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SECTION I

INTRODUCTION

Owing to the development and ever greater use of
advanced composite materials, aerospace structures now
evidence the most rapid evolution since the introduction of
all metal aircraft. High strength and stiffness characterize
composites. Such efficiency derives from the intrinsic
strength of the constituent materials in composites.
However, because of the greater complexity of their
composition, composites demand much more complex structural
evaluation than metals, and a need to have accurate stress

analysis for design purpose is apparent.

Delamination is a critical failure mechanism for
laminated composite materials. However, before delamination
can be predicted, it is essential to develop analyses to

.
accurately estimate the interlaminar stresses that cause

delamination.

Over the past 2 decades considerable effort has been
devoted to finite element stress analysis of structures made

of composite materials. A two-dimensional analysis using




plane stress or plane strain assumptions have been used (1-
5] to study the interlaminar shear strains at free edge.
Three-dimensional finite element models have also been
developed [6,7]. For the analysi; of geometrically
axisymmetric composite structures, a pseudo-three-
dimensional analysis including three axisymmetric
displacement degrees of freedom per node has been developed

{8-10]. In this approach, the complete state of stress and

strain is modeled.

Recently, Chang [11] developed a more sophisticated
finite element model based on continuous displacement as
well as continuous traction. This model can accurately
predict the complete stress field of the free edge stress
problem in composite laminate coupons. However, it is quite

expensive in computational effort.

The Flight Dynamics Directorate had developed a model
in which the laminated coupon subjected to uniform axial
strain in longitudinal direction was visualized as a segment
of a large radius axisymmetric ring under uniform, radial
pressure. The objective of the present research was to
carefully document this work, improve the logic of the
computer code to make it more efficient, and to extend its

applicability to nonlinear material behavior.




A finite element computer program was developed for
analysis of stresses and displacements in axisymmetric
structures made of laminated composites. Fiber orientations
at an angle with the axis were allowed. Three degrees of
freedom for each nodal point permit modeling of the complete
state of stress and strain. The model was validated by
solving representative problems of cross-ply and angle-ply
laminated coupons and comparing results with those obtained
using the continuous traction element Q23 developed by Chang
{11]. Section II contains the statement of the axisymmetric
problem for linearly elastic composite materials. In Section
III, the discretization by the finite element method is
presented. Section IV contains application of the computer
program developed and compariscn of results with those
obtained using Q23 finite element method. The procedure was
developed specially for application to free-edge
delamination coupons. However, it has the capability to
model a variety of structures including laminated tubes,
nozzles, etc. In the effort described in this report, the
material was assumed to be linear elastic. Extension of the
procedure to allow for nonlinear material behavior is

currently in hand and will be the subject of another report.




SECTION 1II
ELASTIC AXISYMMETRICAL PROBLEM

FOR CONTINUQUS FIBER COMPOSITE MATERIALS

The equilibruim equations, strain displacement
relations and constitutive relations for axisymmetric
composite materials problem are listed in this section.
Derivation of the stress-strain matrix in material, 1local

and global coordinates is described.

2.1 EQUILIBRIUM EQUATIONS

The global coordinate system for axisymmetric analysis
is a cylindrical system where r is the radial direction, T
is the circumferential direction, Z is the axial direction
and the corresponding displacement are u, v, w. The

equilibrium equations in cylindrical coordinates are [24]:

d6,./3r + (1/X)d 0pp/yq + 30,,/32 +(6, =0p) /v = —£,
aorz/ar + (1/x) aoTz/aT +aoz/az + orz/r = -fz
do,.p/dT + (1/r) dop/3T + d6q,/9z + 2 6.qp/T = —-fo

(2.1)

where f,., f fp are components of body forces in r, z, T

z’




directions respectively. For axisymmetric problems the
stresses are independent of the tangential coordinate T.

Therefore, the equilibrium equations reduce to:

do,/dr  + doy,/dz +(oy -op)/r = ~f,

aorz/)r + éoz/az + 0y,,/Tr z (2.2)

]
|
r

aorT/ar + aoTz/az + 2 orT/r = -fT

2.2 STRAIN~-DISPIACEMENT RELATIONS
The general strain-displacement relations in

cylindrical coordinates are given by [24]:

e, = au/ar er = u/r + (1/r) @ v/oT)
e, =dw/)z
2e.p = (1/r) (du/3T) + (3v/Jr) - v/r (2.3)

2e,,=du/yz RW/r
2e,p = OV/dz + (1/r) QwW/)T)

For axisymmetric analysis, the three components of
displacement are all independent of T. Thus, the

relationships given by (2.3) reduce to:

e, = du/r , er = u/r
e, = dw/dz , 2e,, = du/dz + dw/dr (2.4)
2e,p = 3v/dz 2e,.n = dv/dr - v/r




2.3 STRESS-STRAIN RELATIONS OR__ ORTHOTROPIC COMPOSITE

MATERIALS

Composite structures made of oriented continuous fibers
are usually constructed so that the high-strength, high-
stiffness fibers are embedded in a weaker matrix material.
Though the material is heterogeneous, it 1is often
characterized as an equivalent homogeneous material for use
in analysis [10], [12]. In the present analysis the material
is assumed to be 1linear, homogeneous and orthotropic.
Because of the material axis not being parallel to the
global reference frame (Figure(l)), the stress-strain
relations may appear to be anisotropic when written with

reference to the global axes,

2.3.1 Stress-Strain Relationship in Material Coordinates

In the plane of fibers the material is orthotropic,
and, therefore, in three-dimensional configuration, there
are nine independent elastic constants. Let (1,2,3) be the
material directions. Using ‘reduced' vector representation
for the symmetric stress and strain tensors, the stress-

strain relationship can be written in matrix form as [12]:

{o}, = [C], (e},

Explicitly:




Figure 1: Oriented Fiber Composite Layer in the
X-Y Coordinate Plane
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11

22

33

2832

(2.6)

