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ABSTRACT

The present study was undertaken to quantify several types of losses encoun-
tered when using an electronically-scanned array (ESA). The losses examined in-
clude beam straddle losses, eclipsing losses, and range-Doppler straddling losses.
The losses were studied for volume search radars with square and hexagonal search
patterns as well as horizon search radar.

The radar search equations for an ESA radar for both volume and horizon
search are first derived. The beam straddle loss is then found, including the effect
of range eclipsing for a high pulse repetition frequency (PRF) radar. The hexagonal
search pattern has about 0.5 to 1 dB less loss than the square search. This loss is a
strong function of probability of detection and duty factor precluding the insertion
of a constant loss term in the radar range equation for these effects. A derivation
of range and Doppler straddling losses follows, showing that they vary only slightly
with the probability of detection and thus can be represented by a constant depend-
ing only on range-gate and Doppler-filter spacings. All losses were found to be very
insensitive to the probability of false alarm in the range of 10-4 to 10-8, with the
higher false-alarm rates giving slightly lower losses.

The summary gives an example of a radar design to illustrate the use of the
present results.
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1. INTRODUCTION

The beam straddle, eclipsing, and filter straddle losses for radars employing electronically
scanned antennas (ESAs) when operating in the search mode are derived in this report. An ESA
is a passive or an active phased array. A passive ESA has a phase shifter at each element, whereas
an active array has a transmit/receive module at each element. In either case, the ESA is step
scanned in space. This contrasts with a mechanically scanned antenna that sweeps past a target
in a continuous motion. A proper account of the difference in scanning between ESA and mechan-
ically scanned radars in the search mode complicates the detection performance of ESA radars.
Mechanically scanned fan-beam radars have a 1.6-dB single-scan loss when noncoherent integra-
tion is employed and a 1.7-dB loss with coherent integration, practically independent of probability
of detection [1]. The single-scan loss for ESA radars is a function of the probability of detection,
the spacing and geometrical positioning of the beams and, for a high pulse repetition frequency
(PRF) radar, the duty cycle of the waveform employed. While the loss for a mechanically scanned
radar is easily calculated as a reduction in the received signal energy from its peak value due to
the changing antenna gain as it sweeps past the target, the performance loss of an ESA radar must
be judged from the average probability of detection with an assumed target distribution in range,
angle, and Doppler space. In this report, the target is assumed to have a uniform distribution in
angle (azimuth and elevation), range, and Doppler.

There is relatively little literature about beam straddle losses for an ESA [2,3,4]. In Evans,
Hahn, and Hank, the loss is correctly found using statistical averaging (probability of detection
averaging rather than power averaging) but only four beams are considered when calculating the
losses for a volume search. This is much too low for the case of highly overlapping beams. In
this report, 37 beams are used to ensure that the detection probability from all relevant beams
is accounted for. None of the papers start from a radar range equation so that it is difficult to
discern the meaning of the calculated losses from a radar design point of view. The hexagonal
search pattern was found to be slightly better than the square search pattern [3,4]. The present
work shows the hexagonal search to be 0.5 to 1 dB better. Eclipsing and range-Doppler straddle
losses are also computed as well as beam straddle for horizon scan.

The radar search equations for an ESA radar for both volume and horizon search are first
derived. The beam straddle loss is then found, including the effect of range eclipsing for a high
PRF radar. This loss is a strong function of probability of detection and duty factor precluding the
insertion of a constant loss term in the radar range equation for these effects. A derivation of range
and Doppler straddling losses follows, showing that they vary only slightly with the probability of
detection and thus can be represented by a constant depending only on range-gate and Doppler-
filter spacings. All losses were found to be very insensitive to the probability of false alarm in the
range from 10-i to 10' with the higher false-alarm rates giving slightly lower losses.
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2. RADAR EQUATION FOR SEARCH

The search form of the radar range equation for both horizon and volume search is derived in
this section. The derivation includes the efficiency and antenna beam broadening factors that affect
overall search performance. A more refined version of the radar search equation than is usually
given in textbooks is required when evaluating search pattern losses.

The power received from a target is

Pr=PtGt at rP7 = --- •RA 7 . (1)
47rR 2 47rR 2

This expression is divided into three parts. The first part is the power density (W/m 2) at a target
a distance R away and at the peak of the antenna beam. Pt is the power radiated from the antenna
and Gt is the transmit antenna gain. The target, with radar cross section at, is assumed to capture
and isotropically reradiate all the energy incident upon that cross section so that the power density
back at the receiver is the product of the first two terms. The receiving antenna has an effective
receiving area, A,, given by its actual area, A, oriented to intercept the maximum reflected energy
multiplied by an efficiency factor, 77,. If the receive area is an array, 7,} is determined by the type
of weighting employed to reduce antenna sidelobes. For a uniform weighting, 77, = 1. Tables for
various weightings along with beam broadening coefficients can be found in Barton and Ward (5].

