
D'L-TR-3339 AD-A250 859

TECHNICAL REPORT BRL-TR-3339

r iAY2 0 I992i 51BR L 2
REMOTE DATA TRANSFER (RDT):

AN INTERPROCESS DATA TRANSFER METHOD
FOR DISTRIBUTED ENVIRONMENTS

JERRY A. CLARKE

MAY 1992

APPROVED FOR PUBLC RELEASE; DISTRIBUTON IS UNLIMYED.

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

92 5 19 O12:1

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position;
unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement
of any commercial product.

REPORT DOCUMENTATION PAGEI Form Approved
REP T DMB No 0,'04-0188

tcnSH:P ur'" c '4 "*'.:-.-r . 4 'es(-.s f ' C2* . '.r2f ' * .r. gon .. 300.Jr . 'r',,,' .. " 'r .''' .. ' .- , . ,,Tr; ' : . tfl?,.fl

I. AGENCY USE ONLY Leive blan) I 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
MAY 1992 Progress, 1 May - 30 Sep 91

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Remote Data Transfer (RdT): An Interprocess Data Transfer Method C-AHPCRC
for Distributed Environments DAAL3-89-7C-0088

6. AUTHOR(S)

Jerry A. Clarke

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

U.S. Army Ballistic Research Laboratory BRL-TR-3339
ATTN: SL' 3R-DD-T
Aberdeen t-roving Ground, MD 21005-5066

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

The decomposition of an application into pieces that can be distributed across several platforms requires a
mechanism for exchanging data in addition to orchestrating requests and responses. This paper describes a layer
of portable software that can be used to distribute an application in an attempt to achieve maximum system
performance.

14. SUBJECT TERMS 1S. NUMBER OF PAGES
57

RPC: Remote Procedure Call; RdT: Remote Data Transfer; 16. PRICE CODE
XDR: External Data Representation, computer programs, software
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT I

OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR I

NSN 7540-0-280-5500 STardard -orm --98 Rev ' 89)

-'P ":2 f, i. .' .

INTENTIONALLY LEFT BLANK.

TABLE OF CONTENTS

Page

LIST OF FIGURES...v

1. INTRODUCTION .. 1

2. DATA TRANSFER LAYER ... 4

3. MESSAGE PASSING LAYER 8

3.1 The Server .. 8

3.2 The Client .. 12

4. COMMAND AND RESPONSE LAYER................................13

5. AN APPLICATION ... 17

6. CONCLUSION ... 21

APPENDIX: RdT USER ROUTINES 23

DISTRIBUTION LIST ... 47

Avi

iiio

INTENTIONALLY LEFT BLANK.

iv

LIST OF FIGURES

Figure P age

1 . RdT Client-Server Model.....................2

2. RdT Layers and Packages....................................... 3

3. RdT Data Types........................6

4. Typical RdT Server.......................9

5. RITUServer Grid Slicer... 20

v

INTENTIONALLY LEFT BLANK.

vi

1. INTRODUCTIONp

In heterogeneous computing environments, with processors of diverse capabilities and

resources, it is often beneficial to distribute an application across several platforms. An

application might take advantage of the computational power of one machine, data storage and

retrieval of another, and the graphical prowess of a third. Practical considerations such as

machine load, availability, and physical connection often are just as important when choosing

platforms.

It becomes necessary to have a portable method for transferring data between processes

executing on separate machines that may be of different architectures. Remote data Transfer

(RdT) provides a layer of utilities, written in the "C" programming language, that enable processes

to exchange arbitrary data structures without dealing with many of the specifics of the actual

transfer. RdT handles the possible incompatibilities of internal data representation between

different architectures as well as the mechanics of communicating that data.

RdT is based on the Client-Server model. A Server makes itself available to perform some

service on behalf of a Client. The Server may either wait on incoming requests or periodically

check for incoming requests while performing some other function. The Client issues a request

then waits for either an acknowledgement that the request has been received or the service

performed.

RdT consists of three layers: Data Transfer, Message Passing, and Command and

Response. The Data Transfer Layer defines the basic data types that can be exchanged and

handles the conversion and passing of the data. The Message Passing Layer handles the

registration of services, the celivery and notification of requests, and the return of responses. The

Command and Response Layer constructs messages from an independent Command structure

and disassembles the response into an independent Response structure.

The Command and Response Layer defines two packages of information: a

COMMANDPACKET and a RETURNPACKET. These packages are passed to the Message

Passing Layer which repacks them into structures known as RTVARs. Then, using Remote

1

Client Server

Make Service Available

Request Service .4i 0m C eck for Request* U
SPerform Service

I U
U U

| • ReturnResponse
U U

UU U

Continue Processing "

Figure 1. RdT Client-Server Model.

Procedure Calls (RPC) and eXtemal Data Reprsentation (XDR), the Data Transfer Layer passes

the information between the Client and the Server.

When interfacing with the Command and Response Layer, an application is spared the details
of the data transfer. The Command and Respon e nse d locally or between

remote processes.

2

Client Server
ECommanPacket Return Packet

[Return Packet Command Packet'

Command and Response I
iTA JRT-VARI

Message. Passing

Data Transfer

r _ _._
: :RPC : _l____

Figure 2. RdT Layers and Packages.

RdT has been tested on the following architectures:

• Sun 3

* Sun 4

" Vax (Ultrix)

* Cray X-MP

* Gould Powemode

• Silicon Graphics

" Alliant

" Convex

RdT should be portable to most UNIX platforms. See appendix for user-callable RdT routines.

3

2. DATA TRANSFER LAYER

At the lowest layer of RdT, data is transferred between processes using the XDR format

developed by Sun Microsystems. The XDR format specifies the bit and byte order of certain data

types so that machines that have different internal representations of data can exchange
information. To transfer data, RdT uses the following basic XDR data types: unsigned char (an

8-bit unsigned character), short (a 16-bit signed integer), long (a 32-bit signed integer), float

(a 32-bit signed floating point number), and double (a 64-bit signed floating point number).

Using these basic data types, two additional types are added to the Data Transfer Layer of
RdT. The first is a COMPLEX data type that contains two floats defining the real and imaginary

parts of a complex number. The other data type is a STRING type that contains a NULL
terminated character string and a short integer that defines its length.

There are XDR routines for each of these basic data types that encode and decode each

element. These routines can convert the machine specific internal representation of these basic

elements to the XDR representation and from XDR to the internal format. When decoding

information, these routines must allocate memory for the incoming data if the Server is decoding

a command or if the Client is decoding a response.

These basic RdT data types are packaged into a structure called an RTVAR. An RTVAR

may contain a single data element, or an array of these basic elements. Information in the

RTVAR describes the type of the individual element and the dimensions of the variable. For

example, a 10 by 20 array of floats would contain information defining the basic type as a float,

define the number of dimensions as 2, and contain an array of length 2 that defines the length

of each dimension.

