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1. Introduction

Recent interest in high Mach number flow has pointed out deficiencies of classical central difference

schemes near strong discontinuities. While these schemes perform admirably in sub-, trans-

and even low supersonic flows [1, 2, 3, 4, 5], problems arise due to oscillations which may grow

unbounded in the vicinity of strong shocks. Inaccuracies due to the excess artificial dissipation

required to suppress this behavior led to the development of a variety of upwind-biased schemes.

These schemes rely on local wave propagation theory in differencing the convective terms of the

governing equations throughout the domain.

The focus of the current effort is to investigate the characteristics of several upwind schemes

for problems of realistic complexity in high speed flows against the backdrop of classical central

difference techniques. Upwind schemes for the Euler and Navier-Stokes equations may be distin-

guished by the approximate Riemann solver used to evaluate the fluxes at the cell faces and the

mechanism through which they obtain higher order spatial accuracy [6, 7, 8].

The approximate Riemann schemes of Roe [91, Osher [10], van Leer [11] and Steger-Warming [12]

currently enjoy wide use within the research community. These solvers are extended to higher

than first order through either a MUSCL [13] or non-MUSCL approach [8, 14]. For a non-linear

scalar equation or a linear system of equations, schemes developed with either approach may also

be TVD through the incorporation of an appropriately constructed flux limiter.

The concurrent development of many of these algorithms has led to several comparisons of

similar schemes [13, 15, 161 or comparisons of a variety of schemes for simple problems [17, 18, 19,

20, 21, 221. However, little effort has been made to study a wide class of schemes in a controlled

setting on rigorous problems.

This led to the current work which examines several MUSCL and non-MUSCL schemes with

a variety of Riemann solvers (Table 1.1) for a realistically complex configuration. These schemes

are compared with central schemes using second and fourth order artificial damping. The shock

on cowl lip problem, which was investigated experimentally by Holden et al. [23], has received

much attention in recent literature [24, 25, 26, 27] and provides a rigorous test case of practical



importance. Edney (28] classified shock interference patterns into six types. The actual pattern

established in any particular case depends primarily upon the strength and location of the im-

pinging shock, the characteristics of the incoming flow and the cowl shape. Edney predicted the

highest mechanical and thermal loading in the Type IV interaction which establishes itself when

the impinging shock intersects the subsonic portion of the cowl bow shock. Figure I contains

a schematic of the Type IV interaction that was investigated experimentally by Wieting and

Holden [29]. A supersonic viscous shear layer emanates from the point of impingement. This

layer forms a "jet" which strikes the body after passing through a terminating bow shock. Since

inviscid features dominate this flow, the investigation is free to focus on the discretization of the

inviscid terms only. This problem includes strong shocks and shear layers interacting in the pres-

ence of a body. These phenomena create many length scales in the flow and the shocks and shear

layers are not necessarily aligned with the grid [23]. Furthermore, under certain circumstances, a

weak instability arises in the interaction which may or may not be damped out by the truncation

error of a given numerical method [25, 30].

The present work compares all schemes on identical grid systems at three levels of refinement.

Particular emphasis is placed on convergence and accuracy of the algorithms under consideration.
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Scheme No. Spatial Discretization

1 Central differencing (5-point operator) + 2nd and 4th order dissipation

2 Central differencing (9-point operator) + 2nd and 4th order dissipation

3 Steger-Warming flux vector splitting + MUSCL

4 van Leer flux vector splitting + MUSCL

5 Roe flux difference splitting +MUSCL

[ 6 "Symmetric" TVD of Yee (non-MUSCL)

7 "Upwind" TVD based on Harten and Yee (non-MUSCL)

Scheme Limiter JTime Integration Scheme Reference

1 _____________Explicit Runge-Kutta scheme j 31]
2 j-Explicit Lax Wendroff [32]

3 1 Minmod limiter JGauss-Seidel line relaxation 1'12, 331
4 Minmod limiter jGauss-Seidel line relaxation [11, 33]

5van Albada, limiter Explicit Runge-Kutta, scheme [9, 8]

