
AD-A250 866 -__I Ii iiii llilM!ll Iii I
Form ApprovedENTATION PAGE I O No. 0704.01

-rvo !!5 u.a ipr~gr I ? r oe , i SeO,,. ,n -MCI I"e Vme .0, 0&.&,r q irstruiricn$ searm' nq exl$.:*ig calat; Wurml
9 .. t e" 'i' 9-te ot e. *- -" te.q- * "'f -nt"""at~ 4'n c 'mmem' rM "i "" t I bul* est'Mato Of any Oth~er aseqo th

-' ' F1! c" ICdma suggesv 1~ 1.1U(U ".v '.s t"J4 'C W,,,1C " ~ v~Tw Il?' Mre$r ;0, nfi;-,..tOf Ove,.tIOrAS anid q*0,, . n... . 4, Ar!.nqto'. V 22.;2. .02 . .d i. t-e C "''9 j -vM e -e. t t'd OW V." P'e'."r fteowtir' Pz," (07f4-0102), W nhincto., DC 20503

i. AGENCY USE ONLY (Leave blank) 2. REPORT OATE . RWPORT TYPE AND DATES COVERED
5 Feb 92 Research -.FY90-92

4. TITLE AND SUBTITLE S. FUNDING NUMBERS
Head Tracking and Head Mounted Displays
for Training Simulations $250K

6. AUTHOR(S)
Dr. M. Moshell
Mr. R. Dunn-Roberts
Mr. P. Moskal

7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES) a. PERFORMING ORGANIZATION
Institute for Simulation & Training (IST) REPORT NUMBER
at University of Central Florida (UCF) VSL -
12424 Research Parkway, Suite 300 TR92-
Orlando, FL 32826 TR92-2

2, SPONSORING/ MONITOING AGENCY NAME(S) AND ADDRESS(ESi 10. SPONSORING / MONTORIG
PM TRADE (now STRICOM) A15ENCY REPORT NUMBER
12350 Research Parkway Contr
Orlando ;--F--32826

N61339-90-C-0041

11. SUPPLEMENTARY NOTE S
This document is 1 of 2 tasks on the Ref. Contract. A second document "Dynamic
Terrain" completes the contract tasking.

12,. DWR--UTI, AV,,,.,AMUT STTET. . 12.... I TAo~M. 40
Unrestricted-Unclassified d ELECTE

qi.-i m 2 6 199Z

13. ASSRtACT (M0JMUM 20V0 r&) l
A 2 Part Task.

The first task constructs a 6 monitor display around a Simulated Abrams MIAl Tank
Commander location. The scene is displayed on three monitors at a time and
switches to an adjacent three as a function of the head motion sensed from the
Tank Commander. Production simulator difficulties were studied.

The second task integrates 'eye phones' and Cyher Face' to various image
generators, especially ESIG500 and SIMNET IG. Simulation usefulness issues
were researched.

92- 13656
This document has been Q;p!o 1912111 1 3656 111111 111111IIIII
fo: public releese and sole; its

Sditibution is unlimited.

14. S4JIMCTr Tt|W15. NUMBER Of PAGESSIMNET, Head tracking display, work stations, image generators. I
16. PIM COCK

17, IFICATN 13. SECURITY CLASSIFICATION 9, SECURITY CLASSIFICATION 20. LIM. (ATION Of ABSTRAF

OF REP0T Of THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL
NSN 7540.01-280.5500 Standard Form 298 (Rev. 2M9)

4--_ A WA. -^A

4
I
I
I

I

Contract Number N61339-90-C-0041
PM TRADE

4 February 5, 1992

il Head Tracking and
* Head Mounted Displays

I S -I .. for Training Sim ulation
D;IC I L

Final Report
" - - Visual Systems LaboratoryNBy..I By................. 4

Di ,t ib!. tio:' i

I Avi.
Dist

N USM

Institute far Simulation and Training
12424 research Parkway, Suite 300
Orlando FL 32826

NUniversity of Central Florida
Division of Sponsored Research

N iST-TR-92-12

i

I NS T IT UT.E FOR _S IMULATI ON. AN D T RA IN IN G

Head Tracking and Head Mounted
Displays for Training Simulation

Final Report

The body of this report is VSL Document VSLM92.4. -his document is the Final Report of
a two year project under Contract N61339-90-C-0041, sponsored by the Army Project

Manager for Training Devices (PM TRADE).
All opinions herein expressed are solely those of the authors.

Contract N61 339-90-C0041
PM TRADE

February 5, 1992
Visual Systems Laboramoy

IST-TR-92-12

Prepared by

Richard Dunn-Roberts, Project Manager __________
J Michael Moshell, Kevin Uliano, Pat Moskal

Reviewed by

Brian Goldiez ___________

Institute for Simulation and Training - 12424 Research Parkway, Suite 300 *Orlando. Florida 32826
Univer-ity of Central Floria - Division of Sponsored Reserch

FINAL REPORT

Head Tracking and Head Mounted Displays
for Training Simulation

Richard Dunn-Roberts, Kevin Uliano, Pat MoAskA, Michael Moshell

cbe Body of this Report is VSL Document 92.4)

viflm System Laboratoiy
Institute for Simulation and Training

University of Central Florida
Orlando, FL 328

6Feb92

Abstract

This document is the Final Report of a two year project at the Institute for
Simulation and Training supported by PM-TRADE under contract
#N61339-90-C-0041.

This project has two components. The first component is the construction
of a six-monitor head-tracking display (HTD) to provide the tank
commander (TC) in a SIMNET MiA1 Abrams simulator with a 360-degree
panoramic view into the SIMNET database, without requiring additional
image generation hardware. This component successfully demonstrated
the concept and highlighted some of the difficulties to be overcome in
building a production simulator using HTD technology.

The second component is the investigation of low cost head-mounted display
(HMD) technology for simulators. This component included attaching
HMDs to several available realtime image sources, and describing the
difficulties and techniques used to overcome the difficulties. Ultimately,
four image sources were used:

* Silicon Graphics Iris workstations;
" An Evans & Sutherland ESIG-500 image generator,
" The SIMNET simulator's image generator; and
" A low-cost (PC-based) SenseS/Intel DVI graphics system.

The two best-known commercial HMDs costing less than $10,000 were
evaluated: VPL's EyePhones (in two versions) and PopOptix Labs'
CyberFace. Of the three product versions, only VPL's second-edition
EyePhones approached an acceptable level of resolution for training
simulation. The devices' limitations, and technical trends, are discussed,
with recommendations for further studies.

-l -

Contents

I. Introduction

II. Head Tracking Technology

II. Head Tracking SIMNET Commander Display (HTD)

A. The Head Tracking Display Testbed
B. Visual Parameters of the Testbed
C. Experiments with the Head Tracker
D. Results
E. Conclusions

IV. Low Cost Head Mounted Displays (HMD)

A. Head Mounted Display Technology
B. Driving The EyePhones with Silicon Graphics Workstations
C. Attaching a HMD to the SIMNET System
D. Attaching a HMD to the ESIG-500 System
E. Attaching a HMD to the Sense8 System
F. Conclusions

V. Appendices

A. Paper presented at SIMTEC '91 Conference
B. Photographs of Head Tracking Display
C. Photographs of Head Mounted Displays
D. Software to Control HTD Video Switcher
E. Schematics of HTD Video Switcher
F. Software to Control SIMNET Head Tracking Display
G. Software to Control ESIG-500 Head Tracking Display
H. Summary of Results of HTD Experiments
I. Computations concerning EyePhone Resolution
J. Extending the SIMNET Head-Tracking Display

L Introduction

One of the most obvious limitations of low-cost simulation technology, as
exemplified by the the SIMNET team training system is the restricted field
of view. In a real MiA1 tank, six "vision blocks" (periscopes) provide the
Tank Commander (TC) with essentially a complete 360 degree field of view
(FOV). Each block spans approximately a 45 degree static horizontal FOV,
but the TC can move his head from side to side to view more than 60
horizontal degrees of the surroundings from each vision block.

In the SIMNET system, in order to achieve an acceptable pixel density for
target acquisition and navigation, three 320 x 128 visual displays were

-2-

placed side-by-side to simulate one MIA1 commander's vision block. Each
display was set to span 8 degrees (vertical) by 20 degrees (horizontal), thus
achieving a 60 degree effective horizontal FOV, and a pixel density of 3.75
arc-minutes per pixel in the horizontal direction.

SIMNET's vertical pixel density is essentially the same, and
henceforth we will discuss only horizontal FOV and pixel densities.
The aspect ratio (horizontal to vertical) of 2.5:1 will remain constant
throughout these discussions unless noted.

In the healthy human eye, an image centrally presented can generally be
resolved into details spanning 0.5 arc minute, and so clearly the SIMNET
visual system is far from realistic. However, its designers determined that
within the criterion of a 3.5 km maximum range to horizon, 3.75 arc
minutes was adequate for target detection when targets were moving
against the simplified background of a SIMNET database.

The SIMNET TC turret rotates under the control of a thumb switch on the
simulator's machine gun control handle, requiring approximately 12
seconds to rotate 350 degrees. A stop prevents complete rotation (to protect
electronic cables from twisting). This can be a severe limitation if the TC
needs to look in a direction opposite to the tank cannon.

The central hypothesis of this study was that the tank commander in a
SIMNET unit is operating in a handicapped mode, compared to a real tank
commander. First, an operational TC usually operates in POP-hatch
("Protected Open Position") mode unless under direct attack or
chemical/biological threat conditions. The massive hatch cover is
horizontally suspended above the hatch opening to protect from downward
fire or fragmentation, but the TC is looking out through a horizontal slit.

No equivalent POP-hatch experience is provided in the SIMNET system.

Second, even when forced to close the hatch, the TC still has six high-
quality vision blocks and the ability to see in any direction as rapidly as he
can turn his head.

The questions we therefore proposed to study were the following:

1. For dosed-hatch operation: would a TO's performance in
navigation and target acquisition be improved if the experience of
having six instantaneously available vision blocks were simulated,
instead of requiring the TC to rotate the SIMNET cupola?

2. For POP-hatch operation: would it be possible to provide visual
stimuli, using low-cost head mounted display technology, so that a
TC's POP-hatch performance in navigation and target acquisition
could be incorporated into the SIMNET experience?

-3-

Despite numerous difficulties in working with SIMNET prototypical
equipment, some answers to these questions were achieved. We first
discuss common technical elements in both projects, namely, the ability to
track the subject's head position and orientation. We then discuss the HTD
project, which took place mostly in 1990. Finally we discuss the HMD
project, which took place in 1990 and 1991.

IL Head Tracking Technology

During the first two months of this task (February-March 1990) we engaged
in a literature and product-information search. This search provided us
with information that was useful for both projects under this task. In
general, this search provided us wits information concerning availability
and cost of head-tracking equipment and head-mounted displays.

In the realm of head-tracking, at the time of the start of this project, there
were only two feasible schemes: magnetic and infra-red. The only IR
tracker we came across was used in the CAE-Link head-mounted display.
This system was custom-built, and replication would have cost at least
$20,000 (our estimate). At the time of the start of this project, the Polhemus
magnetic tracker was the only commercially available magnetic tracker,
although others have since become available. For this reason, the
Polhemus Isotrak was chosen. This is a six degree-of-freedom ten-bit
tracking device in wide usage.

The Polhemus product comes in two versions: an economical model for
$3,000, and a high-resolution model for $10,000. The economical model
tracks spatial positions with a static accuracy of 0.13 inches while source to
sensor separation is less than 15 inches, and a static angular accuracy of
0.85 degrees within this range. Data is reported with a resolution of 0.9
inches and 0.35 degrees.

The high resolution model tracks spatial positions with a static accuracy of
0.1 inches, and angular position accuracy of 0.5 degrees. Its resolution of
reported data is .046 inches and 0.1 degree, within a 30 inch radius of the
emitter. Both models respond at a 30 hz rate. Two sensors can be used with
a single emiter and a time-multiplexed System Electronics Unit, thus
cutting in half the effective response rate of both sensors.

We selected the economy model upon the recommendations of VPL
Research, since it was incorporated with the VPL EyePhones, and it proved
adequate. The high resolution tracker is usually used for CAD applications
as a manual input device (stylus), where extreme spatial accuracy is
needed. The head tracking function is less demanding of positional
precision.

Since our purchase of the Polhemus, a new 12-bit magnetic tracking device
has become available. This higher resolution device, known as the Bird, is
made by Ascension Technology, has some advantages, as well as one

-4-

disadvantage. The primary advantages are higher resolution and less
sensitivity to environmental distortions (metals, EMF, etc.).

The one known disadvantage of the Bird products is a two-foot radius of
accuracy, vs. a three.-foot radius for the Polhemus. A version of the Bird
with an eight-foot radius of accuracy is expected soon from Ascension
Technology in 1992, as well as a Flock of Birds that can use up to six sensors
with a single source. The Bird products cost around $3000 for a sinale
sensor/emitter pair, equivalent to the economy model from Polhemus. The
Flock of Birds uses a single emitter and several (up to six) sensors, each
with its own electronics module. Thus no time multiplexing is required and
all devices continue to respond at 30 hz. Each additional sensor/electronic
setup costs approximately $1500.

In 1992 as the project is ending, a number of other tracking devices are
becoming available. Logitec has produced an acoustically based "3d
Mouse", which uses a triad of ultrasonic emitters arranged in a triangle
approximately 15 cm on a side, and a triad of detectors approximately 10 cm
on a side, attached to a three button mouse. Unlike the Polhemus and Bird
products, the 3d mouse will not function in all orientations; the sensors
must "see" the emitters. This product costs $1000.

IL Head Tracking SNET Commander Display (HTD)

The purpose of the HTD is to simulate the MiAl Abrams tank
commander's (TC) cupola, which has six vision blocks. Each vision block
has a 45x15 degree field of view (FOV) (approximately). SIMNET provides
a single 60x8 degree FOV using three channels of the image generator.

The HTD design allows us to drive six monitors with the TC's three
channels of the SIMNET image generator. This is accomplished through
the use of a video switcher and the Polhemus magnetic tracker, under
control of an IBM PC-AT. The control computer reads the tracker, controls
the video switcher, and controls the direction of view (DOV) on the image
generator (IG).

We first describe the video switcher and display setup. We then discuss the
experiments which were conducted.

A. The Head Tracking Display Testbed

In the HTD, only the three monitors in front of the TC's head are active at
any time, with each monitor presenting approximately the same FOV as a
real vision block. This gives the TC a 140x16 degree instantaneous FOV.
Under control of the PC-AT, the video switcher and the Polhemus tracker
activate the three monitors in front of the TC. As the TC turns, the control
PC shifts the output signals to the appropriate three monitors. The
switcher is designed to give an instantaneous change of view in order to
eliminate the time now required for the cupola to rotate mechanically

-5-

through the same distance. For example, a 180 degree rotation that
requires six seconds in the mechanically rotating cupola takes
approximately one fifth of a second in the HTD.

The video switcher was designed and constructed by IST. It takes four
composite video input signals and routes them to any of six output channels
under the control of the control computer. (Figure 1)

The control computer also controls the DOV of the IG through a digital-to-
analog converter. This converter mimics the potentiometer in the
mechanically rotating cupola to change the DOV of the IG.

The control computer reads the Polhemus magnetic tracker and, based on
the orientation of the user's head, sends signal to the IG to update the DOV.
The control computer then routes the four input channels to some subset of
the six monitors. The routing of input signals to output channels is
completely configurable, and any input signal can be routed to any output
channel, the only restriction being that only one input signal can be routed
to a particular output channel at a given time.

Three of the input channels come from the SIMNET image generator, and
the fourth input channel is available for neutral imagery from any video
source, or can be left blank.

The control functions of the PC-AT are provided by a combination of
hardware additions to the PC-AT and the simulator host and control
software on the PC-AT. The hardware additions to the PC-AT consist of a
parallel output channel with some logic circuitry and a digital to analog
converter. The output channel is used to transmit control signals to the
video switcher, and the converter is used to control DOV on the image
generator. Both the output channel and the converter reside on a single
prototype bus card (called the interface card) in the PC-AT. In addition to
this interface card, a game port card has been added to read the
synchronization signal from the simulator host.

The modification to the simulator host consists of a small circuit that
detects when the simulator A/D card has been read by the host. This circuit
sends a signal to the control PC-AT to allow for a measure of
synchronization.

The control program for the HTD is fairly simple at a conceptual level.
(Figure 2.) It has two basic responsibilities: sending the TC's DOV to the
IG, and telling the video switcher which input signals to route to which
channel. The control program reads two inputs: the magnetic sensor and
the synchronization signal. The only two outputs from the program are a
control word for the IG, and a control word for the video switcher.

-6-

HTD Electronic Oneration:

The outputs from the image generator are in the form of four signals: red,
green, blue, and sync. There are three channels: Tank Commander Left
(TC-L), Tank Commander Middle (TC-M), and Tank Commander Right
(TCR). To reduce cabling requirements and switcher complexity, the
signal is encoded using a Vid I/O video encoder. Output signals from each
channel of the IG are connected to the RGB and Sync inputs of a Vid I/O
box, as shown below. The connecting cables use BNC connectors. The
terminating switches for each channel are set to OFF (vice 75 Ohm) so that
the RGB and Sync outputs can be routed to the standard SIMNET monitors.
This prevents requirements for recabling when the HTD is not in use.

Polhemus Video Switcher

Position/ Video Switcher

Orientation Control Word
Packet

Control
Program

Sync IG Control
Signal WordImage Generator

Figure 2. HTD Control Program Block Diagram

-7-

From Simulator IG

IN: Red Green Blue Sync
VII) I/O

OUT: Red Green Blue Sync

To Simulator Monitor Composite Video
to Video Switcher

Figure 3. VID I/O Video Encode (x three)

The composite video outputs of the Vid I/O boxes (Figure 3) are connected to
the inputs of the video switcher. The input connectors of the video switcher
(Figure 4) are labeled 0, 1, 2, and 3. The outputs of the IG are connected to
the inputs of the video switcher as follows (with video switcher input
channel 3 left open):

IG Outnut Channel Video Switcher Innut Channel
TC-L 0
TC-M 1
TC-R 2

The outputs of the video switcher are then connected to the color monitors.
These outputs are labeled 0, 1, 2, 3, 4, and 5. The video switcher should be
switched on prior to connection to the PC in order to prevent damage to the
video switching chips.

-8-

From Simulator IG

ON/OFF ON/OFF
FUSE INDICATOR SWITCH

OUT1 0 U2 OUT 3 OUT 4 OUT 5

To Monitors

Figure 4. Video Switcher External View

The interface card is connected to the video switcher through a standard six
foot DB-25 male to DB-25 male parallel cable. The digital to analog
converter is connected to the SIMNET using a cable with a BNC connector
at the interface card end and a four pin connector at the SIMNET cupola
interface.

The select lines of the video switcher are addressed from the interface card.
The interface card has a sixteen bit latch (really two eight bit latches that
can be addressed as a single sixteen bit latch) that can be written from the
control program using C or assembly language instructions. See figure 5.
The base address of the latch is 30Ch. The control program outputs a
sixteen bit word to the latch. The first four most significant bits of the
address will be ignored, and the twelve low order bits are output to the video
switcher.

-9-

+5 V -5 V

S~ I~ 5 H

11 12 3 12 4

DECODER NC-- 6

0 1 2 3
7 IND. "J8 INI7 H
1o0 IN 2 14 1J fZw

I. K

MAX 454 K

Figure 5: Video Switcher (One module of Six). Functional Diagram

The TC's DOV will be controlled by a digital to analog converter. In its
normal operation the field of view is controlled by a potentiometer mounted
on the rim of the cupola track. The voltage dropped across the pot varies as
the cupola rotates. The voltage drop is converted to a digital value by a A/D
converter in the simulator and the DOV is modified accordingly. The HTD
bypasses this potentiometer and sends a control voltage from the D/A
converter on the interface card to the simulator's A/D converter. The D/A
converter is controlled similarly to the video switcher, by outputting a
control value to a sixteen bit latch on the interface card. The base address
of the D/A converter is 302h.

HTD Physical Configuration:

A simple plywood structure was created to support six Sony 13" video
monitors. Standing on six "2 x 4" legs, the hexagonal structure had a
sturdy planar top approximately 65" above the floor, wch a 30" diameter
central hole. A laboratory swivel chair placed on a 6" high platform
provided a seat for the subject, whose head projected through the hole in the
table into the simulated cupola.

The SIMNET cupola was simulated by a cardboard enclosure. Black poster
board was fabricated into a hexagonal chamber 30" in diameter, with six
apertures the same size as SIMNET vision blocks. Four sided cardboard
cones connected these openings to the Sony TV screens, providing the
appropriate fields of view. See Figure 6 below.

-10 -

From
Video
Source

Video

'6

Switcher

Figure 6: Head Tracking Display Testbed

Because the testbed was in a different room from the SIMNET MIAl
simulator, it was necessary to use walkie-talkies to communicate between
experimenters, and the SIMNET intercom for the TC subject to
communicate with the driver. These intercoms proved troublesome and
unreliable, as has been reported in general with the SIMNET system.

B. Visual Parameters of the Testbed

It was necessary to use three SIMNET channels to drive the three turned-
on vision blocks in the HTD system for several reasons. First, these were
the only trio of IG channels available to the experimenters. Second, we were
comparing a new candidate SIMNET display to the existing displays and
thus should be using the same visual databases. Third, a fair comparison
should put the same amount of information in front of the subjects in both
the experimental and control groups.

However, a SIMNET TC channel was designed to support an 8 x 20 degree
field of view. The HTD required that this be re-scaled to span 16 x 40 degrees
which represents a 4x increase in angular FOV. Under normal circum-
stances, this would be expected to overload an image generator's polygon
and pixel capacity. The experimenters hoped to "get away" with this
situation for the following reasons.

-11l

Each SIMNET channel is actually paired with another. Each TC channel is
paired with a driver channel, with the TC channel having priority. The
combined channel has a polygon capacity of 2000 polygons per frame, at 15
frames per second. SIMNET visual databases are constructed under the
assumption of at most 1000 polygons being visible at one time, allocated
approximately as follows: 300 terrain polygons, 300 culture (buildings, etc.)
and 400 target (tank, Bradley ...) polygons.

Thus, the database was expected to contain at most 300 polygons in any 8 x
20 degree FOV. If a FOV was selected with no culture or targets, even a 4
fold increase in this "worst case" terrain polygon count should have
remained within the 2000 polygon capacity of the IG (although we would
expect the driver's channels to degrade when the maximum single channel
capacity of 1000 polys/sec was exceeded.)

This assumption would only be valid if the view contained few or no culture
and targets; or if targets occurred in settings where the polygon density for
terrain was well below the maximum design limit. As it turned out, these
conditions were often but not always met. Route planning and the search
for ways to conceal targets sometimes led to the use of the most complex
available terrain, which increased the terrain polygon count.

The SIMNET image generators' performance degraded under these
circumstances, producing irregular visual artifacts such as flickering and
occasional missing frames. However, a more severe problem with the
SIMNET IG's soon manifested itself.

Because of chronic difficulties in accessing the source code for SIMNET
during the transition from BBN to Loral's operation of the SIMNET-D site,
the project attempted a "black box" approach to SIMNET. That is, we
intended to drive the IG/simulator system by stimulating it with signals,
but with no modifications to the internal code. Thus, to specify the viewing
direction of the TC cupola, an analog driving voltage (described in the
previous section) was provided, to emulate the output of the cupola tracking
potentiometer.

This voltage changed values whenever the subject's head direction
changed. However, the resulting change of IG view direction, and the
switching of channels in the video switcher, were unsynchronized,
resulting in the unfortunate situation where the subject saw a "pop ", or a
temporarily incorrect view, on the screen to which he had just turned. An
attempt was made to detect the timing of the SIMNET's reading its own
A/D converter, but without full access to the scheduling algorithm in the
simulator, this external approach could not fully solve the synchronization
problem.

Consequently, two classes of visual artifacts occurred in the Head Tracker
which were not present in the rotating TC cupola (the control condition for

-12 -

the experiment). As will be seen, these artifacts were reported by the

subjects as having a strong influence on their performance.

C. Experiments with Head Tracker

The experiment utilized a within-subjects design, in which each subject
receives all conditions in a counterbalanced arrangement. To accomplish
the counterbalancing, a Latin Square design is employed, in which each
condition immediately preceds and follows the other three conditions once.
For example, the first four subjects receive the condition orders shown
below in Figure 7.

SCondition Order

SCl C2 C3 C4

2 C3 C1 C4 C2

3 C3 C4CI C3

4 C4 C3 C2 C1

Figure 7: Latin Square Condition Ordering

The four conditions are:

Cl: Terrain Reasoning (Navigation) using Head Tracking Display
C2: Target Acquisition using Head Tracking Display
C3: Terrain Reasoning using the Standard TC Cupola
C4: Target Acquistition using the Standard TC Cupola

Terrain Reasoning Task.

Subjects are shown a 2D paper and pencil map of a section of range at
Hunter-Ligget. A start point, an end point, and a general vehicle path are
marked on the map, and the Subjects are given two minutes to familiarize
themselves with the map before being placed in the M1 simulator or HTD
testbed. The subject will then instruct a confederate driver via the SIMNET
intercom to drive the stipulated route. The Subject notifies the experimenter
when he believes he has arrived at each checkpoint.

Dependent measures include the total time taken to traverse the intended
route, and gross location accuracy. The location accuracy is measured by
overlaying the Subject's laminated map with marked locations onto the
master locator map and measuring the distance from the marked location
of the checkpoint to the correct location. The Subject's actual track is also
recorded using a simultaneous video/audio recording from a Plan/View

-13

Display, with the audio track containing the Subject's instructions to the

driver.

Target Acquisition Task

Subject is shown another 2d paper and pencil map of a range at Hunter
Ligget. As in the Terrain Reasoning Task, a start point, an end point, and a
general vehicle path are marked on the map, and the Subject is given two
minutes to familiarize themselves with the map before being placed in the
simulator or testbed. A confederate driver then drives a predetermined and
well-practiced route that corresponds to the path outlined on the map.
Targets in the form of T-72 tanks are placed along the path at various
bearings, distances and orientations.

When the Subject has acquired a target, he will say "Target [right or left]",
indicating that the target was located either to the right or left of the
vehicle's path of motion. The TC's voice will be recorded and synchronized
in time with video taken from the Plan View Display (PVD). The dependent
measure for this task will be the number of targets correctly located.

D. Results

Presumably because of the factors described in Visual Parameters above,
the results reflect no clear preference for either the traditional SIMNET
cupola or the HTD. On the terrain reasoning task, two courses were used.
On both courses, subjects performed better (by the latency measure) during
the early portion of the course (between Checkpoints 1 and 2) with the
SIMNET cupola, and better during the period between Checkpoints 2 and 3
with the HTD. This could perhaps be interpreted as saying that subjects
were learning how to take advantage of the HTD during the session.

With regard to navigational accuracy, medians show no clear differences.
Over Course 1, the cupola showed a less accurate performance; whereas for
Course 2, the opposite was observed.

With the target acquisition task, results were similarly unclear. For course
1, the HTD was more successful. For course 2, the cupola was slightly more
successful.

Twelve subjects were used. The variance in performance was very large,
and no statistical significance can be attributed to any of the above
observations. However, the wide variance in itself testifies to the effect of the
basic technical problems, on the experiment's ability to measure results.

A subjective evaluation measured preferences and opinions of subjects. In
general, they expressed a slight subjective preference for the HTD when
asked questions such as "Rate your ability to perceive locations accurately:
lfvery easy, 5=impossible". However, the same subjects voted 8 to 4 in favor
of the SIMNET cupola when asked "which simulation do you think would

-14 -

be most beneficial for training" and 7 to 5 for the SIMNET cupola when
asked "Which simulation do you prefer".

Most significantly, when asked "Do you think your performance would
have changed if the head-tracked display did not have popping and
flickering?", 11 of the subjects responded YES.

Additional Results. In response to a request from the sponsor, a
preliminary concept paper for an advanced version of the Head Tracking
Display for POP-hatch operation was developed. This device would have
used large monitors to provide an open-hatch display, rather than a
simulation of a rotating cupola. This concept paper is attached as Appendix
J.

E. Conclusions

1. It is technically possible to build an economical head tracked display
device, with video switching to distribute three channels across six
displays. The entire prototypical hardware suite cost less than $8,000 in
parts, not including the image generators or labor to assemble. A
hardened, "simulator ready" version of this equipment would cost perhaps
$12,000 in materials, with a fiberglass shell in place of the wooden
superstructure.

2. It is technically risky to attempt to use an image generator for any
purpose without the full support of its vendor. Artifacts may result which
cannot be overcome via purely external means, and which will render
experiments difficult or meaningless.

3. The Polhemus magnetic tracking system is reliable and simple to use.
However, its latency must be carefully factored into the initial design of the
viewing system, as the time required for serial transmission of information
is a significant portion of a simulation cycle.

-15 -

IV. Low Cost Head Mounted Displays (HMD)

A. Head Mounted Display Technology

We looked at various types of head-mounted display technology. HMD's can
be opaque (in which only the artificial world is seen) or semi-transparent
(in which both artificial imagery and real objects are seen). To date, two
main types of HMDs have been constructed.

Pupil-Forming Systems. One type of display is optically implemented as a
pupil-forming system1 . Again, there are two types of pupil forming HMDs.
The first uses small (1/2 inch diameter) monochrome CRT's mounted on
the side of the helmet. The image is projected through on helmet optics and
bounces off a beam-splitter (for semi-transparent operation) or a mirror,
into the users eyes. This kind of pupil-forming system costs on the order of
$50K and up. Honeywell manufactures this kind of HMD. Monochrome
CRT's are usually used to minimize weight.

A variation on these systems uses fiber optics to pipe the image from off-
helmet image sources, such as GE light valves. This adds color capability,
but is also very expensive. The CAE-Link helmet is of this type.

