1

92 5

| AD-A250 866 -t

] m
123. ISTRIBUTION / AVARABILITY STATEMENT

T ——— e

OM8 No. 0704-0188

IRATEVI 00 A BPAQE 1 NOUP DAY PDVINLE nCiuTING the UM oY 1OV I8W NG ARSTIUCIICNS. S0ATCRIMG CxiSting data sources,
FITNErAG an® MNNTY gredatar 3. 3ING LYTRIRUNG AtV FRvidvin) TRE IO O inMArmanan SeNd comments redarding thes burden sat:mate or any other :sr of thie
Colleetion 0¥ 1M MMAUCT INCUING SUGTEITIUNY e (AdUCIAG TS BudeR 10 Washi 3 (e N8aJQuartars Seraces, Zarpcrorate f0r nfoemation Operations ang Repost:. 125 n
Davis tughway. Swite *304, Arhingron, Va 220024302 and to tha Oéice uf Aianagement and Budget. Paperwork Reduetion Prooct (0704-0138), washington, 0C 20503

7. AGENCY USE ONLY (Leave biank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED / 7
5 Feb 92 Research ~--FY90-92

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Head Tracking and Head Mounted Displays

for Training Simulations $250K

6. AUTHOR(S)

Dr. M. Moshell
Mr. R. Dunn-Roberts
Mr. P. Moskal

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION ‘

Institute for Simulation & Training (IST) REPORT NUMBER

at University of Central Florida (UCF) VSL -

12424 Research Parkway, Suite 300 - TRO2-12

Orlando, FL. 32826

. NSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. NSORING /

PM TRADE (now STRICOM) ASENCY REPORT NUMBER
12350 Research Parkway Contr

Orlando;FL—"32826 e et

N61339-90~C-0041

11. SUPPLEMENTARY NOTES

This document is 1 of 2 tasks on the Ref. Contract. A second document "Dynamic
Terrain" completes the contract tasking.

Unrestricted-Unclassified

116

13. ASSTRACT (Maximum 200 wonds)
A 2 Part Task. .
The first task constructs a 6 monitor display around a Simulated Abrams M1Al Tank
Commander location, The scene is displayed on three monitors at a time and
switches to an adjacent three as a function of the head motion sensed from the
Tank Commander. Production simulator difficulties were studied.

The second task integrates 'eye phones' and Cyher Face' to various image
generators, especially ESIG500 and SIMNET IG. Simulation usefulness issues
were researched.
92-13656
This document hes been appioned I GO ST
for public release and sale; its
| disuibution is unlimited. .
SRR e e————
14. SUBIECT TERMS -15, NUMSER OF PAGES
SIMNET, Head tracking display, work stations, image generators. el ————
16. PRICE CODE
- L
. ® FICATION]18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. L'Mi(ATION OF ASSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified o
NSN 7540.01.280-5500 Standard Form 298 (Rev. 2-89

B e AT AR A TR AT .

SR S M A M M a E a .

M A A B A a2 A 't

Contract Number N61339-90-C-0041
PM TRADE

February 5, 1992

Head Tracking and
Head Mounted Displays

”&ﬂ for Training Simulation

DiiC AL
U. @00t d

Final Report

Juastingation '
- ———"- -~ - — = Visual Systems Laboratory
BY L
Diat ib::tion | .
N - . e . .4.__..4’
Avaiiabui - oL :
e - —
Aveil a8 !
D'St S‘:Cl.'t’f E
: ‘ .
A-| — iST

Institute for Simulation and Training
12424 F.esearch Parkway, Suite 300
Orlando FL 32826

University of Central Florida
Division of Sponsored Research

iST-TR-92-12

CINST

Head Tracking and Head Mounted

Displays for Training Simulation
Final Report

The body of this report is VSL Document VSLM92.4. 'his document is the Final Report of
a two year project under Contract N61339-90-C-0041, sponsored by the Army Project
Manager for Training Devicas (PM TRADE).

All opinions herein expressed are solely those of the authors.

Contract N61339-90-C0041
PM TRADE

February 5, 1992

Visual Systems Laboratory
IST-TR-92-12

Prepared by
Richard Dunn-Roberts, Project Manager

J. Michael Moshell, Kevin Uliano, Pat Moskal

Reviewed by

Brian Goldiez

Institute for Simulation and Training + 12424 Research Parkway, Suite 300 Orlando, Florida 32826
University of Central Florida « Division of Sponsored Ressarch

FINAL REPORT

Head Tracking and Head Mounted Displays
for Training Simulation

Richard Dunn-Roberts, Kevin Uliano, Pat Moskal, Michael Moshell
(The Body of this Report is VSL Document 92.4)

Visual Systems Laboratory
Institute for Simulation and Training
University of Central Florida
Oriando, FL 32816

6Feb92
Abstract

This document is the Final Report of a two year project at the Institute for
Simulation and Training supported by PM-TRADE under contract
#N61339-90-C-0041.

This project has two components. The first component is the construction
of a six-monitor head-tracking display (HTD) to provide the tank
commander (TC) in a SIMNET M1A1 Abrams simulator with a 360-degree
panoramic view into the SIMNET database, without requiring additional
image generation hardware. This component successfully demonstrated
the concept and highlighted some of the difficulties to be overcome in
building a production simulator using HTD technology.

The second component is the investigation of low cost head-mounted display
(HMD) technology for simulators. This component included attaching
HMDs to several available realtime image sources, and describing the
difficulties and techniques used to overcome the difficulties. Ultimately,
four image sources were used:

¢ Silicon Graphics Iris workstations;

¢ An Evans & Sutherland ESIG-500 image generator;

¢ The SIMNET simulator's image generator; and

¢ A low-cost (PC-based) Sense8/Intel DVI graphics system.

The two best-known commercial HMDs costing less than $10,000 were
evaluated: VPL's EyePhones (in two versions) and PopOptix Labs’
CyberFace. Of the three product versions, only VPL's second-edition
EyePhones approached an acceptable level of resolution for training
simulation. The devices' limitations, and technical trends, are discussed,
with recommendations for further studies.

1. Introduction
II. Head Tracking Technology
I11. Head Tracking SIMNET Commander Display (HTD)

A. The Head Tracking Display Testbed
B. Visual Parameters of the Testbed

C. Experiments with the Head Tracker
D. Results

E. Conclusions

IV. Low Cost Head Mounted Displays (HMD)

A. Head Mounted Display Technology

B. Driving The EyePhones with Silicon Graphics Workstaticns
C. Attaching a HMD to the SIMNET System

D. Attaching a HMD to the ESIG-500 System

E. Attaching a HMD to the Sense8 System

F. Conclusions

V. Appendices

A. Paper presented at SIMTEC '91 Conference

B. Photographs of Head Tracking Display

C. Photographs of Head Mounted Displays

D. Software to Control HTD Video Switcher

E. Schematics of HTD Video Switcher

F. Software to Control SIMNET Head Tracking Display
G. Software to Control ESIG-500 Head Tracking Display
H. Summary of Results of HTD Experiments

I. Computations concerning EyePhone Resolution

J. Extending the SIMNET Head-Tracking Display

L Introduction

One of the most obvious limitations of low-cost simulation technology, as
exemplified by the the SIMNET team training system is the restricted field
of view. In a real M1A1 tank, six "vision blocks" (periscopes) provide the
Tank Commander (TC) with essentially a complete 360 degree field of view
(FOV). Each block spans approximately a 45 degree static horizontal FOV,
but the TC can move his head from side to side to view more than 60
horizontal degrees of the surroundings from each vision block.

In the SIMNET system, in order to achieve an acceptable pixel density for
target acquisition and navigation, three 320 x 128 visual displays were

.2 -

placed side-by-side to simulate one M1A1 commander’s vision block. Each
display was set to span 8 degrees (vertical) by 20 degrees (horizontal), thus
achieving a 60 degree effective horizontal FOV, and a pixel density of 3.75
arc-minutes per pixel in the horizontal direction.

SIMNET's vertical pixel density is essentially the same, and
henceforth we will discuss only horizontal FOV and pixel densities.
The aspect ratio (horizontal to vertical) of 2.5:1 will remain constant
throughout these discussions unless noted.

In the healthy human eye, an image centrally presented can generally be
resolved into details spanning 0.5 arc minute, and so clearly the SIMNET
visual system is far from realistic. However, its designers determined that
within the criterion of a 3.5 km maximum range to horizon, 3.75 arc
minutes was adequate for target detection when targets were moving
against the simplified background of a SIMNET database.

The SIMNET TC turret rotates under the control of a thumb switch on the
simulator's machine gun control handle, requiring approximately 12
seconds to rotate 350 degrees. A stop prevents complete rotation (to protect
electronic cables from twisting). This can be a severe limitation if the TC
needs to look in a direction opposite to the tank cannon.

The central hypothesis of this study was that the tank commander in a
SIMNET unit is operating in a handicapped mode, compared to a real tank
commander. First, an operational TC usually operates in POP-hatch
("Protected Open Position") mode unless under direct attack or
chemical/biological threat conditions. The massive hatch cover is
horizontally suspended above the hatch opening to protect from downward
fire or fragmentation, but the TC is looking out through a horizontal slit.

No equivalent POP-hatch experience is provided in the SIMNET system.

Second, even when forced to close the hatch, the TC still has six high-
quality vision blocks and the ability to see in any direction as rapidly as he
can turn his head.

The questions we therefore proposed to study were the following:

1. For closed-hatch operation: would a TC's performance in
navigation and target acquisition be improved if the experience of
having six instantaneously available vision blocks were simulated,
instead of requiring the TC to rotate the SIMNET cupola?

2. For POP-hatch operation: would it be possible to provide visual
stimuli, using low-cost head mounted display technology, so that a
TC's POP-hatch performance in navigation and target acquisition
could be incorporated into the SIMNET experience?

Despite numerous difficulties in working with SIMNET prototypical
equipment, some answers to these questions were achieved. We first
discuss common technical elements in both projects, namely, the ability to
track the subject’'s head position and orientation. We then discuss the HTD
project, which took place mostly in 1990. Finally we discuss the HMD
project, which took place in 1990 and 1991.

IL Head Tracking Technology

During the first two months of this task (February-March 1990) we engaged
in a literature and product-information search. This search provided us
with information that was useful for both projects under this task. In
general, this search provided us wit:. information concerning availability
and cost of head-tracking equipment and head-mounted displays.

In the realm of head-tracking, at the time of the start of this project, there
were only two feasible schemes: magnetic and infra-red. The only IR
tracker we came across was used in the CAE-Link head-mounted display.
This system was custom-built, and replication would have cost at least
$20,000 (our estimate). At the time of the start of this project, the Polhemus
magnetic tracker was the only commercially available magnetic tracker,
although others have since become available. For this reason, the
Polhemus Isotrak was chosen. This is a six degree-of-freedom ten-bit
tracking device in wide usage.

The Polhemus product comes in two versions: an economical model for
$3,000, and a high-resolution model for $10,000. The economical model
tracks spatial positions with a static accuracy of 0.13 inches while source to
sensor separation is less than 15 inches, and a static angular accuracy of
0.85 degrees within this range. Data is reported with a resolution of 0.9
inches and 0.35 degrees.

The high resolution model tracks spatial positions with a static accuracy of
0.1 inches, and angular position accuracy of 0.5 degrees. Its resolution of
reported data is .046 inches and 0.1 degree, within a 30 inch radius of the
emitter. Both models respond at a 30 hz rate. Two sensors can be used with
a single emiter and a time-multiplexed System Electronics Unit, thus
cutting in half the effective response rate of both sensors.

We selected the economy model upon the recommendations of VPL
Research, since it was incorporated with the VPL EyePhones, and it proved
adequate. The high resolution tracker is usually used for CAD applications
as a manual input device (stylus), where extreme spatial accuracy is
needed. The head tracking function is less demanding of positional
precision.

Since our purchase of the Polhemus, a new 12-bit magnetic tracking device

has become available. This higher resolution device, known as the Bird, is
made by Ascension Technology, has some advantages, as well as one

-4 -

disadvantage. The primary advantages are higher resolution and less
sensitivity to environmental distortions (metals, EMF, etc.).

The one known disadvantage of the Bird products is a two-foot radius of
accuracy, vs. a three-foot radius for the Polhemus. A version of the Bird
with an eight-foot radius of accuracy is expected soon from Ascension
Technology in 1992, as well as a Flock of Birds that can use up to six sensors
with a single source. The Bird products cost around $3000 for a sincle
sensor/emitter pair, equivalent to the economy model from Polhemus. The
Flock of Birds uses a single emitter and several (up to six) sensors, each
with its own electronics module. Thus no time multiplexing is required and
all devices continue to respond at 30 hz. Each additional sensor/electronic
setup costs approximately $1500.

In 1992 as the project is ending, a number of other tracking devices are
becoming available. Logitec has produced an acoustically based "3d
Mouse", which uses a triad of ultrasonic emitters arranged in a triangle
approximately 15 cm on a side, and a triad of detectors approximately 10 cm
on a side, attached to a three button mouse. Unlike the Polhemus and Bird
products, the 3d mouse will not function in all orientations; the sensors
must "see” the emitters. This product costs $1000.

IIL Head Tracking SIMNET Commander Display (HTD)

The purpose of the HTD is to simulate the M1A1 Abrams tank
commander's (TC) cupola, which has six vision blocks. Each vision block
has a 45x15 degree field of view (FOV) (approximately) . SIMNET provides
a single 60x8 degree FOV using three channels of the image generator.

The HTD design allows us to drive six monitors with the TC's three
channels of the SIMNET image generator. This is accomplished through
the use of a video switcher and the Polhemus magnetic tracker, under
control of an IBM PC-AT. The control computer reads the tracker, controls
the video switcher, and controls the direction of view (DOV) on the image
generator (IG).

We first describe the video switcher and display setup. We then discuss the
experiments which were conducted.

A. The Head Tracking Display Testbed

In the HTD, only the three monitors in front of the TC's head are active at
any time, with each monitor presenting approximately the same FOV as a
real vision block. This gives the TC a 140x16 degree instantaneous FOV.
Under control of the PC-AT, the video switcher and the Polhemus tracker
activate the three monitors in front of the TC. As the TC turns, the control
PC shifts the output signals to the appropriate three monitors. The
switcher is designed to give an instantaneous change of view in order to
eliminate the time now required for the cupola to rotate mechanically

.5 -

through the same distance. For example, a 180 degree rotation that
requires six seconds in the mechanically rotating cupola takes
approximately one fifth of a second in the HTD.

The video switcher was designed and constructed by IST. It takes four
composite video input signals and routes them to any of six output channels
under the control of the control computer. (Figure 1)

The control computer also controls the DOV of the IG through a digital-to-
analog converter. This converter mimics the potentiometer in the
mechanically rotating cupola to change the DOV of the IG.

The control computer reads the Polhemus magnetic tracker and, based on
the orientation of the user's head, sends signal to the IG to update the DOV.
The control computer then routes the four input channels to some subset of
the six monitors. The routing of input signals to output channels is
completely configurable, and any input signal can be routed to any output
channel, the only restriction being that only one input signal can be routed
to a particular output channel at a given time.

Three of the input channels come from the SIMNET image generator, and
the fourth input channel is available for neutral imagery from any video
source, or can be left blank.

The control functions of the PC-AT are provided by a combination of
hardware additions to the PC-AT and the simulator host and control
software on the PC-AT. The hardware additions to the PC-AT consist of a
parallel output channel with some logic circuitry and a digital to analog
converter. The output channel is used to transmit control signals to the
video switcher, and the converter is used to control DOV on the image
generator. Both the output channel and the converter reside on a single
prototype bus card (called the interface card) in the PC-AT. In addition to
this interface card, a game port card has been added to read the
synchronization signal from the simulator host.

The modification to the simulator host consists of a small circuit that
detects when the simulator A/D card has been read by the host. This circuit
sends a signal to the control PC-AT to allow for a measure of
synchronization.

The control program for the HTD is fairly simple at a conceptual level.
(Figure 2.) It has two basic responsibilities: sending the TC's DOV to the
IG, and telling the video switcher which input signals to route to which
channel. The control program reads two inputs: the magnetic sensor and
the synchronization signal. The only two outputs from the program are a
control word for the IG, and a control word for the video switcher.

HTD El ic O -

The outputs from the image generator are in the form of four signals: red,
green, blue, and sync. There are three channels: Tank Commander Left
(TC-L), Tank Commander Middle (TC-M), and Tank Commander Right
(TC_R). To reduce cabling requirements and switcher complexity, the
signal is encoded using a Vid I/O video encoder. Output signals from each
channel of the IG are connected to the RGB and Sync inputs of a Vid I/O
box, as shown below. The connecting cables use BNC connectors. The
terminating switches for each channel are set to OFF (vice 75 Ohm) so that
the RGB and Sync outputs can be routed to the standard SIMNET monitors.
This prevents requirements for recabling when the HTD is not in use.

Polhemus Video Switcher
Position/ Video Switcher
Orientation Control Word
Packet

HTD
Control
Program

IG Control

Signal Word

Image Generator

Figure 2. HTD Control Program Block Diagram

From Simulator IG

Néééé

Green Blue Sync

VvID 1/O0
Red Green Blue

9799

To Simulator Monitor Comgosite Vi(.ico
to Video Switcher

Figure 3. VID I/O Video Encode (x three)

The composite video outputs of the Vid I/O boxes (Figure 3) are connected to
the inputs of the video switcher. The input connectors of the video switcher
(Figure 4) are labeled 0, 1, 2, and 3. The outputs of the IG are connected to
the inputs of the video switcher as follows (with video switcher input
channel 3 left open):

Video Switcher Input Ct]
TC-L 0

TC-M 1

TC-R 2

The outputs of the video switcher are then connected to the color monitors.
These outputs are labeled 0, 1, 2, 2, 4, and 5. The video switcher should be
switched on prior to connection to the PC in order to prevent damage to the
video switching chips.

From Simulator IG

ON/OFF ON/OFF
FUSE INDICATOR SWITCH

||
INO© IN1 N2 IN3
PYYYQ

o]

UT O

Q
@]
O
u

To Monitors

Figure 4. Video Switcher External View

The interface card is connected to the video switcher through a standard six
foot DB-25 male to DB-25 male parallel cable. The digital to analog
converter is connected to the SIMNET using a cable with a BNC connector
at thr?‘ interface card end and a four pin connector at the SIMNET cupola
interface.

The select lines of the video switcher are addressed from the interface card.
The interface card has a sixteen bit latch (really two eight bit latches that
can be addressed as a single sixteen bit latch) that can be written from the
control program using C or assembly language instructions. See figure 5.
The base address of the latch is 30Ch. The control program outputs a
sixteen bit word to the latch. The first four most significant bits of the
addregs will be ignored, and the twelve low order bits are output to the video
switcher.

SV SV
uF
0.1uF
s1 S0 "rl ;I fI
1 lz 31 12 4
NCL S
DECODER "C-E’g
1 2 3

0
7 INoO Jl“

$ IN1 I\ 75 OHM
+
10 IN 2 y 1w
14
n AN—
11IN3
- .8 pF
11K
uf T

MAX 454

Figure 5: Video Switcher (One module of Six). Functional Diagram

The TC's DOV will be controlled by a digital to analog converter. In its
normal operation the field of view is controlled by a potentiometer mounted
on the rim of the cupola track. The voltage dropped across the pot varies as
the cupola rotates. The voltage drop is converted to a digital value by a A/D
converter in the simulator and the DOV is modified accordingly. The HTD
bypasses this potentiometer and sends a control voltage from the D/A
converter on the interface card to the simulator's A/D converter. The D/A
converter is controlled similarly to the video switcher, by outputting a
control value to a sixteen bit latch on the interface card. The base address
of the D/A converter is 302h.

HTD Physical Conf .

A simple plywood structure was created to support six Sony 13" video
monitors. Standing on six "2 x 4" legs, the hexagonal structure had a
sturdy planar top approximately 65" above the floor, w.ch a 30" diameter
central hole. A laboratory swivel chair placed on a 6" high platform
provided a seat for the subject, whose head projected through the hole in the
table into the simulated cupola.

The SIMNET cupola was simulated by a cardboard enclosure. Black poster
board was fabricated into a hexagonal chamber 30" in diameter, with six
apertures the same size as SIMNET vision blocks. Four sided cardboard
cones connected these openings to the Sony TV screens, providing the
appropriate fields of view. See Figure 6 below.

-10 -

From
Video
Source

1

Video -
Active

6,
r 4
Switcher :
@ _____ Subject
Head- -Q
HTD
Monitors

Tracker
Figure 6: Head Tracking Display Testbed

Because the testbed was in a different room from the SIMNET M1A1
simulator, it was necessary to use walkie-talkies to communicate between
experimenters, and the SIMNET intercom for the TC subject to
communicate with the driver. These intercoms proved troublesome and
unreliable, as has been reported in general with the SIMNET system.

B. Visual Parameters of the Testbed

It was necessary to use three SIMNET channels to drive the three turned-
on vision blocks in the HTD system for several reasons. First, these were
the only trio of IG channels available to the experimenters. Second, we were
comparing a new candidate SIMNET display to the existing displays and
thus should be using the same visual databases. Third, a fair comparison
should put the same amount of information in front of the subjects in both
the experimental and control groups.

However, a SIMNET TC channel was designed to support an 8 x 20 degree
field of view. The HTD required that this be re-scaled to span 16 x 40 degrees
which represents a 4x increase in angular FOV. Under normal circum-
stances, this would be expected to overload an image generator's polygon
and pixel capacity. The experimenters hoped to "get away” with this
situation for the following reasons.

-11 -

Each SIMNET channel is actually paired with another. Each TC channel is
paired with a driver channel, with the TC channel having priority. The
combined channel has a polygon capacity of 2000 polygons per frame, at 15
frames per second. SIMNET visual databases are constructed under the
assumption of at most 1000 polygons being visible at one time, allocated
approximately as follows: 300 terrain polygons, 300 culture (buildings, etc.)
and 400 target (tank, Bradley ...) polygons.

Thus, the database was expected to contain at most 300 polygons in any 8 x
20 degree FOV. If a FOV was selected with no culture or targets, even a 4
fold increase in this "worst case" terrain polygon count should have
remained within the 2000 polygon capacity of the IG (although we would
expect the driver's channels to degrade when the maximum single channel
capacity of 1000 polys/sec was exceeded.)

This assumption would only be valid if the view contained few or no culture
and targets; or if targets occurred in settings where the polygon density for
terrain was well below the maximum design limit. As it turned out, these
conditions were often but not always met. Route planning and the search
for ways to conceal targets sometimes led to the use of the most complex
available terrain, which increased the terrain polygon count.

The SIMNET image generators' performance degraded under these
circumstances, producing irregular visual artifacts such as flickering and
occasional missing frames. However, a more severe problem with the
SIMNET IG's soon manifested itself.

Because of chronic difficulties in accessing the source code for SIMNET
during the transition from BBN to Loral's operation of the SIMNET-D site,
the project attempted a "black box" approach to SIMNET. That is, we
intended to drive the IG/simulator system by stimulating it with signals,
but with no modifications to the internal code. Thus, to specify the viewing
direction of the TC cupola, an analog driving voltage (described in the
previous section) was provided, to emulate the output of the cupola tracking
potentiometer.

This voltage changed values whenever the subject's head direction
changed. However, the resulting change of IG view direction, and the
switching of channels in the video switcher, were unsynchronized,
resulting in the unfortunate situation where the subject saw a "pop", or a
temporarily incorrect view, on the screen to which he had just turned. An
attempt was made to detect the timing of the SIMNET's reading its own
A/D converter, but without full access to the scheduling algorithm in the
sim&lator, this external approach could not fully solve the synchronization
problem.

Consequently, two classes of visual artifacts occurred in the Head Tracker
which were not present in the rotating TC cupola (the control condition for

.12 -

the experiment). As will be seen, these artifacts were reported by the
subjects as having a strong influence on their performance.

C. Experiments with Head Tracker

The experiment utilized a within-subjects design, in which each subject
receives all conditions in a counterbalanced arrangement. To accomplish
the counterbalancing, a Latin Square design is employed, in which each
condition immediately preceds and follows the other three conditions once.
For example, the first four subjects receive the condition orders shown
below in Figure 7.

Subject iti r
1 Cl1C2C3C4
2 C3Cl C4C2
3 C3C4C1C3
4 C4C3C2C1

Figure 7: Latin Square Condition Ordering
The four conditions are:

C1: Terrain Reasoning (Navigation) using Head Tracking Display
C2: Target Acquisition using Head Tracking Display

C3: Terrain Reasoning using the Standard TC Cupola

C4: Target Acquistition using the Standard TC Cupola

Terrain Reasoning Task.

Subjects are shown a 2D paper and pencil map of a section of range at
Hunter-Ligget. A start point, an end point, and a general vehicle path are
marked on the map, and the Subjects are given two minutes to familiarize
themselves with the map before being placed in the M1 simulator or HTD
testbed. The subject will then instruct a confederate driver via the SIMNET
intercom to drive the stipulated route. The Subject notifies the experimenter
when he believes he has arrived at each checkpoint.

Dependent measures include the total time taken to traverse the intended
route, and gross location accuracy. The location accuracy is measured by
overlaying the Subject’s laminated map with marked locations onto the
master locator map and measuring the distance from the marked location
of the checkpoint to the correct location. The Subject's actual track is also
recorded using a simultaneous video/audio recording from a Plan/View

.13 -

Display, with the audio track containing the Subject's instructions to the
driver. .

Target Acquisition Task

Subject is shown another 2d paper and pencil map of a range at Hunter
Ligget. As in the Terrain Reasoning Task, a start point, an end point, and a
general vehicle path are marked on the map, and the Subject is given two
minutes to familiarize themselves with the map before being placed in the
simulator or testbed. A confederate driver then drives a predetermined and
well-practiced route that corresponds to the path outlined on the map.
Targets in the form of T-72 tanks are placed along the path at various
bearings, distances and orientations.

When the Subject has acquired a target, he will say "Target [right or left]",
indicating that the target was located either to the right or left of the
vehicle's path of motion. The TC's voice will be recorded and synchronized
in time with video taken from the Plan View Display (PVD). The dependent
measure for this task will be the number of targets correctly located.

D. Results

Presumably because of the factors described in Visual Parameters above,
the results reflect no clear preference for either the traditional SIMNET
cupola or the HTD. On the terrain reasoning task, two courses were used.
On both courses, subjects performed better (by the latency measure) during
the early portion of the course (between Checkpoints 1 and 2) with the
SIMNET cupola, and better during the period between Checkpoints 2 and 3
with the HTD. This could perhaps be interpreted as saying that subjects
were learning how to take advantage of the HTD during the session.

With regard to navigational accuracy, medians show no clear differences.
Over Course 1, the cupola showed a less accurate performance; whereas for
Course 2, the opposite was observed.

With the target acquisition task, results were similarly unclear. For course
1, the HTD was more successful. For course 2, the cupola was slightly more
successful.

Twelve subjects were used. The variance in performance was very large,
and no statistical significance can be attributed to any of the above
observations. However, the wide variance in itself testifies to the effect of the
basic technical problems, on the experiment's ability to measure results.

A subjective evaluation measured preferences and opinions of subjects. In
general, they expressed a slight subjective preference for the HTD when
asked questions such as "Rate your ability to perceive locations accurately:
1=very easy; 5=impossible". However, the same subjects voted 8 to 4 in favor
of the SIMNET cupola when asked "which simulation do you think would

-14 -

be most beneficial for training” and 7 to 5 for the SIMNET cupola when
asked "Which simulation do you prefer".

Most significantly, when asked "Do you think your performance would
have changed if the head-tracked display did not have popping and
flickering?", 11 of the subjects responded YES.

Additional Results. In response to a request from the sponsor, a
preliminary concept paper for an advanced version of the Head Tracking
Display for POP-hatch operation was developed. This device would have
used large monitors to provide an open-hatch display, rather than a
simulation of a rotating cupola. This concept paper is attached as Appendix
J.

E. Conclusions

1. It is technically possible to build an economical head tracked display
device, with video switching to distribute three channels across six
displays. The entire prototypical hardware suite cost less than $8,000 in
parts, not including the image generators or labor to assemble. A
hardened, “simulator ready” version of this equipment would cost perhaps
$12,000 in materials, with a fiberglass shell in place of the wooden
superstructure.

2. It is technically risky to attempt to use an image generator for any
purpose without the full support of its vendor. Artifacts may result which
cannot be overcome via purely external means, and which will render
experiments difficult or meaningless.

3. The Polhemus magnetic tracking system is reliable and simple to use.
However, its latency must be carefully factored into the initial design of the
viewing system, as the time required for serial transmission of information
is a significant portion of a simulation cycle.

-15 -

IV. Low Cost Head Mounted Displays (HMD)
A. Head Mounted Display Technology

We looked at various types of head-mounted display technology. HMD’s can
be opaque (in which only the artificial world is seen) or semi-transparent
(in which both artificial imagery and real objects are seen). To date, two
main types of HMDs have been constructed.

Pupil-Forming Systems. One type of display is optically implemented as a
pupil-forming system!. Again, there are two types of pupil forming HMDs.
The first uses small (1/2 inch diameter) monochrome CRT's mounted on
the side of the helmet. The image is projected through on helmet optics and
bounces off a beam-splitter (for semi-transparent operation) or a mirror,
into the users eyes. This kind of pupil-forming system costs on the order of
$50K and up. Honeywell manufactures this kind of HMD. Monochrome
CRT’s are usually used to minimize weight.

A variation on these systems uses fiber optics to pipe the image from off-
helmet image sources, such as GE light valves. This adds color capability,
but is also very expensive. The CAE-Link helmet is of this type.

Infinity-Optics Systems. The other type of HMD uses two small LCD
displays mounted directly in front of the user’s eyes. Wide angle plastic
lenses increase the apparent field of view and provide a virtual image at
optical infinity. These systems provide color imagery at a lower cost than
the pupil-forming systems but have lower resolution. The NASA VIEW
system is a monochrome version of the LCD helmet, and VPL's Eyephones
is “nominally” a 442 x 238 pixel color version. This actually represents the
number of distinct single-color pixels which are arranged in “triads”. The
effective resolution if these triads are regarded as single “pixels” is 256 x
137.

The one-eye field of view of the EyePhones is 86 degrees, which yields a
horizontal angular resolution of 20 arc minutes per pixel. With a vertical
FOV of 76 degrees, the vertical angular resolution is 33 arc minutes per
pixel. For details of these computations, please see Appendix I.

VPL has released a high resolution version of the Eyephone with twice the
horizontal and vertical resolution, but its cost is approximately $40,000,
again making it fairly expensive.

1The exit pupil of a pupil-forming optical device is a disc-shaped region in
space, to which all of the light from the system converges and from which it
diverges. When the eye’s pupil is entirely within the exit pupil, the full field
of view is perceived at maximum brightness. If the eye’s pupil partially
overlaps with the exit pupil or is too near or far from the image source,
“vignetting” (partial occlusion of the image) occurs, and brightness and
clarity diminish.

-16 -

We are using the medium resolution Eyephones for.the HMD Project, and
also acquired a variant for the Evans and Sutherland ESIG-500, called
Cyberface II by PopOptix Labs (Boston, MA). This firm is owned by Eric
Howlett, who produced the lenses for the original VPL Eyephones.

Other Research. There are several on-going low-cost HMD R & D projects
going on around the country at this time. One of the most ambitious is the
development of micro-laser scanning displays. This project is going on at
the University of Washington in Seattle, and, if successful, could provide
low-cost, high-resolution, lightweight HMD's in the medium-range future
(1993-95).

