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1. Introduction

Recent interest in high Mach number flow has pointed out deficiencies of classical central difference
schemes near strong discontinuities. While these schemes perform admirably in sub-, trans-
and even low supersonic flows [1, 2, 3, 4, 5], problems arise due to oscillations which may grow
unbounded in the vicinity of strong shocks. Inaccuracies due to the excess artificial dissipation
required to suppress this behavior led to the development of a variety of upwind-biased schemes.
These schemes rely on local wave propagation theory in differencing the convective terms of the
governing equations throughout the domain.

The focus of the current effort is to investigate the characteristics of several upwind schemes
for problems of realistic complexity in high speed flows against the backdrop of classical central
difference techniques. Upwind schemes for the Euler and Navier-Stokes equations may be distin-
guished by the approximate Riemann solver used to evaluate the fluxes at the cell faces and the
mechanism through which they obtain higher order spatial accuracy [6, 7, 8].

The approximate Riemann schemes of Roe [9], Osher [10], van Leer {11] and Steger-Warming [12]
currently enjoy wide use within the research community. These solvers are extended to higher
than first order through either a MUSCL [13] or non-MUSCL approach [8, 14]. For a non-linear
scalar equation or a linear system of equations, schemes developed with either approach may also
be TVD through the incorporation of an appropriately constructed flux limiter.

The concurrent development of many of these algorithms has led to several comparisons of
similar schemes [13, 15, 16] or comparisons of a variety of schemes for simple problems {17, 18, 19,
20, 21, 22]. However, little effort has been made to study a wide class of schemes in a controlled
setting on rigorous problems.

This led to the current work which examines several MUSCL and non-MUSCL schemes with
a variety of Riemann solvers (Table 1.1) for a realistically complex configuration. These schemes
are compared with central schemes using second and fourth order artificial damping. The shock
on cowl lip problem, which was investigated experimentally by Holden et al. {23], has received

much attention in recent literature {24, 25, 26, 27) and provides a rigorous test case of practical




importance. Edney [28] classified shock interference patterns into six types. The actual pattern
established in any particular case depends primarily upon the strength and location of the im-
pinging shock, the characteristics of the incoming flow and the cowl shape. Edney predicted the
highest mechanical and thermal loading in the Type IV interaction which establishes itself when
the impinging shock intersects the subsonic portion of the cowl bow shock. Figure 1 contains
a schematic of the Type IV interaction that was investigated experimentally by Wieting and
Holden [29]. A supersonic viscous shear layer emanates from the point of impingement. This
layer forms a “jet” which strikes the body after passing through a terminating bow shock. Since
inviscid features dominate this flow, the investigation is free to focus on the discretization of the
inviscid terms only. This problem includes strong shocks and shear layers interacting in the pres-
ence of a body. These phenomena create many length scales in the flow and the shocks and shear
layers are not necessarily aligned with the grid [23]. Furthermore, under certain circumstances, a
weak instability arises in the interaction which may or may not be damped out by the truncation
error of a given numerical method [25, 30].

The present work compares all schemes on identical grid systems at three levels of refinement.

Particular emphasis is placed on convergence and accuracy of the algorithms under consideration.




Scheme No.

Spatial Discretization

e e

Roe flux difference splitting +MUSCL

1 Central differencing (5-point operator) + 2nd and 4th order dissipation
2 Central differencing (9-poi1:t operit_or) + 2nd and 4th order dissipation
3 Steger-Warmng flux v;tor split_ting + MUSCE B

4 van Leer flux vector splitting + MUSCL

5

6 “Symmetric” TVD of Yee (non-MUSCL)

7 “Upwind” TVD based on Harten and Yee (non-MUSCL)
Scheme Limiter Time Integration Scheme | Reference
1 — Explicit Runge-Kutta scheme (31]

2 = Explicit Lax Wendroff [32]