6 Limiter (Ref. [8],Eqn. 3.51h) JExplicit Runge-Kutta scheme [34, 35]

7 1Limiter (Ref. [8],Eqn. 3.51f) Explicit Runge-Kutta, scheme J[36, 35]

Table 1.1: Brief description of schemes and their nomenclature
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2. Brief Description of Schemes Investigated

In descretizing the Navier-Stokes equations, virtually all schemes rely on a centered approximation

of the viscous terms. In an effort to focus solely on the convective flux approximation of these

upwind schemes, this investigation considers the Euler equations. Additionally, excluding the

viscous terms removes the diffusive loss mechanism from the governing equations and provides a

homenthalpic reference state which may be used to assess the accuracy of the various methods.

Writing the Euler equations in conservation form:

OP a (2.1)aTt + T-x + -57 = 0(.)

i7 is the solution vector of conserved variables and P and d are the flux vectors. The gas is

assumed to be calorically perfect governed by the equation of state p = pRT where p is the

pressure, p the density, R the gas constant and T the static temperature.

This study focuses on the performance of MUSCL and non-MUSCL higher order upwind

schemes. Suppressing the vector notation, denoting UL and UR as the left and right states, a

brief description of each algorithm follows with reference to the evaluation of the inviscid flux at

the cell surface i + 2"

MUSCL Type Upwind Schemes

The MUSCL type schemes considered include Steger-Warming and van Leer flux vector splitting

and Roe flux difference splitting.

* Steger-Warming flux vector splitting [12]:

The Steger-Warming flux vector splitting scheme may be written as:

r+= +( +% F-(U + ) (2.2)

With A = OF/OU,

A = R-AR = R-(A + + A-)R = A+ + A- (2.3)

4



F+(U) = A+U, F-(U) = A-U (2.4)

Here A is a diagonal matrix consisting of the eigenvalues of A, A+ and A- denote the splitting

of the eigenvalues into positive and negative components and R is the similarity transformation

diagonalizing A. The MUSCL approach [13] brings UL and UR to second order accuracy:

S+2 24 -A 2.(25

1-

u + = u, + - (2.6)
S+2 2

where:

-i+L 
= minmod(A.+ ,Ai_ ) (2.7)

and A - UR - UL . With the addition of the minmod limiter, the algorithm reverts to first

order accuracy at shocks in order to preserve monotonicity within of the solution.

e van Leer flux vector splitting [11]:

The functional form of the van Leer scheme is identical to the Steger-Warming algorithm

(Eqn. 2.2) and, in fact, for supersonic flow the evaluation remains unchanged. For subsonic flow,

Fi were revised by van Leer to avoid the discontinuity exhibited across sonic lines by the Steger-

Warming algorithm. Denoting the Mach number normal to the interface as M, for subsonic flow

(IM-1 < 1),

f±t (-Y-I)u.2a

F+ = 1 1 (2.8)

This scheme also obtains second order accuracy with the MUSCL approach (Eqns. 2.5 through 2.7).

Both Steger-Warming and van Leer methods utilize the cell-centered finite volume approach in

transformed space [37].

5



a Roe's flux difference splitting [9]:

The Roe flux difference splitting reads as follows:

fi+J&+A-R' IU,,- UL) (2.9)2 +2'+2 %+2 +2/

where (^) indicates evaluation at the Roe averaged state between UL and UR[9]. This scheme

extends to second order accuracy through the MUSCL approach (Eqns. 2.5 and 2.6) and was

applied in conjunction with the van Albada limiter [38, 8].