A second HMD project of interest is underway at IST. Dr. Tom Clarke, with
DARPA funding, is constructing an experimental variable-acuity HMD.
Using custom electronic hardware, Dr. Clarke's device will pre-distort
imagery to concentrate information on the central visual field. A uniform
(and thus low-cost) LCD image source will be used. Nonlinear optics will
then reverse the pre-distortion, and will result in a varying pixel density in
the central and peripheral visual fields. Prototypes should be available in
1993.

B. Driving the EyePhones with Silicon Graphics Workstations

As a first experiment, a testbed was constructed in conjunction with the
Dynamic Terrain Project, another PM-TRADE sponsored IST project. A
suite of software was constructed which provided stereo displays from two
different Silicon Graphics (SGI) workstations, and which was networked to
two additional workstations providing models of moving tanks.

It is necessary to set output code in the SGIs to produce NTSC composite
video, and to use two Vid I/O boxes to convert the resulting RGB signals to
composite. This was accomplished without difficulty, and the Eyephones
responded well. The Polhemus controller provided with the EyePhones was
interfaced to the SGI via a serial port. This was IST's first experience with
Polhemus devices, and served to open the pathway for other uses including
the HTD display previously described.

These early VPL Eyephones suffered from a number of problems. On two
occasions the devices failed and were returned to the vendor for warranty
repairs. The diffuser screens produced a "screen wire" appearance which
was quite distracting and had the opposite effect than intended, which was
to provide a subjective pixelization of the image. Nevertheless, the first use
of the Eyephones was successful in showing that stereo images could be
displayed, inter-ocular adjustment provided in software, and a SpaceBall
navigation paradigm used with workstation signal sources.

.17 -

C. Attaching a HMD to the SIMNET System

The original idea was to explore EyePhones as a poééible POP-hatch
viewing device. Several obstacles presented themselves, as a consequence of
the inaccessibility of the SIMNET system's internal details:

1) There was no convenient way to achieve vertical deflection, comparable to
the horizontal deflection achieved by the HTD tracker via an emulation of
the cupola potentiometer. Instead, the SIMNET IG accepted only the
position of a three position switch, to tilt the FOV upward or downward by
five degrees from the horizontal.

2) Stereo viewing required the use of two channels of imagery with a
horizontal offset, and precise control of the distance between the views. No
two SIMNET channels, as originally set up, had these properties. A data
block was identified which could respecify fields of view, etc (and was used
in the HTD for this purpose).

3) The viewing blocks in SIMNET had a 20:8 aspect ratio, whereas the
NTSC signal required for EyePhones required a 4:3 ratio. Only the Stealth
configuration of SIMNET would support this viewing situation, and IST's
Stealth system had limited hours of availability.

4) Tank commanders often need to look back and forth between the "outside
world" and a paper map, but EyePhones did not support this possibility. An
alternative would be to treat the EyePhones as binoculars, which could be
raised to the face or put down when map viewing was desired.

Meanwhile, IST received from PM-TRADE a supposedly working set of
source code for the SIMNET hosts. With the assistance of Warren Katz, one
of the software's authors and now a private consultant, IST began to
decipher and recompile the SIMNET simulation host source code.

In order to investigate the possibilities, we embarked upon an attempt to
integrate the Polhemus system into the SIMNET source code. After some
effort with Warren Katz' assistance, we were able to integrate the
Polhemus into the Simnet code. We built an internal analog to the external
version of the HTD. In essence, we turned off the code which read the
cupola potentiometer, and forced in the values from the Polhemus. We
managed to extend the Polhemus code to compensate for the "dead spot"
where the cupola could not rotate. Thus, full 360 degree rotation about the
vertical axis became possible.

The integration of vertical motion was attempted. The problem was traced
in the source code back to the way the cupola rotation was stored as an M1
state variable. Only the rotation about the vertical axis is stored. Substantial
work would be required to change the source code so as to allow rotation
around three axes. Without BBN support, this was not feasible.

-18 -

We also considered modifying the Stealth system's source code so as to take
advantage of its ability to move the viewpoint freely, but found that only
about half the Stealth code was actually available. As time and resources
were running out, we abandoned further efforts to integrate the EyePhones
with the SIMNET system.

D. Attaching a HMD to the ESIG-500 System

The second task attempted under the HMD project was the use of a low-cost
head-mounted display on the Evans and Sutherland ESIG-500 image
generator. This image generator has several characteristics that made it
an attractive platform for this work. First, since the image generator was
not tightly coupled with a training simulator, it was hoped that control
would be a simpler matter than on the SIMNET, where image generator
control code was imbedded inside simulation code. Secondly, it was felt that
the higher update rate of the ESIG-500 (50 Hz vice 15 Hz on SIMNET) would
provide information on the effects of update rate on users.

The original intention was to use the VPL Eyephones with the ESIG-500.
We thought the ESIG-500 was capable of running at a visual system vertical
refresh rate (update rate) of 60 Hz. This would allow us to use video
encoders to encode the red, green, blue, and sync signals into an NTSC
composite signal, which could be used by the Eyephones. Evans and
Sutherland told us this would be possible if we did a hardware modification
by replacing the timing crystal on the ESIG with a faster crystal, and if we
were willing to accept a reduced polygon budget (they said that the update
rate times the polygon budget was an invariant, so that as update rate
increases, polygon budget decreases). This also would require some
microcode patches, which Evans and Sutherland agreed to provide.
However, tests showed that the fastest update rate we could achieve was 57
Hz. This was not close enough to the rate required to obtain an image on
the Eyephones.

Additionally, we attempted to modify the Eyephones to bring the signal
synchronization rate down to 57 Hz. However, it was determined that the
cost of producing a crystal that would allow the Eyephones to synchronize at
57 Hz was prohibitive, since it was not a standard crystal and would require
a special production run to create. Additionally, it was reported that the
circuitry would require substantial modification to allow the Eyephones to
synchronize at 50 Hz, even with commercially available crystals.

The next solution we explored was the use of scan converters to modify the
ESIG-500 signal from 50 Hz to 60 Hz. Each scan converter could modify one
channel and cost $15,000, for a total cost of $30,000. This was clearly a
prohibitive cost.

Finally, we were able to locate a different HMD, the Cyberface II, by Pop
Optix Labs, that was capable of accepting separate red, green, blue, and

-19 -

synch signals. The Cyberface II is also capable of synchronizing at both 50
Hz or 60 Hz, and therefore can be used directly on the ESIG-500. The ESIG-
500 produced a signal with levels inappropriate for the Cyberface II. The
images were washed out and detail was difficult to see. These signal
strength problems that were solved by circuitry designed and constructed at
IST, and incorporated into a housing with the power supply for the
Cyberface II. This circuitry provides the ability to adjust each of the red,
green, and blue signals individually. This allows us to adjust the
brightness and color balance for each display in the Cyberface II HMD
system, even where differences in source signals exist. The Cyberface II
will be described in more detail later in this report.

Use of a head-mounted display with an synthetic image source such as the
ESIG-500 requires control over the image source. With the ESIG-500 this
control can be effected through the terminal keyboard attached to the ESIG-
500 or through a host computer connected to the ESIG-500 with an Ethernet
network. Because it is desirable to use a magnetic tracking device to control
eyepoint orientation and, to a lesser degree, eyepoint position, it is
necessary to use a host computer controlling the ESIG-500 over an Ethernet
connection. The magnetic tracking device is connected to the host
computer using a serial connection.

-20 -

Polhemus
Isotrak

Serial Link

Host Computer:
IBM PC Clone
with 3Com
Ethernet card

Dedicated
Ethernet Link

Visualization
Platform:
ESIG 500

@ Cyberface I

Figure 8: ESIG/CyberFace Configuration

.21 -

The control program can be summarized by the pseudocode below:

initialize serial port
initialize tracker
initialize Ethernet
initialize viewport

while (done) {

]

get a position/orientation record from the Polhemus

determine the center screen (the one the TC is looking at)
if (center screen changed) set screen changed flag

look up the corresponding IG control word
look up the corresponding video switcher control word

if (syne signal from IG) {
if (center screen changed) (
send BLANKING control word to the video switcher
set delay counter
clear screen changed flag
set change the switcher flag
)
send the IG control word
}

if (change the switcher) {
if (delay counter > 0)
decrement delay counter
else (
send video switcher control word
clear change the switcher flag

The ESIG-500 host interface follows IEEE 802.3 hardware and software
standards for communication protocol. The communication protocol
frame format is shown below:

pream
ble

ofd | dest |src
sync | addr|addr | len8th data cre

Figure 9: Frame Format

The preamble, sfd sync, and crc fields are filled in by the Ethernet
hardware. The user on the host computer specifies the destination address
field, the source address field, the length field, and the data field. The data
field contains the command(s) to the ESIG-500 from the host computer. The
data field can contain multiple opcodes, with each opcode being followed by

.22 .

any required parameters. The data field must be at least 46 bytes and no
more thax 1500 bytes.

The Ethernet standard corresponds to the Physical Layer and the Data Link
Layer of the OSI protocol stack. Higher level communications protocols,
such as IP and TCP, are not understood by the ESIG-500. For ease of
implementation, it was de-ided to use a PC clone as the host computer.
This provided easier access to low level Ethernet communication. It also
allowed isolation from network traffic (using higher level protocols) not
intended for the ESIG-500.

The Etherret card used to connect the host PC to the ESIG-500 is a 3Com 503
Ethernet adapter. The host interface library to control the ESIG-500 was
originally written in 80x86 assembler using Ethernet adapter control
libraries written by the 3Com company and provided with the 503 adapter.
The 3Com library was very poorly written. For this reason, for this project,
the host interface library was rewritten in the C programming language.
The new host interface library uses a public domain 503 adapter control
library, also written at IST.

For the purposes of this project, two functions were used from the ESIG-500
host interface library. These two functions are the escs() function call and
the esviewpoint() function call.

The esviewpoint() function gives us control over various aspects of the
viewport presented on each channel. This allows setting up the image
presented to each eye so that the user is able to fuse both images into a
three-dimensional image. Different people's eyes have different inter-
ocular distances (IOD), and this must be considered when setting up the
viewing parameters on each channel. Parameters to this function include
the channel number, the x, y, and z coordinates of the eye position, and the
heading, pitch, and roll angles of the eye.

These values must be specified for each eye. The esviewpoint() function is
called twice, once for each eye, during program initialization.

The escs() function gives us control over the position and orientation of the
eyepoint during run-time. This function is called repeatedly during
runtime to continually update the user's point-of-view, based on inp-its
from a magnetic head-tracker.

The ISOTRAK magnetic tracker used to sense head position and
orientation is connected to a serial port on the host computer. This part of
the software is similar to the code written to control the HTD described
above.

There are some hardware conflicts that may occur between the serial port
and the Ethernet adapter. The PC prioritizes interrupts based on IRQ

.23 -

levels. The Ethernet adapter can be set during initialization to use IRQ
levels 2, 3, 4, or 5. The serial ports on a PC typically use IRQ levels 3 or 4.
Care must be take to ensure that the IRQ level set for the Ethernet adaptor
do not conflict with the IRQ level set for the serial port.

Status of ESIG-500 Testbed

At the conclusion of the project, it is possible to demonstrate a working head
mounted display system with the CyberFace display and the ESIG-500.
There are still some problems with the head tracking software. However,
the principal obstacle to practical use of this system is the poor optical and
human-engineering properties of the CyberFace. The display is even
fuzzier than the first generation VPL EyePhones, and the head mount is
essentially unusable.

The University of North Carolina Head Mounted Display research
team led by Dr. Henry Fuchs has reached similar conclusions
regarding this device.

We remain hopeful that we can re-engineer the CyberFace for improved
performance, since it is the only presently available device which accepts
ESIG signals. A number of experiments are being contemplated, in
collaboration with the Army Research Institute, which would require a
display device with the rapid update rate and highr scene quality of the
ESIG-500, together with a more competent display device.

E. Attaching a HMD to the Sense8 System

In January of 1992, an opportunity arose to test the VPL EyePhones with an
extremely low-cost image source, to wit an IBM PC containing Intel DVI
boards. The PC was provided by an industrially funded IST project; the DVI
boards by Dr. Tom Clarke’s DARPA-funded IST project. The software, titled
WorldToolKit from Sense8 Corporation (Sausalito, CA) was donated by
Sense8. This system uses a substantial amount of photo-derived texture
arranged in 128 x 128 texture maps, which are warped onto polygons in
real-time by the DVI boards.

The EyePhones work remarkably well in this context, considering the
limitations of the image sources. The image system can produce between
one and ten frames per second of imagery, which is similar in speed to the
Silicon Grapics Iris demonstrations described above. However, the addition
of texture increases the amount of visual content and of visual flow (motion
cueing), so that the user’s sense of presence is enhanced.

Of the four image sources used with HMD’s as part of this project, the
Sense8 system is by far the lowest-cost. The entire hardware suite (without
EyePhones and Polhemus tracker) cost less than $8,000, and prices
continue to drop. The Sense8 software retails for $3,500.

224 -

This combination of equipment will be demonstrated at the final
presentation of this Project’s results in March of 1992.

F. Conclusions

1) With regard to commercially available low cost head mounted display
hardware as of the end of 1991, we do not recommend the immediate
application of these displays for training purposes. They are neither of
sufficiently high resolution, nor physically robust enough for inclusion in
training systems.

2) It is likely that the remaining problems of resolution and physical
comfort can and will be overcome by a combination of academic and
industrial research and development during the next 24 to 36 months. The
primary driving force in this market is commercial/entertainment, with a
number of new devices appearing on the market as this report is written.

3) The continuing rapid development of low cost image sources such as the
Sense8/DVI system will exert an equally strong market force in favor of this
technology. Video games of all sorts will appear in 1992 incorporating both
low cost HMD’s and realtime textured 3d imagery, and this technology
should be closely monitored for use in military training.

-25 -

Appendix A:
Paper presented at SIMTEC '91 Conference

Proceedings of SIMTEC '91
Simulation Computer Society,
Oct. 21-23 1991, Orlando, FL

HEAD-TRACKING DISPLAY DEVICES FOR PANORAMIC VIEWS IN
LOW-COST SIMULATORS

Richard Dunn-Roberts, Marty Altman, J. Michael Moshell,
Curtis R. Lisle, Pat Moskal, Kevin Uliano, and Takis Kasparis
Institute for Simulation and Training

and

Electrical Engineering Department
University of Central Florida
Orlando, FL 32816

ABSTRACT

A chronic problem for visual simulation is the
requirement for a wide field of view which provides
sufficient pixel and object density close to the central
viewing axis. In high-fidelity (high cost!) flight simulators
with dome displays, high definition area of interest inserts
have been used to increase the subject's ability to acquire
and track targets.

The authors have designed three display systems to
explore low-cost solutions to this problem. These systems
have been designed as retro-fits to the SIMNET M1A1l
tank simulator. The common problem being addressed is
that of a tank commander's view of the world. The three
systems are:

* a six-window simulation of the M1A1's vision blocks,
to simulate closed-hatch operations;

* a head-mounted dispiay, to simulate protected-open
position (POP) hatch operations; and

¢ a ten-monitor panoramic display, to simulate POP
hatch operations without the encumbrance of the head-
mounted display.

This paper describes the magnetic sensor technology
used to detect the tank commander's viewing direction; the
switching technology required to distribute image
generator (IG) channels across multiple devices; and the
resolution and slew rate requirements and capabilities of
the IG used in sach design.

A concluding section describes experiments to assess
the training effectiveness of the implemented designs with

regard to navigation and target acquisition tasks.”

* This work was sponsored by the Army’s Project
Manager for Training Devices (PM-TRADE).

INTRODUCTION

The SIMNET MI1A1l tank simulator (hereinafter
referred to as SIMNET) is a team-trainer that supports the
training of four man teams, including a driver, a loader, a
gunner, and a tank commander (TC). The trainees can
observe the "world” outside the simulated tank through
vision blocks that attempt, more or less, to simulate the
periscopes and sights provided for a crew in a real M1A1
tank. There is a total of eight vision blocks; one each for
the loader and gunner, and three each for the driver and
TC. The image generator used in the SIMNET is a BBN
GT101.

In the standard SIMNET, the TC's three vision blocks
each provide a 20x8 degree field of view (FOV) into the
visual database. These views abut each other, for a total
FOV of 60x8 degrees. The direction of view (DOV) is
controlled by the TC, and can be mechanically rotated
through (just less than) 360 degrees. This represents a low
cost solution to the requirement for a wide FOV.

However, because the DOV is mechanically changed,
a relatively large delay is introduced when the TC wishes
to change the DOV. It takes approximately six seconds to
rotate the DOV through 180 degrees. At the Visual
Systems Laboratory of the Institute for Simulation and
Training (VSL/IST) at the University of Central Florida,
the authors have designed three low cost solutions to this
problem that change the DOV at electronic speeds. At the
time of this report, one of the designs has been
implemented and a second in under construction.

All of these systems use magnetic head-tracking
technology to sense the direction the TC is looking. Two
solutions use this head-tracking information to switch
video sources to output channels and update the DOV.
The third solution also uses the information to update the
DOV, but the TC uses a head-mounted display to view the
image, 3o no video switching is required.

THE POLHEMUS MAGNETIC TRACKER

Each of the systems described in this paper uses a
head-tracking device to determine the position and
orientation of the user's head. Head-tracking systems
typically either use a magnetic source and sensor, or infra-
red diodes and video cameras. Our systems use magnetic
tracking technology. Other magnetic trackers are also
available, but Polhemus trackers are probably the most
commonly used. The Polhemus 3SPACE® Inotrak® is o
low cost magnetic tracker and was used in the projects
described in this paper.

The Polhemus Isotrak is a six degree-of-freedom
measuring device. The Isotrak can provide Cartesian
coordinate (x, y, z) and orientation (yaw, pitch, roll)
information about a sensor relative to a source positioned
near the sensor. The Isotrak will provide this information
within a specified accuracy (position - 0.25 inch RMS,
orientation - 0.85° RMS) and resolution (position - 0.18
inch RMS, orientation - 0.35° RMS) up to 30 inches away
from the source. The host-Isotrak interface is by RS-232C
serial link, with user selected baud rates from 300 to 19,200
baud. The information can be in ASCII or binary format,
and the highest output update rate is 60 Hz at 19,200 baud
in binary format. (Polhemus 1987)

HEAD-TRACKING DISPLAY SYSTEMS

Two of the systems described in the introduction are
head-tracking display systems not based on either dome
projection systems, which are high coset, or on head-
mounted display technology. These two systems, called
the Head-Tracking Display (HTD) and the Extended
Head-Tracking Display (EHTD), are based on the use of
standard video monitors with video switching technology.
This allows the use of a number of IG channels with a
larger number of monitors to reduce the cost of image
generation resources while not reducing the apparent
number of output channels.

The VSLAST Video Switc}

The video switcher used in the Head-Tracking
Display systems was designed and built at the Visual
Systems Laboratory. The switcher was constructed to
take four NTSC composite video input signais and route
them to any of six output channels under control of a host
computer. It is constructed from six four-to-one composite
video muitiplexers with two select lines each.

A DB-25 pin connector allows connection of the
switcher to the host through a parailel port. Twelve lines of
the paraliel port are read as a control word to select which
input signals are routed to which output channel.

The routing of input signals to output channels is
software configurable through the control word. Any
input signal can be routed to any output channel, the only
restriction being that only one input signal can be routed to
a particular output channel at a given time.

The design can be scaled up using additional video
multiplexers. It may also be possible to improve signal
quality by using RGB video multiplexers instead of
composite video multiplexers, but this would increase
switcher circuitry complexity and video cabling
requirements. (Dunn-Roberts et al.1991)

The Head-Tracking Displ

The first implemented display system is the Head-
Tracking Display (HTD) (figure 1). This display system
has been implemented and is in use with SIMNET.

From
Video
Source

i

6,
[|)
Video]
Switcher Active
Head-
Tracker
HTD
Monitors

Figure 1. The Head-Tracking Display (HTD)

The purpose of the HTD is to simulate the M1A1
Abrams tank commander's (TC) cupola, which has six
vision blocks. Each vision block has a 45x15 degree FOV
(approximately). SIMNET provides a single 60x8 degree
FOV using three channels from the SIMNET IG. The
HTD design allows us to drive six moniters with the TC's
three channels of the SIMNET IG. This is accomplished
through the use of the video switcher and the Polhemus
Isotrak magnetic tracker, under control of an IBM PC-AT.
The control computer reads the tracker, controls the video

switcher, and controls the direction of view (DOV) on the
1G.

In the HTD, six 13" (diagonal) monitors are placed in
a ring around the TC's cupola. The cupola is constructed
from white cardboard with six openings equally spaced
around the TC's head, through which the TC views the
images on the monitors. Only the three monitors in front
of the TC's head are active at any time, with each monitor
presenting approximately the same FOV as a real vision
block. This gives the TC a 140x16 degree instantaneous
FOV. Under control of the PC-AT, the video switcher
activates the three monitors in front of the TC. As the TC
turns, the control PC shifts the output signals to the
appropriate three monitors. The switcher is designed to
give an instantaneous change of view in order to eliminate
the time now required for the cupola to rotate
mechanically through the same distance. For example, a
180 degree rotation that requires six seconds in the
mechanically rotating cupola takes approximately one
fifth of a second in the HTD.

The control computer also controls the DOV of the IG
through a digital-to-analog (D/A) converter. This
converter mimics the potentiometer in the mechanically
rotating cupola to change the DOV of the IG.

The control computer reads the Polhemus magnetic
tracker and, based on the orientation of the user's head,
sends a signal to the IG to update the DOV. The control
computer then routes the four input channels to some
subset of the six monitors.

Three of the input channels come from the SIMNET
IG, and the fourth input channel is available for neutral
imagery from any video source, or can be left blank.

The control functions of the PC-AT are provided by a
combination of hardware additions to the PC-AT and the
simulator host and control software on the PC-AT. The
hardware additions to the PC-AT consist of a parailel
output channel with some logic circuitry and a D/A
converter. The output channel is used to transmit control
signals to the video switcher, and the converter is used to
control DOV on the 1G. Both the output channel and the
converter reside on a single prototype bus card (called the
interface card) in the PC-AT. In addition to this interface
card, a game port card has been added to read a
synchronization signal from the simulator host.

The control program for the HTD is conceptually
simple. It has two basic responsibilities: sending the TC's
DOV to the IG, and telling the video switcher which input
signals to route to which channel. The control program
reads two inputs: the magnetic sensor and the
synchronization signal. The only two outputs from the

program are a control voltage for the SIMNET IG, and a
control word for the video switcher.

The outputs from the SIMNET IG are in the form of
four signals: red, green, blue, and sync. To reduce cabling
requirements and switcher complexity, the signals are
encoded using a commercial video encoder. Output
signals from each channel of the SIMNET IG are
connected to the RGB and Sync inputs of the encoders.
The composite video outputs of the encoders are
connected to the inputs of the video switcher. The outputs
of the video switcher are then connected to the color
monitors.

The select lines of the video switcher are addressed
from the interface card. The interface card has a sixteen
bit latch that can be written to by the control program
uging C or assembly language instructions. The control
program writes the control word to the latch, and the
twelve low order bits are written to the video switcher.

The TC's DOV is controlled by a D/A converter. In
SIMNET normal cperation the DOV is controlled by a
potentiometer mounted on the rim of the cupola rotation
track. The volitage dropped across the pot varies as the
cupola rotates. The voltage drop is converted to a digital
value by an analog-to-digital (A/D) converter in the
simulator and the DOV is modified accordingly. The HTD
bypasses this potentiometer and sends a control voltage
from the D/A converter on the interface card to the
simulator's A/D converter. The D/A converter is
controlled similarly to the video switcher, by writing a
control value to a sixteen bit latch on the interface card.

The hardware modification to the simulator host
consists of a small circuit that detects when the simulator
A/D card has been read by the host. This circuit sends a
signal to the control PC-AT to allow for a measure of
synchronization. However, even with this modification to
the SIMNET host, synchronization is not exact, and a
blanking interval of approximately one frame is required.
(Dunn-Roberts et aL 1991)

The Extended Head-Tracking Disgl

There is significant interest in extending the
functionality of the SIMNET M1 trainer to include the
Protected Open Position for the tank commander (referred
to as the “POP hatch™). The authors have also designed an
Extended Head-Tracking Display. This display system
has not yet been implemented. The purpose of the EHTD
is not only to simulate the M1A1l Abrams TC's cupola, but
also to provide for POP hatch operations, while
conserving IG channel capacity.

monitors for both POP hatch
and vision block

vision block periscopes I ; ; l

Hatch (6" clearancs)

mtmg portion of TC cupola

Figure 2. The Extended Head-Tracking Display (EHTD), Design 1

EHTD (POP Hatch) monitors

Hatch (6" clearance)

HTD monitors

Figure 3. The EHTD, Design 2

Two possible designs have been considered for the
EHTD. In both designs, a ring of ten 27" (diagonal) video
monitors provides the 360° horizontal FOV POP hatch
view In one design, actual periscopes painting at the ring
of monitors provide the view through the TC's vision
blocks (figure 2). In the other design, the view through the
vision blocks is provided by a second ring of six monitors,
just as in the HTD (figure 3).

The EHTD uses the same video switching
technology as the HTD. Depending on the design chosen,
video signal switching from the IG can be accomplished
either with a single switcher, or may require two switchers
or a scaled up switcher. This also depends on whether the
POP hatch view will activate three or five monitors in the

TC's DOV. This question will be addressed with IG
requirements later in this paper.

Limitation on requirements for vertical FOV is based
on the 6” high opening available under the elevated hatch
and the commander’s head position relative to the radius
of the hatch. Also, the capability for providing high vertical
FOV is limited by the aspect ratio of off-the-shelf NTSC
monitors.

In the EHTD, the POP hatch view will adjust for
head motion within the cupola. Since the commander has
a range of available head motion within the cupola
(approx. 32° in diameter in SIMNET), the view out the
monitors should adjust for the correct head position.

This requires head position information be passed
over to the SIMNET host and used to adjust the viewpaint
generated by the SIMNET IG. Engineering development
will be necessary to provide this level of control over the
IG (greater than in the existing SIMNET cupola or in the
current HTD).

Visible elements of the tank (the tank hull, the main
gun, ste) will need to be displayed in the views from the
POP hatch. Since the commander’s syepoint will be above
the top of the turret in the POP hatch position, portions of
the tank will often be visible. The visible tank features
must be modelled or mocked up so they will be displayed
correctly.

The cupola will rotate in the EHTD. The current
SIMNET allows the commander’s cupola to mechanically
rotate but provides only a restricted view out of one vision
block of the cupols. In a real tank, the cupola is sometimes
rotated so as to position the machine gun out of the
forward line of sight, or to aim the machine gun. Using an
existing SIMNET hull and cupola mechanism, the required
vision blocks and a simulated hatch cover and machine
gun mount will be incorporated so as to rotate within the
panoramic monitor display.

In the EHTD, the user will be able to use the six vision
blocks simultaneously with the POP hatch views. The
commander will be able to support training in normal
mode (through the six vision blocks) or POP hatch
(through the out-the-hatch monitors). Both of the designs
described earlier for the EHTD support this capability.
(Moshell et al 1991).

; o "

A fundamental goal of the POP hatch display is to
allow the platoon commander to acquire targets and to
navigate. It would be unacceptable if his visual image
were less accurate than those provided through the vision
biocks of the SIMNET in its standard configuration.

When the FOV is greatly expanded, two distinct costs
are incurred.
* Additional pixels must be supplied so that the visual
angle subtended by pixels remains constant; and
» Additional polygon capacity must be supplied so that
the greater scene complexity doesn’t overload the
geometry engine.

To accomplish these goals, the EHTD would require
the addition of & BBN GT120 image generator (or
equivalent) to the existing SIMNET GT101.

With three screens active simultaneously, the
horizontal FOV would be 108°. If five screens are live, the
active area would be 180°. (Moshell et al. 1991)

Three Active Screens The GT120 can provide two
medium resolution channels of 320 x 240 pixels with 3000
polygons, and one high resolution channel of 640 by 480

pixels with 6000 pixels.

This will provide a central channel whose pixels
subtend 3.4 minutes of arc (compared to 3.75 minutes in
SIMNET), with a polygon density of 6.5 polygons per
square degree (compared to 6.25 in SIMNET). Thus, the
central channel will slightly improve upon SIMNETs
scene and pixel density capacities.

The two adjacent channels will have pixels which
subtend about 6.5 minutes of arc (essentially what one sees
on the SIMNET Stealth displays) with a polygon density
of 3.3 polygons per square degree. These channels will be
somewhat more susceptible to overloading on complex
scenery than the central channel. (Moshell et gl 1991)

Five Active Screens Optionally, the SIMNET could
sacrifice some channels from its original IG so that two
additional adjacent channels could be rendered. The pixel
density is not bad - in fact, at 320 x 256, it is somewhat
better than the medium-resolution channels of the GT120.

However, these channels can support only 2000
polygons. With an angular density of only 2.2 polygons
per square degree, these channels would quite often
overload.

To provide these two channels would require
consuming four of the eight SIMNET channels,
presumably leaving one each for the the gunner and
loader and two channels for the driver. The horizontal
field of view for the driver’s two channels could be

. expanded to equal the total FOV of the original three

channels. (Johnston 1987; Moshell et al 1991)
HEAD-MOUNTED DISPLAY SYSTEM

We are alao designing a third system that utilizes
head-tracking information to control the visual display
system. This system would use a color LCD head-
mounted display (HMD) with a SIMNET IG to present the
POP hatch view to the TC.

The first design problem is the interfacing of the
magnetic head-tracker with the SIMNET IG. As described
above, the HTD uses & voltage to control the TC's DOV.
This allows control of the yaw of the DOV, but not the
pitch or roll. To allow the TC six degrees-of-freedom with
the HMD, the SIMNET host will have to be modified to
change the DOV based on the position and orientation of
the TC's head as read by the head-tracker. This will
require greater control over the the SIMNET host software
than is required in either the HTD or the EHTD.

In addition, the HTD uses the existing SIMNET IG to
produce three half-height video images. To use the HMD
with the M1A1 simulator would require hardware
modifications to produce two full-height video channels.
Optionally, IST/VSL has a SIMNET Stealth Vehicle
simulator that produces three full-height video images that
may be used to drive the HMD.

Another challenge is that human eye does not have
constant characteristics over the entire visual field. For an
image to be as realistic as possible, some predistortion
needs to be done to the image before it is presented in a
conventional HMD. At IST, this problem is being
addressed in a separate project to construct a HMD that
more closely matches the image perceived by a human
eye. (Clarke 1990)

Perhaps the most difficult problem is how to present
an image of the inside of the tank, complete with working
controls. An alternative is to mount the HMD in such a
fashion as to allow the TC to look through the HMD to see
the POP hatch view, and to remove the HMD to work
inside the tank cupola. Still, modeling of the exterior of the
tank will be necessary to present the TC with a “realistic”
view out of the POP hatch.

This system is currently under design and will be
implemented in early Fall, 1991. (Altman, Moshell, and
Dunn-Roberts, 1991)

EXPERIMENTAL EVALUATION OF SYSTEMS

We are currently evaluating the HTD system on two
tasks: terrain-reasoning and target acquisition. As each of
the other systems gets implemented, we will use the same
experimental design to evaluate them.

In the terrain-reasoning task, tank commanders
observe the terrain database while they are driven through
a specified geographic area. Their task is to locate three
checkpoints specified on an available map. The TCs give
the driver directional and speed commands. They teil the
driver to stop when they think that they have arrived at
each checkpoint. Dependent measures are speed and
accuracy of position identification.