B 3 — mmoﬁ;iter Gauss-Seidel line rela.xat-i:)n {12, 33
4 Minmod limiter Gauss-Seidel line relaxation (11, 33
5 _van Albada limiter Explicit Runge-Kutta scheme [9, 8]
6 Limi_t; (Ref. [8],Eqn. 3.51h) | Explicit Runge-Kutta sch:t;e [34, 35)
7 Limiter (Ref. [8],Eqn. 3.51f) | Explicit Runge-Kutta scheme | [36, 35

Table 1.1: Brief description of schemes and their nomenclature




2. Brief Description of Schemes Investigated

In descretizing the Navier-Stokes equations, virtually all schemes rely on a centered approximation
of the viscous terms. In an effort to focus solely on the convective flux approximation of these
upwind schemes, this investigation considers the Euler equations. Additionally, excluding the
viscous terms removes the diffusive loss mechanism from the governing equations and provides a
homenthalpic reference state which may be used to assess the accuracy of the various methods.

Writing the Euler equations in conservation form:

U oF oG
ot Tz T ar (2.1)

U is the solution vector of conserved variables and F and G are the flux vectors. The gas is
assumed to be calorically perfect governed by the equation of state p = pRT where p is the
pressure, p the density, R the gas constant and T the static temperature.

This study focuses on the performance of MUSCL and non-MUSCL higher order upwind
schemes. Suppressing the vector notation, denoting UL and UR as the left and right states, a
brief description of each algorithm follows with reference to the evaluation of the inviscid flux at

the cell surface i + 1.

MUSCL Type Upwind Schemes

The MUSCL type schemes considered include Steger-Warming and van Leer flux vector splitting

and Roe flux difference splitting.
¢ Steger-Warming flux vector splitting [12]:
The Steger-Warming flux vector splitting scheme may be written as:
Fyi= F*(Uf;%) + F'(Uﬁ%) (2.2)

With A = 3F/aU,
A=RT'WR=R'A*+A")R=A*+ A" (2.3)

4 .




Fr({)=AYU, F(U)=A4"T (2.4)

Here A is a diagonal matrix consisting of the eigenvalues of A, A* and A~ denote the splitting
of the eigenvalues into positive and negative components and R is the similarity transformation
diagonalizing A. The MUSCL approach [13] brings UL and UR to second order accuracy:

1+
U,-’i% = Ui - 3843 (2.5)
1-
Uiy = Uit3A4 (2.6)
where:
Ai+§ = minmod(AH_%,A.-_%) (2.7)

and 4;, 1 = UR — UL, With the addition of the minmod limiter, the algorithm reverts to first

order accuracy at shocks in order to preserve monotonicity within of the solution.
e van Leer flux vector splitting {11]:

The functional form of the van Leer scheme is identical to the Steger-Warming algorithm
(Eqn. 2.2) and, in fact, for supersonic flow the evaluation remains unchanged. For subsonic flow,
F* were revised by van Leer to avoid the discontinuity exhibited across sonic lines by the Steger-
Warming algorithm. Denoting the Mach number normal to the interface as My, for subsonic flow
(IM:] < 1),

[ tpa{YM 1)} = £ ]
l;t!z—l!u:ﬂa
e )
fEv :
| R[]

This scheme also obtains second order accuracy with the MUSCL approach (Egns. 2.5 through 2.7).

Ft = : (2.8)

Both Steger-Warming and van Leer methods utilize the cell-centered finite volume approach in

transformed space (37].




¢ Roe’s flux difference splitting [9]:

The Roe flux difference splitting reads as follows:

1
Fay = 3(F(05y) +F (02)]

s 3 p-L (pR L
~Ruslhg i3, (08, - VL, ) (29)

where () indicates evaluation at the Roe averaged state between UL and UZ®{9]. This scheme
extends to second order accuracy through the MUSCL approach (Eqns. 2.5 and 2.6) and was
applied in conjunction with the van Albada limiter (38, 8].

