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radius of curvature. The curvature affects the inner part or the flow if
a+, the cylinder radius in wall units, is small. This flow regime is
common in sonar devices towed by long cables. Two direct numerical
simulations of transversely curved flows were performed and statistical
and structural data were extracted from th= computed flow fields. The
effects of the transverse curvature were identified by ccmparing the
present results with those of the plane channel simulation, performed at
a similar Reynolds number. As expected, the transversely curved
turbulent flow exhibits many features common to the planar flows:
near-wall low speed streaks, near-wall inclined shear layers, near-wall
streamwise vortices, Reynolds shear stress dominated by second and
fourth quadrant events, etc. As the curvature increases, the skin
friction increases, the slope of the logarithmic region decreases and
turbulence intensities are reduced. Several turbulence statistics are
found to sca)- -itn a cuivature dependent veiucity scale derived from
the mean momentum equation. Near the wall, the flow is more arisotropic
than in the plane channel with a larger percentage of the turbulent
kinetic energy resulting from the streamwise velocity fluctuations.
Near-wall streamwise vortices are the strongest sources of pressure
fluctuations. As the curvature increases, regions of strong normal
vorticity develop near the wall.
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Abstract

Convex transverse curvature effects in wall bounded turbulent flows are sig-

nificant if the boundary layer thickness is large compared to the radius of curvature.

The curvature affects the inner part of the flow if a+, the cylinder radius in wall

units, is small. This flow regime is common in sonar devices towed by long cables.

Two direct numerical simulations of transversely curved flows were performed

and statistical and structural data were extracted from the computed flow fields.

The effects of the transverse curvature were identified by comparing the present

results with those of the plane channel simulation, performed at a similar Reynolds

number. As expected, the transversely curved turbulent flow exhibits many fea-

tures common to the planar flows: near-wall low speed streaks, near-wall inclined

shear layers, near-wall streamwise vortices, Reynolds shear stress dominated by sec-

ond and fourth quadrant events, etc. As the curvature increases, the skin friction

increases, the slope of the logarithmic region decreases and turbulence intensities

are reduced. Several turbulence statistics are found to scale with a curvature de-

pendent velocity scale derived from the mean momentum equation. Near the wall,

the flow is more anisotropic than in the plane channel with a larger percentage

of the turbulent kinetic energy resulting from the streamwise velocity fluctuations.

Near-wall streamwise vortices are the strongest sources of pressure fluctuations. As

the curvature increases, regions of strong normal vorticity develop near the wall.

As the curvature increases the wall pressure fluctuations are dominated by
smaller spanwise length scales. Fractional contributions from various layers in the

flow to the wall r.m.s. pressure are marginally affected by the curvature. The ratio

of the axial to azimuthal length scales of the wall pressure fluctuations increase with
increasing curvature. Curvature dependent time and length scales are identified

that collapse the high frequency range of the wall pressure temporal spectra and

the high wave number range of the wall pressure streamwise spectra of flows with

different curvatures. Taylor's hypothesis holds for the wall pressure fluctuations

with a lower convection velocity than in the planar case.
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NomenclatureI

3 Roman Symbols

a Cylinder radius.

a+ Cylinder radius in viscous units.
CJ Skin friction coefficient, 2rw/(pU ).

d = Ro - Ri Taylor-Couette flow cylinder gap.

Epp(kz) Axial (streamwise) 1D energy spectrum of the pressure.

Eppc(kzc) Streamwise 1D energy spectrum of the pressure transformed

from the power spectrum through Taylor's hypothesis.

Epp(ke) Azimuthal (spanwise) 1D energy spectrum of the pressure.

Evv(kz) Axial (streamwise) 1D energy spectrum of the velocity com-

ponent v.

Evv(ke) Azimuthal (spanwise) 1D energy spectrum of the velocity

compor-ent v.

f Source terms of the pressure Poisson equation.

fW Window function.

F(vz, Vr, ye) Flatness factor of the velocity.

Fz, Fe Axial and azimuthal wall pressure similarity functions.

I Curvature dependent velocity scaling function.
G Inner cylinder torque in Taylor-Couette flow.

3 Green's function of the Laplacian operator.

H Boundary layer shape factor.

I ft Convective term vector.

Hz, Hr, He Components of the convective term vector.

3 Hr,/IT Modified convective terms.

I0, II Surfaces through the axis of the cylinder.