The received signal must compete with receiver noise for detection to occur. The receiver
noise is kToFnB where k is the Boltzmann constant, To is the standard reference temperature such
that kTo = 4 x 10-21 J, F,, is the radar system noise figure, and B is the noise bandwidth of the
receiver. If coherent processing using a weighted matched filter is employed, the noise bandwidth
is a constant times the reciprocal of the coherent integration time r. This constant can be found
in Barton and Ward [5] for various weightings. This analysis will include this constant as well as
other departures from the ideal in a loss term L to arrive at the first form of the search equation,

S P,,0 rGtA77 ,at (2)
N (4r)2R4kToFL

The transmit antenna gain is 47rA7'j/A 2, so that Equation (2) becomes

S P0 trA2o'a7i,(
N 47rR 4kToFLA2 (

Up to this point no distinction has been made between volume and horizon search. From this point
on, two sets of equations will be derived, one for volume search and one for horizon search.
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When an elpcironically scanned antenna searches a solid angle, the beam successively points
to a large number of beam positions in either a rectangular or hexagonal pattern. The spacing of
the bear -"nd the dwell time, r, per beam position are adjusted so that the solid angle coverage
will occur in the scan time T,. To analyze the performance, the two-way antenna gain function,

G2 = G20 exp (-(4In 2) [L+ o2]e~ exp ((4In 2) [f-+ i- 2e) (4)

must be introduced. For horizon search, the search pattern is one dimensional so that a given angle
will be covered in the scan time. For this case, a one-dimensional pattern is required that is given
by

G2h = G2ohexp ((4ln2) [ + 02. (5)

In Equation (4) the antenna beam is modeled as a two-dimensional Gaussian with a peak
two-way gain of G20 . A more realistic beam shape such as a sinc pattern has a negligible effect on
the loss results (see Appendix B). For either an elliptical or rectangular antenna, the one-way beam
shape is elliptical with major and minor axes in the ortnogonal x and y directions. In Equation (5)
the antenna beam is a one-dimensional Gaussian with a peak two-way gain of G20h. The 3-dB
beamwidths are expressed as

03t. = ktA (6)D-,

03t= kA (7)DI,

03,X = k,,-\ (8)

03,-y = DkY (9)

where A is the wavelength, D. and Dy are the dimensions of the antenna, and the k's are the
beam broadening factors produced by the various antenna weightings employed (see Barton and
Ward (51). The subscripts r and t refer to the receive and transmit beams respectively. Only
Equations (6) and (8) are relevant for horizon search. The reader is cautioned that Barton and
Ward [5] provides two types of k's. The first is for a linear antenna and would apply to each
dimension of a rectangular antenna. The second set of k's applies to circular or elliptical antennas
that are weighted radially and in which case ki, = ks, and kx = kry.
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In the analyses of beam scanning performance it is convenient to normalize the spacing of the
beams to the 3-dB one-way beamwidths Ou and 03y (or equivalently the 6-dB two-way beamwidths).

These are given by

2 1 1 (10)

623 o ,'+W 3 -
(11)

2 I I

3 =It + W2.

Substituting Equations (10) and (11) into Equation (4) yields

G2 = G20exp -(8In 2) eto + (12)

for volume search and substituting Equation (10) into Equation (5) yields

G2h = G 2ohexp 0(81n2) ±- (13)

for horizon search.

The beam spacing is defined in terms of the 3-dB one-way beamwidths so that the solid angle
searched by one beam position can be written

0 = O1.:1y = Q.%aO3xO3y (14)

where a, is the spacing to beamwidth ratio in the x direction, a. in the y direction [see Figures 1(a)

and 1(b)]. For a uniform hexagonal search pattern with circular beams, OU = 83y and a% = aV/3: /2.

The angle searched in the horizon search can be written

Oh = 01 = a03 (15)

[see Figure 1(c)]. The constants a are related to the gain of the beams at the overlap point. This

relationship is given in Table 1 for the values of a used in the plots.

The integration time r in the radar range equation [Equation (3)] will be replaced by noting
that the total search solid angle f? can be searched in T, seconds if it takes r seconds to search one
beam position of solid angle 0. Using Equation (14),

5
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Figure 1. Beam spacing geometry: (a) square search, (b) hexagonal search, and (c)
horizon search.

TABLE 1

Antenna Gains at Overlap Point with Adjacent Beams

r dB

0.5 -.75

0.7 -1.5

1.0 -3.0

1.4 -5.9

2.0 -12.0
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Top T .cQa Y03 xO3 Y (16)

For horizon search the angle fQb can be searched in T, seconds if it takes rh seconds to search one
beam position of angle Oh. Using Equation (15),

T. Oh T a03(17)
= h (17)

Substituting Equation (16) into Equation (3) yields

S P=,,AaO'tT.7Tt77r•axa. 83.3yA (18)
N 4rR4kToFjLQ A2

for volume search. Substituting Equation (17) into Equation (3) yields

S = P.vAatTsttrkaD. 83 D. (19)
N 47rR 4kToFnLQ2hA A

for horizon search.

Using Equations (6) to (11), the last term in Equation (18) may be written

03.03yA 21K2 (20)
,\2  (1/0? +.1/k2.) 1/2 (1/k~t + 1/k 12

where K2 accounts for the relation between antenna dimensions and area so that K 2 = 7r/4 for an
elliptical antenna and K2 = 1 for a rectangular antenna. For horizon search, Equations (6), (8),
and (10) -an be combined to rewrite the last term in Equation (19) as

0 3 . D , 2 ]1 / 2 ( 2 1 )

A 1/k2~ + 1/k-rJ

The final form of the radar range equation for volume search is found by substituting Equa-
tion (20) into Equation (18) giving

S P., AatTa 1

N 4.R4kToF, LQ 1L,,a22

where

7



, (1/0k + 1lk2)/(1/k2,2 + lk)1/2(23)
2K2 •t~t1.