The RTVAR structure is defined as:

typedef struct (
unsigned char direction; r Server or Client owned */

unsigned char type; /* Basic data type */

unsigned char elementsize; /* Byte length of each element */

4

unsigned char ndim; /* Length of dimension array */

long dim[MAXARRAYDIM]; /* Dimensions */

RTTYPES value; /* Union of basic data types or */

) RTVAR /* pointer to array */

When receiving information, memory space must be allocated to hold the RTVAR and its

data. The elementsize and dimension information are used to determine the space requirements

while the direction information indicates whether that space can be freed at a later time. For

example, if a server process is receiving an array of floats and returns the sum, it must first

allocate space for the original array. Once the sum is computed, however, the space can be

freed.

These RTVARS can further be packaged into a STRUCTURE. A STRUCTURE simply

contains the number of RTVARS and an RTVAR array.

typedef struct {
unsigned long nelements;

RTVAR *element[MAXSTRUCTELEMENTS];

) STRUCTURE;

By using these data types, processes can pass information as arguments and results. The

data can be single elements, arrays, or a combination of the two, i.e., a STRUCTURE. The Data

Transfer Layer takes care of unpacking and building these variable types in addition to managing

the memory requirements. The valid types for an RTVAR are:

#define TYPEUNDEF 0

#define TYPEBYTE 1

#define TYPESHORT 2

#define TYPELONG 3

#define TYPEFLOAT 4

#define TYPEDOUBLE 5

#define TYPECOMPLEX 6

5

#define TYPESTRING 7

#define TYPESTRUCT 8

If the RTVAR contains more than one basic element, it is ORed with:

#define TYPEARRAY 0 x 80 /* Compound type /

An array of floats would be defined as:

rtvar.type = TYPEFLOAT I TYPEARRAY

TYPESTRUCT would contain RTVARS of type 0 through 7 or arrays of those types. Currently,

TYPESTRUCT cannot contain RTVARS of TYPESTRUCT (nested structures) and array of

structures are invalid.

Two routines automate the building of RT_VARS: rtumakevar and rtumakestructure.

Rdt Data Types
RTVElement

ARrray of Elements

Structure of Elements and Arrays

Byte

16 bit integer

Element 32 bit integer

32 bit float
64 bit float

Complex (floats)
String (integer and bytes)

Figure 3. RdT Data Types.

6

int

rtu makevar(rvar ptr, type, length, data)

RTVAR *rt.vatptr;

unsigned char type;

unsigned long length;

char *data;

This routine will build the RTVAR pointed to by rtvarjptr using the data pointed to by data.

Notice that data must always be a pointer. The rtumakevar only builds single dimension arrays

or basic element variables. To build multi-dimensional arrays, the ndim and dimension RTVAR

structure elements must be modified directly.

To build a STRUCTURE variable, the call rtumake_structure is used. This routine uses a

variable argument list so the call would look like:

rt_var ptr = (RT_VAR *)rtu makestructure(cstructurepointer,

type, length,

type, length,

type, length,
type, length,

0);

where type is an unsigned char and length is an unsigned long. So to pass the "C" structure:

struct {
long arrayjength; /* Length of array */

float "floatarray; /* Array of length "arraylength" /

} my_struct;

7

The call would be:

rt_var ptr = (RTVAR *)rtumakestructure(&my..struct,

TYPELONG, 1,

TYPEFLOAT I TYPEARRAY, mystruct.array_length,

0);

3. MESSAGE PASSING LAYER

Once the data has been described, it is passed to the next layer of RdT--the Message

Passing Layer. This layer is based on the Remote Procedure Call protocol also developed by

Sun Microsystems. A Server process registers some service and listens for a request arrive.

When one does arrive, the data is decoded from the RT_VARs and passed to some service in

the Server. The results of this service are then returned as an RT_VAR.

On the Client side, a request is made for a service to some remote host passing RTVARs

as arguments. The Client makes the request, then waits for a response. If a response is not

received in the user defined time limit, the request times out and a TYPEERROR is returned.

If the Server dies or is unable to decode the arguments, the Client is also notified.

Data transfer is accomplished using Transmission Control Protocol (TCP), the virtual circuit

protocol of the Internet protocol family. TCP is used instead of User Datagram Protocol (UDP)

since UDP is unreliable and transfers are limited to 8 kB in length. TCP is layered above the

Internet Protocol (IP) and provides reliable, flow-controlled, in order, two-way transmission of data.

The Server and Client are connected to TCP sockets and transfer their XDR data by reading and

writing to these sockets.

3.1 The Server. A Server process makes a call to rtu reg to register a service. This call

takes a service number as an argument.

int

rtu_reg(servicejnumber)

int servicenumber;

8

Typical RdT Server
Register Service __ _t V.

- - DoOther P essingWait for Request Check f. Request

Refeive Parameters

Perform 'Service

Respond to Client

Figure 4. Typical RdT Server.

A RPC service is made unique by a PROGRAM and VERSION number. All RdT services use

the same PROGRAM number. They make themselves unique by adding this servicenumber to

the RPC VERSION number. When a request for a particular RPC service is received, it is

directed to the process that has previously registered that PROGRAM and (VERSION +

servicenumber) pair.

The service number is used to distinguish this service from other services on the machine.

It is an arbitrary number that the Client will pass to its routines as well. In this way, multiple

Servers can exist on the same machine and receive only the calls that are intended for them.

The RPC protocol manages the routing of these requests to the proper Server.

The routine rtu reg returns once the service has been registered. To check if there are any

incoming requests, the Server makes calls to rtupoll. This routine can be instructed to check

for requests and return or to block and wait for an incoming request.

int

rtu..poll(user data, procedure, block-time)
char **user data, *procedure;

int blockime;

The user_data, when returned, will point to a string that contains some user-defined data.
This user-defined data is typically some application level authorization (a password) but can be
used in any manner the application sees fit.

The procedure will also point to a string that was passed by the Client. This information is
typically the name of the particular function within a Server that is requested. For example, one

server might contain the functions "FFT," "SUM,w and "PLOT.w A Client would request a particular
function from the Server by specifying the name of the function. Again, this is the intended use,
but the actual use is determined by the application.

Strings are used for the userdata and procedure to facilitate the development of simple
Servers that call some pre-existing package. The userdata can be an access authorization,
while the procedure can be a command line. In this scenario, RT_VARs would not have to be
built or managed.

The block_time determines whether rtu poll blocks until a request is received or returns after
checking for a request. If blocktime is negative, rtupolblocks. Otherwise, the value blocktime

is used as the amount of seconds to wait for an incoming request. If blocktime is equal to 0,
rtu poll checks for a request and returns. In all cases, rtufpoff returns a 1 if there is a request
or 0 if there is not

Once rtu poll returns with a request, the Server retrieves the parameters with a call to
rtu get par.

char *
rtugetpar(parameternumber, expected type)

int parameternumber;

unsigned char expectedtype;

10

Parameters are numbered starting with zero. The total number of parameters is defined by

RTNUMARGS. So the first parameter would be retreived by "rtugetpar(O, paramtype)" and

the last would be retrieved by "rtugetpar(RTNUMARGS - 1, paramype)."