2 2
By [(Buy) +8] + 8y [(ay)” + 81
t+3 -3

(2.10)

where 4, is a small constant to prevent division by zero. In contrast to the above flux vector
split algorithms, Roe’s scheme may violate the entropy condition when the eigenvalues at the Roe
averaged state vanish. Following Harten [39] the eigenvalues |A| of |A| are modified when they
are below some small threshold §:

[A2 4 63|

Y

I\ < & (2.11)

Non-MUSCL Approach

The works of Yee [34) and Harten and Yee [36] provide two popular examples of non-MUSCL
upwind schemes. The first order formulations of both reduce identically to tke Roe solver.
¢ Yee’s “Symmetric” TVD scheme- (34, 35]:
This method takes the following form:
Fiuy = 5 (F(Un) + F(U) + 3R,

8, (2.12)

N
"
i




where ¢: +3 is the I** component of & given by:

¢£+§ = 'I:\:+§| [°5'+1,~ - Qf‘+§] (2.13)
Here again || is thresholded as in the Roe scheme (Eqn. 2.11). Also:

¥y = +1 (Uipr - U3) (2.14)
is essentially the difference of the characteristic variables and Q: +1 is the limiter taken from (8]
2
(Eqn 3.51h).
1
Q‘+L = minmod [20: 1,2a'+1, 5 (a:._% + af._'_%)] (2.15)
It is the addition of this limiter which brings the scheme to second order. Setting Q' = 0 reduces
this method identically to Roe’s first order scheme.

e Harten and Yee’s “Upwind” TVD Scheme (36, 35]:

The modified flux approach of Harten and the modifications by Harten and Yee provide an
alternative second order approach. This may be couched in the form of Eqn. 2.12 by redefining
& for the /th component.

1 /-
By =39 (May) (b + o) -0 (B 7Ly ) oy (2.16)
where: . .
95419; . I
1 /. p if o #0
Yiey = 39 ("fufg) 4 ’ (2.17)
2

and ¥ enforces the entropy condition by preventing |z| from reaching zero.
o) { 2l |26 | 218)
=3 (218 ' :
. (_T)- |Z| <é
The limiter function ¢ is taken from (8] (Eqn. 3.51f).

al
i i-4

9 =

t+§' + Ia Lai+‘

L+a‘+L+6,

(2.19)
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The three previous methods (Roe flux difference splitting, Symmetric and Upwind TVD) are

implemented in a cell vertex finite volume formulation [40].
Central Difference Schemes

To provide a datum by which to evaluate the upwind procedures, the comparison includes

formulations of two popular centered schemes.

e Jameson’s classical five-point scheme [31] with second and fourth order artificial dissipation

implemented in a node based manner [40].

e Ni’s nine-point finite volume formulation of the classical Lax-Wendroff procedure [32] with

the addition of second and fourth order dissipation [41].

Three distinct time integration techniques are utilized in this research. The Steger-Warming and
van Leer flux split schemes are integrated in time using the implicit Gauss-Seidel line relaxation
algorithm described by MacCormack [33]. Following the conclusions of Liou and van Leer [18], the
implicit operator utilizes the Steger-Warming Jacobians for both splittings. With the exception
of the Lax-Wendroff scheme, all other schemes use explicit multistage Runge-Kutta algorithms.

Table 1.1 highlights the schemes and numbers them for discussion in later sections.

.




3. Overview and Classification of Computations

In order to assess the quality of the current implementation of each scheme for high speed flow,
some basic issues are examined on a simple problem. A noninterfering 2-D cylinder (Case A)
at Mach 8.03 provided a qualitative check of the convergence properties and the shock stand off
distances obtained by each scheme. This case also brought to light the behavior of the sonic line
in view of the limiting characteristic theory provided in classical references [42].

This simple problem gives some preliminary insight into the shock capturing capability and
overall accuracy of the various schemes. The shock capturing capability is investigated by line plots
across grid-aligned and nonaligned portions of the bow shock. Shock resolution is also examined
as a function of Mach number with the addition of a Mach 16.33 noninterfering cylinder. In
addition, a grid refinement study on stagnation enthalpy losses along a streamline at Mach 8.03
provides an indication of the net error in each scheme.