Infinity-Optics Systems. The other type of HiMD uses two small LCD
displays mounted directly in front of the user's eyes. Wide angle plastic
lenses increase the apparent field of view and provide a virtual image at
optical infinity. These systems provide color imagery at a lower cost than
the pupil-forming systems but have lower resolution. The NASA VIEW
system is a monochrome version of the LCD helmet, and VPL's Eyephones
is "nominally" a 442 x 238 pixel color version. This actually represents the
number of distinct single-color pixels which are arranged in "triads". The
effective resolution if these triads are regarded as single "pixels" is 256 x
137.

The one-eye field of view of the EyePhones is 86 degrees, which yields a
horizontal angular resolution of 20 arc minutes per pixel. With a vertical
FOV of 76 degrees, the vertical angular resolution is 33 arc minutes per
pixel. For details of these computations, please see Appendix I.

VPL has released a high resolution version of the Eyephone with twice the
horizontal and vertical resolution, but its cost is approximately $40,000,
again making it fairly expensive.

IThe exit pupil of a pupil-forming optical device is a disc-shaped region in
space, to which all of the light from the system converges and from which it
diverges. When the eye's pupil is entirely within the exit pupil, the full field
of view is perceived at maximum brightness. If the eye's pupil partially
overlaps with the exit pupil or is too near or far from the image source,
"vignetting" (partial occlusion of the image) occurs, and brightness and
clarity diminish.

-16

We are using the medium resolution Eyephones for-the HMD Project, and
also acquired a variant for the Evans and Sutherland ESIG-500, called
Cyberface II by PopOptix Labs (Boston, MA). This firm is owned by Eric
Howlett, who produced the lenses for the original VPL Eyephones.

Other Research. There are several on-going low-cost HMD R & D projects
going on around the country at this time. One of the most ambitious is the
development of micro-laser scanning displays. This project is going on at
the University of Washington in Seattle, and, if successful, could provide
low-cost, high-resolution, lightweight HMD's in the medium-range future
(1993-95).

A second HMD project of interest is underway at IST. Dr. Tom Clarke, with
DARPA funding, is constructing an experimental variable-acuity HMD.
Using custom electronic hardware, Dr. Clarke's device will pre-distort
imagery to concentrate information on the central visual field. A uniform
(and thus low-cost) LCD image source will be used. Nonlinear optics will
then reverse the pre-distortion, and will result in a varying pixel density in
the central and peripheral visual fields. Prototypes should be available in
1993.

B. Driving the EyePhones with Silicon Graphics Workstations

As a first experiment, a testbed was constructed in conjunction with the
Dynamic Terrain Project, another PM-TRADE sponsored IST project. A
suite of software was constructed which provided stereo displays from two
different Silicon Graphics (SGI) workstations, and which was networked to
two additional workstations providing models of moving tanks.

It is necessary to set output code in the SGIs to produce NTSC composite
video, and to use two Vid I/O boxes to convert the resulting RGB signals to
composite. This was accomplished without difficulty, and the Eyephones
responded well. The Polhemus controller provided with the EyePhones was
interfaced to the SGI via a serial port. This was IST's first experience with
Polhemus devices, and served to open the pathway for other uses including
the HTD display previously described.

These early VPL Eyephones suffered from a number of problems. On two
occasions the devices failed and were returned to the vendor for warranty
repairs. The diffuser screens produced a "screen wire" appearance which
was quite distracting and had the opposite effect than intended, which was
to provide a subjective pixelization of the image. Nevertheless, the first use
of the Eyephones was successful in showing that stereo images could be
displayed, inter-ocular adjustment provided in software, and a SpaceBall
navigation paradigm used with workstation signal sources.

-17 -

C. Attaching a HMD to the SIMNET System

The original idea was to explore EyePhones as a possible POP-hatch
viewing device. Several obstacles presented themselves, as a consequence of
the inaccessibility of the SIMNET system's internal details:

1) There was no convenient way to achieve vertical deflection, comparable to
the horizontal deflection achieved by the HTD tracker via an emulation of
the cupola potentiometer. Instead, the SIMNET IG accepted only the
position of a three position switch, to tilt the FOV upward or downward by
five degrees from the horizontal.

2) Stereo viewing required the use of two channels of imagery with a
horizontal offset, and precise control of the distance between the views. No
two SIMNET channels, as originally set up, had these properties. A data
block was identified which could respecify fields of view, etc (and was used
in the HTD for this purpose).

3) The viewing blocks in SIMNET had a 20:8 aspect ratio, whereas the
NTSC signal required for EyePhones required a 4:3 ratio. Only the Stealth
configuration of SIMNET would support this viewing situation, and IST's
Stealth system had limited hours of availability.

4) Tank commanders often need to look back and forth between the "outside
world" and a paper map, but EyePhones did not support this possibility. An
alternative would be to treat the EyePhones as binoculars, which could be
raised to the face or put down when map viewing was desired.

Meanwhile, IST received from PM-TRADE a supposedly working set of
source code for the SIMNET hosts. With the assistance of Warren Katz, one
of the software's authors and now a private consultant, IST began to
decipher and recompile the SIMNET simulation host source code.

In order to investigate the possibilities, we embarked upon an attempt to
integrate the Polhemus system into the SIMNET source code. After some
effort with Warren Katz' assistance, we were able to integrate the
Polhemus into the Simnet code. We built an internal analog to the external
version of the HTD. In essence, we turned off the code which read the
cupola potentiometer, and forced in the values from the Polhemus. We
managed to extend the Polhemus code to compensate for the "dead spot"
where the cupola could not rotate. Thus, full 360 degree rotation about the
vertical axis became possible.

The integration of vertical motion was attempted. The problem was traced
in the source code back to the way the cupola rotation was stored as an M1
state variable. Only the rotation about the vertical axis is stored. Substantial
work would be required to change the source code so as to allow rotation
around three axes. Without BBN support, this was not feasible.

-18 -

We also considered modifying the Stealth system's source code so as to take
advantage of its ability to move the viewpoint freely,.but found that only
about half the Stealth code was actually available. As time and resources
were running out, we abandoned further efforts to integrate the EyePhones
with the SIMNET system.

. Attaching a HMD to the ESIG-500 System

The second task attempted under the HMD project was the use of a low-cost
head-mounted display on the Evans and Sutherland ESIG-500 image
generator. This image generator has several characteristics that made it
an attractive platform for this work. First, since the image generator was
not tightly coupled with a training simulator, it was hoped that control
would be a simpler matter than on the SIMNET, where image generator
control code was imbedded inside simulation code. Secondly, it was felt that
the higher update rate of the ESIG-500 (50 Hz vice 15 Hz on SIMNET) would
provide information on the effects of update rate on users.

The original intention was to use the VPL Eyephones with the ESIG-500.
We thought the ESIG-500 was capable of running at a visual system vertical
refresh rate (update rate) of 60 Hz. This would allow us to use video
encoders to encode the red, green, blue, and sync signals into an NTSC
composite signal, which could be used by the Eyephones. Evans and
Sutherland told us this would be possible if we did a hardware modification
by replacing the timing crystal on the ESIG with a faster crystal, and if we
were willing to accept a reduced polygon budget (they said that the update
rate times the polygon budget was an invariant, so that as update rate
increases, polygon budget decreases). This also would require some
microcode patches, which Evans and Sutherland agreed to provide.
However, tests showed that the fastest update rate we could achieve was 57
Hz. This was not close enough to the rate required to obtain an image on
the Eyephones.

Additionally, we attempted to modify the Eyephones to bring the signal
synchronization rate down to 57 Hz. However, it was determined that the
cost of producing a crystal that would allow the Eyephones to synchronize at
57 Hz was prohibitive, since it was not a standard crystal and would require
a special production run to create. Additionally, it was reported that the
circuitry would require substantial modification to allow the Eyephones to
synchronize at 50 Hz, even with commercially available crystals.

The next solution we explored was the use of scan converters to modify the
ESIG-500 signal from 50 Hz to 60 Hz. Each scan converter could modify one
channel and cost $15,000, for a total cost of $30,000. This was clearly a
prohibitive cost.

Finally, we were able to locate a different HMD, the Cyberface II, by Pop
Optix Labs, that was capable of accepting separate red, green, blue, and

-19 -

synch signals. The Cyberface II is also capable of synchronizing at both 50
Hz or 60 Hz, and therefore can be used directly on the ESIG-500. The ESIG-
500 produced a signal with levels inappropriate for the Cyberface I. The
images were washed out and detail was difficult to see. These signal
strength problems that were solved by circuitry designed and constructed at
IST, and incorporated into a housing with the power supply for the
Cyberface II. This circuitry provides the ability to adjust each of the red,
green, and blue signals individually. This allows us to adjust the
brightness and color balance for each display in the Cyberface II HMD
system, even where differences in source signals exist. The Cyberface II
will be described in more detail later in this report.

Use of a head-mounted display with an synthetic image source such as the
ESIG-500 requires control over the image source. With the ESIG-500 this
control can be effected through the terminal keyboard attached to the ESIG-
500 or through a host computer connected to the ESIG-500 with an Ethernet
network. Because it is desirable to use a magnetic tracking device to control
eyepoint orientation and, to a lesser degree, eyepoint position, it is
necessary to use a host computer controlling the ESIG-500 over an Ethernet
connection. The magnetic tracking device is connected to the host
computer using a serial connection.

-20 -

Polhemum
Iootrak

Serial Link

Host Computer:.
IBM PC Clone

with 3Com
Ethernet card

SDedicated
Ethernet Link

Visualization
Platform:
ESIG 500

-w
O~Cybrfwe II

Figure 8: ESIG/CyberFace Configuration

-21

The control program can be summarized by the pseudocode below:

initialize serial port
initialize tracker
initialize Ethernet
initialize viewport

while (!done) {
get a position/orientation record from the Polhemus

determine the center screen (the one the TC is looking at)
if (center screen changed) set screen changed flag

look up the corresponding IG control word
look up the corresponding video switcher control word

if (sync signal from IG) {
if (center screen changed) {

send BLANKING control word to the video switcher
set delay counter
clear screen changed flag
set change the switcher flag

)
send the IG control word

I

if (change the switcher) {
if (delay counter > 0)

decrement delay counter
else (

send video switcher control word
clear change the switcher flag

}
)

The ESIG-500 host interface follows IEEE 802.3 hardware and software
standards for communication protocol. The communication protocol
frame format is shown below:

I I I dxt xrc
bl I snc[addraddr I length Idata crcI

Figure 9: Frame Format

The preamble, sfd sync, and crc fields are filled in by the Ethernet
hardware. The user on the host computer specifies the destination address
field, the source address field, the length field, and the data field. The data
field contains the command(s) to the ESIG-500 from the host computer. The
data field can contain multiple opcodes, with each opcode being followed by

- 22 -

any required parameters. The data field must be at least 46 bytes and no
more tha, x 1500 bytes.

The Ethernet standard corresponds to the Physical Layer and the Data Link
Layer of the OSI protocol stack. Higher level communications protocols,
such as IP and TCP, are not understood by the ESIG-500. For ease of
implementation, it was de-ided to use a PC clone as the host computer.
This provided easier access to low level Ethernet communication. It also
allowed isolation from network traffic (using higher level protocols) not
intended for the ESIG-500.

The Ethernet card used to connect the host PC to the ESIG-500 is a 3Com 503
Ethernet adapter. The host interface library to control the ESIG-500 was
originally written in 80x86 assembler using Ethernet adapter control
libraries written by the 3Com company and provided with the 503 adapter.
The 3Com library was very poorly written. For this reason, for this project,
the host interface library was rewritten in the C programming language.
The new host interface library uses a public domain 503 adapter control
library, also written at IST.

For the purposes of this project, two functions were used from the ESIG-500
host interface library. These two functions are the esesO function call and
the esviewpointO function call.

The esviewpointO function gives us control over various aspects of the
viewport presented on each channel. This allows setting up the image
presented to each eye so that the user is able to fuse both images into a
three-dimensional image. Different people's eyes have different inter-
ocular distances (IOD), and this must be considered when setting up the
viewing parameters on each channel. Parameters to this function include
the channel number, the x, y, and z coordinates of the eye position, and the
heading, pitch, and roll angles of the eye.

These values must be specified for each eye. The esviewpointO function is
called twice, once for each eye, during program initialization.

The escsO function gives us control over the position and orientation of the
eyepoint during run-time. This function is called repeatedly during
runtime to continually update the user's point-of-view, based on inp-its
from a magnetic head-tracker.

The ISOTRAK magnetic tracker used to sense head position and
orientation is connected to a serial port on the host computer. This part of
the software is similar to the code written to control the HTD described
above.

There are some hardware conflicts that may occur between the serial port
and the Ethernet adapter. The PC prioritizes interrupts based on IRQ

- 23

levels. The Ethernet adapter can be set during initialization to use IRQ
levels 2, 3, 4, or 5. The serial ports on a PC typically-use IRQ levels 3 or 4.
Care must be take to ensure that the IRQ level set for the Ethernet adaptor
do not conflict with the IRQ level set for the serial port.

Status of ESIG-500 Testbed

At the conclusion of the project, it is possible to demonstrate a working head
mounted display system with the CyberFace display and the ESIG-500.
There are still some problems with the head tracking software. However,
the principal obstacle to practical use of this system is the poor optical and
human-engineering properties of the CyberFace. The display is even
fuzzier than the first generation VPL EyePhones, and the head mount is
essentially unusable.

The University of North Carolina Head Mounted Display research
team led by Dr. Henry Fuchs has reached similar conclusions
regarding this device.

We remain hopeful that we can re-engineer the CyberFace for improved
performance, since it is the only presently available device which accepts
ESIG signals. A number of experiments are being contemplated, in
collaboration with the Army Research Institute, which would require a
display device with the rapid update rate and high scene quality of the
ESIG-500, together with a more competent display device.

& Attaching a HMD to the Sense8 System

In January of 1992, an opportunity arose to test the VPL EyePhones with an
extremely low-cost image source, to wit an IBM PC containing Intel DVI
boards. The PC was provided by an industrially funded IST project; the DVI
boards by Dr. Tom Clarke's DARPA-funded IST project. The software, titled
WorldToolKit from Sense8 Corporation (Sausalito, CA) was donated by
Sense8. This system uses a substantial amount of photo-derived texture
arranged in 128 x 128 texture maps, which are warped onto polygons in
real-time by the DVI boards.

The EyePhones work remarkably well in this context, considering the
limitations of the image sources. The image system can produce between
one and ten frames per second of imagery, which is similar in speed to the
Silicon Grapics Iris demonstrations described above. However, the addition
of texture increases the amount of visual content and of visual flow (motion
cueing), so that the user's sense of presence is enhanced.

Of the four image sources used with HMD's as part of this project, the
Sense8 system is by far the lowest-cost. The entire hardware suite (without
EyePhones and Polhemus tracker) cost less than $8,000, and prices
continue to drop. The Sense8 software retails for $3,500.

- 24 -

This combination of equipment will be demonstrated at the final

presentation of this Project's results in March of 1992.

F. Conclusions

1) With regard to commercially available low cost head mounted display
hardware as of the end of 1991, we do not recommend the immediate
application of these displays for training purposes. They are neither of
sufficiently high resolution, nor physically robust enough for inclusion in
training systems.

2) It is likely that the remaining problems of resolution and physical
comfort can and will be overcome by a combination of academic and
industrial research and development during the next 24 to 36 months. The
primary driving force in this market is commercial/entertainment, with a
number of new devices appearing on the market as this report is written.

3) The continuing rapid development of low cost image sources such as the
Sense8/DVI system will exert an equally strong market force in favor of this
technology. Video games of all sorts will appear in 1992 incorporating both
low cost HMD's and realtime textured 3d imagery, and this technology
should be closely monitored for use in military training.

- 25 -

AppenixA

Paper presented at SIMEC '91 Conference

Proceedings of SIMTEC '91
Simulation Computer Society,
Oct. 21-23 1991, Orlando, FL

HEAD-TRACKING DISPLAY DEVICES FOR PANORAMIC VIEWS IN
LOW-COST SIMULATORS

Richard Dunn-Roberts, Marty Altman, J. Michael Moshell,
Curtis R. Lisle, Pat Moskal, Kevin Uliano, and Takis Kasparis

Institute for Simulation and Training
and

Electrical Engineering Department
University of Central Florida

Orlando, FL 32816

ASTRAT IRODUCTION

A chronic problem for visual simulation is the The SIMNET MIA1 tank simulator (hereinafter
requirement for a wide field of view which provides referred to as SIMNET) is a tam-trainer that supports the
sufficient pixel and object density close to the central training of four man teams, including a driver, a loader, a
viewing axis. In high-fidelity (high cosd) flight simulators gunner, and a tank commander (TC). The trainees can
with dome displays, high definition are of interest inserts observe the "world" outside the simulated tank through
have been used to increase the subject's ability to acquire vision blocks that attempt, more or less, to simulate the
and track targetsL periscopes and sights provided for a crew in a real MIA

tank. There is a total of eight vision blocks; one each for
The authos have designed three display systems to the loader and gunner, and three each for the driver and

explore low-tmt solutions to this problem. These systems TC. The image generator used in the SIMNET is a BBN
have been designed as retro-fits to the SIMNET MiAI GT101.
tank simulator. The common problem being addreed is
that of a tank commander's view of the world. The three In the standard SIMNET, the TC~s three vision blocks
systems ae: each provide a 20x8 degree field of view (FOV) into the

• a six-window simulation of the MAI's vision blocks, visual database. These views abut each other, for a total
to simulate dosed-hatch operations; FOV of 60x8 degrees. The direction of view (DOV) is
9 a head-mounted display, to simulate protected-open controlled by the TC, and can be mechanically rotated
position (POP) hatch operations; and through (just les than) 360 degrees. This represents a low
* a ten-monitor panoramic display, to simulate POP cost solution to the requirement for a wide FOV.
hatch operations without the eoncubrance of the head-
mounted display. However, beamuse the DOV is mechanically changed,

a relatively large delay is introduced when the TC wishes
This paper describes the magnetic sensor technology to change the DOV. It takes approximately six seconds to

used to detect the tank commander's viewing direction; the rotate the DOV through 180 degrees. At the Visual
switching technology required to distribute image Systems Laboratory of the Institute for Simulation and
generator (IG) channels across multiple devices; and the Training (VSIAST) at the University of Central Florida,
resolution and slew rate requirements and capabilities of the authors have designed three low cost solutions to this
the IG used in each design. problem that change the DOV at electronic speeds. At the

time of this report, one of the designs has been
A concluding section describes experiments to assess implemented and a second in under construction.

the training effectiveness of the implemented designs with
regard to navigation and target acquisition tasks.* All of these systems use magnetic head-tracking

technology to sense the direction the TC is looking. Two
solutions use this head-tracking information to switch
video sources to output channels and update the DOV.
The third solution also uses the information to update the
DOV, but the TC uses a head-mounted display to view the

This work was sponsored by the Army's Project image, so no video switching is required.

Manager for Training Devices (PM-TRADE).

THE pQLHE MUS MAGNETIC TRACKER The routing of input signals to output channels is
software configurable through the control word. Any

Each of the systems described in thie paper uses a input signal can be routed to any output channel, the only
head-tracking device to determine the position and restriction being that only one input signal can be routed to
orientation of the user's head. Head-tracking systems a particular output channel at a given time.
typically either use a magnetic sour and sensor, or infra-
red diodes and video cameras. Our systems use magnetic The design can be scaled up using additional video
tracking technology. Other magnetic trackers are also multiplexers. It may also be possible to improve signal
available, but Polhemus trackers are probably the most quality by using RGB video multiplexers instead of

commonly used. The Polhemus 3SPACE@ Isotrak is a composite video multiplexers, but this would increase
low cost magnetic tracker and was used in the projects switcher circuitry complexity and video cabling

described in this paper. requirements. (Dunn-Roberts et aL 1991)

The Polhemus Isotrak is a six degree-of-freedom The Head-Traelcing Dislv

measuring device. The Isotrak can provide Cartesian
coordinate (x, y, z) and orientation (yaw, pitch, roll) The first implemented display system is the Head-
information about a sensor relative to a source positioned Tracking Display (HTD) (figure 1). This display system
near the sensor. The Isotrak will provide this information has been implemented and is in use with S304NET.
within a specified accuracy (position - 0.25 inch RMS,

orientation - 0.8 " RMS) and resolution (position - 0.18 From

inch RMS, orientation - 0.36" RMS) up to 30 inches away Video
from the source. The host-Isotrak interface is by RS-232C Source
serial link, with user selected baud rates from 300 to 19,2004
baud. The information can be in ASCII or binary format,
and the highest output update rate is 60 Hz at 19,200 baud
in binary format. (Polhemus 1987)

H-ADTRA DMS Video

Two of the systems described in the introduction are Switcher

head-tracking display systems not based on either dome

projection systems, which are high cost, or on head-
mounted display technology. These two systems, called
the Head-Tracking Display (HTD) and the Extended Head-
Head-Tracking Display (EHTD), are based on the use of Tracker
standard video monitors with video switching technology.
This allows the use of a number of IG channels with a
larger number of monitors to reduce the cost of image
generation resources while not reducing the apparent
number of output channels.

The VSL/1T Video Switcher

The video switcher used in the Head-Tracking
Display systems was designed and built at the Visual Figure 1. The Head-Tracking Display (HTD)
Systems Laboratory. The switcher was constructed to
take four NTSC composite video input signals and route The purpose of the HTD is to simulate the MIA1
them to any of six output channels under control of a host Abrams tank commander's (TC) cupola, which has six
computer. It is constructed from six four-to-one composite vision blocks. Each vision block has a 45x15 degree FOV
video multiplexers with two select lines each. (approximately). SIMNET provides a single 60x8 degree

FOV using three channels from the SIMNET IG. The
A DB-25 pin connector allows connection of the HTD design allows us to drive six monitors with the TCs

switcher to the host through a parallel port. Twelve lines of three channels of the SIMNET IG. This is accomplished
the parallel port are read as a control word to select which through the use of the video switcher and the Polhemus
input signals are routed to which output channel. Isotrak magnetic tracker, under control of an IBM PC-AT.

The control computer reads the tracker, controls the video

switcher, and controls the direction of view (DOV) on the program are a control voltage for the SIMNET IG, and a
IG. control word for the video switcher.

In the HTD, six 13" (diagonal) monitors are placed in The outputs from the SIMNET IG are in the form of
a ring around the TCV, cupola. The cupola is constructed four signals. red, green, blue, and sync. To reduce cabling
from white cardboard with six openings equally spaced requirements and switcher complexity, the signals are
around the Te head, through which the TC views the encoded using a commercial video encoder. Output
images on the monitors. Only the three monitors in front signals from each channel of the SIMNET IG are
of the TC's head ae active at any time, with each monitor connected to the RGB and Sync inputs of the encoders.
presenting approximately the same FOV as a real vision The composite video outputs of the encoders are
block. This gives the TC a 140x16 degree instantaneous connected to the inputs of the video switcher. The outputs
FOV. Under control of the PC-AT, the video switcher of the video switcher are then connected to the color
activates the three monitors in front of the TC. As the TC monitors.
turns, the control PC shifts the output signals to the
appropriate three monitors. The switcher is designed to The select lines of the video switcher are addressed
give an instantaneous change of view in order to eliminate from the interface card. The interface card has a sixteen
the time now required for the cupola to rotate bit latch that can be written to by the control program
mechanically through the same distance. For example, a using C or assembly language instructions. The control
180 degree rotation that requires six seconds in the program writes the control word to the latch, and the
mechanically rotating cupola takes approximately one twelve low order bits are written to the video switcher.
fifth of a second in the HTD.

The TCs DOV is controlled by a D/A converter. In
The control computer also controls the DOV of the IG SIMNET normal operation the DOV is controlled by a

through a digital-to-analog (D/A) converter. This potentiometer mounted on the rim of the cupola rotation
converter mimics the potentiometer in the mechanically track. The voltage dropped across the pot varies as the
rotating cupola to change the DOV of the IG. cupola rotates. The voltage drop is converted to a digital

value by an analog-to-digital (A/D) converter in the
The control computer reads the Polhemus magnetic simulator and the DOV is modified accordingly. The HTD

tracker and, based on the orientation of the user's head, bypasses this potentiometer and sends a control voltage
sends a signal to the IG to update the DOV. The control from the D/A converter on the interface card to the
computer then routes the four input channels to some simulator's A/D converter. The D/A converter is
subset of the ix monitors. controlled similarly to the video switcher, by writing a

control value to a sixteen bit latch on the interface card.
Three of the input channels come from the SIMNET

IG, and the fourth input channel is available for neutral The hardware modification to the simulator host
imagery from any video source, or can be left blank. consists of a small circuit that detects when the simulator

A/D card has been read by the host. This circuit sends a
The control functions of the PC-AT are provided by a signal to the control PC-AT to allow for a measure of

combination of hardware additions to the PC-AT and the synchronization. However, even with this modification to
simulator host and control software on the PC-AT. The the SIMNET host, synchronization is not exact, and a
hardware additions to the PC-AT consist of a parallel blanking interval of approximately one frame is required.
output channel with some logic circuitry and a fIA (Dunn-Roberts et aL1991)
converter. The output channel is used to transmit control
signals to the video switcher, and the converter is used to The Extended Head-Tracldna DisnIav
control DOV on the IG. Both the output channel and the
converter reside on a single prototype bus card (called the There is significant interest in extending the
interface card) in the PC-AT. In addition to this interface functionality of the SLMNET MI trainer to include the
card, a game port card has been added to read a Protected Open Position for the tank commander (referred
synchronization signal from the simulator host to as the 'POP hatch'). The authors have also designed an

Extended Head-Tracking Display. This display system
The control program for the HTD is conceptually has not yet been implemented. The purpose of the EHTD

simple. It has two basic responsibilities: sending the TCs is not only to simulate the MiAl Abrams TC's cupola, but
DOV to the 1G, and telling the video switcher which input also to provide for POP hatch operations, while
signals to route to which channel. The control program conserving IG channel capacity.
reads two inputs: the magnetic sensor and the
synchronization signal. The only two outputs from the

manitors for both POP hatch Hatc (6" cerance)
an d vision block

rotating portion of TC cupola

Figure 2. The Extended Head-Tracking Display (EHTD), Design I

EHTD (POP Hatch) monitors Hatch (6" clearance)

Figure 3. The EHTD, Design 2

Two possible designs have been considered for the TC's DOV. This question will be addressed with IG
E-TD. In both designs, a ring of ten 27" (diagonal) video requirements later in this paper.
monitors provides the 360 ° horizontal FOV POP hatch
view In one design, actual periscopes pointing at the ring Limitation on requirements for vertical FOV is based
of monitors provide the view through the TCs vision on the 6" high opening available under the elevated hatch
blocks (figure 2). In the other design, the view through the and the commander's head position relative to the radius
vision blocks is provided by a second ring of six monitors, afthe hatch. Also, the capability for providing high vertical
just as in the H7D (figure 3). FOV is limited by the aspect ratio of off-the-shelf NTSC

monitors.
The EHTD uses the same video switching

technology as the HTD. Depending on the design chosen, In the EHTD, the POP hatch view will adjust for
video signal switching from the IG can be accomplished head motion within the cupola. Since the commander has
either with a single switcher, or may require two switchers a range of available head motion within the cupola
or a scaled up switcher. This also depends on whether the (approx. 32* in diameter in SIMNET), the view out the
POP hatch view will activate three or five monitors in the monitors should adjust for the correct head position.

This requires head position information be passed
over to the SDANET host and used to adjust the viewpoint Thre Active Screens The GT120 can provide two
generated by the SIMNET 1G. Engineering development medium resolution channels of 320 x 240 pixels with 3000
will be necessary to provide this level of control over the polygons, and one high resolution channel of 640 by 480
IG (greater than in the existing SIMNET cupola or in the pixels with 6000 pixels.
current HTD).

This will provide a central channel whose pixels

Visible elements of the tank (the tank hull, the main subtend 3.4 minutes of arc (compared to 3.75 minutes in
gun, etc) will need to be displayed in the views from the SIMNET), with a polygon density of 6.5 polygons per
POP hatch. Since the commander's syepoint will be above square degree (compared to 6.25 in SIVMET). Thus, the
the top of the turret in the POP hatch position, portions of central channel will slightly improve upon SIMNETs
the tank will often be visible. The visible tank features scene and pixel density capacities.
must be modelled or mocked up so they will be displayed
correctly. The two adjacent channels will have pixels which

subtend about 6.5 minutes of arc (essentially what one sees
The cupola will rotate in the EHTD. The current on the SIMNET Stealth displays) with a polygon density

SIMNET allows the commander's cupola to mechanically of 3.3 polygons per square degree. These channels will be
rotate but provides only a restricted view out of one vision somewhat more susceptible to overloading on complex
block of the cupola. In a real tank, the cupola is sometimes scenery than the central channel. (Moshell et aL 1991)
rotated so as to position the machine gun out of the
forward line of sight, or to aim the machine gun. Using an Five Active Screens Optionally, the SIMNET could
existing SIMNET hull and cupola mechanism, the required sacrifice some channels from its original IG so that two
vision blocks and a simulated hatch cover and machine additional adjacent channels could be rendered. The pixel
gun mount will be incorporated so as to rotate within the density is not bad - in fact, at 320 x 256, it is somewhat
panoramic monitor display. better than the medium-resolution channels of the GTI20.