- A,-. bAi 1 
2 +62] + A ~ [ 2)2 +6]

'+2 2 (2.10)
21  A2 1,+A? I +262

'+2 S- 2

where 62 is a small constant to prevent division by zero. In contrast to the above flux vector

split algorithms, Roe's scheme may violate the entropy condition when the eigenvalues at the Roe

averaged state vanish. Following Harten [39] the eigenvalues IAI of JAI are modified when they

are below some small threshold 6:

1 2+621 IAI < 6 (2.11)
26

Non-MUSCL Approach

The works of Yee [34] and Harten and Yee [36] provide two popular examples of non-MUSCL

upwind schemes. The first order formulations of both reduce identically to tle Roe solver.

a Yee's "Symmetric" TVD scheme [34, 35]:

This method takes the following form:

Fi+2 = (F(Ui+1) +I- F(U1)) + 1R 4.,#i (2.12)
62 2

6



where + is the Ith component of 4 given by:

4+ " [1=1 (2.13)

Here again JAJ is thresholded as in the Roe scheme (Eqn. 2.11). Also:

aG,+ =- p (U,+ - U,) (2.14)
2  2

is essentially the difference of the characteristic variables and Q1+ is the limiter taken from [8]

(Eqn 3.51h).
tstadiof = minmod 2 I., + )] (2.15)

It is the addition of this limiter which brings the scheme to second order. Setting Q1 = 0 reduces

this method identically to Roe's first order scheme.

9 Harten and Yee's "Upwind" TVD Scheme (36, 35]:

The modified flux approach of Harten and the modifications by Harten and Yee provide an

alternative second order approach. This may be couched in the form of Eqn. 2.12 by redefining

$ for the lth component.

0 1 V ) at (.6
+ = $A,, (g +i + gl - +7 + (2.16)

w h e r e : i a'(!i+,-2,) if a. # 0
= 2(ia'p (2.17)2)+ 0 if at 0=

1 '+ 2

and 0b enforces the entropy condition by preventing Izi from reaching zero.

SIzI Izl >_ 6
_S(z)=6 (2.18)

The limiter function g is taken from [81 (Eqn. 3.51f).

g2 2 (2.19)
i+} + 62
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The three previous methods (Roe flux difference splitting, Symmetric and Upwind TVD) are

implemented in a cell vertex finite volume formulation [40].

Central Difference Schemes

To provide a datum by which to evaluate the upwind procedures, the comparison includes

formulations of two popular centered schemes.

" Jameson's classical five-point scheme [31] with second and fourth order artificial dissipation

implemented in a node based manner [40].

" Ni's nine-point finite volume formulation of the classical Lax-Wendroff procedure [32] with

the addition of second and fourth order dissipation [41].

Three distinct time integration techniques are utilized in this research. The Steger-Warming and

van Leer flux split schemes are integrated in time using the implicit Gauss-Seidel line relaxation

algorithm described by MacCormack [331. Following the conclusions of Liou and van Leer [18], the

implicit operator utilizes the Steger-Warming Jacobians for both splittings. With the exception

of the Lax-Wendroff scheme, all other schemes use explicit multistage Runge-Kutta algorithms.

Table 1.1 highlights the schemes and numbers them for discussion in later sections.

8



3. Overview and Classification of Computations

In order to assess the quality of the current implementation of each scheme for high speed flow,

some basic issues are examined on a simple problem. A noninterfering 2-D cylinder (Case A)

at Mach 8.03 provided a qualitative check of the convergence properties and the shock stand off

distances obtained by each scheme. This case also brought to light the behavior of the sonic line

in view of the limiting characteristic theory provided in classical references [42].

This simple problem gives some preliminary insight into the shock capturing capability and

overall accuracy of the various schemes. The shock capturing capability is investigated by line plots

across grid-aligned and nonaligned portions of the bow shock. Shock resolution is also examined

as a function of Mach number with the addition of a Mach 16.33 noninterfering cylinder. In

addition, a grid refinement study on stagnation enthalpy losses along a streamline at Mach 8.03

provides an indication of the net error in each scheme.

With results of these basic investigations in mind, the discussion turns to the complex shock-

shock interaction mentioned earlier. This problem (Case B) results in severe mechanical and

thermal gradients throughout the field and on the boundary. In the sketch of Figure 1, the

terminating normal shock results in surface pressures which exceed the non-impinging case by an

order of magnitude. Numerically, this case focuses attention on scheme performance in complex

flows. Moreover, since the geometry remains simple, this complexity stems from shock and slip

line structure within the flow field, rather than from an arbitrary boundary geometry. This

structure gives rise to many interdependent time scales which require many characteristic times

to pass before a steady state establishes itself. In an effort to add rigor to this comparison, the

Type IV problem is investigated on a series of three successively refined meshes. All flow and grid

parameters are listed in Table 3.1.

