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I Abstract

I The advantages of solving potential problems using an overdetermined boundary

integral element method are examined. Representing a two-dimensional potential

solution by an analytic complex function forms two algebraic systems from the real

3 and imaginary parts of the discretized form of Cauchy's theorem. Depending on

which boundary condition is prescribed, the real or the imaginary algebraic system

I is diagonally dominant. Computations show that the errors of the strong system

3 (diagonally dominant) often have almost the same value as those of weak system

(diagonally non-dominant) but with the opposite sign. The overdetermined sys-

I tern. composed of the combination of the real and imaginary parts, tends to average

these errors, especially for circular contours. An error analysis and convergence

studies for several geometries and boundary conditions are performed. A method-

ology for handling computational difficulties with contour comers is outlined. Fur-

ther modifications are proposed and tested that show exponential convergence for

I smooth contours.
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1 Introduction

The boundary integral method (also called the panel method) is powerful for solving potential

problems. In this method, the computational domain becomes the enclosing boundary, reducing

the effective dimension of the problem by one. This significantly decreases the computational I
effort unless the contour is highly contorted.

Boundary integral methods are usually derived from Green's theorem with an appropriate

free-space Green's function. However, the solutions of two-dimensional potential problems dis-

cussed here can be described by a complex analytic function. This allows the boundary integral

method to be formulated from Cauchy's integral theorem (Vinje and Brevig [1], Lai and Hro-

madka [2]). The elegance and simplicity of complex analysis carries over to computations as well.

While the Green's function formulation and the complex method are not directly compared here,

Dold and Peregrine [3], indicate that the latter method (from [1]) is clearly superior. Schultz [4]

shows that the error of the complex formulation can be further reduced by solving the resulting

two systems of algebraic equations in a least-squares sense for nonlinear breaking wave simula- 3
tions. In this paper, we expand and formalize these ideas for model potential problems. I

In general, an integral equation is solved by a numerical model that assumes the boundary is

composed of piecewise-polynomial curves (panels) and the known and unknown boundary values I
are approximated as piecewise-continuous functions along the boundary. The truncation error in

solving an integral equation is determined by the approximations of the boundary shape and the I
known and unknown function values on the boundary. A rather extensive error analysis of the

conventional boundary integral method for a two-dimensional Neumann problem is given by Hess

[5]. He shows that using parabolically-shaped elements with linearly varying singularity improves 3
the accuracy when the effects of local element curvature are greater than that of the function

derivatives. Unlike the Green's function formulations, the complex method does not depend
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I on the shape of the contour between nodes. Most complex variable boundary integral methods

adopt piecewise-linear representations of the complex functions. This linear interpolation results

in second-order accurate integration and typically gives second-order accurate solutions for the

3 boundary integral solution as well.

The accuracy of the numerical solution is affected by the contour shapes, boundary conditions

and nodal spacings as well as the possible singular behavior of the resulting solutions. Moran (6]

shows poor convergence for a sharp-angled contour (such as airfoils) even when the solution there

is smooth. In addition, singularities usually occur at an abrupt change in boundary conditions or3 at boundary corners (121. The solution accuracy then further degrades unless special precautions

are taken such as supplementing the piecewise-linear representations with singular functions (7].

In this paper, the error is analyzed for the complex variable boundary integral method using

elements with linearly varying functions. The advantages of solving both sets (real and imagi-

nary) of algebraic equations together in a least-squares sense are discussed. The integration error

analysis shows the correlation between solution error and factors such as geometric curvature,

nodal spacing, and local solution gradients. We also present further modifications in sections 6

and 7 that show exponential convergence for smooth contours.

I5
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2 Cauchy Boundary Integral Formulation U
Cauchy's theorem is used to derive an integral equation in terms of the complex potential. I

The complex potential, 0, is analytic inside the computational domain, R, and is given by u
Xz= .0 + (1)

where the two-dimensional spatial representation is given by z = z + iy, and 4 and 0i are real I
functions that can be identified as the velocity potential and stream function, respectively, for

ideal fluid flow problems.

Figure I shows the problem domain and bounding surfaces. Cauchy's theorem gives

AR l-)-d. = iaXW4) (2)

where a is 0 or 27r if the location of the kernel singularity, (k, is outside or inside the boundary,

respectively. If the kernel singularity is on the boundary (k E OR), a is equal to the included

angle and the integral is treated as principal-valued. For most of our computations, we take k I
to approach the boundary from outside of the domain so that a is zero. The algebraic system

is formed by discretizing the integral as explained in section 3 and letting the kernel singularity

approach each of the N nodal points, 4k - zk. A special limiting process is then needed to

evaluate the integration near k. I

The boundary contour OR is composed of OR# and P0R, where 0 is given on OR# and

0 is given on OR#. For the problem to be well-posed, either 0 or 9P must be specified along

the entire boundary. This is related to the Dirichlet or Neumann problem, respectively, in I
the standard formulation. Although generalized (Robin) boundary conditions can be included

in these computational schemes, we do not study them here. Hence, the boundary can be I
categorized as the following two types:

Rej}) = o is given on OR* (3)
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Im{f) = w is given on R.. (4)

When the boundary condition is given exclusively as either 6 or V, along the entire boundary,

the solution is not unique, since an additional real or imaginary constant can be added to the

solution. This is related to a solvability condition for the Neumann problem. Therefore, an

appropriate additional condition or a replacement condition (if the problem is not to be overde-

termined) is required. We have found that replacing the boundary condition at one point (i.e.,

assuming 0 is known at every point except one, where w is known) yields much less accurate

results. Therefore, we use an additional condition, and hence, all algebraic systems are overde-

3 termined. although sometimes only by one extra equation.

To examine the corresponding singularity system in the standard formulation, the integrand

in (2) can be rewritten as

7- ds +' i - ds,

where 0 is the tangent angle of the boundary with the positive x axis. Hence, the contribution

I from the above differential element to the complex potential inside the domain is given by
i r(-t)ei# ds + e" ds 5

w= [ - +(,(5)

This relation shows that the integral equation (2) is equivalent to a system of distributed

I normal dipoles of strength 0 and tangential dipoles of strength 0 on the boundary. However,

we can represent the potential field by using only one of the dipole systems, following the con-

cepts of the indirect boundary integral method. (In the indirect method (16J, the computational

unknowns are the strengths of the distributed singularities rather than the original solution, as

in the direct method.) Baker et al. [8) shows that dipole distributions are more stable than

source or vortex distributions for nonlinear breaking wave simulations. W% e could formulate a

complex integral method similar to a combination of the sources and vortices by introducing, for

example, a logarithmic singularity into (2) rather than the simple pole. However, our preliminary

numerical studies indicate that the simple pole in (2) performs better than other singularities.

I7
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including those of higher-order. U
I

3 Numerical Model

Following the procedure of Vinje and Brevig (4], both the boundary contour and the complex

potential are represented as piecewise-linear functions. The location and complex potential at

the Ih node point are given by zi and /3, respectively. Then 0 on j'h panel is described by

'3 +1 - Iz 3 (zj+a - z) + #j+1(. - Zj)] (6)

We can choose (k of Eq. (2) to be anywhere, although since we treat the case a = 0. it

must be outside the solution domain. Typically, it is chosen to approach some point on the k th

panel. The panel midpoint and the node point are favored equally for Ck in previous formulations. I
Our studies show no significant differences in accuracy and convergence rates between those two

caes. Hence, we choose the endpoints, which are easier to code. We also have studied a more i
overconstrained problem by placing control points at the node points end the midpoints and have

found no significant improvement. In section 9 we examine the advantages of moving Ck away

from the contour.

Letting (, approach each node from the outside yields the algebraic equivalent of (2) approx-

imated as (1]

NOjrjk = 0 for k= .... N (7)
Jul

where rj = +I-, In 
( z' - k) forj k, (8)Zj+1 - Zi zi: - Ck ) i - Zj-1 zj-1 - Ck

= ( -- (9)

Eq. (8) is evaluated using L'Hospital's rule when j = k + 1 or k - 1. Moving the unknown

boundary conditions to the right-hand side gives the following complex algebraic system for

8I
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I unknown o or Oi:

E Z r,i+ i 1 r,kk=- r r, -j Z r', fork=I ..... (10)
jER EOR6 jEOR. jEOR

3 FJ7 represents the influence of the kh node kernel singularity on the j't node complex potential

3j. In general, rktIk, rkk, and rk+,k have the dominant influence on the kt equation except

3 for contours that are not convex or have sharp cusps. The imaginary part of rkk is nearly -t

and the real part is nearly zero for uniformly-spaced nodes on smooth parts of the contour, and

exactly -7r and zero. respectively, for flat contours. On the other hand, the imaginary parts of

rk-.k and rk+,.k are nearly zero while the real parts are not small.I
Choosing the imaginary part of system (8) for the kth equation where w is given and the

I real part where o is given, results in a syst-m matrix with a strong diagonal. Taking the other

systems results in a system matrix with a weak diagonal. We now refer to the former system

as the sarong system and the latter as the weak system. The strong system is very similar to

a Fredholm integral equation of the second kind, and the weak system is similar to a Fredholm

integral equation of the first kind. As indicated in the introduction, we solve the weak and strong

I systems together as an overdetermined system in a least-squares sense and compare these results

to those obtained from the individual systems.

