k)
13 1323 1313 13

(T() E (A. k)~ oI o E (A) IE (k)
12 1211 1222 1233 1212 12

Equation (34) can be written in the indicial form as:

(U) .(A) (A ) () (A)
00 ----- l~a),b +L'o a333E33 (35)

0(A) 2 1 ' W E W (36)

(A) Et (A) + E(A) EW (37)
33 3[339 ),b "",13333 33

Solving (37) for e) and substituting into (35)

(T) W 1,.) (1) + ]') ',-) (38)
-a 0 - ,.)& ae)+ 3 3  33 (38)

where

EK( W o,0) 133 j#)

&p)= Eo)'- o 33)' (39)
- 3 3 3 3

and

E- 33 
(40)

3 3 33

Substituting (3) into (38), (36), and (37).

(.) (K) (k). ,(k ((k) +,k) (4)
0 apybey ofPy16 X3 Kg & 4,33 033 (41)

(A) J) (w(k) + (0) K( (42*~ 3 3O,3 o (a2

(r) W E() e(k-) + E t W () . k)() (43)
033 3 3 -,e 6, )b 33-yb 3 -/5 3333 33 (43)

( )We note here that the assumption of u3 constant over the thickness of each lamina,

11



implies u'"(x)=w" (x,), e= 0. This w ould result in the terms containing E'

dropping from (43). We also note that this would mean that (37) and (35) would

not contain e) and, therefore, there would be no question of eliminating E". between
(k)

these two equations. However, most plate theories suffer from this defect viz. E33 is

eliminated in the constitutive equations (35) through (37) but is set equal to zero in

the equation for a3, i.e, (43).

2.2.4.2 Constitutive Relations for Force and Moment Resultants

Substituting a'.") from (35) into (8) and (15) and carrying out the integration, the

following equations are obtained:

() () (I) (4) (A)
N0  = A + B, 44-

(k) = B() () D () (k) (45)
*A ,p) e.6 t pybKyb (5

where
I

(A(k) (41) (k) = IoLT  iX) () 2)x2. (()
&Pj 6 1r bL . 3 3

Substituting -a) from (42) into (12), and carrying out the integration gives:

(A) .(A) (W ) (47)
Q& o3y3 a c

where

G) 3 3  x 3 x (48)

The quantities Ad,Q?',N( are the 'laminar' resultants. It is to be noticed that

whereas corresponding quantities for the entire laminate are obtained by simple addition

of Q) and N, M. is the total moment including contribution due to , i.e.,

Q" EQ (49)
A-I

12



N, = E N,  (50)
A 1

= ' "A+ N(A) (51)
£~ I A-I

where T(,) is the distance of the center of the kth layer from the point of application

of the resultant N,,,.

2.2.5 The Interlaminar Continuity Equations

[or the continuit\ oi trictions and displacements to be satisfied

a., '_ (52)

vtA + ; = . (53)

w(A (=w I) (54)

and

+(I) = -(A-) (55)
33 33

where

.3= components of the shearing stress at the top of the kth layer.
4k. Ii

7 = components of the shearing %tress at the bottom of the (k+l)th layer.

components of the in-plane displacement for the kth interface.

= components of the rotation of the kth layer.

2.2.6 Summary of Field Equations in Convolution Form

For self-adjointness of the set of operators consisting of those appearing in the

kinematics equations, the constitutive relations, the equilibrium equations, and the

continuity equations, noting that the equilibrium equations had to be transformed (27)

through (29), it is necessary to espress the remaining field equations in convolution

form as well. i.e..

13



a. !quilibrium Equations ((27) through (29)):

g *N, +  (o. -.~c r )+ )gJ, --1 + X+Y' = o (56)

an 3 3 g

g*M (-)A-A +'-i g o'-3 -01 3 -") + g P( - a R v -l R 0.+Z ) Y = 0 (57)
(W -0 ) (A) (A) (A) A)_ WA (A (A)

g*Map+I~gOcT3 -geQ +9G. -R -a1 =,+ 0 (58)

b. Kinematic Relations ((2) through (4))

(.) 1 (A) (A) (59)e = .2g* v,,4< + .,

g, (Z) I g.(d)("b + ; (" 2 , ' ..I

g K( = g((A) gw, (X )
2g*E =,, ,, + b) (61)

c. Constitutive lquations ((44), (45) and (47))

eN() = (A) +.( ) (A) ()62)
a p/ O P Y61o . e 5 -- 6 O p y b K y b

g (k) = W (4)) (()

W (63)

&Q.) -- ( 2) y3 (64)
--Q 3 ,3 (2E,/) (4

d. Continuity Equations ((52) through (55))

e k) = ,-(A-1) (65)g*ao' 3 = o3

(A<') +kAo' (4 + )
g*w) + Ig*A '

0 gv (66)

ew(A) 9 * (A, 1) (67)w+(k) g -(k gW )

r*O33 = '*"33

The field operators, for layer k, in self-adjoint form are:

14



-P) 0 g*l. -R (A, 0 0 0 0)
S 1) (S)

0 .8*A"Pyb g.* () (t) 0 0 0
-g*L g* 0 0 0 0 0 0 0

R ) 0 ( 0 g*L 0 0 -g*
(A) (4)

[0) -g*Bo-,6 0 0 -g*D,,b g* 0 0 0 (69)

o o 0 -g*L g* 0 0 0 0

0 0 0 0 0 o -P(") o g*1O.
act

o 0 0 0 0 0 0 -*-*a 3y 3 g*

0 0 o g ( o _g*.a g* o

where

L. = 1(8, -- +S ,_i-)
2 80 a0o

The domain of the operators is the direct-sum space, under the convolution product, of

V:)(k) W.k W~k U) Im(k) W/ W_/ W-O

the spaces consisting of admissible vY ) ,e(, N K Mq,w , 24E. , in that

order. The operators in (69) are the ones in (57), (62), (59), (58), (63), (60), (56), (64),

and (61) excluding those associated with interlaminar tractions. The displacement

continuity (66) and (67) can be directly incorporated in the system of equations. At

the same time, addition of operators associated with the interlaminar traction completes

the set of field equations for the system. Traction continuity ((65) and (68)) is

implicitly satisfied by using only one set of tractions for each interface. The system

set of field equations then has the form:

A(0 ] [B(1 { o}"0} ip)}")+to-

[BI O [0) IC12 (a 0 [p}(2)[C2 y [ 01 2  
(u(2) i

(70)

{~(N 1)

1C1T] [A - )] lu(-\)) 1 1T ,}] [+to.. N-))

15



or, symbolically.

[XIy) = {z}

I lere

[B f= 0 0 000 (71)

1Ck] 0~g 0 00000 00 (72)td = o o o o o -g* o

NA) (1) (A) 0) ( () (A 2 (1 7G)
fu (1)} <OV' (A),, >O3" (73)

{p(r)}7 = < /r' G 3 3r U > (74)

= -g)7 = o - ,OO0' - Z ,-g p", - " > (75)

{()} = <o,o> 0o)

0<g*o"3 ,O,0,0000,g*o'3 0,> (77)

*3O ~c 3 3~
WNV .C- (N) 0 __,- +(N) +N)(8

= -3 Ne"3 '0 '),-'o ,,> (78)

[01 = r001(79)

Continuity of tractions is ensured explicitly by using the interfacial traction as the

field variable [o"(k] in the manner expressed by (70), i.e., cra --o, and a) do not

appear as field variables. The operators [B)'],[Ce k ] and their adjoints [B(k ,[&I 'IT

represent coupling between field equations for the layers and the continuity of

interlayer displacements. Explicitly, for the interface between the kth and the (k+l)th

layer, these have the form

16



(A

(k)

oil (k) .(k)
.(A) g E -)

00 (i.)

0 0
IAk  0 0 IOI 0aV,-

0o W 60

0 g ()"xA
00 0
0 0 () 0

c,30 0g0 0 0000 0 20000 00 0-0

( 30 0 0,
0 0 Or W 0

0 0 00 0 0 g.00 0 0 00 00 0 P, 0 733 _0

S0 ( 1 "-(k1) .(, k .1)

o o (AJ
S0 (k.) 0

0 0 1. ) ;

01 0 0 (A.-I -)

0 0 0
0 %j 1)(A N()-I
0 0 U41d) 3

0 0 "(aI 0

0 0 (Ad) 0
2Eo 0

0 0 2e(tl) 0

&3

"3

2.2.7 Self-adjointness of the Operator Matrix

For the operator matrix [XI to be self-adjoint, a sufficient condition is that the

elements of X satisfy the relationship

< f, X, g, > R = <g, Xji f, >,R + Boundary lerms

where < , >, is a bilinear mapping over the space of functions defined over the

region R. The elements of X satisfy this requirement in the sense of inner product

defined as

< f , g > = f fA __l(x)dR

R

Specifically, if the operator matrix A(") is self-adjoint and ([B"1, [B(]T); ([tdk'i [C(Az1T)

constitute adjoint pairs, [XJ is self-adjoint. Considering A, and A, for the kth layer,

17



based on Green's theorem (Kreyszig [1979]):

( () V(.. )

N (k)_

+ < N". 7)pg - a o > 
A,) + )e>apS2 0 IN (k

+< W ieW)> + <V(, g*(NU')y). J> s

Similarly for A46 and A,

( () <M ,g*-()>

+4 <.) !((  
() 7)A, , ,,,

o,/A g*, .0x4 >Sj <., .g M,,"A[s
4.

+ < M("nA ))' , ,,..,> .+ < >

and for A., and A,,:

< (k), W (k) (W (2

U) AU) ()+<q.%,ew >s+<W eQ71-.a>

(k) ( < .() U)7, a

+ e (wg)(> )V e(

The remaining elements of [A]P) constitute algebraic operators which are self-adjoint or

consist of adjoint pairs. The adjointness of 11 and [iIk), and of [W1 and [0"T is

obvious.