The final form of the radar range equation for horizon search is found by substituting Equation (21)
into Equation (19) giving

S P.,,ADJoatTS 1 (24)
N 4rR4kToF,,L11hA Lwh

where

2(/k•. + 1/k2.) 1 /2Lwh = llktx(25)
21/27th•7r

Equations (22) and (24) have been divided into three terms. The first term results from
a simplified analysis in which the antenna efficiencies and beam spreading factors are ignored.
The second term introduces an antenna weighting loss term, Equation (23) or Equation (25), that
includes the effects of these factors. The third term accounts for the variation in the signal-to-noise
ratio (SNR) due to beam spacing.

The loss term L in Equations (22) and (24) has been included to account for departures from
the ideal. It is assumed that a common reference point is chosen to measure the average transmitted
power, P.,,, and the system noise figure, F,,. It is suggested that the face of the antenna just outside
of the radome be taken as the reference. If this point is chosen, then the microwave and radome
transmit loss will be included in P.,, and the receive loss including radome loss will be included in
the system noise figure F,,.

All other losses will be included in the loss term L. These may include: range and Doppler
filter efficiency loss, constant false-alarm rate (CFAR) loss, quantization loss, propagation loss,
clutter fill loss, and off-boresite scan loss.

Table 2 presents the weighting losses (L,,, and Lwh), beam broadening factors (k), and antenna
efficiencies (77), for circular, square, and fan beam antennas in which the transmit weighting is
uniform and the receive weighting utilizes various Taylor weightings. For uniform illumination,
k = 0.885 for linear weighting and 1.106 for circular weighting with t7 = 1 for both.

8



TABLE 2

Taylor Weighting Losses, Beam Broadening Factors, and Antenna Efficiencies
for a Given Sidelobe Level Below the Peak of the Main Beam

_ L. (dB) k

Sidelobe Circular Square FanSidloe irula Suae an Circular Linear Circular Linear
Level (dB) Antenna Antenna Beam

20 0.82 1.06 .53 1.076 .983 .966 .951
25 0.90 1.29 .65 1.120 1.049 .914 .900

30 1.09 1.58 .79 1.164 1.115 .846 .850
35 1.26 1.88 .94 1.234 1.179 .774 .804

40 1.52 2.16 1.08 1.287 1.250 .706 .763

45 1.75 2.48 1.24 1.334 1.301 .651 .726

9



3. BEAM SCAN AND ECLIPSING

3.1 Averaged Probability of Detection

Appendix A derives the probability of detection as a function of the signal-to-noise ratio
(SNR) and the probability of false alarms for a constant, nonfluctuating target and a Swerling I
target. The probability of nondetection is more convenient to use in this analysis and is given by
Equation (A.7) and Equation (A.12) for the constant and Swerling I targets respectively. These
probabilities are cumulated over all beams with significant detection probability, averaged over all
possible target positions, and subtracted from unity to give the true detection probability.

First, the volume search probabilities are derived. A square search pattern is assumed, with
the azimuth beams spaced by an angle 01., and the elevation beams spaced by an angle 801. The
azimuth and elevation beamwidths are 03. and 03y respectively [see Figure 1(a)]. The central beam
and the 37 surrounding beams are considered (see Figure 2(a)]. An examination of the antenna
gains shows that any beams further away will have a negligible effect on the results for the range of
a values used here. If smaller a values are considered then more beams need to be included. These
beams are formed at different times (at possibly different frequencies) so that the target returns may
be considered independent with target fluctuations from one beam to another. Thus, the Swerling I
result will be used to model the probability of nondetection. The total probability of nondetection
over the beams is the product of Equation (A.12) for all of the beams. This probability is then
averaged over a representative sample of azimuth-elevation space [see shaded rectangle in Figure
1(a)] assuming that the target position is uniformly distributed over angles. The total probability
of detection is 1 minus the averaged product of nondetection. This may be written

11/2 [1/2 37

Pd = 1 - 4 1((1- P•/('+P'")dxdy. (26)
0 O i= 

FA

In this equation, the angles have been normalized by the beam separation, x = OAZIO1z, Y -

OEL/Oly, and i designates one of the 37 beams. The SNR, pi, will vary according to the separation
of the search beams and the location of a target relative to a beam peak.

The SNR in Equation (22) must be modified to account for the two-way antenna gain, Equa-
tion (12). Assuming the beams are Gaussian yields,

P = Pkoa'ay exp(-(81n 2)[c'(x - x(i))2 + ot(y - y(i))2 ]), (27)

where

P 4O r R 4kToF LL• (28)

11
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(a) (b)

Figure 2. Beam positions used in loss calculation for (a) square search and (b) hexagonal

search.