If the type of the passed in parameter matches the expected type, a pointer is returned that

points to that data. For example, if the first expected parameter to a service is a float, the request

would be:

float *first-param;

first_pararn = (float *)rtugetpar(0, TYPEFLOAT);

P For a single float parameter */

/* or */

firstparam = (float *)rtugetpar(0, TYPEFLOAT I TYPEARRAY);

/* For an array of floats */

If the type does not match, or no such parameter exists (e.g., asking for parameter 10 when

only 9 were passed), a NULL pointer is returned. While it would be valid to request the value

directly:

float firstvalue;

firstvalue = *(float *)rtugetpar(0, TYPEFLOAT);

this is not recommended since rtu get par can return a NULL, causing the program to fail. It is
always wise to make sure that rtugetpar retured a valid parameter.

The Server must always reply to the Client. This reply can be after the requested service has

been performed (the usual case) or at some other point in time. Since the Client is blocked when

it makes a call to the Server, some returned value must be received before it can continue. The

Server responds to the Client with "rtu reply."

11

int
rtu_reply(servicenumber, replymethod, reply)

int servicenumber, replymethod;

RTVAR *reply;

Service number is the same servicenumber used in the call to rtureg. If reply method is
1, only the reply pointed to by reply is returned to the Client. If reply method is 0, then all the
parameters that were passed to the Server are returned to the Client. In this manner, the Server
could'modify some or all of the parameters and pass back the results in the parameters
themselves. For large arrays, this is sometimes necessary. Clearly, returning the parameters
to the Client requires more communication. In any case, the Server must always reply to the
Client with some value, even if that value is only a single byte. There are routines that make
responses easy by building the RTVAR and responding. One such routine is rtu smpLreply.

int
rtusmpl_reply(type, length, data)

unsigned char type; /I RT_VAR type */

unsigned long length; /r I or length of array /

char *data; /* Always a pointer */

When the Server is receiving parameters, it must allocate memory to store them. RdT keeps
a list of all the memory it has allocated. This list is freed on the next reply. This means that a
Server must copy parameters which it wishes to retain before it makes a reply to the Client.

3.2 The Client. The Client requests a service from the server by using rtLcall.

RTVAR *

rtucall(rtargc, rt argv, hostname, service id, procedure, useddata, timeout)
int rt.argc;

RTVAR *rtargvJ;

int service id, timeout;
char *procedure, *userdata, *hostname;

12

The rt argc defines the number of RTVARS that are contained in the array rt-argv. The

hostname string contains the name of the machine where the service with serviceid is located.

The userdata and procedure strings are passed to the Server as described previously.

The timeout is the number of seconds to allow for a response. If a response is not received

in the allotted time, rtu cal returns an error. Errors are returned from rtu-call by the type of the

returned value being set to TYPEERROR (0 x FF).

As with the Server, incoming data (the response) is stored in memory allocated by RdT. This

memory is freed on the next call to rtucall. So the Client must copy this response before the

next call to rtucafl if it wishes to retain the information.

The rtucafl blocks until a response is received or an error occurs. To implement non-

blocking communication, the Server and Client must cooperate. The Client would first register

a service but not issue a rtu poll. Next, the Client would make a call with rtucall, and the

Server would respond with a status value indicating that it received the Client's parameters. The

Client could then call rtu poll to check on the actual return value to its request. The Server

would make the actual response with rtucall. In this situation, both sides are implementing

Servers and Clients.

4. COMMAND AND RESPONSE LAYER

The Command and Response Layer (CRL) is implemented above the message passing layer

of RdT and based on three basic structures:

typedef struct {

unsigned char type; /* Same as basic RdT types */

int num._value; /* Number of elements in array */

char *value; /* Pointer to data */

} PARAM_LIST;

typedef struct {
int opcode; /* Function request /

13

int numparam; /* Number of parameters */

PARAMLIST *param; /* Parameter list */

) COMMANDPACKET

typedef struct {
int status; /* Status of operation ./

char *explain; /* Error message */

int numretum; /* Number of elements returned */

PARAMLIST *params; I Return params '/

) RETURNPACKET;

CRL is designed to implementthe Client-Server model through peer-to-peer communications

above the message passing layer. A Client constructs a COMMANDPACKET, passes it to the

Server, and is returned a RETURNPACKET. The actual transport of the COMMANDPACKET

and RETURNPACKET is transparent to the Client and Server. CRL could be implemented as

shared memory, subroutine calls, or, as in this case, the RdT message layer.

The PARAMLIST is basically a stripped-down version of an RTVAR. It only contains the

type of the data and the number of elements. The type is the same as those used in an

RTVAR.

A COMMANDPACKET contains an opcode which performs the same function as procedure

in the rtucall routine. This opcode, however, is easier to handle in a "C" switch statement of the

Server and is contained within the packet itself. The numparam element of the

COMMANDPACKET structure defines the length of the parameter list param.

The Client passes a COMMANDPACKET into CRL and is eventually returned a

RETURNPACKET. A nonnegative status indicates successful completion of the requested

service while a negative status indicates an error. Errors are explained in the NULL terminated

explain element of the packet The data (usually a "C" structure) points to the data that was

returned from the Server.

14

The RETURNPACKET, which is built by the Server, is unpacked and the data returned to

the Client The CRL handles packing and unpacking the data in the RETURNPACKET.

CRL makes it easy for a Client and Server to exchange arbitrary data structures without

concern for the actual delivery mechanism. For example, a Client wants to pass the following

structure:

struct {
long array_length; /* Length of array */

float *floatarray; / Array of length "arrayjength" */

) my_struct;

The Client first calls the macro SETPARAM to put the structure my-struct into a

COMMANDPACKET.

COMMANDPACKET command;

/* SELECTCOMMAND allocates space for the parameters and places some */

/* information like opcode and number of parameters, into the */

/* COMMANDPACKET. Usage: */

/* SELECTCOMMAND(command.packet, OPCODE, number of parameters) */

SELECTCOMMAND(command, 999, 1);

/* SETPARAM(command-packet, which-param, type, num elements, data) */

SETPARAM(command, 0, TYPESTRUCT, 1, rtu makestructure(&mystruct,

TYPELONG, 1,

TYPEFLOAT I TYPEARRAY, mystruct.array_length,

0);

SETPARAM builds a COMMANDPACKET for the Command and Response Layer. The

opcode is an arbitrary number, agreed upon by the Client and Server to request a particular

function within the Server. In response to the request, the Client expects some predefined data

15

structure. For example, an opcode 999 requested the Server to sum and reverse the array in
mystruct. The Server would return some structure RETVAL defined as:

typedef struct {

float sum; /* Sum of passed array */

float *reverse; /* Reversed array °/

} RETVAL;

RETVAL *retumval;

The actual call that the Client would make to the Server would be:

returnval = (RETVAL *)rtusendcmd(hostname, servicenumber, &command);

The routine rtusendcmd calls the Server on machine hostname and passes it the

COMMANDPACKET (which, incidently, it passes as a RTVAR of TYPESTRUCT). The Server

accesses the COMMANDPACKET, calculates the sum of the array, reverses the array into a
return array, and finally responds with a RETURNPACKET. The data element of this packet is

returned to the Client from rtusendcmd. If an error occurred, rtu sendcmd returns a NULL

pointer. The Client does not directly unpack the RETURNPACKET.