2.28 Consistent Boundary Conditions

Referring to Sandhu [19751 consistent boundary conditions for the problem are:

C(.&N~k) #k) on d.(k)

gdA) MA) #gm k)A on SUk)
C44) (k) (k) )

e d4Q. g*aU71. on (83)

e 2o = g*0.)0 on
g, C, ')v~x) ,-18



C(4) (A) =g0(A)(A
= g* 710 On S 6

g~C(6  A) = ,.,",, on

where I d,)',CI', ,C3 , Cd', and C,11, are the consistent boundary operators and

1 2 S3US 5 6

(A) (t) (A) (.) () (A) 
sI)n 2 S3 ns4 =S5 ns6

Explicitly,

= - 3 - S N

(W (A) (A)
C"2 =C 4 =C( =Th3

Corresp)nding internal jump discontinuity conditions are:

A.) ( g (g) on s()
g*(el)M.0)Y = , g (),, I Sk

g* :3 r, " - 3 on S
A-) (A- t () d

g* ) g=','- on

g*( ) (A) )  on 2  (84)

2 V. ' = *(') on S(i

CK0W(4) (A)

Here , ... , S represent surfaces imbedded in the interior of the region R. A

prime over any quantity denotes the jump in that quantity across the surface of

interest, e.g.

1(k)where ± denote the two sides of the interior surface. Quantities g, i=l, 2, .. , 6,

denote the specified values of the jump discontinuities.
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2.3 VARIATIONAL FORMULATION OF THE PROBLEM

2.3.1 The Basic Variational Formulation

Based on (A.20), the self-adjoint form of the field equations given in (70) the

boundary conditions (83), and the jump discontinuity conditions (84), the governing

function for the variational principle is

N

n <U , AW u -_2pW> k
4-1

N-1 ~~L ((A()WNT G (A - )

+ - < uk)AU(--1) >

R~)+ <u X ( (2.85)

N-1

(A j () (AI)(AI) (A

+ < (BT u +C u >R()
k-I

-2<u(J), (o) >-2<u , cr > + Boundary terms

Substituting (70), (83), and (84) into (85), the explicit form of the function including

the boundary and the discontinuity conditions is:

N

E( < V(k), _ +(k) VW +*W R (k),4) +2eF0
) + 2Y() > (2.86)at VAA o

- I

I() -e (+ g) + e eyb(p) R()k

+ <N(k) W W(k) +W8 (W)

, < (-R ) v. - ) 4. .. u. OQ + G) +2Zk)>,k)

*<B (k )  (A) D(A) W ) W + g* MW(>

.p. .Py ep)6 K,
6  

1mp(k)

+ < W(* --8 _> p --k" V k) Co (

+ < ~ g* w) + * + 2(F.) + 2X() )>
0 R(k)

+ < ( )  eG (A.)  (,-) + , (A)

20



0(,) o t(A) w(
,

) + (A)

+Q,--o.-g*w + g*(2E 3)> (A,)

N-I+E{< VW ea +Wk > )t +() < W(*),e., > _
. a3 3 k >)+ < to'°3 a+(')>+ w" rgk r"3 ,>

k-!

N+,{< v"k), - -(")k) + < a~), _M >()

k-2

N-I 0"3 Rgv qg-p k) +<3a ,g'W  -~(+>

A.-I

-2<v .*-(I> -2<-wt4() g*0O-1 >
(I)' - >3 R! 2< 33 R1

(Q) _() (N) -(N) (N) -(N)
-2<v ° ,<-g* c- > -2<w-2< -- a >,N33 N)

N

+E< ,g*(d,) N, .,> + <N Va SW 2k,, 1D)_ )
k-1 2

W kw,% o+ '14.) <_.,%, .~.(o M,)...,), (k),g1> W
+ lWg* k W+2 > + wk *Pt)>

5 a 6 6

N

+ J:{< v., g((C, N )' + 2 .. ' 1)> ,& v, > 2 ())

k-I a

+ <Ok), *( (C10 (k)), + )o)> MW) -(d )-" 2 -g 000 7+)>

, , 3) <-s

Here we have used the notation o for o0 hI) as explicitly stated in (52) and (55).

Theorem: The Gateaux differential of the function n defined by (86) vanishes if

and only if (70) along with (83) and (84) are satisfied.
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Let kltu1C I",/A W~h 13)) k.)
et }- - , 

,,*3 ),K , , ., , 3 ,c 3  be an admissible state

corresponding to the set of field variables

= (,) (k) W (A) (k) () (,) () (A) (k))
), ) Va  eo,,. ,V ,KojAv ,g eoe 3,, a .3' 33)

Gateaux differential of the governing function (86) along the path U, provided the

limit exists, is

N

((U)) < ) () P()U) (A)_ A) ( .) (U.)> (2.87)
8flU)L<I~eN) -P -R . +2g*F. +2Y >(.7

k-I

(A) ,-, ) (A) (.) G()+<vO ,g -PPkVo -R 0. >R(k)

(e) k() (A) () (
'
) K >

( )

+<ie,'g'N, -gA o~Ybee )b G o6 (k)

#t ., ,t) - _(0 ..O, UB')  -(A.)+ < e,,. e a, e g " ai,e 6 e e B pb R , > (k)

(k W-e, -g v ,k + < N.. k)# _=40- ( > a

+ < "a g* ( ) -e va) < ,,2G*)+ 2Z>)

(A) R) B (  (A) ( a) ( A) a (k)0 A)

W) k. ) k() (A) (A) W()

(k) MK*) _ (, ) ( k) (k) k ()+ < ', e,, -- + -+ < K (* ),eMl )-gB(k) (2-) - -W W >"

(() - (A) () -() (

< Kp .ev, - r .. -.o > ,K,

+ <>k)K A) W + < MRC)A))

+ < Ok) ,gQ e (0 j) W() +2ek) + 2 X() > ~+ < w(k),e dA) P (k)Vk) >

(A)21 (k) (A.)M ( 2 6 W ))> + < (A) A ) (Ad ) 33( 2 1 W)>

Wed0 3 ,'Q &3Y3 -y R(, 03 0y3 v A

dk)e~ek))- e~ -O g'w., , > k

(A) () (A.) W)+ <Q,, , g*<29.3) - eo - ew~, >1
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N-1I
L i +k < (A), t 7+(A.) ( O *a) +(k)>

Ut~~V ) *3 0jk) kr <* at 3  > (k)+< *~33 >jk)

k-I

VW <v(k)~*> W (k) 4 (k)+<t~>,}

N

k-2

W k -WA +W(k), -WA

N-1I

k= I

+ () <r ,g*v"0 + (4 ( ~ + <c) ,8 ~(4) R(k )

2 <p N) -e '(N > - 2 < i(N ), +(N) > - 2 < WNg T4N

a 3 R(V) 0,tN e 73 R (N) 33 R (A)

N

+ Ei < - k)~ 2k)),+ 1 & 7 ) > +< V,)g*#

W W

S(2 k) a > (k

+ ~ < ip M(N A-q r + 2 C() ,> -o p . g 7N) )~

+ < 2,g*(p((A) ))h )
Q. +2 > w(*, cr SW C 71.>2S

23S



+ (A) n ) > g( - >g* , (MA)Yn + ( "-n >i

(k) _-A,) (K) N- k) > (A) -(.)

<v) ,gPJ >(A) - <.,* > ., <o .g*N., >..)

< w )*O rl (k) >) = - < 0,o> + <w(A,g' o ,i >s )

*J)J) > ) , _> + N(k)+ >, -<< w 2 + <M, 0> >s

<Q4(k)? )) > = - <M (k) P MS),)

- s P w, .W ),  *, and k from the Gateaux differential, one can write

N T~,g*,, -F*>v - + > (2.88)

k-I

+ < ek), g-( (Wok) 7- 2 > + <" > -g # ) ,

+< k )--) (k)

+ # , g-e. g" v(,s) >,)

*&0 ,g~k-g +(kG +Z~Rk k

_(A) () () >() (A) (&)

+ <A>R ,k)+K o. >e .

2)4



+ < (g ) - PA) w-- + g./ 3W +  > (4) >

* ( ) (A) - e G W ( ))+ <2t[3 ,gQ,0 -g'Gs vt 3 Rx

dk) 2 e(k)) e (k) W~t

, *( 3 -s* , g R(*)

,-I a ea &3qt > (k) + < 
0
o

,. "A-*o
" 

03 >.R(k) 33 -k)

k-I

N +2 < .-(k) + < ;W{k), _e0-k+2~ ~ (T a3 >' R'k) + - 33 > R*
Ak-2

N-I
(4) (4+) +(A) (4) (4-i)

+2 .<iy ev("+t g -g* V > + 
< 

u 33 + ew (g* >R (
k

)

A-I

2VN), .( ) < (N) >(N) (N)-2 < e) c-a3 > R()-2< N) e7. > -N ) -2 < e 3+ (

N

W~ W (k)

+ (k) .. W k. tk-II

Ot)M.- 11 f-k7)> lk)

3

.2..(,t),, .(Nt)Q W7 + ) )>

+~~~~0 a a, orf - # #+.n#

k) W}, In _o (A ) >

N

k-I

U.)' A+ < (V. Y" 71p - no ) >
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(4)4U

+ < +(TIO - 7)>
+ , < o((o +1-q 0), TO ()

1k, g ( (k))

+ .< ,,w.) Lo_ (0€ ),1 no > ,

Linearity of the bilinear mapping <, > implies that Sjl(u) vanishes if all of

equations (70), (83), and (84) are satisfied. Also. nondegellerateness of the bilinear

mapping < , > implies that the Gateaux differential in equation (88) would vanish,

along an arbitrary path {i}, only if all the field and continuity equations and the

corresponding boundary conditions are satisfied.