9



Case Mach Number Grids (IL x JL) Flow

A 8.03,16.33 20 x 20,40 x 40 Noninterfering

B 8.03 60 x 40,120 x 80,240 x 160 Interfering (Type IV)

Table 3.1: Classification of computations for flow past a 2-D cylinder

10



3.1 Criteria for Comparison

Throughout this effort, emphasis was placed on proper comparison of the various algorithms.

At each level of refinement and for each problem, all calculations were completed on the same

computational meshes. Furthermore, identical convergence criteria were applied to each of the

algorithms.

These criteria include root mean square (RIMS) measures of the global residual of all conserved

variables as well as integrated surface pressure.

* Global residual: J fL l (Rk \ (3.1)

IG.R.I = (-IL)(JL) E" k. U(3.1)
i)=1 j=1 k=1

where k denotes the kth equation on an IL x JL computational mesh and Rk is the residual:

OUk Mk WGk (3.2)5 T = z o~y

For plotting purposes, these values are normalized by the value of IIG.R.II obtained after

the first iteration.

* RMS Surface pressure:

ILI (p ______ ac 2
IL P 3.3)

Both residuals are plotted against the characteristic time T, = L/Vo where L is a characteristic
length scale (chosen as the cylinder diameter) and Voo is the freestream velocity of the incoming
flow upstream of the impinging shock. T, provides a uniform global time scale for comparison of

all methods.

11



4. Results

4.0.1 Case A - Blunt Body

Figure 2 displays the convergence behavior of the seven schemes for Mach 8.03 flow past a 2-D

cylinder. The calculations progressed until the residuals dropped five orders of magnitude. In

this calculation, as throughout this research, no emphasis was placed on efficiency. Clearly, by

adjusting some parameter, convergence of any of these schemes could be accelerated. This figure

is intended only to demonstrate that all schemes converge for this problem and provides a basis

for the investigations which follow.

Figure 3 exhibits the RMS surface pressure for each scheme. With this criterion, all schemes

converge within one characteristic time and the discrepancy in asymptotic levels may be ascribed

to slight differences in normalization and are considered unimportant.

Figure 4 shows both the 40 x 40 mesh and Mach contours for each of the seven schemes.

Mach contours are drawn in increments of 0.25 and the 1.0 contour (sonic line) is annotated in

each plot. In all cases, the sonic line displays the highly curved profile associated with 2-D flows

above Mach 2. Additionally, the stand-off distance in all cases agrees with the value published in

classical texts [42] to within a grid point (measured from the "first shock point" away from the

body).

While the contour plots give some indication of the scheme's ability to capture strong shocks,

a more precise examination stems from line plots of Mach number along specific radial mesh lines.

Figure 5 contains such a plot along the stagnation streamline while Figure 6 contains the same

plot for a ray inclined 360 degrees from the vertical. These plots clearly demonstrate the superior

shock resolution of the upwind schemes as compared to the centered methods. Moreover, they

also show the nonoscillatory nature of the flux limited upwind schemes.

Figures 7 and 8 show the same line plot for a Mach 16.33 calculation on the same grid. While

the central difference schemes each require at least one additional grid point in the shock, the

upwind schemes still resolve the shock with only two intermediate cells. Of particular note are

12



the crisp shocks afforded by the schemes of Roe, van Leer and Upwind TVD. The relatively poor

performance of the Ni scheme off-centerline at this Mach number (Fig. 8) may be ascribed to the

use of the diagonals in the difference stencil - in contrast to the other schemes which excludes

these nodes (e.g., [40]).