In the target acquisition task, TCs scan for targets as
they are again driven through s specified course in the
database. TCs do not give directional or speed commands
for this task. Dependent measures are number of correct
target identifications and target acquisition speeds.

Trained drivers are used for all conditions. A
common terrain database, representative of the Ft. Knox
range, is used for all displays. We are also collecting
preference and “wellness” data (e.g. nausea, eye strain)

concerning each cupola simulation. We are using both
experienced and novice subjecta as tank commanders.
Each subject participates in both tasks, target acquisition
and terrain-reasoning. Each subject will also use both the
SIMNET mechanically rotating cupola as well as the
HTD. Counterbalancing of task and cupola conditions is
employed to remove the potential for confounding effects.

Results of the evaluation of the HTD will be available
in August, 1991.

REFERENCES

Altmen, M.; J. M. Moshell, R. Dunn-Roberts. 1991.
“Technical Considerations for Use of Head-Mounted
Displays with SIMNET." VSL Memo 91.18. Visual Systems
Labaratory, IST, Orlando, FL (June).

Clarke, T. 1990. "Optimal Virtual World Displays.” DARPA
BAA #90-15 Proposal. IST, Orlando, FL (Oct.).

Dunn-Roberts, R.; R. DaSilva; and M. Altman. 1991. “First
Year Report, BAA Contract #0041, Visual Display
Technology R & D.” Visual Systems Laboratory, IST,
Orlando, FL (Apr.).

Johnston, R. S. 1987. "The SIMNET Visual System.”
Proceedings of the 9th ITEC Conference. Washington,
D. C. (Nov.).

Mosehell, J. M.; C. Lisle; R. Dunn-Roberts; E. Smart. 1991.
"Extending the SIMNET Head-Tracking Display.” VSL
Memo 91.6. Visual Systems Laboratory, IST, Orlando, FL
(Feb.).

Polhemus. 1987. 3SPACE ISOTRAK User's Manual.
Colchester, VT. (May).

BIOGRAPHY

Mr. Dunn-Roberts is a Visual Systems Scientist at the
Visual Systems Laboratory at the Institute for Simulation
and Training. He is the Project Leader for the
development and evaluation of advanced display
technologies for use with real-time image generators. He
is also involved in developing IST s capabilities in Virtual
Environment research. Mr. Dunn-Roberts holds a
Bachelors degree in Computer Science from the
University of Central Florida, and is working on his
Masters degree.

Appendix B:
Photographs of Head Tracking Display

Head Tracking Display

TR

LA
ey

Video Switcher

Monitor Ring

|m::n§tm|§§::

B TRt

Viewports, Interior View

Subject and Experimenter

Appendix C:
Photographs of Head Mounted Displays

VPL Eyephones

Cyberface II

Appendix D:
Software to Control HTD Video Switcher

/* */

/* HEAD TRACKING DISPLAY - Video Switcher Control Program *5
* *
5* .
/* FILENAME: switcher.c */
/* - */
/* */
/* By: ~ Visual Systems Laboratory */
/* - Institute for Simulation and Training */
/* - University of Central Florida *;
* R *
/s .
/* Copyright (c¢) 1991 the University of Central Florida */
/* - All Rights Reserved */
/* */
/* */
/* Authors: Marty Altman */
/* Richard Dunn-Roberts */
/* */
/* */
/* FUNCTION LIST: */
/¥ emeeem—c————- */
/* */
/* FUNC: void interrupt (*old timer_routine) (void): */
/* a pointer to the old timer routine */
/* FUNC: void interrupt handle_timer_ interrupt (void): */
/* our new timer interrupt handler */
/* FUNC: void set_timer(void); */
/* to reprogram the clock timer to interrupt at 60Hz */
/* instead of 18.2Hz */
/* FUNC: void reset_timer(void);: */
/* to reprogram the clock timer back to 18.2Hz */
/* FUNC: void readConfig(void): */
/* reads confiquration information from external file */
/* FUNC: void initPolhemus (void) ; */
/* initializes the Polhemus */
/* FUNC: void getRecord{void): */
/* gets a data record from the Polhemus */
* *
e i/
/* General Comments: */
/* This program was written to run on a PC-AT, using */
/* Borland C++ version 2.0 (with the built-in assembler). */
/* It is designed to control the operation of the Head */
/* Tracking Display system. */
/* */
/* */
/* Operational Comments: */
/* The switcher control program reads the head orientation */
/* from the Polhemus magnetic sensor and the video sync */
/* signal from the SIMNET Image Generator. It then */
/* determines which screens should be turned on (sending a */
/* control word to the Video Switcher), and determines the */
/* appropriate voltage to emulate the cupola’s */
/* potentiometer (sending a control word to a digital- */
/* to-analog converter, and the analog signal is then */
/* routed to the SIMNET controls). See the figure below. *;
* *
2 */
/* The basic layout is as follows: *;
/*) *
/* D bttt bl + 15Hz sync signal +-=--=----=cce—o-- + */
/* | PC_AT | Qemmmmmmmmmm e SIMNET MASSCOMP | */
/* I 7 cecemmmcmmccccmaa- + | */
/* | {switcher} ===--c-ceme--- + | | | */

v

/* | {program } [<=====- + ! | Fommmmmmmmm e */
/* | | <=+ I | | */
/* e tatatatdleltddg + | | { | */
/* I I I I */
/* I Lo */
/* head orientation | I | | which screens to */
/* | I [| turn on x/
/* tommmmmmmmm e + | I I I e it et */
/*] POLHEMUS | | }] | |} VIDEO SWITCHER */
/* | ===+ I | +==>| */
/* | | I | | x/
/* G ——— e + | | et e el */
/* 1 | */
/* | | emulation of potentiometer */
/* video sync signal | | (analog voltage) */
/* | | */
/* e ittt + | | e ettt */
/* | SIMNET IG I I |] SIMNET CONTROLS */
/* 1 memeee—— + te————— >1 */
/* | | | */
/* Bt + e */
/* *x/
/* */
/* For further system details, refer to the project report. */
* *

/* Type, Structure & Constant Defs */

/ *-—=-=—u-—a—=—=-s—-—s—=—=—=—=—=—-—=*/

#define BLANK SWITCHER WORD OFFFh

/ *-.--—-—---—-—---—-—-—-—-—-*/

/* Necessary Include Files */

/ *-—---—-—-—-—-—-—-—s—-—g—-*/

#include <conio.h>
#include <dos.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "comport.h"
#include "polhemus.h"

/ *---—-—-—-—-—--—-—-—-—-*/

/* Function Prototypes */

/ T S R e R e B e O e B e B e 2 K /

void set_timer(void):

void reset_timer (void):

void interrupt handle_timer_interrupt (void):
void readConfig(void):;

void initPolhemus (void):

void getRecord(void):

/* Globals */

/ *---—-—-—-*/

void interrupt (*old timer_ routine) (void):
int switcher_control word;

int switcher_control(6] =
{ 0x0951,0x0546,0x0519,0x0465,0x0185, 0x0654 };

int TC_yaw = 0;

int center_screen = 0;

int last_center_screen = 1;

int c1g angle control _word;

int cig angle control(6] =
{ 0x07FF, 0xOAA9, 0x0D54, 0x0000, 0x02AA, 0x0554 };

int screen([360] =
{31 3I 3l 30 3r 3! 3' 3I 31 3l 3! 31 30 3r 3l 30 3! 31 30 3! 31 3! 3: 3r 31 31 3l 3
2,2,2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2
2,2,2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2
i,1,1.,1,1,1,%,1,1,1, 1,,1,11,1,1,1,1,1, 1,1,1,1,31,1,1,1
1,,1,1,1,,1,1,1,1, 1,3,1,1,1,1,1,131,1,1, 1,31,1,1,1,1,1,1
6,90,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0
6,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0
5,5,5,5,5,5,5,5,5,5, 5,5,5,5,5,5,5,5,5,5, 5,5,5,5,5,5,5,5
5,5,5,5,5,5,5,5,5,5, 5,5,5,5,5,5,5,5,5,5, 5,5,5,5,5,5,5,5
4,4,4,4,4,4,4,4,4,4, 4,4,4,4,4,4,4,4,4,4, 4,4,4,4,4,4,4,4
4,4,4,4,4,4,4,4,4,4, 4,4,4,4,4,4,4,4,4,4, 4,4,4,4,4,4,4,4
33.33,33,3,33,3, 33,3,3,3,3,3,3,3,3, 3,3,3,3,3,3,3,3

int comPort; :

int baudRate:;

char initString[100}:

char termString(100];

int high = 0;

int sync = 0;

int screen_changed = 0;

int change_the_switcher = 0;

int delay_cycles = 10;

int delay_counter = 0;

/* Function set_timer */

/* */

/* PARAMETERS: */

/* void */

/* */

/* PROCESS: */

/* This routine is used to reprogram the clock timer to interrupt */

/* at 60Hz. Note that it is virtually impossible to accurately *x/

/* detect a 15Hz signal when checking every 18.2Hz (the normal */

/* setting for the clock timer interrupt on a PC). Also note */

/* that because the PC for this project was dedicated, it was */

/* not a problem for that PC’s sense of time to be distorted. */

/* */

/* RETURN VALUE: */

/* void */

void set_timer(void)
asm {
cli
push
mov
out

mov
out
mov
out
pop
sta

{

/* program timer to interrupt at 60 Hz */

ax
al,00110110b
43h,al

ax,19886
40h,al
al,ah
40h,al
ax

-
-~

L
- =
-~ =

-
-

-
-

LI S)
- 0~
- 0~

-
-
-

-~
-

L Y
-

Wb OOOKHEFEFNMDNDW

- w0~

W O UVMOOHEHENDNDW

)
.

-

/ H i e G e T e B e B e 2 e R N B e B e R e O e U e B e 0 e e O R e B e B e £ e B e B e B e B e B e B M e S R R Rk [

/* Function reset_timer */

/*) */
/* PARAMETERS: ' */
/* void ' */
/* */
/* PROCESS: *x/
/* This routine is used to reprogram the clock timer to interrupt */
/* at 18.2Hz (the normal setting for a PC). */
/* */
/* RETURN VALUE: */
/* void */
/ i . Ty Ty T /
void reset_timer(void) { /* program timer to interrupt at 18.2 Hz */
asm {
cli
push ax

mov al,00110110b
out 43h,al

mov ax, 0

out 40h,al

mov al,ah

out 40h, al

pop ax

sti

}

}
/* Function handle_timer_interrupt */
/* */
/* PARAMETERS: ‘ */
/* void */
/* */
/* PROCESS: */
/* This interrupt routine is installed on the clock timer (0x1C), */
/* and is used to monitor the joystick port. The joystick port */
/* is where the 15Hz sync signal from the SIMNET MASSCOMP is */
/* brought in. The routine looks for the falling edge of the */
/* signal, and when detected sets a flag called sync to 1. */
/* Note that in order for this scheme to work, the clock timer */
/* must have been ’sped up’. */
/* */
/* RETURN VALUE: */
/* void */
/ T e BB B s T8 o S e B e B 2o S e T W v S e S o O e W R - —u—-—-—-—-—-—g---g—n—s—*/

void interrupt handle_timer_interrupt (void) ({

asm {
mov dx,201h
in al,dx
test al,20h
jz gone_low
mov high,1

}

return;

gone_low:

if (high) {

asm {
mov sync,1
mov high,0
}
}
return;
}
/* Function main . */
/* */
/* PARAMETERS: *x/
/* void *x/
/* * /
/* PROCESS: */
/* This is the main routine. */
/* */
/* RETURN VALUE: */
/* void */

void main{(void) {
/**** banner ****/
clrscr():
printf ("Head Tracking Display Control Program.\n"):;
printf ("\n\nPress any key to exit.");

/****x gset initial values ***%/
switcher_control _word = switcher_control(0];
cig_angle_control_word = cig_angle_control{0];

/***x*x other initialization **%x/
readConfig():
initPoclhemus () ;

/**** take over the timer interrupt ****/
old timer_ routine = getvect (0x1C);
setvect (0x1C, handle_timer_interrupt):

/**** reprogram to 60Hz ****x/
set_timer();

[***xkk** begin MAIN LOOP ***kkkkx/
while (!kbhit()) {

/**** get a record from the Polhemus ***x/
getRecord () ;

/**** determine center Screen ***%/
center_screen = screen[TC_yaw]:;
if (center_screen != last center_screen) {

switcher_control word = switcher_control[center_screen];
cig_angle_control_word = cig_angle_control[center_screen];
asm {

mov ax,center_screen

mov last_center_screen,ax

mov screen_changed, 1
}

} - i

/**** if we need to update the cig angle ****/
if (sync) {
if (screen_changed) ({

asm {

}

asm {

mov
mov
out
mov

mov ax,BLANK_SWITCHER_WORD
mov dx, 030Ch

out dx,ax

mov ax,delay_cycles

mov delay_counter,ax

mov screen_changed, 0

mov change_the_switcher,1

ax,cig_angle_control_word
dx,0302h

dx, ax

sync, 0

/**** if we need to update the video switcher ***x/
if (chance_the_switcher) {
if (delay_counter) {

else {

}

asm {

}

asm

dec delay_counter

mov ax,switcher_control_word
mov dx, 030Ch

out dx,ax

mov change_the_switcher, 0

} [***Ekxkk* oend MAIN LOOP **xk#kkxkk/

/**** clean up after ourselves ***x/

reset_timer();

setvect (0x1C, old_timer_routine);

DeinstallDrivers():

/* Function getRecord */
/* */
/* PARAMETERS: */
/* void */
/* */
/* PROCESS: */
/* This routine is used to get a data record from the Polhemus. */
/* Since we are only interested in the orientation about the */
/* vertical axis, the only value we update is the TC_yaw. */
/* */
/* RETURN VALUE: */
/* void */
/*---------------—---—-—-—-----—-—-—-—-—-----—-—-—-—-—-—-—---—-—-———-—-—*/

void getRecord(void} {

int retcode, j, temphex, témpint:
char data(255], input(255], temp, recordType:

float yaw;

ReceiveData (comPort, data, 18):
if (!'(data[0) & O0x80)) {
while (!{ data[0] & 0x80))
ReceiveData{ comPort, data, 1):
ReceiveData(comPort, (data+l), 17):

for (J =0; j < 7; 3++) {
data([j] = (datal[j] & O0x7F) | ((data[7]) & 0x01) << 7);
data{7] = data[7] >> 1:

for (j = 8; 3 < 15; j++) {
data[j] = (datal[j] & O0x7F) | ((data[l5) & Ox01) << 7);
data{1l5] = data[1l5] >> 1;

}

data[l6] = (datal[l6] & Ox7F) | ((data[l7] & 0x01) << 7 });
data{l5] = datal[l6]:

tempint = *(int *) (data+10);

yaw = (((float)tempint)*230.0/32767.0)+180.0;

yaw = yaw < 0.0 ? 0.0 : yaw;

yaw = yaw > 360.0 ? 360.0 : yaw;

TC_yaw = (RABS(TC_yaw - yaw)) < EPSILON ? TC_yaw : yaw;

/*-—-—a—-----—-—-—---—---—--- - —-—---—-—-—-—-—-—-—-—-—*/

/* Function readConfig */
/* */
/* PARAMETERS: */
/* void */
/* */
/* PROCESS: */
/* This routine is used to read values from an external config */
/* file. */
/* */
/* RETURN VALUE: */
/* void */

void readConfig(void) {
FILE *configFile;
char configBuffer{129}, *configType, *configValue;
int i;

if ((configFile = fopen("config.dat","rt")) == NULL) {
fprintf (stderr, "Configuration file not found\n"):
exit (-1):

}

while (fgets(configBuffer,128,configFil«) != NULL) {

if ((configType = strtok(configBuffer,”™ \n\t")) != NULL) {
if ((configValue = strtok (NULL," \n\t")) == NULL) {
printf ("value not found for type = %s\n",
configType):;
exit (-1);
}
}

else continue;

if (!strcmp(configType, "polhemusComPort"))
comPort = atoi(configvValue);

if (!stremp(configType, "polhemusBaudRate"))
baudRate = atoi(configValue):

if (!strcmp(configType, "delay cycles")) {
delay_cycles = atoi(configValue):
if (delay_cycles==0) delay cycles=10;
delay_ counter = delay_cycles:;

if (!strcmp(configType, "polhemusInitString"”))
strcpy(initString, configValue);

if (!strcemp(configType, "controlWords™)) {
sscanf (configValue, "%x", &switcher_control(0]):
switcher_control word = switcher_ control[0]:
for (i=1l; i<6; i++) {
if ((configValue=strtok (NULL," \n\t"))==NULL)

printf ("value not found for type = %$s\n",

configType):;
exit (-1);
}
sscanf (configValue, "%x", &switcher_control([i]);

}

fclose(configFile);

/* Function initPolhemus */
/* */
/* PARAMETERS: x/
/* void */
/% */
/* PROCESS: */
/* This routine is used to initialize the Polhemus. */
/* */
/* RETURN VALUE: */
/* void */
/ W e B e TR e B e O W —-—-—*/

void initPolhemus (void) {

char *commandPtr, command([30]:
int commandLength;

InitComPort (comPort, DIVISOR(baudRate)}):
LowerDTR(comPort):;
commandPtr = strtok(initString, ";"):

while (commandPtxr) {
strcpy(command, commandPtr);

if ((commandLength = strlen(command)) != 1) {
command [commandLength] = 13;
command [++commandLength] = 0;

}

TransmitData(comPort, command, commandLength):
commandPtr = strtok(NULL, ";"):
}

RaiseDTR(comPort):;

{

Appendix E:
Schematics of HTD Video Switcher

3 Composite Video
Channels from
VID 1/O Boxes at

ac

YvYy

Video Switcher
Block Diagram

12 Bit Control Word From Control Computer

(Port 30C hex)

——p

Video

Switching

Module

2*2 *2 {2 4;2 4\2

VY

A 4

Video
Switching

Monitor

Module

\ 4

>
>

’ Video

Switching
Module

Monitor

\ 4

>

:

P

Video
Switching
Module

Monitor

-

<
!
:
|
'

>

-

Video
Switching
Module

Monitor

\ 4

Monitor

>
>

Power Supply

’

Video
Switching
Module

Monitor

NOTES: 1) Any monitor can be switched to any video channel, or
remain blank.
2) Circuitry prevents attempts to switch two channels to
same monitor.

DO
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11

SELF

D/A CONVERTER

L]

12 24
11 16
10 17
9 20
8
AD 3860 K
7
6 23 NC
5
4 18
3
2 15
1
19
13 14 21 22
0.01uF] 0.01uF
— —— —
]]
1uF 1uF
15V +15 Vv
{ |
0.01uF
ISy —
1uF
+5v d7

ouT

HTD

Polhemus
Sensor

v

Block Diagram

Port 302 hex

Control Computer (PC-AT)

Port 30(? hex

v

Digital to
Analog
Converter

!

Masscomp / SIMNET

3 Video Channels

Monitor 1

vy

Video Switcher

Monitor 2

Monitor 6

Video Inputs

Video Switching Module
Block Diagram (1 of 6)

+Vce

Select Lines From
Control Computer

-Vee Bl

BO

Channel 1 —*

Channel 2 e

Channel 3 —»

S1

Gnd

SO

Monitor

7 INO
8 INI
10IN2
11IN3

MAX 454 VIDEO MULTIPLEXER/AMPLIFIER

s1 S0
]
1 2 .
Nl s
DECODER NC—T""S
0 1 2 3
‘V
i 4 +
14
4’ /
al |
MAX 454

Video switcher: one module
Functional diagram

1K

From Simulator IG

1C——

VID 1/O

—|—¢

To Simulator Monitor Composite Video
to HTD Video

Switcher

From Simulator IG

-

I
$ $ $ ON/OFF ON/OFF
FUSE INDICATOR SWITCH

20—

o
]

—O3

UT O

PP

2 4

63

IN IN2 IN3
(&UPT $s

To Monitors

VIDEO SWITCHER; SIDE VIEW

ON/OFF

ON/OFF

FUSE INDICATOR SWITCH

VIDEO SWITCHER; FRONT VIEW

DB 25

Input circuit for video switcher

0.1 uF

input 75 ohm 100 k ohm output

0
o

Note: The 100k resistor and the 0.1uF capacitor were
added in order to eliminate a D.C. volitage that was
added to the video signal from the Vid 1/O boxes.

Polhemus

Video

Switcher

Video
Switcher
Control Word

Position/
Orientation

HID
Control
Program

Packet

1G Control

Signal Word

Image Generator

The following diagram shows the physical layout of the MAX

454 video switching chips.

CB1
YA
22
uo U1 U2
U3 U4 uUs

Note: see circuit diagram of MAX 454 for connections

of individual video switchers UQ-US.

Appendix F:
Software to Control SIMNET Head Tracking Display

/*

- e e i N O o O e S e S e R e = e O R K7

/* ‘SIHNET Ml with integrated Polhemus */
/* */
/* FILENAME: ml_polhemus.c */
/* */
/* */
/* By - MaK Technologies */
/* and */
/* - Visual Systems Laboratory */
/* - Institute for Simulation and Training */
/* - University of Central Florida */
/* */
/* */
/* Copyright (c) 1991 MaK Technologies and */
/* the University of Central Florida */
/* - All Rights Reserved */
/* */
/* */
/* Ruthors: Warren Katz and Marty Altman */
/* */
/* */
/* PUBLIC FUNCTION LIST: */
/* FUNC: 'goid polhemus_init() - initialize Polhemus */
/* FUNC: Woid polhemus_simul () - read and stuff a value for */
/* the z rotation */
/* FUNC: :void polhemus_exit () - shutdown the Polhemus */
/* */
/* */
/* PRIVATE FUNCTION LIST: */
/* FUNC: int open_polhemus (char *device_name) - actual open */
/* FUNC: int close_polhemus() ~ zeset port */
/* FUNC: int copy_termio(struct termio source, dest) - copy */
/* */
/* */
/* General Comments: */
/* This file integrates the Polhemus Head Tracker with */
/* the M1 cupola, bypassing the DTAD card. The Polhemus */
/* head tracker computer sends a 2 rotation over an */
/* RS-232 interface. */
/* */
/ W - - - S = S e S o A e S8 e SR e G R o 1t = K /
/* -- -*/

/* Type, Structure and Constant Defs */

/ T e e S e B e S e O = S O e 5 e e B e S 5 e O e S e 8 o 1 K /

#define FORMAT_ ASCII
#define FORMAT_ BINARY

#define UNIT_INCHES
#define UNIT_CENTIMETERS

#define DATA_PACKET_XYZ
#define DATA_PACKET AER
#define DATA_PACKET XYZAER

M= O - o -~ o

#define PACKET_SIZE 24

/*-—-—- - ——*/

/*

Necessary Include Files */

/%=

- -— */

#include "stdio.h"
finclude "fcntl.h"

#include
#include
#include

#include
#include
#include
#include
#include
#include
#include
#include

"sim_&ghs.h"
"sim types.h”
"sim macros.h"

<stdio.h>
<string.h>
<sys/ioctl.h>
<sys/types.h>
<sys/file.h>
<termio.h>
<unistd.h>
<fcntl.h>

/ LT T Ty /

/* Globals */

/ W i e B et s ® /

static float azimuth = 0.0;

int device, result, packet_size;

struct termio polhemus_control, old port_control;

char temp_ buffer([80):

/*-—-—-—---—-—-—---—*/

/* PUBLIC functions */

/ *am ——*/

AL T = . - - - - ----—-—---—---—-—-—*/
/* Function polhemus_ init */
/* */
/* PARAMETERS: */
/* void */
/* */
/* PROCESS: */
/* This function is called to initialize the Polhemus on */
/* *tty2’. If successful, a request is made for the first */
/* data record. (Writing a "P" is a request for data.) */
/* */
/* RETURNS: */
/* void */
AL -— =—m—t/
void polhemus_init ()

{

if (open_polhemus ("/dev/tty2") == 0) {
printf ("ERROR OPENING POLHEMUS! !\n"):;
return;

}

write (device,"P",1); /* request first packet */

/tm—mee. - - - */
; * ﬁnction polhemus_simul */
* */
/* PARAMETERS: */
/* void */
/* */
/* PROCESS: */
/* This function is called once during each frame. It */
/* reads the data packet from the Polhemus, grabs the */
/* azimuth value (z rotation), stuffs the new value in */
/* place of the mechanical cupola, and requests the next */
/* data packet from the Polhemus. */

/* - - */

/* RETURNS: */

/* void */

void polhemus_simul ()

{
read(device, temp_buffer, PACKET_SIZE);) /* read packet */
sscanf (& (temp_buffer(3])), "%£", &azimuth); /* azim first in AER packet */
cupola_cws_new_value((azimuth/180.0)*1.195); /* emulate the pot */

/* dividing azimuth by 180.0 scales to {-1.0,1.0] x/

/* multiplying by 1.195 stretches this range to ~ [~1.2,1.2] */

/* This new value gives full circle capability, avoiding the *x/

/* ‘dead spot’ that the mechanical cupola has. */
write(device, "P",1); /* request next packet */

}

/* ?‘unction polhemus exit */

A */

/* PARAMETERS: */

/* void */

/* */

/* PROCESS: */

/* This function is called once when finished to shutdown */

/* the Polhemus and restore the port to its original */

/* configuration. */

/* */

/* RETURNS: */

/* void */

void polhemus_exit ()

{
close_polhemus{);

}

/*--—- - - */

/* PRIVATE functions */

/ *---—-—-—-—-—-------*/

/* Function open_polhemus */

/* */

/* PARAMETERS: */

/* char *device_name - the tty port to open *5

/* *

/* PROCESS: */

/* This function opens the port, storing the termio data */

/* so that it can be restored later in the close routine. */

/* It also sets the Polhemus to ASCII mode, and sets the */

/* Polhemus data packet to azimuth/elevation/roll. *5

/ * *

/* RETURNS: */

/* on success, returns 1 */

/* on failure, returns 0 */

/ *---—-—---—---G-----—---—-—-—---------—-----—-—-ﬁ---—-----—-ﬂ-—* /

int open_polhemus(device_name)
char *device_name;

strcpy (temp_buffer, device_name):;

if ((device = open(temp buffer, O _RDWR)) < 0) {
printf ("ERROR in open_polhemus: “);
printf ("open failed on %3\n", temp buffer);
return(0);

}

if (ioctl(device, TCGETA, &old port_control) < 0) {
printf ("ERROR in open_polhemus: ");
printf ("getting old port control information failed\n");
return(0);

}

copy_termio (&old_port_control, &polhemus_control):;

polhemus_control.c_iflag = IXOFF | IXON | IGNBRK;
polhemus_control.c_oflag = 0;

polhemus_control.c_cflag = B19200 | CS8 | CREAD;

polhemus_control.c_lflag = 0;

polhemus_control.c_line = 0;

polhemus_control.c_cc[VMIN] = PACKET_SIZE; /* sizeof (DATA_PACKET AER) */
polhemus_control.c_cc[VTIME] = 0;

if (ioctl(device, TCSETA, &polhemus_control) < 0) {
printf ("ERROR in open_polhemus: ");
printf ("setting polhemus control information failed\n"):;
return(0);

}

write (device, "F",1); /* set ASCII */
write (device, "04\r", 3); /* set DATA PACKET AER */
return(l); /* everything must have worked to get this far */
}
/ Ky o B e 2 e S o B e BB S o B e B e S e B e SR e B e S e B e e S e S0 e S e S e S e S e N e S e S e S e . T e MO e = W /
/* Function close_polhemus */
/* */
/* PARAMETERS: */
/* void */
/* */
/* PROCESS: */
/* This function restores the port to its original */
/* configuration. */
/* */
/* RETURNS: */
/* void */
/ *-—-—-—-—-—-—---—-—-—-—---—---—---—-—-----—---—---------—-----—*/

int close_polhemus() ({

if (ioctl(device, TCSETA, old_port control) < 0) {
printf£("ERROR in close_polhemus: "):
printf("reset old port control info failed\n");
return(0);

return(l);

/*-----—---—-—-——---—-------—---—----—-—-—-—-—-—-----—---..---_----‘ */

/* Function copy_termio */
/* */

/*

PARAMETERS: */
/* struct termio source, dest - port configuration data *x/
/* */
/* PROCESS: */
/* This function copies the termio data from one structure */
/* to another. */
/* */
/* RETURNS: */
/* void */
/* -——— - */

copy_termio(source, dest)
struct termio *source, *dest:

{

dest->c_iflag
dest->c_oflag
dest->c_cflag
dest->c_1lflag
dest->c_line

strnecpy (dest->¢c_

source->c_iflag:;
source->c_oflag:;
source->c¢_cflag:;
source->c_lflag:;
source->c_line;

cc, source->c_cc,

NCC) ;

#define VERSION "6.??5?"

/*******

* SYSTEM NAME: ml

* FILE:

* "AUTHORS :

* % % % % % % % % % * X % % ¥

#include
#include
#include
#include
#include
#include
#include

#include
#include
#include

#include
#include
4#include
#include
#include

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#¢include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#include
#include
#include
#include

ml_main.c
David Epstein
Joe Marks
James Chung
Axrt Pope

John Morrison
Alan Dickens
Brian 0O’Toole
Dan Van Hook
Carol Chiang
Maureen Saffi

SIMNET simulation of M-1 Abrams Main Battle Tank.

Copyright (c) 1988, 1989, 1990 BEN Systems and Technologies
All rights reserved.