In the EHTD, the user will be able to use the six vision However, these channels can support only 2000
blocks simultaneously with the POP hatch views. The polygons. With an angular density of only 2.2 polygons
commander will be able to support training in normal per square degree, these channels would quite often
mode (through the six vision blocks) or POP hatch overload.
(through the out-the-hatch monitors). Both of the designs
described earlier for the EHTD support this capability. To provide these two channels would require
(Mochell at aL 1991). consuming four of the eight SIMNET channels,
Itgtenerat Ch gx s presumably leaving one each for the the gunner and

loader and two channels for the driver. The horizontal

A fundamental goal of the POP hatch display is to field of view for the driver's two channels could be
allow the platoon commander to acquire targets and to expanded to equal the total FOV of the original three
navigate. It would be unacceptable if his visual image channels. (Johnston 1987; Machell et aL 1991)
were less accurate than those provided through the vision
blocks of the SIMNET in its standard configuration. AD-MOUNTED DISPLAY SYSTEM

When the FOV is greatly expanded, two distinct costs We are also designing a third system that utilizes
are incurred, head-tracking information to control the visual display

e Additional pixels must be supplied so that the visual system. This system would use a color LCD head-
angle subtended by pixels remains constant; and mounted display (HMD) with a SIMNET IG to present the
o Additional polygon capacity must be supplied so that POP hatch view to the TC.
the greater scene complexity doesn't overload the
geometry engine. The first design problem is the interfacing of the

magnetic head-tracker with the SIMNET IG. As described
To accomplish these goals, the EHTD would require above, the HTD uses a voltage to control the TCs DOV.

the addition of a BBN GT120 image generator (or This allows control of the yaw of the DOV, but not the
equivalent) to the existing SIMNET GTIO1. pitch or roll. To allow the TC six degrees-of.freedom with

the HMD, the SIMNET host will have to be modified to
With three screens active simultaneously, the change the DOV based on the position and orientation of

horizontal FOV would be 108 •. If five screens are live, the the TCs head as read by the head-tracker. This will

sctve am would be 180 . (Machell et aL 1991) require greater control over the the SIMNET host softwarethan is required in either the HTD or the EHTD.

concerning each cupola simulation. We are using both
In addition, the HID us the existing SXAMNK IG to experienced and novice subjects as tank commanders.

produce three half.height video images. To use the HMD Each subject participates in both tasks, target acquisition
with the MIAI simulator would require hardware and terrain-reasoning. Each subject will also use both the
modifications to produce two full-height video channels. SIMNET mechanically rotating cupola as well as the
Optionally, IST/VSL has a SIMNET Stealth Vehicle HTD. Counterbalancing of task and cupola conditions is
simulator that produces three full-height video images that employed to remove the potential for confounding effects.
may be used to drive the HMD.

Results of the evaluation of the HTD will be available
Another challenge is that human eye does not have in August, 1991.

constant characteristics over the entire visual field. For an
image to be as realistic as possible, some predistortion REBEREfi
needs to be done to the image before it is presented in a
conventional HMD. At IST, this problem is being Altman, M.; J. M. Moehell, R. Dunn-Roberts. 1991.
addressed in a separate project to construct a HMD that "Technical Considerations for Use of Head-Mounted
more closely matches the image perceived by a human Displays with SIMNET." VSL Memo 91.18. Visual Systems
eye. (Clarke 1990) Laboratory, IST, Orlando, FL (June).

Perhaps the most difficult problem is how to present Clarke, T. 1990. "Optimal Virtual World Displays." DARPA
an image of the inside of the tank, complete with working BAA #90-16 Proposal. LST, Orlando, FL (Oct.).
controls. An alternative is to mount the HMD in such a
fashion as to allow the TC to look through the IHID to see Dunn-Roberts, R.; R. DaSilva; and M. Altman. 1991. "First
the POP hatch view, and to remove the HMD to work Year Report, BAA Contract #0041, Visual Display
inside the tank cupola. Still, modeling of tbe exterior of the Technology R & D." Visual Systems Laboratory, IST,
tank will be necessary to present the TC with a "realistic" Orlando, FL (Apr.).
view out of the POP hatch.

Johnston, R. S. 1987. "The SIMNET Visual System."
This system is currently under design and will be Proceedings of the 9th ITEC Conferenm Washington,

implemented in early Fall, 1991. (Altman, Moshell, and D. C. (Nov.).
Dunn-Roberts, 1991)

Moshell, J. M.; C. Ls)e; R. Dunn-Roberts; E. Smart. 1991.
E"ER~rMNTAL EVAtLUATION OF SYSTEMS "Extending the SIMNET Head-Tracking Display." VSL

Memo 91.6. Visual Systems Laboratory, IST, Orlando, FL
We are currently evaluating the HTD system on two (Feb.).

tasks: terrain-reasoning and target acquisition. As each of
the other systems gets implemented, we will use the same Polhemus. 1987. 3SPACE ISOTRAK User's Manual.

experimental design to evaluate them. Colchester, VT. (May).

In the terrain-reasoning task, tank commanders BIOGRAPHY
observe the terrain database while they are driven through
a specified geographic area. Their task is to locate three Mr. Dunn-Roberts is a Visual Systems Scientist at the
checkpoints specified on an available map. The Ts give Visual Systems Laboratory at the Institute for Simulation
the driver directional and speed commands. They tell the and Training. He is the Project Leader for the
driver to stop when they think that they have arrived at development and evaluation of advanced display
each checkpoint. Dependent measures are speed and technologies for use with real-time image generators. He
accuracy of position identification, is also involved in developing IS 's capabilities in Virtual

Environment research. Mr. Dunn-Roberta holds a
In the target acquisition task, TCs scan for targets as Bachelors degree in Computer Science from the

they are again driven through a specified course in the University of Central Florida, and is working on his
database. TCs do not give directional or speed commands Masters degree.
for this task. Dependent measures are number of correct
target identifications and target acquisition speeds.

Trained drivers are used for all conditions. A
common terrain database, representative of the Ft. Knox
range, is used for all displays. We are also collecting
preference and "wellness" data (e.g. nausea, eye strain)

Appendix B:

Photographs of Head Tracking Display

Head Tracking Display

Video Switcher

Monitor Ring

Single Monitor and Viewport, Exterior View

Viewports, Interior View

Subject and Experimenter

Appendix C:

Photographs of Head Mounted Displays

VPL Eyephones

Cyberface II

Appendix D:

Software to Control HTD Video Switcher

HEAD TRACKING DISPLAY - Video Switcher Control Program */I* */
!* */

1* FILENAME: switcher.c */
1* *1

1* By: - Visual Systems Laboratory
1* - Institute for Simulation and Training *1
1, - University of Central Florida1* */

'* */

Copyright (c) 1991 the University of Central Florida
'* - All Rights Reserved
1* *1

1* Authors: Marty Altman
Richard Dunn-Roberts1* */

1* */

FUNCTION LIST: */1* */
- - */

1* FUNC: void interrupt (*old timer routine) (void);
1* a pointer to the old timer routine *1
1* FUNC: void interrupt handletimer _interrupt(void); */
1* our new timer interrupt handler
1* FUNC: void set timer(void); *1
1* to reprogram the clock timer to interrupt at 60Hz
1* instead of 18.2Hz
1* FUNC: void reset timer(void); *1
1* to reprogram the clock timer back to 18.2Hz
/* FUNC: void readConfig(void); */
/* reads configuration information from external file
1* FUNC: void initPolhemus(void);
1* initializes the Polhemus */
/* FUNC: void getRecord(void); */
1* gets a data record from the Polhemus *//* *1
/* */

/* General Comments:
/* This program was written to run on a PC-AT, using */

Borland C++ version 2.0 (with the built-in assembler).
/* It is designed to control the operation of the Head
1* Tracking Display system. *//* */

/* */

/* Operational Comments:
1* The switcher control program reads the head orientation */
1* from the Polhemus magnetic sensor and the video sync *1

signal from the SIMNET Image Generator. It then *1
determines which screens should be turned on (sending a

/* control word to the Video Switcher), and determines the */
/* appropriate voltage to emulate the cupola's
1* potentiometer (sending a control word to a digital-
1* to-analog converter, and the analog signal is then
1* routed to the SIMNET controls). See the figure below. *//* */
/* *1
/* The basic layout is as follows: *//* *

* ------------------- 15Hz sync signal ------------------- *
I PCAT < ---------------------- SIMNET MASSCOMP I

/* I + I I---
/* I {switcher) --------------- I I I

I* I {program } <- - -------..
I* I I<--+ II I*I
* ------------------- *1* I II I*I
/* I II I*/

head orientation which screens to *1
1* I Iturn on */
* -------------------- +-------------------+ *

1* l POLHEMUS I I VIDEO SWITCHER I/* I- + II +-->1 I *
/* I I I I *

* ------------------- +-------------------+ *
/* II*/
/* I I emulation of potentiometer */

video sync signal (analog voltage)
/* I*/
* ------------------- ------------------- + *
/* I SIMNET IG I I SIMNET CONTROLS *
/* I - .------- >1 I
/* I I II *
* ------------------- ------------------- + *
/* *
1* */

/* For further system details, refer to the project report. *//* */

/* Type, Structure & Constant Defs */

#define BLANKSWITCHER WORD OFFFh

/*------------------

/* Necessary Include Files */

#include <conio.h>
#include <dos.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "comport.h"
#include "polhemus.h"

/* Function Prototypes *1
/ * set. * /

void set timer (void);:

void reset timer(void);
void interrupt handletimerinterrupt(void);
void readConfig(void);
void initPolhemus(void);
void getRecord(void);

/* Globals *//I*.......*/
void interrupt (*old timer routine) (void);
int switcher control word;

int switcher controllE] =

T 0x0951,0x0546,0x0519,0x0465,0x0195,0x0654 1;
int TC-yaw - 0;
int center screen - 0;
int last-center-screen - 1;
int cig_angle -control -word;
int cig__angle -controlT6]

(OxO7FF, OxOAA9, 0x0D54, 0x0000, xO2AA, 0x0554 1
int screen(360] -

{3,3,3,3,3,3,3,3,3,3, 3,3,3,3,3,3,3,3,3,3, 3,3,3,3,3,3,3,3,3,3,
2,2,2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2,2,2, 2,2,2,2,2,2, 2,2,2,2,
2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2,2,2,

01,0,1,01,01,1,, 01,0,1,01,01,1,, 01,0,1,11,,10,1,
0,0,0,0,0,0,0,0,0,0, 010,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,
5,5,5,5,5,5,5,5,5,5, 5,5,5,5,5,5,5,5,5,5, 5,5,5,5,5,5,5,5,5,5,
5,5,5,5,5,5,5,5,5,5, 5,5,4,5,5,5,5,5,5,5, 5,5,5,5,5,5,5,5,5,5,
4,4,4, 4,4,4,4,4,4,4, 4,4,4,4,4,4,4,4,4,4, 4,4,4,4,4,4,4,4, 4,4,

3,3,3, 3,3,3,3,3,3,3, 3,3,3,3,3,3,3,3,3,3, 3,3,3,3,3,3, 3,3, 3,31;
int comPort;
int baudRate;
char initString[100];
char termString[100 I;
int high = 0;
int sync - 0;
int screen-changed = 0;
int change_the-switcher =0;

int delay cycles =10;

int delay counter -0;

/* Function set-timer *

/* PARAMETERS:
/* void *

1* PROCESS:
This routine is used to reprogram the clock timer to interrupt *

1* at 60Hz. Note that it is virtually impossible to accurately
detect a 15Hz signal when checking every 18.2Hz (the normal

1* setting for the clock timer interrupt on a PC). Also note *
that because the PC for this project was dedicated, it was

1* not a problem for that PC's sense of time to be distorted.

/* RETURN VALUE:
/* void

void set-timer(void) { * program timer to interrupt at 60 Hz *
asm{

cli
push ax
mov al,O0ll0ll0b
out 43h,al

mov ax,19886
out 40h,al
mov al,ah
out 40h,al
POP ax
sti

/* Function reset-timer */
/* -- */

/* PARAMETERS: *I
/* void */
/* *

/* PROCESS: */
This routine is used to reprogram the clock timer to interrupt */

1* at 18.2Hz (the normal setting for a PC). *//* *

/* RETURN VALUE: */
/* void */

void resettimer(void) { /* program timer to interrupt at 18.2 Hz */
asm

cli
push ax
mov al,00110110b
out 43h,al

mov ax,O
out 40h,al
mov al,ah
out 40h,al
pop ax
sti

/* Function handle timerinterrupt *//* *

/* PARAMETERS: */
/* void */
/* *

/* PROCESS: *1
/* This interrupt routine is installed on the clock timer (OxlC), */
/* and is used to monitor the joystick port. The joystick port */
/* is where the 15Hz sync signal from the SIMNET MASSCOMP is
/* brought in. The routine looks for the falling edge of the */
/* signal, and when detected sets a flag called sync to 1. */
/* Note that in order for this scheme to work, the clock timer */
/* must have been 'sped up'. */
/* *

I* RETURN VALUE: */
/* void */

void interrupt handletimerinterrupt(void) {
asm {

mov dx,201h
in al,dx
test al,20h
jz gonelow
mov high,l

I
return;

gonelow:

if (high){
asm

mov sync,l
mov high, 0

return;

/* Function main *

/* PARAMETERS: *
/* void *

/* PROCESS: *
This is the main routine. *

/* RETURN VALUE: *
/* void *

void main(void){
/**** banner**/
clrscr 0;
printf ("Head Tracking Display Control Program.\n");
printf("\n\nPress any key to exit.");

/** set initial values ****/
switcher control word = switcher control(0];
cig anglei-control-word - cig angle control[G];

/**** other initialization**/
readConfig 0;
initPolhemuso;

/**** take over the timer interrupt
old -timer -routine - getvect(OxlC);
setvect(OxlC, handle-timer-interrupt);

/**** reprogram to 60Hz**/
set-timero;

/******** begin M4AIN LOOP****/
while (!kbhito) (

/** get a record from the Polhemus */
getRecordo;

/**** determine center screen r/

center screen - screen[TCyaw];
if (center screen !- last center screen){

switcher control word - _switcher controlicenter screen];
cig angle control word = cig angle control[center screen];
asm(

mov ax,center screen
mov last -center-screen,ax
mov screen-changed,1

/**if we need to update the cig angle
if (sync) (

if (screen-changed)(

asm
mov ax,BLANKSWITCHERWORD
mov dx,030Ch
out dx,ax
mov ax,delaycycles
mov delay_counter,ax
mov screen changed, 0
mov changetheswitcher,l

}I

asm
mov ax,cigangle controlword
mov dx,0302h
out dx,ax
mov sync,0

/**** if we need to update the video switcher ****/
if (chanc,e the switcher) {

if- (delaycounter) {
asm {

dec delay_counter
I

I
else {

asm
mov ax,switchercontrolword
mov dx,030Ch
out dx,ax
mov change_theswitcher,0

/****** end MAIN LOOP ********/

/*** clean up after ourselves ****/
reset timero;
setvect(OxlC, old timer routine);
DeinstallDrivers();

/* Function getRecord *1/* */

/* PARAMETERS: */
/* void *//* */

/* PROCESS: */
/* This routine is used to get a data record from the Polhemus. */
/* Since we are only interested in the orientation about the
/* vertical axis, the only value we update is the TC-yaw. *//* */

I* RETURN VALUE:
/* void */

void getRecord(void) {
int retcode, j, temphex, tempint;
char data[255], input[255], temp, recordType;
float yaw;

Receiveata(comPort, data, 18)
if ((data[0] & 0x80)) (

while (!(data[O] & OxBO
ReceiveData(comPort, data, 1)

ReceiveData(comPort, (data+1), 17)

for (j - 0; j < 7; j++){
data[jJ - (data[jJ & 0x7F) I((data[73 & OxOl < < 7)
data[7] - data[7J >> 1;

for (j - 8; j < 15; j++)(
data[j] - (data[jJ & 0x7F) I((data[15J & OxOl <<« 7)
data[15] - data[15] >> 1;

data[16] - (data[16] & Ox7F) I ((data[17] & Ox01) << 7)
data[lS] - data[16];

tempint - *(int *)(data+l0);
yaw - (((float)tempint)*230.0/32767.0)+180.0;
yaw - yaw < 0.0 ? 0.0 :yaw;
yaw - yaw > 360.0 ? 360.0 : yaw;
TC-yaw =(RABS(TCyaw - yaw))< EPSILON ? TC_yaw yaw;

/* Function readConfig *

/* PARAMETERS: *
/* void *

1* PROCESS: *
1* This routine is used to read values from an external config *

file. *

/* RETURN VALUE: *
/* void *

void readConfig(void)
FILE *configFile;
char configBuffer(129], *configType, *configValue;
int

if((configFile - fopen("lconfig.dat"l,"rt")) -- NULL){
fprintf(stderr, "Configuration file not found\n");
exit (-1);

while (fgets (configBuffer,128, configFili.A) !- NULL){

if ((configType - strtok(configBuffer," \n\t")) !-NULL){
if ((configValue - strtok(NULL," \n\t")) -- NULL){

printf ("value not found for type -%s\n",
configType);

exit (-1);

else continue;

if (!strcmp(configType, "polhemusComPort" I
comort - atoi(configValue I

if (!strcmp(configType, "poihemusBaudRate"l
baudRate - atoi(configValue);

if (!strcmp(configType, "delay cycles"))
delay cycles - atoi(configValue)
if (delay-cycles--O) delay-cycles-lO;
delay counter - delay-cycles;

if (!strcmp(configType, "polhemuslnitString"
strcpy(initString, configValue)

if (!strcmp(configType, "controiWords"
sscanf(configValue, "1%x", &switcher-controlLO))
switcher -control word - switcher-controllO];
for (i-1. i<6; i7++) {

if ((configValue-strtok(NULL," \n\t"))==NULL)
printf ("value not found for type -=s~"

configType);
exit (-1);

sscanf(configvalue, "%x",&switcher-control[i]);

f close (configFile);

1* Function initPolhemus *

/* PARAMETERS: *
/* void *

/* PROCESS: *
This routine is used to initialize the Polhemus. *

/* RETURN VALUE: *
/* void *

void initPolhemus(void)(
char *commandPtr, cornmand(30];
int conunandLength;

InitCornPort(comPort, DIVISOR(baudRate))
LowerDTR(comPort);
cornmandPtr - strtok(initString, "")

while (commandPtr) I
strcpy(command, conunandPtr)

if ((commandLength - strlen(command I -
comwnd[conuandLength] - 13;
command[++commandLengthl - 0;

TransmitData(comPort,- command, commnandLength)
commrandPtr - strtok(NULL, "")

RaiseDTR(comPort);

Appendix E:

Schematics of HTD Video Switcher

3 Composite Video Video Switcher
Channels from Block Diagram
VID 1/O Boxes at

1GO

12 Bit Control Word From Control Computer
(Port 30C hex)

2% 2 % %2 %b 2 %2

" Video

rmSwitching

sa" me.. Monitor
Module

i eo

wq[tchig -.----- --.- Moitor

Mod odule

I-V
deo -- V de

pp-citcingMnio
Moodule

Vide"---] Videoo

S Switchin Monior-
Module pp

-- NO-- Video
p-ISwitching Monitor 6

Module

Power Supply

NOTES: 1) Any monitor can be switched to any video channel, or
remain blank.

2) Circuitry prevents attempts to switch two channels to
same monitor.

D/A CONVERTER

DO 12 24

D I 11 16

D2 10 17

D3 9 20

D4 8

DS 7AD 3860 K

D6 6 23 NC

D7 5

D8 4 18

D9 3

D10 2 15 OUT
Dll 1

SELF 19

13 14 21 22

[O4 O1uF 0.OluF

h IuF luF

-15 V +15 V

0.0 luF

1 uF+s
+5v Iu 7

HTD
Block Diagram

Polhemus
Sensor

Control Computer (PC-AT)

Port 302 hex Port 30C hex

Monitor 1

Digital to
Analog -. jConverter

Video Switcher

Masscomp /SIMNETb.
eS

3 Video Channels
M

U

U

3 idoChnnl

________________Monitor_____6

Video Switching Module
Block Diagram (1 of 6)

Select Lines From
Control Computer

+Vcc -Vcc BI BO

SI SO

Channel 1

Channel 2 Monitor

Channel 3

Gond

MAX 454 VIDEO MULTIPLEXER/AMPLIFIER

+5 V -

NC- 5

DEODRNC- 6

7 INO-

8 INI- 75 OHM

10 IN 2 - 141/2W
11

1.13K

6.8 pF

1.13

MAX 454
I1K

Video switcher: one module
Functional diagram

From Simulator IG

IN: Red Green Blue Sync

VID I/O OUT: Red Gre Blue Sync

To Simulator Monitor Composite Video
to HTD Video

Switcher

From Simulator IG

ON/OFF ON/OFF

(D O FUS1 2 NE INDICATOR swrrc

OUT 0 I OUT 2 OUT 3 OUT 4 OUT 5

To Monitors

VIDEO SWITCHER; SIDE VIEW

ON/OFF ON/OF
IN IN IIN 2IN 3 FUSE INDICATOR SWrTCH

0000000
OUTO0 OUTI OUT2 OUT3 OUT 4 OUT 5

000000

VIDEO SWITCHER; FRONT VIEW

DE 25

Input circuit for video switcher

0.1 uP

input 75 ohm 100 k ohm output

Note: The 100k resistor and the 0.luF capacitor were
added in order to eliminate a D.C. voltage that was
added to the video signal from the Vid I/O boxes.

Orientation Sice
Control Word

Packet T

Sync IG Control

The following diagram shows the physical layout of the MAX

454 video switching chips.

CB I

z A
22 1

Note: see circuit diagram of MAX 454 for connections
of individual video switchers UO-US.

CD

Appendix F:

Software to Control SMNET Head Tracking Display

/* bSIMNET M1 with integrated Polhemus */

/* FILENAME: ml-polhemus.c *//* *
1* *
/* By - MaK Technologies

and */
1* - Visual Systems Laboratory
1* - Institute for Simulation and Training */
1* - University of Central Florida/* */

/* */

/* Copyright (c) 1991 MaK Technologies and
1' the University of Central Florida */
/* - All Rights Reserved/* *
/* */

/* Authors: Warren Katz and Marty Altman */I* */
/* */

/* PUBLIC FUNCTION LIST:
/* FUNC: poid polhemus init() - initialize Polhemus *1
1* FUNC: Woid polhemussimul() - read and stuff a value for

the z rotation */
/* FUNC: roid polhemusexit() - shutdown the Polhemus */1* */

/* */

/* PRIVATE FUNCTION LIST: *1
/* FUNC: int open polhemus(char *device name) - actual open */
/* FUNC: int closejpolhemus() - reset port */
/* FUNC: int copytermio(struct termio source, dest) - copy *//* *1

/* */

/* General Comments: *1
This file integrates the Polhemus Head Tracker with
the Ml cupola, bypassing the DTAD card. The Polhemus */
head tracker computer sends a Z rotation over an

/* RS-232 interface.
/* */

/* Type, Structure and Constant Defs *//, *...-------------------------------- ,/

#define FORMAT ASCII 0
#define FORMAT_-BINARY 1

#define UNIT INCHES 0
#define UNIT CENTIMETERS 1

#define DATA PACKETXYZ 0
#define DATAPACKET AER 1
#define DATA-PACKETXYZAER 2

#define PACKETSIZE 24

/* Necessary Include Files *// *m ... ~.. in-----n......m. . * /

#include "stdio.h"
#include "fcntl.h"

#include "sim dfns.h"
#include "sim-types.h"
#include "simnxacros.h"

#include <stdio.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/file.h>
#include <termio.h>
#include <unistd.h>
#include <fcntl.h>

/* Globals */

static float azimuth - 0.0;
int device, result, packetsize;
struct termio polhemus-control, oldportcontrol;
char tempbuffer[80];

/ *m...........U... ,/

/* PUBLIC functions */

/ *------ - -- m------------------- ------* /

/* Function polhemusinit/* *

/* PARAMETERS: */
void *11* *

/* PROCESS: */
This function is called to initialize the Polhemus on */

/* 'tty2'. If successful, a request is made for the first *1
data record. (Writing a "P" is a request for data.)/* *

1* RETURNS: *1
void */

/ *m--i----~~---e--n-i-----~i--------a-m---i~n~n-n--n----------* /

void polhemusinit ()
I

if (openypolhemus("/dev/tty2") - 0) {
printf("ERROR OPENING POLHEMUS!!\n");
return;)

write(device,"P",l); /* request first packet */

I* -.-- -- -- -- - --.... /
/**nciion polhemus-simul
1* */
/* PARAMETERS: */

void */
/* *

/* PROCESS: */
This function is called once during each frame. It */
reads the data packet from thePolhemus, grabs the

/* azimuth value (z rotation), stuffs the new value in */
place of the mechanical cupola, and requests the next */
data packet from the Polhemus. */

/* *1

1* RETURNS:
/* void

void polhemussimul()
(

read(device, tempbuffer, PACKET SIZE); /* read packet */
sscanf(&(temp_buffer(3]), "%f", &azimuth); /* azim first in AER packet */

cupolacwsnewvalue((azimuth/180.0)*1.195); /* emulate the pot *1
dividing azimuth by 180.0 scales to [-1.0,1.0] */
multiplying by 1.195 stretches this range to - [-1.2,1.2] */
This new value gives full circle capability, avoiding the
'dead spot' that the mechanical cupola has. *1

write(device,"P",l); /* request next packet */

/ * nction polhemus_exit */
/* */
I* PARAMETERS: *I

void
/* *

/* PROCESS:
This function is called once when finished to shutdown */
the Polhemus and restore the port to its original
configuration.

/* *

/* RETURNS: */
void

/ *-------m-------a j --------------------l-------------- ------------m--------m----a-------* /

void polhemusexit()
{

close_polhemus();I

/ *........---------------- .~*/

/* PRIVATE functions *//,* /

/ m------------ lm -n i- -- - -- - -- - -- - -- l- -- . ----------- --- -* /

/* Function openypolhemus *//* *

/* PARAMETERS: *I
char *devicename - the tty port to open *1

/* *

/* PROCESS: *I
1* This function opens the port, storing the termio data */

so that it can be restored later in the close routine. */
It also sets the Polhemus to ASCII mode, and sets the */

1* Polhemus data packet to azimuth/elevation/roll.
/* *

/* RETURNS: */
on success, returns 1 */
on failure, returns 0 *//*m-------~-------- ~-m----- - --------- m---~-m-~------* /

int openypolhemus(device-name
char *devicename:

strcpy(temp_)bu.ffer, device-name);
if ((device - open(tempbuffer, 0_-RDWR)) < 0)(

printf("ERROR in openyolhenus: "1);
printf ("open failed on %3\n", temp buffer);
return(0) ;

if (ioctl(device, TCGETA, &oldyport -control) < 0){
printf ("ERROR in openpolhemus: ");
printf ("getting old port control information failed\n");
return(0) ;

copy_ termio(&oldy-ort-control, &polhemus-control);

poihemus-control.c -iflag - IXOFF I IXON I IGNERK;
poihemus-control.c-oflag - 0;
poihemus-control.c-cflag - B19200 I CS8 I CREAD;
poihemus-control.c-if lag - 0;
polhemuscontrol.c-line - 0;
poihemus -control.c -cc[VMIN] - PACKETSIZE; /* sizeof (DATAPACKETAER) *
polhemus-control.c-cc[VTIMEJ - 0;

if (ioctl(device, TCSETA, &polhemus -control) <~ 0) {
printf ("ERROR in open-polhemus: ");
printf("'setting polhemus control information failed\n");
return(0);

write (device, "F", 1); /* set ASCII *
write(device,"04\r",3); /* set DATAPACKETAER *

return(l); /* everything must have worked to get this far *

1* Function closeypolhemus *

/* PARAMETERS:
void

1* PROCESS: *
This function restores the port to its original
configuration.

/* RETURNS: *
void

mnt closeypolhemus()f

if (ioctl(device, TCSETA, oldyport control) < 0){
printf ("ERROR in closepolhemus: ");
printf ("reset old port control info failed\n");
zeturn(0) ;

return(1) ;

/* Function copy termio *

/* PARAMIETERS: *
1* struct termio source, dest - port configuration data *

/* PROCESS: *
This function copies the termio data from one structure *

1* to another. *

/* RETURNS: *
void *

copytermio(source, dest
utruct termio *source, *dest:

{ et> fa suc-cilg
dest->c iflag - source->c-if lag;
dest->cocflag - source->c-oflag:
dest->c-cflag - source->c -cflag;

dest->c line = source->c line;
strncpy-(dest->c-cc, source->c-cc, NCC);

#define VERSION "6.????"

SYSTEM NAME: ml*
* FILE: ml main.c
'AUTHORS: David Epstein

* Joe Marks*
* James Chung*
* Art Pope
* John Morrison*
* Alan Dickens*
* Brian O'Toole
* Dan Van Hook
* Carol Chiang*
* Maureen Saffi*

SIMNET simulation of M-l Abrams Main Battle Tank.