The above results do not include the effects of eclipsing. Eclipsing occurs because the receiver
cannot be turned on during transmission. A schematic of the transmit/receive cycle is given in
Figure 3. The duty cycle, Du, indicates what fraction of a pulse repetition interval (PRI) the
transmission is on. Thus, if the PRI has a length of 1, then the transmission has a length Du. The
received signal is processed with a matched filter of length Du. When this filter does not overlap
the transmit pulse, then the full SNR is realized. However, some of the time this filter does overlap
the transmit pulse. Then the SNR falls quadratically according to what fraction of the transmit
pulse and matched filter are overlapped (see Figure 3). With overlap, the voltage out of the filter
varies linearly with the overlap so that the signal power varies as the overlap squared while the
noise remains constant. Thus, for a time 1 - 2 Du, the full SNR is realized, and for a time 2 Du,
the SNR varies quadratically with time. The detection probability is now

[1/2 1/2 37
Pd = 1I- (I1- 2Du)4 rI(I - PllA ,')d-

00 0 00 FA

-2Du4 jr,(1- Pj/(A'+tupj)ldxdvdt, (29)

0 0 0 0 0 0 0 0 FA

where pF is given by Equation (27). The t integral represents the integral over the 2 Da interval of

reduced SNR.

12
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SNR

I
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II

TRANSMITI I

D,

1

Figure 3. Reduced SNR due to eclipsing.

The equations for the hexagonal search pattern are identical to the square search equations
just presented, except for a different definition of the x(i) and y(i). See Figure 2(b) for the beam
locations in hexagonal search.

The eclipsing loss may also be derived by itself, assuming that the target is always at the
peak of the radar beam. For this case, the detection probability may be written

Pd = 1 - (1- 2D,,)(1 - p 1/('+P)A - 2D, o1(1 - P, /(A+t 2P))dt. (30)

The horizon search probabilities are now derived. In this case, 11 beams are considered:
the central beam and the ten adjacent beams. A Swerling I target is also assumed. The total
probability of nondetection over the beams is the product of Equation (A.12) for the 11 beams.
This probability is then averaged over a representative sample of angles. The total probability of
detection is 1 minus the averaged product of nondetection. This may be written as

1/ 5

Pd= 1 - 2 1(1 - P- 1 1+'F)dx. (31)
O1=-5

13



In this equation, the angle has been normalized by the beam separation, x = OAZ/l0i and i
designates one of the 11 beams. The SNR, pi, will vary depending on the separation of the search
beams and the location of a target relative to a beam peak.

The SNR in Equation (24) must be modified to account for the two-way antenna gain Equa-
tion (13). Assuming the beams are Gaussian yields,

Pi = pOhcrZexp(-(8In 2)a.,,- i)2), (32)

where

POh P,,avAD~atT, (33)
4rR4 kToF,,AkhLL,°•

Eclipsing is accounted for in the same manner as for volume search. The detection probability
is now

Pd = 1- (1- 2Du,)2 11(1 - hF)d-
J0 j-----A

- D . 2 1 1 / 2 5l ( ~ • " '
(1 - FA ah))dxdt, (34)

O i= -5

where pi is given by Equation (32).

3.2 Results

The probability of detection (Pd) curves vs SNR for hexagonal scan are plotted in Figures
4(a-d) for duty factors of 0, 0.1, 0.2, and 0.3 respectively. On each curve the dashed line represents
the result of a Swerling I target at the peak of a single beam with a,,ay = 1, which is used as a
reference. The probability of false alarm was taken as 10-6. Five values for a are shown: 0.5, 0.7, 1,
1.4, and 2, each indicated by a different symbol. For this hexagonal case, a, = a and a. = aV3/2.

The zero duty factor case (as if there were no eclipsing)[Figure 4(a)] shows that for low SNR
and hence low Pd, widely spaced beams (large a) provide the optimum search scheme while at large
SNR and large Pd, closely spaced overlapping beams (small a) provide the best search scheme. At
intermediate Pd, the usual 3-dB overlap (a = 1) is optimum. At high Pd there is the somewhat
surprising gain over the reference case. This gain results from the contribution to the overall Pd
from the many beams averaged over a representative sample of azimuth-elevation space compared
th the Pd from the peak of a single beam with arao = 1. The contribution from the surrounding
beams is quite significant at the higher SNRs.

14



1t6276-4

02 )

X 1.4 s
0.8 + "11

A 0.7
0 0.5

0.6-

0.4

0.2 -

0 )

X 1.4

0.8 +1 I
A 0.70 0.5

0.6

I

0.4 I

sI

0.2

10 20 30
PO (dB)

(b)

Figure 4. Probability of detection for hexagonal search pattern with P1 . = 10-6. (a)

D. = 0 and (b) D. -- 0.1.

15



02 ."
X 1.4 s-

0.8 + "4 1s

A 0.7 J.
0 0.5 J

0.6 /

0.4 - -

1*

I
I

0.4

0.44 s

0.2. s

(d)

I

0.2 =
0

1 I

0.6 s/

I
I

Id

Figure 4. Probobility of detection for heragonal search pattern with Pp2 = 10-e- (c)
D.=0.2 and (d) D~j = 0.3.

16



As the duty factor increases [Figures 4(b-d)], there appears a significant loss at a higher Pd.
The best case search scheme at 30-dB SNR achieves only a 0.95 Pd for D. =0.1, 0.9 Pd at 0.2 Du,
and 0.85 Pd at 0.3 D,, compared with the nearly 1 Pd at Du=0. In addition, at higher Pd the trend
of increasing performance with decreasing a no longer holds. At D,=0.1 and 0.2, the optimum a
at the highest Pd shown is 0.7 while at D. = 0.3, a = 1 remains optimum from about Pd=0.2 on
up.