"stdio.h"
"ctype.h"”
"signal.h"

"sys/mpadvise.h"

*sim dfns.h"
"sim _macros.h"
"sim types.h"

"mass_stdc.h"
*dgi_stdg.h"
"sim_cig_if.h"

"pro_assoc.h"
"pro_sim.h"
"status.h"
"status_ml.h"
"veh_type.h"

"fifo_dfn.h"
*fifo.h"
"bigwheel.h"
*libterrain.h"”
"libkin.h"
"libfail.h"
"libcig.h"
"libmsg.h"
"bbd.h"
»libhull.h"
»libidec.h"™
"libmain.h"
"libmem.h"

"] ibnetwork.h"”
»librepair.h"
*librva.h"
"libsusp.h"
"libturret.h"
"libsound.h"
"libmap.h"

"ml_ammo.h"
"ml_bcs.h”
*ml_cntrl.h”
"ml_cupola.h”

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
¢include
¢include
#¢include
#include
#include
#include
#include
#include

#include
#include
#include
#include
#include
#include
#include

#define
/*
4define
#define
#define
*/

BOOLEAN
BOOLEAN

ystatic B
static B
static i

#define
#define
#define

/* from
static A

#ifndef
void exi
#endif

void pri

char *pr

{
prin
prin
prin
prin
prin
prin

"ml_dtrain.h"
"ml_elecsys.h”
"ml_failure.h"
"ml_fuelsys.h"
"ml_firectl.h"
"ml_weapons.h"
"ml_handles.h"
"ml_hydrsys.h"
"ml_keybrd.h"
"ml_laser.h”
"ml_main.h"
"ml_metexr.h"
"ml_polhemus.h"
"ml_pots.h™
"ml_repair.h"
"ml_resupp.h”
"ml_sound.h"
"ml_turret.h”
"ml_vision.h"
"ml_status.h"
*ml thermal.h"

"timers.h"
"dtad.h"
"status.h"
"eme.h"
"cme_timer.h”
"cme_status.h”
"ser_status.h"
PARS_FILE "/simnet/vehicle/ml/data/ml_pars.d"
CONFIG_FILE
VEH_MAP_FILE
ASID _MAP FILE

"/simnet/vehicle/ml/data/ml_vconfig.d"
*/simnet/data/veh_map.d”
"/simnet/data/asid.d”

debug = FALSE:;
print_overruns = FALSE;

OOLEAN polhemus_flag:;
OOLEAN guise_override = FALSE;
nt guise_to_use;

MESSAGE
BOLD_FLASH
NORMAL

"Eat at Mama Luigi’s"
"{1;5m"
” [om“

the ’-p’ switch */
ctivateRequestVariant init_activ, *initial_activation = NULL;

SIMBFLY

t(O):

nt_help (progname)
ogname;

tf
tf
tf
tf
tf
tf

("Usage: %s \n", progname);

("switches...\n");

("\t~a(symmetric buffers: receive send)\n");

{("\t~c(upola and loader’'s periscope controllable by keyboard)\n"):
("\t-C(atc Hardware used)\n"):;

("\t-d (ebugging on)\n"):;

printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
}

void

("\t-D (ebugging for static vehicles on)\n");

("\t-e(thernet off)\n"):
("\t~-E(xercise id)\n");
("\t-F(ail debug on)\n");
("\t-g(raphics off)\n");

("\t-G(uise to use instead of US_Ml, in hex)\n");

("\t-h(elp)\n");
("\t-i(ndicate vpkt sent)\n"):
("\t-k (eyboard on)\n");

("\t-m(essages for equipment status not printed)\n"):

("\t-n(etwork verbose mode)\n"};
("\t-N(ight vision on)\n"};
("\t-o(verrun printing)\n");

("\t-p(osition) initial X initial_Y initial heading\n");

("\t-P(riority list debugging on)\n");
("\t-s(ound off)\n");

("\t-t (errain database) database_name\n"):

("\t-T ded database) database_name\n");
("\t-v(erbose mode on)\n"):
("\t-? (help)\n"):

print_veh_logo ()

{

printf ("sc[Rsc[J", “\033’, ’\033"): /* clear screen */
printf (" | \n");
printf (" [\n");
printf (" | \n");
printf (" | \n");
printf ¢ eeeece--- + { \n");
printf (" + 4+ + | \n"):;
printf (" + ++ o+ + | \n");
printf (" /+ + 4+ ++++++++++4++++++\n");
printf (" $c¥sistcis + \n",0x1b, BOLD_FLASH,
printf (" \\+ + \n"):
printf (" + + + + + + + + 4+ + 4+ + + + + \n");
printf (" + + + \n"):
printf (" \\ + / \n");
printf (" AR N R B / \n");
printf (" \\ ()Y)Y)Yy)y) () / \n");
printf (" ~ ~ ~m v v~ e e~~~ o~~~ ~~\D");
printf ("\n"):;
<2 281 5 X e e et it \n")
printf (" SIMNET M1 SIMULATION V$s\n", VERSION):;
print£ (" Copyright (c) 1990 BBN Systems and Technologies\n"):;
printf (" All rights reserved.\n"):
printf(" === eeececrceccccccccscccccmcemcrcemcme—m e m oo \n")

#ifndef SIMBFLY

sleep (5):

felse

Sleep(8030):

fendif

printf
}

("%c[B%c{JI", *\033", *\033’);

void veh_spec_startup()

{

extern void rtc_init_clock():;

/* clear screen */

rtc_init_clock():
/* main_read pars_file (PARS_FILE);*/
/*
vehicle_type is in activate. We DO need to set simulator type, however
network_set_vehicle_type ((int) VEH_MAIN_BATTLE_TANK);
*/
network_set_simulator_ type (simulator SIMNET Ml);
use_cig__ recon£1g startup ():
cig_set_view conflg file (get_vconfig filel ()):
map_‘ vehxcle flle read (get_veh_map_: file ()):
map_ read as:d file (get_asid_map_. file ()):
keyboard_init ()
/* weapons_download ballistics_tables();*/

/* this function should move out of vehicle specific code */
/* map file read("/simnet/data/trial_map.d");*/
map_ file read(get ammo_map_file 0y

failure_init (); /* initialize damage tables */
map_get_damage_files(): /* must be after failure_init */

)

void veh_spec_idle()
{
status_simul ();
keyboard simul ():
io_simul_idle ():
if (initial_activation != NULL)
{
process_activate_request (initial_activation, (SimulationAddress *) 0,

0, network_get_exercise_id ());
initial_activation = NULL;

}
void veh spec_init()

/* Order dependent initialization here. */

cupola_init (): /* must be before controls */
sound_init (): /* before controls, after idcs */
status_preset (): /* after idc init */
/* does ammo_init still need to be before controls or */
/* is this one of those historical comments? */
/* I am assuming the latter. -CJC 3/16/90 */
/* ammo_init (): /* must be before controls */

controls_fsm_init ();

resupply_init ():

meter_init (); /* must be before electsys */
electsys_init (): /* this must be after controls_init */
hydraulic_init ():

firectl_init (): /* this must be before laser_init */

/* fuel_init ():*/
drivetrain_init ():
handles_init ()
laser_init ():
bes_init ():
weapons_init ():
vision_restore_all blocks ():

controls_edge_init ();

app_init ();

thermal_init ()’

config_pos_init2(kinematics_get_o_to_h(veh_kinematics),
kinematics_get_w_to_h(veh_kinematics))

cig_init_ctr ():
)

void veh_spec_simulate()

{
status_simul ()
#if defined (SIMBFLY)

/* #4## don’t count printing of stats against simulation */
long start, end:

start = rtc; /* END_FRAGMENT (60) */

keyboard simul ()

end = rtc;

bbd bit_start [60] += end - start;/* START FRAGMENT(60) */

}
telse
keyboard simul ():
tendif
sound_simul (); /* should be first */
controls_simul ()
handles_simul (); /* must be before kinemat simuls */

ammo_simul ()
resupply_simul ()
electsys simul ()
hydraulic_simul ();
fuel_simul ():
drivetrain_simul ():;
bes_simul ();
weapons_simul ()

© if (polhemus_flag)

polhemus_simul():;
cupola_simul ():
thermal simul ():
}

void veh_spec_stop()
{
ide_init ():
sound_init ():
vision_break_all_blocks ():
}

void veh_spec_exit ()
{
int num_ticks;

keyboard exit gracefully ();
printf ("Elapsed pseudo time %1f secs.\n", timers_get current_time ());
printf ("Elapsed time %d ticks.\n", timers_get current_tick ()):
printf ("Elapsed real time %1f secs.\n",
(timers_elapsed milliseconds () / 1000.0));
if ((num ticks = timers get_current_tick ()) != 0)
{
printf ("Average frame time %1f msecs.\n",

((REAL) timers_elapsed milliseconds () / (REAL) num_ticks));:
}
network_print_statistiecs ():

net_close (net_handle);
}

main (argc, argv)
int arge;

char *argv []:

{

int

i;

signal (SIGINT, (PFI)exit_gracefully):
signal (SIGTERM, (PFI)exit_gracefully):

enter_gracefully ()’

network_set_exercise_id (1)

printf ("ALERT: Initial buffer transfer size is 512 x 512 !!\n"):;
main_read pars_file (PARS_FILE);

for (1 = 1; i < argc: i++)

{

switch (argv[i] [0])
{
case ‘-':
switch (argv{il]l([1])
{

case 'a’:
set_request_receive_size (atoi(argv(++i]));
set_request_send_size (atoi (argv(++i]));
set_assymetric on ():
break:;

case ‘A’:
ammo_enable_autoloader():
break:

case ’'c¢’:
keyboard use_cupola ():
break:;

case 'C’:
set_catc_mode ()
printf ("using catc89 Hardware\n");
break:

case 'd’:
debug = 1;
printf ("Debugging is now on...\n");
break:

case 'D’:
use_static_debug (1)
printf ("debugging for static vehicles on...\n"):
break:

case 'e’:
network_dont_really open_up_ethernet ()
break:;

case ‘E’:

network_set_exercise_id ((ExerciselD) (atoi(argv[++i]))):

break:
case 'F’:
cfail debug_on():
break:
case 'g’:
cig_not_using_graphics ():
break;
case ‘G’':
guise_override = TRUE;
sscanf (argv{++i], "$x", &guise_to_use);
printf("ml using guise 0x%08x\n", guise_to_use);
break:;
case 'h':
case ’?’:
print_help (argv([0]):
exit (-1);
case ‘k’:
keyboard_really use ():
break:

/* print copyright banner */

case "17:

/*laser_enable_dazzler();*/
printf("no dazzling laser available\n");
exit (-1);
case ‘m’:
disable_status_printing():
break:
case ‘n‘:
v_pkt_verbose_mode ();
break:
case 'N’':
printf ("Night vision enabled\n"):
vision_set_otw_night_vision ()
break:
case ‘0’:
print_overruns = TRUL;
printf ("Printing of overruns is now on...\n");
break:
case 'p’:
{
float initial_heading:; /* degrees */

SIMNET M1 _Status *status;
GroundVehicleSubsystems *gp:
OrganizationalUnit *unit;
unsigned int status_bits;

init_activ.reason = activateReasonOther:;
init_activ.vehicleClass = vehicleClassTank;

/* VehicleID is set at net_init time, so the
one in the activate pkt is ignored... */

unit = & init_activ.unit;
unit->force = distinguishedForcelID;
unit->organizationType = organizationArmy;

unit->hierarchy(0].unitType = unitTypeArmy;
unit->hierarchy({0).unitNumber = 0;
unit->hierarchy(1l] .unitType = unitTypeCorps;
unit->hierarchy(l].unitNumber = 0;
unit->hierarchy(2]).unitType = unitTypeDivision;
unit->hierarchy(2}].unitNumber = 0;
unit->hierarchy(3].unitType = unitTypeBrigade:
unit->hierarchy(3].unitNumber = Q;
unit->hierarchy([4].unitType = unitTypeBattalion:
unit->hierarchy[4].unitNumber = 0’
unit->hierarchy(5] .unitType = unitTypeCompany:
unit->hierarchy{5].unitNumber = 0;
unit->hierarchy|[6] .unitType = unitTypePlatoon;
unit->hierarchy{6).unitNumber = 0;
unit->hierarchy(7].unitType = unitTypelrrelevant;
unit->hierarchy (7] .unitNumber = 0;
unit->hierarchy (8] .unitType = unitTypeSquad;
unit->hierarchy|[8]}.unitNumber = 0;

init_activ.marking.characterSet = asciiCharacterSet;

strcpy (init_activ.marking.text, “"Al0"):

if (guise_override)

{

init_activ.guises.distinguished = guise_to_use;
init_activ.guises.other = guise_to_use;

} !

else

{

init_activ.guises.distinguished = vehicle_US Ml;
init_activ.guises.other = vehicle US Ml;
}

init_activ.simulatedTime = 0;

strcpy (init_activ.terrain.terrainName,
get_default_db_name ()):

init_activ.terrain.terrainVersion =
get_default_db_version ():

sscanf (argv([++i], "%1lf", &(init_activ.location([X])):
sscanf (argv(++i], "$1f", &(init_activ.location(Y])):
sscanf (argv({++i], "%f", &initial_heading):

printf("Initializing tank @ (%1f, %1f) heading %f\n",
init_activ.location([X],
init_activ.location(Y],
initial_heading):

init_activ.battleScheme = battleSchemeOther;
init_activ.onSurface = TRUE;

init_activ.status.vehicleType = vehicle_US_M1;

/* brand spanking new */
init_activ.status.odometer = 0; /* meters */
init_activ.status.age = 1; /* years */

init_activ.status.failures.category =
groundVehicleSubsystems;
init_activ.status.failures.operationalSummary = 0;
init_activ.status.failures.mobilitySummary = 0;
init_activ.status.failures.firepowerSummary = 0;
init_activ.status.failures.communicationSummary = 0;
init activ.status.failures.noncriticalSummary = 0;

gp = &init_activ.status.failures.subsystems.ground;

/* initialize everything working */

status_bits = 0x0;

BCOPY ((char *) &status_bits,
(char *) &gp =-> motive[subsystemExists],
sizeof (MotiveSubsystems)):

BCOPY ((char *) &status_bits,
(char *) &gp -> electronic(subsystemExists],
sizeof (ElectronicSubsystems)):

BCOPY ((char *) &status_bits,
(char *) &gp -> power|[subsystemExists],
sizeof (PowerSubsystems)):;

BCOPY ((char *) &status_bits,
(char *) &gp -> weapon[subsystemExists],
sizeof (WeaponSubsystems)):

BCOPY ((char *) &status_bits,
(char *) &gp -> chassis[subsystemExists],
sizeof (ChassisSubsystems)):

BCOPY ({(char *) &status_bits,
(char *) &gp -> turret{subsystemExists],
sizeof (TurretSubsystems));

status_bits = 0;

BCOPY ((char *) &status_bits,
(char *) &gp -> motive[subsystemStatus],
sizeof (MotiveSubsystems)):

BCOPY ((char *) &status_bits,
(char *) &gp -> electronic([subsystemStatus],

S1zeo €c 777

BCOPY ((char *) &status_bits,
(char *) g&gp -> power[subsystemStatus],
sizeof (PowerSubsystems)):

BCOPY ((char *) &status_bits,
(char *) &gp -> weapon[subsystemStatus],
sizeof (WeaponSubsystems)):

BCOPY ((char *} &status_bits,

(char *) &gp -> chassis(subsystemStatus],

sizeof (ChassisSubsystems)):;

BCOPY ((char *) &status_bits,
(char *) &gp -> turret|subsystemStatus],
sizeof (TurretSubsystems)):

init_activ.status.specific.category = simnetMlStatus;
status = &init_activ.status.specific.specific.ml;

status -> enginePower = 1.0;
status ~> battery = 24.0;

status ~> frontleftFuel = 70.0;
status -> frontRightFuel = 70.0;
status -> rearFuel = 150.0;

status -> apdsReadyAmmo = 12;

status -> apdsSemiReadyAmmo = 11;
status -> apdsHullTurretFloorAmmo = 6;
status =-> heatReadyAmmo = 10;

status -> heatSemiReadyAmmo = 11;
status -> heatHullTurretFloorAmmo = 5;

init_activ.cpecific.tank.hullAzimuth =
(unsigned long) (4294967295 -
(unsigned long) (initial_ heading *
4294967295.0 / 360.0));
init_activ.specific.tank.turretAzimuth = 0;

initial_activation = &init_activ;

break;
}
case ’'P’:
rva_turn_debug_on();
printf("turning priority list debugging on\n");
break:;
case ’s’:
sound_dont_use();
break:
case 't’:
if(l!isalpha(argv{++i][0]))

printf ("Cannot use invalid terraindatabaser:
argv([i])
exit(0);
}
cig_use_database_override_named(argv(i]):
break;
case 'T’:
if(!isalpha(argv([++i][0]))
{

printf("Cannot use invalid terraindatabaser:
argvli]):

exit(0);

}

set_ded name(argv{i])

$s\n",

$s\n",

break:
case ’'v’':
terrain_verbose_mode on ()
break:
case ‘1l’:
set_cig_dev (1, atoi(argv[++i])):
¢ifdef _GT_ .
his cif_ interface = atoi (argvl[i]);
#endif
set_cig_mask (CIG_1):;
break:;
case '2’':
set_cig_dev (2, atoi(argv(++il)):
set_cig_mask (CIG_2);
break:
case ‘z’:
{
double scale:
sscanf(argv({++i], "%1lf", &scale):
printf ("Using vehicle size scale of %1f\n", scale):
break:;
}
default:
fprintf (stderr, "Unknown switch \"%$s\"\n", argv(i]):
break:
}
break:
default:
fprintf (stderr, "unknown arg \"%$s\"...\n", argv([i]);
break:;
}

}
sim_state_startup():

for(;:)

{
}

/ *NOTREACHED*/ /* this keeps lint happy */
return (0):; /* Exit gracefully, dummy up lint. */

simulation_state_machine();

}
void

reconstitute_vehicle ()

{

process_activate_request(&init_activ, (SimulationAddress *)0,
(TransactionIldentifier) 0, network_get_exercise_id()):

}

woid
‘set_polhemus_flag true()

{
h'igﬁgii'xﬂmpmuq_flag = TRUE:

oid
et_polhemus flag false()
{

\ polhemus flag = FALSE;

/*i****i*i***f*************************************i*************

*
N 2T
* AUTHOR:

* MAINTAINER:

* HISTORY:

ml_ctl_npc.c
Brian O’Toole
Brian O’Toole

4/30/86 brian: Creation

*
*
*
*
*
*
*
*
*
*
*

#include
#include
#include
#include

#include
#include
#include

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#include
#include
#1aclude
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
¢include
#include
#include
#include
¢include
#include
#include
¢#include

#include

9/29/87 brian: Added redistribute send
12/06/89 fmh: Change to 36-bit munitions types:

SABOT ==> M392A2,

HEAT ==> M456Al

7/2/91 mla (IST): added using polhemus flag
and routines to manipulate it

"stdio.h"

"sim types.h"
"gim_dfns.h"
"sim macros.h”

"mass_stdc.h"
"dgi_stdg.h"
"sim_cig_if.h"

"libcig.h"
"dtad.h"
*libidc.h"
"libidc_dfn.h"
"libmem.h"
"libmem_dfn.h"
»libnetwork.h"
"status.h"”
*timers.h”
"timers_dfn.h"

"ml_ammo.h"
"ml_ammo_df.h"
"ml_ammo_mx.h"
"ml_ammo_pn.h"
"ml_cntrl.h"
“ml ctl _df.h"
"ml cupola h"
"ml_driv_pn.h"
"ml_dtrain.h"
"ml_ _gunn_mx.h"
"ml comm_mx.h"
"ml_ load mx.h"
"ml hydrsys h"
"ml_idc.h“
"ml_pots.h"
"ml_repair.h”
*ml_status.h"
"ml_thermal.h"
"ml_tmrs_df.h"
“ml_;racks h"
"ml_turr_pn.h"
"ml_turret.h”
"ml_vision.h"

I

"mun_type.h"

#define INVERT_DELAY 15

see note below

Copyright (c) 1986 BBN Laboratories, Inc.
All rights reserved.

**

* % % %

A % % A % A % % * % *

/* ammo rack internals */
static int apds_translations [N_READY)] =
{

APDS_RDY04,
APDS_RDY0S,
APDS_RDY0S6,
APDS_RDY14,
APDS_RDY1S,

AFD5_RDYO1,
APDS_RDYO02,
APDS_RDYO03, .
APDS_RDY11,
APDS_RDY12,

APDS_RDY09,
APDS_RDY10,
APDS_RDY20,
APDS_RDY21,

APDS_RDYO07,
APDS_RDYO08,
APDS_RDY17,
APDS_RDY18,

APDS_RDY22,

static int
{

HEAT_RDYO09,
HEAT_RDY10,
HEAT_RLY20,
HEAT_RDY21,

APDS_RDY19,

APDS_RDY16,

APDS_RDY13

heat_translations ([N_READY] =

HEAT_RDY07,
HEAT_RDYOS8,
HEAT_RDY17,
HEAT_RDY18,

HEAT_RDY04,
HEAT_RDYO0S,
HEAT_RDY06,
HEAT RDY14,
HEAT_RDY15,

HEAT_RDYO1,
HEAT_RDY02,
HEAT_RDYO03,
HEAT RDY11,
HEAT RDY12,

HEAT_RDY22, HEAT_RDY19, HEAT RDY16, HEAT RDY13

}:

static int
{

select_translations [N_READY] =

ASELECTO04,
ASELECTOS,
ASELECTO6,
ASELECT14,
ASELECT15S,
ASELECT16,

ASELECTO1,
ASELECTOZ2,
ASELECTO3,
ASELECT11,
ASELECT1Z2,
ASELECT13

ASELECTO09,
ASFLECT10,
ASELECT20,
ASELECTZ21,
ASELECT22,

ASELECTO7,
ASELECTOS8,
ASELECT17,
ASELECT1S8,
ASELECT19,
}:

static int
{

turret_ref translations [TURRET_REF_NUM SECTORS] =

TURRET_TO_HULL_030,
TURRET TO HULL 120,
TURRET TO HULL 210,
TURRET TO HULL 300,

TURRET_TO_HULL_ 060,
TURRET_TO_HULL_ 150,
TURRET_TO_HULL_240,
TURRET_TO_HULL_330,

TURRET _TO_| BULL_ 090,
TURRET TO HULL _ 180
TURRET TO HULL 270,
TURRET TO HULL _ 360
}:

static REAL real service_brake_val;
static R7AL real comm weap_val;
static REAL real_ load_peri_val;
static int hex_service brake_val;
static int hex comm_weap_val;
static int hex_load_peri val;
static char gps_mag_val;

static char breech_ready:

static char ejection_guard val;
static char ammo_transfer_status;
static char grld azimuth status.
static int fuel flash_ count:
static char fuel flash status;
static int odometer tlmer number;
static char cupola_up_down_val;
static char binoculars on_off_ val:;
static char lpscope_up_: down val;
static char thermal shutter _ “val;

/* added for polhemus */

‘t_@tie

BOOLEAN wmsing_polhemus = YALSE;

/* integration */

J* July 2, 1991 */
M Altman {(IST) */

/* see note below */

/* no power routines */

static void controls_parking brake_check ():

static void controls_service_ brake check ():

static void controls | _mag_. check ():

static void controls_ejection_guard check ():

static void controls_breech_check ():

static void controls_| breech unload check ():

static void controls | “breech_. _ready_ check ():

static void controls_ammo_transfer_check ():

static void controls_knee_switch_check ()

static void controls_ammo_tube_check ()

static void controls commander _weapon_station_check ()

static void controls_loader_periscope_check ():

static void controls_grid_azimuth_check ()

static void controls_fuel flash_ check ():

static void controls odometer check ():

static void controls _cupola_up_down_check ():

static void controls_| blnoculars on_ off check ():

static void controls_lpscope_up_down_check ():

static void controls_thermal_shutter_check ():

/* init routines */

static void controls_service_brake_init ()

static void controls_mag_init ();

static void controls_ejection_guard init ():

static void controls_ammo_transfer_init ()

static void controls_commander weapon_station_init ()

static void controls_loader_ periscope_init ()

static void controls_cupola_up down_init ();

static void controls_binoculars_on_off_init ();

static void controls_lpscope up_down_init ();

static void controls_thermal shutter_init ():

static void controls_transfer_ semi_heat ():

static void controls_ transfer semi apds ().

static void controls_: “transfer hull heat @)

static void controls_ “transfer hull _apds (),

static void controls transfer . _no_transfer ():

static void controls_transfer redist_send ():

static void controls_transfer_redist_recv ():

static void controls_service_brake_exit ():

static void controls_odometer_exit {):;

static void controls_cupola up down_exit ():

static void controls_binoculars_on_off exit ():

static void controls_lpscope_up_down_exit ():

static void controls fuel_flash ():

static void controls_ " fuel unflash ()

static void controls_fuel_restore ():

* “77 "The using_polhemus flag and these two routines to"l&hi‘pulate it =/

/*
/*
;,/*
/*
b/ *
./*

were added to prevent & read of the TC’s cupola pot while the
polhemus is active. If the cupola pot is also read while the
polhemus is active, there is an oscillation as the polhemus and
the pot fight over the ’‘correct’ wvalue.

July 2, 1991 - M Altman (IST) .

- . - T - - - W D P T e e e e S T - - G W G P T S e R R R AR G A e W G G A W W S g

*/

*/
*/
*/
*/

\
€ void controls_set_using polhemus true{) {

;; using_polhemus = TRUE;

ypoid controls_set using _polhemus false() {
using_polhemus = FALSE;

void controls npc_init ()

{
real_ service brake_val = 0.0;
real comm_weap_ val = 0.0;
real load_per1 val = 0.0;
hex_service_brake_val = 0;
hex comm weap val = 0;
hex_load peri val = 0;
gps_mag_val = GN_3X_ VAL:
breech_ready = OFF;
ejection_guard val = OFF;
ammo_transfer_status = NO_TRANSFER VAL;
grid _azimuth_status = OFF;
fuel flash _count = 0;
fuel _flash_status = OFF;
odometer_ timer number = timers_set null_timer ();
cupola_up_down_val = CM_CENTER_VAL;
binoculars_on_off_val = OFF;
lpscope_up_down_val = LD_CENTER_VAL;

controls_service_brake init ():
controls_mag_init ();
controls_ejection_guard_init ():

controls ammo_transfer_ init ()

controls commander_ weapon_station_init ();
controls loader_periscope_init ();
controls_cupola_up_down_init (}
controls_binoculars_on_off_ lnlt ():
controls lpscope _up_ down init ():
controls_thermal shutter init ();

void controls_no_power_routines ()

{
controls_parking_brake check ();
controls_service_brake_ check ();
controls | _mag_ check ():
controls_ejection_guard_check ():
controls_breech_ check ();:
controls breech _unload_check {():
controls breech _ready check ();
controls ammo transfer check ():
controls_knee_switch_check ():
controls_ammo_tube_check ():
controls_commander_ weapon_station_check ();
controls loader_perxscope check ():
controls grid_azimuth_check ():
controls fuel_flash check 0:
controls odometer check ()
controls cupola _up_down_check ()
controls_| “binoculars _on off _check ()
controls lpscope up down_check ():
controls_thermal_shutter_check ():

static void controls_parking brake_check ()

{
if (idc_values [DR_P_BRAKE_ SET])
{
idc_values [DR_P_BRAKE SET] = OFF;
if (hydraulic_parking_brake_on_request ())
{
drivetrain_set_parking brake {():
controls_set_parking_brake ():

}

if (idc_values [DR_P_BRAKE_RELEASE])

{
idc_values [DR_P_BRAKE_RELEASE] = OFF;
drivetrain_release_parking_brake ();
controls_release_parking_brake ():

static void controls_service_brake_check ()

{

int temp;

if ((temp = potval(DR_S_BRAKE)) != hex_service_brake_val)
{
real_ service brake_val =
pots serv1ce brake real (hex_service_brake val = temp);
drivetrain_set_service_|] brake (real_service_! brake val),

static void controls_service_brake_init ()

{
hex_service_brake_val = potval(DR_S_BRAKE) ;
real serv1ce brake val = pots_service_brake_real (hex_service_brake_val);
drlvetraln set service_brake (real serv1ce brake val),

static void controls_service brake_exit ()
{

}

drivetrain_set_service_brake (0.0);

static void controls_mag_check ()

{
char temp_3x, temp_10x;

temp_3x = idc_values [GN_GPS_MAG_3X];
temp 10x = idec _values [GN GPS MAG 10x1,

if (thermal_view_on())
{

}

return;

if ((temp_3x) &&
(gps_mag_val != GN_3X VAL) &&
(! temp_ 10x))

gps_mag_val = GN_3X_VAL;
cig_gps_mag_3x ()
}

else if ((temp_10x) &&
(gps_mag_val != GN_10X VAL) &&
(! temp_3x))

gps_mag_val = GN_10X VAL;
cig_gps_mag_1l0x ();

static void controls_mag_init ()

{

}

char temp_3x, temp_10x;

temp_3x = idc_values [GN_GPS_MAG_3X]:;
temp_10x = idc_ “values [GN GPS MAG 10X],

if ((temp_3x) &&
(! temp_10x))
{

printf("mag_init: Initialize to Low MAG **#*%axkkddakskxax\n”);
gps_mag_val = GN_3X VAL;
cig_gps_mag_3x ():

}

else if ((temp_10x) &&
(! temp_3x))
{
printf("mag_init: Initialize to Hi MAG ****kk*kkkkkkkkkkx\n");
gps_mag_’ val = GN_10X VAL;
cig_gps_mag_10x 0

else
{

}

printf("mag_init: Mag switch in weird state ****xx*x*x*+\p");

char get_non_thermal mag()

{

}

return(gps_mag_val);

static void controls_ejection_guard check ()

{

char temp:

if ((temp = idc_values [LD_EJECTION_GUARD]) != ejection_guard_val)
{
switch (ejection_guard_val = temp)
{
case ON:
ammo_ejection_guard_armed ():
controls_ejection_guard armed ():
break:

case OFF:
ammo_ejection_guard safe ():
controls_ejection_guard_safe ()
break:;

default:
fprintf (stderr, T"CONTROLS: controls_ejection_guard check: impossib
nprintf ("CONTROLS: controls_ejection_guard check: impossible eject
break:

static void controls_ejection_guard init ()
{
switch (ejection_guard val = idc_values [LD_EJECTION_ GUARD])
{
case ON:
ammo_ejection_guard armed ():;
controls_ejection_guard armed ();
break;
case OFF:
ammo_ejection_guard safe ():
controls_ejection_guard_safe ()
break;
default:
fprintf (stderr, "CONTROLS: controls_ejection_guard_init: impossible ej
nprintf ("CONTROLS: controls_ejection_guard _init: impossible ejection g
break;

static void controls breech_check ()
{
if (idec_values [LD_SHELL_LOADED PB])
{
ammo_breech_pushed ():
idc_values [LD_SHELL_LOADED PB] = OFF;

static void controls_breech_unload_check ()
{
if (idc_values [LD_UNLOAD BREECH_PB])
{
ammo_breech_unload pushed ()
idc_values [LD_UNLOAD BREECH PB] = OFF;

static void controls_knee_switch_check ()
{
switch (idc_values [LD_KNEE_SWITCH])
{
case ON:
ammo_knee_switch on ():;
break;
case OFF:
ammo_knee_switch off ():

break:
default:

fprintf (stderr, “CONTROLS: controls_knee_switch_check: Impossible knee
nprintf ("CONTROLS: controls_knee_switch_check: Impossible knee switch -

break:

void controls_ejection_guard_armed ()
{
idc_output_set_cond (((controls_power_status () ==
CONTROLS_STATE_TURRET POWER_ON) &&
(controls_electsys_status ()) &&
(! controls failure status ())),
LD_MAIN_ARMED L, OUTPUT_ON);
idc_output_set_cond (! controls_commander_panel status (),
LD_MAIN SAFE_L, OUTPUT_OFF);

void controls_ejection_guard_safe ()
{
idc_output_set_cond (! controls_commander_panel status (),
LD_MAIN ARMED L, OUTPUT_OFF);
idc_output_set_cond (((controls_power_status () ==
CONTROLS_STATE_TURRET_POWER_ON) &&
{controls electsys status 0O) &&
(! controls fa;lure_status),
LD_MAIN SAFE L, OUTPUT_ON);

void controls_set_parking_brake ()
{
if (! idc_values [DR_BRAKE L])
{
idc_output_set_cond (({controls_power_status () !=
CONTROLS_STATE_NO_POWER) &&
(controls_electsys_status ()) &&
(! controls_failure_status ())),
DR_BRAKE L, OUTPUT ON).
ide_output_set_cond (((controls_power status () !=
CONTROLS_STATE_NO_POWER) &&
(controls_electsys_status ()) &&
(! controls_ fallure status ())),
DR_MASTER_WARNING_L, OUTPUT_ON) ;

void controls_release_parking_brake ()
{
if (idc_values (DR_BRAKE l])
{
idc_output_set_cond (! controls_driver_panel status (),
DR_BRAKE L, OUTPUT_OFF):
controls_warning_lamp_ off check ()

static void controls_breech_ready check ()

{
char temp:

if ((temp = ammo_breech_ready ()) != breech_ready)
{
switch (breech_ready = temp)
{
case ON:
idc_output_set_cond (! controls_failure_status (),
LD_BREECH__ READY L, OUTPUT _ON) ;
break;
case OFF:
idc_output_set_cond (! controls_commander_panel_status (),
LD _BREECH_READY L, OUTPUT_OFF):
break:;
default:
fprintf (stderr, "CONTROLS: controls_breech_ready check: Impossible
nprintf ("CONTROLS: controls_breech_ready check: Impossible breech_.

break:;

static void controls_ammo_transfer_check ()