°1;f 5 €11 12 C13 0 0 o |
32 €12 Ca2 G333 O 0 0
033|= Ci3 C23 G335 O ° 0
o5, 0 0 0 Coy 0 0
05, 0 0 0 0 Css 0
013_ i 0 0 0 0 0 Cse_J
Where:
C11= Eqp (1 = By3H55) /D
Cy2= Epp(1 = mB318,4) /D
C33= E33(1 = Wy,85,)/D
C44= C23 Cs55= G153 Ce6™ C12
C12= (By1¥B3,B53)E /D (Byo+By3835)Eyo/D
C13= (B31%B5 B3,)E /D (By3¥ByoBy3) E54/D
C23= (B3p%ByoH37)Ey,/D (By3+By 8y 3)Eqy,D
D = 1= B1ob317 Ba3B3p™ H3iby3™ 2By K55,
and Eii= Modulus of elasticity in the i direction i=1,2,3
Gij= Shear modulus in the i-j plane, i,j=1,2,3
Big™ Poisson's ratio in the i-j plane 1i,j=1,2,3

8




2.3.2 Stress-Strain Relationship in Local Coordinates

In order to combine the standard behavior of various
laminae to get the properties of the angle-ply laminate, it
is necessay to rewrite the constitutive relations in a
uniform system of coordinates. To do this one has to
establish the relationships between stresses and strains in
the material coordinate system with corresponding quantities

in the local coordinate system.

The analysis presented herein is for an angle of
rotation &« of the fiber direction (1) as measured from the
Z (axial) direction. Thus if B8 is the fiber orientation
measured from the tangential direction,

« = B- 90. (Figure (2)). Let:

(07 ] o, ] €y | e,

62 OT 82 CT

o, = [J] o, : e, = [T] e. (2.7)
33 Opr 2e3; 2€.

%31 Orz 2€3; 2€y,

°12 | %21 €12 €21




Figure 2:

Local (R, T,

(1,

2,

-»R

Z) and Material

3) Coordinates
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or symbolically

(6}p = (J) (o) : {e)y = [T] (e}

where [T], [J] are, respectively, the strain and the stress
transformation matrix due to a rotation of the axis through
an angle &« and subscripts m and L refer to material and
local coordinate systems respectively. Further, since strain

energy is invariant due to rotation of axis we have:

(317t = 7T

Let (t} be the traction vector, and {n} the normal at

a certain point in the material , then by Cauchy's stress

principle, {t} = (6] (n), where [6] is the stress matrix:
%11 %12 %13

6] = %5 0,55 054 (2.8)
L %31 %32 %33

Due to a rotation of axis about r, the new traction and

normal vector are given as:

(t)p = [L] {t)p {n)p = [L] {n)g (2.9)

Where [L] is the transformation matrix due to a rotation of

11




axis Z, T about r by an angle «. Explicitly:

m n 0
[L] = -n m 0 (2.10)
0 0] 1

in which m = Cos «, n = Sin «.

The new stress matrix [6]; in the local coordinates is

then given by:

[e]; = (L17! [e] (L],

Comparing term by term and using the 'reduced' (vector)
representation for stress, we get the stress transformation
matrix relating stress in local coordinates to stress in

material coordinates [18].

w2 n2 0 0 0 -2mn

n2 m2 0 0 0 2mn
(317 3=mT=| o 0 1 0 0 0

0 0 0 m n 0
0 ) 0 -n m 0
mn -mn 0 0 0 m2-n2

| -

(2.11)
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The matrix ([J] can be easily computed from [J]'l. It

corresponds to the transformation due to a rotation -« about

r axis. Therefore, [J] can be found by replacing 'n' by '-

n' in [J]'1 i.e.,

[ m2 n2 0 0 0 2mn

n2 m2 0 0 0 -2mn
[(J] = 0 0 1 0 0 0
0 0 0 m -n 0]
0 0 0 n m 0

-mn mn 0 0] 0 m2-n

(2.12)

The stress-strain relationship in local coordinates is

then determined as follows:

We have, {6}y = [Cly (e}
e}y, = [TIT (o),
(e} = [T] (e},

then (o), = [TIT [Cly [T] (e}

Therefore, the stress-strain relationship in

coordinates is given by:

(ciy = [T1T [Cly [T]

Explicitly:

13

(2.13)

(2.14)

local




[Clt=

Where:

CCi1=

r
CC12

CC13=

16
22
23

CC33=

CcC, _=

26
CC, =
44"
45"

55

ccC

i

66

CC11 CCIZ CC13 0 0 cC
CC12 CC22 CC23 0 0 CcC
CC13 CC23 CC33 0 0 cC
0 0 0 CC44 CC45 0
0 0 0 CC45 CC55 o
CC16 CC26 CC36 0 0 cC

4 2.2 4
Cllm + 2(012+ 2c66)m n“ + C,.n

- 2,2
(C11+ sz 4C66)m n“ + C

2 2
C13m + C,5n

-mn3 3 - 2.2
mn c22+ m nc11 mn{m<~n )(C12+2066)

4 2.2 4
Clln + 2(C12+ 2066)m n< + c22m

2 2
C13n + C23m

C33

-nm3 3 2_n2
nm 022+ n mc11+ mn(m<~-n )(C12+zc

66)
(C13-C23)mn
2

2
C44m + Cssn

(C5g5= Cyqlmn
2 2
Cssm + C44n
- 2.2 2 _ 1242
(Cll+ 022 2C12)m n< + C66(m n<)

14

(2.15)

(2.16)




2.3.3 Stress—-Strain Relationship in Global Coordinate

For the case of a ring in which the local and global
axes do not coincide, it is necessary to transform the
stress-strain relations derived in local system of axes to
global coordinates. We note, howevér, that for cylindrical
objects global and local axes, in general, coincide. The
matrix relating stresses to strains after rotation of axis
about the tangential axis is derived following the same

approach used in the preceding section. Let:

(3.1 (o). .
[T.] (€)a (2.17)
[L] (t).
(L] (n)¢

(o)
(€)e
{(t)e
(n},

where the subscripts G, L denote the global and the local

coordinates systems respectively, and

M 0 -N
(L] = 0 1 0 (2.18)
N 0 M

in which M=cos a’, N=sin a’, and a’ is the angle of rotation
of r-Z plane about the tangential T axis. Then the inverse

15




of the stress transformation matrix relating stress in

global coordinate to stress in local coordinates is:

M2 0 N2 0 2MN o 7]
0 1 0 0 0 0
(3717 = [1,17=| N2 0 M 0 -2MN 0
0 0 0 M 0 -N
-MN 0O MN 0 M2-N2 0
o 0 0 N 0 M
(2.19)

The stress-strain matrix in the global coordinate is then

computed as:

[Clg = [Tylp [Cly, [Tg].