2.3.2 Extended Variational Formulation

The solution of (70) must belong to the admissible domain of the operators for the

functional (86) to be meaningful. Using (A.21) along with (A.22) relaxation of the

order of differentiability of either component of the following pairs is possible, viz,

(Q. or w), (M. or 0.), and (N., or v.). However, relaxation of differentiability could

not be done on both components of a pair. Some possibilities are indicated by (80)

throughd (82). Using these equations to eliminate one or the other of the adjoint pair

of operators results in reduction of the differentiability requirement on some of the

admissible field variables. This provides a basis for extension of the variational princi-

ple to a domain where the differentiability requirements are selectively relaxed. These

extended variational formulations also provide the basis for certain useful specializations

to reduce the number of field variables. To develop these extensions, it is convenient

to rearrange the terms in (86) to write the governing function as:

IV

fl(u) = 2"< v, , 9*F +Y > +< g*G,. +Z, >
A-I
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+<wW,g 9 ,k + X ( > (k)
3R

A) (A) (A), ( A) (A) (A) (A)+Et<v )g* N 09- R(k) + <V V, -oR 0. > R60

A-I

(k) (W (U) (A) (k) (k)
+<e,,,g*N,,-g*A _AYe,, 6 -g*B *P 6 K-y>Rjk)

(A) W )

+ < NP 0 ,g*MeU *Q(C.) >-R~'k)

(AW (A) (A (A) 1 (A) (A)
+ < K~ Ml, > R* BW ~ K

+ <M"~,g* (A) (A) >~K

(A (A) (A) A)

+<w ,g*Q- p R) >k)

(+ <A 2(A)W1W (2W
a 2 3 ,g*Q 0 - g* U *3y3C- R(k)

+0 .g 2 9 9* .> " (89)

N+ < (W * 7+() +( <OA) 4W> + < W)(k) g T40 >
a V 3 R(k) 0~ k Af* Orc3 (k)+ W 8c33 JO(A

N

(A)1 W,_g*( -(A) + < wAW, eg(cV> W
A-2

*(A) (A) (A) UA+ ) 4) WA AI
+ D{< (73 ,r*V- +tieo* -ea >*>() + < 0,33 'e W geW > R(k))

-2<v M, e T 0 ) > -2 < w(',e( 3g*3  
1

I

(N +(N) (N) +(N) W(N) +N

+2 < 0), e 3 > (N) +
2

<0,c 't~a > (A)+
2

<W e Ra >

()_p(A) () )

(A.)(A)j3 3> 4 ~+ <MNp7 C 2g *))> k
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w A)(4) W ) > < )l G)Gw 2i,(i) * Q, + 2 SlA) > SW

A'

+ <wi < .g*( -£ G "rlo + 2 (R , )> + < (')g -10 g- v(A)Y-2" )Y

k=£
"( (k) ' W ' 2(k )'y > + < W70 g W, Ok ,,

+ o < *(- ( .P )O + 2M ' &07) > L) &A01 -2( )>,,

+ <(k, _(Mki")' + 2 > + < Q ')Tl,, (w("))' - 2 (6 ')')> .

STEP I

For example, eliminating N,,, in (89) by using (80), the domain of N'U is extended

from C' to C', and the function has the form

N

,(u) = 2 T < v ,g* F) + Y > )+ < , +Z >
k-! e(k),k 0) XR".

+ < w , -r F -W )

N V(k) _p(,) (0) _1 ))(
.,( < R. , . - - (k)

k-I

(k) A) e(') -- B(k) K~ )
W (A))W (A-))((.)

+2 < , g*.. --g* -R , -1 > R k)

(A- ) W ()*Af4). ( k) (k) ( )

+ <M~*~g4~ R.e,.-Q, .10

K(k) (A) ( ( k)

+<w( ,?Q-P* p)w(*

,-,, e m'., - eB ,-6 ( - D K.6>)

(W) (-) G(A) (A)
+ < 2 e ,3'g" , --Q * o3 y3 (263 )> ()

+ <Q(Ae(2 )) _ -() e (A) (90)

83 A - R
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N I (l1) , c() (A) ,(4) (03 >*a .G+ <
+ ,< o > + I o3Al > R+33 R~k)

N
+ () .g) (k-) 7- }

v e, 0 > )+ <o W a33 R(k)

k-2

N-1
+ U )  W 4(k) , +) +(k) (k) (L+I)
+ a *3 +e g*, e . ev >R W)+ 

<  
a"33 ,g*w -- >gR

k-I

--2< (), ()

v 0 o .3 > R1-2 < w e >R

* '< 3) V ) v *(v

+2< v 1g a} > (A' )+ 2 < e .3 >R, +, 2< w\ 3 > )

+ 2 < v (' 29 ) +,g <' N>(,).T.2g*( V'o 33 1)'>

-07V * ) N '13 ,2 at  .( k) 2

+ W ' <+ <o'1(- .0)0 ap )p (
h )  M (

A ) 0 -* . -t 2 -0 ( 4k)

+ < W , ~ - d k0 () , M t . _ ( 4 ) )

s S.

N

+ E" < v k) 2e & p >k)+ < NW 7,2g*( V(k) _ 0k)"

+ w< W ,k) (-Q'(). + 2 0,0 ro> s+ < Q W n., '( () - 2 0 >(0 .>

4() ") ,
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STEP 2

Eliminating M? , in (90) using (81) leads to

N
=21:f< VW, - +Y(k) + ) () (A)

k.(kk-I

(t)* + )_ X(k)
W ,or3 J>O)

N

+,( ) () __ (A) (

+~ ~~ 2 /0 - e#- '~ .t3 > ,W.

_(t _ (t k) ( k ) A )

A--]- o - v -

+ 2 ) (A) ()
+ 2< .M ,g K #- gM .{,,) > l

(A) ( k) W ( ) W ( A) >

+ <Q ),*(2e apb - f -( A) (K_, (91)

N-i +() (A) (A) (A) .()

COAp-)VI-

N

*<2() W W w(-)) ->

Q.,'(2-1 ),-* ,> g w()+-Wg* (91>)

ca3 R k)

N

+ {< 3() ,v(k) +, ) (k), --W > + < (k* 1) > + < "3+(k)

k-i

-2< 
) eac-( > -2 < w ),e 3(31)>

-23 R R.
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+2 V 9 o3 >, ' ) + 2 < . ,* a. 3 > ) +2< w +g. (7 3 >,W

(A ) RUA ) W(X ) 3 , W ( A)

+ E( < v. 2 g* 7p > 4 
k). N 2 o. ) " > k

)

* <0 ' g*Q ,,)> 4A)+ < ,-no g, 2g*( ").-.

+ <W(k) 2I A.) O . >

S6 k

+ < v',g-- o >.2 , " S + < 7 g v .~ 0' )s >+ <N() W() 2g (A~) W.A)

<4 2g* A 713 > SX,) + < M~pA2 (k - .' -44-

)<w Ok)g*(~Q ) ~ ~ (k) Qi j ( A) (k)))>

STEP 3

Eliminating QU2) in (91) using (82) results in:

IN

n () = 2 11< vk),g *F) + y() > + < ,) g*G) + Z10>
k-I

N+ <v,-P v -R k)

( ) (k ) (_ ) A (( )
+ <e W g* A M 4 g* B (4) 6>W

(k) (W WK+2<NU, * e% - g v(.,/) > O0)

+ ( <t) ( (Q) (k )+<q),-R v -I ,
& a 0 R(k)

(K) () e ) (k) ()
+ <K ,, *B ',).ey6 g*D' _ ,K_

(() A() (4) (4) (A) (A)
+ 2 < M ), g K - * 0(..A) > R.)+ -P w
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+ < 2e""- G( ) 3 2g*

0'3 -. )'3 R"
'

+2 . * (> ) (92)+ 2 < Q , eg (2e3)- e -qo, -g >92

N-1+ I< (k) (> + ) t 4-( ) >( 0) >(L)

a ea R(k)- <, 'ge o 3  'R(k) <W '. "33 R(k)

,-I

N+ { I t.) <.c-, VW + < w(k), ,k ->
ao 3 R~

k )  
W , g03 gt )

A-2

N-I
U( ) 4 (N ) G ) 4(N) ( ) ,w( N '0)

+2 < 0 -, g* > (N) l~g', --g( * 'tN, >~'a  
+ g )-gW<3 3 :"

( ) k 33

-2<V M, eao'( ) > -2 < w) 'gl a - >'
o a3 R .3 R

+2< v'm _,*o ) , ( O.+(N) > 2<>R(. (N)..+2 < w (N).o, -33 >R,
c ', o3 R(N,)  "2 r ve R(V +° er ( )

N

(k) &)7 >k) + < (N) W(A))

k-I

+ <6 ( , 2g *)~~ + <M "Th' 2 ,2 (. k))>

+<w .2e' ktn >,+ < M, -~'2g(0 >

Si 61

N +' E{ < , VW (A) 2 ' (A")'
.2> UO+ N T) t2g( .- 0 >"t

k-Ik

<(k,) 2e_ ,(t Q>)no,2g*.t - ,.,Y),

w(*), 2 >S(k+ < Q- >1._2g}
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2.3.3 Some Specialization

The function defined by (92) has no differentiability constraints on the stress

resultants N.6,M. ,Q.. This function also leads to certain useful specializations by

identically satisfying some of the field equations. Assuming that in (92), continuity of

w€
k is identically satisfied i.e. normal displacement is restricted to be constant through

the thickness, i.e., w ) = w for all k (67),

N
• (k+, g. GA) + 7(j)14 (u) = 2 E< v('gF)+h) C1 g R ' + < 

00 >R W

+ < w 9,g1"(
) + 

X (A) > +<
A3 R

N7

+ < ( (<A) ( )
+ WC e1 + X ( ,) >k-

(K) (k) () (WW< e , g* A eyb - * A) KY6 >

+2 WK K (A)

.(K) - ) (. _ (). ) <(), p )w )
+ K (< v K > +<

+ 2 K Go 0. , b e3 , p ) (k)k)

+2< M, g*G(K 3W 3 (2e W> +R( (A)A)Ww

< (k"(0 ( (93)
a ' 0 3 a ".0 R- (A,(3

N-I
+ £{< vg* o.4) > + <(), o.4(k)> + <() * ,.4(k) > la a3 >R(k) "1  a -- k t * (T3 R(k)'i <  33 R'(k)/

N
Vf < g*3 >R(k) + < *33 >

A-2

A' I

l1 A) (A) G) 0 1)W * () )+Ef~c (g*V. +19g . -g v 0  + > + < or33W
.3 '9A33'
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V-2< v O), *eo3- >R -2><w'),g* 3. 
2I)> I

+2< (N) .a (N)> + +2< ( > 2<) (N),+ . (T' )+2 0 , *3 >R(N,)+ < - , v* e 3 > zw)+2 g 3.3 >R,."