Figure 9 displays the stagnation enthalpy losses along the stagnation streamline. Following

the upwind schemes (3 through 7) along this streamline, perturbations appear within the discrete

shock and all curves exit with slightly different (negative) values. Through the shock, all the

flux limited schemes reduce their approximation of the governing equations to first order as the

limiter "clips off" the solutions at extrema. This is responsible for the stagnation enthalpy error

immediately following the shock. It is worth noting that this post-shock error decreases for all

schemes with grid refinement. After the shock, the methods again become second order, but

despite this, only the van Leer and Roe schemes remain reasonably constant on either grid. Of

the other upwind schemes, only the Steger-Warming algorithm is of particular note as its extreme

diffusivity creates an error of over 10% on both grids. In evaluating any particular method, both

its overall and post-shock behavior must be considered. Of the current implementations, the van

Leer algorithm shows the least discrepancy along the stagnation streamline. The Jameson central

difference scheme (scheme 1) exhibits a large stagnation enthalpy drop across the shock due to

the large second order damping required to capture the strong Mach 8.03 normal shock. In the

subsonic post-shock region, however, considerable improvement is observed with grid refinement

as the method demonstrates its well known ability to solve subsonic flows [43].

4.0.2 Case B - Type IV Interference Flow

The next set of figures presents results for the shock interaction test case at Mach 8.03 on a

60 x 40 grid. Figure 1 presents details of the geometry and parameters specifying this problem.

Figures 10 and 11 display the global residual and surface pressure convergence histories for all the

methods. These plots display converged results only for schemes 3, 5, and 6 and while the van

Leer and Upwind TVD methods exhibit declining residuals, convergence cannot be conclusively

13



claimed. However, the surface pressure (Figure 11) indicates a solution converged to plotting

accuracy. Both central difference schemes appear to level off after dropping about two orders

of magnitude and show small, high frequency perturbations around a constant value. However,

these oscillations are small enough that no changes in the flow field are observed. These schemes

required a second difference smoothing coefficient about 1.5 times that needed in the blunt body

calculation, and could only be run at a CFL number more than 10 times smaller than in the

noninterfering case. Notice that since some experimental and computational evidence exists which

suggests an unsteady solution all schemes were run with a constant global timestep [23, 30, 25].

Figure 12 compares contours of constant Mach number for the schemes under investigation.

These contours have an increment of 0.25 and are labeled in the last frame. This figure also

contains a plot of the coarse computational mesh (which was not optimized excessively for this

problem). Proper resolution of this interaction demands both accurate representation of strong

shocks and shear layers throughout the interference pattern within the distorted bow shock.

As anticipated, the additional dissipation required to curtail oscillations in the centered

scheme's convergence history, considerably smears both the impinging shock and the distorted

bow shock. All the upwind methods resolve these two features with roughly the same resolution.

The dissipative nature of the upwind schemes is most evident in the Steger-Warming splitting.

Here, the internal structure of the field is smeared even more than with the central schemes,

and the contours are uniformly smooth throughout the field. Of the four schemes (4 through 7)

which capture the embedded shock and terminating normal shock, the van Leer, Roe and Upwind

TVD methods perform perceptibly better than the Symmetric TVD scheme. All four algorithms

predict supersonic jets of comparable width.

The final figure for the coarse grid Type IV calculation presents normalized surface pressure as

a function of 9 (see Fig. 1). In Figure 14, the vertical axis is normalized by the stagnation pressure

behind a Mach 8.03 normal shock (to show pressure amplification). Here, results from the seven

calculations are compared with results from the experiment by Wieting and Holden [29]. Away

from the peak, all schemes agree reasonably well with the available data. Each of the schemes

places the peak at roughly the same angular location, but are also shifted about 30 from the
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experimentally observed peak. Since the angular location of the peak is a strong function of the

impinging shock location, this small discrepancy is not considered important for the purposes

of the present investigation. The Steger-Warming method underpredicts the maximum pressure

augmentation considerably. Supporting the similarities shown in the contour plots of the previous

figure, the Roe flux difference splitting and the Upwind TVD schemes remain nearly inseparable

on this plot, achieving a value somewhat higher than the Symmetric TVD scheme. The van Leer

splitting reaches a slightly higher peak but is shifted roughly 20 to the right of the others. Despite

the apparent lack of structure in the contour plots for the central difference schemes, both predict

very reasonable values for the peak over pressure.