Explicitly:
— -
bCy, DG, DGy DG, DG DG
bcy, DC,, DG,y DC,, DC,5 DCyye
(Clg = bc,, DC,, DC,, DC;, DC,g DCy,
DC4yy DG, DCy3 DG, DCy 5 DCug
DCy5 DC5 DCy5 DG 5 DCgg  DCgy
| D€ DC¢ DCyg DCyg  DCge  DCgq
(2.20)
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where:
DC11
DC12
DCq 4
DC14
DC15
DC16
DC22
DC23
DC24
DC25
D026
DC33
DC34
DC35
DC36
DC44
DC45
DC46
DC55
DC56

DC¢6

= ccy; MY + 2 ccy; M2N2 4+ CCy53 N +4M2N2 cci
= CCy, M? + cC,y, N2

= (CCpy + CCy5 - 4CCyg) M3N2 + cCcy5 (MY + N9
= 2 M2N2 cc, g -M2N CCy ¢ -N3 CC3¢

=-MN3 cc,+M3N CC54+MN (M2-N2) CCj 4+ (M2-N2) 2MN CCge
= MN2 (2 cc g +CCyg) + M2N CCsy¢

= CCyy

= N2 cc;, + M2 ccy,

= -N cC,q

= -MN CC,, + MN CC,,

= M CC,g

= CC33 M? + 2 cCyy M2N2 + cepy N4 +aM2N2 cogy
= 2 M?N cc g -M2N cC, -N3 CCy¢

=-MN3 cc,,+M3N CCy4- MN(M2-N2) cc, 45— (M2-N2) 2MN CCqe
= MN2 (-2 cc,q +CChe) + M3 CCyg

= M2 cc,, + N2 CCqe

= M2 (ccy¢ - CC3¢) + (M2 - N?)M cC,q

= MN CC,, - MN CC

= (M2N2)(cc11 -2CC;5 + CCy4) + (M2 - N2)2 CCgg
= (M®N - N3) ccyg + MAN (-CCpg + CCqy)

= N2 cc,, + M2 CCqe

(2.21)
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SECTION III

DISCRETIZATION BY THE FINITE ELEMENT METHOD

3.1 BASIC CONCEPTS:

The finite element method is a general technique for
construction of approximate solutions to boundary value
problems. The method essentially involves dividing the
spatial domain of interest, R, into a finite number of
nontrivial discrete elements, and using variational concepts
to construct an approximation of the solution over the

collection of finite elements.,

Therefore, the principal ingredients of the finite
element method for constructing approximate solutions of
problems are:

1. The construction of a finite element mesh and
selection of a set of piecewise-polynomial basis functions
defined on the mesh satisfying the required continuity
conditions. The elements are assumed to be interconnected at
a discrete number of nodal points situated on their
boundaries.

2. The construction of an approximation of the

variational formulation of the problem, setting up of

18




element properties, assemblage of these into a system of
algebraic equations with nodal values of the dependent
variables or their derivatives up to a certain order as the
unknown quantities.

3. Solution of the algebraic system.

3.2 FORMULATION

Sandhu and Pister [15,16] and Sandhu and Salaam [17]
used a generalization of Mikhlin's basic variational theorem
to extend its application to linear coupled initial boundary
value problem. Specialization of an "extended" variational
principle leads to the well-known potential energy theory
which has been used in developing the finite element model
described in this report. For elastostatics problen,
assuming that the strains exactly satisfy the strain-
displacement relationship, and the displacement field is
continuous over the spatial region of interest R and
satisfies the prescribed displacement boundary conditions on

portion S; of the boundary dR of R, the potential energy is:

I(u) = <u; 4, Ej4x) Uk, 1”R ~ 2<uj, fi>p

Here u;, Eijkl' £, t; are components, respectively of the
displacement vector, the isothermal elasticity tensor, body

force vector, and the specified tractions on boundary S,.
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<, >gs <, >g, denotes inner products of pairs of functions
evaluated over the domain indicated by the subscript. s,, s,

are complementary subsets of JR.

Vanishing of the variation of I(u) with respect to the
displacement components u; implies the satisfaction of
equilibrium equations over R and on S,. The finite element
approximetion consists of applying the theorem to the
approximate functional evaluated by using the approximate

values of the functions defined by the finite element

interpolation scheme.

Taking the variation of the discretized form of the

functional yields the system of algebraic equations:

[Kl{r} = (F)

where:
[K]): The system stiffness matrix.
{r}: Nodal point displacement vector.
{F): Nodal point load vector.
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3.3 INTERPOLATION FUNCTIONS FOR THE MODIFIED SBILINEAR
ISOPARAMETRIC QUADRIIATERAL ELEMENT OM4

3.3.1 Bilinear Interpolation Function for Isoparametric
Quadrilateral Element

The element used in the analysis is an arbitrary
quadrilateral. The displacements are bilinearly interpolated
over each element. The interpolation functions are expressed

as:

N, = 1/4 (1-s)(1-t)
N, = 1/4 (1+s)(1-t) (3.2)
Ny = 1/4 (1+s) (1+t)

N, = 1/4 (1-s) (1+t)

where s,t is a set of coordinates such that the corners of

the quadrilateral are (-1,-1), (-1,1), (1,1), (1,-1).