The effect of the differing search schemes for hexagonal scan becomes more obvious in Figures
5(a-d), which show the increase in SNR necessary to achieve the same Pd as the Swerling I reference
(the definition of loss). The optimum scan pattern and corresponding loss is easily found for each

case by looking at the lower bound of the different curves. This better illustrates the differences
discussed in the previous paragraph. In general, the loss is a strong function of Pd even for constant
a. This prevents the insertion of a constant loss term in the radar range equation to account for
beam straddle losses. Each Pd must be considered separately.

The square search pattern results are very similar to the hexagonal search case but a little
worse in terms of losses. Figures 6(a-d) show the additional loss over the hexagonal search for
D.=0, 0.1, 0.2, and 0.3 respectively, for the same range of a as before. In general, the square
search pattern does about 0.5 to 1 dB worse. To see this, compare Figures 5(a) and 6(a). From
Pd = 0 to about 0.15, a = 2 is the optimum hexagonal scan choice with the square scan giving 0
to 1 dB of additional loss; for Pd=0.15 to 0.3, a =1.4 is the best with 0.5 to 1 dB of additional
loss; for Pd=0.3 to 0.7, a =1.0 is the best with 0.5 to 0.75 dB of additional loss; for Pd=0.7 to
0.9, a =0.7 is the best with 0.5 to 1 dB of additional loss, and finally for Pd=0. 9 to 1, a=0.5 is
best with •,1 dB more loss. The square scan gives a slightly different optimum a vs Pd, but the
envelope is always about 0.5 to 1 dB worse than hexagonal scan.

Two other P10 were investigated: 10-4 and 10-s. The P1 . = 10-8 losses for both hexagonal
and square scans over all duty factors were virtually indistinguishable from the 106 results with
the differences being less than 0.1 dB. The P1 = 10-4 losses were slightly less than for 106 but
only by about 0.1 to 0.25 dB. Due to this close similarity no plots for other Ptf are included here.

The choice of a for a given radar design depends on the requirements of that radar. If a
single-hit Pd of 0.5 is required, then a = 1 is the best choice. For higher single hit Pd, smaller
values of a are optimum, but a = 1 is at most 1 dB from optimum for Pd=0.3 on up. If a radar
is designed around cumulative detection, which would operate in the lower single hit Pd range, a
larger a with bigger beam spacing would be the best for the constant frame time assumed here.
Thus, the optimum volume search design depends on the actual radar requirements but, in general,
the standard choice a = 1 does fairly well, if not optimally.

The horizon search results are presented in Figures 7 and 8, with 7(a-d) showing Pd vs SNR
and 8(a-d) showing loss vs Pd. These results show many of the same features as the volume search
case. For low Pd, large a is best and at high Pd, low a is best. In general, the losses are less, due to
the one-dimensional nature of the problem, and the low a cases are optimum over a broader range
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of Pd at the expense of the a= 1 case. Also, the low a case remains optimum even at large duty
factors.

Overall, the design criteria for a horizon search radar are similar to those for volume search.
However, smaller a with more overlap between beams is favored. In this case, a=0.7 appears to
be the best overall choice for horizon search.

The effect of eclipsing alone is shown in Figures 9 and 10. The Pd vs SNR is shown in Figure
9 for D,=0.1, 0.2, 0.3, and 0.4 and the corresponding losses in Figure 10. The losses are not
constant with Pd and thus cannot be included in the radar range equation as a constant loss factor.
In addition, eclipsing and beam straddle losses are not additive. This can be seen by comparing
Figures 5(a) and 5(d). If the losses were additive then the relative losses between a would not
change with varying D,. However, in Figure 5(a) (D•,=0), the crossing point for a = 2 and a = 0.5
occurs at Pd=0.35, while in Figure 5(d) (D.=0.3), the crossing point occurs at Pd=0. 25 . Thus, the
losses shown in Figure 10 give a fair indication of the magnitude of the eclipsing losses, but for an
accurate calculation, both beam straddle and eclipsing losses must be considered together.
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4. RANGE-DOPPLER STRADDLING

4.1 Averaged Probability of Detection

In range-Doppler space, the probability of detection is calculated similarly to beam straddle
loss. However, in this case, the target does not fluctuate from filter to filter because all of the range-

Doppler cells under consideration are formed at the same time. Thus, Qc from Equation (A.7)
will be used for the probability of nondetection. After the averaged probability of nondetection is
found, this probability must then be averaged over the SNR distribution because the SNR will vary
from one scan to the next. If the noise is assumed to be uncorrelated from filter to filter, then the
following is the probability of detection for a given filter and the eight surrounding filters:

Pd 4 r o p1/2 1 1

Pd = JO ]r] ]1f QC(Pk,)dzdwexp(-pl1p)dpl, (35)
O k=- 1=-1

where

Pki = Piexp[-(4In 2)a,(w -, - (41n2)a(z - k)2], (36)

aw = rl/r3, oa = du/d3 , w = r/ri, and z = d/d 1 . r and d refer to distances in the range and
Doppler dimensions respectively, the subscript I refers to tne spacing of the filters and the subscript
3 to the 3 dB width of the filters. Adding more filters did not significantly change the results. The
Pd calculated in Equation (35) is optimistic because the noise from cell to cell is actually correlated.
The cells overlap and correspond to the same time samples. Thus, the assumption of independent
looks at the target from each range-Doppler cell is incorrect. This Pd is an upper bound on the
true Pd.