In an effort to bring schemes 1, 2, 4 and 7 closer to convergence, the solutions were marched

out several more characteristic times. With this, both the van Leer and Upwind TVD algorithms

converged fully. However, no reasonable combination of second and fourth difference dissipation

coefficients could be found to fully lead the central difference schemes to convergence. Over the

course of this search, the peak surface pressure varied from 6 to 8.5 and the "loop" structure (ev-

ident in the solution of schemes 4 through 7 of Figure 12) occasionally became evident. However,

at damping coefficients lower than those reported during the discussion of Figure 12, the high

frequency oscillations shown in the convergence plots increased in amplitude. Figure 13 shows

the surface pressure history of the Lax-Wendroff scheme with a second difference smoothing coef-

ficient equal to that of the blunt body case. This figure shows a small high frequency oscillation

superimposed on a large periodicity which spans about 10 characteristic times. This plot also

shows the structure of the flow field at two different locations in the pressure cycle. Note that

this period corresponds to a physical frequency of 2200 Hz which is slightly lower than the range

(3 kHz-10 kHz) reported by Holden et al. [23].

The fact that this unsteady behavior increased as diffusion was removed from the solutions led

to questions about the diffusion present in the discrete solutions of the upwind schemes. Returning

briefly to Figure 12 permits a crude estimation of the relative diffusivity in the upwinded discrete

solutions. The smooth, rounded contours of the Steger-Warming solution are indicative of excess

dissipation which makes itself evident in the underprediction of the pressure peak in Figure 14.
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The contours in the Upwind TVD and Roe flux difference splitting schemes exhibit nearly identical

smoothness which correlates well with the similarity in their pressure peaks. The van Leer result,

however, demonstrates that this value cannot be exclusively linked to the diffusion in the field.

Despite the fact that its subsonic contours are somewhat smoother than schemes 5 or 7, the

pressure peak is the highest of all the upwind algorithms.

In an effort to make a more quantitative estimate of the diffusivity of the various upwind

methods in this complex flow, the truncation error in the solution was reduced by refining the

mesh. Figures 15 and 16 contain the global residual and surface pressure convergence histories

for one of the central methods (Scheme 1) and all the upwind algorithms on a 120 x 80 mesh.

On this finer mesh, only the convergence behavior of the two flux vector split schemes remains

unaltered. Nevertheless, the surface pressure history of the Symmetric TVD scheme appears to

be quite steady. Again, all these calculations maintained a constant global timestep in an attempt

at time accuracy. Moreover, marching the solution out several characteristic times did not alter

these trends significantly.

Since the two implicitly integrated flux vector split schemes (3 and 4) were the only ones to

converge on this grid, the effect of the time integration scheme was investigated in further detail.

The van Leer splitting was reapplied to the problem using a second order time-accurate explicit

predictor-corrector algorithm on both meshes. Both convergence criteria were unaffected on the

coarse mesh (Fig. 17). On the medium grid, however, the pressure residual remained unchanged

but the global residual with the explicit integration dropped only two orders of magnitude and

then remained generally steady - albeit with small amplitude high frequency oscillations. No

difference in surface pressure or flow structure could observed at these levels.

Figure 18 displays the contour plots of constant Mach number on the 120 x 80 mesh. Of course,

the detailed structure in the plots for the oscillatory behaved solution is a function of the current

characteristic time. Nevertheless, all the plots presented are representative pictures of the solution

provided by each scheme. All the methods show increased resolution as compared to the coarse

grid plots of Figure 12. On this medium grid, both the Jameson and Steger-Warming schemes

show the loop structure demonstrated by the other upwind schemes on the coarse grid. Despite
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the accurate shocks evident in the Steger-Warming calculation, the internal structure is less

apparent than in the central difference solution. Again, methods 4 through 7 demonstrate superior

resolution in these plots. As on the coarse mesh, the van Leer and Symmetric TVD methods give

very similar looking results. After passing through the terminating normal shock, most of the

flow accelerates and expands upward around the body. This flow forms a supersonic/subsonic

shear layer with the nearly stagnated flow behind the bow shock. Both the Roe and Upwind TVD

methods appear to show a developing shock reflection system within this shear layer.