N

k-I

W+0 <4Mg W. .) (4))

+ ()2 a  < 02,, .2e, >)02 > -.A4

+ < w , 2e*4 > sAkl+ < Q, 7), 2(w o' )> (
S N6

N
E () <* (A . ) A)

va ,2g /7 ), > + < N ,, -- ) >

MW ,24 W -(4) (4t))+ * ' 2e .p Ti >Stk) + '4,7)0 2

W(k), 0(.) j . .(A.) W,(A) _ ( (A,
+e 4) + <M9-7), 2g*(')(A>

If the kinematic relations (59) through (61) are identically satisfied, equation (93) leads

to:

N VW 41), -W( + JO
ns(U) = 2 {< e<  k) ,-* + Y(') > R, + < _01 eG. >,

k-I

+ < WW e ', k + x Q) >

N
() _(A) (A) () .(k)
&L~v- a~- R W~

k-I

+ < ea,gjA .0,,6ev- -B .)6 > k

() (k) e( ) __ (.) 6(0)+ < -of ,-- Of --

* < K OP , B *. 6  g* D 'pY K 6b> R

+ < 2 e W -G (A) (2 e(W) > +< wP(A w> , (94)
3 -y3 4'3
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N-I

+ > ,g + < , 0. ,1 > W ,> RA <"33 > SOO)

A- I

N

+ V W -W (k){ -+t"E(< V ecr - °* 
" (3 > 

R(k ) +I < w ea - ""33 > JO)

k-2

N-1 + Wk W-+- ( A)l . . ( ) U 4 1, ) +4 < 40 , W k)A + ) >

+ E{< a3 e,v. k) o -v. + >'R(k)) 33 (e)}

k-I

-2< -(0 > 2 < wO) -0)>-2<v 0 , > +< 'R g33 R+

S() ( )> + < () > 2< ( ')  ( )

VC, 0 'ON+vl )+2< N 9),t . c 3 >p(.,.) +ge o" >33

+ A E ': (4) , 
2

W +,, ,<: ,MW } 7 ,. ( )0 2e 0 W ( k >Ot )

a , *Agq,(0 ) k~(),i k) M of*

M() W() () _ -
+ < w ("), 2 l(0) 7. > + < . ,2( 1 ))}

+ g< 2e & 7>W+ NW ) ,2g* ( 
W 00 Y) >

k-1 lk

7)A S~k)

+ (.) >,() + < Q(-) ,2g*(w(A)_-s()),> }

If the kinematic boundary conditions in (83) and (84) are identically satisfied, equation

(94) reduces to

N
(k, - , 0  W(A W9 a Wg

n W(-= 2 Ef.,< V. -*e + Y( > R~)+ < o. .e G 0'- + ) >)

k-1

+ < W(k), A )+X(1 ) >

N
() (A) W (A)4  R(4 )+ E l< v(£ , - P  v l ) R ( ) 1 _  >

A3I
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() A ) (A) (A) ()

+< 0, ,-R V, 1 4) >

WA) A ( (A W _ (4) (A.)+ <K 6, B cp,,bebeD Pb)bjk)

(k) () ( A+ <2E0 3 , -eG *3Y3 (2 e3-)y> R(k) + <w,-P w> j)} (95)

N-I (k) , Or(k.) < W( +(x)w ,g ()

{<v o  ,g *r3 > R(,)+ < t g* Oo3 > ; k. + < 1A., g ,,

k~l

A'-

N
+ A< (k) e -(A) (A) A

Vo ,-gTo 3 > + <W ,-go' 3 3 > (3 )

k=2

N-I

k-Iq{<A) ()+ *(A) > + < a.;) ,w()_g-W(L>)"+" < < 3)' ,"*3 + I k e Rk)N <33 ,( N3 4)

k-I

2 ('), g_ -(0) > -2 < ( ), g_ -0t)>
--< a , &03 > Wo033 RX

'e r3 >RN 't N eOa.3 >R(N) 2  g "33 >R(.V)

N

v(') , e (,)7) < W.g fi,() >w+ < ) W (4~)

Let

PW _ev k) S)

3-- "33 -"33

Then, ff the constitutive relations (62) through (64) are identically satisfied, fl1(u)

specializes to

N

+2( T (k) * R,{< >('  "+u < w('  (k), 2S) 'O.z

< ,e") -no > + <0 )o ,g*G .

k-I
& ( O) X(A)

3+ > k)
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N

+ - < - < M (,g W

-- <Q( )g* ,,[,) > <0 ( )  -r()v() ,"b£() > R kA-I

(k) ) < ) i (lk) V() (k) (k)-<Q 1 *w,. R~k av- v -R 0. > Rk)

WW(k) (k) W W +K <(K)- (k)

+ t <,- eg*Q.v - v -i o. > +<w,P )w>) (96)

N-I
-%(U) )+(A )< + < W +(k) 4')+ { < v. e-, >'06 e"o-t ,,t * ,,3 >'Vk) +<we ,3>Rk

4-I

N
+ {< v (4)_g + Ug)r'9" ."3 > R,. W < ,-g*O33 >R(k,

G) (AI1

+() oP) t <((,) e(, >sI)
+0~r3 ,0 a R,'' (ko>R+)

- th t a displaement continui (6), i +(N) s
-2 a() ov*°-<3 R + < ,g ar3 >R(V)

-(N) -- +(N) > + < ~ p+2< q5,+ , t ,Or3 R(N~)+ 2 ~ ~ 3 >

N

+ s) <v () e. 71,8 > +<() ,gG") + < >

SW e p 7)p>jk) Sk

k-I

N
,,,+2T )0'g 1 > " x + < w, g* 7') , >

k-I

lf the interlaminar displacement continuity, (66), is identically satisfied, (96) reduces to:

N

N() (A) ( .)() ( ) A) -

--...< =g yv > + v ,-P" V°  - + * > (.)

Fk) (4)

+ < W, e .-- + -- > --7

Ne

W W W (A-



- < wP ")w > flJ (97)

(2aO) > I+2< e ,g *a3 >i(A')-- < o g cv3 R a c() ,3 X( )

(N) *<I)
"2< O 'Ne -O'3 >R)+ " 2<wg*P3 >

R

k--I Is

N +< :g* ,t17 > + < wg ><Vg&>j> 4 ) e Ak) ,g* W7k- I " t''}S i

Here, v ) is no longer independent for k= 1, 2, ..., n. Furthermore, if surrace sheizr

tractions, surface shear couples, body forces, and body couples are neglected, i.e..

o. a -( ) 0 then (97) reduces to:

N
(U ,~) = (&0.) ZWk> +< W , XW >

)f< V(
*)  

" ) > (k)) R(k ) w
)

k-I

N

Ef- < dk) W 60
.o.{- .* e- () - < M' eR

k-I

() 0) (k) (k) (), (4)
-<d. ew,&>R(k) + <  P V -a R P >(k)

() (A) () (A) () (A)
+ < o: -dcQ -R v. >

- < w,PA)w > ) (98)

+2 < w,P 3 > R

N

&0(k) > + +< W e s)+2 ( e j,( <0), e, kn O >

k-I S
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Explicitly, replacing, v ) using the continuity of the displacements across the interface,

by v(1) and i, fl, is written as:

N .-If ~ (oU "1 t ) ~) W€,' .i), M. (k) ",,"(7k) U ,Xt
10> R(A) 'Y< ti ,> R ) + < Z >(k) "< wX > k)

N k-I

%- W () ()< N.,,e v(.Y,, ) > R(k) + < N' ,e ti 40( ,b) > Rk)

+ (A) O' (A) > + < (k
),

t I
(I) (W (A (A) (A) G+2<v ,R 0, >'Ok) + 2 < 0 R ,R lido >-k'W

k-I

(I)M ),) W-i+ < V , P V, >(k)+ 2  >)t i t.)
i-1

k-I k-I+ < E i P (k)t Gti
) > (99)+ < ti'pr k i. > R(k)

i-I i-I

(0) (0 (A) A)+ < o eQ. +.1 o.>k

+2 <w,g*P 3 > R

N A-I
+ 2Ei < v('), e"' q S.) t 1)7 Sk

A-I I i=1

+ < o ,gI">ik >7 )+ < w,g* 7), >)

N A- -

7) > W &(k)

* If inertia terms are ignored i.e. for the static problem, it is not necessary to take

convolution. Then, the governing function is the functional:

.V A I

+E V. SW, g,. ( N .,i,

A I i -I
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M (A) .(4,) kA ". <,.h ) (,. -A)

CA'g* b) >'O k) + < Q.gw > ,g! Q.>

+2 < w,g*P3 >, (IOX))

N k I
+ 2EI< ¢'), e P*k)7 )0)  > + <,-A e>

k-I 1 s

+ < vWt) , >,,.,+ <wg>U)

£I

.2E( (1) > + < 0,'..g .,),/ > )
L 1 I I I

+ < 0,, er Pt > S ,k +. < W,9* 01,,-q,,>s,, ,,

If the physical problem does not have line loads or couples applied to surf:ice!; in t:

interior, J , ,/ and 0. vanish. This gives the governing functional as

N k-Iflt (u) = _ E { < . .tk) _(1) ,)' ; . " % ) > + < --N , " 2 , i ,.e> ,
k-I i-I

'' >, + eo 'g.") >.,) }

+2 < w,g*P 3 >R (101)

This specialization, dropping the convolution with g(t), was used to set up the finite

element approximation discussed in the next section.
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Section III

FINITE ELEMENT FORMULATION

3.1 INTRODUCTION

The finite element method subdivides a given region R in an n-dimensional

euclidean space into a number of disjoint open subregion (elements) R',e=l,2,...m

such that

=lim U W1. (102)

Here a superscripted bar over a quantity denotes its 'closure' i.e.

R'= R' U O (103)

where OR" is the boundary of R'. Disjointness of these elements implies

Re n R ! =  if e;f (104)

A set of nodal points in C1 defines the geometry of the elements. In the following

section a discretization of the domain by the finite element method is presented. The

formulation of the finite element is based on the variational principle governed by the

specialized functional f12.