In order to treat the correlated noise properly, the joint nondetection probability must be
treated differently from the product of the Qc functions used in Equation (35). For the case of
correlated noise, the probability density function of the nine complex signals is [7]

P(9) "- -(7.N exp 2 9- f -)(7

where S is the 18-vector (nine real and nine imaginary components) of the ideal signal, Z the
18-vector of the measured signal plus noise, R the covariance matrix between the noise components
of Z, A the determinant of R, and N = 18. The probability of nondetection would be
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Pd f-,"" P(ZALA2'... ANd,, (38)
."I=0 A2=0* 'fN=O

where

P(A) = J P(f)d6. (39)

$indicates all the phases of 2. This process is illustrated for a single set of I and Q channels with
uncorrelated noise (see Appendix A).

This procedure turns out to be a formidable task with its 18-dimensional integrals and matrix
inversions and was not investigated further. Instead, a lower bound on the Pd was found by
averaging over the central range-Doppler cell alone [Equation (35) with k = 1 = 0 only]. In this
case, the integral over p, may be performed first to yield

Pd =1 / j/ 1/2(1 P'(+p))dzdw (40)Pd =o 1- FA

where

p= poexp(-(4ln2)aGw 2 - (4ln2)crz 2 ). (41)

Thus, two bounds were found: a lower bound from Equation (40) and an upper bound from
Equation (35). In certain cases, the upper bound may actually yield a gain when there should
always be a loss. A stricter upper bound would then be the lesser of 0 dB or Equation (35).

4.2 Results

The probability of detection curves vs SNR for range-Doppler straddling are plotted in Figure
11 for a. = a, = 0.7, 1, 1.4, and 2. The solid curves show the upper bound on the Pd given by
Equation (35) and the dashed curve the lower bound [Equation(40)]. The dot-dash line gives the
Swerling I result as a reference. The o=0.5 case is not shown because it always falls within a small
fraction of a decibel of the reference. The shaded regions between the lines show the range in which
the true Pd lies. In all cases, the uncertainty is less than a decibel.

The loss vs Pd curves are plotted in Figure 12. The loss is defined as before as the increase in
SNR required to achieve the same Pd as the Swerling I case. The losses are plotted with the solid
line giving the lower bound on the loss, the dashed line the upper bound, with the shaded area
between showing the range in which the true loss lies. As a increases, the two bounds approach
one another, putting very tight limits on the loss that is quite high. At lower a with greater beam
overlap, the loss is low with a large uncertainty. Lower a (< 1) is of the most interest. At these
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low values, the loss is essentially constant with Pd so that the range-Doppler straddling loss may

be included in the loss term of the radar range equation as a constant.
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Figure 11. Probability of detection with range-Doppler straddling.
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5. CONCLUSIONS

5.1 Summary

Many modern radars, by utilizing an ESA, can perform a variety of functions including volume
search and dedicated target tracking. Volume search usually occupies the largest fraction of an ESA
radar's time and resources. Thus, to prevent over- or under-design, an accurate prediction of its
performance in the search mode is highly desired.

Accurate versions of the radar range equation for two-dimensional volume search and horizon
search were derived. These equations involve loss terms that often depend on the desired probability
of detection, Pd, such as the antenna scanning loss (pattern loss) and range eclipsing loss. Loss
terms that are essentially independent of Pd are the range-Doppler straddling and weighting losses,
to reduce the antenna sidelobes or the range-Doppler sidelobes.

The derivation of the antenna scanning and eclipsing losses assumes a Swerling I target and
either a hexagonal or square grid of antenna beam positions in space or uniformly spaced fan
beams on the horizon. Detection is assumed to be statistically independent from beam to beam,
and a cumulative detection probability over all nearby beams is calculated. The target's position is
assumed to be distributed evenly in angle and range because the actual target location is unknown.
Thus, the detection probability is found by averaging over all angles anC ranges.

The loss results for hexagonal and square search patterns are shown in Figures 5 and 6 and
for horizon search in Figure 8. Eclipsing loss alone is shown in Figure 10. A comparison of Figure
10 with Figures 5, 6, and 8 shows that eclipsing loss cannot simply be added to the scanning loss
to fird the total. Rather, the combined effects of beam scan and eclipsing must be considered
together.

Range-Doppler straddling loss is shown in Figure 12. This figure shows that for reasonably
spaced cells (a < 1) the sum of the range and Doppler straddle loss is less tha~i 2 JB3 ulxd nearly
independent of Pd. Thus, the range-Doppler straddling loss may be added as a constant to the
radar range equation.

5.2 Loss Reduction

There are many ways in which losses could be reduced below the levels calculated earlier.
In general, these methods achieve only a modest decrease in loss at the expense of much greater
processing requirements and/or more complicated hardware. Three methods will be discussed
briefly in this section: multiple receive beams, staggered beam positions from scan to scan, and
staggered PRFs.