The Server uses rtu.getcmd to wait for an incoming COMMANDPACKET. For example:

COMMANDPACKET *command;

command = (COMMANDPACKET °)rtu.get-cmd(servicenumber);

Where service number is the same as servicenumber in the call to rtu reg. In

implementations other than a RdT message passing layer, this service number could be some

other relevant identification such as a shared memory segment.

The Server can now directly access the parameters in the COMMANDPACKET. For

example, if the first expected parameter were "mystruct," the Server would access it with:

16

mystructptr = (MYSTRUCT *)command->param[O.value;

In this example, the routine rtu_get_cmd has unpacked the incoming RTVAR of

TYPESTRUCT into a COMMANDPACKET. The Server accesses each parameter directly.

Once the service has been performed, the Server constructs a RETURNPACKET and returns

it to the Client with a call to rturetum:

rtu_retum(packet)

RETURNPACKET *packet;

The RETURNPACKET is returned to the Client, and the routine rtsendcmd returns a

pointer to this data back to the Client.

The CRL provides a mechanism to implement the Client-Server model which insulates the

upper level application from the actual message passing. In this way, a Client-Server application

can focus on issues concerning the application with minimal concern for the actual communication

mechanism.

5. AN APPLICATION

Many Computational Fluid Dynamics (CFD) codes that execute on supercomputers deal with

enormous amounts of data. These codes typically use a grid or set of grids to define discrete

points in some computational domain and calculate different properties for these grids in small

timesteps. These grids, however, can contain millions of grid points. The solutions can contain

many d~fferent values for each grid point. There is simply too much data for a smaller machine

to handle all at once.

It is desirable, however, to visualize the results of these codes on a much smaller machine

such as a workstation. This not only frees the supercomputer for computation but provides many
more options for viewing the data since there are a variety of visualization packages that run on

workstations.

17

This use of workstations is only viable, however, if the grid can be accessed in pieces. By

visualizing the grid and solution in stages, the entire problem can be viewed by assembling the

stages at the end.

To accomplish this grid slicing, the Client-Server model is a good choice. A Server process

on the supercomputer responds to requests for a specific slice of the entire grid. The Client

process on the workstations makes requests for manageable pieces of the grid. In addition, if

these grids on the supercomputer are stored in files, they can remain in the host binary format

and do not require the conversion and transmission to the lower end machine.

RTUSERVER is an example of just such a grid server. It is implemented on the CRL of RdT

and supports opcodes that include: open file, close file, read grid (slice), read solution (slice), and

check speed. The Client receives information from the Server in a predetermined data structure,

GRIDINFOSTRUCT, that contains grid size information as well as the data.

The Server waits for an incoming COMMANDPACKET. The Client first requests the Server

to open a file that is in one of three formats: binary, formatted ASCII, or FORTRAN 77

unformatted. The Server opens the file and returns to the Client the grid size information

involved. The Client can then request certain sections of grid (or solution) and eventually request

that the file be closed.

For example, suppose we were dealing with a grid biggrid(i, j, k) where i = 64, j = 32, and

k = 64, and is stored in a FORTRAN 77 unformatted file called big-grid.dat. To access this grid,

the Client makes the call:

r SELECTCOMMAND(commandpacket, OPCODE, number ofjparameters) */

SELECTCOMMAND(command, RTU_OPEN, 2);

/r SETPARAM(commandpacket, parameter-number, type, length, data) /

filename = biggrid.datm;

SETPARAM(command, 0, TYPESTRING, 1, filename);

file_type = F77_UNFORMATTED;

SETPARAM(command, 1, TYPELONG, 1, &file_type);

18

if((gridinfo = (GRIDINFOSTRUCT *)rtu sendcmd(hostname,

servicenumber, &command)) == NULL){

fprinff(stderr, "Unable to open file %s on /os\n," filename, hostname);

exit(l);
}

The Client then selects which slice of the grid is desired, stores that information back in the

grid-info structure, and sends the structure as a parameter to the "read grid" function of the

Server:

gddjinfo->whichgrid = 0; /* A grid file can contain multiple grids */

gridjinfo->num_planes = 2;

gridjinfo->whichplane = KPLANE;

gridjinfo->planes[O] = 2;

gridcjnfo->planes[1] = 16;

SELECT_COMMAND(command, RTUREADGRID, 1);

SETPARAM(command, 0, TYPESTRUCT, 1,

rtumakestructure(gridinfo, GRIDIN FODESC(gddjinfo)));

/* GRIDINFODESC0 is a macro that constructs the proper */

/* parameter list for rtumakestructure0 from the structure */

/P in grid-info. */

if((grid = (GRIDDATASTRUCT *)rtu send cmd(hostname,

servicenumber, &command)) =-- NULL){

fprinff(stderr, "Error reading grid from %s\n", hostname);

exit(l);
}

In similar manner, the Client reads the same slices of the solution file from the Server. By

requesting the grid and solution in manageable pieces, the low end machine is able to deal with

a huge amount of data. In addition, there is no need to convert the FORTRAN 77 unformatted

19

files to another format and/or transfer them to the low end machine with possibly modest disk

resource.

This grid server (Figure 5) is currently used in a distributed visualization environment. The

computation on the supercomputer can proceed in parallel with the visualization which has been

off-loaded to another machine. The visualization platform can be chosen not only based on

processing power or graphics hardware but on practical considerations such as machine load

physical connection and availability.

RTU SERVER grid slicer
Client

Server 64 32

I plane

ri
32 o

J pane~ y7 /

51-0 644'

Grid or Solution or

Kplane - 64

Figure 5. RTUServer Grid Slicer.

20

6. CONCLUSIONS

RdT provides layered software to provide a data transfer method in distributed environments.

While RdT minimizes some of the housekeeping, it naturally introduces some overhead. The

actual wall clock transfer time varies with machine load on the local and remote machines as well

as the network traffic at a given time.