{
char temp_semi_heat, temp_semi_apds, temp_hull heat, temp_hull_apds;

char temp_redist_send, temp_redist_recv;

temp_semi_heat = idc_values [SEMI_HEAT]:
temp_semi apds = idc_values [SEMI_APDS];
temp_hull heat = idc _values [HULL HEAT] ;
temp_. hull_. _apds = idc values [HULL_. APDS];
temp_. redist _send = idc _values [REDIST SEND};
temp_redlst_recv = 1dc_yalues [REDIST_RECV],

if ((temp_semi_ heat) &&
(ammo_transfer status != SEMI_HEAT VAL) &&
(! temp_semi_apds) &&
(! temp_hull_heat) &&
(! temp_hull_apds) &&
(! temp_redist_send) &&
(! temp_redist_recv))

controls_transfer semi_heat ():
ammo transfer semi heat ()
ammo_ transfer status = SEMI_HEAT VAL;

}

else if ((temp_semi_apds) &&
(ammo_transfer_status != SEMI_APDS_VAL) &&
(! temp semi_heat) &&
(! temp_hull heat) &&
(! temp_hull apds) &&
(! temp_redist_send) &&
(! temp_redist_recv))

controls transfer_ semi_apds ():
ammo_transfer semi_apds ()
ammo_transfer_status = SEMI_APDS_VAL;

}

else if ((temp hull heat) &&
(ammo_transfer_ status != BULL_HEAT_ VAL) &&
(! temp_semi_heat) &é&

(! temp_semi_apds) &&
(! temp_hull apds) &&
(! temp_redist_send) &&
(! temp_redist_recv))

controls_transfer_hull heat ():;
ammo_ transfer hull heat ():
ammq_transfer_status = HULL_HEAT VAL;

}

else if ((temp_hull apds) &&
{ammo_transfer status != HULL APDS_VAL) &&
temp semi heat) &&
temp_semi_apds) &&
temp hull heat) &&
temp_redist_send) &&
temp_redist_recv))

(!
(
(!
(
(!

controls_transfer_hull _apds ();
ammo__ transfer hull apds ():
ammo_transfer_status = HULL_APDS_VAL;

}

else if ((! temp_semi_ heat) &&
(ammo_transfer_status != NO_TRANSFER VAL) &&
(! temp semi apds) &&
(! temp_: _hull _heat) &&
(! temp_hull apds) &&
(! temp_redist_send) &s&
(! temp_redist_recv))

controls_transfer_no_transfer ();
ammo_transfer_no_transfer ():
ammo_transfer_status = NO_TRANSFER_VAL;

}

else if ((temp_redist_send) &&
(ammo_transfer_status != REDIST_SEND VAL) &&
(! temp_semi heat) &&
(! temp_semi_apds) &&
(! temp_hull heat) &&
(! temp_hull_apds) &&
(! temp_redist_recv))

controls_transfer_redist_send ();
ammo_transfer_redist_send ():
ammo_transfer_status = REDIST_SEND_VAL;

}

else if ((temp_redist_recv) &&
(ammo_transfer_ status != REDIST _RECV_VAL) &&
(! temp_semi_heat) &&

! temp_semi_apds) &&

temp_ " hull | _heat) &&

temp_| “hull _apds) &&

! temp_redist_send))

o~ g~ g~
- en Sem sem

controls_transfer_redist_recv ():
anmmo transfer redlst recv 0:
ammo_transfer_status = REDIST_RECV_VAL;

static void controls_ammo_transfer_init ()

if (idc_values [SEMI_HEAT])

{
controls_transfer_semi_heat ():
ammo__ transfer sem1 heat ():
ammo_transfer status = SEMI _HEAT VAL;

}

else if (idc_values (SEMI_APDS])

{
controls_transfer_ semi_apds ():
ammo__ transfer semi _apds ():
ammo_ transfer status = SEMI_APDS_VAL;

}

else if (idc_values [HULL_HEAT])
{
controls_transfer hull heat ():
ammo__ transfer hull heat ()
anmo_ transfer status = HULL_BEAT VAL;
}

else if (idc_values [BULL_APDS])

{
controls_transfer hull_apds (}:
ammo_transfer hull apds ()’
ammo_transfer_status = HULL APDS VAL;

}

else if (idc_values [REDIST_SEND])

{
controls_transfer_redist_send ():
ammo_transfer_redist_send ();
ammo_transfer_ status = REDIST_ SEND_VAL:;

}

else if (idc_values [REDIST_RECV])
{
controls_transfer_ redist_recv ():
ammo__ transfer redlst recv ():
ammo transfer status = REDIST_RECV_VAL;
}

else

{
controls_transfer no_transfer ():
ammo_transfer no_transfer ():
ammo_transfer_ status = NO_TRANSFER VAL;

static void controls_transfer_semi_heat ()

{

idc_output_set_cond (! controls_commander panel_status
RULL_HEAT_L, OUTPUT_OFF):;

idc_output_set_cond (! controls commander_panel status
HULL_APDS_I, OUTPUT_OFF':;

idc_output_set_cond (! controls_commander_panel_status
SEMI_APDS_L, OUTPUT_OFF):

idc_output_set_cond (! controls_commander_panel_status
REDIST_SEND_L, OUTPUT_OFF):;

idc_output_set_cond (! controls_commander_panel_status
REDIST_RECV_L, OUTPUT_OFF);

if ((ammo_get_quantity (SEMI HEAT_VAL) > " 0) &&

(idc_ values {SEMI_HEAT L] 1= ON))

0.
0.
0.
0.
0.

idc_output_set_cond (! controls_failure_status (),
SEMI_HEAT L, OUTPUT_ON):

static void controls_transfer_semi_apds ()
{
idc_output_set_cond (! controls_commander_ panel_status (),
HULL_HEAT L, OUTPUT_OFF);
idc_output_set_cond (! controls_commander_panel_status (),
HULL APDS_L, OUTPUT_OFF);
idc_output_set_cond (! controls_commander_panel_status (),
SEMI_HEAT_L, OUTPUT_OFF);
idc_output_set_cond (! controls_commander_ panel_status (),
REDIST_SEND_L, OUTPUT_OFF):;
idc_output_set_cond (! controls_commander_panel_status (),
REDIST RECV_L, OUTPUT_OFF):
if ((ammo_get_quantity (SEMI APDS _VAL) > " 0) &&
(idc_values [SEMI_APDS_L] != ON))
{

idc_output_set_cond (! controls_failure status (),
SEMI_APDS_L, OUTPUT_ON);

static void controls_transfer_ hull heat ()
{
idc_output_set_cond (! controls_commander_panel_status (),
HULL_APDS_L, OUTPUT_OFF):
idc_output_set_cond (! controls_commander_panel_ status (),
SEMI_HEAT L, OUTPUT_OFF);
idc_output_set_cond (! controls_commander_panel status ().
SEMI_APDS_L, OUTPUT_OFF):
idc_output_set_cond (! controls_commander_panel_status (),
REDIST_SEND L, OUTPUT_OFF):
idc_output_set_cond (! controls_commander_panel_status (),
REDIST_RECV_L, OUTPUT_OFF):;
if ((ammo_get_quantity (HULL HEAT _VAL) > “0) &&
(idc_values [HULL_HEAT L] != ON))
{

idc_output_set_cond (! controls_failure_status (),
HULL_HEAT_L, OUTPUT_ON):

static void controls_transfer_hull apds ()
{
idc_output_set_cond (! controls_commander_ panel status (),
BULL_HEAT_L, OUTPUT_OFF):
idc_output_set_cond (! controls_commander_panel_status (),
SEMI_HEAT L, OUTPUT_OFF);
idc_output_set_cond (! controls_commander_panel_status (),
SEMI_APDS_L, OUTPUT_OFF):
idc_output_set_cond (! controls_commander_ panel_status (),
REDIST_SEND_L, OUTPUT_OFF):
idc_output_set_cond (! controls_commander_panel_status (),
REDIST_RECV_L, OUTPUT_OFF):;
if ((ammo_get quantity (HULL APDS _VAL) > "0) &&
(idc_values [RULL_APDS_L] != ON))

idc_output_set_cond (! controls_failure_status (),
BULL_APDS_L, OUTPUT ON);

static void controls_transfer_no_transfer ()

{

idc_output_set_cond (! controls_commander_panel_status
HULL_HEAT_L, OUTPUT_OFF):
idc_output_set_cond (! controls_commander_panel_status
HULL_APDS_L, OUTPUT_OFF);
idc_output_set_cond (! controls_commander_panel status
SEMI_HEAT L, OUTPUT_OFF):
idc_output_set_cond (! controls_commander_panel_status
SEMI_APDS_L, OUTPUT_OFF):
idc_output_set_cond (! controls_commander_panel status
REDIST_SEND_L, OUTPUT_OFF):;
idc_output_set_cond (! controls_commander_panel status
REDIST_RECV_L, OUTPUT_OFF);

static void controls_transfer_redist_send ()

{

idc_output_set_cond (! controls_commander_ panel_status
HULL_HEAT_ L, OUTPUT_OFF):
idc_output_set_cond (! controls _commander_panel_status
HULL_APDS_L, OUTPUT_OFF):
idc_output_set_cond (! controls_commander_panel status
SEMI_HEAT 1, OUTPUT_OFF)
idc_output_set_cond (! controls_commander_panel status
SEMI_APDS_L, OUTPUT_OFF):
idec_output_set_cond (! controls _commander_panel_status
REDIST_RECV_L, OUTPUT_OFF):
idc_output_set_cond (! controls_failure status (),
REDIST_SEND_L, OUTPUT_ON):

static void controls_transfer_redist_recv ()

{

idc_output_set_cond (! controls_commander_panel_status
BULL_HEAT_ L, OUTPUT_OFF):

idc_output_set_cond (! controls_commander_panel status
BULL_APDS_L, OUTPUT_OFF):;

idc_output_set_cond (! controls_commander panel status
SEMI_HEAT_L, OUTPUT_OFF):

idc_output_set_cond (! controls _commander_panel_status
SEMI_APDS_L, OUTPUT_OFF):

idc_output_set_cond (! controls_commander_ panel status
REDIST_SEND_L, OUTPUT_OFF);

idc_output_set_cond (! controls_failure_status (),
REDIST RECV_L, OUTPUT_ON);

void controls_resupply empty (status)
register int status:

{

switch (status)
{

case HULL_HEAT VAL:
ide output set_cond (! controls_commander_panel_status (),
HULL_HEAT L, OUTPUT_OFF):
break:

case HULL_APDS_VAL:
idc_output_set_cond (! controls_commander_panel_status (),
HULL_APDS_L, QUTPUT_OFF):
break;

case SEMI_HEAT VAL:
ide output set_cond (! controls_commander_panel_status (),
SEMI_HEAT L, OUTPUT_OFF):;
break:

case SEMI_APDS_VAL:
idc_output_set_cond (! controls_commander_panel_status (),
SEMI_APDS_L, OUTPUT_OFF);
break:
default:
fprintf (stderr, "CONTROLS: controls_resupply_empty: Impossible status\:
nprintf ("CONTROLS: controls_resupply empty: Impossible status\n");
break:;

static void controls_ammo_tube_check ()
{

register int i;

register int retval;

retval = NULL_SLOT; /* no tube selected */
for (i = 0; i < N_READY; i++) /* find one selected */

{
if (idc_values [select_translations [i]])

{

retval = i;
idc_values [select_translations [i]] = OFF;

}

if (retval != NULL_SLOT) /* return selected - offset */
ammo_tube_selected (retval):

void controls_show_round (slot, contents)
int slot:;

ObjectType contents;

{

if (slot == NULL_SLOT)
return;

if (contents == munition_US_M456Al)
idc_output_set_cond (! controls _failure_status (),
heat_translations [slot], OUTPUT_ON);

if (contents == munition_US_M392A2)
idc_output_set_cond (! controls _failure_status (),
apds_: translations [slot], OUTPUT _ON):

void controls_unshow_round (slot, contents)
int slot;

ObjectType contents;

{

if (slot == NULL_SLOT)
return;

if (contents == munition_US_M45621)
idc_output_set_cond (! controls _commander_panel_status (),
heat_translations (slot], OUTPUT_OFF);

if (contents == munition_US_M392A2)
idc_output_set_cond (! controls _commander_panel_ status (),
apds_translations [slot], OUTPUT_OFF):

static void controls_commander_weapon_station_check ()

{
int temp:

if((temp = ain(TC_CH)) == -1)
{

Dtad_Failed();
return;

}

if (!using_polhemus) ({ /* see polhemus note above */
if ((temp > hex_comm weap_val + DTAD_HYSTERESIS) ||
(temp < hex_comm weap_val - DTAD _HYSTERESIS))
{

real_comm weap_val = pots_comm __weap_real (hex_comm_weap_val = temp):
cupola cws_new_value (real comm_weap_val):

static void controls_commander_weapon_station_init ()
{
if ((hex_comm weap_val = ain(TC_CH)) == -1)
{
hex_comm weap _val = 0;
Dtad Falled(),
return;

}

real_comm weap_val = pots_comm_weap_real (hex_comm weap_val);:
cupola cws_new_value (real comm_weap_val);

static void controls_loader_periscope_check ()

{
int temp;

if((temp = ain(LD_CH)) == -1)
{

Dtad Failed():

return;

if ((temp > hex_load peri_val + DTAD_HRYSTERESIS) ||
(temp < hex_load peri_val - DTAD_HYSTERESIS))

{
real_load peri_val = pots_load peri_real (anex_load peri_val = temp);
cupola_lpscope new_value (real_ locad peri_val);

static void controls_loader_periscope_init ()
{
if ((hex_load peri_val = ain(LD_CH)) == -1)
{
hex_load peri val = 0;
Dtad_Failed():
return;
}

real load_peri_val = pots_load peri_real (hex_load peri_val);
cupola_lpscope_new_value (real_ load_peri_val);

void controls_resupply flash (slot, transfer status, resupply_location)
int slot:
char transfer_status, resupply location:;
{
switch (transfer_status)
{
case HULL_ HEAT_VAL:
if (slot != NULL_SLOT)
{

}
idc_output_set_ns (HULL_HEAT L, OUTPUT_ON):
break:;
case HULL_APDS_VAL:
if (slot != NULL_SLOT)
{

}
idc_output_set_ns (HULL_APDS_L, OUTPUT_ON):;
break:
case SEMI_HEAT_VAL:
if (slot != NULL SLOT)
{

}
idc_output_set_ns (SEMI_HEAT L, OUTPUT_ON);
break:
case SEMI_APDS_VAL:
if (slot != NULL_SLOT)

{

}
idc_output_set ns (SEMI_APDS_L, OUTPUT_ON);
break:

case REDIST_SEND_VAL:
idc_output_set _ns (REDIST_SEND_ L, OUTPUT_ON):
break:;

case REDIST_RECV_VAL:
switch (resupply location)

{

idc_output_set_ns (heat_translations [slot], OUTPUT_ON):

idc_output_set_ns (apds_translations [slot], OUTPUT_ON);

idc_output_set_ns (heat_translations [slot], OUTPUT_ON);

idc_output_set_ns (apds_translations [slot], OUTPUT_ON):

case HULL_HEAT_VAL:

idc_output_set_ns (HULL_HEAT L, OUTPUT_ON):
idc_output_set_ns (REDIST_RECV_L, OUTPUT_ON):
break:;

case HULL APDS_ VAL:
idc_output_set_ns (HULL_APDS_L, OUTPUT_ON);
idc_output_set_ns (REDIST_: RECV_L, OQUTPUT_ON);
break:

case SEMI_HEAT VAL:
idc_output_set_ns (SEMI_HEAT L, OUTPUT_ON);
idc_output_set_ns (REDIST_RECV_L, OUTPUT_ON):
break:

case SEMI_APDS VAL:
idc_output_set_ns (SEMI_APDS L, OUTPUT_ON):;
" idc_output_set_ns (REDIST_RECV_L, OUTPUT_ON):
break:

case READY_ HEAT_VAL:
if (slot != NULL_SLOT)

{
idc_output_set_ns (heat_translations ([slot], OUTPUT_ON):
}
idc_output_set_ns (REDIST_RECV_L, OUTPUT_ON):
break:;

case READY APDS VAL:
if (slot != NULL SLOT)
{

}
idc_output_set_ns (REDIST_RECV_L, OUTPUT_ON);
break:;

default:

idc_output_set_ns (apds_translations [slot], OUTPUT_ON):

fprintf (stderr, "CONTROLS: controls_resupply flash: Impossible
nprintf ("CONTROLS: controls_resupply flash: Impossible resuppl:

break:

}
break:;
default:

fprintf (stderr, "CONTROLS: controls_resupply flash: Impossible transfe
nprintf ("CONTROLS: controls_resupply flash: Impossible transfer_status

break:

void controls_resupply unflash (slot, transfer_ status, resupply_location)
int slot;
char transfer_status, resupply_location:

{

switch (transfer_status)

{

case HULL HEAT VAL:
if (slot != NULL_SLOT)
{
idc_output_set_ns_cond (! controls_commander_panel_status (),
heat_translations [slot], OUTPUT_OFF):

idc_output_set_ns_cond (! controls_commander_panel_ status (),
HULL_BHEAT_ L, OUTPUT OFF):
break:
case HULL_APDS_VAL:
if (slot != NULL _SLOT)
{

idc_output_set_ns_cond (! controls_commander_panel_status (),
apds_translations ([slot], OUTPUT_OFF);:
}
idc_output_set_ns_cond (! controls_commander_panel_status (),

HULL APDS_L, OUTPUT_OFF):

break:
case SEMI_HEAT VAL:
if (slot != NULL , SLOT)

{

}

idc_output_set_ns_cond (! controls_commander_panel_status (),

heat_translations [slot], OUTPUT_OFF):;

idc_output_set_ns_cond (! controls_commander_panel_status (),

SEMI_HEAT L, OUTPUT_OFF):

break:
case SEMI_APDS_VAL:
if (slqt != NULL ,_SLOT)

{

}

idc_output_set ns_cond (! controls_commander_panel_status (),
apds_translations [slot], OUTPUT_OFF):

idc_output_set_ns_cond (! controls_commander_panel_status (),

SEMI_APDS_L, OUTPUT_OFF);

break:
case REDIST_SEND_VAL:
idc_output_set_ns_cond (! controls _commander_ panel_status (),

REDIST_SEND_L, OUTPUT_OFF):

break:
case REDIST_RECV_VAL:
switch (resupply location)

{

case HULL_ HEAT VAL:
idc_output_set_ns_cond (! controls_commander_panel_status (),
HULL HEAT_ L, OUTPUT_OFF):
idc_output_set_ns_cond (! controls_commander_panel_status (),
REDIST RECV_L, OUTPUT_OFF);
break:
case HULL APDS_VAL:
idc_output_ set_ns_cond (! controls_commander_panel_status (),
HULL_ APDS_L, OUTPUT_OFF);
idc_output_set_ns_cond (! controls_commander_panel status (),
REDIST_RECV_L, OUTPUT_OFF):;
break:;
case SEMI_HEAT VAL:
idc_output_set_ns_cond (! controls_commander_panel_status (),
SEMI_HEAT_L, OUTPUT_OFF):
idc_output_set_ns_cond (! controls_commander_panel_status (),
REDIST_RECV_L, OUTPUT OFF):
break;
case SEMI_APDS VAL:
idc_output_set_ns_cond (! controls_commander_ panel_status (),
SEMI_APDS_L, OUTPUT_OFF):
idc_output_set _ns_cond (! controls commander_panel status (),
REDIST RECV_L, OUTPUT_OFF);
break:;
case READY HEAT VAL:
if (slot != NULL_SLOT)
{
idc_output_set_ns_cond (! controls_commander_panel status (
heat_translations [slot]), OUTPUT_OFF)
}
idc_output_set_ns_cond (! controls_commander_panel status (),
REDIST_RECV_L, OUTPUT_OFF);
break:;
case READY APDS_VAL:
if (slot != NULL_SLOT)
{
idc_output_set_ns _cond (! controls_commander_ panel status (
apds_translations [slot}, OUTPUT_OFF)

idc_output_set_ns_cond (! controls commander_panel_status (),
REDIST_RECV_L, OUTPUT_OFF);
break;
default:

fprintf (stderr, "CONTROLS: controls_resupply unflash: Impossib
nprintf ("CONTROLS: controls_resupply unflash: Impossible resup:
break:

}

break:;

default:
fprintf (stderr, "CONTROLS: controls_resupply_unflash: Impossible trans

nprintf ("CONTROLS: controls_resupply unflash: Impossible transfer_stat
break;

void controls_resupply restore (slot, transfer_ status, resupply location)
int slot;

char transfer_status, resupply_location;

{

switch (transfer_status)

{

case HULL HEAT_VAL:
if (slot '= NULL_SLOT)
{
idc_output_restore_cond ((! controls_commander_ panel_status ()) &&
(! controls_failure_status ()),
heat translatlons (slot]):
}
idc_output_restore cond ((! controls_commander_ panel_status ()) &&
(! controls_failure_status ()),
HULL_HEAT L);
break:;
case HULL_APDS_VAL:
if (slot != NULL_SLOT)
{
idc_output_restore_cond ((! controls_commander_panel status ()) &&
(! controls_failure_ status ()),
apds_! translations [slot]):
}
idc_output_restore_cond ((! controls_commander_panel_status ()) &&
(! controls_failure_status ()),
HULL_APDS_L) ;
break;
case SEMI_HEAT VAL:
if (sJot != NULL _SLOT)
{
idc_output_restore cond ((! controls_commander_panel_status ()) &&
(! controls_failure_ status ()),
heat_translations ([slot]):
}
idc_output_restore_cond ((! controls_commander_ panel_status ()) &&
(! controls_failure_status ()),
SEMI_HEAT 1):
break:;

case SEMI_APDS_VAL:

if (slot != NULL_SLOT)
{
idc_output_restore_cond ((! controls_commander_panel_status ()) &&
(! controls_failure_status ()),
‘apds__ translations [slot]):
}
idc_output_restore_cond ((! controls_commander_panel_status ()) &&
(! controls_failure_status ()),
SEMI_APDS L),

break;
case REDIST_SEND_VAL:
idc_output_restore_cond ((! controls_commander_panel status ()) &&
(! controls_failure status ()),
REDIST_SEND L);
break;
case REDIST_RECV_VAL:
switch (resupply_ location)
{
case HULL_ HEAT VAL:
idc_output_restore_cond ((! controls_commander panel_status ())
(! controls_failure_status ()),
HULL_HEAT 1);
~idc_output_restore_cond ((! controls_commander_ panel_ status ())
(! controls_failure_ status ()),
REDIST_RECV_L):;
break;
case HULL_APDS_VAL:
idc_output_restore_cond ((! controls_commander_ panel_status ())
(! controls_failure_status ()),
BULL_APDS_L);
idc_output_restore_cond ((! controls_commander panel_status ())
(! controls_failure_status ()),
REDIST RECV_1);
break:;
case SEMI_HEAT VAL:
idc_output_restore_cond ((! controls_commander_panel_status ())
(! controls_failure_status ()),
SEMI_HEAT_1):
idc_output_restore_cond ((! controls_commander_panel_status ())
(! controls_failure_status ()),
REDIST _RECV_L):
break:;
case SEMI_APDS_VAL:
idc_output_restore_cond ((! controls_commander_panel_status ())
(! controls_failure_status ()),
SEMI_APDS_L):
idc_output_restore_cond ((! controls_commander panel_ status ())
(! controls_failure_status ()},
REDIST_RECV_L):
break;
case READY_HEAT VAL:
if (slot != NULL_SLOT)
{
idc_output_restore_cond ((! controls_commander_panel_status
(! controls_failure_status ()),
heat_translations [slot]):
}
idc_output_restore_cond ((! controls_commander panel_status ())
(! controls_failure_status ()),
REDIST_RECV_L);
break:;
case READY APDS_VAL:
if (slot != NULIL_SLOT)
{
idc_output_restore_cond ((! controls_commander_ panel_status
(! controls_failure_status ()),
: apds_translations {[slot]):
idc_output_restore_cond ((! controls_commander_panel_status ())
(! controls_failure_status ()),
REDIST_RECV_L);
break:;
default:
fprintf (stderr, "CONTROLS: controls_resupply_restore: Impossib
nprintf ("CONTROLS: controls_resupply restore: Impossible resup

break:
}
break:;
case NO_TRANSFER VAL:
break:
default: .
fprintf (stderr, "CONTROLS: controls_resupply restore: Impossible trans

nprintf ("CONTROLS: controls_resupply restore: Impossible transfer_stat
break:;

void control;_odomefer_pulse ()
{
idc_output_set (DR_ODOMETER_PULSE, OUTPUT_ON);

/* If the odometer_timer is already timing, we must replace it */
/* with the more up-to-date timer, and the old one must be freed */
if (odometer_timer number != NULL_ TIMER)

{

}

timers_free_timer (odometer_timer_ number);

odometer_timer number = timers_get_timer (ODOMETER_DELAY);

void controls_turret_ref_ind (radians)
REAL radians;

{
REAL degrees, shift_degrees;

int offset, i;
degrees = rad to_deg (radians);

if ((shift_degrees = degrees - (TURRET_REF_SECTOR_SIZE / 2.0)) < 0.0)
{

}

shift degrees += 360.0;

offset = shift_degrees / TURRET REF_SECTOR_SIZE:

if (! idc_values [turret_ref_ translations[offset]])
{

for (i = 0; i < TURRET_REF_NUM SECTORS; i++)
{
if (i == offset)
{
idc_output_set_cond (! controls_failure_ status (),

turret_ref_translations(i), OUTPUT_ON);
}

else if (idc_values [turret_ref translations{i]])
{
idc_output_set_cond (! controls_commander_panel_ status (),
turret_ref translations{i]), OUTPUT_OFF):;

static void controls_grid_azimuth_check ()
{
REAL speed:;

/* so abs doesn’t call tracks_compute_velocity () twice ... */
speed = tracks compute velocxty ();

/* need to check this every tick in case you start moving
and the azimuth button is pushed, the azimuth indicator
should turn off */

switch (idc_values(GRID_AZIMUTH_PB])

{

case ON:
map_set_bumper status (TRUE):
if (abs(speed) < 0.1)
{
if (! grid_azimuth_status)
{ .
turret_send azimuth_ind ():
grid azimuth status = ON;
}
}
else
{
if (grid_azimuth_status)
{
turret_null azimuth_ind ();
grid azimuth status = OFF;
}
}
break;
case OFF:
map_set_bumper_status (FALSE);
if (grid_azimuth status)
{
turret_null azimuth_ind ();
grid . azlmuth status = OFF;
}
break;
default:
fprintf (stderr, "CONTROLS: controls _grid_azimuth_check: Impossible pus!
nprintf ("CONTROLS: controls _grid_. azlmnth check: Imposszble push button
break:

void controls_show_breech (contents)
ObjectType contents;
{

if ((contents == munition_US_M456Al) ||
(contents == munition_US_M392A2))
{
idc_output_set_cond (! controls_failure_status (),
LD_BREECH_: LOADED _L, OUTPUT_QN),

}

else

{
idc_output_set_cond (! controls_commander_ panel_status (),
LD_BREECH_LOADED_L, OUTPUT_OFF);

void controls no_power_ off ()

{ -
idc_reset ():
timers _delay_proc (INVERT_DELAY, idc_invert_outputs, NECESSARY, 0.0);
controls_service_brake exlt Q):

ammo_stop_timers ():
controls_odometer_exit ():
controls_cupola_up_ down_exit ()
controls_binoculars_on_off_exit ():
controls_lpscope up_down_exit ();

static void controls_fuel_flash_check ()
if ((fuel_flash_status == ON) &&
(++fuel_flash_count == TICKS_PER_SECOND))
{ :
}

if (fuel_flarh count == BEGIN_FLASH)
{

}

else if (fuel_flash count == END_FLASH)
{

}

fuel flash count = 0;

controls_fuel_flash ();

controls_fuel unflash ();

void controls_start_fuel flashing ()
{
fuel flash status = ON;
fuel flash count = 0;
controls_fuel_restore ():

void controls_stop fuel flashing ()
{
fuel flash_status = OFF;
fuel_ flash count = 0;
controls_fuel restore ():

static void controls_fuel flash ()
{

}

ide_output_set_ns (DR_LOW_FUEL L, OUTPUT ON);

static void controls_fuel unflash ()
{
idc_output_set_ns_cond (! controls_driver_panel_status (),
DR_LOW_FUEL L, OUTPUT_OFF);

static void controls_fuel restore ()
{
idc_output_restore_cond ((! controls_driver_ panel_status ()) &&
(! controls_failure_status ()),
DR_LOW_FUEL_L) ;

static void controls_odometer_check ()

if (timers_get_timeout_edge (odometer_ timer_number))
{
timers_free_timer (odometer_timer number):
odometer timer number = timers set _null timer ()
ide output set (DR ODOMETER PULSE TOUTPUT _OFF) ;

static void controls_odometer_exit ()

{
timers free_timer (odometer_timer_ number):
odometer_timer number = timers_set_null timer ();

static void controls_cupola up_ down_check ()
{
char temp_up, temp_down:

temp_up = idc_values [CM_CUPOLA UP];
temp_. “down = idc _values [CM CUPOLA . DOWN] ;

if ((temp_up) &&
(cupola_up down_val != CM UP_VAL) &&
(! temp_down))

cupola_up_down_val = CM_UP_VAL;
/> vision_cmdrs_pitch_up ();*/
vigsion_cmdrs_pitch (PITCH_UP):
)

else if ((! temp_up) &s&
(cupola_up_down_val != CM_CENTER_VAL) &&
(! temp_down))

cupola up_down_val = CM _CENTER_VAL;
/* vision cmdrs_pltch ahead ();*/
vision_cmdrs pitch (PITCH_AHEAD):;
}

else if ((temp_down) &&
(cupola_up_down_val != CM_DOWN_VAL) &&
(! temp_up))

cupola up down_val = CM_DOWN_VAL:
/* vision cmdr;_pltch down ();:*/
vision_cmdrs pitch (PITCH_DOWN) ;

static void controls_cupola_up_down_init ()

if (idc_values [CM_CUPOLA_UP))
{
cupola up down val = CM_UP_VAL;
/* vision_cmdrs_pitch up ():*7
vision_cmdrs_pitch (PITCH UP):;.
}

else if (idc_values (CM_CUPOLA_DOWN])
{

cupola_up_down_val = CM_DOWN_VAL;
/* vision_cmdrs_pitch_down ();*/
vision_cmdrs_pitch (PITCH_DOWN);
}

else

{
cupola up_down_val = CM_CENTER_VAL;
/* vision cmdrs_pitch_ahead ():*/
vision_cmdrs_pitch (PITCH_AHEAD);

static void controls_cupola_up_down_exit ()

{

/* vision_cmdrs_pitch_ahead ():*/
vision_cmdrs_pitch (PITCH_AHEAD);

}

static void controls_lpscope_up_down_check ()

{
char temp_up, temp_ down;

temp_up = idc_values [LD_PSCOPE_UP]:
temp_down = ide _values (LD PSCOPE _DOWN] ;

if ((temp_up) &&
(lpscope_up_down_val != LD UP_VAL) &&
(! temp_down))

lpscope_up_down_val = LD_UP_VAL;
/* vision loaders pitch_up ():;*/
vision_loaders_pitch (PITCH_UP):
}

else if ((! temp_up) &&
(lpscope_up_down_val != LD_CENTER_VAL) &&
(! temp_down))

lpscope_up_down_val = LD _CENTER_VAL;
/* vision_loaders_pitch_ahead ();*/
vision_loaders_pitch (PITCH_AHEAD);
}

else if ((temp_down) &&
(lpscope_up_down_val != LD _DOWN_VAL) &&
(! temp_up))

lpscope_up_down_val = LD DOWN_VAL;
/* vision_loaders_pitch_down ();*/
vision_loaders pitch (PITCH_DOWN);

static void controls_lpscope_up_down_init ()
{
if (idc values [LD_PSCOPE_UP])