Multiple receive beams require multiple receive channels in the radar. This involves both more
radar hardware and signal processing. In this scheme, several highly overlapping receive beams are
processed instead of a single beam. Figure 13 shows a case in which there are five receive beams
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instead of the usual one. This is similar to using closely spaced sequential beams that minimize the
SNR loss from the peak of the beam. However, for multiple receive beams, the different channels are
not independent so that the loss calculation requires methods similar to the range-Doppler straddle
loss where loss bounds may be found. The best performance using multiple receive beams can be
calculated by Assuming that the target is always at the peak of a receive beam, thus neglecting
the SNR loss from the receive beam not pointing directly at a target. Similar reduction in range-
Doppler straddle loss may be achieved by using many closely spaced filters, increasing the signal
processing load immensely.
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Staggered beam positions are used to "fill in" the gaps between beams on a previous scan.
i i•ure 14 illustrates such a search scheme. If a target happened to fall at the center of four beams
in a square search pattern, then on the next scan the target would be at the peak of beam. This

only reduces losses if the performance is calculated on a best-of-two scan basis. The definition of
losses would have to be modified for this case because a constant frame time was assumed in this
study and the effective frame time for this method would be doubled. Otherwise, this beam shifting
would tend to average the target over all possible beam positions, as was done in the calculations.
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Staggered PRFs are similar to the staggered beam positions except now the eclipsing losses
are affected. Figure 15 shows the varying eclipsed regions from two PRFs. Once again, if losses
are calculated on a best-of-two basis then they may be reduced after accounting for the increased
frame time. Otherwise, the PRF shifts would average the target over all possible locations with
respect to the transmitted pulse.

5.3 Example Loss Calculation

As an example, consider a typical ESA radar. A Pd of 0.5 is specified with P10 = 10-6. The
antenna is circular and is unweighted on transmit but weighted with -40-dB sidelobes on receive
to reduce ECM effects. From Table 2 the weighting loss is 1.52 dB. To reduce the effect of large
targets or clutter, the range and Doppler sidelobes are set at -30 dB below the peak. This results
in a 0.79-dB (see Table 2) loss in each dimension. The range-Doppler cells will be spaced equal to
their 3-dB response points (a =1) so as not to overburden the signal processor. Figure 10 shows
the resulting loss to be 1.75 dB at Pd = 0.5. A duty cycle of 0.2 is chosen for the radar and a
hexagonal antenna search pattern is to be employed. From Figure 5(c), the best choice of a = 1 is
chosen for Pd = 0.5, resulting in a combined scanning and straddling loss of 4.5 dB. These radar
design parameters and the corresponding losses are shown in Table 3.
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TABLE 3

Parameters and Losses for a Typical ESA Radar

Parameter

Antenna Shape Circular

Transmit Sidelobes Unweighted

Receive Sidelobe -40 dB

Range Sidelobes -30 dB

Doppler Sidelobes -30 dB

Range-Doppler Cell Overlap Point -3 dB

Scan Pattern Hexagonal

Beam Overlap Point -3 dB

Pd 0.5

pf, a10-6

Duty Cycle 0.2

Losses

Antenna Weighting 1.52 dB

Antenna Scanning and Eclipsing 4.5 dB

Range Weighting .79 dB

Doppler Weighting .79 dB

Range-Doppler Straddling 1.75 dB

Total 9.35 dB
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The total loss shown is 9.35 dB. Several other losses must be included in the radar range
equation. They include but are not limited to CFAR loss from the limited accuracy available to
estimate the adaptive thresholds, quantization loss caused by the addition of quantization noise
from the limited number of bits in the A/D converters, propagation loss, clutter-fill loss from the
transmission of pulses that are not integrated but are used to correlate the clutter return, and
off-boresite scanning loss from the loss in gain as the ESA scans away from the boresite.

Of the 9.35-dB loss about half (4.5 dB) is from the antenna scanning plus range eclipsing.
From Figure 5(a), this loss could be reduced to 2.7 dB if the eclipsing were eliminated by going to
a much smaller duty factor or using separate transmit and receive antennas.

Some of the losses derived in this report apply to radars used for target tracking using either a
mechanically scanned antenna or an ESA. These include eclipsing losses and range-Doppler straddle
losses. If adaptive PRFs and Doppler filtering are employed then these losses may be reduced by
centering the filter of interest on the predicted location of the taxget in track.

For an ESA in the search mode, it may be more appropriate to specify the cumulative detection
probability of a target as it approaches the radar over a period of time. This may be accomplished
either through an alert-confirm process or a simple cumulative detection scheme. In alert-confirm,
once a detection at a relatively large P1 0 has been made, it is confirmed with a longer dwell following
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quickly after the initial detection. In the cumulative detection process a given search pattern is

followed with no change made after a given detection. The analysis of cumulative detection requires

the addition of another variable, the search frame time in which the desired volume is scanned.