With results of these basic investigations in mind, the discussion turns to the complex shock-
shock interaction mentioned earlier. This problem (Case B) results in severe mechanical and
thermal gradients throughout the field and on the boundary. In the sketch of Figure 1, the
terminating normal shock results in surface pressures which exceed the non-impinging case by an
order of magnitude. Numerically, this case focuses attention on scheme performance in complex
flows. Moreover, since the geometry remains simple, this complexity stems from shock and slip
line structure within the flow field, rather than from an arbitrary boundary geometry. This
structure gives rise to many interdependent time scales which require many characteristic times
to pass before a steady state establishes itself. In an effort to add rigor to this comparison, the
_ Type IV problem is investigated on a series of three successively refined meshes. All flow and grid

parameters are listed in Table 3.1.




Case | Mach Number Grids (IL x JL) Flow
A 8.03,16.33 20 x 20,40 x 40 Noninterfering
B 8.03 60 x 40,120 x 80,240 x 160 | Interfering (Type IV)

Table 3.1: Classification of computations for flow past a 2-D cylinder
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3.1 Criteria for Comparison

Throughout this effort, emphasis was placed on proper comparison of the various algorithms.
At each level of refinement and for each problem, all calculations were completed on the same
computational meshes. Furthermore, identical convergence criteria were applied to each of the
algorithms.

These criteria include root mean square (RMS) measures of the global residual of all conserved

variables as well as integrated surface pressure.

¢ Global residual:

IL JL 4

I6-R 1= 77 ,L)\)zzz( ol (3.1)

i=1j=1k=
where k denotes the kth equation on an /L X JL computational mesh and Ry is the residual:
Uy 0F; 0Gy

Ry = at 9z Oy (3.2)

For plotting purposes, these values are normalized by the value of ||G.R.|| obtained after

the first iteration.

e RMS Surface pressure:

ll " ( ij=surface ) ? (3.3?

Both residuals are plotted against the characteristic time T, = L/V,, where L is a characteristic

length scale (chosen as the cylinder diameter) and V,, is the freestream velocity of the incoming

flow upstream of the impinging shock. T, provides a uniform global time scale for comparison of
all methods.




4. Results

4.0.1 Case A - Blunt Body

Figure 2 displays the convergence behavior of the seven schemes for Mach 8.03 flow past a 2-D
cylinder. The calculations progressed until the residuals dropped five orders of magnitude. In
this calculation, as throughout this research, no emphasis was placed on efficiency. Clearly, by
adjusting some parameter, convergence of any of these schemes could be accelerated. This figure
is intended only to demonstrate that all schemes converge for this problem and provides a basis
for the investigations which follow.

Figure 3 exhibits the RMS surface pressure for each scheme. With this criterion, all schemes
converge within one characteristic time and the discrepancy in asymptotic levels may be ascribed
to slight differences in normalization and are considered unimportant.

Figure 4 shows both the 40 x 40 mesh and Mach contours for each of the seven schemes.
Mach contours are drawn in increments of 0.25 and the 1.0 contour {sonic line) is annotated in
each plot. In all cases, the sonic line displays the highly curved profile associated with 2-D flows
above Mach 2. Additionally, the stand-off distance in all cases agrees with the value published in
classical texts [42] to within a grid point (measured from the “first shock point” away from the
body).

While the contour plots give some indication of the scheme’s ability to capture strong shocks,
a more precise examination stems from line plots of Mach number along specific radial mesh lines.
Figure 5 contains such a plot along the stagnation streamline while Figure 6 contains the same
plot for a ray inclined 36° degrees from the vertical. These plots clearly demonstrate the superior
shock resolution of the upwind schemes as compared to the centered methods. Mcreover, they
also show the nonoscillatory nature of the flux limited upwind schemes.