3.2 FINITE ELEMENT DISCRETIZATION

Let the field variables at any point within an element be represented by:

V'x) =iHT(x)Vl

(x ) = {H (x )} ")) (105)
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llere il,}, iltJ, Wt1,,d are sets of interpolation I'unctions relating the %alues of tile

corresponding variable at the nodal points to an arbitrarN, point within the element and

4V~1), /{ ', and 4W} are vectors of the apriori unknown values of v , w at

the nodal points. Substitution of (105) into the governing functional (101) yields the

spatially discretized functional as:

l' I

where, for N layers in the laminate:

0, =- 1i five,,)V I)I 1 ,I[A':']{)Ji I:I""d

A'~

+ 2fv} f 1)1DII) [A DI(I~ 11 10 J ' )dR'RIl-I

-I i 1i
, -I i-I

+ f {(E 1 0 )}T t,(}[D.)) {DI} "  ()' dR' )

,Y)

k-I

{DH), (w)

+ f <{WV,{0"Y'T> [Gt'k I{DH .', {H O)T} dRe I

+2 f(W)T H) P3 dk
R'

Here the symbol 1) associated with I denotes appropriate differentiations; tA(A, [A"PI

and D1* l represent constitutive relations: and
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= f DH,H A"] IDH, I"d

fA I [( 'i ID T,'d

K W= IDJI [A (k)DJI )T dRef
K (4, = {DH) [GV)]DH )T dR

K~h W ={D,, [ j(H ",T dRe

KW= f{DH,, (G nH ) T dRe

R R f~,I l?

where

HT0

[DH =o0 H',

HT HT

HT0

[DH ) T = 0 H

T T
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[DHJ, H A

HHT[H ,0

Using the above definitions, equation (106) can be written as:

,A 1 t IEi WIT~1 [gK(L)I{V'i) + 2 il'71 1 [K ( ]

-
A-I A-1

i'*l i-I

L- I

i-I
+2 T (k) +w(k T [(

+f4:(,A.)[K(k) {W~k+jI [K(, ) I ,W

+ {( T lK(w) 1f f +W T K) l

1,)o ] , _ } (107)

+2 {W)T Rwp

Gateaux differential of the governing functional (107), denoting by {VJ, { ., 1W} the

path of variations in {V}, {'}, {w} respectively, is:

N k-I

k8I i= 1

k-I k-I k-I

+ Etife):T [( I )} + ~ ) ,{iT (A.)t,4~

i-I i=! sil

+ {W,)T ( } (4) )4)) + W,,- T I^,, ". .T {7,( 1
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+ I I I

+ Y'[rK' ) (A ' [K"w)J w1
O+ 00[ K1), + ,,,{4c(&)

+ ik T [K M W WT [K) W (]j

+ }T [K "') l{-l (108)

+ 2 M(

The vanishing of the Gateaux differential 8.0 (108) for arbitrary {V},{}, {W}

yields the following equations.

1,-[K ,[K,,.]E I } z -[, }1),) =0 (109)
c
=  

1 aL =Y 1 " i 1 Ob¢6+ )

N k[xI v 'i " [ " E , r ;[ ] ' 0

[ -(k) [ (f (,W - - (110)

N k-I k-! k-I k-I

{-L_ t,K -- v, j +t [K,] )- [K ]{ 4 >, 11 = 0

--I i-I i-i i-I ai1

and

-[x"• R ) - l = 0

Where the denotes the "direct stiffness" addition of contributions of all elements.
0-1

Equations (109) through (111) can be written collectively in the following matrix

from.

[K]{W) = {R

I lere

[K] = [Kr
e4 I
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R 2

IRI

and

U1

where n is the total number of nodal points in the system and we identify:

K II K 12 K 13 K 14 ... I,,- "" K N K I1..%'I 4 1 K l,.A'42
K , K 3  K 4 .. K ,,,..K K , ,N

22 K 2 3  24 .... K 2j,+ .. N  , I 2,N+2

K 3 3  K 3 4  K 3 , .... K 3N K3,N+I K 3.N+ 2

K 44 .. K 4,j4 1.. K 4,N K 4,N + I K 4,N+2

[KT = Ki+ Id+ I

symmetric K NN N K N.N*2

KN+,N+I KN41,%12

K N4 2..4 2

where

N
K , = [ ,,

k-I

K12 =0

NK [K (1 , j (1)
K, 3  +t, [KW

1-2

N-(2)1+1 
(/

14 -K, F .[K,,
/-3

46



N

K =[ (,,11+1
/.i

N

K K (N- I + t (1)~~

I (vt N- 2 +)t 1

f-N-I

NK, . = IK(NJ + t _ [

K.x. 2 = tK(N)J

[U",,~(.

I-1I

K, 3 = [K ( l 1

(,3

K 2 4  OG [,.)

K
2,N4 IkK f (N-2I

K = [K(N) -

2,N+2  U,06

Nx .= . ,j +[x :J+ , 12 x ,j"
x33  04 O.0

-32

N
'34"- tl + I I t2Z 00a'/)

-3

N

IN 00 h A 2tx.,= z1 , +,,+,. * 2_. 1 [K'~
/=.. I
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Al

1-3

N

N

K =i[K( 121I+,, F.T[x'
4,N 2 00 - N 2 %boa1

2.N 2

1N

x i+ W I 0I 40C 

N

=+JV [K( 2 +K 21 ]+ E3Klti4 00 i-. 1-2 00
I-N- I

N

KNJ~ =tN[K..-)J+t
I-N

N

I-N

KN4I1,N+ 2 
1N 1 [KA]
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KN 2 N4 2 = 006

and

0

0

R

{R}, = 0 (112)

0

where the subscript j denotes the jth node.

3.3 SOLUTION PROCESS

Since the stiffness matrix is symmetric and banded, only the above-diagonal terms

in the global stiffness matrix are stored in the form of a rectangular matrix. The

first column of this matrix is the diagonal of the original matrix. The load vector is

set up according to (112). After the global stiffness matrix and load vectors are

assembled, the system of simultaneous equations is solved for the displacement degrees

of freedom using the Gaussian elimination proces. The solution for nodal

displacements (W) of an element along with [B] matrix which is the element

strain-displacement relation are used to calculate the stresses at the desired points of

the element. i-.e,

F = BS= B,8
i-I

v,.here n represents number of nodal points in the element.
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and [Q] contains the elastic constants of' the specific lamnina. In (106) the specific [11I

is denoted by [DJil
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Section IV

VERIFICATION AND APPLICATIONS

4.1 PROBLEM DESCRIPTION

The theory discussed in Sections 11 and Ill was implemented in a computer

program. The computer program was written in Fortran and designed to run on the

lIlM3081 main-frame.

IFight-noded serendipity, nine-noded L.agrangian, and four-noded Lagrangian quadri-

lateral isoparametric plate elements were used (Fig. 2). The nodal degrees of freedom

(the number of unknowns associated with each nodal point) depend upon the number

of layers in the laminate. If the number of layers is m, then the degree of freedom

is (2m+3) for each nodal point. This consists of three displacement components (uv,w)

for a reference point on the 'through the thickness' nodal point and rotations (4i , y)

of each layer to describe completely the deformed geometry. Two versions of the pro-

grain were prepared. The first was an "incore" program wherein all the matrices

were generated and stored in core and the solution process did not require auxiliary

storage. This version was adequate for solution of example problems and verification

of the general approach. Later, a version was developed where the algebraic equations

were assembled and stored in blocks. This version was used for solution of a

22-laminae problem using the CRAY-XMP computer at the Ohio Supercomputer Center.

This implementation was verified by application to several example problems. These

examples included:

1. A simply supported square sandwich plate made of isotropic/orthotropic surface

layers. The core was assumed to have a finite shear modulus but zero elastic
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12 33
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3. Element 09: (a)Rectangular parent (b)lsoparametr;6 counterpart

Figure 2- Four, eight, and nine-noded quadrilateral element used.
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modulus in extension.

2. Free-edge delamination specimens

a. Angle-ply [±:451,

b. Cross-ply [0/90],

The results were compared with available solutions. The effect upon the accuracy of

the results of mesh refinement and sublayers subdivision was studied. The code was

used to determine stresses and deformations in a multi-ply free-edge delamination speci-

men.

4.1.1 Analysis of Plates

The multila yer plate finite element method was used to analyze a three layer,

square, simply supported sandwich plate uniformly loaded in the transverse direction.

The geometrical and material properties of the plates were (the top and bottom layers

are denoted by subscripts I and 3, the core by 2). This example was the same as

used by [5]

Plate dimensions;

Length of each side = 10 inches.

Thickness t, and t 3 of surface layers = 0.028 in

Thickness of core t, = 0.75 in

Material properties

a. Stiff layers are isotropic elastic.

E l = 3 = 10 
7 W/in 2

V,1 V '3= 0.3

G = 3x10
4 lb/in2

b. Stiff layers are orthotropic elastic.

= E - = 10 1b,' in -2
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G2

1' = 3:3 = 4xlUo'lb/in

G1,1 = - 1.875x1O t' lb/in2

1a 3 0.3

G %z2 -- 3x 04 Wbin 2

G 2 = .x10 lb/in 2

2

oading

q=1 bin
2

Due to double symmetry, only one quarter of the plate was analyzed in each cast

(Fig. 3). When eight- and nine-noded elements %%ere used four mesh discretiza on,.

viz., (lxl), (2X2), (4X4), and (8X8) were used. In the case of four-noded element, the

discretization for the quarter of the plate was extended to a finer (16x16) mesh.
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(One quarter of the plate)

Figure 3: Mesh configuration and boundary conditions for a quarter plate.
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4.1.2 Analysis of Four-Ply Free-Edge Delamination Specimens

The free-edge delamination specimen was treated as a special case of a plate

Fig.(4). The boundary conditions considered were: fixed-fixed (longitudinal displacement

specified) at the longitudinal ends and free-free at the transverse edges. The results

for four-ply symmetric laminate with stacking [±45], and [0/90]1 were compared with

Pagano's solution [10] which is based on a generalization of Reissner's theory. The

comparison covered only - and u, because Paganos solutions were available only

for these quantities.