Iz, I1 z Surfaces normal to the mean velocity.
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ko Azimuthal (spanwise) wave-number. U
kz Axial (streamwise) wave-number.

kzc Convection axial (streamwise) wave-number.

K* Energy partition parameter. 3
£ Strum-Liouville operator.

LO, Perimeter of the circumference of the cylinder.

LO. Perimeter of the outer circumference of the computational
domain.

Lt Temporal length of the wall pressure overlapping domains.

LT Temporal length of the wall pressure record.

Lz Length of the computational domain in the axial direction.

L* Length scale anisotropy parameter.

L9e  Length scale based on the azimuthal (spanwise) two-point

correlations of vz. 3
L z  Length scale based on the axial (streamwise) two-point cor-

relations of Vz.

MAxial mass flux.

m, k Wave-number index pair in the azimuthal and axial direc- 3
tions.

Nz, Nr, No Number of grid points in the axial, radial and azimuthal

directions.

Ns Number of wall data samples. 3
p Pressure fluctuation.

Pr- Wall pressure fraction due to sources at ro E [a, rs]. 3
Pr+  Wall pressure fraction due to sources at ro E [rs, a + 11.

P Pressure. 3
P Mean pressure.

Ph, P Homogeneous and inhomogeneous pressure. 3
pw Wall pressure fluctuations.

13w Filtered wall pressure fluctuations. 3
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r Radial coordinate.

re Radius of Rankine vortex.

ro Radial position of a source in axisymmteric coordinates.

rs Radial wall pressure source position cutoff.

rt Temporal separation in viscous units.

r Streamwise separation in viscous units in the plane channel.

i Axial separation in viscous units in the cylinders and span-

wise separation in viscous units in the plane channel.

I Ri, Ro Inner and outer radius of the computational domain.

Rvv(z) Axial (streamwise) two-point correlation function of the ve-

* locity component v.

Rvv(O) Azimuthal (spanwise) two-point correlation function of the

Svelocity component v.

Rpp(z) Axial (streamwise) two-point correlation function of the pres-

3 sure.

Rpp(O) Azimuthal (spanwise) two-point correlation function of the

* pressure.

Rea Reynolds number based on U,, and a.

3 Rec Critical Reynolds number in Taylor-Couette flows.

Red Gap Reynolds number in Taylor-Couette flows.

Re6  Reynolds number based on U and 6.

Rer Rankine vortex circulation Reynolds number.

3 Rer Reynolds number based on Ur and 6.

S Mean shear rate parameter.

S(Vz, Vr, ve) Skewness factor of the velocity.

Soy Cylinder surface area.

IS* Non-dimensional mean shear rate parameter.

t Time.
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Uc Convection velocity.

Uf Curvature dependent global velocity scale.

U.o Mean velocity at the outer edge of the domain.

U +  Mean velocity profile normalized by Ur. 3
Ur Friction velocity.

u velocity scaling.

Vcy Flow volume.

V Velocity vector. 3
Ve Rankine vortex edge velocity.

Vrh, Vri Inhomogeneous and homogeneous radial velocity.

Vz, Vr, V Axial, radial and azimuthal components of the velocity field.

Vz, Vr, Ve Axial, radial and azimuthal mean velocity components. 3
Vz, Vr, Ve Axial, radial and azimuthal components of the fluctuating

velocity field. i

y Coordinate normal to the wall.

Ymax Mean position of the center of the near-wall Rankine vortex. 3
+  Mean position of the edge of the near-wall Rankine vortex.

Distance from the wall in viscous units. 3
Yo Normal position of a source in cartesian coordinates.

Ys Wall pressure source position cutoff. 3
z Axial coordinate. II

Greek Symbols

1, °2 Constants in the enforcement of the pressure boundary con- -
ditions.

Radial coordinate stretching parameter.

6 Boundary layer thickness. 3
bf Curvature dependent global length scale.

6(r - r,) Dirac delta 'function' with ,,iirce at r = r. 3
xxi



I
j

Ake, Akz Wave-number resolution in the azimuthal and axial direc-

* tions.

6* Boundary layer displacement thickness.

3 At Time step.

Ats Sampling frequency.

3 Aoi+,A8 0
+  Grid spacing in the azimuthal direction at r = a and r

a+1.

* Aw Frequency resolution.

f Viscous dissipation of turbulent kinetic energy.