Copyright (c) 1988, 1989, 1990 BBN Systems and Technologies

All rights reserved.*

#include "stdio.h"
include "ctype.h"
#include "signal.h
#include "sys/mpadvise .h
#include "1sim dfns.h"
include "lsim macros .h"
#include "lsim types .h"l

#include "mass stdc.h"
include "Idgi itdg.h"
#include "simr cigif.h"l

#include "pro -assoc .h
#include "pro sim.h"
*include "status.h"
#include "status ml.h"
include "'veh-type.h"

include "fifo dfn.h"
#include "fifo;-h"
#include "bigwheel .h
include "libterrain.h
include "libkin .h
#include "libfail .b"
#include "libcig.h"
#include "libmsg.h"
#include "bbd.h"
#include "libhull.h"
#include "libidc .h
#include "libmnain.h"
#include "libmem. h"
#include "libnetwork.h
#include "librepair .h
#include "librva .h
#include "libsusp.h"
#include "libturret .h"
#include "libsound.h"
#include "libmap.h

#include "'ml ammo.h"
#include "ml bcs.h"
#inc-'ude "ml cntrl.h"
#include "ml cupola.h"

#include "ml dtrain.h"9
#include "ml elecsys .h
#include "ml failure.h
#include "ml fuelsys .h
#include "ml firecti .h"
#include "ml-weapons .h"
include "ml handles.h"
I include "ml hydrays .h"
finclude "ml keybrd .h
finclude "ml laser .h
#include, "ml main. h"
41include "ml meter.h
#include "mlpolhemus .h"
#include "mlpots .h"-
#include "ml-repair.h"
#include "ml -resupp.h"
#include "ml-sound. h"
#include "ml turret .h"
#include "ml vision.h
#include "ml status .h"
finclude "'ml-thermal .h

#include "timers .h
#include "dtad.h"
#include "status .h"
#include "cmc .hu
#include "1cmc timer.h"
#include "cmc-status.h"
#include "ser status.h"

#define PARS-FILE "/simnet/vehicle/ml/data/mljpars.d"I

#define CONFIG FILE "/siznnet/vehicle/ml/data/ml-vconfig.d"I
#define VERMAPFILE "/simnet/data/veh map.d"
#define ASID MAPFILE "I/simnet/data/asid.d"

BOOLEAN debug - FALSE;
BOOLEAN print-overruns -FALSE;

%static BOOLEAN poihemus flag;
static BOOLEAN guise override - FALSE;
static int. guise-to-use;

Idefine MESSAGE "Eat at Mama Luigi's"
#define BOLD FLASH "11;5m"
#define NORMAL "~n

/* from the '-p' switch *
static ActivateRequestVariant mnit activ, *initial activati#.n - NULL;

Iifndef SIMBFLY

void exito;

#endif

void print help (progname)
char *progiiame;

printf ("Usage: %s \n", progname);
printf ("switches ... n)
printf ("\t-a(symetric buffers: receive send) \n");
printf ("\t-c(upola and loader's periscope controllable by keyboard)\n");
printf ("t-C(atc Hardware used)\nto);
printf ("t-d(ebugging on)\n");

printf ("t-D(ebugging for static vehicles on)\ri");
printf ("t-e(thernet off)\n"-);
printf ("\t-E(xercise id)\n");
printf ("t-F(ail debug on)\n");
printf ("\t-g(raphics off)\n");
printf ("\t-G(uise to use instead of USMl, in hex)\n");
printf ("\t-h (elp) \n") ;
printf ("t-i(ndicate vpkt sent)\n");
printf ("t-k(eyboard on)\n");
printf ("t-m(essages for equipment status not printed) \n");
printf ("t-n(etwork verbose mode) \n")
printf ("\t-N(ight vision on)\n");
printf ("t-o(verrun printing) \n");
printf ("\t-p(osition) initial X initial Y initial heading\n");
printf ("\t-P(riority list debugging on)\ n");
printf ("t-s(ound off)\n");
printf ("t-t(errain database) database -name\n");
printf ("\t-T ded database) database -name\n");
printf ("\t-v(erbose mode on)\n");
printf (11\t? (help) \n 1);

void
print-veh-logo (

printf ("%c[H%c(J", '\033', '\033'); /* clear screen ~
printf C'\nl)
printf C" \nil);
printf (" I\n") ;
printf (" \nil);
printf -------- \nil);
printf ("++ I\nil);
printf (+ *++ + + il;
printf . .+ + ++ + + \n");
printf ---u --------- %c%s%s%c%s + \nt",Oxlb,BOLDFLASH,
printf C' \\+ + \nil);
printf (11 .+ + + +.. \nil);
printf (11 + + + \n");

printf ("1 + I\nil);

printf (C' - - - - -- -- -- -- --- - - - - -/\i)

printf ("\nil);
printf(" -W)
printf (" SIMNET Ml SIMULATION V%s\n", VERSION);
printf(" Copyright (c) 1990 BEN Systems and Technologies\n");
printf (" All rights reserved.\n");
printf(" -\ i)

*ifndef SIMBFLY

sleep (5);

else

Sleep (8 0300);

#endif

printf ("%cfH%c[J", '\0331, 1\033f); /* clear screen ~

void veh-spec startup()

extern void rtc irit-clocko;

rtci'it clocko;
1* main readjparsfile (PARSFILE);*//*

vehicle type is in activate. We DO need to set simulator type, however
network set vehicle type ((int) VEHMAINBATTLETANK);*/
network-set-simulator type (simulatorSIMNET_M);
use cig reconfigstartup ();

cig set viewconfigfile (get_vconfig_filel 0);
map_vehicle file read (getvehmap_file);
map read-asid_file (getasidmap_file));
keyboard init ();

/* weaponsdownloadballisticstables ();*/

/* this function should move out of vehicle specific code */
1* map_file read("/simnet/data/trial_mapd");*/

map fileread(get_ammo_map_file);

failure init 0; /* initialize damage tables
mapget-damagefiles); /* must be after failureinit */

void vehspecidle(){
status simul 0;
keyboard-simul 0);
iosimul idle 0;

if (initialactivation !- NULL)
{

processactivaterequest (initial activation, (SimulationAddress *) 0,
0, network_getexerciseid);

initial-activation - NULL;}
}

void veh specinit()
{
/* Order dependent initialization here. */

cupola init (); /* must be before controls */
sound init 0; /* before controls, after idcs */
statuspreset 0; /* after idc init */

/* does ammo init still need to be before controls or *1
/* is this one of those historical conents? *1
/* I am assuming the latter. -CJC 3/16/90 */

ammo init 0; /* must be before controls */
controls fsm init);

resupply_init ();
meterminit 0; /* must be before electsys *1
electsysinit 0; /* this must be after controlsinit */
hydraulic init ();
firectl iit 0; /* this must be before laserinit */

fuel !nit ();*/
drivetrain init 0;
handlesmin-t 0;
laser imit 0;
bcsi~nit 0:
weapons nit 0;
vision_restoreallblocks 0;

controls edgeinit ();
appinit () ;
thermal inito;
configos init2(kinematics get o to h(veh kinematics),

kinematics get w to h(veh kinematics));

cig-init_ctr (;

void veh_spec_simulate()
(

status simul (;
#if defined(SIMBFLY)

{
/* ### don't count printing of stats against simulation */

long start, end;

start - rtc; /* ENDFRAGMENT(60) */
keyboardsimul 0;
end - rtc;
bbd bit start[60] +-end - start;/* STARTFRAGMENT(60) */

)
#else

keyboard simul (;
#endif

sound simul (; /* should be first */
controls simul 0;
handles simul 0; /* must be before kinemat simuls */
amno simul 0;
resupply-simul 0;
electsys simul 0;
hydraulic simul 0;
fuel simul 0;
drivetrain-simul 0;
bcs_simulO(;
weapons simul 0;
if (polhemusflag)

polhemussimul();
cupolasimul ();
thermal simul 0;I

void veh_spec_stop()
{

idc init 0;
sound init ();
vision break-all blocks);

void vehspecexit()
{

int num ticks;

keyboard exit gracefully 0;
printf ("Elapsed pseudo time %lf secs.\n", timersget currenttime 0);
printf ("Elapsed time %d ticks.\n", timersget currenttick);
printf ("Elapsed real time %If secs.\n",

(timers elapsedmilliseconds () / 1000.0));
if ((numticks - timersgetcurrent tick 0) !- 0)
(

printf ("Average frame time %if msecs.\n",
((REAL) timerselapsedmilliseconds () / (REAL) numticks));)

network_print statistics 0;

netclose (nethandle);

main (argc, argv)
int argc;
char *argv 11;
{

int i;

signal (SIGINT, (PFI)exitgracefully);
signal (SIGTERM, (PFI)exit_gracefully);

enter gracefully (); /* print copyright banner */

networksetexerciseid (1);

printf ("ALERT: Initial buffer transfer size is 512 x 512 !!\n");
mainreadparsfile (PARSFILE);

for (i - 1; i < argc; i++)(
switch (argv[i] [0]){

case '-'.
switch (argv[i] [1])(

case 'a':
setrequest receivesize (atoi(argv[++i]));
setrequest sendsize (atoi (argv[++i]));
setassymetricon 0;
break;

case A':
amno enable autoloadero;
break;

case 'c':
keyboardusecupola (;
break;

case 'C':
set catc mode 0;
printf ("using catc89 Hardware\n");
break;

case 'd':
debug - 1;
printf ("Debugging is now on...\n");
break;

case 'D':
usestatic debug (1);
printf ("debugging for static vehicles on...\n");
break;

case 'e':
networkdontreallyopen up ethernet 0;
break;

case 'E':
network set exercise id ((ExerciseID)(atoi(argv[++i])));
break;

case 'F':
cfaildebugonO;
break;

case 'g":
cignot_u sing_graphics 0;
break;

case 'G':
guise override - TRUE;
sscanf (argv(++i], "%x", &guisetouse);
printf("ml using guise Ox%08x\n", guisetouse);
break;

case 'h':
case '?':

printhelp (argv[0]);
exit (-1);

case 'k':
keyboardreallyuse 0;
break;

/*laser-enable-dazzlero;*/
printf ("no dazzling laser available\n"l);
exit (-1);

case 'in':
disable -statusyprinting 0;
break;

case In':
vypkt verbose mode 0;
break;,

case 'N':
printf ("Night vision enabled\n"l);
vision -set -otw -night-vision 0
break;

case 'o':
print-overruns - TRUL;
printf ("Printing of overruns is now on ... n)
break;

case 'p':

float initial-heading; /* degrees

SIMNETMlStatus *status;
GroundehicleSubsystems *gp;
OrganizationalUnit *unit;
unsigned int status-bits;

init activ.reason - activateReasonOther;
init-activ. vehicleClass - vehicleClas sTank;

1* VehiclelD is set at net imit time, so the
one in the activate pkt is ignored...

unit - & mnit activ.unit;
unit->force -distinguishedForceID;
unit->organizationType - organizationArmy;

unit->hierarchy[O] .unitType - unitTypeArmy;
unit->hierarchy[Ol.unitNumber - 0;
unit->hierarchy(l] .unitType - unitTypeCorps;
unit->hierarchy (1].unitNumber - 0;
unit->hierarchy[23 .unitType - unitTypeDivision;
unit->hierarchy[21.unitNumber - 0;
unit->hierarchy [3] .unitType - unitTypeBrigade:
unit->hierarchy[3.unit~umber - 0;
unit->hierarchy[4] .unitType - unitTypeBattalion;
urit->hierarchy[4].unitNumber - 0;
unit->hierarchy[5] .unitType - unitTypeCompany;
unit->hierarchy(5].unitNumber - 0;
unit->hierarchy[6J .unitType -unitTypePlatoon;
unit->hierarchy[6].unitNumber - 0;
unit->hierarchy[7] .unitType - unitTypelrrelevant;
unit->hierarchy[7].unitNumber - 0;
unit->hierarchy[8] .unitType - unitTypeSquad;
unit->hierarchy[8).unitNunber - 0;

mnit -activ.marking. characterSet - asciiCharacterSet;
strcpy (init-activ.marking.text, "AlO");

if (guise-override)

iit -activ.quises.distinguished - guise -to -use;
init -activ.guis-es other - guise-to-use;

else

init -activ.guises.distinguished - vehicleUS_-Ml;
init activ.guises.other -vehicleUS Ml;

iit-activ.simulatedTime -0;

strcpy (init activ .terrain .terrainName,
get-default db, name)

init activ .terrain. trrainVersion -
get default-db-version ();

sscanf (argvt++i], "%lf", &(init activ.location[X)));
sscanf (argiv[++i], "%lf", & (init activ.location(Y)));
sscanf (argv(++i], -%f-, &initiaTl heading);

printf ("Initializing tank @ (%lf, %lf) heading %f\n",
init activ. location [XJ,
mit activ.location(Y],
initial-heading);

init activ.battleScheme - battleScheme~ther;

mit:-activ.onSurface - TRUE;.

iit-activ.status.vehicleType - vehicleUSMl;

/* brand spanking new */
iit activ.status.odometer - 0; 1* meters *
mnit-activ.status.age - 1; /* years *

mnit activ. status failures .category
groundVehicleSubsystems;

mnit -activ. status, failures. operationalSurirary - 0;
init -activ. status, failures .mobilitySunmmary -0;

mnit -activ.status.failures.firepowerSummzary -0;

init activ. status failures. coznmunicationSuxnmary - 0;
initactiv. status failures noncriticalSunmary - 0;

gp - &iinit activ.status.failures.subsystems.ground;

/* initialize everything working *
status bits - OxO;
ECOPY ((char *)&status bits,

(char *) gp -:> motivelsubsystemExists],
sizeof (MotiveSubsystems));

ECOPY ((char *)&status bits,
(char *)&gp -> electronic(subsystemExists],
sizeof (ElectronicSubsystems));

ECOPY ((char *)&status bits,
(char *) gp -> powerlsubsystemExists],
sizeof (PowerSubsystems));

ECOPY ((char *)&status bits,
(char *)&gp -> weapon[subsystemrExists],
sizeof (WeaponSubsystems)):

ECOPY ((char *)&status bits,
(char *)&gp ->chassis[subsystemExists],
sizeof (ChassisSubsystems));

SCOPY ((char *)&status bits,
(char *) gp ->7turretraubsystemExists],
sizeof (TurretSubsystems));

status bits - 0;
BCOPY ((char *)&status bits,

(char *)&gp -> motivefsubsystemStatus],
sizeof (MotiveSubsystems));

BCOPY ((char *)&status bits,
(char *) gp -> electronic~subsystemStatus],

sizeot tzetoi 3jI5
BCOPY ((char *) &status bits,

(char *) &gp ->O power~subsystemStatusi,
sizeof (PowerSubsystems));

ECOPY ((char *)&status bits,
(char *) gp -> -weapon[subsystemStatus),
sizeof (WeaponSubsystems));

BCOPY ((char &) status bits,
(char *)&gp -J chassis~subsystemStatus],
sizeof (ChassisSubsystems));

ECOPY ((char *)&status-bits,
(char *) gp -> turret[subsystemStatus),
sizeof (TurretSubsystems));

init -activ. status .specific. category - sirnnetMlStatus;
status -&init-activ.status .specific. specific .ii;

status ->enginePower - 1.0;
status ->battery - 24.0;
status ->frontLeftFuel - 70.0;
status ->frontRightFuel - 70.0;
status ->rearFuel - 150.0;

status -> apdsReadyAno - 12:
status ->apdsSemiReadyAnmo - 11;
status ->apdsHullTurretFloorArnmo - 6;
status ->heatReadyAnmo - 10;
status ->heatSemiReadyAnmo - 11;
status ->heatliullTurretFloorAnmo - 5;

init -activ. Epecific .tank.hullAzimuth -
(unsigned long) (4294967295 -
(unsigned long) (initial heading*

4294967295.0 / 360.07);
mit-activ.specific.tank.turretAzimuth -0;

initial-activation - &init-activ;

break;

case 'P':
rva-turn-debug-ono;
printf ("turning priority list debugging on\n");
break:

case Is':
sound dont-useo;
break:,

case It':
if(!isalpha(argv[++i][O]

printf ("Cannot use invalid terraindatabaser: %s\n",
argvfi])

exit(0)

cig use -database override-named(argv[i])
break;

case ITV:
if(!isalpha(argv[++i]fO]

I
printf ("Cannot use invalid terraindatabaser: %sn",

argvji])
exit(0)

set-ded-nane(argvfi])

break:
case I v, :

terrain-verbose mode-on 0
break;

case '1':
set-cigd4ev (1, atoi(argv[++i]));

*ifdef _GT_
#endifhis-cif-interface - atoi (argvlifl;

set -cig_msk (CIG_1);
break;

case '2':
set cig_dev (2, atoi(argv(++ifl;
set -cig mnask (CIG_2);
break;

case 'z':

double scale;
sscanf(argv(++i], "%lf", &scale);
printf ("Using vehicle size scale of %lf\n", scale)
break;

default:
fprintf (stderr, "Unknown switch \"%s\"\n", argv~iD);
break;

break;
default:

fprintf (stderr, "unknown arg \"%s\" .. .\n", argv[iJ);
break;

si.mstate-startupo;

for (;;)

simulation-state-machineo;

/*NOTREACHED*/ /* this keeps lint happy *
return (0); /* Exit gracefully, dummy up lint. *

void
reconstitute-vehicle 0)

process-activate request(Uinit activ, (SimulationAddress *)Q,
(TransactionIdentifier) 0, network get-exercise-id())

*void
setyPolhemus-flag_ trueo(

MW~hoeb~sua flag - TRUE;

a id
etypolemus-fla~alse()

poihemus flag - FALSE;

" PIEU1-ctl npc.c*
* AUTHOR: Brian O'Toole *

* MAINTAINER: Brian O'Toole *

* HISTORY: 4/30/86 brian: Creation *

* 9/29/87 brian: Added redistribute send *

* 12/06/89 fmh: Change to 36-bit munitions types: *

. SABOT --> M392A2, HEAT m-> M456A1 *

* 7/2/91 mla (IST): added using_polhemus flag *

. and routines to manipulate it *

, see note below *

* Copyright (c) 1986 BBN Laboratories, Inc. *

" All rights reserved. *

#include "stdio.h"
#include "sim types.h"
#include "simdfns.h"
#include "sirmacros. h"

#include "mass stdc.h"
#include "dgistdg.h"
#include "simcigif.h"

#include "libcig.h"
#include "dtad.h"
#include "libidc.h"
#include "libidc dfn.h"
#include "libmem.h"
#include "libmem dfn.h"
#include "libnetwork.h"
#include "status.h"
#include "timers.h"
#include "timers dfn.h"

#iiiclude "ml amio.h"
#include "ml anuno_df.h"
viiiclude "ml ammomx.h"
#include "ml ammo_pn.h"
#include "ml cntrl.h"
#include "ml ctl df.h"
#include "ml cupola.h"
#include "ml driv_pn.h"
#include "ml dtrain.h"
#include "mlgunnmx.h"
#include "ml commmx.h"
#include "ml load-mx.h"
#include "ml hydrsys.h"
#include "ml idc.h"
#include "mlyots.h"
#include "mlrepair.h"
#include "ml status.h"
#include "ml thermal.h"
#include "ml tmrsdf.h"
#include "ml tracks.h"
#include "ml turr_pn.h"
#include "ml turret.h"
#include "ml vision.h"

#include "muntype.h"

#define INVERTDELAY 15

/* amimo, rack internals *
static int apds-translations (N _READY]

APDSRDYO4, Ar-Do- RDyO1,
APDS_RDYO9, APDS-RDYO7, APDSRDYO5, APDSRDYO2,
APDSRDY1O, APDSRDYO8, APDSRDYO6, APDSRDY03,-
APDSRDY2O, APDS RDY17, APDSRDYl4, APDSRDY11,
APDSRDY21, APDS-RDY18, APDSRDY1.5, APDSRDY12,
APDSRDY22, APDSRDYl9, APDSRDY16, APDSRDYl3

static int. heat-translations []NREADY]

HEATRDYO4, HEATRDYQ1,
HEATRDYO9, HEAT RDYO7, HEATRDYO5, HEATRDYO2,
HEATRDYl0, HEAT RDYOB, HEATRDYO6, HEATRDY03,
HEATRLY20, HEATRDY17, HEATRDY14, HEATRDYll,
HEATRDY21, HEATRDYl8, HEATRDY15, HEATRDY12,
HEATRDY22, HEATRDYl9, HEATRDY16, HEATRDY13

static mnt select-translations (N _READY] -

ASELECTO4, ASELECT0l,
ASELECTO9, ASELECTO7, ASELECTOS, ASELECTO2,
ASrLECT1O, ASELECT08, ASEILECTO6, ASELECTO3,
ASELECT2O, ASELECT17, ASELECT14, ASELECTil,
ASELECT21. ASELECT18, ASELECT15, ASELECT12,
ASELECT22, ASELECT19, ASELECT16, ASELECT13

static int turret-ref-translations [TURRETREFNUMSECTORS]

TURRET TO HULL_030, TURRETTO HULL_060, TURRET TOHULL_090,
TURRETTOHULL_120, TURRETTO HULL_-150, TURRE7TTOHULL7180,
TURREtTTOHULL_-210, TURRE7TTOHULL_240, TURREtTTOHULL_270,
TURREtTTOHULL_-300, TURREtT6TOHULL_-330, TURRET_-TOHULL_360

static REAL real service brake-val;
static R':AL real~coxlmwe-apvyal;
static REAL real~loadperi -val;
static mnt hex service brake-val;
static int hex-comm weapvyal;
static mnt hex -loadyperi val;
static char gps mag_val,
static char breech -ready;
static char ejection,_guard_val;
static char ammno transfer status;
static char grid azimuth jstatus;
static int fuel flash count;
static char fuel-flash-status;
static int odometer timer number;
static char cupola uCdw~vl
static char binoculars-on-off-val;
static char lpscope-up._down-val;
static char thermal-shutter-val;

Irtatic DOOLIAN -iningpolhems -FIALSE; /* added for polhemus *

/* integration */
:*July 2, 1991
IN Altman (IST)

/* see note below

/* no power routines */
static void controls_parkingbrakecheck (;
static void controls-service brakecheck (;
static void controls-mag_check (;
static void controls ejection guardcheck (;
static void controls-breechcheck ;
static void controls-breechunload check);
static void controls breechready_ check);

static void controls ammo transfer check (;
static void controls knee switch check (;
static void controls ammo tube check ();
static void controls commander_weapon station check);
static void controls-loader periscopecheck (;
static void controlsgrid azimuth check);
static void controls fuel flash check (;
static void controls-odometer check ();
static void controlscupolaup_downcheck 0;
static void controls binoculars on-off-check 0;
static void controls-lpscopeup downcheck 0;
static void controls thermal shuttercheck 0;

/* init routines */
static void controls-service brake init (;
static void controls mag_init (); -
static void controls ejectionguard init 0;
static void controls ammo transfer init (;
static void controls commanderweaponstation init 0;
static void controlsloaderjperiscope init (;
static void controls_cupola updown_init ();
static void controls binoculars on off init 0;
static void controls-lpscope_updownmit (;
static void controls thermal shutterinit (;

static void controls-transfer semi-heat 0;
static void controls-transfersemi-apds (;
static void controls-transfer hull heat (1;
static void controls_-transfer-hull apds ();
static void controls transfer no transfer (;
static void controls transfer redist send 0;
static void controls transfer redist recv 0;
static void controls-service brake exit 0;
static void controls odometerexit ();
static void controls cupola updown exit 0;
static void controls binoculars on off exit 0;
static void controls lpscopeupdownexit 0;
static void controls-fuel flash ();
static void controls fuel unflash 0;
static void controls fuel restore 0;

----------------------------- ---- ------
S -The usingpohemus flag and these two routines to1%Ahu~ate it "/

were added to prevent a read of the TC's cupola pot while the *f
/* polhemus is active. If the cupola pot is also read while the */
1/* polhemus is active, there is an oscillation as the polhemus and */
/* the pot fight over the 'correct' value. */

July 2, 1991 - M Altman LIST) *1

--- *

void controls set usingpolhemus true I
using polhemus -- TRUE;

troid controls setusing_polhemus false() {
usingpolhemus FALSE;

t/* -,i. _- 7 s.. -SE/

void controls_npc init ()
I

real service brake val - 0.0;
real commweap val-- 0.0;
real loadperi val - 0.0;
hex service-brake-val - 0;
hex_-commweap_val-- 0;
hex load_peri val - 0;
gps mag val - GN3XVAL;
breech_ready - OFF;
ejection_guardval - OFF;
ammo transfer status NOTRANSFERVAL;
grid-azimuthstatus - OFF;
fuel flash count - 0;
fuel flash status - OFF;
odometer timer number - timers set null timer);
cupolaup _down val - CM CENTER VAL;
binoculars on off val - OFF;
ipscopeup down val - LD.CENTERVAL;

controls service brake init);
controls-maginit ();
controlsejection guard init 0;
controls ammo transferinit 0;
controls-corruanderweapon_stationinit 0;
controls-loader_periscope init 0;
controls cupolaup-down-init ();
controls-binoculars on off init);
controlslpscopeup down init);
controlsthermalshutterinit (;

void controls nopower routines ()
I

controlsjparking brake check);
controls service brake check);
controls-mag check ();
controlsejection guard check);
controls breech check (0;
controls breech unload check (;
controls-breech_ready check 0;
controls ammo -transfer check (;
controls-knee-switch_check (;
controls ammo tube-check ();
controls-_comnander-weapon stationcheck 0;
controlsloaderJperiscope check 0;
controls_grid_azimuthcheck 0;
controls fuel flash check (;
controlsodometer check ();
controlscupola up down check 0;
controls_binoculars on off check (;
controls_Ipscopeup down check (;
controls thermal shutter check 0;

1

static void controls_parkingbrakecheck ()

if (idcvalues (DR_P_BRAKESET])
{

idc values [DR P BRAKESET] - OFF;
if (hydraulic_parkingbrake on request 0)
{

drivetrainsetjparking_brake (;
controlsset_parkingbrake 0;

)

if (idc values [DR_P_BRAKERELEASE])

idc values [DR_P_BRAKE RELEASE] - OFF;
drivetrainreleaseparking_brake (;

controlsrelease_parkingbrake 0;
I

static void controls service brake check ()

int temp;

if ((temp - potval (DR_S_BRAKE)) !- hexservice brakeval)
(

real-service brake val -
potsservice brake-real (hex service brake val - temp);

drivetrainset-service_brake (realservice_brakeval);

static void controls service brakeinit ()
{

hex service brake val - potval(DR_S_BRAKE);
real service brake-val - potsservice brake real (hex service brake val);
drivetrainsetservicebrake (realservicebrakeval);

I

static void controls service brake exit ()
(

drivetrain set service brake (0.0);

static void controlsmag_check ()

char temp_3x, temp 10x;

temp_3x - idc values [GNGPS MAG 3X];
temp_10x - idc-values [GNGPSMAG_10X];

if (thermalviewono)

return;

L-
)

if ((temp_3x) &&
(gps_magvyal !'- GN_3XVAL) &
Ctemp_l0x))

gps mag_val - GN_3XVAL;
ciggpsmag__,0;

else if ((temp_l0x) &
(gps zagval !- GN loxVAL) &&
(! emp_,3x))

gps mag_val - GN-loxVAL;
ciggps magl0x 0

static void controls_raginit 0)

char temp_3x, temp_l0x;

temp_3x - idc -values [GN_-GPSM AG_3X];
temp_l0x - idc-values [GNGPSMAG-lox];

if ((temp_3x) &&
(temp_l0x))

printf("'mag-init: Initialize to Low MAG*********\n)
gps-mag_val - GN_3XVAL;
cig_gpsmag_3x 0

else if ((temp_l0x) &&
(temp_3x))

printf("'mag-init: Initialize to Hii MG *********\'

gps-mag_val - GN-lOXVAL;
cig_gps mag lOx 0

else

printf("mag-init: Mag switch in weird state **********\n");

char get_non-thermal-mag()

return (gpsmagvyal);

static void controls ejection gurdchek(

_Cad-hc

char temp;

if ((emp - idc-values [LDEJECTIONGUARD]) 1-ejection guard val)

switch (ejection,_guard-val - temp)

case ON:
ammo -ejection_guard-armed 0
controls ejection_guard-armed 0
break;

case OFF:
azmmo ejectiongadsf c;
controls -ejection gard-safe 0
break;

default:
fprintf (stderr, "CONTROLS: controls ejection_guard-check: impossib.
nprintf ("CONTROLS: controls-ejection guard-check: impossible eject
break;

static void controls ejection,_guard-ixit (

switch (ejection-guard-val - idc values (LDEJECTIONGUARD])

case ON:
anmmo ejection_guard-armed 0
controls -ejection,_guard-armed 0
break;

case OFF:
ammwo ejection guard-safe 0
controls -ejection, guard-safe 0
break;

default:
fprintf (stderr, "CONTROLS: controls ejection guard init: impossible ej.
nprintf ("CONTROLS: controls ejection guard mnit: impossible ejection g
break;

static void controls-breech-check (

if (idc-values ILDSHELLLOADEDPB])

amino-breechjpushed 0
idc-values ELDSHELLLOADEDPB] -OFF;

static void controls-breech-unload-check (

if (idc-values RLDUNLOADBREECHPB])

ammo breech-unloadpushed 0
idc_values (LDUNLOADBREECHPB] -OFF;

static void controls-knee-switch-check (

switch (idc-values ILDKNEESWITCH])

case ON:
amino-knee-switch-on 0
break;

case OFF:
amino-knee-switch off 0

break;
def ault:

fprintf (stderr, "CONTROLS: controls knee switch check: impossible knee
nprintf ("CONTROLS: controls-knee switch check: Impossible knee switch
break;

void controls ejection-guard armed (

idc-output_set-cond (((controlspower status 0)
CONTROLSSTATETURRETPOWERON) &
(controls electsys _status ()) &&
(! controls failure status 0)),

LDMAINARMEDL, OUtTPUTON);
idc output_set-cond (I controls commanderypanel -status 0,

LDMAINSAFEL, OUTPUTOFF);

void controls ejection_guard safe (0

idc output set-cond (! controls-cormander-panel status 0
LDMAINARMEDL, OUTPUTOFF);

idc-output_set-cond (((controlspower status 0) --
CONTROLSSTATETURRETPOWERON) &
(controls-electsys_status ()) &&
(! controls-failure status 0)),
LDMAINSAFEL, OUTPUTON);

void controls-setyarking_ brake 0)

if (! idc-values [DRBRAKEL])

idc output_set_cond (((controlsypower-status()I
CONTROLSSTATENOPOWER) &
(controls-electsys-status 0)&&
(! controls failure status 0)),

DRBRAKEL, OUTPUTON);
idc-output_set_cond (((controlsypower-status 0)!