The dimensions were specified as a'b > 7 and b = 8h, where a, b, and h are

length, width, and thickness of' each lamina, respectively. For proper comparison. the

material properties assumed were the same as in [10].

Ell = 20x106 psi

E22 = E 33 = 2.1 x106 psi

G 1 2 =G 1 3 = G23 = .85x10' psi

I12 V V13 = V/23 = 0.21

Following Pagano, N-2 indicates each lamina is treated as a single layer, and N=6

indicates that each lamina of thickness h is modeled by three sublayers with

thicknesses of h/3. For N=10 each lamina with thickness h is subdivided into five

sublayers. In going from three sublayers to five, only one of the sublayers was

subdivided into three new sublayers with thickness of h/9.

Two different types of mesh refinement were considered. In both types,

refinement was carried out in a manner such that the nodal points of the previous,

coarser mesh were a subset of the finer mesh. Refinement associated with longitudinal

direction was performed by dividing the domain in the longitudinal direction into the

stated number of equal length elements. In the case of the transverse direction, the
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X cons lani plane

Figure 4: Configuration for laminated coupon under uniaxial tension.
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refinement was in the form shown in Figs.(5) and (6), to minimize the required

storage. In one sequence of refinements, shown in Fig.(5), the width of the specimen

was first divided into five equal-width elements. Only the edge elements were refined

further, each time the edge elements being subdivided into three elements. This process

was continued. In the other sequence illustrated by Fig.(6), an edge element was used

such that the (y/b) ratio for its center was 0.995. The remaining interior domain was

discretized into three strips. Refinement over the thickness was done on the central

sublayer while changing from N=6 to N=1O, Fig.(7c) in order to get good estimates for

r,, and a, On the other hand, to evaluate T, at the interface, discretization was

performed on the sublayer next to the interface, :ig.(7d). Because of symmetric stacking

sequence, only two layers were used in the analysis.

4.1.3 Results of the Analysis

a. Rectangular Plates

Figs.(8) through (11) show a comparison of the approximate solution with that of

the sandwich plate theory as presented in [51 Fig.(8) shows the convergence of the

central deflection of a sandwich plate with isotropic layers. Results using the Q8 and

the Q9 elements converge to the exact solution more rapidly than those from the Q4

element. The results obtained for one element, in the case of Q9 element, or four

elements in the case of Q8 elements, are superior to results obtained from 256 (16x16)

Q4 elements. Fig.(9) shows that, for a given error limit, the amount of time needed

for Q8 and Q9 elements is considerably smaller than for Q4 elements. Results for a

sandwich plate with orthotropic layers are presented in Figs.(lO) and (11). The same

observation, can be made as in the case of isotropic plates. The numerical results for

isotropic and orthotropic cases are p-esented in Tables (1) and (2), respectively.

The program was also used to solve the isotropic problem where the shear

correction factor was ignored. The maximum central deflection for an 8x8 mesh, using
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-*x

(a) Five subdivision across the width

(b) Nine subdivision across the width

(c) Thirteen subdivision across the width

(etc.)

Figure 5: Sequence of mesh refinement across the width.
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Y

(a) Five subdivision across the width

pi

(b) Nine subdivision across the width

Figure 6: Sequence of refinement across the width with a thinner edge ele-
ment.
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z

+45

-45

(a) Two sublayers (N=2)

+45
+45
+45
-45
-45
-45
(b) Six sublayers (N--6)

(c) Ten sublayers (N=10)

(d) Ten sublayers (N=10)

Figure 7: Sequence of refinements over the thickness.
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Figure 10- Central deflection of a square orthotropic simply supported
sandwich plate.
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Figure 1): CPU time vs error in central deflection with mesh refinement-
orthotropic layers.
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Table 1: Numerical values for maximum deflection and the corresponding
CPU time for different types of elements.(Isotropic case)

Number of
Eleas Element Type CPU (Sac) Mainn deflection

lxi Q4 0.046 0.000064402

Wx Q4 0.154 0.00036986

404 Q4 0.605 0.00059685

8XS Q4 2.918 0.00069959

16xl6 Q4 19.897 0.00072964

lXI Q8 0.232 0.000189

Wx Q8 0.934 0.00073851

Ux4 Q8 4.492 0.00073997

8X8 Q8 29.377 0.00074005

lXI Q9 0.287 0.00073539

Wx Q9 1.221 0.00074087

4U4 Q9 6.516 0.00074008

Wx Q9 50.446 0.00074006

Series Solution 0.00074
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Table 2:. Numerical values for maximum deflection and the corresponding
CPU time for different types of elements.(Orthotropic case)

Number of
Elemens Element Type CPU (Sec) Maximum deflection

Ixi Q4 0.046 0.00026536

2x2 Q4 0.146 0.00066988

4x4 Q4 0.591 0.0010218

8x8 Q4 2.851 0.0011671

16x16 Q4 19.071 0.0012078

lxi Q8 0.228 0.0010439

2W2 Q8 0.954 0.0012194

4x4 Q8 4.497 0.0012215

8x8 Q8 29.467 0.0012216

Ixi Q9 0.286 0.0012140

2x2 Q9 1.224 0.0012224

4x4 Q9 6.545 0.0012216

8x8 Q9 50.267 0.0012216

Series Solution 0.00123
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Q8 element, was W.,a = 0(.00043601. The series solution for same problem gave almost

identical value. W,, = 0.(XX)43605. Therefore, maximum deflection due to shear for

this plate would be:

Wsmax = 0.000740- 0.0004360 = 0.000304

b. Four-Ply Free-Edge Delamination Specimen

Values of o, presented in the subsequent sections were determined based on the

constitutive equations (36) and (37). )etermination of these stress components is also

possible through the use of tile equilibrium equations. However, inplane strain is

linear over an element and discontinuous at the nodal points, resulting in a

discontinuous set of inplane stresses. Furthermore, the numerical evaluation A' r,

needs one numerical differentiation, and or33 needs two numerical differen!i.- i

Therefore, the use of numerical differentiation would not result in a satisfactory

estimate unless the number of elements in the y-direction is increased to a point where

the discontinuity of o. is reduced considerably. This would result in a very

expensive computational analysis. Therefore, it was more convenient to determine o,

from the constitutive relations.

i. Angle - ply Laminate [± 451l

Since the stresses were determined at the center of the elements, to determine the

predicted results at the center of the longitudinal dimension (x=L/2), an odd number

of elements were used when using Q8 or Q9 element. Because these elements have

midside nodes, displacements were also directly available at x = L. In the case of Q4

2

element, two analyses had to be carried out. To obtain the solution for stresses, an

odd number of elements were used. However, as for the Q8 and Q9 elements, to

obtain the displacement results at (L/2), it was necessary to discretize the longitudinal

direction into an even number of elements. (odd number of nodal points) so that a
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set of nodal points would be located at x-

2

04 element

Fig. (12), shows plots of values of or at mid-surface of the top lamina for mesh

refinement in the y-direction. The number of elements in the x-direction was leapt

constant at 11 and over the thickness, each layer had constant rotation about the x-

and y-axes. As observed from the figure, accuracy of the axial stress is unaffected by

refinement in the N direction. Ilowvever, the values do improve somewhat with

refinement in the longitudinal (x) direction (Figs. 13 and 14). Fig. (13) shows the

effect of refinement along x into 21 and 31 elements with the number of elements

along y kept constant at 17. Fig. (14) shows the effect of refinement along x for 9

elements in the y-direction. Fig. (15) shows the effect of thickness refinement on or.

The results improve significantly with refinement near the free-edge. The same

observation can be made for ,, in Figs. (16) through (18) respectively. The calculated

values of o improve slightly with refinement in the x-direction but are unaffected by

the refinement along the y and z-directions. Accuracy of r, is not affected by

refinement in the longitudinal or the transverse directions, Figs. (19) through (21).

Accuracy of the stresses at the free-edge improves significantly with refinement

over the thickness, i.e. as N is increased from 2 to 6. This refinement does not

introduce additional elements but increases the degree of freedom at each of the nodal

points by assuming rotation to be constant over a smaller portion of the thickness.

Comparison of results for different values of N indicates that N--6, in comparison to

N=2 and N-1O, gives more accurate prediction for o Fig. (15). Further refinement to

N=1O, in comparison to N=2 and N=6, leads to better estimation of r, Fig. (22) and

r,: Fig. (23). It should be mentioned that thickness refinement does not influence the

accuracy of stresses near Yib=O. Stresses at the free-edge, however, are greatly

influenced.
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Figure 13: X-stres s at the mid-surface of the top lamina with refinement
in x-dlrection: Angle ply specimen.
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Figure 16: XY-stress at niidsurface of top layer with refinement in
y-direction; Angle-ply specimen.
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x-direction; A,~ gle-ply specimen.
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x-direction; Angle-ply specimen.
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Figure 2 1: XZ-stress at z=h with refinement in x-direction; Angle-ply spec-
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Figure 23: XZ-stress at z=h with thickness refinement; Angle-ply specimen.
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Comparison of accuracy for different types of elenients

Accuracy of the stresses calculated using different types of elements was compared

and the execution time for each case noted. Four, eight, and nine-noded elements were

used. Two different mesh sizes viz. 9x9 and 21x9, with edge elements were used

with four-noded elements (Fig. 6). For eight and nine-noded elements only a 9x9

mesh with 'edge elements', i.e. elements along the edge having very small dimension in

the y-direction, was used. The CPU times on the Cray X-MP/28 for this set of

problems are shown in Table (3). Fig. (24), for N=2, shows that the Q4 element ,.!ith

the 21x9 mesh predicts the axial stress at the free edge with 11.47% error as compared

to the Q8 element with 11.09% and Q9 element with 10.99%. For N=O, Fig. (25), th":

error for the Q4 element reduced to 2.68%, for Q8 to 2.22%, and for Q9 to 2.12 ('.