{
lpscope_up_down_val = LD UP_VAL;
/* vision_loaders_pitch_up ();*/
vision_loaders pitch (PITCH_UP);

else if (idc_values [LD_PSCOPE_DOWN])

{

}

lpscope up_down_val = LD_DOWN_VAL;
vision_loaders_pitch_down ();*/
vision_loaders_pitch (PITCH_DOWN);

else

{

lpscope up_down_val = LD_CENTER_VAL;
vision_loaders_pitch_ahead ():*/
vision loaders_pltch (PITCH_AHEAD) ;

static void controls_lpscope_up_down_exit ()

{
/*

vision_loaders_pitch_ahead ():*/

vision_loaders_pitch (PITCH_AHEAD):

}

void controls_restore_ammo ()

{

switch (ammo_transfer_status)

{

}

case SEMI_HEAT VAL:
controls_transfer_semi_heat ():;
break:

case SEMI_APDS_VAL:
controls_transfer_semi_apds ()
break:

case HULL HEAT VAL:
controls_transfer_hull heat ();
break:

case HULL APDS_VAL:
controls_transfer_hull apds ():
break;

case NO_TRANSFER_VAL:
controls_transfer_no_transfer ();
break:

case REDIST_SEND_VAL:
controls transfer redist_send ()
break:

case REDIST_RECV_VAL:
controls_transfer_redist_recv ():
break:

default:

fprintf (stderr, "CONTROLS: controls_restore_ammo: Impossible ammo tran

nprintf ("CONTROLS: controls_restore_ammo:

break:

static void
controls_binoculars_on_off_exit ()

{

binoculars_on_off_val = OFF:

}

static void
controls_binoculars_on_off_init ()

{

binoculars_on_off_ val = idc_values[CM_BINOCULARS];

if (binoculars on_ - off _val == ON)

Impossible ammo transfer sta

vision_cmdrs_binoculars (BINOC);
else
vision_cmdrs_binoculars (NO_BINOC);

}

static void
controls_binoculars_on_off check ()
{

char temp;

if (.temp = idc_values[CM BINOCULARS]) != binoculars_on_off val)
{
binoculars_on_off_ val = temp;
if (binoculars_on_off_ val == ON)
vision_cmdrs_binoculars (BINOC):
else
vision_cmdrs_binoculars (NO_BINOC):
}

static void
controls_thermal shutter_check ()
{

char temp;

if ((temp = idc_values [THERM_SHUTTER]) != thermal_shutter_val)
{
switch (thermal_shutter_val = temp)
{
case ON:
thermal_shutter():
break:;
case OFF:
thermal_clear();
break:;
default:
fprintf (stderr, "CONTROLS: controls_thermal_shutter_check: Impossi.
printf ("CONTROLS: controls_thermal_ shutter check Impossible therm
break:;

static void
controle_thermal shutter_ init ()
{
vision_set_gunner_no_thermal():;
switch (thermal shutter _val = idc_values [THERM_SHUTTER])
{
case ON:
thermal shutter():;
thermal shutter_ val = OFF;
break;
case OFF:
thermal clear();
thermal_ shutter_ val = ON;
break:;
default:
fprintf (stderr, "CONTROLS: controls_thermal shutter_check: Impossible
printf ("CONTROLS: controls_thermal_. shutter check Impossible thermal_s
break:

/****it****************t**t*t************************************
*

* FILE: ml_keybrd.c

UTHOR: Brian O'Toole
MAINTAINER: Brian 0‘’Toole

HISTORY: 4/30/86 brian: Creation

»*

* % % % % * % * %

All rights reserved.
*

*
*
*
*
* Copyright (c) 1986 BBN Laboratories, Inc.
*
*
*

ttif********i*****t*******t************************************/

#¢include "stdio.h"
#include "fcntl.h"

#ifndef SIMBFLY

#include
#include

fendif

#include
#include
#include

#include

#include
#include
#include

#include
#include
#include

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#¢include
#include
#include
#include
#include

"signal.h"
"termio.h"

"sim_dfns.h"
"sim_ types.h"
"sim macros.h"

"rtc.h"

"pro_sim.h"
"pro_data.h"
"repair_ml.h”

"mass_stdc.h"
"dgi_stdg.h"
"sim cig_if.h"

*libfail.h"
"librepair.h”
"libmem_dfn.h"
"libnetwork.h"
"timers.h"
"libsound.h"
*1libhull.h"
*libkin.h"
"libfilter.h"
"librva.h"

"ml_main.h"
"ml_cntrl.h"
"ml_elecsys.h”
"ml_engine.h"
"ml_laser.h"
"ml_fuelsys.h"
"ml_weapons.h"
"ml_tracks.h"
"ml_turret.h”
"ml_dtrain.h"
"ml_vision.h"
"ml_repair.h"”
"ml_sound.h"
"ml_ammo.h”
"ml_keybrd.h"
"ml_polhemus.h"
"ml_cupola.h”
"status.h"

#include "ml_status.h"

tinclude "ml_turr_pn.h"

#include "ml_driv_pn.h"

#include "net/network.h"

#ifndef SIMBFLY

#include "enpioctl.h"

telse

#include "enpsvr.h"

f#endif '

#define DELTA_POT 0.005

static int console;

static int use_keyboard = FALSE;
static int use_cupola = FALSE:
static REAL lpscope_value = 0.0;
static REAL cws_value = 0.0;
static REAL* vec:;

static void keyboard setup_terminal ():

void keyboard really use ()
{

}

use_keyboard = TRUE:;

void keyboard use_cupola ()

{
use_cupola = TRUE;
printf ("Cupola and periscope now under keyboard control\n");

void keyboard init ()

{
if (! use_keyboard)
{

}

keyboard setup_terminal ():
printf ("Keyboard ready. type <?> for help\n"):

return;

if (use_cupola)
{ :
cupola_lpscope_new_value (0.0):
cupola_cws_new_value (0.0):

}

#ifdef SIMBFLY

/* Want to know how many pkts/second causes simulation to degrade */
static long pkt_cnt_start:

fendif

void keyboard_simul ()

{
cha: cmd;
int network_stats([N_STATS]:
char network_statstr{41l];

int n;

if (! use_keyboard)
{

}

cmd = keybrd tty read (console):
if (cmd == Q)
return;

return;

switch (cmd & Ox7F) /* want 7 bit ascii */
{
case 'a’
fail break system(vehiclelDIrrelevant, damageCauselntervention,
Ml_CommAntennaFailure);*/
printf ("keyboard: controls_kill_radio ()\n"):
break:
case 'A’
reconstitute_from keyboard ():/* changed by cjc 2/14/89 */
/* change:

printf ("keyboard: reconstitute_vehiéle (\n");

repair_stop_repair (Ml_CommAntennaFailure);
printf ("keyboard: controls_restore_radio ()\n");

break:

case 'b’ :
gpolhemus_init (),
set_polhemus flag true():;
controls_set_using_polhemus_true():
printf ("keyboard: Use Polhemus for cupola\n");
break:

case ‘B’ :
set_polhemus_flag false():
controls_set_using polhemus_false():
polhemus_exit ();
:printf ("keyboard: Turn off Polhemus.\n"):
break:

case ‘¢’ :
controls_break_controls ():
printf ("keyboard: controls_break_controls ()\n");
break:;

case 'C’
controls_restore_controls ()
printf ("keyboard: controls_restore_controls ()\n"):;
break:

case ‘d’ :
printf ("keyboard: before deactivate simulation\n"):;
deactivate_simulation ();
printf("keyboard: after deactivate simulation\n");
break:;

case 'D’:
filter dump_filter_info():
break;

case ‘e’ :
fail break_system(vehiclelDIrrelevant, damageCauselntervention,

M1_EngineMajorFailure);*/

printf ("keyboard: engine_major_failure ()\n"):
break:

case 'E’ :]
repair fix system(repairCauselntervention, mlReplacePowerPack);
printf ("keyboard: engine_replace_powerpack ()\n");
break:

case 'f’ :

/*

/*
/t

/*
/*

/*

/*

/*

/*

printf ("keyboard: network_get_vehicle_force() = %d\n",
network_get_vehicle_force());
fail_break_system(vehicleIDIrrelevant, damageCauselIntervention,
Ml_LRFFailure):
printf ("keyboard: laser_lrf failure ()\n"); */
break:;
case 'F’ : -
repair_ fix system(repairCauseIntervention, mlRepairLRF);
printf ("keyboard: laser_repair 1rf ()\n");
break:
case ‘g’ :
fail_break_system(vehiclelDIrrelevant, damageCauselntervention,
M1 _EngineOilFilterClogged);*/
printf ("keyboard: engine_clog _oil_ filter ()\n");*/
printf ("turning on asid debug\n“)
map_set_asid debug (TRUE):
break;
case ‘G’
repair_fix_ system(repaerauseInterventlon, mlReplaceEngineOilFilter);
printf ("keyboard: engine _replace_oil_filter ()\n");*/
printf ("turning off asid_debug\n"®):
map_set_asid debug (FALSE):
break:
case ‘h’ :
fail_break_system(vehiclelDIrrelevant, damageCauselIntervention,
Ml _FuelTransferPumpFailure);*/
printf ("keyboard: fuel transfer pump failure ()\n");
break:
case 'H’
repair_fix system(repairCauseIntervention, mlRepairFuelTransferPump);
printf ("keyboard: fuel repair_ transfer_pump ()\n"):
break:;
case i’ :
fail_break_system(vehiclelDIrrelevant, damageCauselntervention,
Ml TurretMainGunFailure);*/
printf ("keyboard: weapons_disable main_gun ()\n");
break:;
case "I’ :
repair_fix system(repairCauselIntervention, mlRepairTurretMountInterfac:
printf ("keyboard: weapons_repair_main_gun ()\n");
break:;
case "jJ’' :
electsys_battery failure ():
printf ("keyboard: electsys_battery_ failure ()\n"):
break:
case ’'J’ :
repair_fix system(repairCauseIntervention, mlReplaceBattery):
printf ("keyboard: electsys_replace_ battery ()\n");
break:;
case 'k’ :
fail_break_system(vehicleIDIrrelevant, damageCauselntervention,
M1 _EngineStarterFailure);*/
printf ("keyboard: engine_starter_failure ()\n");
break:
case ‘K’ :
repair_fix system(repairCauselIntervention, mlReplacePilotRelayStarter
printf ("keyboard: engine_replace_starter ()\n"):
break;
case ’'1’ :
fail_break_system(vehiclelIDIrrelevant, damageCauseIlntervention,
M1l_FDriveleftTrackFailure);*/
printf ("keyboard: tracks_throw_left_ track ()\n");
break;
case 'L’ :
printf ("keyboard: rva_dump priority_ lists()\n"):
rva dump_priority lists():

/*

/*

/*

/*

/*

/*

/*

/*

/*

break:
case ‘m’ :
fail break_system(vehicleIDIrrelevant, damageCauselntervention,
Ml TurretGunMountFailure):
printf ("keyboard: turret_break_mount_interface ()\n");*/
map_print ():
break:
case ‘M’ :
repair_fix system(repairCauselntervention, mlRepairTurretMountlInterfac:
printf ("keyboard: turret_repair_mount_interface ()\n");
break;
case 'n’ :
fail break system(vehicleIDIrrelevant, damageCauseIntervention,
Ml _TurretGunElevationFailure);*/
printf ("keyboard: turret_break_elevation_drive ()\n");
break:
case ‘N’
repair_ fix_system(repairCauselntervention, mlRepairGunElevationDrive)
printf ("keyboard: turret_repair_ elevation_drive ()\n"):
break:;
case ‘o’ :
fail break_system(vehicleIDIrrelevant, damageCauselntervention,
M1l DTrainOilFilterClogged);*/
printf ("keyboard: drivetrain_clog_transmission_oil_filter ()\n"):
break:;
case ‘0’ :
repair_fix system(repairCauselntervention, mlReplaceTransOilFilter):
printf ("keyboard: drivetrain replace_transmission_oil filter ()\n");
break.
case 'p’ :
rva_turn_debug_on();
printf ("Turning priority sort debug on\n");
break:;
case ‘P’ :
rva_turn_debug off():
printf ("Turning priority sort debug off\n"):
break:
case 'q’ :
fail break_system(vehicleIDIrrelevant, damageCauselntervention,
Ml CmdrsVisionBlocksBroken);*/
printf ("keyboard: vision_break_cmdrs_blocks ()\n");
break;
case 'Q’ :
repair_stop repair(Ml_CmdrsVisionBlocksBroken);*/
printf ("keyboard: vision_restore_cmdrs_blocks ()\n");
break:;
case 'r’ :
fail break_system(vehicleIDIrrelevant, damageCauselntervention,
Ml CommAntennaFailure);*/
controls_kill radio();
printf (“keyboard: controls_kill_radio ()\n");
break:
case 'R’ :
repair_ stop_repair(M1 _CommAntennaFailure);*/
controls _restore_radio();
printf ("keyboard controls_restore_radio ()\n");
break;
case ‘s’ : .
fail break system(vehicleIDIrrelevant, damageCauselntervention,
M1l TurretStabSystemFailure);
printf ("keyboard: turret_break_stab_system ()\n");*/
use_static_debug (1): :
break:
case 'S’ :
repair_ fix system(repairCauselIntervention, mlRepairStabSystem):
printf ("keyboard: turret_repair_ stab_system ()\n");

/*

/*

/*

case "1’
fail break_system(vehiclelIDIrrelevant, damageCauselntervention,
Ml DriversVisionBlocksBroken);*/
printf ("keyboard: vision_break_driver_blocks ()\n"):
break;
case ‘!’ :
repair_stop_repair(M1_DriversVisionBlocksBroken);*/
printf ("keyboard: vision restore_driver_blocks ()\n"):
break:;
case ‘2’ :
fail_ break_system(vehicleIDIrrelevant, damageCauselntervention,
Ml _GunnersSightBroken);*/
printf ("keyboard: vision_break_gps ()\n");
break:;
case '@’ :
repair_stop_repair(M1l_GunnersSightBroken) ;*/
printf ("keyboard: vision_restore_gps ()\n"):
break:
case '3’ :
controls_electsys_dead ()
printf ("keyboard: controls _electsys_dead ()\n"
break:
case ‘#'
controls_electsys_reborn ();
printf ("keyboard: controls_electsys_reborn ()\n"):
break:
case ‘4’ :
sound_reset ()
printf ("keyboard: sound_reset ()\n");
break:
case ‘5’ :
fail_cat_kill (&vehicleIDIrrelevant, damageCauselIntervention);
printf (“keyboard: fail _cat_kill ()\n")
break;
case '=’' :
fuel init_tanks (187.0, 70.0, 70.0):
printf ("keyboard: fuel _init_tanks ()\n");
break:
case ‘%’ :
repair_all systems ()
controls electsys reborn ():
controls_restore radio ()
if (use_pupola)
{
cupola_lpscope new_value (lpscope_value);
cupola_cws_new_: value (cws_value):

}
printf ("keyboard: fixing everything\n");
break;
case [’ :
printf ("keyboard: network_print_statistics ()\n"):
network print_ statistics ():
break;
case ‘]’ :
printf ("keyboard: temperature and power supplies\n"):
status_print_temp and supplies ():
break;
case '*' :
if (use_cupola)
{
printf ("keyboard: loader’s periscope left\n"):
lpscope_value -= DELTA_ POT;
if (lpscope value < -1.0)
1pscope value = -1.0;
cupolg_lpscope_peq_value (lpscope_value) ;

/*
/*

/#

/*
/*

/*
/*

/*
/*

~S W w N

o o

*/
*/

*/

*/
*/

*/
*/

*/
*/

else

{
printf (“toggling gunners vision\n”);
toggle_gunner_vision_state ()

break;
case ‘&’ :
if (use_cupola)
{
printf ("keyboard: loader’s periscope right\n"):
lpscope_value += DELTA POT;
if (lpscope value > 1.0)
lpscope value = 1.0;
cupola_lpscope_new_value (lpscope_value):;
}
else
{
printf ("toggling drivers vision\n"):
toggle_driver_vision_state ();

break;
case '*’ :
if (use_cupola)
{
printf ("keyboard: commander’s cupola left\n");
cws_value -= DELTA POT:
if (cws value < -1,0)
cws_value = -1,0;
cupola_cws_new_value (cws_value);

}

else

{
printf ("view modes\n");
print_view_modes ():

}

break;

case ‘(' :
if (use_cupola)

{
printf ("keyboard: commander’s cupola right\n");
cws_value += DELTA_POT;
if (cws_value > 1.0)
cws_value = 1.0;
cupola_cws_new_value (cws_value);
}
else
{
printf ("Unassigned character: type <?> for help\n");
}
break:

case '?’ :

BELP_PRINT1 (‘A’, "reconstitute_vehicle");

HELP_PRINT2 (’b’, "Use Polhemus for cupola.", ‘B’,
"Turn off Polhemus."):;

HELP_PRINT2 (’c’, "controls_break_controls™, ‘C’,
"controls_restore_controls"):

BELP_PRINT1 (°D’, "filter _dump_filter_ info"):;

HELP__ “PRINT2 (‘e’, "engine_| major failure", 'E’,
“engine replace_powerpack")'

HELP_PRINT2 ('f’, "laser_lrf failure”, ’‘F’, "laser_repair_lrf");

HELP PRIETZ (‘g’, "engine clog oil filter", 'G’,
"engine replace oil_filter™);

HELP_PRINT2 (‘h’, "fuel _transfer_ pump failure®”, ’'R’,
“fuel _repair_ transfer_ pump"):

BELP_PRINT2 ('i’, "weapons_disable main_gun", 'I’,

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*

/*
/*
/*
/*
/*

/*
/*

/*
/*

/*
/*
/*

B W N

~ o O

9

10
11

12
14
15
16
17

18

19
20

1
2
3

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

*/
*/
*/
*/
*/

*/
*/

*/
*/

*/
*/
*/

"weapons_repair_main_gun"):

HELP_PRINT2 (’j’, "electsys_battery_failure"”, ’J’,
"electsys_replace_battery”):;

HELP_PRINT2 (‘k’, "engine_starter_ failure", 'K’,
"eng;ne replace_startex"):;

HELP_PRINT1 (’l’, “"tracks_throw_left_track"):;

HELP_PRINT1 (‘L’, “rva_dump_priority lists");

HELP_PRINT2 (‘m’, "turret_break mount_interface", ‘M’,
"turret_;epair_mount_interface”):

HELP_PRINTZ (’n’, “turret_break_elevation_drive", ’'N’,
"turret_repair_elevation_drive"):

BELP_PRINT2 (‘o’, Wdrivetrain _clog_transmission_oil_ filter", ‘0O’,
Wdrivetrain replace transmission_oil fllter")

HELP_PRINT2 (‘p’, “rva_turn debug_pn“ ‘P,
”rva turn debug off");

HELP PRINTZ (‘q’, "vision_break_cmdrs blocks™, 'Q’,
¥yision restore cmdrs blocks")

HELP_PRINT2 (‘r’, “controls_kill radio", ‘R’,
“controls restore_;adio");

printf ("TO SEE THE NEXT PAGE, TYPE <6> ...\n");

break:;

case ‘6" :

HELP_PRINT2 (’s’, "static_debug on", 'S’, "static_debug off"):

HELP__ “PRINT2 (‘t‘, "drivetrain _transmission_ failure", 'T’,
"englne replace_power_pack"),

HELP_PRINT2 (’u’, "engine_clog_fuel filter", 'U’,
“engine _replace_fuel f;lter") A

HELP_PRINT2 (’v’, “"turret_break_traverse_drive"”, ‘V’,
turret _repair__ traverse _drive")

HELP_PRINT2 (‘w’, “"drivetrain_transmission_oil_leak", ‘W',
"eng;ne_;eplace_powerpack");

HELP_PRINT2 (’x’, "vision_ break_gps_ext"”, ‘X',
"v131on restore_gps_ ext“),

HELP PRINTZ (‘y’, "vision_break_ldrs_pscope" , ‘Y’,
"v;s;on restore ldrs_pscope”).

HELP'PRINTZ ('z; "engine_oil leak", '2’,
'engine_rep ace_powerpack"),

BELP_PRINT2 (’1’, "vision break_driver_blocks", ‘!’,
"vzsxon restore_: driver blocks")

HELP_PRINT2 (’2‘, "vision_break_gps", '@’, “"vision_restore_gps"):

BELP_PRINT2 (‘3‘, "controls_electsys_ dead" ‘¥,
"controls_electsys_reborn")

HELP_PRINT1 (’'4’, "sound_reset");

HELP_PRINT2 (’5°, "fail cat_kill", ’%’, "fixing everything");

BELP_PRINT1 (‘=‘, " fuel_tanks_init");

BELP_PRINT1 (‘(‘, "network print_statistics"”);

HELP_PRINT1 (°]’, " print temperature and power supplies");
if (use_cupola)
{
HELP_PRINT2 ('~‘, "loader’s periscope left", '&’,
"loader’s periscope right"):
HELP_PRINT2 ('*’, "commander’s cupola left", ' (',
"commander’s cupola right"):;
}
else
{

HELP_PRINT2 (’'“’, "toggle gunners vision", ‘&‘,
"toggle drivers vision"):
}
HELP_PRINT1 (',’, "print_reasons"):
printf ("TO SEE THE NEXT PAGE, TYPE <7> ...\n"):
break:
case ‘7’ : .
HELP_PRINT2 (’'0’, "in pivot steer®, ’)’, "out of pivot steer");
HELP_PRINT2 (’/’, "binoculars on", ’\\’, "binoculars off"):
HELP_PRINT1 (‘9’, “"Restore ammo");

/*
/*
/*
/*
/*
/*
/'k
/*
/*
/*
/*
/*
/*
/*
/*

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

HELP_PRINT1

"timers_status"):

HELP_PRINT1 (’+’, "print CMC statistics”):;
HELP_PRINT1 (°_’, "zero CMC statistics"):
HELP_PRINT1 (’;’, "send_azimuth");
HELP_PRINT1 (’:’, "null_azimuth"):
BELP_PRINT1 ('}’, "print and reset bbd rtc statistics"):
HELP_PRINT1 (’{’, "print bbd rtc statistics");
BELP_PRINT1 (’'<’, "Current <x, y, 2z>");
HELP_PRINT1 ('.’, "ammo_print_statistics"):
HELP_PRINT1 (’~’, "print n_mapped value"):
HELP_PRINT1 ('X’, "print_sorted_vehicle_lists"):
HELP_PRINT1 (’|‘, "timing bits"):
HELP_PRINT1 (’?’, "Page 1 of help"):
HELP_PRINT1 (’'6’, "Page 2 of help"):
HELP_PRINT1 (‘7‘, "Page 3 of help"):
break;

case ’9’
ammo_restore_ammo ();

controls_restore_ammo ();

printf ("keyboard: ammo_restore ammo ()\n");
printf ("keyboard: controls_restore_ammo ()\n"):
break:;

case ‘0’ :
idc_values [DR_PIVOT_MODE] = 1;
idc_values [DR TRANS . _NEUTRAL] = 0;
idc_values [DR_TRANS DRIVE] = 0;:
idc_values [DR_TRANS_LOW] = 0;
idc_values [DR TRANS REVERSE] = 0;
printf ("keyboard: in PIVOT steer\n");
break;

case ")’

{DR_PIVOT_MODE] = 0;

[DR TRANS NEUTRAL] = 0;

[DR TRANS DRIVE] = 0;
idc_values [DR TRANS LOW] = Q;
ide_: ~values [DR_! TRANS . _REVERSE] = 0;
printf ("keyboard: out of PIVOT steer\n"):
break:

case '~' :

printf ("keyboard: timers_status ()\n");

timers_status ();

break;

0+I e

printf ("keyboard: net_getstats\n"):

if (net_print_statistics(net_handle) == -1)

{

idc_values
idc_values
idec_values

case

printf("can’t get network statistics\n"):

nprintf ("KEYBOARD: can’t get network statistics\n"):;

}

#ifdef SIMBFLY

#endif

else

{

lony now;

now = rtc;

now -= pkt cnt_start:
print£("%6.3f pkts/second\n",

}

network_stats[12] * SECOND / ((double) now)):

break;
case ‘_' :
printf ("keyboard: net_zerostats\n"):
if (net_zero statlstics(net handle) == -1)
{

printf ("can’t zero network statistics\n");

nprintf ("KEYBOARD: can’t zero network statistics\n"):;

}
#ifdef SIMBFLY
pkt_cnt_start = rtc;
#endif
break:
case ‘;’' :
printf ("keyboard: send_azimuth\n”):
turret_send azimuth 1nd(),
break;
case ':’
prlntf ("keyboard: null_azimuth\n"):
turret_null azimuth 1nd(),
break;
case "{’:
#if defined (SIMBFLY)
bbd_rtc_statistics (FALSE);

#else
printf("{ is only available on the Butterfly\n"):
#endif
break:
case ‘}’:

#if defined (SIMBFLY)
bbd_rtc_statistics(TRUE);
#else
printf ("} is only available on the Butterfly\n");
#endif
break:;
case ‘<’ :
{
VehicleID *veh_id = network get_vehicle_id ():

printf ("keyboard: Current <x,y,z> for vehicle num %d is\n",
veh_id -> vehicle);

vec = kinematics_get_o_to_h (veh_kinematics);
printf ("<%1f, %1f, %1f>\n", vec(0], vec[l], vec[2]):
}
break:;
case ‘.’ :
ammo_print_statistics ()
printf ("ammo_print_statistics ()\n"):
case ‘~' :
printf ("n_mapped = $d\n", get_n_mapped ()):
break:
case ‘,’' :
print_reasons ():
break;
case '/’ :
printf ("cmdrs binoculars on\n"):
vision_cmdrs_binoculars (BINOC):
break;
case '\\' :
if (get_ballistics_debug ())

{
set_ballistics_debug (FALSE);
pr;ntf ("ballistics _debugging off\n");
}
else
{
set_ballistics_debug (TRUE):
printf ("ballistics debugging on\n");
}
break:
case ’'|’:

rtc_print_permanent () ;
break;

default :
printf (“Unassigned character: type <?> for help\n");

break:

L

static void keyboarq_setnp_terminal {)

et s .-
i, - =l

console = keybrd tty_init (0, O_RDONLY) ;

}

oﬁigfgﬁvoid keyboari_:eset_tetminal Q) TTLT
{ :

}

. Xeybrd_tty_xeset (console);

void xeyboard exit_gracefully ()

{
if (! use_keyboard)

{
}

keyboard_reset_terminal ();
keybrd_tty_ close (console);

xeturn;

,;'v'(,

&%

pEE———— e

Appendix G:
Software to Control ESIG-500 Head Tracking Display

/*-------------------—---—---—- - - - e R e SR s P e R e S I e S e PR oo S e S o
/*

/* HEAD MOUNTED DISPLAY - Image Generator Control Program

/*

/*

/* FILENAME: esighmd.cpp

/*

/*

/* By: - Visual Systems Laboratory

/* - Institute for Simulation and Training

/* - University of Central Florida

/*

/*

/* Copyright (c) 1991 the University of Central Florida

/* - All Rights Reserved

/*

/*

/* Author: Richard Dunn-Roberts

/*

/*

/* FUNCTION LIST:

/*

/*

/* FONC: int initializeEthernet(int maxDataSize, int numPackets)
/* This function initializes the Ethernet packet queues,
/* the packet manager, and the 3Com Ethernet drivers.

/*

/* General Comments:

/* " This program was written to run on a PC~AT, using

/* Borland C++ version 2.0 (with the built-in assembler).
/* It is designed to control the operation of the ESIG 500
/* Image Generator for use with a Head-Mounted Display.
/*

/*

/* Operational Comments:

/* This program operates as a communications server. It
/* accepts input from the serial port. This input may be
/* from a Polhemus magnetic tracker or from another

/* computer on a network. The input is then converted to
/* ESIG 500 Image Generator commands and retransmitted
/* via dedicated Ethernet to the ESIG 500 to control

/* the direction of the users point of view.