Typical transfer times between two Sun 4 machines on a reasonably loaded network result

in transfers of 10,000 floats in about 0.1 s or in the neighborhood of 1/3 to 1/2 MB/s. Raw TCP/IP

packets result in transfer of less than 1 MB/s. These times are not directly comparable, but are

useful when designing a distributed application where such transfer times may or may not be
significant. It is important to mention that transfer times do not vary linearly. The RPC/XDR

overhead to transfer 10 numbers is similar to that of transferring 1,000. So transferring larger

arrays produces better than average throughput than the transfer of small arrays. This is

generally true until the size of the array and RdT overhead approach the size of physical memory,

where the allocation of memory and swapping introduce significant overhead.

RdT has been used to distribute the separate functions of an application across several

platforms. Each function can then take advantage of a particular architecture or set of resources.
To take full advantage of a distributed environment, however, RdT could use some additional

flexibility. Future enhancements include additional data transport mechanisms such as shared

memory. The message passing layer can then choose the most appropriate method for data

transport. For example, if data is being requested from the local host, shared memory or direct

subroutine calls would be selected to implement the Command and Response Layer. In addition,

the message passing layer will be made more flexible to help implement non-blocking and

intermediate message passing where a message is passed through several Servers to reach its

destination or is broadcast to many targets.

21

INTENTIONALLY LEFT BLANK.

22

APPENDIX:

RdT USER ROUTINES

23

INTENTIONALLY LEFT BLANK.

24

RTUCALLOC 3R RTUCALLOC 3R

NAME
rtucalloc - Allocate memory

SYNTAX
#include <rtrpc.h>

char *rtucalloc(numelements, element-size)
int num.elements;
int element-size;

PARAMETERS
num elements is the number of element for which to allocate memory.

element size is the number of bytes in each element.

DESCRIPTION
Rtu calloc will allocate num elements * element size bytes of memory; possibly by
calling calloc0. A pointer to this space is maintained in an internal list. The entire internal
list of allocated memory is freed on the next call to rtu cfree.

SPECIAL CONSIDERATIONS
Rtu calloc may not always use calloc to allocate memory depending on the architecture.

DIAGNOSTICS
Rtu calloc returns a pointer to the memory that has been allocated or NULL if there was
an error.

SEE ALSO
rtu_.poll(3R), rtucall(3R), rtu-cfree(3R)

Reference Manual Subroutines

25

RTUCFREE 3R RTUCFREE 3R

NAME
rtu-cfree - free memory

SYNTAX
#Include <rtrpc.h>
void rtu-cfree()

PARAMETERS
none

DESCRIPTION
Rtu cfree, frees all of the memory that has been allocated using rtu calloc.

SPECIAL CONSIDERATIONS
Rtu cfree usually calls cfree.

DIAGNOSTICS
Rtu cfree returns no value.

SEE ALSO
rtu-.polI(3R), rtu call(3R), rtucpalloc(3R)

Reference Manual Subroutines

26

RTU_CALL3R RTUCALL 3R

NAME
rtucall - call an RdT server

SYNTAX
#include <rtrpc.h>
int rtu_call(rLargc, rt argv, hostname,

service~id, procedure, userdata, timeout);
int rt -argc, servicejid, timeout;
RTVAR *rtargvo;
char *hostname, *user data, *procedure;

PARAMETERS
Rt arac defines the number of RT VAR pointers in the array rt arav.

rt argv is an array of pointers to RT VAR data structures.

hostname is the hostname of the RdT server to be called.

service id is the number of the service that is requested.

procedure is the name of the particular function inside the requested service.

user data is a user defined string that is passed to the server. It is usually used as an
authentication.

timeout is the number of seconds to allow for a response from the server.

DESCRIPTION
ART VAR, defined in rtroc.h and usually built by rtu make var, is the basic data structure
used by RdT. A RT VAR must be one of the following types

#define TYPEUNDEF 0
#define TYPEBYTE 1
#define TYPESHORT 2
#define TYPELONG 3
#define TYPE_FLOAT 4
#define TYPEDOUBLE 5
#define TYPECOMPLEX 6
#define TYPESTRING 7
#define TYPESTRUCT 8

Reference Manual Subroutines

27

RTUCALL3R RTUCALL3R

If the parameter is an array of one of these types, it is ORed with:

#define TYPEARRAY 0 x 80 /* Compound type *

Rtu call passes a list of RT VARs to a RdT server running on the machine hostname that
has registered the service id.

The NULL terminated strings user data and procedure are also passed to the server.
Procedure is intended to identify the function inside the server that is requested. user data
Is intended to be used as an authentication agreed upon by the client and server. The
actual use of procedure and user data, however, is entirely implementation specific.

Once the call is made, the client will be blocked for timeout seconds, or until a
response is received from the server. A negative time out caures the client to block, while
a zero time out returns immediatly.

SPECIAL CONSIDERATIONS

" A Server must always respond to a client since the client is blocked until a reply is
received.

" If hostname is NULL, then the local host is used.

" user data and procedure may also be NULL

DIAGNOSTICS
Rtu call always returns a RT VAR. If an error occurred, the Woe of the RT VAR is set
to TYPEERROR. If successful, the RT VAR returned is the RT VAR that was passed
by the server to the routine rtu reply.

SEE ALSO
rtu-reg(3R), rtu_reply(3R), rtupoll(3R), rtu_.getpar(3R), rtucalloc(3R) rtu.cfree(3R),
rtu.smpl_reply(3R)

Reference Manual Subroutines

28

RTUGETCMD 3R RTUGETCMD 3R

NAME
rtugetcmd - Retrieve a RdT COMMAND PACKET

SYNTAX
#include <rtuutil.h>
COMMANDPACKET *rtugetcmd(servicenumber)
int servicenumber;

PARAMETERS
Service number identifies the service that is being performed by the server on behalf of
the client.

DESCRIPTION
Rtu get cmd implements the server side of the Command and Response layer (CRL) of
RdT. CRL is based upon three basic data structures:

typedef struct {
unsigned char type; /* Basic RdT data type *-
int numvalues; /* Number of elements */
char *data; /* Pointer to Data */
) PARAMLIST;

typedef struct {
int opcode; /* Function request */
int numparam; /* Number of parameters */
PARAMLIST *params; /* Pointers to parameters h/
) COMMANDPACKET;

typedef struct (
int status; /* Status of command */
char *explain; /* Explanation of Bad status *
int numretum; /* Number of retumed variables h/

PARAMLIST *params; /* Pointers to retum parameters h/

} RETURN_PACKET;

Rtu aet cmd retrieves a COMMANDPACKET from a client program. Some function is
performed by the server and a RETURNPACKET is passed back to the client.

The macro SETPARAM can be used to pack data into a RETURNPACKET:
SET_PARAM(RETURNPACKET packet, int which_param, unsigned char type, int
arraysize, char *data)

Reference Manual Subroutines

29

RTUGETCMD 3R RTUGETCMD 3R

SPECIAL CONSIDERATIONS
A Server must always respond to a client since the client is blocked until a reply is
received.