I
I
I
I
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4 Truncation Error in Numerical Integration

The truncation error in the numerical integration is analyzed for the case of uniformlyv-spacedI

nodes. In general, the dominant truncation error in (2) for the kh control point occurs in the

integration from z = Z&-I to z = Zk+j, as shown in Figure I. Rewriting the integral (2) as I
= It, O()dz. (11)

For uniformly-spaced nodes with slowly varying geometric curvature, we can examine the integral

Ik by expanding O(z) at z = Ck as,

/(z) (k)+()( -(k) + !3"((&)(z _(k)2 + O(lz -(kj3l) (12)

Using (12), we can write Eq. (11) as

-k = 1(0) + (1) + 12) + O(llz - C 113) (13)

where

O(O, )n (14)

#()-/'(Ck)(z&... - .. ), (5

and

SZ . )2 -(16)

Since our numerical model assumes 8 varies linearly between nodes. the dominant truncation I
error in the calculation of It is 42).

When $ is linear, the integration is exact and the integral equation algorithm gives exact so- I
lutions. In Figure 2, a very strong correlation between Re{4')) and the solution error is shown

for a problem inside a circular contour with uniformly-spaced nodes when 0 is given as Re{sin :}.

The correlations are nearly 1.0 and -1.0 for the weak and strong systems, respectively. Figure

3a shows that the strong and weak systems give approximately the same errors but of opposite

10 I
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sign. The error distribution along the same contour for another test function, in which 3 =e -iz

3is shown in Figure 3b. The results for a problem when the solution domain is outside the unit

circle are given in Figure 3c. This example represents a dipole in a uniform potential gradient.

The imaginary part of the potential should be zero on the unit circle. To solve this problem.

the uniform part must be subtracted out so that there is no contribution from the contour at

infinity. A branch cut is chosen to connect the contour at infinity to the inside circular contour.

which is then integrated in a clockwise sense. All examples in Figure 3 show the typical error

cancellation characteristics of the overdetermined system. The overdetermined system averages

the errors of weak and strong systems so that the error distribution curves of the overdetermined

3system nearly collapse to the abscissa. Other calculations show that this error cancellation for

the outer problem is nearly complete when the dipole is moved from the origin but still well

Iinside the contour.

IIt is noteworthy that the solutions of the weak system sometimes show small oscillations

with wavelengths twice the nodal spacing. This common zig-zag instability is due, in part, to

the nearly singular matrix. At times, when this numerical instability becomes large, the weak

system matrix becomes so numerically singular that direct inversion is no longer possible. Then

iterative refinement, as done here. is required.I
For noncircular contours, the errors coatributed from off-diagonal elements grow as the local

3geometric curvature increases. Figure 4 shows the error distribution curve and the correlation

between error and Re (2)) when o is given for an ellipticalc ontour with an eccentricity of.0.9165 .... ..... .....

(the major axis of unit radius for the examples shown here is always centered on the x-axis). A

relatively strong correlation still exists, but the error of the weak system is more sensitive near

3 zero I2). In this case, the cancellation characteristic of the overdetermined system is no longer

nearly perfect, as shown in Figure 3. Table I shows the correlation numbers between the solution

error and Re{( 2 )) for various ellipses with eccentricities of 0.0 to 0.9798 (minor axes in the y

I Ii
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direction of 1 to 0.1). The weak system loses its strong correlation at an eccentricity of 0.9798,

where large, spurious oscillatory behavior develops in the solution.

We will show that the error cancellation of the overdetermined system seems more ,lependent

on the variation of geometric curvature and on the nodal spacing, rather than on the solution

characteristics.

I
I
I
1
I
I
I
I
I
I
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I 5 Numerical Investigation

Comparisons of accuracy, convergence rate, and computing time are made for weak. strong,

and overdetermined sets of system (10). The effects of nonuniform nodal spacing, types of bound-

I ary conditions, nearly singular solution characteristics, and contour shape on the solution errors

are also investigated.

The overdetermined matrix problem can be solved two ways. One method uses a routine

based on the Householders transformation [9]. This routine takes an order of U2 V operations,

3 where U is the number of unknowns and V is the number of equations. The other uses a conju-

gate gradient iterative technique [10], which solves the problem in an order of UVL operations.

where L is the number of iterations. The computational savings of the iterative technique would

be important if time marching were desired, especially since a good initial guess is available from

the previous time step. However, even with a homogeneous initial guess. a typical solution for a

nonsingular matrix requires less than 10 iterations.I
The iterative solver often takes more computing time than the Householders transformation

method for the weak system, but iterative methods are more reliable when the system is nearly

singular. as is true in the weak system. Here, we always use the conjugate gradient iterative

m method with a zero initial iterate to compare the efficiency of the three systems.

5.1 Rate of Convergence and Computing Time

The root mean square errors (E2 ) and corresponding computing times are examined as a

function of the number of nodes to determine convergence rates and computational efficiency.