3.3.2 Modified Bilinear Isoparametric Element

Selective reduced integration was introduced by Taylor
et al., [19] for evaluation of the stiffness matrix for
bending problems. Salaam [18] reported remarkable
improvement in numerical results for some problems where
selective reduced integration had been used. This was

physically explained [19) as resulting from the excessive

21




transverse shear strain energy contribution when using
isoparametric elements. As a remedy for this problem, a
constant shear strain was imposed on the element by
assigning the shear strain associated with the center of the
element to the entire element. The modified (constant shear)
element so obtained was labelled as QM4 and was used in the

finite element code developed in this research program.
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SECTION IV

APPLICATION TO DELAMINATION SPECIMENS

4.1 INTRODUCTION

Although the computer program is capable of obtaining
approximate stresses and deformations in any axisymmetrical
laminated solid, the primary motivation of the development
was to obtain an approximation of stress fields in a free-
edge delamination coupon. The program was validated through
application to a four-ply symmetric laminate. Results were
compared to numerical solutions obtained using a continuous
traction finite element formulation [11]. The computer
program was also used to solve for stresses and deformations

in a 22-layer symmetric angle-ply laminate.

4.2 MATHEMATICAL MODEL

The straight coupon subjected to a uniform inplane
strain in the longitudinal direction is viewed as a short
segment of a large radius ring subjected to a radial
pressure. Figure (3) shows the correspondence between a ring
segment and a short straight coupon. For a sufficiently

large radius of the ring, a uniform inner pressure will

23
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Figure 3: Correspondence Between Ring Specimen a)

and Strip Specimen b)
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yield a reasonably uniform tangential strain over all
elements of a section. Also, for large radius the magnitude
of the radial internal pressure will be small in comparison
with the other stresses in the ring and, therefore, will not

be of much influence in determining failure.

To insure accuracy of results, different values of the
inner radius were tried. It was found that for a radius
equal to 10° times the thickness of the specimen, the
tangential strain was uniform, up to a four-digit accuracy,
over all elements of the section. Figure (4) shows through-
thickness distribution of T-strain near the free-edge for

radii 104, 10% and 102 times the thickness.

In general, axisymmetric loading of a composite ring
will cause circumferential displacement due to the composite
material behavior. Thus, when the hoop is loaded
axisymmetrically with internal pressure, a circumferential
strain is generated in addition to the radial deformation
and shear strain over planes parallel t the axis ([10].
Therefore, to allow the complete state of stress and strain
to be modeled, three displacement degrees of freedon,
independent of the circumferential coordinate, need to be
associated with each node: u, axial; v, circumferential; w,

radial. Two computer programs were, therefore, developed.
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One allo 2d for all the three displacement degrees of
freedom and the other allowed only the radial and axial
displacements. In the two-dimensional analysis, rT and zT-
strains are assumed zero while the corresponding stresses
can have nonzero values, depending upon the material

properties and fiber directions.

4.3 FOUR-~-PLY IAMINATES

4.3.1 Geometry, Material Properties and Finite Element
Mesh

Ring specimens with fiber orientation [0/90]4 and [45/-
45)g under uniform internal pressure were considered in the
present analysis. The relation between laminate width and
thickness was 2b = 16h, as in references (11], [23]. Each
ply was idealized as a homogeneous, elastic orthotropic

material with the following properties [11]:

20 * 10% psi
= = 6 i
Eyp = E33 = 2.1 * 10° psi
= = = 6 ;

K12 = K13 = Kz3 = 0.21

The subscripts 1,2,3 correspond to material coordinates
in the longitudinal, transverse and thickness directions
respectively. Each physical 1layer of thickness h was

subdivided into sublayers, the total number of sublayers is
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denoted by N. The mesh used was refined near the free edge
in order to obtain more reliable results in regions where
steeply varying stresses are expected. A 288 (N=16) element
model, as shown in Figure (5), was used to discretize a
typical half section of the ring. This corresponds to a 144-
element model for a gquadrant as used with continuous
traction Q23 element in [11]. The r, z, T axes in the model
correspond to the 2z, y, x axes in the cartesian
representation of the coupon. The edge z=b is the free-edge
and R=0, R=4h respectively are the bottom and top surface of
the specimen. The value R;, shown in Figure (5), denotes the
distance from the central plane of section to the center of
the ith sublayer. R, is the closest to the midplane of the

specimen and Rg is closest to the top surface.

The internal pressure applied was 1108 (psi) and 290.53
(psi) for the cross-ply and the angle-ply laminate,
respectively. This pressure yields a unit average axial
strain, corresponding to the uniform axial strain applied in

the continuous traction Q23 analysis [11].
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4.3.2 Cross-Ply laminates

The cross-ply laminate was analyzed using both the two
degree-of-freedor computer program as well as the pseudo-
three~-dimensional approach and the results compared. For
cross-ply laminates, the transverse Tr and Tz stresses were
negligible compared to the other stresses in the pseudo-
three-dimensional analysis and were nearly zero in the two-
dimensional analysis. Further, the four stress components
o o

o o were only slightly affected by the

r! 27 L K4 rz

introduction of the third degree of freedom. Figures (6),
(7) show the distribution of R-stress along R1 and Rz-stress
along R4 for the cross-ply laminate. The figures indicate
excellent agreement between results obtained using three
degrees of freedom for each node and those obtained using
two degrees of freedom for each node. These sections were
selected for the comparison as representatives. Similar
agreement was also obtained for stress distributions at

other sections.

Because of the symmetry in the laminate about the Z=0
axis, only half the section was considered. Numerical
results based on two-dimensional axisymmetric analysis using
QM4 element were compared with results based on the
continuous traction Q23 element described in [11]. The same

mesh size was used in both the analyses. The numerical
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result using Q23 [11] has shown good agreement with Pagano's
analytical solution [23] which is based on a generalization
of Reissner's theory. Figures (8) through (23) compare
stress fields at specific 1locations for the cross-ply

laminates using Q23 and the axisymmetric analysis.

Distribution of R-stress along the center of the first
sublayer beyond the central plane (at R1) of the [0/90]4 is
shown in Figure (8). Solutions obtained from the
axisymmetric analysis practically coincide with Q23 element
solution over the entire width of the 1laminate. The
distribution of stresses indicates a sharp rise near the
free edge which agrees with Pagano's solution {11],[23].
Figures (9), (10) show the distribution of R-stress at
center of the last sublayer of 0° ply (at R4) and the first
sublayer of the 90° ply (at R5) respectively. At the
interface of the 0 and 90 degree plies, a stress singularity
is expected at the free edge due to the discontinuity in
elastic properties. The stress distributions, however, are
only obtained at the centers of adjacent elements and can
only be compared there. It is noted that the stress value
near the free-edge obtained using axisymmetric analysis
overestimated the stress at R4 and underestimated it at R5

as compared with Q23 solution.
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A discrepancy in the distribution of R-stress, for the two
procedures, at the center of the last (nearest to the
surface) sublayer (R8) and the sublayer near to it is
observed in Figures (11) and (12). This could possibly be
because, in the present procedure, the traction-free
boundary condition is not enforced. The difference in
stresses is less severe away from the free surface as shown
in the distribution of R-stress at R7 (Figure (11)) than

that at R8 (Figure (12)).