Figures 7 and 8 show the same line plot for a Mach 16.33 calculation on the same grid. While
the central difference schemes each require at least one additional grid point in the shock, the

upwind schemes still resolve the shock with only two intermediate cells. Of particular note are

12




the crisp shocks afforded by the schemes of Roe, van Leer and Upwind TVD. The relatively poor
performance of the Ni scheme off-centerline at this Mach number (Fig. 8) may be ascribed to the
use of the diagonals in the difference stencil - in contrast to the other schemes which excludes
these nodes (e.g., [40]). ,

Figure 9 displays the stagnation enthalpy losses along the stagnation streamline. Following
the upwind schemes (3 through 7) along this streamline, perturbations appear within the discrete
shock and all curves exit with slightly different (negative) values. Through the shock, all the
flux limited schemes reduce their approximation of the governing equations to first order as the
limiter “clips off” the solutions at extrema. This is responsible for the stagnation enthalpy error
immediately following the shock. It is worth noting that this post-shock error decreases for all
schemes with grid refinement. After the shock, the methods again become second order, but
despite this, only the van Leer and Roe schemes remain reasonably constant on either grid. Of
the other upwind schemes, only the Steger-Warming algorithm is of particular note as its extreme
diffusivity creates an error of over 10% on both grids. In evaluating any particular method, both
its overall and post-shock behavior must be considered. Of the current implementations, the van
Leer algorithm shows the least discrepancy along the stagnation streamline. The Jameson central
difference scheme (scheme 1) exhibits a large stagnation enthalpy drop across the shock due to
the large second order damping required to capture the strong Mach 8.03 normal shock. In the
subsonic post-shock region, however, considerable improvement is observed with grid refinement

as the method demonstrates its well known ability to solve subsonic flows [43].

4.0.2 Case B - Type IV Interference Flow

The next set of figures presents results for the shock interaction test case at Mach 8.03 on a
60 x 40 grid. Figure 1 presents details of the geometry and parameters specifying this problem.
Figures 10 and 11 display the global residual and surface pressure convergence histories for all the
methods. These plots display converged results only for schemes 3, 5, and 6 and while the van

Leer and Upwind TVD methods exhibit declining residuals, convergence cannot be conclusively
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claimed. However, the surface pressure (Figure 11) indicates a solution converged to plotting
accuracy. Both central difference schemes appear to level off after dropping about two orders
of magnitude and show small, high frequency perturbations around a constant value. However,
these oscillations are small enough that no changes in the flow field are observed. These schemes
required a second difference smoothing coefficient about 1.5 times that needed in the blunt body
calculation, and could only be run at a CFL number more than 10 times smaller than in the
noninterfering case. Notice that since some experimental and computational evidence exists which
suggests an unsteady solution all schemes were run with a constant global timestep [23, 30, 25].

Figure 12 compares contours of constant Mach number for the schemes under investigation.
These contours have an increment of 0.25 and are labeled in the last frame. This figure also
contains a plot of the coarse computational mesh (which was not optimized excessively for this
problem). Proper resolution of this interaction demands both accurate representation of strong
shocks and shear layers throughout the interference pattern within the distorted bow shock.

As anticipated, the additional dissipation required to curtail oscillations in the centered
scheme’s convergence history, considerably smears both the impinging shock and the distorted
bow shock. All the upwind methods resolve these two features with roughly the same resolution.
The dissipative nature of the upwind schemes is most evident in the Steger-Warming splitting.
Here, the internal structure of the field is smeared even more than with the central schemes,
and the contours are uniformly smooth throughout the field. Of the four schemes (4 through 7)
which capture the embedded shock and terminating normal shock, the van Leer, Roe and Upwind
TVD methods perform perceptibly better than the Symmetric TVD scheme. All four algorithms
predict supersonic jets of comparable width.

The final figure for the coarse grid Type IV calculation presents normalized surface pressure as
a function of 4 (see Fig. 1). In Figure 14, the vertical axis is normalized by the stagnation pressure
behind a Mach 8.03 normal shock (to show pressure amplification). Here, results from the seven
calculations are compared with results from the experiment by Wieting and Holden (29]. Away
from the peak, all schemes agree reasonably well with the available data. Each of the schemes

places the peak at roughly the same angular location, but are also shifted about 3° from the
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experimentally observed peak. Since the angular location of the peak is a strong function of the
impinging shock location, this small discrepancy is not considered important for the purposes
of the present investigation. The Steger-Warming method underpredicts the maximum pressure
augmentation considerably. Supporting the similarities shown in the contour plots of the previous
figure, the Roe flux difference splitting and the Upwind TVD schemes remain nearly inseparable
on this plot, achieving a value somewhat higher than the Symmetric TVD scheme. The van Leer
splitting reaches a slightly higher peak but is shifted roughly 2° to the right of the others. Despite
the apparent lack of structure in the contour plots for the central difference schemes, both predict
very reasonable values for the peak over pressure.