Fig. (26), for N=10, the error for Q4 is 5.72% and for Q8 is 5.11%. Throughou, tnc

Q4 element gives significant error near Y/b=0. Comparison of inplane shear stress

shows that the results at the free edge are predicted with approximately same accuracS

(Fig. (27) through (29)) by all the elements. In the case of Tz (Fig. (30) through

(32)), Q4 with 9x9 and 21x9 mesh refinement gave practically the same results

throughout the width of the specimen showing that the system is rather insensitive to

refinement along the length of the specimen.

Further, Q8 and Q9 gave the same result at the free edge but were more accurate

than Q4. In Fig. (33), the longitudinal displacement predicted at X=L/2 and the top

surface of the specimen using Q8 element is shown for N=2, N=6, and N=10. In Fig.

(34) and (35) corresponding results are shown for N=2 and N=6 in the case of Q9 and

Q4 elements. It is seen, Fig. (33), that for N=2 the displacements are slightly

overpredicted at the free edge and for N=6 and N=10 displacements are slightly

underpredicted. Though the results improve with refinement from N=2 to N=6, further

improvement with refinement to N=10 is not realized.
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Table 3: Comparison of CPU time on \-MP/28 for Q4, Q8, and Q9 ele-
ments.

- ECPU on X-MP/28N Element Mesh(SC (SEC)

9X9 1.82
04

21 X9 4.479
2

08 9X9 16.555

Q9 9X9 28.181

9X9 16.961
04

21 X9 40.279
6

Q8 9X9 190.222

Q9 9X9 323.116

9X9 60.755
04 ,

1 0 21 X9 145.421

Q8 9X94 704.333
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Figure 2S: X-stress for N-6, Q4, Q8, and Q9 elements.
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ii. Cross-ply lanminale [0 '90].,

Values of T,: and :: were calculated For four-laver cross-ply [0/901, using

equations (2.33) and (2.34) as was done in the case of T,. for the angle-ply laminate

[:t 45],.

As shown in Fig. (36) mesh refinement in the y-dzrection does not lead to any

noticeable improvement in the calculated %alues of r,:. Fig. (37) indicates that

approximation of r,: is not dependent on axial refinement either. Results obtained for

refinement throt. h the thickness, Fig. (38), for l1x17 mesh, 17 being the number of

elements along the y-direction, indicate that thi:, refinement profoundly influences the

results. However, the traction-free boundary condition at the free edge is not satisfied

and, therefore, the solution does not match Pagano's results. The calculated ValIL

o': are in error up to 30% even with refinement, for y/b equal to 0.8. Near the

free-edge, the error is quite large. The values of a33 determined from equation (37)

were either exactly zero or close to zero. This is clearly wrong and represents a se,ous

limitation of the theory.

4.1.4 Analysis of 22-Layer Free-Edge Delamination Specimen

The procedure developed was applied to a 22-layer coupon with fiber orientation

of [(25.5/-25.5),/90], which was previously solved by Chang [11] and Dandan [12].

The laminate width and ply thickness were taken as 1.0 inch and 0.00505 inch,

respectively. The material properties of a lamina were the same as used in previous

investigations [111 [12].

El = 19.26* 106 (psi)

E22 =E 3 3 = 1.32 *106 (psi)

G2 G = =G = 0.83* 10 ' (psi)

12 13 23V = 1;3= 0.35, 12 -" I 13 1;2
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Figure 37: YZ-stress at z=h with mesh refinement in x-direction; Cross-ply
specimen.
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Figure 38: YZ-stress at z=h for 010x7) mesh in case of N=2, N=6, and
N=10- Cross-ply specimen.
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Due to the symmetry of the laminate, it -as only necessary to consider 11 lamina in

the analysis. Based on the analysis performed on the four-layer coupon specimen, it

was concluded that refinement along the x-direction improves the accuracy of the

results more effectively than the refinement along the y-direction. For this reason, the

22-layer specimen was discretized into 22 elements in the x-direction and 13 in the

y-direction. All elements have the same dimensions in the x-direction. However, in

the y-direction, the edge elements have a width of 0.005 inch, with the remaining por-

tion discretized shown in Fig. (6). The formulations in [11] and [12] were based on a

two-dimensional molel dependent on Y- and / coordinates only. In [121, 22 elements

were used in the z-direction and 14 in the y-direction. In the present investigation,

the discretization is along the x- and y-coordinates. Therefore, it was not feasih, to

match the mesh with that used in [11] and [12].

To compare the results with those given in [121 and [11], two different analyses

were performed. In [12] the results are given at the center of each layers. In the

present investigation, a,,c components are calculated at the centers of the laminae, and

based upon the effectiveness of the refinement over the thickness noticed in the

analysis of the four-layer specimen, each layer is divided into three sublayers, forming

a total of 33 layers. (r, is calculated at the interface in the present investigation.

However, in order that these results be comparable to those obtained in [12] and [11]

at the center of the lamina, each layer must be subdivided into two sublayers, forming

a total of 22 layers, producing the necessary interfaces. An average axial strain of

(0.95414*10 "s ) was applied, which is the same as applied by Chang [11].

Fig. (39) shows the cross-section of the upper half of the symmetric laminate and

defines the location for plotting of results. Fig. (40) and Fig. (41) show the

distribution of or, along the center of the 11th and the 5th layer for different (y/B)

ratios. The results obtained from I7SDT match those obtained from the higher order

1 (X)



element [11] and the axisymmetric model [123. Similarly, Fig. (42) shows that ar at

the center of the 11th layer can be obtained accurately, though the concentration of

the stress at the free-edge does not match that obtained by the higher order element

[11] Distribution of cry along R11, as shown in Fig. (43), closely follows the result

given in [11] However, the o, stresses determined from the FSDT are in considerable

error near the free edge. Figs. (44) to (47) show the plots for o. along R1, R5, R6,

RuI, and Figs. (48) to (50) indicate the o, along RS, R6, and R11. It is evident that

both o,: and ,: are predicted reasonably well by the FSDT in the regions y/B<0.7.

liowever, for y'B>0.9, the predicted stresses for a.: even result in signs different

from those in [11]. Results for o'y: do not satisfy the free-edge stress at y/B = 1.0.

Figures (51) through (53) show the through-the-thickness distribution of '::, a :, and

a,- along the free-edge. The results from the FSDT do not agree with those from [11]

and [12] and are, apparently, quite wrong. Furthermore, Figs. (54) to (57) show the

distribution of :: along RI, R5, R6, and RI1. The stress distribution obtained from

the present approach is quite different from that given by [12].
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layer 3 0 25 OWR9
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layer 10 = -2 5 R2

layerl11i ~ = 90o R I

B

Figure 39- Cross-section of the upper half of the 22-layer coupon.
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Figure 40- Y-stress at Ri for 22-layer coupon.
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Figure 4 1: Y-stress at R5 for 22-layer coupon.
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Figure 42* X-stress at RI for 22-layer coupon.
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Figure 43: XY-stress at Rll for 22-layer coupon.
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Figure 44: ZX-stress at RI for 22-layer coupon.
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Figure 45: ZX-stress at R5 for 22-layer coupon.
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Figure 47: ZX-Stres at R11 for 22-layer coupon.
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Figure 48: YZ-stress at R5 for 2 2-layeT coupon.
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Figure 49. YZ-stress at R6 for 22-layer coupon.
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Figure 54: Z-stress at RI for 22-layer coupon.

117



22 LAYERS ZZ-STRESS AT RS

• DANDAN

C) 23X13 N=22
4

0 1
0

o I
I I

V ; . ........ . ... ................. .......... :.......... .................. ............... .... ............................ ..................... .... .. .................................. ................... .... ...... ............. ...

I I

...... ...... .. .. .. ..

0-

0 A __ __ __

I I

'0.00 0.20 0.LI0 0.60 0.80 - 1.0

DISTANCE FROM CENTER LINE T/B

Figure .35: Z-strcss at R5 for 22-layer coupon.
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Figure 56: Z-stress at R6 for 22-layer coupon.
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4.1.5 Summary and Conclusions

1. The Q8 and Q9 elements are superior to the Q4 element for the analysis of

plates. However, for analysis of coupons under uniform extension, the per-

formance of the Q8 and Q9 elements was comparable to the Q4 element.

The CPU times needed for the Q8 and Q9 were much greater than required

for the analysis using Q4 elements. Thus, the Q4 element appears to give the

better combination of accuracy and economy of computational effort for cou-

pons.

2. To improve the predicted results for o and r,, at y/b=O, refinement along

the longitudinal direction seems to be most effective. However, the solution

at the free-edge depended upon thickness refinement. The best results at the

free-edge for a, were for N=6, while for 7,, they were for N=10.

3. The results for r,.: and -T, did not improve significantly with refinement in

x- or y-directions. The thickness refinement improved the predicted results at

the free-edge for rA:, but did not satisfy the traction-free boundary condition

at the free-edge for 7,..

4. The predicted results for or. are all either zero or close to zero for the four-

layer delamination specimens. However, for the 22-layer delamination speci-

men, they were oscillatory along the z-coordinate and quite different from the

results obtained by Chang [111 and Dandan [121

5. The predicted displacements for free-edge delamination specimens are close to

Pagano's results. For N=2 the displacement results are slightly overpredicted,

and for N--6 and N=10, the displacements are slightly underpredicted.
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Section V

DISCUSSION

In the present research program, the theoretical studies carried out have included

two distinct approaches to the problem of stress analysis of composite laminates. One

approach consisted of a specialization of the three-dimensional elastostatics theory to the

case of free-edge delamination specimens under uniform axial strain in which the stress

field is independent of the longitudinal coordinate. The other approach consisted of

development and application of theories of laminated plates to the problem of frcx -eugv

delamination. The present report covers study of the applicability of the existing

"discrete laminate theory" as one of the first steps in the research program. Thts

investigation has served to establish the pattern for later efforts on improved theories

for study of free-edge delamination of composite laminates.

The equations of the discrete laminate theory are well known. Thes have been

included in this report for completeness and for the purpnoe of pointiro out the

theoretical assumptions inherent in the theory. Mawenya and Davis [5] had previously

presented a finite element implementation of the theory, but they provided no details

and did not apply the theory to free-edge delamination.

The equations of the discrete laminate theory, essentially treating a laminate plate

as a stacking of Mindlin plates, assumes linear variation of the in-plane displacements

over the thickness of each layer ensuring continuity of displacements at the interfaces.