DIAGNOSTICS
Rtu aet cmd returns NULL on an error after printing an explanatory message to stderr.
If successful, rtu aet cmd returns a pointer to the COMMANDPACKET that was sent by
the client to the server.

SEE ALSO
rtu-reg(3R), rtucall(3R), rtupoll(3R), rtuget_par(3R), rtucalloc(3R) rtu-cfree(3R),
rtu-smplreply(3R), rtu_scmd(3R), rtujreply(3R)

Reference Manual Subroutines

30

RTUGETPAR 3R RTUGETPAR 3R

NAME
rtugetpar - Retrieve RdT parameters

SYNTAX
#Include <rtrpc.h>
char * rtuget_par(parameternumber, expectedjtype)
intparameternumber;
unsigned char expectedjtype;

PARAMETERS
parameter number specifies which parameter (numbered from 0) is to be retrieved.

expected type specifies the type of the parameter that is expected. Expected type is one
of the rt var types defined in rtM.h:

#define TYPEUNDEF 0
#define TYPEBYTE 1
#define TYPESHORT 2
#define TYPELONG 3
#define TYPEFLOAT 4
#define TYPEDOUBLE 5
#define TYPECOMPLEX 6
#define TYPESTRING 7
#define TYPESTRUCT 8

If the parameter is an array of one of these types, it is ORed with:

#define TYPEARRAY 0 x 80 /* Compound type /

DESCRIPTION
Rtu -get par returns a pointer to the data of the requested parameter. The return pointer
from rtu aet oar must be cast to the proper type. For example, if the first expected
parameter was an array of floats, the call would be:

float *firstparam;
firstparam = (float *)rtu_getpar(0,

TYPEFLOAT I TYPEARRAY);

If rtu aet par was successful in retrieving the first parameter, the data is pointed to by the
pointer first..param.

31

RTU_GET_PAR 3R RTUGETPAR 3R

SPECIAL CONSIDERATIONS
* The expected type of the parameter must match exactly.
* The data pointed to by rtu get gar has been allocated using rtu calloc. That storage

space will be freed on the next call to rtu reply. So the data must be copied before a
response Is made or the data will be corrupted.

DIAGNOSTICS
Rtu aet oar returns NULL if the expected type does not match the parameter or if there
are less parameters than the number that was requested with parameter number.
Otherwise, rtu aet par returns a pointer to the data.

SEE ALSO
rtureg(3R), rtucall(3R), rtupoll(3R), rtu_reply(3R), rtu calloc(3R) rtu-cfree(3R)

Reference Manual Subroutines

32

RTUMAKESTRUCTURE 3R RTUMAKESTRUCTURE 3R

NAME
rtumakestructure - build an RTVAR

SYNTAX
#include <rtrpc.h>
int rtumakestructure(cstructureptr,

type, length,

0)

char *cstructureptr;
unsigned char type;
unsigned long length;

PARAMETERS
C structure ptr is a pointer to an a 'C' structure.

Tve is the RTVAR type of the data of the RT VAR to be built.

Length is the number of elements in the array pointed to by associated 'C' structure
element or 1 if the element is a scaler.

DESCRIPTION
Rtu make structure builds an RT VAR of type TYPE STRUCT from the data pointed to
by c structure tr.

Rtu make structure uses a variable argument list terminated by a 0. This allows an
arbitrary sized 'C' structure to be passed and defined. There must be one type, length pair
for each element of the structure.

TyDe must be one of the rt var types defined in rtrtc.h:

#define TYPEUNDEF 0
#define TYPEBYTE 1
#define TYPESHORT 2
#define TYPELONG 3
#define TY1 FLOAT 4
#define TYI- _DOUBLE 5
#define TYPECOMPLEX 6
#define TYPESTRING 7
#define TYPESTRUCT 8

33

RTUMAKESTRUCTURE 3R RTUMAKESTRUCTURE 3R

If the parameter is an array of one of these types, it is ORed with:

#define TYPEARRAY 0 x 80 /* Compound type */

SPECIAL CONSIDERATIONS
- Rtu make structure allocates the RT VAR that is returned with rtu calloc. This will be

freed on the next call to rtu call or rtu reply.

DIAGNOSTICS
Rtu make structure returns an pointer to a RT VAR or NULL if the was an error.

SEE ALSO
rtureg(3R), rtu-call(3R), rtupoll(3R), rtu_.get..par(3R), rtu-calloc(3R) rtu-cfree(3R),
rtujreply(3R), rtusmpl~reply(3R)

Reference Manual Subroutines

34

RTUMAKEVAR 3R RTUMAKEVAR 3R

NAME
rtumakevar - build a RTVAR

SYNTAX
#include <rtrpc.h>
int rtu_makevar(rLvarptr, type,

length, data_pointer)
RTVAR *rtvarmptr;
unsigned char type;
unsigned long length;
char *datapointer;

PARAMETERS
rt var ptr is a pointer to a RT VAR data structure defined in rtmc.h.

Tvoe is the RTVAR type of the data of the RT VAR to be built.

Lenoth is the number of elements in the array pointed to by data pointer, or 1 if the data
is a scaler.

DESCRIPTION
Rtu make var builds a RT VAR from the supplied information and places the variable in
the RT VAR pointed to by rt var ptr. M must be one of the rt vat types defined inrtbc.h:

#define TYPEUNDEF 0
#define TYPEBYTE 1
#define TYPESHORT 2
#define TYPELONG 3
#define TYPEFLOAT 4
#define TYPEDOUBLE 5
#define TYPECOMPLEX 6
#define TYPESTRING 7
#define TYPESTRUCT 8

If the parameter is an array of one of these types, it is ORed with:

#define TYPEARRAY 0 x 80 r Compound type */

SPECIAL CONSIDERATIONS
rt var ptr must point to a RT VAR; the RT VAR is not allocated by rtu make var.

DIAGNOSTICS
Rtu make var returns 1 on success 0 on failure.

Reference Manual Subroutines

35

RTUMAKEVAR 3R RTUMAKEVAR 3R

SEE ALSO
rtu reg(3R), rtu caII(3R), rtu__oI(3R), rtu...get..par(3R), rtu-calloc(3R) rtu-cfree(3R),
rtujeply(3R), rtu smplreply(3R)

Reference Manual Subroutines

36

RTUPOLL3R RTUPOLL3R

NAME
rtupoll - listen for a RdT service request

SYNTAX
#include <rtrpc.h>
int rtupoll(user data, procedure, block-time)
char **user data;
char "*procedure;
int block_time;

PARAMETERS
user data points to a character string of user specific data. This is usually used as some
type of access authorization but can be used to pass any character string.

procedure points to a character string that usually specifies the name of the procedure
within the requested service that the client program desires. Again this is the intended
use, but the client is free to pass any information in this string.

block time specifies the type and length- of blocking. If block time is negative, rtu poll
does not return until a service request is received from a client. If block time is zero,
rtu poll checks for an incoming service request and retums immediately. Any other value
is taken as the amount of seconds to block for an incoming service request before
returning.