CONTROLSSTATENOPOWER) &&
(controls-electsys_status ()) &&
(! controls failure status 0)),

DRMASTERWARNINGL, OUTPUTON);

void controls-,releaseyparking birake 0)

if (idc-values (DR BRAKEL])

idc output set cond (! controls driverypanel status 0
DRBRAKEL, OUTPUTOFF);

controls warning lamp off-check 0;

static void controls breechreadycheck ()
(

char temp;

if ((temp - ano_breechready () !- breech-ready)
(

switch (breechready - temp)
{

case ON:
idcoutput_set cond (! controls failure status 0,

LDBREECHREADYL, OUTPUTON);
break;

case OFF:
idc-outputset cond (! controls commanderypanelstatus 0,

LDBREECHREADY_L, OUTPUTOFF);
break;

default:
fprintf (stderr, "CONTROLS: controlsbreechreadycheck: Impossible
nprintf ("CONTROLS: controlsbreechready check: Impossible breech-.
break;

static void controls ammo transfer check ()
(

char tempsemiheat, tempsemi apds, temp_hullheat, temp hullapds;
char temp_redist_send, temp_redistrecv;

tempsemi heat - idcvalues [SEMIHEAT];
tempsemi apds - idcvalues [SEMI APDS];
temphull heat - idc values (HULL HEAT];
temphull apds - idc values [HULL APDS];
tempredist_send - idc_values [REDISTSEND];
tempredistrecv - idcvalues [REDISTRECV];

if ((tempsemiheat) &&
(ammo transfer status !- SEMI HEATVAL) &&
(! temp_semiapds) &&
(! temp_hullheat) &&
(! temp_hull_apds) &&
(temp_redistsend) &&
(! temp_redistrecv))

controls transfer semi-heat 0;
ammo -transfer semi heat 0;
amno_transfer status - SEMIHEATVAL;

else if ((tempsemi apds) &&
(ammo transfer status !- SEMI APDSVAL) &&
(0 temp_semi heat) &&
(1 temp_hullheat) &&
(! temp_hullapds) &
(! temp_redist_send) &&
(! temp_redistrecv))

controls transfersemi apds 0;
ammo_transfersemi apds ();
amo_transferstatus - SEMIAPDSVAL;

else if ((temp hull heat) &
(ammo transfer status !- HULL BEATVAL) &
(! tempsemi heat) &

(! tempsemi_apds) &&
(! temphullapds) &&
(! tempredistsend) &&
(! tempredist recv))

controls transfer hull heat);
ammo transfer hull heat ();
ammo_transferstatus - HULLHEATVAL;

else if ((temphull apds) &&
(ammo transfer status !- HULL APDSVAL) &&
(! tempsemiheat) &&
(! temp_semi_apds) &&
C! temp hullheat) &&
(! tempredistsend) &&
(! tempredistrecv))

controls transferhullapds);
anmo_transferhull apds ();
ammo_transferstatus - HULLAPDSVAL;

else if (M temp_semiheat) &&
(ammo transfer status !- NOTRANSFERVAL) &&
(! tempsemi_apds) &&
(! temp_hull heat) &&
U temp_hullapds) &&
(! temp_redist_send) &&
(! temp_redistrecv))

controls transfer no transfer);
anno transfer no transfer ();
ammotransferstatus - NOTRANSFERVAL;

else if ((tempredist_send) &&
(ammo transfer status !- REDISTSENDVAL) &&
(I temp_semi_heat) &&
(1 temp semi_apds) &
(! temp_hullheat) &&
(! temphullapds) &&
(! temp_redistrecv))

controls transfer redistsend (;
ammno transferredist send ();
azmo_transferstatus-- REDISTSENDVAL;

else if ((tempredistrecv) &&
(ammo transfer status !- REDISTRECVVAL) &&
(! tempsemiheat) &&
(tempsemiapds) &&
(I temp_hullheat) &&
(! temp_hullapds) &&
(! temp_redist_send))

controls transfer redist recv 0;
ammo transfer redist recv);
ammo-transfer-status-- REDISTRECVVAL;

static void controls ammo transfer !nit ()

if (idc_values (SEMIHEAT])

controls transfer-semi-heat 0;
wno transfer semi heat 0;
ammo transfer status - SEMI HEAT-VAL;

else if (idc-values (SEMIAPDS])

controls -transfer-semi -apds 0
ammxo transfer semi-apds 0 ;
amm6-otransfer-status - SEMIAPDSVAL;

else if (idc-values (HULLHEAT])

controls transfer hull heat 0;
ammo transfer hull heat ();I
amio~transfer-status - HULL HEATVAL;

else if (idc-values [HULLAPDS])

controls -transfer-hull-apds 0;
axmo transfer hull-apds 0;
axruo~transfer-status - HULLAPDSVAL;

else if (idc-values [REDISTSEND])

controls transfer redist send 0:
ammo -transfer-redist-send 0;
arunotransfe:-status - REDISTSENDVAL;

else if (idc-values [REDISTRECV])

controls transfer redist recv 0:
ammo -transfer-redist-recv 0;
anuno-transfer-status - REDISTRECVVAL;

else

controls transfer no transfer 0;
ammo transfer no transfer ();
amm6notransfer-status - NOTP.ANSFERVAL;

static void controls transfer-semi-heat (

idc output set-cond (! controls-coxmanderpanel status 0
HULL_-HEAT L, OUTPUTOFF);

idc output set-cond (! contr~ols-conuanderypanel-status 0
HULLAPDS-L, OUTPUTOFF;

idc output set_cond (! controls-conuanderypanel status 0
SEMI APDS_L, OUTPUTOFF);

idc-output set-cond (! controls commanderypanel status 0,
P.EDISTSENDL, OUTPUTOFF);

idc-output set-cond (! controls-commanderypanel status 0,
REDISTRECV L, OUTPUTOFF);

if ((ammo get quantity (SEMIHEATVAIJ) > 0) &
(idc-values (SEMIHEATL] !- ON))

idc oPutput_set-cond (!controls failure-status 0.,
SEMIHEATL, OUTPUTON);

static void controls transfer semi apds (

idc_output-set-cond (! controls-comranderypanel status 0,
HULLHEATL, OUTPUTOFF);

idc-output_set-cond (! controls-comnmanderypanel status 0
HULLAPDSL, OUTPUTOFF);

idc-output-set-cond (! controls coznnderypanel status 0,
SEMIHEATL, OUTPUTOFF);

idc output set-cond (! controls-comranderyPanel status 0,
REDISTSENDL, OUTPUTOFF);

idc-output_set-cond (! controls-conuanderypanel status 0,
REDISTRECVL, OUTPUTOFF);

if ((anumo get quantity (SEMIAPDSVAL) > 0) &
(idc-values (SEMIAPDSL] !- ON))

idc output_set-cond (!controls failure-status 0,
SEIIAPDSL, OUTPUTON);

static void controls-transfer-hull-heat C

idc-output_set-cond (! controls-commanderypanel status 0,
BULLAPDSL, OUTPUTOFF);

idc output-set-cond (! controls-comrnanderypanel status 0,
SEMIHEATL, OUTPUTOFF);

idc-output_set-cond (! controls-commanderypanel status 0,
SEMIAPDSL, OUTPUTOFF);

idc-output_set-cond (! contr~ols-coxnmander~yanel status 0 ,
REDISTSENDL, OUTPUTOFF);

idc output_set_cond (! controls-commanderypanel status 0
REDISTRECV L, OUTPUTOFF);

if ((ammo_get quantity (HULLHEATVAL) > 0) &&
(idc-values [HULLHEATLI7! O)

idc output_set-cond (!controls failure-status 0,
HULLHEATL, OUTPUTON);

static void controls-transfer-hull apds C

idc-output-set-cond (! controls-commanderypanel status 0,
HULLHEATL, OUTPUTOFF);

idc-output_set-cond (! controls-cornanderyPanel status 0,
SEMI NEATL, OUTPUT-OFF) ;

idc output-set-cond (! controls-coum'anderypanel status 0,
SEMIAPDSL, OUTPUTOFF);

idc-output_set-cond (! controls-cozmmanderjpanel-status 0
REDISTSENDL, OUTPUTOFF);

idc-output set_cond (! controls-commanderypanel status 0

if (ammpget REDISTRECVL, OUTPUTOFF);
if (anun_tquantity (HULLAPDSVAL) > 0) &
(idc-values [HULLAPDS LI !- O6N))

idc output setcond (! controls failure status (,
HULLAPDSL, OUTPUTON);

static void controls transfer no transfer (){
idcoutput set cond (! controls commanderpanel status 0,

HULLHEATL, OUTPUTOFF);
idcoutput setcond (! controlscommander_panelstatus 0,

HULLAPDSL, OUTPUTOFF);
idc_output set_cond (! controls_commander_panelstatus 0,

SEMIHEATL, OUTPUTOFF);
idcoutputsetcond (! controls_commanderpanel status 0,

SEMIAPDSL, OUTPUTOFF);
idc outputset_cond (! controls comrander_panel status 0,

REDIST SEND L, OUTPUT OFF);
idc outputsetcond (! controls commande-rpanel-status 0,

REDISTRECVL, OUTPUTOFF);
I

static void controls transfer redist send ()
{

idc outputsetcond (! controls commanderpanel status 0,
HULLHEATL, OUTPUTOFF);

idc output setcond (! controlscom anderypanel status (,
HULLAPDSL, OUTPUTOFF);

idcoutput_setcond (! controls commanderypanel status ()
SEMIHEATL, OUTPUTOFF);

idcoutput_setcond (! controls commanderpanel status 0,
SEMI APDS L, OUTPUTOFF);

idcoutput_setcond (! controls commanderpanel status 0,
REDIST RECV L, OUTPUT OFF);

idc output_setcond (! controlsfailure status 0,
REDISTSENDL, OUTPUTON);

static void controls transfer redist recv ()

idcoutputsetcond (! controls commanderpanel status (,
HULL HEAT L, OUTPUT OFF);

idcoutputsetcond (! contr3ls_commanderpanel status 0,
HULL APDS L, OUTPUTOFF);

idcoutput setcond (! controls_commanderypanelstatus 0,
SEMI HEAT L, OUTPUTOFF);

idcoutputsetcond (! controls_commanderpanelstatus 0,
SEMIAPDSL, OUTPUTOFF);

idcoutputset_cond (! controls_conmander panel status 0,
REDISTSENDL, OUTPUTOFF);

idcoutput_set_cond (! controlsfailurestatus 0
REDISTRECVL, OUTPUTON);I

void controlsresupply empty (status)
register int status;

s
switch (status)
(

case HULLHEATVAL:
idc output setcond (! controlscommander_panel status),

HULLHEATL, OUTPUTOFF);
break;

case HULL APDSVAL:
idc_output-setcond (! controlscommnderpanel status 0,

HULL_APDSL, OUTPUTOFF);
break;

case SEMIHEATVAL:
idc output setcond (! controlscommander-panel status (,

SEMIHEATL, OUTPUTOFF);
break;

case SEMIAPDSVAL:
idc output setcond (! controlscommanderypanel status 0,

SEMIAPDSL, OUTPUTOFF);
break;

default:
fprintf (stderr, "CONTROLS: controls_resupply_empty: Impossible status\:
nprintf ("CONTROLS: controls_resupplyempty: Impossible status\n");
break;

static void controls ammo tube check (0{
register int i;
register int retval;

retval - NULLSLOT; /* no tube selected *1

for (i - 0; i < NREADY; i++) /* find one selected */
I

if (idcvalues [selecttranslations [i]])I
retval - i;
idc values [select-translations [i]] - OFF;

)
)

if (retval !- NULL SLOT) /* return selected - offset */
amno tube selected (retval);

void controls show round (slot, contents)
int slot;
ObjectType contents;I

if (slot - NULL SLOT)
return;

if (contents - munition US M456A1)
idcoutput_set_cond (! controls failure status 0,

heattranslations [slot], OUTPUTON);

if (contents - munitionUSM392A2)
idcoutput_setcond (! controls failure status (,

apdstranslations [slot], OUTPUTON);

void controls unshow round (slot, contents)
int slot;
ObjectType contents;{

if (slot - NULL SLOT)
return;

if (contents -- munition US M4561)
idc outputsetcond (! controlscommanderpanelstatus 0,

heattranslations [slot], OUTPUTOFF);

if (contents - munition US M392A2)
idc outputsetcond T! controls commanderpanel_status 0,

apdstranslations [slot], OUTPUTOFF);

static void controls commander_weapon_stationcheck ()

int temp;

if((temp - ain(TCCH)) -- -1){
DtadFailedo;
return;I

if (!usingpolhemus) {/* see polhemus note above */
if ((temp > hex comm weapval + DTAD HYSTERESIS) 11

(temp < hex-comm weapval - DTAD-HYSTERESIS))
f

real commweap_yal - pots_ com-weapreal (hex comm_weap_val - temp),
cupola_cwsnewvalue (real-commweapval);I

static void controls comnander_weapon station_!nit ()
{

if((hexcomm_weap_val - ain(TCCH)) -- -1)
{

hex commweap_val - 0;
Dtad Failedo;
return;

real comm_weapval - pots commweapreal (hexcomm_weap_val);
cupola_cwsnew value (realcommweap val);

static void controls loaderjperiscopecheck ()

int temp;

if((temp - ain(LD_CH)) -- -1)

Dtad Failedo;
return;

I

if ((temp > hexloadyperi val + DTADHYSTERESIS) I
(temp < hexload erival - DTADHYSTERESIS))

{
realload_peri val - pots_load peri real (nex loadyperival - temp);
cupola lpscope new value (real load-eri_val) ;

I

static void controlsloader_periscope_init ()
{

if((hexload peri-val - ain(LDCH)) -- -1)
{

hexload_peri val - 0;
DtadFailedo;
return;

realloadperival - potsload_perireal (hexload peri-val);
cupola lpscopenewvalue (realload peri-val);

void controlsresupplyflash (slot, transferstatus, resupply-location)
int slot;
char transferstatus, resupplylocation;
(

switch (transferstatus)
{

case HULL HEAT VAL:
if (slot !- NULLSLOT){

idc outputsetns (heat-translations [slot), OUTPUTON);
}
idcoutputsetns (HULL_HEATL, OUTPUTON);
break;

case HULLAPDSVAL:
if (slot !- NULLSLOT)
(

idc output setns (apds translations [slot], OUTPUTON);
}
idc outputsetns (HULLAPDSL, OUTPUTON);
break;

case SEMI HEAT VAL:
if (slot !Z NULLSLOT)
{

idc output_set_ns (heattranslations [slot], OUTPUTON);
I
idcoutputsetns (SEMIHEATL, OUTPUTON);
break;

case SEMI APDS VAL:
if (slot !Z NULLSLOT)
{

idcoutputsetns (apds translations [slot], OUTPUTON);
I
idcoutput_set_ns (SEMIAPDSL, OUTPUTON);
break;

case REDISTSENDVAL:
idc output_setns (REDISTSENDL, OUTPUTON);
break;

case REDISTRECVVAL:
switch (resupply-location)

c
case HULLHEAT VAL:

idc_outputsetns (HULLHEATL, OUTPUTON);
idcoutputsetns (REDISTRECVL, OUTPUTON);
break;

case HULLAPDSVAL:
idc output-set ns (HULLAPDSL, OUTPUTON);
idcoutput_set_-ns (REDISTRECVL, OUTPUTON);
break;

case SEMIHEATVAL:
idc output set ns (SEMIHEATL, OUTPUT ON);
idcoutputset-_ns (REDIST_RECVL, OUTPUTON);
break;

case SEMIAPDSVAL:
idc output setns (SEMIAPDSL, OUTPUTON);
idcoutputsetns (REDISTRECVL, OUTPUTON);
break;

case READYHEAT VAL:
if (slot !--NULLSLOT)(

idcoutputset_ns (heattranslations (slot], OUTPUTON);I
idc output_setns (REDISTRECVL, OUTPUTON);
break;

case READYAPDS VAL:
if (slot !--NULLSLOT){

idc-outputset-ns (apdstranslations [slot], OUTPUTON);
I
idc outputsetns (REDISTRECVL, OUTPUTON);
break;

default:
fprintf (stderr, "CONTROLS: controlsresupplyflash: Impossible
nprintf ("CONTROLS: controls_resupplyflash: Impossible resuppl
break;

I
break;

default:
fprintf (stderr, "CONTROLS: controls resupplyflash: Impossible transfe
nprintf ("CONTROLS: controls resupplyflash: Impossible transferstatus
break;

void controls resupplyunflash (slot, transferstatus, resupply-location)
int slot;
char transfer_status, resupplylocation;
{

switch (transferstatus)(
case HULLHEATVAL:

if (slot !- NULLSLOT)(
idc outputset ns cond (! controlscormanderpanelstatus (,

heat-translations (slot], OUTPUTOFF);
I
idc-output setnscond (! controlscon ander_panel status 0,

HULL.HEATL, OUTPUTOFF);
break;

case HULLAPDSVAL:
if (slot I- NULLSLOT){

idc output set ns-cond (! controlscommanderpanelkstatus),
apdstranslations [slot], OUTPUTOFF);

iidc output set ns cond (I controls_coimnanderypanel_status (),

HULLAPDSL, OUTPUTOFF);
break;

case SEMIHEATVAL:
if (slot !- NULLSLOT)
{

idc output set ns cond (! controlscotnanderpanelstatus 0,
heattranslations [slot], OUTPUTOFF);)

idcoutput_setnscond (! controlsconmmander_panelstatus 0,
SEMIHEATL, OUTPUTOFF);

break;
case SEMIAPDSVAL:

if (slot !- NULLSLOT){
idc_outputset ns cond (! controlscoznander_panelstatus 0,

apds translations [slot], OUTPUTOFF);I
idc output_set ns cond (! controls con nander_panelstatus 0,

SEMIAPDSL, OUTPUTOFF);
break;

case REDISTSEND VAL:
idc outputset ns cond (! controls-conander_panelstatus 0,

REDISTSENDL, OUTPUTOFF);
break;

case REDIST RECV VAL:
switch (resupply-location)
{

case HULLHEATVAL:
idc output-set ns cond (! controlscommander panelstatus 0,

HULLHEATL, OUTPUTOFF);
idc outputsetnscond (! controlscommander_panelstatus (,

REDISTRECVL, OUTPUTOFF);
break;

case HULLAPDSVAL:
idcoutput_setns cond (! controlscommander_panelstatus (,

HULLAPDSL, OUTPUTOFF);
idc output_setnscond (! controlscommander_panelstatus (,

REDISTRECVL, OUTPUTOFF);break;

case SEMIHEATVAL:
idc output-setnscond (! controlscomander_panelstatus 0,

SEMIHEATL, OUTPUTOFF);
idc outputsetns cond (! controlscomnanderyanelstatus 0,

REDISTRECVL, OUTPUTOFF);break;-- -

case SEMIAPDSVAL:
idc output-setns cond (! controlscommanderpanelstatus 0,

SEMIAPDSL, OUTPUTOFF);
idc output_setns cond (! controls_coinander panel_status 0,

break; REDIST RECVL, OUTPUT OFF);

case READY HEATVAL:
if (slot !- NULLSLOT)
{

idcoutput setnscond (! controlscommander_panel status
heattranslations [slot], OUTPUTOFF)I

idc outputsetns cond (! controls-commander_panel-status 0,

break; REDIST RECVL, OUTPUTOFF);

case READYAPDSVAL:
if (slot !- NULLSLOT)
(

idc output_set ns cond (! controlscommanderpanel status
apds translations [slot], OUTPUTOFF)

idc-output-set-ns-cond (! controls-conmanderpanel-status 9

break;REDISTRECVL, OUTPUTOFF);

default:
fprintf (stderr, "CONTROLS: controls-resupply_ unflash: Impossib
nprintf ("CONTROLS: controls_resupply_.unflash: Impossible resup-
break;

break;
default:

fprintf (stderr, "CONTROLS: controls_resupply_uinf lash: Impossible trans
nprintf ("CONTROLS: controls-resupplyjunflash: Impossible transfer-stat-
break;

void controls-resupply__restore (slot, transfer-status, resupply-..location)
int slot;
char transfer-Status, resupply_ location;

switch (transfer-status)

case HULL HEAT VAL:
if (slot '_Z NULLSLOT)

idc-output_restore-cond ((! controls-conmanderpanel-status 0) &&
(! controls failure status 0),
heat-translations (slot]);

idc output restore-cond ((! controls-conuanderypanel-status 0) &
(! controls -failure-status 0),
HULLHEAT_L);

break;
case HULLAPDSVAL:

if (slot !Z NULLSLOT)

idc output-restore-cond ((! controls-comanderpanel-status 0) &&
(! controls failure status 0),
apds-translations [slot]);

idc-output restore-cond ((! controls-commianderpanel-status 0) &&
(! controls-failure-status 0),
HULLAPDSL);

break;
case SEMIHEATVAL:

if (slot !Z NULLSLOT)

idc output-restore-cond ((! controls-conmmanderjpanel-status 0) &&
(0 controls failure status 0),
heat-translations [slot]);

idc output-restore-cond ((! controls-conmanderypanel-status 0) &
(! controls failure-status 0),

SEMI_HEAT ._);
break;

case SEMIAPDSVAL:
if (slot !Z NULLSLOT)

idc output-restore cond ((! controls-cornmanderypanel-status 0) &&
(! controls failure status 0),
apds-translations [slot]);

idc output-restore-cond ((! controls-coumanderypanel-status 0) &&
0I controls-failure-status 0),
SEMIAPDSL);

break;
case REDIST_-SEND-VAL:

idc output-restore-cond ((! controls-conmnanderyPanel status)&
(0 controls -failure-status 0),

break;REDIST SENDL);
case REDISTRECV VAL:

switch (resupply-location)

case HULLHEATVAL:
idc-output-restore-cond ((! controls-conimanderypanel status 0

(! controls failure-status 0),
HULLHEAT_-L);

idc output-restore-cond ((! controls confander~yanel status 0
(! controls-ifailure-status),
REDIST'_RECVL);

break;
case HULLAPDSVAL:

idc output-restore-cond ((! controls-commuanderypanel-status 0
(! controls-failure-status)
HULLAPDSL);

idc output-restore-cond M(controls coznmanderjpanel status 0)
(! controls-failure-status 0)7,

REDIST_RECVL):
break;

case SEMIHEATVAL:
idc-output_restore-cond ((! controls-conmnanderypanel status 0)

(! controls-failure-status 0),
SEMIHEAT_-L);

idc output-restore-cond ((! controls-comnmanderypanel status 0)
(! controls failure-status 0),
REDISTRECV_-L);

break;
case SEMIAPDSVAL:

idc output-restore-cond ((! controls-commanderypanel status 0)
(! controls-failure-status0)
SEMIAPDSL);

idc output-restore-cond ((! controls-conimanderypanel status 0)
0! controls failure-status 0),
REDISTRECVL);

break;
case READYHEAT VAL:

if (slot !- NULLSLOT)

idc output-restore cond ((! controls-cormuanderpanel-status
(! controls failure status 0),
heat-translations [slot));

idc output-restore-cond ((! controls-convmanderypanel status 0)
(! controls-failure-status 0),

break;REDISTRECVL);
case READYAPDS VAL:

if (slot !-NULLSLOT)

idc out put-restore cond (!control s-corruande ryanel1-st atu s
(! controls-failure status0)
apds translations [slot]);-

idc-output-restore-cond ((! controls commvanderpanel status 0)
(! controls-ifailure-status 0),

break;REDIST_.RECVL);
default:

fprintf (stderr, "CONTROLS: controls resupply-restore: Impossib
nprintf ("CONTROLS: controls resupply restore: Impossible resup

break;}
break;

case NO TRANSFER VAL:
break;

default:
fprintf (stderr, "CONTROLS: controlsresupplyrestore: Impossible trans
nprintf ("CONTROLS: controls resupply restore: Impossible transferstat
break;

void controlsodometerpulse ()4
idcoutputset (DRODOMETERPULSE, OUTPUTON);

/* If the odometer timer is already timing, we must replace it *1
/* with the more up-to-date timer, and the old one must be freed */
if (odometertimernumber !- NULLTIMER)
I

timers freetimer (odometer timernumber);}

odometertimernumber - timersget_timer (ODOMETERDELAY);

void controls turret refind (radians)
REAL radians;
4

REAL degrees, shiftdegrees;
int offset, i;

degrees - rad to deg (radians);

if ((shift-degrees - degrees - (TURRETREFSECTORSIZE / 2.0)) < 0.0)
f

shift-degrees +- 360.0;

offset - shift-degrees / TURRETREFSECTORSIZE;

if (0 idcvalues (turretreftranslations[offset]])
4

for (i - 0; i < TURRETREFNUM SECTORS; i++)(
if (i -- offset)
4

idcoutput setcond (! controls failure status 0,
turretreftranslations[i], OUTPUTON);}

else if (idcvalues [turretreftranslations[i]]){
idcoutputsetcond (! controlscommander_panelstatus 0,

turretreftranslations[i], OUTPUTOFF);}

static void controlsgridazimuthcheck ()
RREAL speed;

/* so abs doesn't call tracks compute velocity () twice ... *1
speed - tracks compute velocity 0;

/* need to check this every tick in case you start moving
and the azimuth button is pushed, the azimuth indicator
should turn off */

switch (idcvalues(GRIDAZIMUTHPB])
(

case ON:
map_setbumperstatus (TRUE);
if (abs(speed) < 0.1)(

if (! grid azimuthstatus){
turret send azimuth ind 0;
grid_azimuth_status-- ON;}

}
else{

if (gridazimuth-status){
turret null azimuthind 0;
grid_azimuthstatus - OFF;}

I
break;

case OFF:
mapsetbumperstatus (FALSE);
if (gridazimuthstatus)
(

turret null azimuthind (
grid_azimuth_status - OFF;

}
break;

default:
fprintf (stderr, "CONTROLS: controlsgridazimuthcheck: Impossible pus
nprintf ("CONTROLS: controlsgridazimuthcheck: Impossible push button
break;

Im

void controls show breech (contents)
ObjectType contents;
(

if ((contents -- munition USM456A1) i1
(contents -- munitionUS_M392A2))

{
idc outputsetcond (! controls failurestatus 0,

LDBREECHLOADEDL, OUTPUTON);}

else{
idc outputset_cond (! controlscommander_panelstatus 0,

LDBREECHLOADEDL, OUTPUTOFF);

void controls-nopower off ()
(

idc reset 0;
timers delayproc (INVERT DELAY, idc invert outputs, NECESSARY, 0.0);
controlsservicebrakeexit (;

anno_stop_timers (;
controls odometer exit (;
controls -cupolaupdown_exit 0;
controls binoculars on off exit 0;
controls-lpscope_up-down_e-xit 0,

static void controlsfuelflashcheck (){
if ((fuel flash status - ON) &&

(++fuelflashcount -- TICKSPERSECOND))
{

fuelflashcount - 0;}

if (fuelfla h_count -- BEGINFLASH)
{

controls fuelflash);)

else if (fuelflashcount -- ENDFLASH){
controls fuelunflash (;}

void controlsstart fuelflashing ()
{

fuel flash status - ON;
fuel flash count - 0;
controls_fuelrestore);}

void controls_stopfuelflashing ()
{

fuel flash status OFF;
fuel flash count - 0;
controls fuelrestore (:I

static void controls fuel flash (){
idc_outputset ns (DRLOWFUELL, OUTPUTON);I

static void controls fuel-unflash ()

idcoutput setnscond (I controls-driverpanel status 0,
DRLOWFUELL, OUTPUTOFF);I(

static void controlsfuelrestore C)
{

idcoutput restore cond ((! controls driverpanel status 0) &&
(! controls failure-status),

DRLOWFUEL L);
}

static void controls-odometer-check (

if (timers get timeout edge (odometer timer number))

timers free timer (odometer timer number);
odometer timer number - timers setE null timer 0;
idc-output_set (DRODOMETERPUfLSE, OUTPUTOFF);

static void controls odometer-exit 0)

timers -free -timer (odometer-timer-number);
odometer-timer-number - timers-set-null-timer 0;

static void controls-cupola-up_down-check (

char temp uyp, temp down;

temp- up - idc-values [CMCUPOLAUP];
temp_down - idc-values [CMCUPOLADOWN];

if ((temp_ up) &&
(cupola up down val !- CMUPVAL) &
0! temp_down))

cupola up_down-val - CMUPVAL;
1* vision -cmdrsypitchup ();*/

vision-cmdrspitch (PITCHlUP);

else if ((! temp_up) &
(cupola up-down val !- CMCENTER VAL) &
01 temp down))

cupola-upjdown-val - CMCENTERVAL;
1* vision-cmdzsypitch -ahead ();*/

vision-cindrspitch (PITCHAHEAD);

else if ((temp down) &
(cupola up down val !- CMDOWNVAL) &&
(!temp_ up))

cupola-up-down-val - CMDOWNVAL:
1* vision-cmrspitch down 0);*/

vision-cmdxspitch (PITCHDOWN);

static void controls-cupola-up_down-imit (

if (idc-values [CM_CUPOLAUPI)

cupola-up down-val - CM UP VAL;
1* vision-cmdrs-pitchup 07;*7

vision-cmdrspitch (PITCHUP);-

else if (idc-values [CM_CUPOLA DOWN])

cupola-up-down-val - CMDOWNVAL;
1* vision cmdxspitch-down ();*/

vision-cmdxspitch (PITCHDOWN);

else

cupola-up down-val - CMCENTERVAL;
1* vision cmdrspitch ahead ();*/

vision -cmdrsjpitch -(PITCHAHEAD);

static void controls-cupola up_down-exit 0)