Figure 19 presents a detailed view of a typical result (Upwind TVD) through velocity vectors.

Figure 20 shows a few representative particle traces (PLOT3D) superimposed on selected Mach

contours. The streamlines detail the flow's progress through the interference and stagnation

regions of the flow field.

Figure 21 contains a plot of normalized surface pressure for the methods on the medium

grid. Note again that the unsteady result for the Roe flux difference splitting and Upwind TVD

methods are shown as "snapshots" taken at the same characteristic time as the contours in

Figure 18. Qualitatively, all the peaks on this plot are higher than on the coarse grid.

As a further investigation of the oscillatory behavior demonstrated by the Upwind TVD and

Roe flux difference split schemes, Figures 22 and 23 present the solution of the Upwind TVD

algorithm at extrema in the solution cycle. Both low and high frequency oscillations appear

in the surface pressure convergence behavior. The convergence history is reproduced on both

figures for the solution between 90 and 120 characteristic times. While there is little evidence of

the low frequency oscillations in the Mach and surface pressure distributions, the high frequency

oscillation has dramatic effects on both. The unsteadiness manifests itself through changes in the

angle of the terminating normal shock, which in turn influences the angle at which the jet impinges

on the surface. This sets up different oblique shock reflection patterns within the supersonic layer

bounded by the sub/supersonic shear layer and the body. Looking more closely at Figures 22

and 23, the higher peaks in the surface pressure plot correspond to the pattern where the jet

terminating normal shock is more closely aligned with the body surface. Returning 'o the solution

with the van Leer scheme on this grid (Figures 18 and 21), both the terminating shock angle and
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the surface pressure distribution with this method correspond very closely to the Upwind TVD

solution at the maximum point in the oscillation of the RMS surface pressure distribution.

Although the van Leer and Symmetric TVD schemes provided reasonably accurate surface

pressure distributions (Figure 21), they fail to resolve the reflected shock structure within the

supersonic region bounded by the upper body and the sonic line (Figure 18) seen in the discrete

solutions of Roe and Upwind TVD. Moreover, neither method predicted an unsteady flow solution.

With the intent of resolving more structure within the supersonic layer and to further investigate

the convergence behavior of the van Leer and Symmetric TVD schemes, the truncation error was

reduced further by again refining the mesh. These two schemes were applied to a mesh constructed

by doubling the number of points in each coordinate direction (resulting in a 240 x 160 mesh).

Figures 24 and 25 present convergence behavior and Mach contour distributions for the van

Leer and Symmetric TVD discrete solutions on the fine grid. In Figure 24 the upper frame

chronicles the global residual variation for 50 characteristic times. As anticipated, both schemes

now predict unsteady behavior with high frequency oscillations as seen earlier in Roe and Upwind

TVD solutions on the medium grid (Figures 15 and 16). The lower frame records RMS surface

pressure over the same period of time. The smaller amplitude of the oscillations of the van Leer

scheme correspond to the lower magnitude of its residual in the upper frame of this figure. In

Figure 25, both these schemes now capture the reflected shock structure within the supersonic

layer flowing up over the body surface as seen on the medium grid with the Roe and Upwind

TVD methods. With reduced truncation error present on the fine grid, both solutions are now

unsteady and, as a result, slight differences may be expected between the two plots despite higher

order time accuracy.

Figure 26 presents a schematic of the flow structures evidenced by the discrete solutions in

Figures 18, 22 and 25. This schematic identifies the supersonic flow region bountd by the body

and the sub/supersonic shear layer which forms around the upper surface of the body. The

picture suggests a possible feedback mechanism which may be responsible for the unsteadiness in

the oblique shock reflection patterns shown in Figure 22. With the terminating normal shock at

some initial angle, an associated oblique shock pattern will establish itself between the shear layer
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and the body. As these oblique shocks form, they disturb this shear layer, communicating these

disturb&nces to the subsonic region. Within the subsonic stagnation region, these disturbances

are free to propagate in all directions including back toward the upper shear layer (see Fig. 1). As

these waves distort the interaction region, they may change the angle of the terminating normal

shock setting up a new oblique shock reflection system which again distorts the subsonic shear

layer thus reinitiating the cycle. While this hypothesis seems reasonable and physical, it does not

satisfactorily explain the difference in frequency between the computed and experimental results.
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5. Conclusion