DESCRIPTION
Rtu Doll listens for a request of a RdT service that has been previously registered with
rtu reg. When a request is received, the user data and procedure values are read from
the client and stored in a storage area that is pointed to by user data and procedure.
When a valid request has been received, the parameters passed from the client are
retrieved with rtu aet par. The server generally checks the data in user data to assure
that the client is authorized to make the request, then passes all parameters to the
particular function specified by procedure.

SPECIAL CONSIDERATIONS
ftu poll must be called after rtu re-a.

DIAGNOSTICS
Rtu poll returns 1 if a valid request has been received or 0 if no service request has been
received.

SEE ALSO
rtureg(3R), rtu call(3R), rtu_get-par(3R), rtujreply(3R)

Reference Manual Subroutines

37

RTUREG 3R RTUREG 3R

NAME
rtureg - register a RdT service

SYNTAX
#include <rtrpc.h>
int rtu_reg(servicenumber)
int service-number

PARAMETERS
service number a unique number identifying the service

DESCRIPTION
Rtu =a registers a RdT service uniquely identified by service number. A client process
requesting service number will be served by this service.

SPECIAL CONSIDERATIONS
• Rtu re overrides an previous call. Any service that has been previously registered

with the same service number is unreachable.

DIAGNOSTICS
Rtu reg returns 1 if the service was registers successfully or 0 on an error.

SEE ALSO
rtu-.poll(3R), rtu.call(3R)

Reference Manual Subroutines

38

RTUREPLY 3R RTUREPLY 3R

NAME
rtujreply - reply to an RdT client

SYNTAX
#Include <rtrpc.h>
int rtu_reply(servicenumber, reply_method, reply)
int servicenumber;
int reply_method;
RTVAR *reply;

PARAMETERS
Service number identifies the service that was specified with rtu rea that is being
performed on behalf of the client.

Rely method specifies if the passed parameters are returned to the client along with the
reply.

reVly is the actual reply data sent to the client reoly must be one of the rt var types
defined in rtc.h:

#define TYPEUNDEF 0
#define TYPEBYTE 1
#define TYPESHORT 2
#define TYPELONG 3
#define TYPEFLOAT 4
#define TYPEDOUBLE 5
#define TYPECOMPLEX 6
#define TYPESTRING 7
#define TYPESTRUCT 8

If the parameter is an array of one of these types, it is ORed with:

#define TYPEARRAY 0 x 80 r Compound type */

DESCRIPTION
Rtu reoly Is the most general return routine in the RdT package. For simple replies of
scalars and arrays, rtu smol replV is usually sufficient.

Rtu reyly sends the data specified in reoly back to the RdT client in response to a service
request. If reo/ method is RETURNPARAMS, the parameters passed to the server from
rtu aet oar, are returned to the client. This allows the server to change the data in a
parameter and return it to a client without the need to allocate new memory. If
reoly method is set to REPLYONLY no parameters are returned. This is faster than
returning all parameters.

39

RTUREPLY 3R RTUREPLY313

SPECIAL CONSIDERATIONS
A Server must always respond to a client since the client is blocked until a reply is
received.

DIAGNOSTICS
Rtu reply returns 1 on success 0 on failure.

SEE ALSO
rtu -eg(3R), rtu-call(3R), rtupoll(3R), tugetpar(3R), rtu-calloc(3R) rtu-cfree(3R),
rtu...smpLreply(3R)

Reference Manual Subroutines

40

RTURETURN 3R RTURETURN 3R

NAME
rtureturn - respond to a RdT client

SYNTAX
#include <rtu_util.h>
int rturetum(retumpacket)
RETURN_PACKET 'retumpacket;

PARAMETERS
Return packet is the data structure that contains the response to the client.

DESCRIPTION
Rtu return helps implement the server side of the Command and Response Layer (CRL)
of RdT. CRL is based upon three basic data structures:

typedef struct {
unsigned char type; /r Basic RdT data type */
int num._values; / Number of elements */
char *data; r* Pointer to Data '/
) PARAMLIST;

typedef struct (
int opcode; r Function request '/
int numparam; /* Number of parameters */
PARAMLIST 'params; / Pointers to parameters "/
} COMMANDPACKET;

typedef struct {
int status; r Status of command */
char *explain; / Explanation of Bad status */
int numreturn; r Number of returned variables '/
PARAMLIST *params; r Pointers to return parameters '/
} RETURN_PACKET;

Rtu return returns the RETURNPACKET to the client in response to some request for
service. The macro SETPARAMO can be used to pack data into a RETURNPACKET:

SETPARAM(RETURNPACKET packet, int whichparam,
unsigned char type,
int array_size, char *data)

41

RTURETURN 3R RTURETURN 3R

SPECIAL CONSIDERATIONS
A Server must always respond to a client since the client is blocked until a reply is
received.

DIAGNOSTICS
Rtu return returns 1 on success 0 on failure.

SEE ALSO
rtureg(3R), rtucall(3R), rtu-poll(3R), rtugetpar(3R), rtucalloc(3R) rtu-cfree(3R),
rtu.smpLreply(3R), rtu_s_cmd(3R), rtujreply(3R)

Reference Manual Subroutines

42

RTUSENDCMD 3R RTUSENDCMD 3R

NAME
rtusendcmd - Send a RIT COMMAND PACKET

SYNTAX
#include <rtu_util.h>

char *rtu_send_cmd(hostname, servicenumber,
commandpacket)

char *hostname;
int servicenumber;
COMMANDPACKET *command_packet;

PARAMETERS
Hostname is the name of the host that is executing the Server side of RdT.

Service number identifies the service that was specified with rtu reg that is being

performed on behalf of the client.

Command packet points to a valid COMMANDPACKET.

DESCRIPTION
Rtu send cmd implements the client side of the Command and Response layer (CRL) of
RdT. CRL is based upon three basic data structures:

typedef struct {
unsigned char type; r Basic RdT data type */
int nurnvalues; /* Number of elements */
char *data;/ Pointer to Data */
I PARAMLIST;

typedef struct {
int opcode; /* Function request */
int numparam; P Number of parameters */
PARAMLIST *params; / Pointers to parameters */
} COMMANDPACKET;

typedef struct
int status; r Status of command */
char *explain; r Explanation of Bad status */
int numretum; r Number of retumed variables */
PARAMLIST *params; P Pointers to return parameters */
} RETURNPACKET;

Reference Manual Subroutines

43

RTUSENDCMD 3R RTUSENDCMD 3R

Rtu send cmd sends a COMMANDPACKET to a server program running on hostname
that has been registered with service number. When the server responds with a
RETURNPACKET, a pointer to the data element of the structure is returned as a result
of rtu send cmd.