Figure (13) shows through~-the-thickness distribution of
R-stress near the free edge (at Z/B = 0.99) of the laminate.
In the vicinity of the interface, a difference in the
solution of continuous-traction element and the axisymmetric
analysis exists. It was felt that this could be due to the
finite element mesh not being fine enough to approximate the
steeply varying stresses associated with abrupt change of
material properties. To explore this further, the effect of
mesh refinement was studied. This is described later in this

section.

Values of Rz-stress along the center of the first
sublayer beyond the center plane of the laminate (along R1),
along R4 and along R5 are shown in Figures (14,15,16)

respectively. The result showed satisfactory agreement with

37




(PSI)

STRESS % 10E-05

R

— REF. {11
o 16%18

0.60

40

0.
1

0.20

00

1
@
®
®
®

0.

-0.20

0.u40

TREE EOGE

0. 00 0. 20 040 0’60 0" 80
DISTANCE FROM CENTER LINE Z/B

Figure 11: Distribution of R-Stress Along R7

of [0/90], Laminate.

38

1.00




(PSI)

STRESS = 10E-04

R

~ REF. (1D
o 16x18

1.20

80
!

0.

A

0.40

00

0.
"

-0.u40

J— |

EREE EpeE

-0.80

.00 o' 20 0 40 0.60 0" 80
DISTANCE FROM CENTER LINE Z2/B

Figure 12: Distribution of R-Stress Along R8

of {0/90], Laminate.

39

.
1.

00




4 REF. (11}
@ PRESENT ANALYSIS

0.32

(PSI)
0.25

sl
(€4

18

{

0.

0.11

L
G

1

R STRESS x 10E-06
0.0U

5 e

0.03

FREE SURFACE

0.00 0,40 0" 80 1 20 1 60
DISTANCE FROM CENTER LINE R

Figure 13: Through-thickness Distribution of
R-Stress near Free Edge (Z/B-= 0.99)
of [0/90], Laminate.

40

2.

00




those obtained using Q23 element. However, a discrepancy is
observed near the free edge in Figure (16). This is
apparently because the continuous traction Q23 element
exactly satisfies the traction-free boundary condition,
while axisymmetric displacement formulation does not. A more
refined mesh near the free edge is likely to give more
satisfactory result. This was investigated and is described

later in this section.

Figures (17) and (18) show the distribution of Rz-
stress along R7 and along the center of the last sublayer
(at R8). Contrary to the distribution of R-stress at these
locations, the RZ-stress distributions are in good agreement

with those obtained from Q23 element.

Through-the-thickness distribution of Rz-stress near
free edge (at 2Z/b =0.99) is shown in Figure (19). The
results show significant difference with those for the Q23

analysis specially near the interface of 0°/90° layers.

Distribution of Z-stress along R1, R4 and R8 are shown
in Figures (20, 21, 22) respectively. The results along Rl
and R8 obtained using the axisymmetric analysis agreed well
with the Q23 element solution across the entire width of the
laminate. However, a difference in stress distribution along

R4 is observed near the free edge where a steeply varying
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stress exists. Figure (23) shows the distribution of T-
stress along R8. The figure indicates satisfactory agreement
between the axisymmetric analysis and the Q23 element

solution.

4.3.3 Angle-Ply Laminate

A ring specimen with fiber orientation [45/-45]_ under
uniform internal pressure was analyzed. Using the two
axisymmetric analysis approaches, it was found that the
introduction of the circumferential degree of freedom was
necessary for modeling the complete state of strain and
stress. The distribution of Z-stress along Rl and Rz-stress
along R4, Figures (24) and (25) respectively, indicate that
the two-dimensional analysis gave negligible stresses as
compared to results obtained using the pseudo three-
dimensional analysis. The Tr-stress had values of the order
10° psi in the pseudo three-dimensional analysis, comparable
to the z, rz and r-stress components, while they were zero
in the two-dimensional axisymmetric analysis. Figure (26)
shows the distribution of Tz-stress along Rl and indicates
that the two-dimensional analysis gave a practically
constant variation of stress and did not satisfy the stress-
free boundary condition at the free edge while the pseudo-

three dimensional analysis did.
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For angle-ply laminate, in contrast to the case of the
cross-ply laminates with material axes parallel to the
tangential plane, the symmetry about the Z = 0 plane does
not exist. Both half-section and full-section of the ring
specimen were analyzed using the same mesh and results were
compared. Figures (27) and (28) show the distribution of Tz-
stress and Z-stress along Rl for full and half section
analysis. Even though the results agree near the free
surface, the stresses near midsurface were quite different.
Therefore, for analysis of angle-ply laminates,

discretization of the full section is necessary.

Results for the pseudo-three-dimensional analysis were
compared with the numerical solution obtained using Q23
element [11]. The same mesh size was used in both
procedures. Figures (29) through (44) compare stress fields
at specific locations for the [45/-45], laminate using the
Q23 and the present axisymmetric analysis. The mesh used was
refined near the free edge. Each physical layer was
subdivided into sublayers, the total number of sublayers is
denoted by N. Full section was used for the axisymmetric
analysis, corresponding to 288 (16x18), (N=16) mesh for half
the section of the ring (i.e., the total number of elements
used was 576). Figures (29), (30) and (31) show the
distribution of Tz-stress along Rl, R4 and R8 respectively.

The results along Rl and R8 obtained using axisymmetric
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analysis agreed well with Q23 element solution across the
entire width of the laminate. The distribution of other
stress components along Rl were also in satisfactory
agreement with Q23 element solution. A difference in the
stress distribution along R4 is observed near the free edge

where a steeply varying stress exists.