Tc maximum errors (E,.) follow a very similar pattern and hence are not shown. Figure 5

shows E2 for the three systems in log-log scale with uniformly-spaced nodes on a circular contour

when 0 is given as Re{sin z). Single-precision (six digits) results are limited to approximately

I five decimal point accuracy as round-off error dominates truncation error beyond N=32. The

* 13I,



overdetermined system is more accurate by one digit at N = 16, and the convergence rate of the

overdetermined system is twice that of the weak or strong systems.

In Figure 6, computing times of the single-precision program are shown. For the same N, the

computing time of the overdetermined system is the largest and the computing time to solve the

weak system increases rapidly when N > 32 as the system matrix becomes more singular and I
the number of iterations increases. Figure 6 clearly shows that the overdetermined solution is

the most efficient of the three systems for this example. I

The effect of the contour shape on the efficiency of inner problems is examined for elliptical I
contours with various eccentricities (e = 0.0 to 0.995) for the same 3. The diameter of the major

axis is fixed to be 2.0 and centered on the x axis. As the eccentricity increases, the E2 of the

overdetermined system increase, but those of the strong systems decrease, as shown in Figure

7. The E2 of the weak system for e > 0.9165 increase due to the more oscillatory behavior of

the solution. In Table [, the E2 are given as a function of the number of nodes for various el-

lipses. In most cases, the overdetermined system gives the best results, except for highly eccentric

elliptical contours where the weak system's oscillations affect the overdetermined solution as well.

The E2 convergence rates determined at the largest computed N are compared in Table II

for inner problems for ellipses with various eccentricity. Astonishingly, the convergence rate of

the overdetermined system for a circular contour (e = 0) approaches 4.0. The convergence rates

of all the other examples are the predicted 2.0. I
E2 for outer problems, when ( = Iz, are also calculated and given in Table III for various

ellipses (0 < e < 0.995) with a double-precision program. The results of the overdetermined sys- I
tem are the best for all cases tested. The convergence rates approach 2.0 for the weak and strong

systems. The convergence rates of the overdetermined system also approach 2.0 except at e = 0,

14I
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I which again exhibits fourth-order convergence. We also have obtained fourth-order accuracy for

exterior problems when the simple poles are placed in the interior, not close to the boundary.

As the eccentricity increases, E2 increases for all systems due to the more rapid variation of the

* function and the kernel.

Since our numerical model uses a piecewise-linear representation for the potential function, we

expect second-order convergence. However, for some cases, the convergence rates of the overde-

termined system approach fourth-order due to the cancellation of errors between the weak and

the strong systems. Our examples show that these cancellations occur when the contour is circu-

lar (or nearly so) with uniformly-spaced nodes. Some calculations not described here have shown

third- and sixth-order convergence for the strong and overdetermined systems, respectively, when

I a cubic-spline representation is used for 3.

5.2 Nonuniform Nodal Spacing

Sometimes nonuniform nodal spacing is desirable when solution refinement is needed due to

large solution gradients. Also, the nodal spacing in problems with convective nodes (such as free

I surface flow problems) becomes nonuniform. This can cause numerical instabilities, so that a

filtering scheme or a regridding scheme is needed to maintain uniform spacing [11].

In Figure 8, a schematic of nonuniformly-spaced nodes is shown. The nonuniformity at node

k (in an otherwise uniformly-spaced grid) is defined as the ratio between L. and L0 . In this case,

the real part of rk is no longer small. Moreover, the dominant off-diagonal terms rk-.,a and

rk+lk, also change significantly while the imaginary part of rki remains around -1r. Hence, the

local nonuniformity greatly affects the global solution characteristics.

Figure 9 shows the same example as in Figure 3a. except that node I is moved to form various

I15
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nonuniformities as defined by Figure 8. The errors of the strong system are affected only near

that nonuniformly-spaced node. As the nonuniformity increases, the solution of the weak system 3
deteriorates globally due to the zig-zag instability. However, if a numerical filter were used to

eliminate oscillations with wavelengths equal to the node spacing, the weak system error is then

comparable with the strong system and again of opposite sign. This is why the solution for

the overdetermined system remains very good. Note that the error curve of the overdetermined I
system cannot be distinguished from the zero axis except near the moved node.