The macros SELECT COMMANDO and SET PARAMO are usually called to build the
COMMANDPACKET:

SELECTCOMMAND(COMMANDPACKET packet, int opcode,
int number_ofparameters)

SETPARAM(COMMANDPACKET packet, int whichparam,
unsigned char type,
int arraysize, char *data)

SPECIAL CONSIDERATIONS
* A Server must always respond to a client since the client is blocked until a reply is

received.

DIAGNOSTICS
Rtu send cmd returns NULL on an error after printing an explanatory message to stderr.
If successful, rtu send cmd returns a pointer to the data that was returned as a result from
the server.

SEE ALSO
rtu-reg(3R), rtucall(3R), rtu_.poll(3R), rtu_getpar(3R), rtucalloc(3R) rtu-cfree(3R),
rtu.smpl_reply(3R), rtu_get-cmd(3R)

Reference Manual Subroutines

44

RTUSMPLREPLY 3R

NAMF
rtusmplreply - reply to a RdT client

SYNTAX
#include <rtrpc.h>

int rtusmpl-reply(type, length, datapointer)
unsigned char type;
unsigned long length;
char *data_pointer;

PARAMETERS
Type Is the RTVAR type of the reply data sent to the client. Type must be one of the
rt var types defined in rtrc.h:

#define TYPEUNDEF 0
#define TYPEBYTE 1
#define TYPESHORT 2
#define TYPELONG 3
#define TYPEFLOAT 4
#define TYPEDOUBLE 5
#define TYPECOMPLEX 6
#define TYPESTRING 7
#define TYPESTRUCT 8

If the parameter is an array of one of these types, it is ORed with:

#define TYPEARRAY 0 x 80 /* Compound type */

Lenth is the number of elements in the array pointed to by data pointer, or 1 if the data
is a scaler.

DESCRIPTION
Rtu smol rely builds a RTVAR from the information supplied and passes it to rtu reply
to be passed back to a RdT client. Only the data pointed to by data pointer is returned
to the client; no parameters are returned.

SPECIAL CONSIDERATIONS
• A Server must always respond to a client since the client is blocked until a reply is

received.

DIAGNOSTICS
Rtu reply returns 1 on success 0 on failure.

Reference Manual Subroutines

45

RTUSMPLREPLY 3R

SEE ALSO
rtujyeg(3R), rtu-call(3R), rtujoll(3R), tugetpar(3R), rtu-cailoc(3R) rtu-cfree(3R),
rtu..reply(3R)

Reference Manual Subroutines

46

No. of No. of
Covies Oroanization Copies Organization

2 Administrator 1 Commander
Defense Technical Into Center U.S. Army Tank-Automotive Command
ATN: DTIC-DDA ATTN: ASQNC-TAC-DIT (Technical
Cameron Station Information Center)
Alexandria, VA 22304-6145 Warren, MI 48397-5000

Commander 1 Director
U.S. Army Materiel Command U.S. Army TRADOC Analysis Command
ATTN: AMCAM ATTN: ATRC-WSR
5001 Eisenhower Ave. White Sands Missile Range, NM 88002-5502
Alexandria, VA 22333-0001

1 Commandant
Commander U.S. Army Field Artillery School
U.S. Army Laboratory Command ATTN: ATSF-CSI
ATTN: AMSLC-DL Ft. Sill, OK 73503-5000
2800 Powder Mill Rd.
Adelphi, MD 20783-1145 2 Commandant

U.S. Army Infantry School
2 Commander ATN: ATZB-SC, System Safety

U.S. Army Armament Research, Fort Benning, GA 31903-5000
Development, and Engineering Center

ATTN: SMCAR-IMI-I (cw. anly)1 Commandant
Picatinny Arsenal, NJ 07806-5000 U.S. Army Infantry School

ATN: ATSH-Cr) (Security Mgr.)
2 Commander Fort Benning, GA 31905-5660

U.S. Army Armament Research,
Development, and Engineering Center (ulw,. anl)1 Commandant

ATTN: SMCAR-TDC U.S. Army Infantry School
Picatinny Arsenal, NJ 07806-5000 ATTN: ATSH-CD-CSO-OR

Fort Benning, GA 31905-5660
Director
Benet Weapons Laboratory 1 WL/MNOI
U.S. Army Armament Research, Eglin AFB, FL 32542-5000

Development, and Engineering Center
ATN: SMCAR-CCB-TL Aberdeen Proving Ground
Watervliet, NY 12189-4050

2 Dir, USAMSAA
(undnm. ahy) 1 Commander ATTN: AMXSY-D

U.S. Army Armament, Munitions, AMXSY-MP, H. Cohen
and Chemical Command

ATTN: AMSMC-IMF-L 1 Cdr, USATECOM
Rock Island, IL 61299-5000 ATTN: AMSTE-TC

Director 3 Cdr, CRDEC, AMCCOM
U.S. Army Aviation Research ATTN: SMCCR-RSP-A

and Technology Activity SMCCR-MU
ATTN: SAVRT-R (Library) SMCCR-MSI
M/S 219-3
Ames Research Center 1 Dir, VLAMO
Moffett Field, CA 94035-1000 ATTN: AMSLC-VL-D

Commander 10 Dir, USABRL
U.S. Army Missile Command ATTN: SLCBR-DD-T
ATTN: AMSMI-RD-CS-R (DOC)
Redstone Arsenal, AL 35898-5010

47

INTENTIONALLY LEFT BLANK.

48

USER EVALUATION SHEET/CHANGE OF ADDRESS

This laboratory undertakes a continuing effort to improve the quality of the reports it
publishes. Your comments/answers below will aid us in our efforts.

1. Does this report satisfy a need? (Comment on purpose, related project, or other area of
interest for which the report will be used.)

2. How, specifically, is the report being used? (Information source, design data, procedure,
source of ideas, etc.)

3. Has the information in this report led to any quantitative savings as far as man-hours or
dollars saved, operating costs avoided, or efficiencies achieved, .etc? If so, please
elaborate.

4. General Comments. What do you think should be changed to improve future reports?
(Indicate changes to organization, technical content, format, etc.)

BRL Report Number BRL-MR-3340 Division Symbol

Check here if desire to be removed from distribution list.

Check here for address change.

Current address: Organization
Address

DEPARTMENT OF THE ARMY
Director NO POSTAGE
U.S. Army Ballistic Research Laboratory NECESSARY
ATTN: SLCBR.DD-T NECEASAED
Aberdeen Proving Ground, MD 21005-5066 IF MAILED

IN THE

UNITED STATES
OFIICIAL BUSINESS BUSINESS REPLY MAIL __T____

I RRST CLASS FIt A 0001, APG, AI I___
Postage will be paid by addressee.

Director
U.S. Army Ballistic Research Laboratory
ATTN: SLCBR-DD-T
Aberdeen Proving Ground, MD 21005-5066