1* vision -cmdrsypitch 'ahead V*
vision-cmdzspitch (PITCHAHEAD);

static void controls lpscope up_diown-check (0

char temp_ up, temp down;

temp_ up - idc-values [LDPSCOPEUP];
temp-down - idc-values [LD-PSCOPEDOWN];

if ((temp up) &&
(lpscope_up_down-val !- LDUPVAL) &
(temp_down))

lpscope-updown-val - LDUPVAL;
1* vision-loadersypitchup ();7/

vision loadersypitch (PITCHUP);

else if (0! temp_ up) &
(lpscope_up_down -val !- LD CENTERVAL) &
(temp_down))

lpscopeupdown-val - LD -CENTERVAL;
/* vision -loadersypitch ahead O);*/

vision-loadersypitch (PITCHAHEAD);

else if ((tempdown) &
(ipacope _up_down-val !- LDDOWNVAL) &
(!temp_ up))

lpscope updown val - LDDOWN VAL;
1* vision loaders pitch-down O*

vision-loadersypitch (PITCHDOWN);

static void controlsj1pscopeup_down-imit (

if (idc values ELDPSCOPEUP])

lpscopeupdown-val - LD_-UPVAL;
1* vision-loadersypitchup ();T/

vision-loadersypitch (PITCHUP);

else if (idc-values (LDPSCOPEDOWN])

lpscope 'up-down val - LDDOWNVAL:
1* vision -loaders-pitch-down O*

vision-loaderspitch (PITCHDOWN);

else

lpscope up down-val - LD_'CENTER VAL;
1* vision -loadersypitch-ahead O);*7

vision loaderspitch (PITCHAHEAD);

static void controls lpscope up down exit (

1* vision loaders~pitch ahead O*
vision-1loaderspitch (PITCHAHEAD);

void controls-restorearuo (0

switch (amo-transfer-status)

case SEMIHEATVAL:
controls-transfer-semi-heat ~
break;

case SEMIAPDSVAL:
controls -transfer-semi-apds 0
break;

case BULLBEATVAL:
controls-transfer-hull-heat 0
break;

case HULLAPDSVAL:
controls-transfer-hull-apds ~
break.-

case NOTRAhJSFER VAL:
controls-trainsfer-no-transfer 0;
break;

case REDISTSEND VAL:
controls -transfer-redist-send!0
break;

case REDIST-RECV-VAL:
controls -transfer-redist-recv 0;
break;

default:
fprintf (stderr, "CONTROLS: controls -restore -ammo: impossible ammuo tran
nprintf ("CONTROLS: controls-restore-ammo: Impossible aimno transfer sta-
break;

static void
controls binoculars-on-off-exit ()

binoculars-on-off val - OFF;

static void
controls-binoculars-on-off-imit (

binoculars on off val - idc values[CMBINOCULARS];
if (binoculars on-of f val -7- ON)

vision _cmdrsbinoculars (BINOC);
else

visioncmdrsbinoculars (NOBINOC);
I

static void
controls binoculars on off check ()
{
char temp;

if (,temp - idcvalues[CM_BINOCULARS]) !- binoculars on offval)
(
binoculars on off val - temp;
if (binoculars_on-offval -- ON)

visioncmdrs binoculars (BINOC);
else

visioncmdrsbinoculars (NOBINOC);
)

static void
controls thermal shutter-check ()

char temp;

if ((temp - idcvalues [THERM_SHUTTER]) !- thermalshutter val)
I

switch (thermalshutterval - temp)
I

case ON:
thermal shutter();
break;

case OFF:
thermal clearo;
break;

default:
fprintf (stderr, "CONTROLS: controls thermal shutter check: Impossi'
printf ("CONTROLS: controls thermal shutter check: Impossible therm
break;

I
I

static void
controls_thermalshutterinit ()

vision set gunner no thermal();
switch (thermal shutter-val - idc values [THERMSHUTTER])
(

case ON:
thermal shutter 0;
thermal shutter-val - OFF;
break;

case OFF:
thermal clear (;
thermal shutterval - ON;
break;

default:
fprintf (stderr, "CONTROLS: controls thermal shutter check: Impossible
printf ("CONTROLS: controlsthermal_shuttercheck: Impossible thermal_s
break;

I

/ **

* IIz:*
" V'LE: xa~xeybrd.c-
* AUTHOR: Brian O'Toole *
* MAINTAINER: Brian O'Toole *
* HISTORY: 4/30/86 brian: Creation *

* Copyright (c) 1986 BBN Laboratories, Inc. *
* All rights reserved. *

*** *********** *********** *** ************* **** * ******* ***** *******/

#include "stdio.h"

#include "fcntl.h"

#ifndef SIMBFLY

#include "signal.h"
#include "termio.h"

#endif

#include "sim dfns.h"
#include "sim types.h"
#include "sim macros.h"

#include "rtc.h"

#include "pro sim.h"
#include "prodata.h"
#include "repair ml.h"

#include "mass stdc.h"
#include "dgistdg.h"
#include "sim_cigif.h"

#include "libfail.h"
#include "librepair.h"
#include "libmem dfn.h"
#include "libnetwork.h"
#include "timers.h"
#include "libsound.h"
#include "libhull.h"
#include "libkin.h"
#include "libfilter.h"
#include "librva.h"

#include "ml main.h"
#include "ml cntrl.h"
#include "ml-elecsys.h"
#include "ml engine.h"
#include "ml laser.h"
#include "ml-fuelsys.h"
#include "mlweapons.h"
#include "ml tracks.h"
#include "ml turret.h"
#include "ml dtrain.h"
*include "ml vision.h"
#include "ml repair.h"
#include "ml sound.h"
#include "ml amnmo.h"
#include "ml keybrd.h"
#include "ml_polhemus.h"
#include "ml cupola.h"
#include "status.h"

#include "ml status.h"
#include "ml turrpn.h"
#include "ml_drivpn.h"
#include "net/network.h"

#ifndef SIMBFLY

#include "enpioctl.h"

#else

#include "enpsvr.h"

#endif

#define DELTAPOT 0.005

static int console;
static int usekeyboard - FALSE;
static int usecupola - FALSE;
static REAL lpscopevalue - 0.0;
static REAL cws value - 0.0;
static REAL* vec;

static void keyboard setup_terminal 0;

void keyboard-really-use ()
(

usekeyboard - TRUE;)

void keyboard use cupola ()
t

use cupola - TRUE;
printf ("Cupola and periscope now under keyboard control\n");

void keyboardinit ()
{

if (! usekeyboard)
{

return;

keyboardsetupterminal (;
printf ("Keyboard ready; type <?> for help\n");

if (usecupola)

cupola lpscope new value (0.0);
cupola cwsnew value (0.0);I

#ifdef SIMBFLY
/* Want to know how many pkts/second causes simulation to degrade *1
static long pktcntstart:
#endif

void keyboard-simul ()
I

chai cmd;
int network stats (N_STATS];
char networkstatstr[41];

int n;

if (! usekeyboard)

return;

cmd - keybrd tty-read (console);
if (cmd -- 0)

return;

switch (cmd & Ox7F) /* want 7 bit ascii */

case 'a'
failbreak-system(vehicleIDIrrelevant, damageCauseIntervention,

M1 ConhntennaFailure) ;*/
printf ("keyboard: controls kill radio ()\n");
break;

case 'A' :
reconstitutefrom keyboard ();/* changed by cjc 2/14/89 */ /* change.

printf ("keyboard: reconstitute-vehicle ()\n");/*
repair stoprepair (MlCommAntennaFailure);
printf ("keyboard: controlsrestoreradio ()\n");

break;
case 'b'

Ppolhemusinit 0;
setpolhemusflagtrue (;
controls set using_polhemustrueo;
printf ("keyboard: Use Polhemus for cupola\n");
break;

case 'B' :
setypolhemusflagfalse (;
controlssetusing polhemusfalse 0;
polhemusexit 0;
.printf ("keyboard: Turn off Polhemus.\n");
break;

case ' c:
controls break controls 0;
printf ("keyboard: controlsbreakcontrols ()\n");
break;

case 'C' :
controls restore controls 0;
printf ("keyboard-: controlsrestorecontrols ()\n");
break;

case 'd' :
printf ("keyboard: before deactivate simulation\n");
deactivate simulation 0;
printf("keyboard: after deactivate simulation\n");
break;

case 'D':
filter_dumpfilterinfo();
break;

case 'e' :
failbreak-system(vehicleIDIrrelevant, damageCauseIntervention,

Ml_EngineMajorFailure);*/
printf ("keyboard: engine_majorfailure ()\n");
break;

case 'E' :
repair fix system(repairCauseIntervention, mlReplacePowerPack);
printf ("keyboard: enginereplace_powerpack ()\n");
break;

case 'f' :

printf ("keyboard: network-get-vehicle-force() - %~"
network,_get vehicle force())

fail-break-System(vehicleIDlrrelevant, damageCauselntervention,
Ml1_LRFFailure);

printf ("keyboard: laser-lrf-failure O\n"); *
break;

case IF':
repair fix system(repairCauselntervention, mlRepairLRF)
printf ("keyboard: laser repair-lrf ()\n");
break;

case 'g'
fail break-system(vehiclelDlrrelevant, damageCauselntervention,

MlEngineoilrilterClogged W/ *
1* printf ("keyboard: engIne clog~olfle ~~)*

printf ("turning on asid debug\n");
map_set -asid debug (TRUE);
break;

case 'G'
1* repair fix system(repairCauselntervention, mlReplaceEngine~ilFilter)
1* printf ("keyboard: engine replace oil filter ()\n't);*/

printf ("turning off asiddebug\nW7):
map-set -asid-debug (FALSE);
break;

case 'h' :
fail-break system(vehiclelDlrrelevant, dazageCauselntervention,

MlFuelTransferPumpFailure);*/
printf ("keyboard: fuel transferpump failure OMn");
break;

case 'H' :
repair fix system(repairCauselntervention, miRepairFuelTransferPump)
printf ("keyboard: fuel-repair-transferypump ()\n");
break;

case 'il
fail-break system(vehiclelDlrrelevant, dainageCauselntervention,

MlTurretainGunFailure W;/
printf ("keyboard: weapons disable-main,.gun ()\n");
break;

case 'VI:
repair fix system (repairCauselntervention, miRepairTurretMountlnterfac.
printf ("keyboard: weapons-repair main _gun ()\n");
break;

case 'J'
electsys battery failure 0
printf ("keyboard: electsys battery_,failure ()\n");
break;

case 'J'
repair fix-system(repairCauselntervention, miReplaceBattery)
printf ("keyboard: electsys replace-battery ()\n");
break;

case 'k':
fail-break system(vehiclelDlrrelevant, damageCauselntervention,

Mi-EngineStarterFailure) ;*
printf ("keyboard: engine-starter-failure ()\n");
break;

case 'K' :
repair -fix system (repairCauselntervention, miReplacePilotRelayStarter
printf ("keyboard: engine-replace-starter ()\n");
break;

case '1' :
ft fail break-system(vehicleIDlrrelevant, damageCauselntervention,

11FDriveLeftTrackFailure W;/
printf ("keyboard: tracks-throw-left-track ()\n");
break;

case ILI
printf ("keyboard: rva_dump~yriority lists ()\n");
rva dupypriority lists 0;

break;
case 'in' :

fail-break system(vehiclelDlrrelevant, damageCauselntervention,
M1_TurretGunMountFailure);

printf ("keyboard: turret-break mount-interface ()\n");*/
mapyprint 0
break;

case 'M'
repair fix sse(repairCauselntervention, miRepairTurret~ountinterfac.
printf ("keyboard: turret-srepair mount-interface ()\n");
break;

case In':
fail-break system(vehiclelDlrrelevant, damageCauselntervention,

MlTurretGunElevationFailure W;/
printf ("keyboard: turret break-elevation drive 0\n");
break;

case 'N':
repair fix system (repairCauselntervention, mIRepairGunElevationDrive
printf ("keyboard: turret-repair-elevation drive ()\n");
break;

case 'o'
fail-break system(vehiclelDlrrelevant, dainageCauselntervention,

MlDTrainOilFilterClogged);*/
printf ("keyboard: drivetrain-clog__transmission-oil-filter ()\n");
break;

case '0'
repair-fix-system(repairCauselntervention, miReplaceTransoilFilter)
printf ("keyboard: drivetrain replace-transmission oil filter ()\ni");
break;

case 'p'
rva-turn-debug_on();
printf ("Turning priority sort debug on\n");
break;

case 'P'
rva-turn-debug off 0;
printf ("Turning priority sort debug of f\n");
break;-

case 'q' :
fail-break System(vehicleIDlrrelevant, damageCauselntervention,

M1 CmdrsVisionBlocksBroken);*/
printf ("keyboard: vision break-cmdzs blocks ()\n");
break;

case IQ':
repair-stop__repair(Ml-CmdrsVisionBlocksBroken)*
printf ("keyboard: vision-restore-cmdrs blocks ()\n");
break;

case 'r'
fail break-system(vehiclelDlrrelevant, damageCauselntervention,

M1_CommuntennaFailure)*
controls kill-radio 0;
printf ("keyboard: controls-kill-radio ()\n");
break;

case 'R' :
1* repair-stop repair(MlCozunAntennaFailure)*

controls-restore-radio0;
printf ("keyboard: controls-restore-radio ()\n");
break;

case 1s' :
fail-break system(vehicleIDlrrelevant, dainageCauselntervention,

MlITurrettabSystemFailure);
printf ("keyboard: turret break-stab system ()\n");*/
use -static-debug (1);
break;

case '3' :
1* repair-fix system(repairCauselntervention, mlRepairStabSystem)

printf ("keyboard: turret-repair-stab-system ()\n");*

case''
fail-break system(vehicleIDlrrelevant, daznageCauselntervention,

MlDriversision~locksBroken);*/
printf ("keyboard: vision-break-driver-blocks M)n");
break;

case 1!1 :
1* repair-stop repair(MlDriversVision~locksBroken)*

printf ("keyboard: vision-restore-driver-blocks ()\n"I);
break;

case '2'
fail break system (vehiclelDlrrelevant, damageCauselntervention,

MlGunnersight~roken);*/
printf ("keyboard: vision-break- gps ()\n");
break,-

case '0' :
1* repair-stop_ repair(MlGunnersight~roken W;/

printf ("keyboard: vision-restore gps ()\n");
break;

case '3' :
controls-electsys-dead 0;
printf ("keyboard: controls-electsys dead M)n");
break;

case I#':
controls-electsys-reborn 0
printf ("keyboard: controls-electsys reborn 0\n");
break;

case '4'
sound-reset 0;
printf ("keyboard: sound reset ()\n");
break;

case '5'
fail-cat kill (&vehicleIDlrrelevant, damageCauselntervention)
printf ("keyboard: fail-cat-kill ()\n");
break;

case 1-1
fuel-imit-tanks (187.0, 70.0, 70.0);
printf ("keyboard: fuel-imit-tanks ()\n");
break;

case 1%1 :
repair all systems 0
controls electsys reborn 0
controls~restore-radio 0;
if (use_cpupola)

cupola-lpscope_new value (lpscope_value);
cupola-cws-new value (cws value);

printf ("keyboard: fixing everything\n");
break;

case IV
printf ("keyboard: networkyprint statistics ()\nu);
networkjprint-statistics 0
break;

case IY
printf ("keyboard: temperature and power supplies\n");
statusyprint temp_and-supplies 0
break;

case IAI
if (use-Cupola)

printf ("keyboard: loader's periscope left\n");
lpscope value -- DELTA POT;
if (lpscope -value < -1.0)

lpscope value - -1.0;
cupola lpscope new value (lpscope-value);

else

printf ("toggling gunners vision\n");
toggle-gunner-vision-state 0;

break;
case '&'

if (use-Cupola)

printf ("keyboard: loader's periscope right\n");
lpscope value +- DELTAPOT;
if (lpscope-value > 1.0)

lpscope _value - 1.0;
cupola lpscope~new value (lpscope value);

else

printf ("toggling drivers vision\n");
toggle driver-vision-state 0;

break;
case 1*1

if (use-cupola)

printf ("keyboard: commnander's cupola left\n");
cws-value -- DELTA_-POT;
if (cws value < -1.0)

Cws value - -1.0;
cupola cws new-value (cws-value);

else

printf ("view modes\n");
print-view modes 0

break:
case '(V

if (use-cupola)

printf ("keyboard: commiander's cupola right\n");
cws-value +- DELTAPOT;
if (cws-value > 1.0)

cws value - 1.0;
cupola-cws-new value (cws-value);

else

printf ("Unassigned character: type <?> for help\n");

break;
case '?'

/* 1 */ HELP PRINTi ('A, "reconstitute vehicle");
1* 2 */ HELPPRINT2 ('b', "Use Polhemus for cupola.", 'B',

"Turn off Polhemus.");
/* 3 */ HELPPRINT2 (Cc', "controls break controls", 'IV,

"controls restore controls");-
/* 4 */ HELP PRINTl ('D', "filter dump-filter info");
/* 5 */ HELP_-PRINT2 ('e', "engine major-failur~e", 'E',

"engine replaceypowerpack");
/* 6 */ HELP PRINT2 ('f', "laser lrf failure", 'F', "laser repair lrf");
/* 7 */ HELP PRINT2 ('g', "engine cl~og oil filter", 'G',

"engine -replace 'oil f ilter") ;
/* 8 */ HELPPRINT2 ('h', "fluel-transferyupfiue,''

"fuel repair transferjpump");ilue"
/* 9 */ HELPPRINT-2 ('i', "weapons disable main gun", 'V',

"weaponsrepairmain gun");
/* 10 *1 HELPPRINT2 ('j', "electsysbatteryfailure", 'J',

"electsys replace battery");
/* 11 */ HELP PRINT2 ('k', "engine_starterfailure", 'K',

"engine_replacestarter");
/* 12 */ HELP PRINT1 ('1', "tracks throw left track");
/* 13 */ HELPPRINT1 ('L', "rva_dum_priority--lists");
/* 14 */ HELPPRINT2 ('im', "turret break mountinterface", 'M',

"turret_r epair mount interface");
/* 15 */ HELP PRINT2 ('n', "turret break elevationdrive", 'N',

"turret_r epairelevation-drive");
/* 16 */ HELP PRINT2 ('o', "drivetrainclog_transmissionoilfilter", '0',

"drivetrain replace transmission oil filter");
/* 17 */ HELP PRINT2 ('p•, "rva turndebugon", 'P',

"rvaturn debugo ff");
/* 18 *f HELP PRINT2 ('q', "visionbreakcmdrsblocks", 'Q',

"vision restore cmdrs blocks");
/* 19 */ HELPPRINT2 ('r', "Controls kill radio", 'R',

"controls restoreradio");
/* 20 */ printf ("TO SEE THE NEXT PAGE, TYPE <6> ...\n");

break;
case '6'

/* 1 */ HELP PRINT2 ('s', "static debug on", 'S', "staticdebug off");
/* 2 */ HELPPRINT2 ('t', "drivetrain transmission-failure", IT',

"engine replacejpowerpack1");
/* 3 */ HELP PRINT2 ('u', "engine clog-fuelfilter", 'U',

"enginereplace fuel filter");
/* 4 */ HELP PRINT2 ('v', "turret break traverse-drive";, I',

"turret repair_traverse_drive");
/* 5 */ HELP PRINT2 ('w', "drivetrain transmission oil leak", 'W',

"engine replace_powerpack);
/* 6 */ HELP PRINT2 ('x', "visionbreakgpsext", 'X',

"visionrestoregps_ext");
/* 7 */ HELP PRINT2 ('y', "vision break ldrspscope" , 'Y',

"vision restoreldrsyscope");
/* 8 */ HELP PRINT2 ('z', "engine oil leak", 'Z',

"engine_replaceyIowerpack")
/* 9 */ HELP PRINT2 ('1', "vision break driver blocks", ,!,,

"vision restore driver blocks"); -
/* 10 */ HELP PRINT2 ('2', "Vision_breakgps", '1@', "visionrestore_gps");
/* 11 */ HELPPRINT2 ('3', "controlselectsys dead", '#',

"controls electsysreborn");
/* 12 */ HELP PRINT1 (74', "sound reset");
/* 13 */ HELPPRINT2 ('5', "fail cat kill", '%', "fixing everything");
/* 14 */ HELP PRINT1 ('-', fuel tanks it");
/* 15 *f HELP PRINT1 (" ', "networkprint_statistics");
/* 16 */ HELP-PRINT1 (']', " print temperature and power supplies");

if (use-cupola)
{

/* 17 */ HELP PRINT2 ('A', "loader's periscope left", I&',
"loader's periscope right");

/* 18 */ HELP PRINT2 (1*', "commander's cupola left", '(',
"commander's cupola right");}

else
{

HELPPRINT2 ('^• "toggle gunners vision", &',
"toggle drivers vision");

/* 19 */ HELP PRINT1 (I,', "print_reasons");
/* 20 */ printf ("TO SEE THE NEXT PAGE, TYPE <7> ...\n");

break;
case '7' :

/* 1 */ HELP PRINT2 ('0', "in pivot steer", ')', "out of pivot steer");
/* 2 */ HELPPRINT2 ('I', "binoculars on", '\\', "binoculars off");
/* 3 */ HELP PRINT1 ('9', "Restore ammo");

/* 4 */ HELP PRINT1 ('-', "timers status");
/* 5 */ HELP PRINT1 ('+', "print CMC statistics");
/* 6 */ HELPPRINT1 ('_', "zero CMC statistics");
/* 7 */ HELP PRINT1 (';', "send azimuth");
/* 8 */ HELP PRINT1 (':', "null azimuth"):
/* 9 */ HELP PRINT1 ('}', "print and reset bbd rtc statistics");
/* 10 */ HELPPRINTI ('{', "print bbd rtc statistics");
/* 11 *1 HELP PRINT1 ('<', "Current <x, y, z>");
/* 12 */ HELPPRINT1 ('.', "ammo_print statistics");
/* 13 */ HELP PRINT1 ('-', "print nmapped value");
/* 14 *1 HELPPRINT1 ('X', "print_sorted vehicle-lists");
/* 15 */ HELP-PRINT1 ('I', "timing bits");
/* 16 */ HELPPRINT1 ('7', "Page 1 of help");
/* 17 */ HELP PRINT1 ('6', "Page 2 of help");
/* 18 */ HELP PRINT1 ('7', "Page 3 of help");

break;
case '9' :

ammo restore ammo 0;
controls restore ammo 0;
printf ("keyboard: ammo restore ammo ()\n");
printf ("keyboard: controlsrestore_ammo ()
break;

case '0' :
idcvalues [DRPIVOT MODE] - 1;
idcvalues [DR_TRANS_NEUTRAL] - 0;
idcvalues (DRTRANSDRIVE] - 0;
idc values [DRTRANS LOW] - 0;
idc-values [DRTRANSREVERSE] - 0;
pri7ntf ("keyboard: in PIVOT steer\n");
break;

case)' :
idcvalues [DRPIVOT MODE] - 0;
idcvalues [DRTRANSNEUTRAL] - 0;
idcvalues (DRTRANS DRIVE) - 0;
idc values (DR_TRANSLOW) - 0;
idc-values [DRTRANSREVERSE] - 0;
pri7ntf ("keyboard: out of PIVOT steer\n");
break;

case '-" :
printf ("keyboard: timers-status ()\n");
timers status (;
break;

case '+' :
printf ("keyboard: net getstats\n");
if(netprintstatistics (nethandle) -- -1)

printf("can't get network statistics\n");
nprintf("KEYBOARD: can't get network statistics\n")

#ifdef SIMBFLY
else
{
lon4 now;
now - rtc;
now -- pktcnt start;
printf("%6.3f pkts/second\n",

network stats[12] * SECOND / ((double) now));
)

#endif
break;

case I I
prTintf ("keyboard: net zerostats\n");
if (net zerostatistics(nethandle) -- -1)

printf ("can't zero network statistics\n"){
nprintf ("KEYBOARD: can't zero network statistics\n");

#ifdef SIk4BFLY
pkt-cnt-start, - rtc;

*endi f
break;

case 1;' :
printf ("keyboard: send azimuth\n"I);-
turret -send-azimuth-ind7);
break;

case ':0'
printf ("keyboard: null azimuth\n");
turret -null-azimuth-ind~o;
break;

case I(':
#if defined (SIMEFLY)

bbd-rtc-statistics(FALSE):
else

printf("{ is only available on the Butterfly\n");
#endif

break:
case IV':

#if defined(SIMBFLY)
bbd-rtc-statistics(TRUE);

#else
printf ("} is only available on the Butterfly\n");

#endif
break;

case 1<1

VehiclelD *veh-id - network_get-vehicle-id 0;

printf ("keyboard: Current <x,y,z> for vehicle num %d is\fl",
veh-id -> vehicle);

vec - kinematics-get-o-to-h (veh-kinematics);
printf ("<%lf, %lf, %lf>\n", vec(O], vec(1J, vec(2]);

break;
case 1.

anoprint-statistics 0;
printf ("amoyrint statistics ()\n");

case 1-1
printf O"n mapped - %d\n", get-n mapped0)
break;

case 1,
print -reasons 0;
break;

case 'I/'
printf ("cmdzs binoculars on\n");
vision -cmdrs-binoculars (BINOC);
break;

case '\\'
if (get_ballistics-debug 0

set ballistics debug (FALSE);
printf ("ballistics debugging off\n");

else

set -ballistics debug (TRUE);
printf ("ballistics debugging on\n");

break;
case 'I':

rtcprintermanent 0;
break;

def ault,
,printf jounassigned character: type -c?> for help\n");
.break;

static void keyboack.Btup...termi1nal (

console - keybrd tty_miit (0, 0_EDONLY).

Stat@ void, keyboard reset tetinal

- kyybzdtty._Xeset (console);

void keyboard exit_gracefully 0)

if (I u~se keyboard)

return;

keyboard reset terminal 0
keybrc~tty _.lose (console);:

Appendix G:

Software to Control ESIG-500 Head Tracking Display

1* */

HEAD MOUNTED DISPLAY - Image Generator Control Program/* */
/* *

FILENAME: esighmd.cpp *11* *
1* *

1* By: - Visual Systems Laboratory
1* - Institute for Simulation and Training */
1* - University of Central Florida/* *
/* *

Copyright (c) 1991 the University of Central Florida
1* - All Rights Reserved/* *
/* *

Author: Richard Dunn-Roberts/* *
/* */

FUNCTION LIST:
/* *//* */

/* FUNC: int initializeEthernet(int maxDataSize, int numPackets) *1
This function initializes the Ethernet packet queues, *1
the packet manager, and the 3Com Ethernet drivers./* *

General Comments: */
This program was written to run on a PC-AT, using */

1* Borland C++ version 2.0 (with the built-in assembler). */
It is designed to control the operation of the ESIG 500 */

/* Image Generator for use with a Head-Mounted Display./* */
/* */

Operational Comments:
This program operates as a comTmunications server. It */

/* accepts input from the serial port. This input may be */
1* from a Polhemus magnetic tracker or from another
1* computer on a network. The input is then converted to */
1* ESIG 500 Image Generator commands and retransmitted
1* via dedicated Ethernet to the ESIG 500 to control

the direction of the users point of view. *1/* */

The basic layout is as follows:
/* */

* ------------------- 19.2 kilobaud +------------------- *
* I I/O server --------------------- >1 PC-AT I

1* I (currently I serial link I I
/* I Harris Night- I I (esighmd) I

* I Hawk) I I I
* I <--+ +---------
1* ---------------------- I */* I I */

head position */
and orientation */

/* I I *1
1* ---------------------- II*

1* I POLHEMUS I *1.
1* I TRACKER ---- + *
/* I I \ / */

* ------------------- +-------------------+ *
/* I I *

video output I ESIG 500 I
1 ------------------- IG I
1* I I (two channels) I1* I I I *

* ------------------- *
/* I CYBERFACE II I I *1

* 1 HM [<--+ */
/* t I *1
* ------------------- *

1* */

For further system details, refer to the project report. *I/* */ *i **

1*------------.. * /

/* Type, Structure & Constant Defs *1
/, - /
/* Necessary Include Files *//, * ,/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <conio.h>
#include <bios.h>
#include <time.h>
#include <dos.h>
#include <math.h>
#include <fstream.h>
#include "esighmd.h"
#include "esigcom.h"
#include "keypresl.h"
#include "serial.h"

/* Function Prototypes */

extern "C" int getopt(int argc, char far *argv[, char far *optionS);

/* Globals *// *---------..i* /

static unsigned long far *timer - (unsigned long far *)MK FP(O,Ox46C);

/7 BIOS timer

int numpackets - 0; // number of packets that have been received

(I Ethernet addresses of this machine (src) and ESIG 500 (dest)
// unsigned char src[] - J 0x02, 0x60, Ox8c, 0x43, Oxa7, Oxfl };
// unsigned char desti] - { OxOO, OxO8, OxOl, 0x57, 0x58, OxOO };

/1 external globals for getopt
extern int optind; /1 index of which argument is next
extern char *optarg: // pointer to argument of current option
extern int opterr; /1 allow error message
/ mmm m~~~~mmmm ~ ~ '-m -nmn~-- - -- -i-i-im -in-ininininmmm '~~'''-m *

/* Function main */
/* *

/* PARAMETERS: */
/* int argc - number of command line arguments *1
/* char **argv - array of string pointers to command line arguments *1
/* P EI' PROCESS: *

This is the main routine. */1* *I
1* RETURN VALUE: *I
1* int - unused by operating system, but available for user */

int main (int argc, char **argv)

int done - 0, // completion flag is false to start
retCode - 0, 1/ function success (0) or failure (!0)
option, // command line option
printCount - 10000, // how often do we print stats?
syncErr - 0, // number of serial sync errors to occur
caNum; // coordinate system number command goes to

time t startTime, // timer values
endTime;

double xIn, // intermediate value of x,y,z, pitch, heading,
yIn, // roll received from serial port
zIn,
pitchIn,
headingln,
rollIn;

char syncChar, // character to sync serial communications
errFlag, I/ did error occur in current cycle?
csNumChar; // character representing coord. system number

long count - 0, // number of cycles that have passed
messageCount - 0, // number of messages sent
maxDataSize - 300, // maximum size of ethernet data
numPackets - 100, // number of available ethernet packets
viewX - 19, // initial x, y, z, heading, pitch, roll
viewY - 19,
viewZ - 6,
viewHeading - 180,
viewPitch - 350,
viewRoll 0,
x,/ x, y, z, heading, pitch, roll used during
y// run
z,
heading,
pitch,
roll;

// program takes 8 arguments, each with default values
while((option - getopt(argc, argv, "d:n:x:y:z:p:h:")) 1- EOF
{

switch (option
f

case 'd'
maxDataSize - atoi(optarg);
break;

case 'n'
numPackets - atoi(optarg):
break;

case 'x'
viewX - atol(optarg):
break:

case 'y'
viewY - atol(optarg):
break:

case 'z'
viewZ - atol(optarg);
break;

case 'h'

viewHeading - atol(optarg)
break;

case 'p':
viewPitch -atol(optarg)
break;

case '?'