The correlation between 4(2) and the solution error is still strong for strong systems. except

around the kWh node, but it is very poor for the weak system. The computing time for the weak

system increases rapidly as the nonuniformity increases, since the number of iterations grows

rapidly as the matrix becomes more numerically singular. I
5.3 Types of Boundary Condition

When the boundary contour is composed of both 8R and aRo, the intersecting node can

present a difficulty even without any geometric discontinuity. We could expect the solution to

be singular at the intersecting node. We also would usually expect that the change in boundary

conditions to occur at a corner in the boundary contour (which brings other difficulties that will

be discussed in section 5.5). We do not consider either case here. I
We examine a circular contour with 4 given on the upper half (y > 0) and 0b on the lower

half. Figure 10 shows the error distribution curves for two cases when 0 = e-". Either 0 or 0,

or both can be treated as known at the intersecting nodes (y = 0). Only one boundary condition

is prescribed at each node in (A), while both 46 and 0 are given at the intersecting nodes in (B). 3
In both cases, the error of the overdetermined system is much smaller while the weak system

solution again shows oscillatory behavior.

18 I
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3 E2 for these two cases are compared in Figure 11. The solutions when the additional known

boundary constraints are used are better for all three systems. Convergence rates remain the

same and the improvement in accuracy is small. There is also no large local error at the inter-

section point. We conclude that the change in boundary condition type by itself is not difficult

to handle computationally.

I 5.4 Singularity Near Contour

When the boundary condition values change abruptly due to nearby singularities, the solution

error at nodes near those singularities is expected to increase. As an example, the error for a

unit radius circular contour where the solution has a simple pole near the contour is examined.

i.e, o is given as the real part of1 1
3=

z-(1+e)'

where e is a small constant. The solution errors for 0 of the strong system increase mainly at

those nearby nodes, while those of the weak system exhibit an oscillatory behavior with peaks at

nearby nodes, as shown in Figure 12. As c increases, the oscillation amplitude diminishes and the

weak system finally recovers the same error pattern as the strong system, but again of opposite

sign.

3~ ~E shown in Figure 13 show the advantage of the overdetermined system in accuracy and

convergence rate. The convergence rate for the overdetermined system is again 4.0 and those

of the other systems are around 2.0. For this function, the nodal spacing must be less than e

before the high convergence rate is achieved. We note that the weak system is unstable due to an

abrupt change in 4(2), which again implies that the system matrix of the weak system is nearly

singular.

*17
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5.5 Contours with Corners

The boundary integral accuracy is known to deteriorate in the vicinity of contour corners I
due to high geometric curvature. Moreover, the solution is usually singular at corners. Grisvard

[121 has the most mathematically complete discussion of numerical singularities arising from the I
nonsmooth domain for elliptic boundary value problems. Pina, Fernandes, and Brebbia [13]

suggest using mesh refinements to overcome the difficulties of nonoptimal convergence arising

from an irregular boundary contour. These refinements become more important if the solution is

known to be singular or to vary rapidly at a corner (Lin, Newman and Yue [14]). The numerical

model can be truly singular if a modified variable is formed by subtracting out the local singular

solutions from the original variable (Kelmanson (7]). Mesh refinements near corner can create

difficulties with numerical instability such as at the free surface of the wave-maker problem [111.

Even if the solution is not singular at a corner, error is induced in large part by the contri-

bution from the abrupt change in the geometric curvature. This can be seen in Eq. (16) for

k(2). At a corner, the term (zk+l - Cs)2 - (z&-i - C)2 is not small. If c'(C) is nonzero at the

corner, the error in numerical integration will be much larger there. In this case, the error has

its maximum near the corner and can spread to the entire contour. I

A modified circular contour with a corner (Figure 14) is used to test the effects of the corner I
on the solution accuracy. In this case, the imaginary part of r1L at the corner stays at -r/2

as the number of nodes increases. However, the off-diagonal influence coefficients are strongly

affected by the corner and any refinement there.

As Figure 15a shows, the error of the strong system is concentrated at the corner while it

remains at the previous error levels on the smooth part of the contour, as shown in Figure 3a.

The error of the weak system solution oscillates over the entire contour, and the computing time

(the number of iterations) increases rapidly due to the corner. However, if a numerical filter

I
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were used to eliminate oscillations with wavelengths equal to the node spacing, the weak system

would actually have smaller error than the strong system. The solution of the overdetermined

system is still significantly better, but the maximum error is one thousand times greater than

the solution of the overdetermined system for the smooth contour, shown in Figure 3a. All three

approaches show second-order convergence for contours with corners.I
The given solution for this example is analytic at the corner, but we still have very grave

computational difficulties there. To make 4(2) smaller, we develop a modified complex potential

defined by

= 3- (17)

1 where , is the coordinate of the corner. Thus. the second derivative of the modified complex

potential 3, is forced to be zero at the corner. This eliminates the highest-order error term in

our piecewise-linear integration routine (Eq. 16) at the corner.