This will be the subject of another report.
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APPENDIX A
PROBABILITY OF DETECTION

The joint probability density function for the two components of a complex signal embedded
in Gaussian noise of variance No is

1 1'(I-Io)2 +(Q--Qo)2 ) A1
P(I, Q) = 1rN exp (NI -0,+Q Q)'(A1

T~ o2No ) IA1

where I and Q are the in-phase and quadrature components of the signal plus noise and Io and
Qo are the corresponding components of the signal alone. Detection occurs when the amplitude of
the complex signal plus noise exceeds a threshold b. This threshold is determined by the desired
false-alarm rate. The probability of detection may be written

Pd = II/2+Q2>b2 P(I, Q)dIdQ (A.2)

or, equivalently in polar coordinates

Pd = LAbJP: (A,8)AdAdO, (A.3)

where

P(A,0) = 1 exp (Acos0- Aocoso) 2 + (Asin0- Aosin 0 o)2. (A.4)P(, ) N• ex 2N0 oA4

The integral over 0 in Equation(A.3) may be performed to yield

( -0oA (_A2 + A•-2No ( AA°\\

-exp A +N0  N0 Aod,(.5Pd = JA=b (_ (A.5)

where Io is the modified Bessel function of the first kind. This integrand is a Rician density function.
Equation (A.5) may be written in terms of the SNR, p, by letting p = A2/(2No) and u - A2/(2No).
Then, the integral becomes

P= fb exp(-p - u)Io(2Vp-u)du. (A.6)
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The threshold is found by letting the SNR p = 0 in Equation (A.6), which then becomes the
expression for Pi., the probability of false alarm. The threshold to satisfy a given false-alarm

probability is b' = - in P18.

The probability of nondetection is of more interest in this study and may be written

Qc(p) = 1 - Pd =1 exp(-p - u)Io(2Vfii)du. (A.7)

The subscript C indicates that this result is for a constant, nonfluctuating target. A handy ap-
proximation for Qc was found:

Qc(p) ,- exp [-B•)" (A.8)

This analytical form was found to be a good approximation to Qc(p) for 0 < p < 30, the region
of most interest. This form also allows much more rapid numerical evaluation of Equation (35), an
approximation in itself, which would otherwise be a triple integral over a product of nine integrals.
Table A-1 shows the values of a and B to use in this approximation for several P18 values.

TABLE A-1

Parameters for Q Function Approximation

PS a a B

10-4 2.31 10.3

10-6 2.86 15.3

10-s 3.35 20.6

For the case of a fluctuating target, there is a different probability of nondetection, QF, which
is Qc averaged over the probability density of the SNR.

QF(P) = 1/p Qc(pj)exp(-pi/p)dpi. (A.9)

A Swerling I type target exhibits this type of exponential target fluctuation. Substituting Equa-
tion (A.7) for Qc and reversing the order of integration yields
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QF(P) = 1/p J F exp(-u)j exp(-pl(1 + 1/p))Io(2V/ru'p)dpidu. (A.10)

The integral over p, may be accomplished with the help of Equations 6.614, 9.220, and 9.215 of
Abromowitz and Stegun [6]. These yield the simple result

0- 'n PF A

QF(p) = 1/(p + 1) exp(-u(l/(1 + p))du. (A.11)

The integral in Equation (A.11) is easily evaluated to give

QF(P) = I - P)/"1+P) (A.12)

the standard Swerling I result.
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APPENDIX B
COMPARISON OF GAUSSIAN AND SINC BEAM PATTERNS

In this appendix, the losses for a horizon search radar employing a sinc pattern are compared
to the Gaussian beam results found in the main body of this report.

The gain pattern of a Gaussian beam is

GGaussian = exp(-(81n 2)0 2 ). (B.1)

The sinc beam with the same 6-dB two-way beamwidth is

Gsinc [sin(2.780)] . (B.2)

Figure B-1 shows the two beam shapes. The major differences are a narrower main beam for the
sinc pattern as well as sidelobes that are absent from the Gaussian beam.

The sidelobes should not affect the loss results significantly because the highest sidelobes are
down 26 dB from the peak. An extremely high SNR would be required to make the Pd from these
sidelobes significant. Because this SNR would be very large in the central beam, the Pd from this
beam would be very close to 1 and any additional Pd from the sidelobe would be insignificant.

The width of the central lobe is of more significance due to the much lower gain at the edge
of the central lobe where it overlaps with an adjacent beam. Table B-1 shows the two-way gain at
the overlap point with the adjacent beam for the a values used in these calculations. For the lower
a values (< 1), the gain is very slightly higher for the sinc function leading to slightly lower losses.
For the higher a values, the difference should be greater with the sinc losses being higher.

Figure B-2 shows the sinc beam losses for a horizon search radar at zero duty factor. This
figure is nearly identical to Figure 8(a), the corresponding result for Gaussian beams. The only
significant difference occurs at large Pd with large a, giving larger losses for the sinc beam.

There is not a significant difference in the losses between Gaussian and sinc beams for most
regions of interest (areas of minimum loss). The approximation of using Gaussian beams appears
well justified.

43



0

- SINC
-.--- GAUSSIAN

-10

mI

Z_-20-

R

-40

--2 -1.5 -1 -0.5 0 0.5 1.5 2

NORMALIZED ANGLE

Figure B-1. Gaussian and sinc two-way beam patterns.

TABLE B-1

Two-Way Antenna Gains at Overlap Point with Adjacent Beams

S GGaussian 'Gsinc

0.5 -1.5 -1.4

0.7 -3.0 -2.8
1.0 -6.0 -6.0

1.4 -12.0 -13.1

2.0 -24.0 -35.8
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Figure B-2. Losses for horizon search with sinc beams.
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