/*

/* The basic layout is as follows:

/*

/* $ommme e ——— + 19.2 kilobaud e et L L L P +
/* | I/0 server —-—-eccemccccsccccccnc-o- >| PC-AT i
/* | (currently | serial link i |
/* | HBarris Night- | | {esighmd) |
/* | Hawk) | | l
/* | | €==+ L et T | +
/* D el + } |

/* | |

/* head position | i

/* and orientation | i

/* ! |

/* Rt Rkt + | |

/* I POLHEMUS o |

/* ! TRACKER ——— |

/* ! | \/

/* e etk + e cccc————— +
/* | |
/* video output | ESIG 500]
/* tommmma e == IG |
/* | | (two channels) |
/* | |

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*x/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/*
/*

/* e DL P +
/* | CYBERFACE II

/* |
/* |

/* e e —ce e ———— +

/%
/* For
/*

further system details, refer to the project report.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/*-—-------—-—-—- - - - —-—*/

/ fReSeBeSem -

---—-----—---—-—---—---*/

/* Type, Structure & Constant Defs */

[Fm—m—m———

—— */

/ *-----—-----------—-------*/

/* Necessary Include Files */

/ LT T T T PN P

---------—-—-—-*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <conio.h>
#include <bios.h>
#include <time.h>
#include <dos.h>
#include <math.h>
#include <fstream.h>
#include "esighmd.h"
#include "esigcom.h"
#include "keypresl.h"
#include "serial.h"

/ *-—-—------

/* Function

/*-—--------

-—---—---—-*/

Prototypes */

-—---—-—---*/

extern "C" int getopt(int argc, char far *argv{], char far *optionS):;

/ *---—-—-—-*/

/* Globals *

/ LI LY e et

/
/

static unsigned long far *timer = (unsigned long far *)MK_FP (0, 0x46C):

// BIOS timer

int numpackets = 0; // number of packets that have been received

// Ethernet
// unsigned
// unsigned

// external
extern int
extern char
extern int

/*---—------

/* Function
/*

addresses of this machine (src) and ESIG 500 (dest)
char srcl] = { 0x02, 0x60, OxBc, 0x43, Oxa7, Oxfl }:
char dest[] = { 0x00, 0x08, 0x0l, O0x57, O0x58, 0x00 }:

globals for getopt
optind; // index of which argument is next
*optarg: // pointer to argument of current option
opterr; // allow error message

main

/* PARAMETERS:
/* int argc - number of command line arguments

/* char **
/*
/* PROCESS:

argv - array of string pointers to command line arguments

*/
*/
*/
*/
*/
*/

*/

/* This is the main routine. ' */

/* */
/* RETURN VALUE: */
/* int - unused by operating system, but available for user */

int main (int argc, char **argv)
{

int done = 0, // completion flag is false to start
retCode = O, // function success (0) or failure (!0)
option, // command line option
printCount = 10000, // how often do we print stats?
syncErr = 0, // number of serial sync errors to occur
csNum; // coordinate system number command goes to
time_t startTime, // timer values
endTime;
double xIn, // intermediate value of x,y,z, pitch, heading,
yIn, // roll received from serial port
zIn,
pitchIn,
headingln,
rollln;
char syncChar, // character to sync serial communications
errFlag, // did error occur in current cycle?
csNumChar: // character representing coord. system number
long count = 0, // number of cycles that have passed
messageCount = 0, // number of messages sent
maxDataSize = 300, // maximum size of ethernet data
numPackets = 100, // number of available ethernet packets
viewX = 19, // initial x, y, 2, heading, pitch, roll
viewY = 19,
viewZz = 6,

viewHeading = 180,

viewPitch = 350,

viewRoll = Q,

X, // %, y, 2z, heading, pitch, roll used during
Y // run

z,

heading,

pit ch ’

roll;

// program takes 8 arguments, each with default values
while((option = getopt(argc, argv, "d:n:x:y:z:p:h:"”)) != EOF)
{
switch (option)
{
case ’'d’
maxDataSize = atoi(optarg):
break:
case 'n’
numPackets = atoi(optargqg):
break;
case 'x’
viewX = atol(optarg):
break:
case 'y’ :
viewY = atol(optarg):
break:
case 'z’ :
viewZ = atol(optarqg):
break:
case 'h’

viewHeading = atol(optarg):
break:;
case ‘p’ :
viewPitch = atol(optarg):
break:
case "?' :
printf("Invalid option, option ignored.\n"):
break:

}

// initialize the comport to receive commands
InitComPort(0, DIVISOR(19200));

// initialize the ethernet

retCode = initializeEthernet(maxDataSize, numPackets):;

if (retCode) // something went wrong

{
cprintf("\n\rinitializeESIGControl() returns %d\n\r", retCode);
return retCode;

}

else

{
cprintf (">>> ESIG 500 Control Program\n\r");
cprintf (">>> UCF Institute for Simulation and Training\n\z"):;
cprintf ("\n\r>>> Initialization complete\n\r"):;

}

// initialize the viewpoint to the de position and orientation
// NOTE: this is done twice or ESIG 500 takes it as delta value to
// be applied at every time slice
retCode = escs(0, 1, viewX*512, viewY¥*512, viewZ*512,
viewHeading*182, viewPitch*182, OL, messageCount++);

if (retCode) // something went wrong
{

cprintf("\n\rescs() returns %d\n\r", retCode):

return retCode;
}
// second time, see comment above
retCode = escs(0, 1, viewX*512, viewY¥*512, viewZ*512,

viewHeading*182, viewPitch*182, 0L, messageCount++)

if (retCode) // something went wrong
{

cprintf("\n\rescs() returns %d\n\r", retCode):;

return retCode;

}

// since we want to know how fast things are going, start a timer
startTime = time(NULL):;

while (!done)
{

// Reinit errFlag for the new cycle
errFlag = 0;

// Get the first character - is it the sync character?
ReceiveData(0, &syncChar, 1);
while (syncChar != g’)
{
if (!errFlag)
{
syncErr++;
errFlag = 1;
}

ReceiveData(0, &syncChar, 1):

}

// We are now synced up, proceed with processing

// First get the coordinate system number. Currently this is always
// zero, but we must be general enough to control multiple coordinate
// systems ,

ReceiveData(0, (char *)&csNumChar, 1):

// convert the c¢s number to an int
csNum = csNumChar - '0';

// Next get the transmitted position and orientation values
// These are double floats

ReceiveData(0, (char *)&xIn, 8);

ReceiveData(0, (char *)&yIn, 8):

ReceiveData(0, (char *)é&zIn, 8);

ReceiveData(0, (char *)&headingIn, 8):;

ReceiveData(0, (char *)&pitchIn, 8);

ReceiveData(0, (char *)é&rolllIn, 8):

// here we adjust the heading of the viewpoint
headingIn += 180.0;
if (headingIn > 360.0)

headingIn -= 360.0:;

// Check cycle count. If cycle count is evenly divisible by
// printCount, print a status message.
if (!(count++ % printCount))
printf("Cycle count = %ld\nbuffer contains %d, syncerrs %d, free packet n:
count, ReceiveBufferUsed(0), syncErr, NumberOfFreePacketNodes()

// Convert the double floats into the long ints understood by the ESIG
x = (long)floor(xIn * 512.0 });

y = (long)floor(yIn * 512.0)

z = (long)floor(zIn * 512.0);

heading = (long)floor (headingIn*182.0);

pitch = (long)floor (pitchIn*182.0);

// clamp the roll
// roll = (long)floor(rollIn*182.0):
roll = OL;

// make new view point position relative to initial position
X += viewX*512;
y += viewY*512;
zZ += viewZ*512;

// transmit new viewpoint (twice, remember?) o
retCode = escs(csNum, 1, x, y, z, heading, pitch, roll, messageCount++);
if (retCode) // something went wrong
{
cprintf("\n\rescs() returns %d\n\r", retCode);
return retCode;
}
retCode = escs(csNum, 1, x, y, z, heading, pitch, roll, messageCount++):
if (retCode) // something went wrong
{
cprintf("\n\rescs() returns %d\n\r", retCode):
return retCode;

}

// Poll the keyboard to see if the escape key has been hit
if (KeyPressed())

{

unsigned key = bioskey(0):

if (key & Oxff) key &= Oxff;

if (key == 0Oxlb) // escape key
done = 1;

}

// get the end time
endTime = time(NULL)

// report time stats

cprintf("\n\rElapsed time is %f, cycleCount is %1d, frequency is %f\n\r",
difftime(endTime, startTime), messageCount,
messageCount / difftime(endTime, startTime)).

// unload the serial driver from memory
DeinstallDrivers():

// exit program

return 0;

}

/* Function initializeEthernet */
/* */
/* PARAMETERS: */
/* int maxDataSize - largest possible data packet to be sent */
/* int numPackets - number of Ethernet packets to create */
/* *x/
/* PROCESS: */
/* This function initializes the Ethernet packet queues, the packet */
/* manager, and the 3Com Ethernet drivers. */
/* */
/* RETURN VALUE: */
/* int - zero for success, nonzero for failure */

int initializeEthernet(int maxDataSize, int numPackets)
{
int retCode = 0:
PacketNode *pnode;
extern PacketQueue RxQueue;
delay(l): /* Initialize delay() */
retCode = InitPacketManager (maxDataSize, numPackets);
cWrRxFilter (0)
while (!QueueEmpty(&RxQueue))
{
pnode = RemovePacket (&RxQueue);
FreePacket (pnode):
}

return retCode;

}
/*--- end of file esighmd.cpp ---*/

#ifndef _ cplusplus
#error This program requires compilation as C++.
#endif

#ifndef _ LARGE__
#error This program requires Large memory model.
#endif

$ifndef ESIGHMD

#define __ ESIGHMD

// constants = -—------eemsememecemcc e e e s e e
// structs, classes, typedefs —-=---—-seo—cmccc oo
// macros and inline functions ---=----e—ccr—mm oo
// function prototypes -—=-==---s-m-—em e e
/* Function initializeEthernet */
/ * * /
/* PARAMETERS: */
/* int maxDataSize - largest possible data packet to be sent */
/* int numPackets - number of Ethernet packets to create */
/* x/
/* PROCESS: */
/* This function initializes the Ethernet packet queues, the packet */
/* manager, and the 3Com Ethernet drivers. */
/* */
/* RETURN VALUE: */
/* int - zero for success, nonzero for failure */
/ *a—---—-—---—-—-—-—-—- - - R e T v W v X o WK o T wo 5 S - /

int initializeEthernet (int maxDataSize, int numPackets):

#endif // __ESIGHMD

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
VA
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/>
/*
/*
/*
/*
/*
/*
/*

-———— - Y

HEAD MOUNTED DISPLAY - ESIG 500 IG Command Library

FILENAME: esigcom.cpp

By:

- Visual Systems Laboratory
- Institute for Simulation and Training
- University of Central Florida

Copyright (c) 1991 the University of Central Florida

- All Rights Reserved

Author: Richard Dunn-Roberts, Chuck Campbell

FUNCTION LIST:

FUNC:

FUNC:

int esambient (int scene, int ambience, long messageCount)

This function sets ambient light levels.

int esanimation(int c¢s, int select, int parcel,
int placeable, int control,
int sequence, long messageCount)

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

This function executes a predefined animation sequence. */
FUNC: int eschannel(int number, int display_a, int display b, */
int viewport, int color, long messageCount) */

FUNC:

FUNC:

FUNC:

FUNC:

FUNC:
FUNC:

FUNC:

FUNC:

FUNC:

FUNC:
FUNC:

FUNC:

This function sets control parameters for specific
channel on the ESIG 500.

int escloud(long top, long bottom, long messageCount)

This function sets cloud top and bottom heights.
int escold(int color, int wvalid, int automatic,
long messageCount)

This functions sets characteristics of collision
detection indicators

int escoldpt(int number, long x, long y, long z,

long messageCount)
This function sets collision detection test points

int escs(int csnum, int select, long x, long y, long z,

unsigned int heading, unsigned int pitch,
unsigned int roll, long messageCount)

This functions controls characteristics of ig coordinate

systems.

int esdisable(int esig_switch, long messageCount)
int esenable(int esig_switch, long messageCount)
These two functions enable and disable simulation

characteristics, such as weather, strobes, and collision

detection.
int esgfog(signed int top, long messageCount)
This function sets the height of ground fog.

int eshatpt(int number, signed long x, signed long y,

signed long z, long messageCount)
This function sets height above terrain test points.
int eshorizon(int brightness, int directional,
unsigned int heading, long messageCount)
This function sets horizon brightness and direction.
int esinstructor(int channel, long messageCount)
This function sets instructor monitor channel.

int eslight{(int number, int intensity, long messageCount)

This function sets the intensity of light switches.
int eslobe(int lights, long messageCount)
This function sets aircraft landing lights.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/* FUNC: int esmodel (int colocate, int parcel, long messageCount) */

/* This function allows user to load a database. */
/* FUNC: int espolygon{ int number, int intensity, */
/* long messageCount) */
/* This function sets polygon intensity. */
/* FUNC: int esrvr(long range, long messageCount) */
/* This function sets runway visibility range. */
/* FUNC: int esscene(int select, long messageCount) */
/* This function sets day, dusk, or night scene type. */
/* FUNC: int essun(unsigned int heading, unsigned int pitch, */
/* long messageCount) */
/* This function sets sun heading and pitch. */
/* FUNC: int estraffic(int cs, int select, int parcel, */
/* int placeable, int control, int scenario, */
/* long messageCount) */
/* This function sets information for routed or converging */
/* traffic. */
/* FUNC: int esviewport(int channel, int alternate, long x, */
/* long y, long z, unsigned int heading, unsigned int pitch, */
/* unsigned int roll, unsigned int vertical, */
/* unsigned int horizontal, long messageCount) *x/
/* This function sets viewport characteristics. */
/* FUNC: int esvisibility(long range, long messageCount) */
/* This function sets visibility range. *x/
/* */
/* General Comments: */
/* This library was written to run on a PC-AT, using */
/* Borland C++ version 2.0. It is designed to provide */
/* functional support to control the ESIG 500 image */
/* generator. */
/* */
/* */
/* Operational Comments: */
/* This library provides the interface to control the */
/* ESIG 500 from a user program. The public functions */
/* take the user’s inputs, converts them into an */
/* Ethernet packet, and retransmits the information to */
/* the ESIG 500. */
/* */
/* The basic layout is as follows: */
/* */
/* e L + ethernet link e et L + *x/
/* [PCAT = ——ceercmccerce——————- > ESIG 500 | */
/* | (user program) | | | */
/* | (esigcom) | | | */
/* | | I | */
/* | | T + */
/* et T P + */
/* */
/* For further system details, refer to the project report. */
* *
;*-—-—-—- - - - - = _*;
/*---—-—-—-—-—- - */

/* Type, Structure & Constant Defs */

/ *---—-----—-—---—-—--—---—---—-—-—-*/

/ *---—-—-—-—---—-—---—---—-*/

/* Necessary Include Files */

/ *-—-----—-—-—-—---—-—-—---*/

#include <stdlib.h>
#include "esigcom.h"

/*---—-—--- -eaus */

/* Function Prototypes */

. |

/ *om - —---*/

/ W e G e B e B e N /

/* Globals */

/*-—---—---*/

// Ethernet addresses of this machine (src) and ESIG 500 (dest)
unsigned char src(] = { 0x02, 0x60, Ox8c, 0x43, Oxa7, Oxfl };
unsigned char dest([] = { 0x00, 0x08, 0x01, 0x57, 0x58, 0x00 }:

/***/

/* Function esambient */
/* : x/
/* PARAMETERS: */
/* scene - the scene whose brightness is being set. */
/* ambience - the brightness value (0-255). */
/* messageCount - sequence number of this message */
/* */
/* Process: */
/* Program to set brightness for the scene. Brightness is a scalar from */
/* 0-255, and scene is 0 (night), 1 (dusk), or 2 (day). */
/* */
/* Returns: */
/* int - success == 0, failure != 0; */
/* */

/***/

int esambient(int scene, int ambience, long messageCount)
{

struct ambient_struct *ambient:;
int retCode = 0;

ambient = (struct ambient_ struct *)calloc(l,sizeof{struct ambient_struct));
ambient->hostmessage = messageCount;

ambient->hostopcode = 0;

ambient->ambience = ambience;

ambient->endOfData = 0;

switch(scene)
{
case 0:
ambient->opcode = 0x0042;
break;
case 1:
ambient->opcode = 0x0041;
break:;
case 2:
ambient->opcode = 0x0040;
break:;
default: break:
}

retCode = TransmitPacket(ambient, sizeof(ambient_struct), dest, sizeof(ambi.
free(ambient);
return retCode;

}

/***/

/* Function esanimation */
/*) */
/* PARAMETERS: */
/* cs - the number of the coordinate system. */

/* select - the select switch. */

/* parcel - the parcel index (0 - 255). */

/* placeable - 0 = local parcel, 1 = placeable parcel. * /
/* control - animation control number. */
/* sequence - animation sequence number (0 - 15). _ */
/* messageCount - sequence number of this message *;
/* *
/* Process: - */
/* Executes a predefined animation sequence. Controls are: */
/* ES_NO_INFO - no effect. */
/* ES_LOAD_ANIMATION - Loads animation information */
/* ES_START_ANIMATION ~ Starts animation */
/* ES_STOP_ANIMATION ~ Stops animation */
/* ES_UNLOAD_ANIMATION ~ Unloads animation */
/% : */
/* Returns: */
/* int - success == 0, failure != 0; */
/* * /

/***/

int esanimation(int cs, int select, int parcel, int placeable, int control,
int sequence, long messageCount)
{

struct anim_struct *anim;
int retCode = 0;

anim = (struct anim_struct *)calloc(l,sizeof(struct anim_struct)):;
anim->hostmessage = messageCount;
anim->hostopcode = 0;

anim->opcode = 0x00la;

anim->cs = cs;

anim->select = select;

anim->parcel = parcel;

anim->placeable = placeable;

anim->xyz = 7;

anim->control = (control<<4) + sequence;
anim->endOfData = 0;

retCode = TransmitPacket(anim, sizeof(anim struct), dest, sizeof(anim_struc

free(anim);

return retCode;
}

/***/

/* Function eschannel */
/* */
/* PARAMETERS: */
/* number - the channel number to set. */
/* display_a - enable/disable display A. */
/* display b - enable/disable display B. */
/* viewport - main/alternate viewport select. */
/* color - main/alternate color select. */
5* messageCount - sequence number of this message *5
* *
/* Process: */
/* Program to set information for a specific channel number (0-7). */
/* Corresponds to some of the ESIG CHANNEL commands. *;
/* *
/* Returns: */
/* int - success == 0, failure != 0; - */
/* ’ */

/***/

int eschannel(int number, int display a, int display b,
int viewport, int color, long messageCount)
{

struct channel_struct *channel;
int retCode = 0;

channel = (struct channel_struct *)calloc(l,sizeof(struct channel_ struct)):
channel->hostmessage = messageCount;

channel->hostopcode = 0;

channel->opcode = 0x0015;

channel->number = number;

channel->display_a = display_ a:

channel->display b = display_ b:

channel->viewport = viewport:

channel->color = color:;

channel->end0OfData = 0;

retCode = TransmitPacket(channel, sizeof(channel_struct), dest, sizeof(chan:

free(channel):;

return retCode;

}

/***/
/* Function escloud */
/* */
/* PARAMETERS: */
/* top - value for height of top of clouds. */
/* bottom - value for height of bottom of clouds. */
/* messageCount - sequence number of this message */
/* : */
/* Process: */
/* Program to set the cloud top and bottom (max. alt. is 24.8 mi.). */
/* Corresponds to the ESIG CLOUDS function. */
/* Input has been scaled to correspond to the ESIG *x/
/* */
/* Returns: _ */
/* int - success == (0, failure != 0; */
/* */

/***/

int escloud(long top, long bottom, long messageCount)
{

struct cloud_struct *cloud;

int retCode = 0;

cloud = (struct cloud_struct *)calloc(l,sizeof(struct cloud_struct));
cloud->hostmessage = messageCount;

cloud->hostopcode = 0;

cloud->top_opcode = 0x0017;

cloud->top = top/4:

cloud->bot_opcode = 0x0018;

cloud->bottom = bottom/4;

cloud->endOfData = 0;

retCode = TransmitPacket(cloud, sizeof(cloud_struct), dest, sizeof(cloud_st:

free(cloud):

return retCode;
}

/i**i***/

/* Function escold */
/* */
/* PARAMETERS: ' */
/* color - index into the color palette. */
/* valid - enable/disable color index validity. */

/* automatic - enable/disable the automatic collision detection indicator.*/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

messageCount - sequence number of this message */
*/

*/

Process: */
Program to set the characteristics of the collision detection indicator*/
Corresponds to some of the ESIG COLD command options. */

. */

Returns: */
int - success == 0, failure != 0; */
*/

/***i**t****************/
int escold(int color, int valid, int automatic, long messageCount)

{

}

struct cold struct *cold;
int retCode = 0, size = sizeof(cold struct }:;

cold = (struct cold_struct *)calloc(l,sizeof(struct cold struct)):
cold->hostmessage = messageCount;

cold->hostopcode = 0;

cold->opcode = 0x0035;

cold->color = color;

cold->valid = valid;

cold->automatic = automatic;

cold->endOfData = 0;

retCode = TransmitPacket(cold, size, dest, size):;
free(cold):

return retCode;

/***/

/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*

Function escoldpt */
*/

PARAMETERS: */
number - testpoint number (0-31, 255 to clear all testpoints). */

x - x offset. *x/

¥ - y offset. */

z - z offset. */
messageCount - sequence number of this message */
*/

Process: */
Program to implement collision detection test points. */
Corresponds to the ESIG COLD function. */
*/

Returns: */
int - success == (0, failure != 0; */
*/

/t************i***/
int escoldpt(int number, long x, long y, long 2z, long messageCount)

{

struct coldpt_struct *coldpt:
int *tmp, retCode = 0, size = sizeof(coldpt_struct);

coldpt = (struct coldpt_struct *)calloc(l,sizeof(struct coldpt_struct)):
coldpt->hostmessage = messageCount:

coldpt->hostopcode = 0;

coldpt->opcode = 0x0033;

coldpt->number = number;

X *= 512; y *= 512; z *= 512; /* scale x,y,z */

tmp = (int *)é&x; i

coldpt->high_x = tmp[1l];

coldpt->low_x = tmp{0];

tmp = (int *)&y:

coldpt->high_y = tmp(l];
coldpt->low_y = tmp[0];
tmp = (int *)&z:
coldpt->high_z = tmp[1l];
coldpt->low_z = tmp[0];
coldpt->endOfData = 0;

retCode = TransmitPacket(coldpt, size, dest, size):;
free(coldpt):

return retCode;
}

/***/

/* Function escs */
/* */
/* PARAMETERS: x/
/* csnum - the number of the coordinate system. */
/* select =~ the select switch. */
/* b3 - x offset. */
/* y - y offset. x/
/* z -~ z offset. */
/* heading - heading angle. */
/* pitch ~ pitch angle. */
/* roll - roll angle. */
/* messageCount - sequence number of this message */
/* */
/* Process: */
/* Program to simulate most of the ESIG CS function in xyz mode */
/* X, Yy, 2z, heading, pitch, and roll must all be scaled so that when the */
/* user calls the function with x=100 the ESIG will set x=100. */
/* X,y, and z are longs, but must be byte swapped. I broke these values */
/* into high and low words in order to get the function to work properly. */
/* */
/* Returns: */
/* int ~ success == 0, failure != 0; */
/* */

/***/

int escs(int csnum, int select, long x, long y, long z, unsigned int heading,
unsigned int pitch, unsigned int roll, long messageCount)
{

int *tmp, retCode = 0;
struct cs_struct *cs:;

cs = (struct cs_struct *)calloc(l,sizeof(struct cs_struct)):
cs->hostmessage = messageCount;

cs~->hostopcode = 0;

cs->opcode = 0x001la;

cs->cs = csnum;

cs->select = select:

cs->xyz = 7; /* use x,y,z mode x/
cs->control = 0; /* no control information */
cs->el = 1; /* enable extrapolation */
cs->hpr = 7; /* enable heading, pitch, and roll */
tmp = (int *) &x; /* typecast into integer (word) size */

cs->low x = tmp[0]:
c¢s->high_x = tmp([1l];
tmp = (int *) &y
cs->low_y = tmp{0];
cs->high_y = tmp([1l];
tmp = (int *) &z;
cs->low_z = tmp(0]);
cs->high_z = tmp[1);
cs->heading = heading:

cs~>pitch = pitch;

cs~>roll = roll;

cs->endOfData = 0;

retCode = TransmitPacket(cs, sizeof(cs_struct), dest, sizeof(cs_struct));
free(cs):

return retCode;

}

/**i******t***/

/* Function esdisable */
/* ' */
/* PARAMETERS: */
/* esig_switch - the number of the switch to be disabled. */
/* messageCount - sequence number of this message */
/* */
/* Process: */
/* Routine for disabling switches. */
/* Currently the switches are defined as follows: */
/* 1 -- storm */
/* 2 -- ground fog */
/* 3 -- patchy ground fog */
/* 4 -- scudded clouds */
/* 5 -- clouds */
/* 6 -- rain */
/* 7 -- lightning */
/* 8 -- light strings displayed with random/modeled intensity */
/* 9 -- own-ship wing tip strobe */
/* 10 -- own-ship anti-collision beacon */
/* 11 -- height above terrain */
/* 12 -- collision detection */
/* 13 -- collision detection indicator */
/* */
/* Returns: */
/* int - success == 0, failure != 0; */
/* nothing. */
/* */

/**t************************/

int esdisable(int esig_switch, long messageCount)

{
int retCode = (;

switch(esig_switch)

{

case 1:
retCode = esprocess_switch(0x0001, messageCount);
break:;

case 2:
retCode = esprocess_switch(0x0002, messageCount);
break;

case 3:
retCode = esprocess_switch(0x0003, messageCount);
break:;

case 4:
retCode = esprocess_switch(0x0004, messageCount);
break:;

case 5:
retCode = esprocess_switch(0x0005, messageCount);
break:

case 6:
retCode = esprocess_switch(0x0006, messageCount):
break:;

case 7:

retCode = esprocess_switch(0x0007, messageCount);

}

}

break:;

case 8:
retCode
break:
case 9:
retCode
break;
case 10:
retCode
break:;
case 11:
retCode
break:;
case 12:
retCode
break:
case 13:
retCode
break;

default: break:;

return retCode;

esprocess_switch(
esprocess_switch (
esprocess_switch (
esp;ocess_;witch(
esprocess_switch(

esprocess_switch(

0x0008,
0x0009.
0x000a,
0x0030,
0x0031,

0x0034,

messageCount

messageCount

messageCount

messageCount

messageCount

messageCount

):

):

):

):

/***t******************************t**/
Function esenable

/*
/*
/*
/i
/t
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

PARAMETERS:
esig_switch - the number of the switch to be enabled.
messageCount - sequence number of this message

Process:
Routine for enabling switches.

Currently the switches are defined as follows:

1l -- storm

2 -- ground fog
-- patchy ground fog
-- scudded clouds

3

4

5 =-- clouds

6 -- rain

7 -- lightning

8 -- light strings displayed with random/modeled intensity
9 -- own-ship wing tip strobe

10 -- own-ship anti-collision beacon
11 -- height above terrain

12 -- collision detection

13 -- collision detection indicator

Returns:
int - success == (0, failure != 0;

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/***t*t*****************************/
int esenable(int esig_switch, long messageCount)

{

int retCode = 0;

switch(esig_switch)

{

case 1:

retCode = esprocess_switch(0x8001, messageCount);

break:;
case 2:

retCode = esprocess_switch(0x8002, messageCount):

break:

}

case 3:

retCode = esprocess_switch(0x8003,
break:

case 4:
retCode = esprocess_switch(0x8004,
break:;

case S5: -
retCode = esprocess_switch(0x8005,
break:;

case 6:
retCode = esprocess_switch(0x8006,
break;

case 7:
retCode = esprocess_switch(0x8007,
break:;

case 8:
retCode = esprocess_switch(0x8008,
break:

case 9:
retCode = esprocess_switch(0x8009,
break:;

case 10:
retCode = esprocess_switch(0x800a,
break:;

case 11:
retCode = esprocess_switch(0x8030,
break:;

case 12:
retCode = esprocess_switch(0x8031,
break:;

case 13:
retCode = esprocess_switch(0x8034,
break;

default: break;
}

return retCode;

messageCount
messageCount
messageCount
messageCount
messageCount
messageCount
messageCount
méssageCount
messageCount
messageCount

messageCount

)

)

)

/**************t**/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Function esgfog

PARAMETERS:
top - height of ground fog (max 6.2 mi.).

messageCount - sequence number of this message

Process:
Program to set the height of ground fog (max 6.

Returns:
int - success == (O, failure != 0;

2 mi.).

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/********tt***************************ﬁ*********************t*****************/
int esgfog(signed int top, long messageCount)

struct gfog_struct *gfog;
int retCode = 0, size = sizeof(gfog_struct);

gfog = (struct gfog_struct *)calloc(l,sizeof(struct gfog_struct)):

gfog->hostmessage = messageCount;
gfog->hostopcode = 0;
gfog->opcode = 0x0044;

gfog->top = top:

gfog->endOfData = 0;

retCode = TransmitPacket(gfog, size, dest, size });

free(gfog);

return retCode;
}

/*****************************i*****************t*****************************/

/* Function eshatpt */
/* */
/* PARAMETERS: */
/* number - height above terrain testpoint number (0-31, 255 to clear). */
/* x - x offset. */
/* Yy - y offset. */
/* z - z offset. */
/* messageCount - sequence number of this message */
/* */
/* Process: */
/* Program to implement height above terrain test points. */
/* Corresponds to the ESIG HAT function. */
/* */
/* Returrns: * /
/* int - success == 0, failure != 0 */
/* */

/*********************************i***/

int eshatpt(int number, signed long x, signed long y, signed long z,
long messageCount)
{

struct hatpt_struct *hatpt:;
int retCode = 0, size = sizeof(hatpt_struct), *tmp:

hatpt = (struct hatpt_struct *)calloc(l,sizeof(struct hatpt_struct)):
hatpt->hostmessage = messageCount;
hatpt->hostopcode = 0;

hatpt->opcode = 0x0032;

hatpt->number = number;

X *= 512; y *= 512; z *= 512; /* scale x,y,z */
tmp = (int *)s&x;

hatpt->high_x = tmp([1];

hatpt->low_x = tmp(0];

tmp = (int *)s&y:;

hatpt->high_y = tmp{l]);

hatpt->low_y = tmp(0]:

tmp = (int *)&z;

hatpt->high_z = tmp(1];

hatpt->low_z = tmp(0];

hatpt->endOfData = 0;

retCode = TransmitPacket(hatpt, size, dest, size);
free(hatpt);

return retCode;
}

/***/

/* Function eshorizon */
/* */
/* PARAMETERS: . *x/
/* brightness - horizon brightness (0-5). */
/* directional - enable/disable horizon direction settable facility. */
/* heading - horizon heading (0~360 degrees). */
/* messageCount - sequence number of this message */
/* . */
/* Process: * /
/* Program to set horizon brightness and heading. Heading will be set if */

/* the directional flag is set. */

/* Corresponds to some of the ESIG SET commands. */

/* Input for heading is scaled to perform as the ESIG function does */
/* */
/* Returns: */
/* int - success == 0, failure != 0; */
/* */

/***t*****************************/

int eshorizon(int brightness, int directional, unsigned int heading,
long messageCount)
{

struct horizon_struct *horizon;
int retCode = 0, size = sizeof(horizon_struct);

horizon = (struct horizon_struct ¥)
calloc(l,sizeof (struct horizon struct)):
horizon->hostmessage = messageCount:
horizon->hostopcode = 0;
horizon->opcode = 0x0011;
horizon->directional = directional;
horizon->brightness = brightness:;
horizon->heading = heading*182.04;
horizon->endOfData = 0;

retCode = TransmitPacket(horizon, size, dest, size):
free(horizon):

return retCode:;
}

/***/

/* Function esinstructor */
/* */
/* PARAMETERS: */
/* channel - port instructor monitor is on. */
/* messageCount - sequence number of this message */
/* */
/* Process: */
/* Program to set the instructor monitor channel. */
/* Corresponds to the ESIG SET function. */
/* */
/* Returns: */
/* int - success == (0, failure != 0; */
/* */

/***/

int esinstructor(int channel, long messageCount)
{
struct instructor_struct *instructor:;
int retCode = 0, size = sizeof(instructor_struct);

instructor = (struct instructor_struct *)
calloc(l, sizeof (struct instructor_struct)):
instructor->hostmessage = messageCount;
instructor->hostopcode = 0;
instructor->opcode = 0x0050;
instructor->channel = channel;
instructor->endOfData = 0;

retCode = TransmitPacket(instructor, size, dest, size):;
free(instructor):

return retCode;

/***/

/* Function eslight */
/* */
/* PARAMETERS: */
/* number - light switch number (0-63). */
/* intensity - intensity of light (0-5). */
/* messageCount - sequence number of this message */
/* */
/* Process: */
/* Program to set the intensity of light switches. */
/* Corresponds to some of the ESIG SWITCH functions. */
/* */
/* Returns: */
/* int - success == 0, failure != 0; */
/* */

/***/

int eslight(int number, int intensity, long messageCount)

{
struct light_struct *light;
int retCode = 0, size = sizeof(light_struct);

light = (struct light_struct *)calloc(l,sizeof(struct light_struct)):;
light->hostmessage = messageCount;

light->hostopcode = 0;

light->opcode = 0x0012;

light->number = number;

light->intensity = intensity:

light->endOfData = 0;

retCode = TransmitPacket(light, size, dest, size):;
free(light):

return retCode:;
}

/***/

/* Function eslobe ' */
/* */
/* PARAMETERS: *x/
/* lights - number corresponding to which lights should be turned on. */
/* (0 = no lights, 127 = all). */
/* messageCount - sequence number of this message */
/* */
/* Process: */
/* Program to set aircraft landing lights. */
/* Corresponds to the ESIG LOBE function, although the user must give the */
/* number corresponding to the bits he would set using the LOBE command. */
/* */
/* Returns: *x/
/* int - success == 0, failure != 0; */
/* */

/*i***/

int eslobe(int lights, long messageCount)
{
struct lobe_struct *lobe;
int retCode = 0, size = sizeof(lobe_struct)

lobe = (struct lobe_struct *)calloc(l,sizeof(struct lobe_struct)):
lobe->hostmessage = messageCount;

lobe->hostopcode = 0;

lobe->opcode = 0x0013;
lobe->lights = lights;
lobe->endOfData = 0;

}

retCode = TransmitPacket(lobe, size, dest,

free(lobe):;

return retCode:

size);

/***/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Function esmodel

PARAMETERS:

colocate - colocatable parcel select number to be used (0-7).

parcel - parcel number in the database to be used.
messageCount - sequence number of this message

Process:

Program to allow user to load a database.

Corresponds to the ESIG MODEL function.