A comparison of the TR-shear stress distribution along
R4 (Figure (32)) indicated that the axisymmetric analysis
solution had sharp rise toward the free edge similar to Q23
solution. Satisfactory agreement was observed between these
two solutions for stress across the width except at the
free-edge boundary where axisymmetric analysis overestimated
the stress values as compared to Q23. Figure (33) shows the
distribution of TR-stress along R8. The results agreed well
except near the free edge. This could be due to the finite
element mesh not being fine enough to approximate the
steeply varying stress near the free corner. Figure (34)
shows through-thickness distribution of TR-stress near the
free edge (at 2/B=0.99). Singular behavior of TR-stress
which is highly 1localized near the interface of 45/-45
layers is noticeable. The axisymmetric analysis gave higher
value of stresses than the Q23 element in the vicinity of

the interface. Distribution of R-stress along R4 is shown in
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Figure (35). The results showed reasonable agreement with
those obtained wusing Q23 element. Through-thickness
distribution of R-stress near the free edge (Figure (36))
shows a steeply varying stress distribution in the vicinity

of the interface of 45/-45 layers.

Figure (37) shows the distribution of Rz-stress along
k4. A very close agreement was generally observed between
solutions except at the last value near the free edge where
a steeply varying stress exists. Figure (38) shows through-
thickness distribution of Rz-stress at Z/B=0.99. A steeply
varying stress distribution associated with abrupt change of
material properties is also observed in the vicinity of the
interface of 45/-45 1layers. However, the axisymmetric
analysis gave a lower, as compared to Q23 analysis, estimate
of the stresses near the interface. A discrepancy in the
distribution of Z-stress along R4 and R8, between the two
procedures, near the free edge is observed in Figures (39)

and (40).

Distribution of T-stress along R8 is shown in Figure
(41). Contrary to the T-strain distribution, the T-stress
distribution 1is not uniform along a sublayer. This is
because it depends on r, z, Tz and T-strains. Figures (42~
44) show the distributions of r, z, and Tz-strains near the

free surface of the coupon.
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4.3.4 Effect Of Mesh Refinement

Analysis of the four-ply laminate was done in this
study using a 288-element model for half section analysis,
locally refined near the free edge in the Z-direction. To
study the effect of local mesh refinement near the free edge
on the solutions, comparisons were made for the stress
distributions in the four-ply laminate specimen between
results from a uniform 160-element model shown in Figure
(45) and those from a locally refined 288-element model. The
288-element, Figure (4), model was obtained by dividing the
two elements closest to the free edge in the 160-element
model into 10 elements along the Z-direction. Refinement for

both the cross-ply and the angle-ply specimens were studied.

Figure (46) shows the distribution of R-stress along RS
near the interface of 0/90 layers. It is clear that the
singular stress behavior near the free-edge was reproduced
more closely by the 288-element model and did not show well
in the results based on the 160-element mesh. Therefore, a
finite element mesh refined in regions of steeply varying

stresses is necessary.

Further refinement in the Z-direction was considered in

order to study the effect of mesh refinement on some stress

distributions where poor results were observed. A more
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refined mesh, 416 elements (16x26) for half section
aralysis, obtained by further dividing the two elements
closest to the free edge in the 288-element model (16x18)
into 10 elements, was used. Results from the axisymmetric
analysis were compared with the Q23 element solutions
obtained using the original mesh size which corresponds to
the (16x18) elements model. Figure (47) indicates the
improvement 1in the distribution of Rz-stress along RS
specially near the free edge where the traction-free
boundary condition was better repioduced by the finer mesh.
The distribution of Z-stress along R4 is shown in Figure
(48). Refinement did not make any noticeable difference to
the distribution. The only improvement was that values of
stresses closer to the free edge were available. Figures
(49), (50).show the distribution of R-stress at R7 and RS.
Refinement of the mesh near the free edge did not have much
influence on the calculated values of the stress components.
The oscillatory variation in the stress component near the

free edge is present in all the analyses.

The effect of mesh refinement on the distribution of
Tz, Rz and Z-stresses along R4 of [45/-45], laminates is
shown 1in Figures (51), (52) and (53) respectively. The
refined mesh near the free edge was iieccessary to represent

the steeply varying stresses in this vicinity (i.e., near
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the interface of 45/-45 layers and near free edge). The
figures indicate that the stress values obtained using the
refined mesh approached the traction-free boundary

condition.

Figure (54) shows the effect of mesh refinement near
the free edge of TR-stress along R8. The stresses varied
steeply near the corner of the laminate and the singular
stress behavior was reproduced somewhat better by the

refined mesh.

The effect of refinement in the r-direction was also
studied. Figures (55), (56) show the distribution of R-
stress along R7 and R8 of the cross-ply laminate for N=48
(each physical layer was subdivided into twelve uniform
sublayers), and they indicate that the result of the refined
mesh, N=48 gave better results then those obtained for N=16.
The values at R7 were nearly coincident with the results of
the Q23 analysis. At R8 there was considerable improvement
but an oscillation of stresses existed near 2/B = 0.6 to

0.8.

The effect of mesh refinement in the r-direction on
through~-thickness distribution of stresses near the free
edge for N=32, (each physical layer was subdivided into 8

sublayers) and N=16 is described in Figures (57) through
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(61) . The continuous-traction analysis gave values of the
stress field at the interface of the layers. For the
axisymmetric analysis, an estimate of the stress field at
the interface of lamina was made by interpolating from the
stress field computed at the centers of the sublayers. Cubic

spline functions were used.

Figures (57), (58) show through-thickness distribution
of R and Rz-stresses at Z/B=0.99 of cross-ply laminate. The
steeply varying stresses near the interface of the 0/90
laminate and the stress free condition at the free surface
were more closely reproduced by the refined mesh. The
percentage difference in the values of the stresses, at the
interface of 0/90 laminate, using the present analysis and
using the Q23 element were 10% and 46% for R-stress and Rz-

stress respectively.