A comparative study has been performed for a variety of upwind schemes applied to a problem

of realistic complexity. The schemes which achieve second order accuracy through the MUSCL

approach included the Steger Warming and van Leer flux vector split schemes and the Roe flux

difference split scheme. Additionally, this comparison investigated two non-MUSCL algorithms

based on the "Symmetric" and "Upwind" TVD methods of Yee and Harten and Yee.

The shock capturing ability of the upwind schemes was demonstrated for grid aligned and

nonaligned shocks at two different Mach numbers. This investigation dearly showed the superior

shock resolution afforded by these procedures. Moreover, this ability was found to be independent

of Mach number, which is not the case for central schemes.

The Type IV shock interference flow pointed out differences among the upwind procedures. In

particular, the extreme diffusivity of the Steger-Warming method - which was not immediately

evident in the blunt body solutions - became apparent and unacceptably corrupted the solution.

The other four upwind procedures all captured considerable flow field detail with a slight advantage

falling to the Upwind TVD and Roe's algorithm.

A comparison of flow structure on a successively refined sequence of three meshes indicated

the least diffusion in the Upwind TVD and Roe flux difference split discrete solutions. These

two schemes already showed oscillatory behavior on a 120 x 80 grid. The Symmetric TVD and

van Leer algorithms also led to oscillatory flows for this problem but required an even finer mesh

(240 x 160) to demonstrate this behavior.

Despite the apparent lack of structure within the flow solution caused by the inability of the

central difference algorithms to resolve features on the order of the mesh scale, both these schemes

provided reasonable surface pressure distributions. Moreover, these procedures demonstrated

neutral convergence behavior on the coarse grid. Although such behavior became apparent in

some upwind procedures on finer meshes, it is not clear that the same mechanism is responsible

for the unsteadiness observed in the cent- and upwind solutions.
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Nomenclature
a local sound speed

A flux Jacobian matrix (-)

fA van Leer mass flux function for subsonic flow

g limiter function for "Upwind" TVD scheme

P, G flux density vectors

G.R. global residual

IL, JL number of mesh points in each coordinate direction

L characteristic length

M Mach number

p pressure

Q numerical flux function in TVD schemes

R gas constant, right eigenvector matrix, residual

t nondimensional time

T temperature

T. characteristic time

u, V Cartesian velocity components

17 vector of conserved variables

V magnitude of total velocity vector

z, y two-dimensional Cartesian coordinates

a difference in characteristic variables

8 small constant 6 < 1

A difference between left and right states

/ limiter function for MUSCL type schemes
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7 ratio of specific heats

Aeigenvalue

A eigenvalue matrix

4, element of 4

4 limited flux function in TVD schemes

0 circumferential angle

p density

10 function enforcing entropy condition

Subscript

( )i+ face to the right of ith node

( )z z direction

( )oo freestream value

Superscript

( )' Lth component of vector
( )L state to left of current face

( )R state to right of current face

( )+'- positive and negative components

C ) Roe averaged state
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Distorted Bow Shock

M.=8.03

Impinging Shock(0

. 'M = 5.246 Loe Terminating
.,..-W p = 7.125p. Shear Layer Normal Shock
..... p p=3.33 p.

Flow Angle = 12.50

Regioni1 Region 2

Figure 1: Schematic of Type IV shock-shock interaction of Edney (281. Angles of shocks and

shear layers calculated from oblique shock relations and hodograph methods of [441.
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for Type IV interaction, M,. = 8.03.
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Figure 20: Representative "'particle traces" from Upwind TVD scheme on medium (120 x 80)
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Figure 24: Convergence behavior for Type IV interaction on fine (240 x 160) grid, Moo = 8.03.

Upper: Residual, Lower: RMS surface pressure.
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