Figure 15b shows improved results using this modification, especially at the corner. All six

solutions (weak, strong, and overdetermined systems for both the modified and unmodifed for-

mulations) still appear to be second-order convergent for contours with corners. However, the

E2 or E,. for fixed N is significantly improved by the modified method. For this example, with

3 N = 64, these errors are reduced by a factor of 50.

These results suggest using an iterative method for more accurate solutions to nontesi prob-

lems, when the unkaou value of O"1 (Ce) is updated to a more correct value. Further developments

I of this method are required for problems having more than one corner and for the outer problems.

It is also expected that even more accurate solutions can be obtained by requiring the higher

I derivatives of the modified complex potential to be zero at corners.

I
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6 Desingularization I

Patterson and Sheikh (151 introduce a regular boundary integral method by moving the sin- I
gularity of the fundamental solution away from the boundary contour. Their rationale for doing 3
this appears to be chiefly for desingularizing the kernel. Hence. all integrals can be computed

numerically. They also claim the method "tolerates higher-order singularities" and base these

conclusions on comparisons with finite element methods for elastostatic problems. I
We show here that moving zk in Eq. (2) well outside the boundary has several advantages

over the standard approach. While we do not perform the integrals by simple quadrature (we still 3
use Eq. (8)), it is clear that numerical integration would no longer seriously affect the results.

The determination of the influence coefficients is still simpler, since special cases are not required

(as when integration passes through a singular point of the kernel). Now. however, we must

decide where to locate the kernel singularities.

We use two strategies for locating the kernel singularities outside the contour shown in Figure I
16. The first strategy uses the perpendicular bisector of the straight contour between adjacent

nodes. This strategy has two potential difficulties. If f is too small, the singular point may lie I
inside an actual convex-curved contour. If f is too large, the singular point may lie inside the

domain of a highly contorted contour. The second strategy places all singular points on a circle

whose center is roughly at the centroid of the contour. This strategy avoids the difficulties of 3
the first, but it may not place the kernel singularities sufficiently close to the contour to capture

nearly singular behavior of the solution. The second strategy also has the freedom of placing any

number of kernel singularities on the circle, and hence, the algebraic system can become more or

lea overdetermined. 3
Figure 17 shops the error computed using the first strategy and two values of f; in this 3

20I
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I case the nodes are placed evenly on a circular contour with 3 = sin z. Here, we see that the

convergence is exponential and that the overdetermined system is again the best. Figure 17

indicates that placing the singularities further from the contour is preferable. Figure 18 shows

this to be the case for the same example with fixed N = 16. However. a price is paid in that

the algebraic system becomes less diagonally dominant as f increases, requiring more iterations

Uand a tighter tolerance on the convergence parameter to achieve the acquired accuracy. For this

contour we note that when f < (I - cos -)/sin - : 0.05 for N = 16, the singular point ac-

tually moves inside the contour. Figure 18 shows this happens without greatly changing the error.

3 Figure 19 also shows exponential convergence for the circular contour when there is a solution

singularity outside the domain. In this case. a semi-log plot indicates the true exponential char-

I acter of the convergence. (Only the overdetermined results are shown.) The nodal spacing must

be small compared to c for exponential convergence to be achieved. As a result, the convergence

when e = 0.1 (not shown) is very poor all the way to N = 64. As might be expected, the most

accurate solutions are no longer obtained when f is large, since placing the kernel singularities

further away cannot capture the effect of solution singularities close to the contour.

Although the overdetermined system still has smaller errors, it is not significantly smaller

3 than the errors for the desingularized version of the strong or weak system (Figure 13). Simi-

larly, Figure 20 shows that the same is true for elliptical contours. As before, all systems have

second-order convergence, but the overdetermined system is slightly more accurate than the

strong or weak system. (The weak system is-not shown-since its.results-are-very similar to the . ..

3 strong system.) While desingularisation greatly improves the accuracy of the weak and strong

system, it only slightly improves the accuracy of the overdetermined system.I
For the examples in Figures 17-20, the desingularized method is better than the method of

Vinje and Brevig. However, both strategies for placing the kernel singularities off the contour do
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not yield as accurate results when the contour has a corner. The convergence rate is still the same

and the absolute errors increase slightly (not shown, but typically 25 percent). Further work is

required to determine how to place the singular points next to the contour corners; however,

our computations show that decreasing f or R, near the corners is not beneficial, even when no

solution singularity exists there. I
The second strategy shown in Figure 16 allows an arbitrary number of kernel singularities to

be used in formulating the algebraic system. When the real and imaginary systems are used, the I
number of singular points. N,, can be less than the number of nodes. N, actually N, > M/2.

Table IV shows typical error results using variable N,. All results are for a unit circle contour,

N = 16, and 3 = sin z, with N, singular points equally spaced on R, = 1.5. Table IV shows

that N, can be reduced below N; increasing N, further increases the accuracy insignificantiy.