printf("Invalid option, option ignored.\n")
break;

/initialize the comport to receive commands
InitComPort(0, DIVISOR(19200))

1initialize the ethernet
retCode - initializeEthernet(rnaxDataSize, nuinPackets)
if (retCode) Isomething went wrong

cprintf("\n\rinitializeESIGControl() returns %d\n\r", retCode)
return retCode;

else

cprintf ("1>> ESIG 500 Control Program\n\r")
cprintf (">>> UCF Institute for Simulation and Training\n\r")
cprintf ("\n\r >> Initialization complete\n\r")

Iinitialize the viewpoint to the de position and orientation
1/ NOTE: this is done twice or ESIG 500 takes it as delta value to

II be applied at every time slice
retCode - escs(0, 1, viewX*512, viewY*512, viewZ*512,

viewHeading*182, viewPitch*182, OL, messageCount++)
if (retCode) Isomething went wrong

cprintf("\n\rescs() returns %d\n\r", retCode)
return retCode;

/second time, see cormment above
retCode - escs(0, 1, viewX*512, viewY*512, viewZ*512,

viewHeading*182, viewPitch*182, OL, messageCount++)
if (retCode) /something went wrong

cprintf("\nWrescs() returns %d\n\r", retCode)
return retCode;

Isince we want to know how fast things are going, start a timer
startTime - time(NULL I

while (!done)

IRemnit errFlag for the new cycle
errFlag - 0;

// Get the first character - is it the sync character?
ReceiveData(0, &syncChar, 1)
while (ByncChar O 's'

if (!errFlag

syncErr++;
errFlag - 1;

ReceiveData(0, &syncChar, 1)

II We are now synced up, proceed with processing

// First get the coordinate system number. Currently this is always
II zero, but we must be general enough to control multiple coordinate
// systems
ReceiveData(0, (char *)&csNumChar, 1):

// convert the cs number to an int
csNum = csNumChar - '0';

// Next get the transmitted position and orientation values
1/ These are double floats
ReceiveData(0, (char *)&xIn, 8);
ReceiveData(0, (char *)&yIn, 8);
ReceiveData(0, (char *)&zIn, 8);
ReceiveData(0, (char *)&headingln, 8 1;
ReceiveData(0, (char *)&pitchIn, 8);
ReceiveData(0, (char *)&rollIn, 8);

// here we adjust the heading of the viewpoint
headingIn +- 180.0;
if (headingIn > 360.0

headingln -= 360.0;

II Check cycle count. If cycle count is evenly divisible by
1/ printCount, print a status message.
if (!(count++ % printCount))

printf("Cycle count - %ld\nbuffer contains %d, syncerrs %d, free packet n.
count, ReceiveBufferUsed(0), syncErr, NumberOfFreePacketNodes()

II Convert the double floats into the long ints understood by the ESIG
x - (long)floor(xIn * 512.0 1:
y - (long)floor(yIn * 512.0):
z - (long)floor(zIn * 512.0);
heading - (long)floor(headingIn*182.0);
pitch - (long) floor (pitchIn*182.0);

// clamp the roll
II roll = (long)floor(rollIn*182.0);
roll - OL;

// make new view point position relative to initial position
x +- viewX*512;
y +- viewY*512;
z +- viewZ*512;

// transmit new viewpoint (twice, remember?)
retCode - escs(csNum, 1, x, y, z, heading, pitch, roll, messageCount++);
if (retCode) // something went wrong
{

cprintf("\n\rescs() returns %d\n\r", retCode);
return retCode;I

retCode - escs(csNum, 1, x, y, z, heading, pitch, roll, messageCount++);
if (retCode) 1/ something went wrong{

cprintf("\n\rescs() returns %d\n\r", retCode);
return retCode;

II Poll the keyboard to see if the escape key has been hit
if (KeyPressed()

unsigned key - bioskey(0);
if (key & Oxff) key &= Oxff;
if (key -- 0xib) // escape key

done - 1;

// get the end time
endTime - time(NULL);

// report time stats
cprintf("\n\rElapsed time is %f, cycleCount is %ld, frequency is %f\n\r",

difftime(endTime, startTime), messageCount,
messageCount / difftime(endTime, startTime));

// unload the serial driver from memory
DeinstallDrivers();

// exit program
return 0;

/* Function initializeEthernet */1* *
/* PARAMETERS: */
/* int maxDataSize - largest possible data packet to be sent */
/* int numPackets - number of Ethernet packets to create */
/* *

/* PROCESS: *I
This function initializes the Ethernet packet queues, the packet */

/* manager, and the 3Com Ethernet drivers. */
1"**
I* RETURN VALUE: *I
* int - zero for success, nonzero for failure

int initializeEthernet(int maxDataSize, int numPackets
(

int retCode = 0;
PacketNode *pnode;
extern PacketQueue RxQueue;
delay(l); /* Initialize delay() */
retCode - InitPacketManager (maxDataSize, numPackets);
cWrRxFilter (0);
while (!QueueEmpty(&RxQueue))
{

pnode = RemovePacket(&RxQueue);
FreePacket(pnode);

}

return retCode;

/*--- end of file esighmd.cpp ---*/

#ifndef cplusplus
#error This program requires compilation as C++.
#endif

#ifndef LARGE
#error This program requires Large memory model.
#endif

#ifndef ESIGHMD
#define _ESIGHMD

// constants

// structs, classes, typedefs---

// macros and inline functions--

// function prototypes--

/*~i ~ -- ,/

/* Function initializeEthernet *1/* */

/* PARAMETERS: */
int maxDataSize - largest possible data packet to be sent */

1* int numPackets - number of Ethernet packets to create *1/* */

/* PROCESS: */
This function initializes the Ethernet packet queues, the packet */

/* manager, and the 3Com Ethernet drivers. */
/* */

I* RETURN VALUE: *I
* int - zero for success, nonzero for failure/* .--N-a- -N- -I- -I- -I- -m- -I- -I- -R- -I- -I----m ---------i- - -i- -in-- -- - -* /

int initializeEthernet (int maxDataSize, int numPackets);

#endif // _ESIGHMD

/* */

/* HEAD MOUNTED DISPLAY - ESIG 500 IG Command Library *//* *
1"**

1* FILENAME: esigcom.cpp */1* *
1* *

1* By: - Visual Systems Laboratory
1* - Institute for Simulation and Training *1
1* - University of Central Florida *1/* *
1* *

1* Copyright (c) 1991 the University of Central Florida
/* - All Rights Reserved/* *
/* *

Author: Richard Dunn-Roberts, Chuck Campbell1* *
1* *

/* FUNCTION LIST: *1/* */
/* *

/* FUNC: int esambient(int scene, int ambience, long messageCount) */
This function sets ambient light levels.

/* FUNC: int esanimation(int cs, int select, int parcel,
* int placeable, int control,

1* int sequence, long messageCount) *1
This function executes a predefined animation sequence. *1

1* FUNC: int eschannel(int number, int display_a, int displayb, *
1* int viewport, int color, long messageCount) *1

This function sets control parameters for specific
channel on the ESIG 500.

1* FUNC: int escloud(long top, long bottom, long messageCount) *1
1* This function sets cloud top and bottom heights.
1* FUNC: int escold(int color, int valid, int automatic, *1

long messageCount) *1
This functions sets characteristics of collision
detection indicators *1

1* FUNC: int escoldpt(int number, long x, long y, long z, *1
long messageCount) *1

This function sets collision detection test points */
1* FUNC: int escs(int csnum, int select, long x, long y, long z, */

unsigned int heading, unsigned int pitch,
unsigned int roll, long messageCount) *1

This functions controls characteristics of ig coordinate *1
/* systems. */
1* FUNC: int esdisable(int esigswitch, long messageCount) *1
1* FUNC: int esenable(int esigswitch, long messageCount) *1

These two functions enable and disable simulation
characteristics, such as weather, strobes, and collision */
detection.

1* FUNC: int esgfog(signed int top, long messageCount) *1
This function sets the height of ground fog. *1

1* FUNC: int eshatpt(int number, signed long x, signed long y,
signed long z, long messageCount) *1

This function sets height above terrain test points. *1
1* FUNC: int eshorizon(int brightness, int directional,

unsigned int heading, long messageCount) */
This function sets horizon brightness and direction. *1

1* FUNC: int esinstructor(int channel, long messageCount) *1
This function sets instructor monitor channel. */

1* FUNC: int eslight(int number, int intensity, long messageCount) *1
1* This function sets the intensity of light switches. *1
1* FUNC: int eslobe(int lights, long messageCount) *1

This function sets aircraft landing lights. *1

1* FUNC: int esmodel(int colocate, int parcel, long messageCount) *1
This function allows user to load a database. *1

/* FUNC: int espolygon(int number, int intensity, */
long messageCount) *1

This function sets polygon intensity. *1
1* FUNC: int esrvr(long range, long messageCount) *1

This function sets runway visibility range. *1
1* FUNC: int esscene(int select, long messageCount) *1

This function sets day, dusk, or night scene type. */
1* FUNC: int essun(unsigned int heading, unsigned int pitch, */

long messageCount) */
This function sets sun heading and pitch.

1* FUNC: int estraffic(int cs, int select, int parcel,
int placeable, int control, int scenario, */
long messageCount) */
This function sets information for routed or converging *1
traffic. */

1* FUNC: int esviewport(int channel, int alternate, long x, */
long y, long z, unsigned int heading, unsigned int pitch, */
unsigned int roll, unsigned int vertical,
unsigned int horizontal, long messageCount) */
This function sets viewport characteristics. */

1* FUNC: int esvisibility(long range, long messageCount) *1
This function sets visibility range. *1

/* *

General Comments: */
/* This library was written to run on a PC-AT, using */

Borland C++ version 2.0. It is designed to provide
functional support to control the ESIG 500 image */

/* generator. *//* */
/* *

Operational Comments: */
This library provides the interface to control the

/* ESIG 500 from a user program. The public functions
take the user's inputs, converts them into an */
Ethernet packet, and retransmits the information to */
the ESIG 500.

/* *
The basic layout is as follows:
I* *I

* ------------------- ethernet link ------------------- + *
/* I PC AT --------------------- >1 ESIG 500 I

I (user program) I I
/* I (esigcom) I I g *//* I I I I *
* I I ------------------- + *
* ------------------- *
/* */

/* For further system details, refer to the project report. *//* *

/* Type, Structure & Constant Defs */

/ * *

/* Necessary Include Files */

#include <stdlib.h>
#include "esigcom.h"

/, ..ui...ys /
/* Function Prototypes */

1* Globals *

1Ethernet addresses of this machine (src) and ESIG 500 (dest)
unsigned char src[] (x02, 0x60, Ox~c, 0x43, Oxa7, Oxfl 1
unsigned char dest[] - OxOO, 0x08, OxOl, 0x57, 0x58, OxOO)

/* Function esambient *

/* PARAMETERS: *
1* scene - the scene whose brightness is being set. *
1* ambience - the brightness value (0-255).
1* messageCount - sequence number of this message *

/* Process: *
Program to set brightness for the scene. Brightness is a scalar from *

1* 0-255, and scene is 0 (night), 1 (dusk), or 2 (day) .

1* Returns: *
mnt - success -- 0, failure !- 0;

mnt esambient(mnt scene, mnt ambience, long messageCount

struct ambient struct *amb~ient;
mnt retCode -U0;

ambient - (struct ambient-struct *)calloc(l,sizeof(struct ambient-struct));
ambient->hostmessage -messageCount;

ambient->hostopcode -0;

ambient->ambience -ambience;

ambient->endOfData -0;

switch(scene)

case 0:
ambient->opcode = 0x0042;
break;

case 1:
arnbient->opcode - 0x0041;
break;

case 2:
ambient->opcode - 0x0040;
break;

default: break;

retCode = TransmitPacket(ambient, sizeof(ambient-struct),dest, sizeof(ambi'

free(ambient);

return retCode;

/* Function esanimation *

/* PARAMETERS: *
cs - the number of the coordinate system. *
select - the select switch. *

parcel - the parcel index (0 -255). *1
placeable - 0 - local parcel, 1 - placeable parcel.

1* control - animation control number.
1* sequence - animation sequence number (0 - 15).
/* messageCount - sequence number of this message */I* *I
/* Process: */
1* Executes a predefined animation sequence. Controls are: *1
/* ES NO INFO - no effect.

ES LOAD ANIMATION - Loads animation information
/* ES START ANIMATION - Starts animation *1
1* ES_STOP_ANIMATION - Stops animation *1
1* ESUNLOADANIMATION - Unloads animation *1/* *
/* Returns: */

int - success -- 0, failure !- 0;
/* */

int esanimation(int cs, int select, int parcel, int placeable, int control,
int sequence, long messageCount)

{

struct anim struct *anim;
int retCode - 0;

anim - (struct anim struct *)calloc(lsizeof(struct anim struct));
anim->hostmessage --messageCount;
anim->hostopcode - 0;
anim->opcode - OxOOla;
anim->cs - cs;
anim->select - select;
anim->parcel - parcel;
anim->placeable - placeable;
anim->xyz - 7;
anim->control - (control<<4) + sequence;
anim->endOfData - 0;

retCode - TransmitPacket(anim, sizeof(anim struct), dest, sizeof(anim struc

free(anim);

return retCode;

/* Function eschannel *1/* */

/* PARAMETERS: */
number - the channel number to set.
displaya - enable/disable display A. *1

/* displayb - enable/disable display B. */
/* viewport - main/alternate viewport select.

color - main/alternate color select. *1
/* messageCount - sequence number of this message *1

/* Process:
Program to set information for a specific channel number (0-7).
Corresponds to some of the ESIG CHANNEL commands.

/* Returns:
int - success -- 0, failure !- 0;

int eschannel(int number, int display_a, int displayb,
int viewport, int color, long messageCount

{

struct channel struct *channel;
int retCode - 0;

channel - (struct channelstruct *)calloc(l,sizeof(struct channel struct));
channel->hostmessage - messageCount;
channel->hostopcode - 0;
channel->opcode - OxOO15;
channel->number - number;
channel->displaya - displaya;
channel->displayb - display-b;
channel->viewport - viewport;
channel->color - color;
channel->endOfData - 0;

retCode - TransmitPacket(channel, sizeof(channel struct), dest, sizeof(chan:

free(channel);

return retCode;

/**
/* Function escloud *//* *

/* PARAMETERS: */
/* top - value for height of top of clouds.

bottom - value for height of bottom of clouds. *1
1* messageCount - sequence number of this message *1
/* */

/* Process: *I
1* Program to set the cloud top and bottom (max. alt. is 24.8 mi.. *

Corresponds to the ESIG CLOUDS function.
1* Input has been scaled to correspond to the ESIG *1

/* */

/* Returns: */
* int - success -- 0, failure != 0;/* */

/***
int escloud(long top, long bottom, long messageCount)
(

struct cloud struct *cloud;
int retCode - 0;

cloud - (struct cloud struct *)calloc(lsizeof(struct cloudstruct));
cloud->hostmessage - messageCount;
cloud->hostopcode - 0;
cloud->top-opcode - 0x0017;
cloud->top - top/4;
cloud->bot opcode - 0x0018;
cloud->bottom - bottom/4;
cloud->endOfData - 0;

retCode - TransmitPacket(cloud, sizeof(cloudstruct), dest, sizeof(cloud st:

free(cloud);

return retCode;

/**/
/* Function escold */
/* *

/* PARAMETERS: */
color - index into the color palette. */
valid - enable/disable color index validity. *1

/* automatic - enable/disable the automatic collision detection indicator.*/

1* messageCount - sequence number of this message *

1* Process: *
1* Program to set the characteristics of the collision detection indicator*/

Corresponds to some of the ESIG COLD conmmand options. *

/* Returns: *
int - success -- 0, failure !- 0; *

mnt escold(int color, int valid, mnt automatic, long messageCount

struct cold struct *cold;
mnt ret~ode - 0, size - sizeof(cold struct)

cold - (struct cold struct *)calloc(1,sizeof(struct cold struct));
cold->hostmessage - messageCount;
cold->hostopcode - 0;
cold->opcode - x0035;
cold->color -color;

cold->valid -valid;

cold->automatic - automatic;
cold->endOfData - 0;

retCode - TransmitPacket(cold, size, dest, size)

free(cold);

return retCode;

/* Function escoldpt *

/* PARAMETERS:
number - testpoint number (0-31, 255 to clear all testpoints). *
x - x offset.

1* y - y offset.
1* z - z offset.
1* messageCount - sequence number of this message *

/* Process:
1* Program to implement collision detection test points. *

Corresponds to the ESIG COLD function.

/* Returns:
in t - success -- 0, failure !- 0;

int escoldpt(mnt number, long x, long y, long z, long messageCount)

struct coldpt_struct *coldpt;
int *tmp, retCode - 0, size - sizeof(coldpt,.struct)

coldpt - (struct coldpt struct *)calloc(1,sizeof(struct coldpt-struct));
coldpt->hostmes sage -messageCount;

coldpt->hostopcode -0;

coldpt->opcode - 0x0033;
coldpt->number - number;
x *- 512; y *- 512; z *- 512; /* scale x,y,z *
tmp - (int *)&x;
coldpt->high_x - tmp(1];
coldpt->low x - tmp[0];
tmp - (int 7)&Y;

coldpt->highy - tmp(1];
coldpt->lowy - tmp[O];
tmp - (mt *)&z;
coldpt->highz - tmp(1];
coldpt->low z - tinp[O];
coldpt->endOfData - 0;

retCode - TransmitPacket(coldpt, size, dest, size)

free(coldpt)

return retCode;

/* Function escs *

/* PARAMETERS:
1* csnum - the number of the coordinate system. *

select - the select switch.
1* x - x offset.
1* y - y offset.
1* z - z offset.

heading - heading angle. *
pitch - pitch angle. *
roll - roll angle.

1* messageCount - sequence number of this message *

/* Process:
1* Program to simulate most of the £SIG CS function in xyz mode
1* x, y, z, heading, pitch, and roll must all be scaled so that when the *

user calls the function with x-100 the ESIG will set x-100. *
1* x,y, and z are longs, but must be byte swapped. I broke these values *
1* into high and low words in order to get the function to work properly. *

/* Returns:
in t - success -- 0, failure !- 0; *

int escs(mnt csnum, mnt select, long x, long y, long z, unsigned mnt heading,
unsigned int pitch, unsigned mnt roll, long messageCount)

int *tmp, retCode - 0;
struct cs-struct *cs;

cs - (struct cs struct *)calloc(l sizeof(struct cs-struct));
cs->hostmessage -messageCount;

cs->hostopcode -0;

cs->opcode - OxOOla;
cs->cs - csnum;
cs->select - select;
cs->xyz - 7; /* use x,y,z mode
cs->control -0; /*no control information
cs->el -1; /* enable extrapolation
cs->hpr -7: /* enable heading, pitch, and roll *
tmp - (int *)&x; 1* typecast into integer (word) size ~
cs->low x -tmp[0];

cs->high-x -tmpl;

tmp - (mnt *) &y;
cs->low-y -tmp[0];

cs->high_y -tmp~l];

tmp - (mnt *) &z;
cs->low z -tmp1O];
cs->high_z -tmp(l];

cs->heading - heading;

cs->pitch - pitch;
cs->roll - roll;
cs->endOfData - 0;

retCode - TransmitPacket(cs, sizeof(cs-struct), dest, sizeof(cs struct));

free(cs);

return retCode;

/* Function esdisable *11* *

/* PARAMETERS: */
1* esigswitch - the number of the switch to be disabled. */
1, messageCount - sequence number of this message */!* *I

1* Process: */
1* Routine for disabling switches.

Currently the switches are defined as follows:
'* 1 -- storm */

2 -- ground fog
3 -- patchy ground fog
4 -- scudded clouds
5 -- clouds
6 -- rain */
7 -- lightning
8 -- light strings displayed with random/modeled intensity */
9 -- own-ship wing tip strobe */

10 -- own-ship anti-collision beacon
11 -- height above terrain */
12 -- collision detection
13 -- collision detection indicator */I* *1

/* Returns: */
/* int - success -- 0, failure !- 0:
/* nothing.
I* *

int esdisable(int esigswitch, long messageCount)

int retCode - 0;

switch(esigswitch
{

case 1:
retCode - esprocessswitch(OxOO01, messageCount);
break;

case 2:
retCode - esprocessswitch(0x0002, messageCount);
break;

case 3:
retCode - esprocessswitch(0x0003, messageCount);
break;

case 4:
retCode - esprocessswitch(0x0004, messageCount);
break;

case 5:
retCode - esprocess switch(0x0005, messageCount);
break;

case 6:
retCode - esprocessswitch(0x0006, messageCount);
break;

case 7:
retCode - esprocessswitch(0x0007, messageCount);

break;
case 8:

retCode - esprocessswitch(0x0008, messageCount);
break;

case 9:
retCode - esprocessswitch(0x0009, messageCount);
break;

case 10:
retCode - esprocessswitch(OxOOOa, messageCount);
break;

case 11:
retCode - esprocessswitch(0x0030, messageCount);
break;

case 12:
retCode - esprocessswitch(0x0031, messageCount);
break;

case 13:
retCode - esprocessswitch(0x0034, messageCount);
break;

default: break;

return retCode;

/* Function esenable *1
I* *1

/* PARAMETERS:
esigswitch - the number of the switch to be enabled. *1

1* messageCount - sequence number of this message */I* *

I* Process:
/* Routine for enabling switches.

Currently the switches are defined as follows:
1 -- storm */
2 -- ground fog
3 -- patchy ground fog

* 4 -- scudded clouds
5 -- clouds
6 -- rain */
7 -- lightning
8 -- light strings displayed with random/modeled intensity
9 -- own-ship wing tip strobe

10 -- own-ship anti-collision beacon
/* 11 -- height above terrain *1

12 -- collision detection
13 -- collision detection indicator

I* *I

I* Returns:
/* int - success -- 0, failure !- 0; *
I* *
/***/*
int esenable(int esig_switch, long messageCount){

int retCode - 0;

switch(esigswitch
{

case 1:
retCode - esprocessswitch(Ox8001, messageCount);
break;

case 2:
retCode - esprocessswitch(0x8002, messageCount);
break;

case 3:
retCode - esprocess-switch(0x8003, messageCount)
break;

case 4:
retCode - esprocess-switch(0x8004, messageCount)
break;

case 5:
retCode - esprocess-switch(0x8005, messageCount)
break;

case 6:
retCode - esprocess-switch(0x8006, messageCount)
break;

case 7:
retCode - esprocess switch(0x8007, messageCount)
break;

case 8:
retCode - esprocess-switch(0x8008, messageCount)
break;

case 9:
retCode - esprocess-switch(0x8009, messageCount)
break;

case 10:
retCode - esprocess-switch(Ox800a, messageCount)
break;

case 11:
retCode - esprocess switch(0x8030, messageCount)
break;

case 12:
retCode - esprocess-switch(0x8031, messageCount)
break;

case 13:
retCode - esprocess-switch(0x8034, messageCount)
break;

default: break;

return retCode;

/* Function esgfog *

/* PARAMETERS: *
1* top - height of ground fog (max 6.2 mi.). *
1* messageCount - sequence number of this message *

/* Process: *
1* Program to set the height of ground fog (max 6.2 mi.). *

/* Returns: *
in t - success -- 0, failure !- 0.;

mnt esgfog(signed mnt top, long messageCount

struct gfogstruct *gfog;
int retCode - 0, size - sizeof(gfog-struct)

gfog - (struct gfog-struct *)calloc(1 sizeof(struct gfogstruct));
gfog->hostmessage -messageCount;

gfog->hostopcode -0;

gfog->opcode - 0x0044;
gfog->top - top;
gfog->endOfData - 0;

retCode -TransmitPacket(gfog, size, dest, size)

free(gfog)

return retCode;

/* Function eshatpt

/* PARAMETERS: *
number - height above terrain testpoint number (0-31, 255 to clear).

1* x - x offset. *
1* y - y offset. *
1* z - z-offset.
1* messageCount - sequence number of this message *

1* Process: *
1* Program to implement height above terrain test points. *

Corresponds to the ESIG HAT function.

1* Returns: *
mnt - success --=0, failure !- 0; *

int eshatpt(int number, signed long x, signed long y, signed long z,
long messageCount

struct hatpt_struct *hatpt;
int retCode - 0, size - sizeof(hatpt_struct), *tmp;

hatpt - (struct hatpt -struct *)calloc(1,sizeof(struct hatpt-struct));
hatpt->hostmessage -messageCount;

hatpt->hostopcode -0;

hatpt->opcode - 0x0032;
hatpt->number - number;
x *- 512; y *- 512; z *- 512; /* scale x,y,z *
tmp - (int *)&x;
hatpt->high -x - tmp(1I;
hatpt->low-x - tmpf0];
tmp - (mnt *)&y;
hatpt->highy - tmptlJ;
hatpt->lowy - tmp[0];
tmp - (mt *)&z;
hatpt->high_z - tmp [1];
hatpt->low z - tmp [0];
hatpt->endOfData - 0;

retCode - TransmitPacket(hatpt, size, dest, size)

free (hatpt);

return retCode;

1* Function eshorizon *

f* PARAMETERS:
brightness - horizon brightness (0-5) .
directional - enable/disable horizon direction settable facility.
heading - horizon heading (0-360 degrees).

1* messageCount - sequence number of this message

/* Process: *
1* Program to set horizon brightness and heading. Heading will be set if *

the directional flag is set. *

Corresponds to some of the ESIG SET commands. *
1* Input for heading is scaled to perform as the ESIG function does

/* Returns: *
int - success -- 0, failure 1- 0;

int eshorizon(int brightness, int directional, unsigned int heading,
long messageCount

struct horizon struct *horizon;
int retCode 0 7, size - sizeof(horizon-struct)

horizon - (struct horizon struct. *)
calloc (1,sizeof (struct horizon-struct));

horizon->hostmessage -messageCount;-

horizon->hostopcode -0;

horizon->opcode - OxOOll;
horizon->directional -directional;

horizon->brightness -brightness;

horizon->heading - heading*182 .04;
horizon->endOfData - 0;

retCode - TransmitPacket(horizon, size, dest, size)

free(horizon);

return retCode;

1* Function esinstructor *

1* PARAMETERS:
1* charfnel - port instructor monitor is on. *
1* messageCount - sequence number of this message *

1* Process:
1* Program to set the instructor monitor channel.

Corresponds to the ESIG SET function.

1* Returns:
mnt - success -- 0, failure !- 0;

int esinstructor(int channel, long messageCount)

struct instructor struct *instructor;
mnt retCode -0, size - sizeof(instructor-struct)

instructor -(struct instructor struct *)
calloc (1,sizeof (struct instructor-struct));

instructor->hostmessage -messageCount;

instructor->hostopcode -0;

instructor->opcode - x0050;
instructor->channel -channel;

instructor->endOfData - 0;

retCode - TransmitPacket(instructor, size, dest, size)

free(instructor)

return retCode;

1* Function eslight *

/* PARAMETERS: *
1* number - light switch number (0-63).
1* intensity - intensity of light (0-5) .
1* messageCount - sequence number of this message *

1* Process: *
1* Program to set the intensity of light switches.

Corresponds to some of the ESIG SWITCH functions.

1* Returns: *
in t - success -- 0, failure !- 0; *

mnt eslight(mnt number, mnt intensity, long messageCount

struct light struct *light;
mnt retCode -0, size - sizeof(light struct)

light - (struct light struct *)calloc(1,sizeof(struct light_struct));
light->hostmessage -messageCount;

light->hostopcode -0;

light->opcode - 0x0012;
light->nurnber - number;
light->intensity - intensity;
light->endOfData - 0;

retCode - TransmitPacket(light, size, dest, size)

free(light);

return retCode;

/* Function eslobe *

/* PARAMETERS: *
lights - number corresponding to which lights should be turned on.

1* (0 -no lights, 127 - all).
1* messageCount -sequence number of this message *

1* Process: *
1* Program to set aircraft landing lights.

Corresponds to the ESIG LOBE function, although the user must give the *
1* number corresponding to the bits he would set using the LOBE command. *

/* Returns: *
in t - success -- 0, failure !- 0;

int eslobe(mt lights, long messageCount)

struct lobe struct *lobe;
int retCode - 0, size - sizeof(lobe-struct)

lobe - (struct lobe -struct *)calloc(1,sizeof(struct lobe-struct));
lobe->hostmessage -messageCount;

lobe->hostopcode -0;

lobe->opcode - 0x0013;
lobe->lights - lights;
lobe->endOfData - 0;

retCode - TransmitPacket(lobe, size, dest, size)

free(lobe);

return retCode;

/* Function esmodel.*

/* PARAMETERS: *
1* colocate - colocatable parcel select number to be used (0-7). *

parcel - parcel number in the database to be used.
1* messageCount - sequence number of this message *

/* Process: *
1* Program to allow user to load a database. *

Corresponds to the ESIG MODEL function. *

1* Returns: *
i* t - success -- 0, failure !- 0; *

mnt esmodel(mnt colocate, int parcel, long messageCount

struct model struct *model,*
int retCode '; 0, size - sizeof(model-struct)

model - (struct model -struct *)calloc(lsizeof(struct model-struct));
model->hostmessage -messageCount;

model->hostopcode -0;

model->opcode - 0x0014;
model->colocate - colocate;
model->parcel - parcel;
model->endOfData - 0;

retCode - TransmitPacket(model, size, dest, size)

free(model);

return retCode;

/* Function espolygon *

/* PARAMETERS: *
number - polygon switch number (0-63).

1* intensity - intensity value (0-5) .
1* messageCount - sequence number of this message *

/* Process: *
1* Program to set the polygon intensity. *

Corresponds to some of the ESIG SWITCH functions.