3 7 Strength of the near-wall Rankine vortex.

r Circulation of the near-wall Rankine vortex.

A Spanwise wavelength of Taylor vortices.

A Mean spanwise streak spacing.

I # Molecular viscosity.

V 2  Laplacian operator.

3 v Kinematic viscosity.

A Vorticity vector.

I w Frequency.

Wz,Wr,We Axial, radial and azimuthal components of the fluctuating

vorticity field.

~, 1 1# Axial, radial and azimuthal components of the vorticity field.

3 i Angular speed of inner cylinder.

Opp Wall pressure temporal spectrum.

I pp(kz, w) Two-dimensional wall pressure frequency/streamwise wave

number spectrum.

I p Density.

arO, 01z, azr Components of the shear stress.

r Total stress.

Tw Wall shear stress.

1 0 Azimuthal coordinate.
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9* Boundary layer momentum thickness.

Erz Angle of the projection of the vorticity in (r, z)-planes.

T Velocity field dependent variable.

Chebyshev coordinate. 3
Tensor Notation 3

9gJ Coordinate metric tensor.

vi  Contravariant velocity fluctuations. 3
V i  Contravariant velocity.

Vi Contravariant mean velocity. 3
(xi, x2, X3) Tensorial coordinates.

,k Contravariant derivative. I

Other Symbols I
+ Indicates normalization in wall coordinates. 3

Indicates averaging in time and in the axial and azimuthal

directions. 3
< > Indicates averaging in the axial and azimuthal directions.

Indicates temporal filtering. 3
Indicates Fourier transform.
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H CHAPTER 1I
Introduction

I
Turbulent flows that evolve over surfaces with convex curvature normal to the

mean flow are common in engineering applications. However, it is only for strong

curvatures that the curvature effects become noticeable. For this reason this flow

has received less attention than its planar counterpart, and the body of experimen-

tal data available is limited. Transversely curved turbulent flows with large curva-

ture effects occur over sonar devices towed by long cables. Of particular interest

is the characteristics of the wall pressure fluctuations underneath the transversely

curved boundary layers.I
1.1 Transverse Curvature Effects

In turbulent flows with transverse curvature there is an additional length scale,

the cylinder radius, a. The added complexity introduced by the new length scale

is evident in the laminar flow regime. While in the planar case the absence of a

length scale leads to the self-similar Blasius velocity profile, in the axisymmetric

boundary layer there is no self-similar laminar solution (Seban & Bond [1951]).

The new length scale gives rise to several flow regimes that are characterized

by the ratios of the cylinder radius to the flow length scales: the boundary layer

thickness 6, and the viscous length scale V/UT. The two resulting parameters, 6/a

3 and a+, define a two-dimensional parameter space in which three flow regimes can

be identified. If 6/a is small the curved boundary layer is similar tc the planar

boundary layer. In some applications the boundary layer may grow to be several

times thicker than the radius (large 6/a), in which case the transverse curvature

affects the flow differently depending on the magnitude of a + . If 6/a is large, and

a+ is also large, then the curvature only affects the outer part of the flow. If 6/a

I
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FIGURE 1.1 Experimental data available for the axial turbulent flow along a circular
cylinder given as a function of the parameters 6/a and a+ : & Luxton et al. (1984);
+ Lueptow et al. (1985) and Lueptow & Haritonidis (1987); x Willmarth & Yang I
1970) and Willmarth et al. (1976); * Rao & Keshavan (1972); o Afzal & Narasimha

(1976); v Richmond (1957); a Yu (1959); * present calculations.

is large and a+ is small, the curvature affects both the inner and the outer parts of

the flow.

Some of the flow parameters 6/a and a+ that have been investigated experi- I
mentally are summarized in Figure 1.1. Lueptow (1988) provides a comprehensive

review of the experimental investigations of this flow. With the exception of Afzal & I
Narasimha (1976), whose boundary layers have characteristics very similar to those

of the flat plate, in most experiments the influence of curvature is predominantly 3
on the outer part of the flow. Some of the experiments of Luxton et al. (1984)

(9 < a + < 47 and 26 < 6/a < 42) and of Willmarth et al. (1976) (2 < 6/a < 42 and I

a+ > 33) are within the range where both the inner and outer parts of the flow are

affected. In the cxperiments of Rao & Keshavan (1972) (4 < 6/a < 12 and a + > 23) 3
2
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and Lueptow et al. (1985) and Lueptow & Haritonidis (1987) (4 _ 6/a < 8 and

a+ > 38) the curvature primarily affects the outer layer.