However, increasing N, for the strong equations to overconstrain the system can be beneficial if

N, is twice N. Table IV does not show that overdetermining the algebraic system in this manner

is more expensive: more logarithms must be computed to form the influence the matrix and the

resulting system is not as diagonally dominant (i.e., more iterations are required to solve the

algebraic system).

7 Spectral methods U
Following the method of Baker (17], exponential convergence can also be achieved by inte-

grating the principal-valued form of (2) using the trapezoidal rule. To obtain this convergence,

the integral must be periodic and integrated with respect to a real variable, in this case, an I
arclength parameter. The singular part of the integral is avoided by evaluating the integrand at

every other point. The integral then becomes I

I r(.)(- (& 78d. = ior3(() (18)
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UBaker indicates this expression will give exponentially convergent results if the shape (and

hence dz/ds) is known exactly. However, in contour dynamics problems, for example, the shape

is not known precisely. This problem can be overcome if the contour is known to be smooth, since

z(s) and hence dzfds can then be determined with exponential accuracy using spectral methods.

We have performed these calculations using a standard fast Fourier transform routine (FFT) for

3 both z(s) and y(s) to obtain exponential accuracy for fully nonlinear gravity waves. These results

will be reported elsewhere. Here, we present results for circles, ellipses, and squares. where the

shape is represented by the same Fourier representation. For the elliptical contours, the nodes

are placed at constant polar angle intervals as measured from the center of the ellipse. Then the

I FFT is exact and the convergence is exponential. with the highest convergence for nearly circular

contours. as shown in Figure 21 for 0 = sin z. The overdeternined system results are nearly the

I same as the other systems and hence only one is shown.

I A simple problem where the FFT is not exact is given using the same example of the ellipse

(e = 0.866) with nonuniform nodal spacing. Figure 22 shows the convergence for the case when

the N h node is moved by 0 = .002r/N. Even for this nearly imperceptible movement, the

asymptotic convergence for all three systems is first order. The overdetermined system yields

slightly better E2. The error distribution curves for the three systems are shown in Figure 23

for N = 32. While E2 is nearly the same for all systems, the maximum error (E) for the

overdetermined system is significantly lower. All three systems show an oscillatory error with

the wavelength on the order of the nodal spacing. This could give rise to the zig-zag instability

found in many contour dynamics computations [8]. The oscillatory error of the overdetermined

solution looks sufficiently regular, such that a simple filter may recover exponential convergence.

Finally, we show the convergence of the trapezoidal method in Figure 24 for a square contour

centered about the origin with each side of length two, for a = sin z. We see in this case that

the convergence rate is much less than first order, with the overdetermined system giving the
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best results. Unlike the previous example, no simple filter would improve the results. Part of the

reason for the poor convergence is the poor convergence of d(/ds by the FFT due to the squares

nonsmooth contour. Even when an exact d /ds is used (by central difference), the convergence

(although better) is still less than first order due to the discontinuities in d(/ds at the corner

nodes. Any hope of recovering exponential convergence lies in moving all nodes by one-half the

nodal spacing to avoid placing nodes at the corners.

It should be noted that the condition of the matrix obtained in this manner is excellent, and I
half of the coefficients are zero. This means that the algebraic solver saves computational effort.

in addition to the time saved by not requiring the evaluation of logarithms. The additional time

to compute the FFT's is not significant.

Obviously, more algorithm development is needed for contours with corners. In addition, it

is not entirely clear how to extend this approach to domains with contours that are not simply

connected.

8 Conclusions ....

Error analysis of complex variable boundary integral methods is made by truncation error

analysis and numerical investigation. The overdetermined system is the most efficient and accu-

rate in almost all cases; this sytem averages errors of the opposite sign for the solutions of the

strong and weak systems. The overdetermined system has a fourth-order convergence rate for

circular contours, while the other systems exhibit second-order convergence. When the contour is

not circular, the convergence for all three systems is second order, but the overdetermined system I
is significantly more accurate for moderate N. All systems have difficulties at contour corners.

which can be alleviated by introducing a modified complex potential such that the derivatives I
are zero at the corner. The overdetermined system takes the fewest number of iterations in our

conjugate gradient iteration procedure. As a result, the computational time is less than twice
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I that of the weak or strong system. The increased accuracy of this method more than repays this

additional cost.