Figures (59), (60) and (61) show through-thickness
distribution of TR, R and Rz-stresses near the free edge of
[45/~-45], laminate. The figures indicate a difference in
results between the axisymmetric analysis and the Q23
element solution near interface of 45/-45 layers. However,
the refined mesh gave satisfactory results near the free
surface where a traction-free condition exists. At the
interface of the 45/-45 layers, the interpolated values
obtained using spline fitting of the axisymmetric analysis
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results differed by 16%, 26%, 10%, as compared to
approximate stress value obtained using the Q23 analysis,

for TR, R, and Rz stress components respectively.

Another interpolating scheme, used in order to estimate
the stress field at the interface in Figures (57) through
(61) was studied. Cubic spline functions were used except
for the two stress values near the interface where quadratic
functions were used. The two quadratic curves were assumed
to have equal and opposite curvature. In this case, the
interpolating polynomials had continuous first and second
derivatives except at the interface where there is a
discontinuity in stress gradients. Figures (62), (63) show
through-thickness distribution of R and Rz-stresses at
2/B=0.99 for cross-ply laminate. Using the interpolating
scheme described above, the percentage difference, at the
interface of 0/90 layers, of R-stress values for the
axisymmetric analysis compared with that from the Q23
element analysis increased from 10% to 16% while that of Rz-
stress decreased from 46% to 28%, as compared to the spline
fit interpolation. Figures (64), (65), (66), show,
respectively, through-thickness distribution of Tr, R, Rz-
stresses near the free edge. The percent error, at the
interface of 45/-45 layers decreased from 16% to 2% for Tr-

stress and from 10% to 9% for Rz-stress but increased from
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26% to 35% for R-stress, as compared with the spline fit

interpolation.

A third scheme consisted of a two-step curve fitting
procedure. The stress values on each side of the interface
were obtained by extrapolating from a spline fit to all the
points other than the interface. The two curves had zero
curvature at the interface and gave different values of the
stress at the interface. The actual stress at the interface
was then assumed to be the average of the two interpolated
values. Having found the stress at the interface, a spline
fit of data was carried out. The results showed that there
was not much difference in the interpolated stress value as
compared to the previous interpolation scheme. Figures (67),
(68) show the distribution of Rz-stress for the cross-ply
laminate and TR-stress for the angle ply laminate,

respectively, for this scheme.
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4.4 NTY-TWO ANG LY LAMINATE

4.4.1 Geometry, Material Properties and Finite Element
Mesh

A ring specimen with fiber orientation ([(25.5/-
25.5)g/90]g was used in the present investigation. The
laminate width and ply thickness were 1.0 in and 0.00505 in
respectively. The material properties were [11]:

E;, = 19.26 * 10% psi

E,, = Ej5 = 1.32 * 10% psi

Gyp = Gy3 = G5 = 0.83 * 10° psi

K12 = B13 = K23 = 0.35
Each ply was modeled by a single element through its
thickness (N = 22). The mesh used was more refined near the
free-edge. Full section was used for the axisymmetric
analysis, corresponding to 308 (22x14) mesh as shown in
Figure (69), for half-section discretization of the ring.
This corresponds to 154-element model for a quadrant us used
with the continuous traction Q23 element in [11]. The value

R shown in Figure (69), denotes the distance from the

ir
central plane of section to the center of the jth layer. Ry
is the closest to the midplane of the specimen and
corresponds to the 90-degree ply, Ryq is closest to the top
surface and corresponds to the 25.5-degree ply. The internal
pressure applied was 0.00987687 (psi) which yields an

average axial strain equal to that applied in Q23 element

analysis (0.95414*10°5).
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4.4.2 Numerical Results

Numerical results based on the pseudo-three dimensional
axisymmetric analysis using QM4 element were compared with
results based on the continuous traction Q23 element
described in [11]. The same mesh size was used in both the
analysis. Figures (70) through (85) show comparison of
stress fields at specific locations for the multi-ply
laminate wusing the Q23 element and the axisymmetric

analycis.

Figures (70), (71), (72) and (73) show the distribution
of 2z-stress along Rl, R5, R6 and R1l1l respectively.
Satisfactory agreement was observed between the axisymmetric
analysis and the Q23 element solution except at Z/B = 0.56
to 0.89 in Figures (70) and (73). This could be due to the
finite element mesh not being fine enough in this region.
The effect of mesh refinement is described later in this
section. The figures also indicate that the stress values
obtained using the axisymmetric analysis approach the

traction-free boundary condition at the free edge.

A comparison of Rz-stress distribution along R1, R5 and
R6 (Figures (74), (75) and (76) respectively) indicated that
the results obtained using axisymmetric analysis agreed well

with Q23 element solution across the entire width of the
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laminate except in the region of Z/B = 0.56 to 0.79 where
apparently the mesh was not fine enough to approximate the
steeply varying stress. Figure (77) shows the distribution
of Rz-stress at R1l1l, center of the layer nearest to the

surface. A discrepancy in results was observed.

Figures (78), (79), (80) and (81) show the distribution
of Tz-stress at R1, R5, R6 and R1ll respectively. A close
agreement was observed between the Q23 element and the
axisymmetric solution except near the free edge where a
steeply varying stress exists. Distribution of T-stress
along Rl 1is shown in Figure (82). The figure indicates
satisfactory agreement between the axisymmetric analysis and

the Q23 element solution.

Figures (83),(84), (85) show, respectively, through-
thickness distribution of R, Rz and TR-stresses at
Z2/B=0.995. A difference in results at some locations was
observed between the two analyses for the Rz and TR-
stresses. The R-stress values at centers of elements were
underestimated throughout. Considering that the coarseness
of mesh could be contributing to the discrepancy and to
study convergence of results effect of mesh refinement in

both the R and the Z-direction was considered.
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4.4.3 Effect of Mesh Refinement

Mesh refinement in the R-direction as well as in the Z-
direction near the free edge was considered. Full section
was used for the axisymmetric analysis. The mesh,
corresponding to 726 (22x33) as shown in Figure (86) for
half section discretization, was used to study refinement
effect near the free edge. The mesh was obtained by dividing
the two elements closest to the free edge in the 308-element
model into 10 elements and also by refining in the region of
Z/B = 0.4 to 0.8. results from the axisymmetric analysis
were compared with the Q23 solutions obtained using the
original mesh size which corresponds to the 308-element

model.