Returns:

int - success == (0, failure

1= 0;

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/***/
int esmodel(int colocate, int parcel, long messageCount)

{

}

struct model_struct *model:;
int retCode = 0, size = sizeof(model_struct):;

model = (struct model_struct *)calloc(l,sizeof(struct model_ struct)):

model->hostmessage = messageCount;

model~->hostopcode = 0;

model->opcode = 0x0014;
model->colocate = colocate;
model->parcel = parcel;

model->endOfData = (;

retCode = TransmitPacket (model, size, dest,

free(model):;

return retCode:;

size)

/***/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Function espolygon

PARAMETERS:

number - polygon switch number (0-63).
intensity - intensity value (0-5).
messageCount - sequence number of this message

Process:

Program to set the polygon intensity.
Corresponds to some of the ESIG SWITCH functions.

Returns:
int - success == (,

failure

i= 0,

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/***/

int espolygon(int number, int intensity, long messageCount)

struct polygon_struct *polygon:;
int retCode = 0, size = sizeof(polygon_struct):

e e

polygon = (struct polygon_struct *)
calloc(l, sizeof (struct polygon_struct)):
polygon->hostmessage =~ messageCount;
polygon->hostopcode = 0;
polygon->opcode = 0x0019;
polygon->number = number;
polygon->intensity = intensity;
polygon->endOfData = 0;

retCode = TransmitPacket(polygon, size, dest, size):
free(polygon);

return retCode;
}

/***/

/* Function esrvr *x/
/* */
/* PARAMETERS: */
/* range - runway visual range in feet. *x/
/* messageCount - sequence number of this message */
/* */
/* Process: *x/
/* Program to set the runway visibility range. */
/* Corresponds to the ESIG GFOG command. No scaling done yet. */
/* Input scaled to correspond to ESIG function. */
/* */
/* Returns: */
/* int - success == 0, failure != 0; */
/* */

/***/

int esrvr(long range, long messageCount)
{
struct rvr_struct *rvr;
int retCode = 0, size = sizeof(rvr_struct):;

rvr = (struct rvr_struct *)calloc(l,sizeof(struct rvr_struct));
rvr->hostmessage = messageCount;

rvr->hostopcode = 0;

rvr->opcode = 0x0010;

rvr->range = range/4;

rvr->endOfData = 0;

retCode = TransmitPacket(rvr, size, dest, size):
free(rvr):

return retCode;

}

/***/
/* Function esscene */
/* */
/* PARAMETERS: */
/* select - the value of the scene type to be displayed. */
/* messageCount - sequence number of this message */
/* */
/* Process: */
/* Scene is set with parameters corresponding to esig functions: */
/* 0 = SET NIGHT */
/* 1 = SET DUSK - */
/* 2 = SET DAY */
/* */

/* Returns: */

/> int - success == (0, failure != 0; */
/* */
/***/

int esscene(int select, long messageCount)
{
struct scene_struct *scene;
int retCode = 0, size = sizeof(scene_struct-):;

scene = (struct scene_struct *)calloc(l,sizeof(struct scene_struct)):
scene~->hostmessage = messageCount;

scene->hostopcode = 0;

scene->opcode = 0x0016;

scene->select = select;

scene->endOfData = 0;

retCode = TransmitPacket (scene, size, dest, size):
free(scene);

return retCode;
}

/***/

/* Function essun *x/
/* */
/* PARAMETERS: */
/* heading - heading angle for the sun. */
/* pitch - pitch angle for the sun. */
/* messageCount - sequence number of this message */
/* */
/* Process: */
/* Program for setting the sun’s heading and pitch. */
/* Corresponds to ESIG functions SET SUNH and SET SUNP. */
/* Input to this function must be scaled to correspond to ESIG function. */
/* */
/* Returns: */
/* int - success == 0, failure != 0; */
/* */

/***/
int essun(unsigned int heading, unsigned int pitch, long messageCount)
[

struct sun_struct *sun;
int retCode = 0, size = sizeof(sun_struct):

sun = (struct sun_struct *)calloc(l,sizeof(struct sun_struct)):
sun->hostmessage = messageCount;

sun->hostopcode = 0;

sun->opcode = 0x0043;

sun->heading = heading*182.04;

sun->pitch = pitch*182.04;

sun->endOfData = 0;

retCode = TransmitPacket(sun, size, dest, size):
free(sun);

return retCode;
}

/**t**/

/* Function estraffic */
/* */
/* PARAMETERS: x/

/* cs - the number of the coordinate system. */

/* select - the select switch.
/* parcel - the parcel index (0 - 255).
/* placeable - 0 = local parcel, 1 = placeable parcel. */
/* control - routed and converging control number. */
/* scenario - routed and converging scenario number (0 - 15). *x/
5* messageCount - sequence number of this message *;
* - *
/* Process: */
/* Sets information for routed or converging traffic. Controls are: */
/* ES_NO_INFO - no effect. */
/* ES_LOAD_ROUTED - Loads information for routed traffic */
/* ES_START_ROUTED - Starts routed traffic */
/* ES_STOP_ROUTED - Stops routed traffic */
/* ES_UNLOAD_ROUTED - Unloads routed traffic */
/* ES_LOAD_CONVERGING - Load info for converging traffic */
/* ES_START CONVERGING - Start converging traffic */
/* ES_STOP_CONVERGING - Stop converging traffic */
/* ES_UNLOAD_CONVERGING - unload info for converging traffic */
/* */
/* Returns: */
/* int - success == 0, failure != 0; */
/* */

/***/

int estraffic(int cs, int select, int parcel, int placeable, int control,
int scenario, long messageCount)
{

struct traffic_struct *traffic;
int retCode = 0, size = sizeof(traffic_struct):

traffic = (struct traffic_struct *)calloc(l,sizeof(struct traffic_struct)):;
traffic->hostmessage = messageCount;
traffic->hostopcode = 0;

traffic->opcode = 0x001la;

traffic->cs = c¢s;

traffic->select = select;

traffic->parcel = parcel;
traffic->placeable = placeable;
traffic->xyz = 7;

traffic->control = (control<<4) + scenario;
traffic->endOfData = 0;

retCode = TransmitPacket(traffic, size, dest, size):;
free(traffic):

return retCode;

}

/*****t***/

/* Function esviewport */
/* */
/* PARAMETERS: */
/* channel - channel number (0-7). */
- /* alternate - enable/disable alternate view. */
/* x - x offset. */
/* y - y offset. */
/* z - z offset. . */
/* heading - heading orientation for the viewport (-360 - 360 deg.). */
/* pitch - pitch orientation for the viewport (-360 - 360 deg.). */
/* roll - roll orientation for the viewport (-360 - 360 deg.). */
/* vertical - vertical half angle of viewport (0.5 - 90 deg.). */
/* horizontal - horizontal half angle of viewport (0.5 - 90 deg.). */
/* . messageCount - sequence number of this message */
/* */

/* Process: */

/* Program to define the viewport, which defines how the image will appear*/

/* on the display. Corresponds to some of the ESIG CHANNEL commands. */
/* Some inputs are scaled to correspond to the ESIG function. */
/* */
/* Returns: */
/* int - success == 0, failure != 0: */
/* - */

/**************t***************************t**********************************/

int esviewport(int channel, int alternate, long x, long y, long z,
unsigned int heading, unsigned int pitch, unsigned int roll,

unsigned int vertical, unsigned int horizontal, long messageCount)

struct viewport_struct *viewport:
int *tmp: ‘
int retCode = 0, size = sizeof(viewport_struct);

viewport = (struct viewport_struct *)
calloc(l, sizeof (struct viewport_ struct)):

viewport->hostmessage = messageCount;

viewport->hostopcode = 0;

viewport->opcode = 0x001b;

viewport->channel = channel;

viewport->alternate = alternate:

viewport->xyz = 7; /* use x,y,z mode */
viewport->el = 1; /* enable extrapolation */
viewport->hpr = 7; /* enable heading, pitch, and roll *x/
x *= 512; y *= 512; z *= 512; /* scale x,Yy,z */
tmp = (int *) &x; /* typecast into integer (word) size */

viewport->low_x = tmp[0];
viewport->high_x = tmp(1l]:;

tmp = (int *) &y:

viewport->low_y = tmp[0];
viewport->high_y = tmp([l]:

tmp = (int *) &z;

viewport->low_z = tmp[0]:
viewport->high _z = tmp(l]:
viewport->heading = heading*182.04;
viewport->pitch = pitch*182.04;
viewport->roll = roll*182.04;
viewport->vertical = vertical*182.04;
viewport->horizontal = horizontal*182.04;
viewport->endOfData = 0;

retCode = TransmitPacket(viewport, size, dest, size);
free(viewport):

return retCode:;

}

/***/

/* Function esvisibiiity */
/* */
/* PARAMETERS: */
/* range - the range in feet of visibility (max 49.6 miles). */
/* messageCount ~ sequence number of this message */
/* ’ */
/* Process: */
/* Program to simulate the ESIG VISIBILITY command. */
/* Input scaled to correspond to ESIG function (in FEET). *;
/* - *
/* Returns: */
/* int - success == (0, failure != 0; */

/* */

/**i**********/

int esvisibility(long range, long messageCount)
{
struct visibility_struct *visibility:
int retCode = 0, size = sizeof(visibility struct):

visibility = (struct visibility struct *)
calloc(l,sizeof (struct visibility struct)):
visibility~->hostmessage = messageCount;
visibility->hostopcode = 0;
visibility->opcode = 0x000F;
visibility->range = range/4;
vigibility->endOfData = 0;

retCode = TransmitPacket(visibility, size, dest, size):
free(visibility):

return retCode:

}

/*****************************/

/* Object Functions: PRIVATE */
/*****************************/

/***********i***/

/* Function esprocess_switch */
/* */
/* PARAMETERS: */
/* opcode - the opcode of the switch to be enabled/disabled. */
/* messageCount - sequence number of this message *x/
/* */
/* Process: */
/* Routine to build the enable/disable packet using information from the */
/* enable/disable routines. */
/* *x/
/* Returns: *x/
/* int - success == 0, failure != 0; */
/* */

/***/

int esprocess_switch(int opcode, long messageCount)
{

struct switch_struct *esswitch;

int retCode = 0, size = sizeof(switch_struct):;

esswitch = (struct switch_struct *)
calloc(l,sizeof (struct switch_struct)):;
esswitch->hostmessage = messageCount;
esswitch->hostopcode = 0;
esswitch->opcode = opcode;
esswitch->endOfData = 0;

retCode = TransmitPacket(esswitch, size, dest, size):
free(esswitch)

return retCode;

// esig

com.h

#define NEED_PACKET_DEFINITIONS

#includ
#includ

e "net.h"

e "3com.h"

#include "packet.h"

#ifndef _ cplusplus
#error This program requires compilation as C++.

#endif

#ifndef _ LARGE_

#error This program requires Large memory model.

#endif '

#ifndef _ ESIGCOM

#define __ ESIGCOM

// constants ———me—emmce e e
// structs, classes, typedefs —===—cemmec e cm e

struct ambient_struct

{

long hostmessage;
int hostopcode;

int
int

opcode:
ambience;

unsigned int endOfData:

}:

struct anim struct

{

long hostmessage:
int hostopcode:

int
unsi
unsi
unsi
unsi
unsi
unsi
int
int
int
int
int
int
int
int
int
int

opcode;
gned char
gned char
gned char
gned char
gned char
gned char
dummyl;
dummy?2 ;
dummy3;
dummy4;
dummy5;
dummy6;
dummy7;
durmmy8 ;
dummy9 ;
dummyl10;

select;

cs;

parcel;

placeable:;

Xyz;

control;

/* dummys are introduced to give the structure */
/* the proper length of fourteen words */

unsigned int endOfData:;

}:

struct channel_struct

{

long hostmessage;
int hostopcode;

int

char
char
char
char
char
char

opcode:;
dummy ;
number:;

display b:
display_a:

color;

viewport:

}:

unsigned int endOfData;

struct cloud_ struct

{

}:

long hostmessage:

int hostopcode:

int top_opcode:

signed int top:

int bot_opcode:

signed int bottom:
unsigned int endOfData;

struct cold_struct

{

}:

long hostmessage;

int hostopcode:

int opcode;

int color:

char automatic:

char valid;

unsigned int endOfData;

struct coldpt_struct

{

}:

long hostmessage;

int hostopcode;

int opcode;

unsigned char number:;
char dummy:

int high_x;

int low_x:;

int high_y:;

int low_y;

int high_z;

int low_z:

unsigned int endOfData:

struct cs_struct

{

long hostmessage:

int hostopcode:

int opcode:

unsigned char select:
unsigned char cs;
unsigned char index;
unsigned char type:
unsigned char xyz;
unsigned char control;
unsigned char el;
unsigned char hpr:
int high_x;

int low_x;

int high y:;

int low_y:

int high_z;

int low_z;

unsigned int heading:
unsigned int pitch;
unsigned int roll;
unsigned int endOfData;

struct switch_struct
{

long hostmessage:

int hostopcode:

int opcode;

unsigned int endOfData:
}:

struct gfog_struct
{
long hostmessage:
int hostopcode;
int opcode:;
signed int top:
unsigned int endOfData:
}:

struct hatpt_struct
{

long hostmessage;

int hostopcode;

int opcode:

char number:;

char dummy:;

int high_x:

int low_x;

int high_y:

int low_y:

int high_z;

int low_z;

unsigned int endOfData;
}:

struct horizon_struct
{
long hostmessage:;
int hostopcode;
int opcode:;
char directional;
char brightness:
unsigned int heading;
unsigned int endOfData;
}:

struct instructor_struct
{

long hostmessage;

int hostopcode;

int opcode:

char channel;

char dummy:

unsigned int endOfData;
}:

struct light_struct
{

long hostmessage:

int hostopcode;

int opcode:

char intensity:

char number;

unsigned int endOfData:;
}:

struct lobe_struct

long hostmessage;

int hostopcode:;

int opcode;

char lights:;

char dummy;

unsigned int endOfData:

}:

struct model_struct
{

long hostmessage;

int hostopcode;

int opcode:; '

char parcel;

char colocate;

unsigned int endOfData:;
}:

struct polygon_struct
{
long hostmessage:
int hostopcode;
int opcode;
char intensity;
char number:
unsigned int endOfData:

}:

struct rvr_struct
{
long hostmessage:;
int hostopcode;
int opcode:
unsigned int range;
unsigned int endOfData:
}:

struct scene_struct
{
long hostmessage;
int hostopcode;
int opcode;
unsigned char select:
unsigned char dummy; /*
unsigned int endOfData:
}:

struct sun_struct
{
long hostmessage;
int hostopcode;
int opcode;
unsigned int heading:;
unsigned int pitch;
unsigned int endOfData:
}:

struct traffic_struct

{
long hostmessage;
int hostopcode:
int opcode;
unsigned char select:
unsigned char cs:
unsigned char parcel:

used for word alignment */

}:

str
{

}:

unsigned char placeable;

unsigned char xyz:;

unsigned char control:;

int dummyl; /* dummys are introduced to give the structure */
int dummy2; /* the proper length of fourteen words */
int dummy3;

int dummy4:

int dummy5:;

int dummyé6;

int dummy?7;

int dummy8;

int dummy$9:;

int dummyl0:;

unsigned int endOQOfData;

uct viewport_struct

long hostmessage:

int hostopcode:;

int opcode:

unsigned char alternate;
unsigned char channel;
unsigned char xyz;
unsigned char dummy:
unsigned char el:;
unsigned char hpr;

int high_x:

int low_x;

int high_y;

int low_y:

int high_z;

int low_z;

unsigned int heading;
unsigned int pitch;
unsigned int roll;
unsigned int vertical;
unsigned int horizontal;
unsigned int endOfData;

struct visibility_ struct

{

}:
//

/*-

/*

/*-
int
int
int
int
int
int
int

long hostmessage;

int hostopcode;

int opcode:

unsigned int range:;
unsigned int endOfData;

macros and inline functiong -===--—-me--ccer e e
—-—-------—-----—---*/
Function Prototypes */
- e D R S - R s W /
esambient (int scene, int ambience, long messageCount)
esanimation(int cs, int select, int parcel, int placeable, int control,
int sequence, long messageCount);
eschannel(int number, int display_a, int display_b,
int viewport, int color, long messageCount);
escloud(long top, long bottom, long messageCount):
escold(int color, int valid, int automatic, long messageCount):
escoldpt (int number, long x, long y, long z, long messageCount):;
escs(int csnum, int select, long x, long y, long z, unsigned int heading,

unsigned int pitch, unsigned int roll, long messageCount);

int esdisable(int esig_switch, long messageCount);

int esenable(int esig_switch, long messageCount):;

int esgfog(signed int top, long messageCount);

int eshatpt(int number, signed long x, signed long y, signed long z,

long messageCount);

int eshorizon(int brightness, int directional, unsigned int heading,
long messageCount); -

int esinstructor(int channel, long messageCount);

int eslight(int number, int intensity, long messageCount):

int eslobe(int lights, long messageCount);

int esmodel(int colocate, int parcel, long messageCount):

int espolygon{ int number, int intensity, long messageCount):

int esrvr{ long range, long messageCount);

int esscene(int select, long messageCount):;

int essun(unsigned int heading, unsigned int pitch, long messageCount);

int estraffic(int cs, int select, int parcel, int placeable, int control,
int scenario, long messageCount):

int esviewport(int channel, int alternate, long x, long y, long 2z,
unsigned int heading, unsigned int pitch, unsigned int roll,
unsigned int vertical, unsigned int horizontal, long messageCount)

int esvisibility(long range, long messageCount);

int esprocess_switch(int opcode, long messageCount);

// variable externs —-—=-----o-ms e me e e e oo
extern int maxTxLength; // Maximum packet length transmitted

#endif // _ ESIGCOM

Appendix H:
Summary of Results of HTD Experiments

Head-Tracked Cupola Display Preliminary Results

The results of this evaluation with novice subjects indicated that there
were no significant differences in performance or preferences between the
two simulations (Simnet vs HTD). It appears that for the selected tasks (target
acquisition and navigation), subjects performed equally well (or equally
poorly) in both simulations. There are several potential explanations for
these findings: 1) the two simulations may be close enough in design that
performance differences will not be seen for most tasks, 2) the tasks were
simply too easy to determine if there were performance differences, and 3)
there were too many problems with experimental control (e.g., too many
disturbances, equipment failures, etc.) to keep variability low enough to
observe any differences.

In my opinion, explanations one and two are probably both correct.
From what I have observed and heard about tank scenarios, in most cases
there probably would be no differences in performance between the two
simulations. For example, the navigation task required infrequent head
turning or cupola rotation to find a checkpoint. The tank commander (TC)
was only required to tell the driver to turn, and the TC could easily determine
his surroundings while looking straight ahead. I believe that the results from
most navigation tasks would be similar. Concerning target acquisition, I have
heard that in most situations the tank would be in a defensive position, or it
would attack in groups, with each group focusing on a specific sector. In these
situations, speed of acquisition would likely be less important. If this is true,
then there would be little expectation for differences in performance between
the two simulations, which was observed in this study.

However, if speed of target acquisition is important, then I predict that
the HTD would provide superior performance. The target acquisition task in
this study appeared to be too easy to elicit performance differences between
the simulations, even though the 20 targets were placed in difficult locations
(hence, the low acquisition mean of 11.75).

I also believe that the lack of experimental control concerning demos,
equipment failures, etc., was a problem. However, these factors probably
occurred equally over the experimental sessions, so I doubt if they influenced
the means, except possibly to reduce them across the board. These problems
could have increased the variability, which would require greater differences
between the simulations to show an effect. In addition, a larger sample size
was needed in order to increase the power to detect group differences.

In conclusion, I would recommend continuing the evaluation based
on the importance of target acquisition speed versus the cost/benefits of
continuing. If tank training does not focus on speed of target acquisition,
then the Simnet is probably adequate for training, and continuing the study

would not be cost effective. However, if speed of acquisition is very
important, then we probably should continue with experienced personnel.

If we do continue, I have some further recommendations. We should
drop the navigation task, because I doubt if there are any scenarios in which
the two simulations would show differences. The navigation task also
required more time to complete than the target acquisition task. Dropping
the navigation task would allow us to run more subjects in a shorter amount
of time.

As you suggested, Ernie, I would run the target acquisition task over a
shorter route but with a much higher target density. This would require that
the TC scan his environment faster, which may result in performance
differences between the HTD and Simnet. I would also have the gunner-tank
commander relationship more involved by having the gunner actually try to
shoot the targets.

Finally, we need to run this experiment with better control. I would
like to have access to two students who are available to run the experiment at
any time, not just when they can fit it into their schedules, and I want to be
able to limit people from interrupting the study. I realize that these requests
may be difficult to accomplish.

{accuracy between checkpoints 1-2)

MEDIANS BY TION AND E
SIM/COURSE 1 SIM/COURSE 2 HTD/COURSE 1 HTD/COURSE 2
Im 200 m Im 50.5
(R: 1-400) (R: 1-700) (R: 1-1600) (R: 1-300)
Mean: 67.5 Mean: 266.8 Mean: 284.0 Mean: 100.5

MEDIANS BY SIMULATION

SIMNET HTD
50.5 m Im
(R: 1-700) (R: 1-1600)
Mean: 167.2 Mean: 192.3

MEDIANS BY COURSE

COURSE 1 OURSE 2
Im 150 m
(R: 1-1600) (R: 1-700)

Mean: 175.8 Mean: 183.7

{time between checkpoints 2-3)

MEDIANS BY SIMULATION AND COURSE
SIM/COURSE1 _ SIM/COURSE2 _HTD/COURSE 1 HTD/COURSE 2
253 sec. 268.5 sec. 238 sec. 221.5 sec.
(R: 206-999) (R: 209-338) (R: 173-999) (R: 180-312)
MEDIANS BY TION
SIMNET HTD
268.5 2255
(R: 206-999) (R: 173-999)
MEDIANS BY COURSE
COURSE 1 COURSE 2
238 233.5

(R: 173-999) (R: 180-338)

{accuracy between checkpoints 2-3)

MEDIANS BY TION AND E
SIM/COURSE 1 __SIM/COURSE2 __HTD/COURSE1 __HTD/COURSE 2
600 m 50.5 m 650 m 550 m
(R: 1-9999) (R: 1-200) (R: 1-9999) (R: 200-1700)
MEDIANS BY SIMULATION
SIMNET HTD
150 m 550 m
(R: 1-9999) (R: 1-9999)
MEDIANS BY COURSE
COURSE 1 COURSE 2
600 m 200 m

(R: 1-9999) (R: 1-1700)

(20 Targets were possible)
MEANS BY SIMULATION AND COURSE

SIM/COURSE1 _SIM/COURSE2 _HTD/COURSE 1 HTD/COURSE 2

12.50 11.00 12.67 10.83
(R: 10-14) (R: 8-15) (R:9-17) (R: 8-15)

MEANS BY SIMULATION

SIMNET HTD
11.75 11.75
(R: 8-15) (R: 8-17)

MEANS BY COURSE
COURSE 1 COURSE 2

12.59 10.92
(R: 9-17) (R: 8-15)

Head-Tracked Cupola Display Research

Scale: 5=impossible, 4=difficult, 3=moderate, 2=easy, 1=very easy

QUESTION SIMNET HTD
1) Ability to perceive locations accurately 3.11 2.89
2.) Ability to identify surroundings 3.00 3.00
3.) Ability to maintain orientation and not 3.0 2.67
get lost
4.) Ability to acquire targets without time 2.67 2.67
constraints
5.) Ability to acquire targets under time pressure 3.44 3.00

None of these results were statistically significant.
6.) Which simulation was more difficult?

SIMNET= 6
HID= 5
SAME= 2

7.) Were there any features about either simulation that you especially liked
or disliked?

8.) Which simulation do you think would be the most beneficial for training?

SIMNET= 8
HTD= 4
SAME= 1

9.) Which simulation do you prefer?

SIMNET= 7
HID= 5
SAME= 1

10.) Do you think that your performance and preferences would have
changed if the head-tracked display did not have popping/flickering?

Yes=11 No=2

Appendix 1
Computations Concerning EyePho'he Resolution

The low resolution Eyephone has 442 x 238 primary color pixels per
eye. The total number of primary color pixels is 105,196. This means
35,065 triads, in an array that I am assuming is 256 x 137. The FOV
for each eye is 86 degrees (horizontal) by 76 degrees (vertical). The
total horizontal FOV is 108 degrees. The binocular overlap is 64
degrees.

Because of assumptions made above, the following calculations are
approximate. The total number of pixels (three color) horizontally is
256 x 108 / 86 (pixels per eye x total FOV / FOV per eye). This
equals 321 pixels. The number of arc minutes per pixel horizontally
is 108 x 60 / 321 or approximately 20 arc minutes per pixel.

The number of vertical three color pixels is approximately 137. The
number of vertical degrees is 76. This gives approximately 33 arc
minutes per pixel vertically.

The same calculations, with the same assumptions, applied to the
high resolution Eyephones gives the following results.

Total number of primary color pixels per eye is 345,600 in a

720 by 480 matrix. This gives about 416 horizontal by 277 vertical
three color pixels per eye. The horizontal FOV per eye is 86 degrees,
and for both eyes is 106 degrees. The vertical FOV is 75 degrees.
The total number of horizontal pixels is approximately 513 pixels.
This works out to about 12 arc minutes per pixel horizontally.

The number of three color pixels vertically is about 277. This

works out to about 16 arc minutes per pixel vertically.

Appendix J:
Extending the SIMNET Head-Tracking Display

Extending the SIMNET Head Tracking Display:
a Project Analysis by IST/VSL

d. Michael Moshell
Curtis Lisle
Richard Dunn-Roberts
Ernie Smart

VSL Memo 91.6
2/15/01

There is significant interest in extending the functionality of the SIMMNET
M1 trainer to include the Protected Open Position for the tank commander
(referred to as the “POP hatch”). This document includes the results of a
preliminary analysis of this problem.

The major sections of the document are as follows:

I. Project Requirements and Description

I1. Constraints on the Image Generator and Monitors
IT1. Miscellaneous Concerns about the Design

IV. IST Estimates on Time and Cost

L Project Requirements and Description
List of Project Requirements: The following list covers the main points of
theproposed design. This serves as a summary of the overall project goals.
1. Provide a 3600 field of view POP hatch display.

2. Allow the commander the maximum possible vertical field of view
in the POP hatch display, consistent with tank geometry.

3. The POP hatch view will adjust for head motion within the cupola,
so as to provide a high resolution central display, medium resolution
lateral displays, and no imagery outside of the central viewing cone.
This will conserve image generator channel capacity.

4. Visible elements of the tank (tank hull, main gun,etc) will be
visible in the views from the POP hatch.

5. The cupola (including vision blocks, machine gun and hatch cover)
will rotate under the control of the machine gun control handle.

6. The capability will be provided of using the 6 vision blocks as well
as the POP hatch views simultaneously.

Description of the Requirements: The following paragraphs provide more
detail about each of the project requirements stated above.

1. Provide a 3600 horizontal field of view. The display will be created by
providing a ring of ten 27" (diagonal) video monitors surrounding the tank
commander’s cupola. This will be an extension of the Head Tracking
Display project (HTD) currently underway at IST/VSL.

Referred to as the Extended Head Tracking Display (EHTD), this new
project will use the same video switching technique employed in IST’s
HTD: a Polhemus magnetic tracker is used to switch video channels so the
commander always has an active video display in the direction his head is
facing. (See Figure 1).

side: 320 x 240

center:
640 x 480 @

3 Live monitors=108°

side: 320 x 240

Figure 1 - Top View of the EHTD

2. The commander is given the maximum feasible FOV in the vertical
direction: This requirement is based on the 6” high opening available
under the elevated hatch and the commander’s head position relative to the
radius of the hatch. The geometry involved is shown in Figure 2.

Note: the aspect ratio of off-the-shelf NTSC monitors makes it limits
the vertical field of view which can be achieved with a single row of
monitors and no optics. See section II for details.

distance up to 2 feet

Figure 2 - Vertical field of view

8. The POP hatch view will adjust for head motion within the cupola: Since
the commander has a range of available head motion within the cupola
(approx. 32" in diameter in SIMNET), the view out the monitors should
adjust for the correct head position. This requires head position

information be passed over to the SIMNET Host and used to adjust the
viewpoint generated by the SIMNET CIG unit. Engineering development
will be necessary to provide this level of control over the CIG (greater than
in the existing SIMNET cupola).

An additional concern is the obstacle provided by the vertical edges of
the monitor housings. This is discussed in section III below.

4. Visible elements of the tank (fenders, gun,etc) will be displayed in the
views from the POP hatch: Since the commander’s eyepoint will be less
than 6" above the top of the turret in the POP hatch position, portions of the
tank will often be visible. The visible tank features must be modelled so they
will be displayed correctly.

5. The cupola will rotate. The current SIMNET simulator allows the
commander’s cupola to mechanically rotate but provides only a restricted
view out of one vision block of the cupola. In a real tank, the cupola is
sometimes rotated so as to position the machine gun out of the forward line
of sight, or to aim the machine gun.

The EHTD project will support cupola rotation. Using an existing SIMNET
hull and cupola mechanism, the required vision blocks and a simulated
hatch cover and machine gun mount will be incorporated so as to rotate
within the panoramic monitor display.

6. Provide the capability of using the 6 vision blocks as well as the POP
hatch views simultaneously: The commander will be able to support
training in normal mode (through the 6 vision blocks) or POP hatch
(through the out the window monitors). Two competing designs are being
considered to support this:

1. Have a set of monitors dedicated to the vision blocks and a set
dedicated to the POP hatch display. A side view of this is shown in
Figure 3. The monitors would have to occupy a carousel which
rotates along with the cupola and vision blocks.

hatch with 6" clearance
EHTD (POP hatch) monitors

HTD monitor

hole for vision block

Figure 3 - Dual Set of Monitors

2. Use a single set of monitors to support both the vision blocks and
the POP hatch display. This requires actual “periscope-style” vision
blocks and a redesign of the approach used to supply the vision block
views. This approach is shown in Figure 4.

monitors for both POP

hatch and vision

blocks. O \ rotating portion
of the cupola

Figure 4 - Single Set of Monitors

IV. IST Estimates on Time and Cost

The following spreadsheet titled EHTD Equipment Pricing shows
estimated costs for materials for a one-of-a-kind installation. These would
diminish by 10 to 20% in a production operation for 10 to 50 units.

The equipment estimate would need to be increased by the (unknown)
amount which a contractor would charge for integrating the panoramic
display into a production-model SIMNET tank hull for actual training
purposes.

The spreadsheet titled EHTD Personnel Pricing shows IST's projected
labor and overhead cost for performing the construction of a proof-of-
concept demonstration. We have no way to estimate the charges a for-profit
contractor would levy for similar services.

We estimate that six months would be required from receipt of a
commitment to completion and testing of the EHTD system. The principal
delays are involved with the acquisition of the IG and the debugging and
testing of the host software, some of which would be developed in
collaboration with a subcontractor.

This is an estimate, not a formal quotation, due to the haste with which the
estimate was required.

EHTD Personnel Pricing

Labor Pricing for the EHTD Project

Category

Proj Mgr Lisle 6
Vis Scientist Dunn-Roberts 6
Engineer to hire 3
Software sp. to hire 3
elect constr student 6
cptr prog student 3
host progr. PRC subcon.
mech design student 3
mech constr student 3
consulting

travel

supplies

months
months
months
months

months
months

months
months

Page 1

50%
50%
50%
50%

50%
50%

25%
25%

Loaded:

16705
14796
18604
11455

7814
3907
12739
1982
1952

10000
8000
520

108444

]