3 For smooth contours, exponential convergence can be achieved by desingularization of the

kernel or by using a trapezoidal integration rule. The exponential convergence is destroyed for

noncircular contours when desingularization is used or when nodes are unevenly placed for ei-

ther method. The spectral, trapezoidal method is much more accurate if the nodes are precisely

placed. However, small errors can render the convergence for the trapezoidal method to be first-

order. while the desingularization method is more robust. Both of these modifications perform

poorly when a contour corner is present. The overdetermined system is. for the most part. the

most efficient for these modifications as well.I.
The same approach may be extended to three-dimensional potential problems by using two

sets of integral equations, one of which is derived from Green's theorem and the other from the

normal derivative of Green's theorem. Hence, the advantages of solving an overdetermined sys-

tem may yield greater efficiency and accuracy for three-dimensional problems as well.
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I LIST OF SYMBOLS

I
E2 :root mean square error
E, maximum error
e eccentricity of an ellipse (v2- b2/a)

a = long axis, b = short axis
f desingularization parameter for locating kernel singular point

Ik part of contour integral near k th control point
L number of iteration of the matrix solver

Lo length of uniformly-spaced node
L, length of distorted node
N number of total nodes
All :number of kernel singularities on R,

R domain of the problem
R, radius of enclosing circular contour for desingularization
s curvilinear coordinate on contour
U.V row and column number of an overdetermined matrix
z (s),y(s) x and y coordinate of the contour

complex coordinate of a point
3j th node

Greek Letters

I :a constant (alpha)
3 :complex potential (beta)
,3. : modified complex potential for corner problemIi : integral equation influence coefficient (upper case Gamma)
f: parameter in a singular function (epsilon)
I k : k th control point (zeta)I : tangent angle of the contour with positive x-axis (theta)

: comer node (xi)
: real part of 0 (phi)
: imaginary part of 6 (psi)

8R : contour where 0 is given
aR,6 : contour where , is given
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U Table 1. Correlation Between Error and Re(I)(2 )

(ellipse. inner problem. 8 = sin(z), 0 given)
eccentricity weak strong overdetermined

0.0 0.9997 -0.9986 0.1915
0.6 0.9745 -0.9711 0.3292
0.8 0.9075 -0.8845 0.5856

0.9165 0.8367 -0.7974 0.6133
0.9798 0.4809 -0.7767 0.6451
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Table II. E2 Convergence Rates for Inner Problem 1
(ellipse._3 = sin(z), _ given)

e system -LOG 1 oE 2  cony. rate
N=32 N=64 N=128 N=256

0.0 weak 2.578 3.212 3.829 4.437 2.022
strong 2.588 3.215 3.829 4.438 2.021 3

overdet. 4.470 5.743 6.979 8.198 4.051
0.6 weak 2.732 3.366 3.982 4.590 2.022

strong 2.743 3.370 3.984 4.592 2.020
overdet. 4.646 5.399 5.997 6.598 1.993

0.8 weak 2.880 3.518 4.135 4.744 2.022
strong 2.911 3.541 4.156 4.765 2.022

overdet. 4.286 4.874 5.470 6.071 1.999
0.9165 weak 2.904 3.659 4.281 4.891 2.026

strong 3.123 3.761 4.383 4.994 2.031
overdet. 3.946 4.543 5.143 5.745 2.000

0.9798 weak 2.642 3.403 4.373 5.037 2.206
strong 3.591 4.122 4.727 5.357 2.093

overdet. 3.619 4.305 4.919 5.521 1.999
0.995 weak 2.684 3.249 4.104 4.737 2.103

strong 3.926 4.547 5.092 5.630 1.805
overdet. 3.578 4.215 4.864 5.489 2.079
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i Table III. E2 Convergence Rates for Outer Problem
l__(ellipse. 3 = lz, 46 is given)

e system -LOG 1oE2  cony. rate
N=32 N=64 N=128

0.0 weak 2.3132 2.9299 3.5393 2.024
strong 2.3162 2.9306 3.5395 2.023

1 overdet. 4.7798 6.0105 7.2208 4.021
0.6 weak 2.2921 2.9161 3.5288 2.035

strong 2.1563 2.7702 3.3789 2.022
overdet. 3.6176 4.2079 4.7974 1.958

0.8660 weak 1.8871 2.5365 3.1584 2.066
strong 1.8364 2.4573 3.0709 2.038

overdet. 3.0694 3.7652 4.3682 2.003
0.9165 weak 1.6468 2.3176 2.9447 2.083

strong 1.6530 2.2783 2.8956 2.051
overdet. 2.6897 3.5067 4.1247 2.053

0.9798 weak 0.8131 1.5688 2.2367 2.219
strong 0.9281 1.5898 2.2171 2.154

overdet. 1.2885 2.6238 3.4247 2.661
0.9950 weak 0.5428 0.6898 1.4458 2.511

strong 0.1215 0.8045 1.4655 2.196
_ overdet. 0.2512 1.1748 2.5264 4.490
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Table IV. E2 for Various N,, (N=16) i
N, combined weak strong

and strong
8 -3. 373
1.2 -4.217
15 -4.677 -

16 -4.677 -3.600
17 -4.677 -3.373
31 - -4.043
32 -4-678 -4.140
33 -4.090
34 - 4.127
64 -4.007 I
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