One of the characteristics of flows with transverse curvature is larger skin friction

coefficients (Cf) than in planar flows of similar Reynolds number (see for example

Rao & Keshavan [1972] or Willmarth et al. [1976]). In the viscous sublayer of

transversely curved flows the momentum equilibrium is expressed by rr = arw

(Glauert & Lighthill [1955]). Reid & Wilson (1963) and Rao (1967) proposed a

curvature dependent law of the wall,I
U+ a+ In (I+ ), (1.1.1)

which predicts curvature effects on the sublayer for sufficiently small a+ .

To achieve large ,/a, experiments are typically performed over long tubes or

wires of very small diameter (Luxton et al. [1984] and Lueptow et al. [1985]

and Lueptow & Haritonidis [19871). In such experimental facilities, the structural

isolation of the wires, the aeroelastic interaction between the flow and the wire,

the alignment of the cylinder with the mean flow, and the cylinder sag are major

concerns. In addition, if a+ is small, the size of the measuring probe (e.g., hot

wire) relative to the cylinder diameter becomes an issue in near-wall measurements.

Finally, some of the measurement techniques used are based on the assumption that

close to the wall the mean velocity profile is the same as that of the flat plate (see

for example Richmond [1957] and Lueptow et al. [1985]). Attempts to address

some of these problems are described by Willmarth & Yang (1970) and Lueptow

& Haritonidis (1987).

If 6/a is not large (Rao & Keshavan [19721 and Lueptow et al. [1985]), the

logarithmic region of the mean velocity profile has the same slope as the planar

case. This flow regime is described analytically by Afzal & Narasimha (1976)

with the method of matched asymptotic expansions. They conclude that when

6/a = O(1) and in the limit of a+ -+ oo, the axisymmetric turbulent boundary

* layer must have logarithmic and velocity defect profiles of the same form as in the

planar turbulent boundary layer. The two parameters in the logarithmic velocity

profile are found to depend on 6/a (Afzal & Narasimha [1976]). As 6/a increases

and a+ decreases, the mean velocity profiles exhibit a logarithmic region with a

I3
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decreasing slope (Lueptow et al. [1985]), and for sufficiently large 6/a and small U
a+, the logarithmic region deteriorates and becomes negatively curved (Willmarth

et al. [1976] and Luxton et al. [19841). Some effort has been devoted to identifying I
the curvature dependence of the logarithmic velocity profile, however, it is clear

from Leuptow's (1988) review that no consensus exists on this issue. Nevertheless,

the available data suggests that when b/a is small and a+ is large the slope of the

logarithmic region tends to scale with 6/a (Lueptow et al. [1985]). As b/a increases

and a+ decreases, the logarithmic profile depends on both parameters (Willmarth

et al. [1976], Luxton et al. [1984]). 3
The Reynolds shear stress in the outer part of the transversely curved boundary

layer is lower than its planar counterpart (Lueptow et al. [1985]). Reynolds shear

stress quadrant contributions in the transversely curved turbulent boundary layers

are similar to those in the planar geometry (Lueptow & Haritonidis [1987]). At
y+ ; 39 Lueptow et al. [1987] measured higher fractional contributions from second i
and forth quadrant events than in the planar case for weak events. Intense events

arp found to have a lower contribution to the Reynolds shear stress.

The axial and normal turbulence intensities measured by Luxton et al. (1984)

or Lueptow & Haritonidis (1987) are also lower than their flat plate counterparts

in the outer part of the boundary layer. Close to the wall (y+ < 20), the measured

axial intensities have magnitudes similar to those of the planar case, with maxima

(-21/2/u;t 3.2) also located at y+ 12.

In a visualization study of axial flow over a cylinder, Lueptow & Haritonidis

(1987) observed large scale structures moving across the cylinder. It is not clear

whether the observed transverse flow motions are the result of oscillations of the

wire (Lueptow [1989]). Since these large structures were linked to the azimuthal

velocity component (Lueptow & Haritonidis (1987]) they should significantly affect

the intensity of the azimuthal velocity fluctuations, which unfortunately were not i

measured. Similar large scale structures were also observed by Luxton et al. (1984)

for larger curvatures (6/a > 20) only. Luxton et al. (1984) suggested that these 3
large scale structures are important for turbulence generation in this flow.