In an effort to bring schemes 1, 2, 4 and 7 closer to convergence, the solutions were marched
out several more characteristic times. With this, both the van Leer and Upwind TVD algorithms
converged fully. However, no reasonable combination of second and fourth difference dissipation
coefficients could be found to fully lead the central difference schemes to convergence. Over the
course of this search, the peak surface pressure varied from 6 to 8.5 and the “loop” structure (ev-
ident in the solution of schemes 4 through 7 of Figure 12) occasionally became evident. However,
at damping coeflicients lower than those reported during the discussion of Figure 12, the high
frequency oscillations shown in the convergence plots increased in amplitude. Figure 13 shows
the surface pressure history of the Lax-Wendroff scheme with a second difference smoothing coef-
ficient equal to that of the blunt body case. This figure shows a small high frequency oscillation
superimposed on a large periodicity which spans about 10 characteristic times. This plot also
shows the structure of the flow field at two different locations in the pressure cycle. Note that
this period corresponds. to a physical frequency of 2200 Hz which is slightly lower than the range
(3 kHz-10 kHz) reported by Holden et al. [23].

The fact that this unsteady behavior increased as diffusion was removed from the solutions led
to questions about the diffusion present in the discrete solutions of the upwind schemes. Returning
briefly to Figure 12 permits a crude estimation of the relative diffusivity in the upwinded discrete
solutions. The smooth, rounded contours of the Steger-Warming solution are indicative of excess

dissipation which makes itself evident in the underprediction of the pressure peak in Figure 14.
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The contours in the Upwind TVD and Roe flux difference splitting schemes exhibit nearly identical
smoothness which correlates well with the similarity in their pressure peaks. The van Leer result,
however, demonstrates that this value cannot be exclusively linked to the diffusion in the field.
Despite the fact that its subsonic contours are somewhat smoother than schemes 5 or 7, the
pressure peak is the highest of all the upwind algorithms.

In an effort to make a more quantitative estimate of the diffusivity of the various upwind
methods in this complex flow, the truncation error in the solution was reduced by refining the
mesh. Figures 15 and 16 contain the global residual and surface pressure convergence histories
for one of the central methods (Scheme 1) and all the upwind algorithms on a 120 x 80 mesh.
On this finer mesh, only the convergence behavior of the two flux vector split schemes remains
unaltered. Nevertheless, the surface pressure history of the Symmetric TVD scheme appears to
be quite steady. Again, all these calculations maintained a constant global timestep in an attempt
at time accuracy. Moreover, marching the solution out several characteristic times did not alter
these trends significantly.

Since the two implicitly integrated flux vector split schemes (3 and 4) were the only ones to
converge on this grid, the effect of the time integration scheme was investigated in further detail.
The van Leer splitting was reapplied to the problem using a second order time-accurate explicit
predictor-corrector algorithm on both meshes. Both convergence criteria were unaffected on the
coarse mesh (Fig. 17). On the medium grid, however, the pressure residual remained unchanged
but the global residual with the explicit integration dropped only two orders of magnitude and
then remained generally steady ~ albeit with small amplitude high frequency oscillations. No

- difference in surface pressure or flow structure could observed at these levels.