As part of the present research effort, the equations have been written in matrix form

such that the matrix of operators is self-adjoint in an appropriate linear vector space.

The general formulation was written for the dynamic problem in the convolution
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product space and then, for the elastostatic problem, a special form was defined in the

inner product space. For such systems of equations, standard techniques are available

for the construction of variational principles and for identification of consistent

boundary operators. General variational formulations with extensions and useful

J specializations have been explicitly developed for the problem. One specialized

variational formulation, corresponding to the popular potential energy theory, has been

used to develop finite element procedures.

Three different isoparametric finite element interpolation schemes viz., the

four-point Lagrangian, the nine-point Lagrangian, and the eight-point serendipity, have

been implemented in a computer program written initially for an IBM 3081 mainframe

computer and later modified to run on a CRAY-XMP/28. These finite element

procedures were verified through application to homogeneous as weU as sandwich plate

problems for which solutions are available. Their effectiveness in modelling the

stress-distribution in free-edge delamination specimens has been examined.

The present investigation indicated that the discrete laminate theory of laminated

plates is quite effective in modelling displacements in plates subjected to arbitrary

transverse loads. The shear effects can be allowed for satisfactorily. For such

problems, the higher order elements viz., the nine-point Lagrangian and the eight-point

serendipity, performed better than the simple four-point Lagrangian element. However,

fo. application to free-edge delamination, the entire approach is inadequate. The stress

dirtribution obtained for the example problems was reasonably good with respect to

in-plane stresses, but the theory could not give reasonable estimates of the other three

components of stress. The traction-free edge condition could not be modelled. The

stresses had to be calculated directly from the stress-strain relationships because use of

equilibrium equations for determination of shear stress and transverse stress would

involve numerical differentiation of quantities for which estimates only at a finite
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number of points were available. Mesh refinement to get a sufficiently large number

of points would make the cost of analysis prohibitive.

The studies showed that refinement along the length or the width of the specimen

had relatively little effect on the quality of results. Refinement over the thickness

i.e., subdivision of each lamina into a number of sublayers, helped improve accuracy.

This suggests that a distribution of in-plane stresses of an order higher than linear

over the thickness of each lamina might represent the actual stress distribution more

closely.

In order to satisfy the traction-free conditions along the free-edges, it is necessary

that edge tractions appear as field variables in the set of field equations. An

alternative, of course, is to use Lagrange multiplier techniques to enforce constraint.

For direct use of equilibrium equations to determine the shear stresses and the

direct transverse stress, explicit introduction of interface tractions as field variables in

the theory would avoid the need for expensive numerical differentiations. Also this

would ensure continuity of traction across interfaces and perhaps yield better

approximation for the interfacial stresss

The discrete laminate theory discussed in this report is based on assumptions

regarding transverse and in-plane displacements. An alternative is to assume variation

of in-plane stresses and to derive the other stress components through equilibrium

equations. If force resultants appear in the expressions for stresses, and are regarded as

field variables of the problem, the constitutive relationships for these need to be

established. If it is assumed that there is no interfacial slip, it would be impossible

for any layer to deform independently of the others This would necessarily lead to a

coupling in the constitutive relations for the force resultants of individual layers.

Pagano's [10] theory which uses the assumption of linear variation of in-plane

stress components over the thickness of each layer or sublayer, satisfies equilibrium
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pointwise, satisfies constitutive equations and interfacial continuity of tractions as well

as displacements, and can satisfy ,ractor boun.dary conditions for free-edge delamination

specimens exactly, appears to be an appropriate approach for determination of stress

fields in composite laminate plates with natural boundary conditions. The case of

free-edge delamination specimens is a specialization of the general theory. The theory

has been difficult to use because of the large number of field variables involved and

limitations on computational capabilities. A research effort directed towards

development of finite element models based on Pagano's theory or development of other

meth.ds of solution of the set of differential equations could be useful.
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Appendix A

VARIATIONAL FORMULATION

Often, obtaining an approximate solution to a coupled boundary value problem

relies on appropriate variational formulation. Following Sandhu's [61 [7] [8 [9],

extension of Mikhlin's [131 basic variational theorem to coupled linear boundary value

problems including nonhomogenous boundary condition, we present here a summary of

the basic concepts for setting up the variational formulation applicable to the problem

of laminated plates.

A.1 PRELIMINARIES

A.1.1 Boundary Value Problem

Consider the boundary value problem

Au=f on R (A.1)

Cu = g on OR (A.2)

where OR is the boundary of the open connected region R in an euclidean space. W is

the closure of R. A and C are linear bounded operators. Let V5 and V be linear

vector spaces defined on the regions indicated by the subscripts, and Wt,WV be dense

subsets in V. and Va. respectively. Then the differential operators A and C can be

regarded as the transformations

A. W, --4 V (A.3)

C: waR --* VOR
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A.1.2 Bilinear Mapping

Let V and S be linear vector spaces. A bilinear mapping B: VxV -S assigns to

each ordered pair of vectors u ,v'E V an element in S. Furthermore, bilinearity is

satisfied for ,UZ 2 ,V V,,VEV, if

B(ou 1 + U2 Pv) = o(u .v) +B(u 2 ,'v) (A.4)

B(uciv + v) = B(u v)+ B(uv 2)(A)

where a is scalar. For convenience, we shall use the notation.

To set up a variational formulation, sYmmetric, nondegenerate bilinear mappings are

used, i.e.,

and

< v>= 0 for allvif and only if u() (A.8)

A.1.3 Seif-Adjoint Operator

An operator A'* on V is said to be the adjoint of A with respect to symmetric

bilinear mapping B,: VxV -~ S, where S is a linear vector space, if

< u,Av >R = < v, Au> R + D 8R(V,U) (A.9)

for all u and v E V and where D,,(u ,v) represents quantities associated with

boundary OR of R. If A= A%. then A is said to be seif-adjoint. If A is a seif-adjoint

operator, then D,,( v ,u) is antisymmetric, i.e.,

Furthermore, A is said to be symmetric with respe.1 to the bilinear mapping, if

The boundary operator C is said to be consistent wvith the self-adjoint operator A if
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Dop(v,u) = < u,C v >bi,- < %,Cu >6R (A.12)

A.A.4 Gateaux Differential

If G:V-S, where V is such that if u, UEV' u A2EV for scalar X,

the Gateaux differential of f( (u) along a path i2 is defined by

8 0(u) = lir u + xa)- n(u) (A.13)

where U is referred to as the path.

A.2 THEOREM

For the field equations (A.1) we define

11(u) = <u,Au> ,-2<u,f> (A.)

The Gateaux differential of 01 is:

8-~~ ~ n) I <u + XUi A(u + X10> - 2 < u+ Xif) >- < u, Au> +2 < U , f )i(A. 15)

= <u,AF> + <i,Au> -2 <F,f>

= 2 <U,Au-f>

The Gateau. differential vanishes at the solution u = u, where Au. - f =0. Conversly,

if 8. n(u) vanishes for all U, nondegeneracy of < , > implies Auo-f = 0 If the range

of the bilinear mapping is the real line, vanishing of the function il would imply its

minimum, maximum, or stationary value, depending upon the operator A being positive,

negative or semi-definite.
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A.3 LINEAR COUPLED PROBLEMS

The above discussion for a single-valued function u can be extended to the case of

several variables. If there are n variables, V is defined as the direct sum

V 1 I+ 2 ........ +V?(A.16)

and an element u E V is an n-tuple (is1 , .... u,) with u E V, for i=1, 2, ., n. A

bilinear mapping on V is defined as

< ' U V> + <U,,IV,> .... + <u,,,v n >, (A.17)

where < > Ris defined for components u,, v, of {u,1,{v,} respectively.

11' the Field and boundary condition of a linear coupled boundary value problem

are:

n

1 u g, on OR i=1,2,.,n (A.19)
j-1

the governing functional based on rqs. (A.18) and (A.19) is

itn n

0(u)E = ~ .~~.2f. >'R+~ < , ,j-2,>8 (A120)
(U) j-1 i-I j

The set of operators A,~ is said to be seif-adjoint with respect to the bilinear mapping,

if

n n

< tEAI = <XE u,,A I.> R +D ,(u v) (A.21)
.1-1 /= I

where D(U ,,v,) represents quantities associated wvith boundary 8R of R. The boundary

operators C,, are said to be consistent with the field operator A, if

nn

D ~~~j uI Vt ~ .1V R-<V ij R(.2
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Appendix B

SOLUTION OF SANDWICH PLATE

B.I PRELIMINARIES

Based on llantema [14]. the series solution for sandwich plate was calculated. In

this case, the bending of plates is assumed to be due to bending of stiff layers and the

shear deformation of the core layer, so that

W = wh+w, (3.i)

where the transverse load is the only applied load and the stiff layers are isotropic. w,

satisfies the equation:

DV 4 wt = q (B.2)

where

Et 3

12(1 -v)

and w, satisfies the equation:

-SV 2w = q (B.3)

where

S 2- 2
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B.2 METHOD OF SOLUTION

For a simply supported rectangular plate the transverse displacement due to

bending may be represented by Fourier series in the form:

w< Xy) = y osin sin ' (B.4)
M-I n-i

and corresponding load by:
Go 0

q(xy) = sin- sin (B.5)
a b

Multiplying both sides of (B.5) by sin m 7rX sin nryand integrating over the domain,

a b

for q(x,y)= q,,

16q.
2

Substituting (B.4) and (BL5) into (.2) and evaluating a., wb(xy) is:

w(xy) sin (mrx/a) sin (nwry/b) (m, n= 1,3 .... ) (B.6)ITD mn[(M/a)2 + (n/b)2]2

Similarly, (B.3) can be solved to yield:

w,(xY) = 1 6 q. £ sin (mrx/a) sin (nry/b) (m,n 1, 3 ....
71 S , nJrna 2 + (n/b)2

The series solution was obtained through summation of 151 terms in the case of

isotropic sandwich plate for a-b=10 inches and q= 1.0/lb/ins. In the orthotropic case

the results given by Mawenya and Davis [5] were used for comparison purposes.
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