/* Returns: *
int - success -- 0, failure 1- 0; *

int espolygon(int number, mnt intensity, long messageCount

struct polygon -struct *polygon;
mnt retCode - ,size - sizeof(polygon-struct)

polygon - (struct polygonstruct *)
calloc(1, sizeof(struct polygonstruct));

polygon->hostmessage - messageCount;
polygon->hostopcode - 0;
polygon->opcode - 0x0019;
polygon->number - number;
polygon->intensity - intensity;
polygon->endOfData - 0;

retCode - TransmitPacket(polygon, size, dest, size):

free(polygon);

return retCode;

/* Function esrvr *//* */

I* PARAMETERS: *I
/* range - runway visual range in feet.
1* messageCount - sequence number of this message *1

/* */

/* Process: */
/* Program to set the runway visibility range. *1

Corresponds to the ESIG GFOG comunand. No scaling done yet. *1
1* Input scaled to correspond to ESIG function. *1/* *

/* Returns:
int - success -- 0, failure !- 0; */

/* */
/***I*
int esrvr(long range, long messageCount)
{

struct rvr struct *rvr;
int retCode - 0, size - sizeof(rvr struct);

rvr - (struct rvrstruct *)calloc(l,sizeof(struct rvrstruct));
rvr->hostmessage - messageCount;
rvr->hostopcode - 0;
rvr->opcode - OxOO10;
rvr->range - range/4;
rvr->endOfData - 0;

retCode - TransmitPacket(rvr, size, dest, size);

free(rvr);

return retCode;

/* Function esscene *1/* *

/* PARAMETERS:
select - the value of the scene type to be displayed.

/* messageCount - sequence number of this message */
/* *
/* Process: */

Scene is set with parameters corresponding to esig functions: *1
1* 0 - SET NIGHT */

1 - SET DUSK
* 2 - SET DAY */

/* */
/* Returns: */

int - success -- 0, failure !- 0; *1/* *!

int esscene(int select, long messageCount)
(

struct scene struct *scene;
int retCode - 0, size - sizeof(scenestruct-);

scene - (struct scene struct *)calloc(1,sizeof(struct scenestruct));
scene->hostmessage -messageCount;
scene->hostopcode - 0;
scene->opcode - 0x0016;
scene->select - select;
scene->endOfData - 0;

retCode - TransmitPacket(scene, size, dest, size):

free(scene);

return retCode;

/***
/* Function essun */l* *
/* PARAMETERS: *1

heading - heading angle for the sun. *1
pitch - pitch angle for the sun. *1

1* messageCount - sequence number of this message *1
/* */

/* Process: "1
1* Program for setting the sun's heading and pitch.

Corresponds to ESIG functions SET SUNH and SET SUNP. *1
1* Input to this function must be scaled to correspond to ESIG function. */

l* *l
l* Returns: "1

int - success -- 0, failure !- 0; */
l* "1

int essun(unsigned int heading, unsigned int pitch, long messageCount

struct sun struct *sun;
int retCode - 0, size - sizeof(sun struct);

sun - (struct sunstruct *)calloc(1,sizeof(struct sunstruct));
sun->hostmessage - messageCount;
sun->hostopcode - 0;
sun->opcode - 0x0043;
sun->heading - heading*182.04;
sun->pitch - pitch*182.04;
sun->endOfData - 0;

retCode - TransmitPacket(sun, size, dest, size);

free(sun);

return retCode;

/* Function estraffic *11* *l
1* PARAMETERS: *I

cS - the number of the coordinate system. *1

select - the select switch.
parcel - the parcel index (0 - 255).

/* placeable - 0 - local parcel, 1 - placeable parcel.
1* control - routed and converging control number.
/* scenario - routed and converging scenario number (0 - 15).
/* messageCount - sequence number of this message *1

/* Process: */
Sets information for routed or converging traffic. Controls are: *1

ES NO INFO - no effect.
ES LOAD ROUTED - Loads information for routed traffic *1

1* ES STARTROUTED - Starts routed traffic
ES STOP ROUTED - Stops routed traffic

/* ESUNLOAD ROUTED - Unloads routed traffic
1* ES LOAD CONVERGING - Load info for converging traffic

ES STARTCONVERGING - Start converging traffic
ESSTOP CONVERGING - Stop converging traffic

/* ESUNLOAD_CONVERGING - unload info for converging traffic *!/* */

I* Returns:
* nt - success -- 0, failure !- 0;

I* *I

int estraffic(int cs, int select, int parcel, int placeable, int control,
int scenario, long messageCount

{
struct traffic struct *traffic;
int retCode - 0, size - sizeof(traffic struct);

traffic - (struct trafficstruct *)calloc(1,sizeof(struct traffic struct));
traffic->hostmessage - messageCount;
traffic->hostopcode - 0;
traffic->opcode - OxOOla;
traffic->cs - cs;
traffic->select - select;
traffic->parcel - parcel;
traffic->placeable - placeable;
traffic->xyz - 7;
traffic->control - (control<<4) + scenario;
traffic->endOfData - 0;

retCode - TransmitPacket(traffic, size, dest, size);

free(traffic);

return retCode;

/* Function esviewport *1/* */

/* PARAMETERS:
channel - channel number (0-7). */
alternate - enable/disable alternate view. *1

/* x - x offset. */
/* y - y offset. */
/* z - z offset. */
/* heading - heading orientation for the viewport (-360 - 360 deg.). */
/* pitch - pitch orientation for the viewport (-360 - 360 deg.).

roll - roll orientation for the viewport (-360 - 360 deg.). */
vertical - vertical half angle of viewport (0.5 - 90 deg.). */
horizontal - horizontal half angle of viewport (0.5 - 90 deg.). *1

/* messageCount - sequence number of this message
I* P e*
/* Process: *

Program to define the viewport, which defines how the image will appear*/
on the display. Corresponds to some of the ESIG CHANNEL commands.
Some inputs are scaled to correspond to the ESIG function. *1

I* *I

/* Returns: *1
int - success -- 0, failure !- 0; */1, *1

/***
int esviewport(int channel, int alternate, long x, long y, long z,

unsigned int heading, unsigned int pitch, unsigned int roll,
unsirned int vertical, unsigned int horizontal, long messageCount

struct viewport struct *viewport;
int *tmp;
int retCode - 0, size - sizeof(viewportstruct);

viewport - (struct viewportstruct *)
calloc(1, sizeof(struct viewportstruct));

viewport->hostmessage - messageCount;
viewport->hostopcode = 0;
viewport->opcode = OxOOlb;
viewport->channel - channel;
viewport->alternate - alternate;
viewport->xyz - 7; /* use x,y,z mode *1
viewport->el - 1; /* enable extrapolation */
viewport->hpr - 7; /* enable heading, pitch, and roll */
x *- 512; y *- 512; z *- 512; /* scale x,y,z *1
tmp - (int *) &x; /* typecast into integer (word) size */
viewport->low x - tmp[0];
viewport->highx - tmp(l];
tmp - (int *) &y;
viewport->lowy - tmp[0];
viewport->highy - tmptl];
tmp - (int *) &z;
viewport->lowz - tmp[O];
viewport->highz - tmp[l];
viewport->heading - heading*182.04;
viewport->pitch - pitch*182.04;
viewport->roll - roll*182.04;
viewport->vertical - vertical*182.04;
viewport->horizontal - horizontal*182.04;
viewport->endOfData - 0;

retCode - TransmitPacket(viewport, size, dest, size);

free(viewport);

return retCode;

/**/
/* Function esvisibility *1
/* */

/* PARAMETERS: */
1* range - the range in feet of visibility (max 49.6 miles). *1
/* messageCount - sequence number of this message1* *1

/* Process: */
Program to simulate the ESIG VISIBILITY command. */
Input scaled to correspond to ESIG function (in FEET). *1!* */

/* Returns: *I
/* int - success -- 0, failure !- 0; *1/* */

int esvisibility(long range, long messageCount

struct visibility struct *visibility;
mnt retCode -0, size - sizeof(visibility struct)

visibility -(struct visibility struct *
calloc (1,sizeof (struct visibility struct));

visibility->hostmessage -messageCount;

visibility->hostopcode -0;

visibility->opcode - OxOOOF;
visibility->range - range/4;
visibility->endOfData - 0;

retCode - TransmitPacket(visibility, size, dest, size)

free(visibility)

return retCode;

/* Object Functions: PRIVATE *

/* Function esprocess-switch

/* PARAMETERS:
1* opcode - the opcode of the switch to be enabled/disabled.
1* messageCount - sequence number of this message *

/* Process: *
1* Routine to build the enable/disable packet using information from the *

enable/disable routines. *

/* Returns:
mnt - success -- 0, failure !- 0; *

int esprocess-switch(mnt opcode, long messageCount

struct switch struct *esswitch;
mnt retCode - 0, size - sizeof(switch struct)

esswitch - (struct switch struct *)
calloc (1,sizeof (struct switch-struct));

esswitch->hostmessage -messageCount;

esswitch->hostopcode -0;

esswitch->opcode - opcode;
esswitch->endOfData - 0;

retCode - TransmitPacket(esawitch, size, dest, size)

free(esswitch)

return retCode;

// esigcom.h
#define NEEDPACKETDEFINITIONS

#include "net.h"
#include "3com.h"
#include "packet.h"

#ifndef __cplusplus
#error This program requires compilation as C++.
#endif

#ifndef LARGE
#error This program requires Large memory model.
#endif

#ifndef ESIGCOM
#define _ESIGCOM

// constants

// structs, classes, typedefs

struct ambient struct{
long hostmessage;
int hostopcode;
int opcode;
int ambience;
unsigned int endOfData;1;

struct anim struct{
long hostmessage;
int hostopcode;
int opcode;
unsigned char select;
unsigned char cs;
unsigned char parcel;
unsigned char placeable;
unsigned char xyz;
unsigned char control;
int dunmyl; /* dummys are introduced to give the structure */
int dummy2; /* the proper length of fourteen words
int dummy3;
int dum ny4;
int dunimy5;
int dunmy6;
int dumny7;
int duxny8;
int dummy9;
int dun ylO;
unsigned int endOfData;

struct channel struct(
long hostmessage;
int hostopcode;
int opcode;
char dummy;
char number;
char display_b;
char display_a;
char color;
char viewport;

unsigned int endOfData;

struct cloud struct

long hostmessage;
int hostopcode;
int top_opcode;
signed int top:
int botopcode;
signed int bottom;
unsigned int endOfData;

1;

struct cold struct(
long hostmessage;
int hostopcode;
int opcode;
int color;
char automatic;
char valid;
unsigned int endOfData;

1;

struct coldptstruct
{

long hostmessage;
int hostopcode;
int opcode;
unsigned char number;
char dummy;
int high x;
int low x;
int high_y;
int lowy;
int highz;
int low z;
unsigned int endOfData;

1;

struct cs struct

long hostmessage;
int hostopcode;
int opcode;
unsigned char select:
unsigned char cs;
unsigned char index;
unsigned char type:
unsigned char xyz;
unsigned char control;
unsigned char el:
unsigned char hpr;
int highx;
int low x;
int high_y;
int lo _y;
int high_z;
int low z;
unsigned int heading;
unsigned int pitch;
unsigned int roll;
unsigned int endOfData;

struct switch-struct

long hostmessage;
int hostopcode;
int opcode;
unsigned int endOfData;

struct gfogstruct

long hostmessage;
int hostopcode;
int opcode;
signed int top;
unsigned int endOfData;

struct hatptstruct

long hostmessage;
int hostopcode:
mnt opcode;
char number;
char dummy;
int high-x;
int low-x;
mnt highy;
int low-y;
int high -z;
mnt low z;
unsigned int endOfData;

struct horizon-struct

long hoatmessage;
int hostopcode;
mnt opcode;
char directional;
char brightness;
unsigned mnt heading;
unsigned mnt endOfData;

struct instructor-struct

long hostmessage;
mnt hostopcode;
int opcode;
char channel;
char dummy;
unsigned mnt endOfData;

struct light struct

long hostmessage;
int hostopcode;
mnt opcode;
char intensity;
char number;
unsigned mnt endOfData;

struct lobe-struct

long hostmessage;
int hostopcode;
int opcode;
char lights;
char dummy;
unsigned int endOfData;

struct modl-struct{
long hostmessage;
int hostopcode;
int opcode;
char parcel;
char colocate;
unsigned int endOfData;

struct polygon-struct

long hostmessage;
int hostopcode;
int opcode;
char intensity;
char number;
unsigned int endOfData;

struct rvr struct
{

long hostmessage;
int hostopcode;
int opcode;
unsigned int range;
unsigned int endOfData;

1;

struct scenestruct
{

long hostmessage;
int hostopcode;
int opcode;
unsigned char select;
unsigned char dummy; /* used for word alignment */
unsigned int endOfData;

struct sunstruct
I

long hostmessage;
int hostopcode;
Ant opcode;
unsigned int heading;
unsigned int pitch;
unsigned int endOfData;

struct trafficstruct

long hostmessage;
int hostopcode;
int opcode;
unsigned char select;
unsigned char cs;
unsigned char parcel;

unsigned char placeable;
unsigned char xyz;
unsigned char control;
int dummyl; /* dunnys are introduced to give the structure */
mnt dunmny2; /* the proper length of fourteen words
nt durmy3;
nt dummy4;
nt dunimy5;
int dur ny6;
nt dummy7;
nt durmy8;
nt dummy9;
int duninyl0;
unsigned int endOfData;I;

struct viewport_struct
{

long hostmessage;
int hostopcode;
int opcode;
unsigned char alternate;
unsigned char channel;
unsigned char xyz;
unsigned char dummy;
unsigned char el;
unsigned char hpr;
int highx;
int low-x;
int highy;
int lowy;
int highz;
int low-z;
unsigned int heading;
unsigned int pitch;
unsigned int roll;
unsigned int vertical;
unsigned int horizontal;
unsigned int endOfData;

1;

struct visibilitystruct
{

long hostmessage;
int hostopcode;
int opcode;
unsigned int range;
unsigned int endOfData;

1;

// macros and inline functions--

/* Function Prototypes *// * ..-------------------------. */

int esambient(int scene, int ambience, long messageCount);
int esanimation(int cs, int select, int parcel, int placeable, int control,

int sequence, long messageCount);
int eschannel(int number, int displaya, int display_b,

int viewport, int color, long messageCount);
int escloud(long top, long bottom, long messageCount);
int escold(int color, int valid, int automatic, long messageCount);
int escoldpt(int number, long x, long y, long z, long messageCount);
int escs(int csnum, int select, long x, long y, long z, unsigned int heading,

unsigned int pitch, unsigned int roll, long messageCount);

int esdisable(int esigswitch, long messageCount);
int esenable(int esig_switch, long messageCount);
int esgfog(signed int top, long messageCount);
int eshatpt(int number, signed long x, signed long y, signed long z,

long messageCount);
int eshorizon(int brightness, int directional, unsigned int heading,

long messageCount);
int esinstructor(int channel, long messageCount);
int eslight(int number, int intensity, long messageCount);
int eslobe(int lights, long messageCount);
int esmodel(int colocate, int parcel, long messageCount);
int espolygon(int number, int intensity, long messageCount);
int esrvr(long range, long messageCount);
int esscene(int select, long messageCount);
int essun(unsigned int heading, unsigned int pitch, long messageCount);
int estraffic(int cs, int select, int parcel, int placeable, int control,

int scenario, long messageCount);
int esviewport(int channel, int alternate, long x, long y, long z,

unsigned int heading, unsigned int pitch, unsigned int roll,
unsigned int vertical, unsigned int horizontal, long messageCount

int esvisibility(long range, long messageCount);
int esprocessswitch(int opcode, long messageCount);

// variable externs --

extern irt maxTxLength; // Maximum packet length transmitted

#endif // _ESIGCOM

Appendix H:-

Summary of Results of HTD Experiments

Head-Tracked Cupola Display Preliminary Results

The results of this evaluation with novice subjects indicated that there
were no significant differences in performance or preferences between the
two simulations (Simnet vs HTD). It appears that for the selected tasks (target
acquisition and navigation), subjects performed equally well (or equally
poorly) in both simulations. There are several potential explanations for
these findings: 1) the two simulations may be close enough in design that
performance differences will not be seen for most tasks, 2) the tasks were
simply too easy to determine if there were performance differences, and 3)
there were too many problems with experimental control (e.g., too many
disturbances, equipment failures, etc.) to keep variability low enough to
observe any differences.

In my opinion, explanations one and two are probably both correct.
From what I have observed and heard about tank scenarios, in most cases
there probably would be no differences in performance between the two
simulations. For example, the navigation task required infrequent head
turning or cupola rotation to find a checkpoint. The tank commander (TC)
was only required to tell the driver to turn, and the TC could easily determine
his surroundings while looking straight ahead. I believe that the results from
most navigation tasks would be similar. Concerning target acquisition, I have
heard that in most situations the tank would be in a defensive position, or it
would attack in groups, with each group focusing on a specific sector. In these
situations, speed of acquisition would likely be less important. If this is true,
then there would be little expectation for differences in performance between
the two simulations, which was observed in this study.

However, if speed of target acquisition is important, then I predict that
the HTD would provide superior performance. The target acquisition task in
this study appeared to be too easy to elicit performance differences between
the simulations, even though the 20 targets were placed in difficult locations
(hence, the low acquisition mean of 11.75).

I also believe that the lack of experimental control concerning demos,
equipment failures, etc., was a problem. However, these factors probably
occurred equally over the experimental sessions, so I doubt if they influenced
the means, except possibly to reduce them across the board. These problems
could have increased the variability, which would require greater differences
between the simulations to show an effect. In addition, a larger sample size
was needed in order to increase the power to detect group differences.

In conclusion, I would recommend continuing the evaluation based
on the importance of target acquisition speed versus the cost/benefits of
continuing. If tank training does not focus on speed of target acquisition,
then the Simnet is probably adequate for training, and continuing the study

would not be cost effective. However, if speed of acquisition is very
important, then we probably should continue with experienced personnel.

If we do continue, I have some further recommendations. We should
drop the navigation task, because I doubt if there are any scenarios in which
the two simulations would show differences. The navigation task also
required more time to complete than the target acquisition task. Dropping
the navigation task would allow us to run more subjects in a shorter amount
of time.

As you suggested, Ernie, I would run the target acquisition task over a
shorter route but with a much higher target density. This would require that
the TC scan his environment faster, which may result in performance
differences between the HTD and Simnet. I would also have the gunner-tank
commander relationship more involved by having the gunner actually try to
shoot the targets.

Finally, we need to run this experiment with better control. I would
like to have access to two students who are available to run the experiment at
any time, not just when they can fit it into their schedules, and I want to be
able to limit people from interrupting the study. I realize that these requests
may be difficult to accomplish.

2

Preliminary Results - Terrain Reasoning (N=12)

faccumracy between checkpoints 1-2)

MEDIANS BY SIULATION AND COURSE

SIM/COURSE 1 SIM/COURSE 2 HTD/COURSE 1 HTD/COURSE 2

1 m 200 m 1 m 50.5
(R. 1-400) (R 1-700) (R 1-1600) (R 1-300)
Mean: 67.5 Mean: 266.8 Mean: 284.0 Mean: 100.5

MEDIANS BY SIMULATION

SMN'ET HTD

50.5 m 1 m
(R: 1-700) (R. 1-1600)
Mean: 167.2 Mean: 192.3

MEDIANS BY COURSE

COURSE 1 COURSE 2

1 m 150 m
(R: 1-1600) (R. 1-700)
Mean: 175.8 Mean: 183.7

Preliminary Results - Terrain Reasoning (N=12)
.time between checkpoints 2-3)

MEDIANS BY SIMULATION AND COURSE

SIM/COURSE 1 SIM/COURSE 2 HTD/COURSE 1 HTD/COLTRSE 2

253 sec. 268.5 sec. 238 sec. 221.5 sec.
(R 206-999) (R. 209-338) (R: 173-999) (R 180-312)

MEDIANS BY SIMULATION

SIMNET HTD

268.5 225.5
(R: 206-999) (R 173-999)

MEDIANS BY COURSE

COURSE 1 COURSE 2

238 233.5
(R: 173-999) (R. 180-338)

Preliminary Results - Terrain Reasoning (N=12)

Laccmcy between cekpoints 2-3)
MEDIANS BY SIMUILATION AND COURSE

SIM/COURSE 1 SIM/COURSE 2 HTD/COURSE 1 HTD/COURSE 2

600 m 50.5 m 650 m 550 m
(R. 1-9999) (R, 1-200) (R 1-9999) (R. 200-1700)

MEDIANS BY SIMULATION

SIMNET HTD

150 m 550 m
(R: 1-9999) (R. 1-9999)

MEDIANS BY COURSE

COURSE I COURSE 2

600 m 200 m
(R: 1-9999) (R: 1-1700)

Preliminary Results - Targt Acquisition Means (N=12)
(20 Tage were _pgsible

MEANS BY SIMULATION AND COURSE

SIM/COURSE 1 SIMI/COURSE 2 HTD/COURSE 1 HTD/COURSE 2

12.50 11.00 12.67 10.83
(R 10-14) (R: 8-15) (R 9-17) (R 8-15)

MEANS BY SIMULATION

SIMNET HTD

11.75 11.75
(R 8-15) (8-17)

MEANS BY COURSE

COURSE 1 COURSE 2

12.59 10.92
(R: 9-17) (R. 8-15)

Head-Tracked Cupola Display Research

Preliminary Results - Preference Means (N=13)

Scale: 5=impossible, 4=difficult, 3--moderate, 2=easy, 1--very easy

QUESTION SIMNET HTD

1.) Ability to perceive locations accurately 3.11 2.89

2.) Ability to identify surroundings 3.00 3.00

3.) Ability to maintain orientation and not 3.0 2.67
get lost

4.) Ability to acquire targets without time 2.67 2.67

constraints

5.) Ability to acquire targets under time pressure 3.44 3.00

None of these results were statistically significant.

6.) Which simulation was more difficult?

SIMNET= 6
HTD= 5
SAME= 2

7.) Were there any features about either simulation that you especially liked
or disliked?

8.) Which simulation do you think would be the most beneficial for training?

SIMNET= 8
HTD= 4
SAME= 1

9.) Which simulation do you prefer?

SIMNET= 7
HTD=- 5
SAME= 1

10.) Do you think that your performance and preferences would have
changed if the head-tracked display did not have popping/flickering?

Yes=11 No-2

Appendix I

Computations Concerning EyePhone Resolution

The low resolution Eyephone has 442 x 238 primary color pixels per
eye. The total number of primary color pixels is 105,196. This means
35,065 triads, in an array that I am assuming is 256 x 137. The FOV
for each eye is 86 degrees (horizontal) by 76 degrees (vertical). The
total horizontal FOV is 108 degrees. The binocular overlap is 64
degrees.

Because of assumptions made above, the following calculations are
approximate. The total number of pixels (three color) horizontally is
256 x 108 / 86 (pixels per eye x total FOV / FOV per eye). This
equals 321 pixels. The number of arc minutes per pixel horizontally
is 108 x 60 / 321 or approximately 20 arc minutes per pixel.

The number of vertical three color pixels is approximately 137. The
number of vertical degrees is 76. This gives approximately 33 arc
minutes per pixel vertically.

The same calculations, with the same assumptions, applied to the
high resolution Eyephones gives the following results.

Total number of primary color pixels per eye is 345,600 in a
720 by 480 matrix. This gives about 416 horizontal by 277 vertical
three color pixels per eye. The horizontal FOV per eye is 86 degrees,
and for both eyes is 106 degrees. The vertical FOV is 75 degrees.
The total number of horizontal pixels is approximately 513 pixels.
This works out to about 12 arc minutes per pixel horizontally.
The number of three color pixels vertically is about 277. This
works out to about 16 arc minutes per pixel vertically.

"1 -

Appendix J:

Etding the SIM Head-Trackinag Display

Extending the SIMNET Head Tracking Display
a Project Analysis by IST/VSL

J. Michael Moshell
Curtis Lisle

Richard Dunn-Roberts
Ernie Smart

VSL Memo 91.6
215/91

There is significant interest in extending the functionality of the SWThIhET
M1 trainer to include the Protected Open Position for the tank commander
(referred to as the "POP hatch"). This document includes the results of a
preliminary analysis of this problem.

The major sections of the document are as follows:

I. Project Requirements and Description
II. Constraints on the Image Generator and Monitors
TH. Miscellaneous Concerns about the Design
IV. IST Estimates on Time and Cost

L Project Requirements and Description

List of Project Requirements: The following list covers the main points of
theproposed design. This serves as a summary of the overall project goals.

1. Provide a 3600 field of view POP hatch display.

2. Allow the commander the maximum possible vertical field of view
in the POP hatch display, consistent with tank geometry.

3. The POP hatch view will adjust for head motion within the cupola,
so as to provide a high resolution central display, medium resolution
lateral displays, and no imagery outside of the central viewing cone.
This will conserve image generator channel capacity.

4. Visible elements of the tank (tank hull, main gun,etc) will be
visible in the views from the POP hatch.

5. The cupola (including vision blocks, machine gun and hatch cover)
will rotate under the control of the machine gun control handle.

6. The capability will be provided of using the 6 vision blocks as well
as the POP hatch views simultaneously.

-1-

Decription of the Requirements: The following paragraphs provide more
detail about each of the project requirements stated above.

1. Provide a 3600 horizontal field of view. The display will be created by
providing a ring of ten 27" (diagonal) video monitors surrounding the tank
commander's cupola. This will be an extension of the Head Tracking
Display project (HTD) currently underway at IST/VSL.

Referred to as the Extended Head Tracking Display (EHTD), this new
project will use the same video switching technique employed in ISTs
HTD: a Polhemus magnetic tracker is used to switch video channels so the
commander always has an active video display in the direction his head is
facing. (See Figure 1).

side: 320 x 240

center:
640 x 480

3 Live monitors=108 °

side: 320 x 240 6 1

Figure 1 - Top View of the EHTD

2. The commander is given the maximum feasible FOV in the vertical
direction: This requirement is based on the 6" high opening available
under the elevated hatch and the commander's head position relative to the
radius of the hatch. The geometry involved is shown in Figure 2.

Note: the aspect ratio of off-the-shelf NTSC monitors makes it limits
the vertical field of view which can be achieved with a single row of
monitors and no optics. See section II for details.

-2-

6 inches high

distance up to 2 feet

Figure 2 - Vertical field of view

3. The POP hatch view will adjust for head motion within the cupola: Since
the commander has a range of available head motion within the cupola
(approx. 32' in diameter in SIMNET), the view out the monitors should
adjust for the correct head position. This requires head position
information be passed over to the SIMNET Host and used to adjust the
viewpoint generated by the SIMNET CIG unit. Engineering development
will be necessary to provide this level of control over the CIG (greater than
in the existing SIMNET cupola).

An additional concern is the obstacle provided by the vertical edges of
the monitor housings. This is discussed in section III below.

4. Visible elements of the tank (fenders, gun,etc) will be displayed in the
views from the POP hatch: Since the commander's eyepoint will be less
than 6" above the top of the turret in the POP hatch position, portions of the
tank will often be visible. The visible tank features must be modelled so they
will be displayed correctly.

5. The cupola will rotate. The current SIMNET simulator allows the
commander's cupola to mechanically rotate but provides only a restricted
view out of one vision block of the cupola. In a real tank, the cupola is
sometimes rotated so as to position the machine gun out of the forward line
of sight, or to aim the machine gun.

The EHTD project will support cupola rotation. Using an existing SIMNET
hull and cupola mechanism, the required vision blocks and a simulated
hatch cover and machine gun mount will be incorporated so as to rotate
within the panoramic monitor display.

6. Provide the capability of using the 6 vision blocks as well as the POP
hatch views simultaneously: The commander will be able to support
training in normal mode (through the 6 vision blocks) or POP hatch
(through the out the window monitors). Two competing designs are being
considered to support this:

-3-

1. Have a set of monitors dedicated to the vision blocks and a set
dedicated to the POP hatch display. A side view of this is shown in
Figure 3. The monitors would have to occupy a carousel which
rotates along with the cupola and vision blocks.

hatch with 6' clearance

EHTD (POP hatch) monitors

-'-:

hole for vision block HTD monitor

Figure 3 - Dual Set of Monitors

2. Use a single set of monitors to support both the vision blocks and
the POP hatch display. This requires actual "periscope-style" vision
blocks and a redesign of the approach used to supply the vision block
views. This approach is shown in Figure 4.

monitors for both POP
hatch and vision
blocks. Q; rotating portion

of the cupola

0
Figure 4 - Single Set of Monitors

A

IV. IST Estimates on Time and Cost

The following spreadsheet titled EHTD Equipment Pricing shows
estimated costs for materials for a one-of-a-kind installation. These would
diminish by 10 to 20% in a production operation for 10 to 50 units.

The equipment estimate would need to be increased by the (unknown)
amount which a contractor would charge for integrating the panoramic
display into a production-model SIMNET tank hull for actual training
purposes.

The spreadsheet titled EHTD Personnel Pricing shows IST's projected
labor and overhead cost for performing the construction of a proof-of-
concept demonstration. We have no way to estimate the charges a for-profit
contractor would levy for similar services.

We estimate that six months would be required from receipt of a
commitment to completion and testing of the EHTD system. The principal
delays are involved with the acquisition of the IG and the debugging and
testing of the host software, some of which would be developed in
collaboration with a subcontractor.

This is an estimate, not a formautatin 9 due to the haste with which the
estimate was required

-8-

EHTD Personnel Pricing

Labor Pricing for the EHTD Project

Category Loaded:

Proj Mgr Lisle 6 months 50% 16705
Vis Scientist Dunn-Roberts 6 months 50% 14796
Engineer to hire 3 months 50% 18604
Software sp. to hire 3 months 50% 11455

elect constr student 6 months 50% 7814
cptr prog student 3 months 50% 3907
host progr. PRC subcon. 12739
mech design student 3 months 25% 1952
mech constr student 3 months 25% 1952

consulting 10000
travel 8000
supplies 520

108444

Page 1