Figure 18 displays the contour plots of constant Mach number on the 120 x 80 mesh. Of course,
the detailed structure in the plots for the oscillatory behaved solution is a function of the current
characteristic time. Nevertheless, all the plots presented are representative pictures of the solution
provided by each scheme. All the methods show increased resolution as compared to the coarse
grid plots of Figure 12. On this medium grid, both the Jameson and Steger-Warming schemes

show the loop structure demonstrated by the other upwind schemes on the coarse grid. Despite
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the accurate shocks evident in the Steger-Warming calculation, the internal structure is less
apparent than in the central difference solution. Again, methods 4 through 7 demonstrate superior
resolution in these plots. As on the coarse mesh, the van Leer and Symmetric TVD methods give
very similar looking results. After passing through the terminating normal shock, most of the
flow accelerates and expands upward around the body. This flow forms a supersonic/subsonic
shear layer with the nearly stagnated flow behind the bow shock. Both the Roe and Upwind TVD
methods appear to show a developing shock reflection system within this shear layer.

Figure 19 presents a detailed view of a typical result (Upwind TVD) through velocity vectors.
Figure 20 shows a few representative particle traces (PLOT3D) superimposed on selected Mach
contours. The streamlines detail the flow’s progress through the interference and stagnation
regions of the flow field.

Figure 21 contains a plot of normalized surface pressure for the methods on the medium
grid. Note again that the unsteady result for the Roe flux difference splitting and Upwind TVD
methods are shown as “snapshots” taken at the same characteristic time as the contours in
Figure 18. Qualitatively, all the peaks on this plot are higher than on the coarse grid.

As a further investigation of the oscillatory behavior demonstrated by the Upwind TVD and
Roe flux difference split schemes, Figures 22 and 23 present the solution of the Upwind TVD
algorithm at extrema in the solution cycle. Both low and high frequency oscillations appear
in the surface pressure convergence behavior. The convergence history is reproduced on both
figures for the solution between 90 and 120 characteristic times. While there is little evidence of
the low frequency oscillations in the Mach and surface pressure distributions, the high frequency
oscillation has dramatic effects on both. The unsteadiness manifests itself through changes in the
angle of the terminating normal shock, which in turn influences the angle at which the jet impinges
on the surface. This sets up different oblique shock reflection patterns within the supersonic layer
bounded by the sub/supersonic shear layer and the body. Looking more closely at Figures 22
and 23, the higher peaks in the surface pressure plot correspond to the pattern where the jet
terminating normal shock is more closely aligned with the body surface. Returning to the solution

with the van Leer scheme on this grid (Figures 18 and 21), both the terminating shock angle and
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the surface pressure distribution with this method correspond very closely to the Upwind TVD
solution at the maximum point in the oscillation of the RMS surface pressure distribution.

Although the van Leer and Symmetric TVD schemes provided reasonably accurate surface
pressure distributions (Figure 21), they fail to resolve the reflected shock structure within the
supersonic region bounded by the upper body and the sonic line (Figure 18) seen in the discrete
solutions of Roe and Upwind TVD. Moreover, neither method predicted an unsteady flow solution.
With the intent of resolving more structure within the supersonic layer and to further investigate
the convergence behavior of the van Leer and Symmetric TVD schemes, the truncation error was
reduced further by again refining the mesh. These two schemes were applied to a mesh constructed
by doubling the number of points in each coordinate direction (resulting in a 240 x 160 mesh).

Figures 24 and 25 present convergence behavior and Mach contour distributions for the van
Leer and Symmetric TVD discrete solutions on the fine grid. In Figure 24 the upper frame
chronicles the global residual variation for 50 characteristic iimes. As anticipated, both schemes
now predict unsteady behavior with high frequency oscillations as seen earlier in Ree and Upwind
TVD solutions on the medium grid (Figures 15 and 16). The lower frame records RMS surface
pressure over the same period of time. The smaller amplitude of the oscillations of the van Leer
scheme correspond to the lower magnitude of its residual in the upper frame of this figure. In
Figure 25, both these schemes ncw capture the reflected shock structure within the supersonic
layer flowing up over the body surface as seen on the medium grid with the Roe and Upwind
TVD methods. With reduced truncation error present on the fine grid, both solutions are now
unsteady and, as a result, slight differences may be expected between the two plots despite higher
order time accuracy.