Figures (87), (88), (89), and (90) show the
distribution of 2Z-stress along R1l, R5, R6, and R1ll
respectively. The figures indicate improvement in the
distribution of Z-stress specially in the region of Z/B =
0.56 to 0.8 and near the free edge where the traction-free

boundary condition was better reproduced by the finer mesh.

The effect of mesh refinement on Rz-stress distribution
along R1, R5, R6 and R1l1] is shown in Figures (91), (92),
(93) and (94) respectively. The refined mesh in the region

of Z/B = 0.6 to 0.8 was necessary to represent the stress
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variation in this region even though a difference in the
axisymmetric analysis and the Q23 element solution was still
observed in Figures (92-94). The distribution of Rz-stress
along R1l1l (Figure (94)) shows that the stresses varies
steeply near the corner of the laminate and the singular
stress behavior was reproduced somewhat better by the

refined mesh.

Figures (95), (96), (97) show the effect of mesh
refinement on Tz-stress distribution along R1, R5, and Ré.
A difference in results between the Q23 element solution and
the axisymmetric analysis near the free edge was still
observed. Figures (98) shows the distribution of Tz-stress
along R11 and indicates that the results obtained using the

refined mesh agreed well with the Q23 element solution.

The effect of mesh refinement in the R-direction on
through~-thickness distribution of stresses near the free
edge was also studied. Each physical layer was subdivided
into two sublayers, which correspond to (44x14) element
model for half section discretization. For the axisymmetric
analysis, an estimate of the stress field at the interfaces
of the lamina was made by interpolating from the stress
field computed at the adjacent centers of the sublayers.

Cubic spline functions were used. Results were compared with
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the Q23 element solution which gave values of the stress
fields at the interfaces. Figure (99) shows through-
thickness distribution of R~stress at Z/B= 0.995. The Q23
element solution showed an oscillatory pattern of stress
which was not seen in the spline fit of the axisymmetric
analysis. Figure (100) shows through-thickness distribution
of Rz-stress at 2/B = 0.995. The figure indicates
satisfactory agreement between the axisymmetric analysis and
the Q23 element solution except at the interface of the 90-
degree layer and the angle-ply layer where a singular stress
behavior is observed. Figure (101) shows through-thickness
distribution of Tr-stress near the free edge. The refined
mesh showed an oscillatory pattern of stress which agreed
with the Q23 solution. At the interfaces of the layers, the
interpolated wvalue, obtained using spline fitting of the
axisymmetric analysis results differed by up to 16% as
compared to the approximate stress values obtained using the
Q23 analysis. However, this discrepancy could be largely due
to the spline fit which insures continuity of slopes and
curvatures. For the laminate considered, the TR-stress
component may (and Q23 analysis confirms this) have

discontinuity in gradients at the interfaces.
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SECTION V

DISCUSSION

The problem of linear elastic stress analysis of a
composite structure of axisymmetric geometry and loading has
been investigated and computer programs developed based on
finite element discretization using the modified bilinear
quadrilateral elements with selectively reduced integration.
Allowing for the tangential degree of freedom, the analysis
is applicable to angle ply laminates. The axisymmetric
analysis procedure can be used to model behavior of cross-
ply as well as angle-ply coupons subjected to uniform axial
strain. For a sufficiently large diameter, a ring specimen
subjected to internal pressure is equivalent to an endless
straight free edge coupon subjected to an essentially
uniform inplane extension. Therefore, the main advantage of
the ring specimen, compared with other finite element
models, is that it is completely free of end constraints,
thereby modeling the free edge delamination coupons somewhat

better.
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In the cross-ply laminate analysis, numerical results
calculated from the axisymmetric stress analysis generally
agreed well with the continuous traction Q23 element except
near the free surface. This is because the continuous
traction Q23 element allows traction-free boundary
conditions to be specified in a pointwise sense while the
present analysis does not. The study also revealed that the
pattern of mesh refinement had significant effect on the
estimate of the stress distribution in the vicinity of the

free surface and the traction-free edge.

For the angle-ply laminate problem, a pseudo-three
dimensional analysis specifying geometry and displacements
as axisymmetric but including displacements in all three
coordinates directions is necessary. Further, discretization
of the full section is necessary for the analysis of angle-
ply laminate since symmetry about the Z = 0 plane does not
exist. Numerical results from the axisymmetric analysis
agreed well with continuous traction Q23 element except near
the free edge. Mesh refinement in the vicinity of the free
edge indicated that the traction-free boundary condition was
more closely approximated by the refined mesh. It was found
that for a good estimate of the stress field, a mesh refined
in the vicinity of the fiee edge as well as near the free

surface should be used.
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In the multi-ply laminate analysis, numerical results
obtained using the pseudo-three dimensional axisymmetric
analysis agreed well with the Q23 element solution except at
the free edge and at the interfaces of the layers. A mesh
refined in the vicinity of the free-edge and 1in the
thickness direction had significant effect on the estimate

of the stress field.

The computational procedure developed is efficient in
terms of computation time for the analysis of axisymmetric
composite structures with axisymmetric 1loading. In
particular, for the free-edge delamination problem, the
procedure 1is much 1less expensive than the continuous
traction Q23 element (11]. For the same mesh of the four-ply
laminate problem, the CPU time, on an IBM 3081 mainframe
computer, using the present analysis was 25 seconds for the
two-dimensional analysis (323 nodal points), and 4 minutes
for the pseudo-three-dimensional analysis (629 nodal points)
and full section discretization, as compared to 40 minutes
using the continuous traction Q23 element (485 nodal
points). For the 22-ply laminate problem, the CPU time using
the present analysis was, respectively, 4 minutes 40
seconds, 9 minutes 41 seconds, 12 minutes and 31 minutes 45
seconds for a mesh corresponding to (22x14) (667 nodal
points), (44x14) (1305 nodal points), (22x33) (1541 nodal

points) and (44x33) (3015 nodal points) for half section
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discretization. The CPU time using the continuous traction
element was 45 minutes 38 seconds for a mesh of (14x22) (513

nodal points). The code 1is applicable to general

axisymmetric laminated systems.
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