Figure 26 presents a schematic of the flow structures evidenced by the discrete solutions in
Figures 18, 22 and 25. This schematic identifies the supersonic flow region bound2d by the body
and the sub/supersonic shear layer which forms around the upper surface of the body. The
picture suggests a possible feedback mechanism which may be responsible for the unsteadiness in
the oblique shock reflection patterns shown in Figure 22. With the terminating normal shock at

some initial angle, an associated oblique shock pattern will establish itself between the shear layer
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and the body. As these oblique shocks form, they disturb this shear layer, communicating these
disturbznces to the subsonic region. Within the subsonic stagnation region, these disturbances
are free to propagate in all directions including back toward the upper shear layer (see Fig. 1). As
these waves distort the interaction region, they may change the angle of the terminating normal
shock setting up a new oblique shock reflection system which again distorts the subsonic shear
layer thus reinitiating the cycle. While this hypothesis seems reasonable and physical, it does not

satisfactorily explain the difference in frequency between the computed and experimental results.
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5. Conclusion

A comparative study has been performed for a variety of upwind schemes applied to a problem
of realistic complexity. The schemes which achieve second order accuracy through the MUSCL
approach included the Steger Warming and van Leer flux vector split schemes and the Roe flux
difference split scheme. Additionally, this comparison investigated two non-MUSCL algorithms
based on the “Symmetric” and “Upwind” TVD methods of Yee and Harten and Yee.

The shock capturing ability of the upwind schemes was demonstrated for grid aligned and
nonaligned shocks at two different Mach numbers. This investigation clearly showed the superior
shock resolution afforded by these procedures. Moreover, this ability was found to be independent
of Mach number, which is not the case for central schemes.

The Type IV shock interference flow pointed out differences among the upwind procedures. In
particular, the extreme diffusivity of the Steger-Warming method - which was not immediately
evident in the blunt body solutions — became apparent and unacceptably corrupted the solution.
The other four upwind procedures all captured considerable flow field detail with a slight advantage
falling to the Upwind TVD and Roe’s algorithm.

A comparison of flow structure on a successively refined sequence of three meshes indicated
the least diffusion in the Upwind TVD and Roe flux difference split discrete solutions. These
two schemes already showed oscillatory behavior on a 120 x 80 grid. The Symmetric TVD and
van Leer algorithms also led to oscillatory flows for this problem but required an even finer mesh
(240 x 160) to demonstrate this behavior.

Despite the apparent lack of structure within the flow solution caused by the inability of the
central difference algorithms to resolve features on the order of the mesh scale, both these schemes
provided reasonable surface pressure distributions. Moreover, these procedures demonstrated
neutral convergence behavior on the coarse grid. Although such behavior became apparent in
some upwind procedures on finer meshes, it is not clear that the same mechanism is responsible

for the unsteadiness observed in the centr : and upwind solutions.
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Figure 1: Schematic of Type IV shock-shock interaction of Edney [28]. Angles of shocks and
shear layers calculated from oblique shock relations and hodograph methods of [44}.
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Figure 12: Mach contour plots for Type IV interaction on coarse (60 x 40) grid, Mo = 8.03
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Figure 12: Mach contour plots for Type IV interaction on coarse (60 x 40) grid, M, = 8.03

(continued)
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Figure 13: Mach contours at various extrema in convergence cycle for Lax-Wendroff scheme

with dissipation reduced to blunt body levels and CFL number reduced by 10 (60x 40
grid, M, = 8.03).
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Figure 17: Convergence behavior of van Leer scheme with explicit and implicit time integration

for Type IV interaction, M., = 8.03.
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Symmetric TVD

Figure 18: Mach contour plots for Type IV interaction on medium (120 x 80) grid, M., = 8.03
(continued)
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Figure 20: Representative “particle traces” from Upwind TVD scheme on medium (120 x 80)
grid, M, = 8.03.
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Figure 22: Mach contours at various extrema in convergence cycle for Upwind TVD scheme on
medium (120 x 80) grid, Mo, = 8.03.
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Figure 24: Convergence behavior for Type IV interaction on fine (240 x 160) grid, Mo, = 8.03.
Upper: Residual, Lower: RMS surface pressure.
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Figure 26: Schematic of solutions showing reflected oblique shock pattern in the supersonic
layer over the body
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