I
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I 1.2 The Wall Pressure

U Knowledge of the characteristics of the wall pressure fluctuations is important

for understanding flow-induced sound generation and the structural interaction

between the flow and the body. A comprehensive treatment of this subject is
given by Blake (1986). Since transversely curved turbulent flows occur over sonar

devices towed by long cables, it is important to understand the characteristics

of the wall pressure fluctuations in the flow regime where 6/a is large and a+ is

small. Reviews of measured wall pressure fluctuations on a flat plate are given by

Willmath (1975) and Eckelmann (1989). The effects of transverse curvature on the

space-time characteristics of the wall pressure were investigated experimentally by

Willmarth & Yang (1970) for b/a , 2 and by Willmarth et al. (1976) for b/a , 4.

Since in both studies a+ = O(103), the curvature effects were limited to the outer

3 part of the flow.

Many of the difficulties in the measurement of the wall pressure fluctuations can

be overcome by the use of direct numerical simulations (Handler et al. [1984] and

Choi & Moin [1990]). However, simulations are limited to low Reynolds numbers.

There is some evidence (Willmath [1975]) that the root-mean-square (r.m.s.) pres-

sure normalized by the mean wall shear decreases with decreasing Reynolds number.

This was confirmed by Choi & Moin (1990), who also found that the spectrum of

the wall pressure fluctuations decreases with decreasing Reynolds number for low

frequencies when scaled with inner variables and for high frequencies when scaled

with the outer variables. In the two transversely curved turbulent boundary layer

studies of the wall pressure fluctuations no appreciable effect of curvature on the3 r.m.s. wall pressure was found (Willmarth & Yang [1970]).

As had been found in previous experiments (Willmarth & Wooldridge [1962],3 Wills [1964], Emmerling [1974]), the large scale pressure correlation contours of

Choi & Moin (1990) were more elongated in the spanwise direction than in the3 streamwise direction. The curvature dependence of the wall pressure correlations

has not been established. Willmath & Yang (1970) (6/a ; 2) suggest that for large
separations the ratio of spanwise to streamwise length scales decreases. However,

their later study for 6/a - 4 (Willmarth et al. [1976]) shows the opposite trend.

Nevertheless, the wall pressure "Willmarth et al. [1976]) is significantly correlated3 around the cylinder and the azimuthal extent of the correlation increases with

I5
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increasing curvature. Willmarth & Yang (1970) argued that the main effect of I

the transverse curvature is to reduce the spanwise length scale of the large eddies,

located in the outer part of the boundary layer. I
In the planar turbulent boundary layer (Willmarth & Wooldridge [1962]) as well

as in the transversely curved turbulent boundary layer (Willmarth & Yang [1970] I
and Willmarth et al. [1976]), the space-time wall pressure correlations indicate that

the eddies decay after traveling a distance of the order of their size. Convection

velocities can be defined from the wall pressure space-time correlation contours

(Wills [1964]). In the planar geometry, there is a consensus among the experimen-

tal (Willmarth & Wooldridge [1962], Panton & Linebarger [1974]) and numerical

(Choi & Moin [1990]) values reported for the convection velocity, which is about

0.8U,,. Using a definition of the convection velocity that is independent of tempo-

ral separation (Wills [1964]), Choi & Moin (1990) found a convection velocity of

0.72Uoo, for which Taylor's hypothesis was more accurate for large structures than

for small ones. In the transversely curved turbulent flows of Willmarth & Yang

(1970) and Willmarth et al. (1976), convection velocities identical to that of the

planar case were reported. I
1.3 Motivation and Objectives

Direct numerical simulation of turbulence is the ideal tool for the study of turbu- I
lent flows at low Reynolds numbers. This technique is also well suited for providing

spatially and temporally resolved data to study the characteristics of the wall pres- I
sure fluctuations, as well as for identifying the structural features in the flow.

Since, as the curvature increases, the circumference of the cylinder decreases,

there will be fewer structures around the cylinder. In this sense the transversely

curved flow in the large 6/a and small a+ regime is a better setting for the study

of the mechanisms of wall bounded flows. This is similar to the minimal channel

of Jimenez & Moin (91) with the added advantage that the periodic boundary

condition in the transverse direction are the natural boundary conditions.

The study described in the following chapters had the following objectives:

i) to develop a pseudo-spectral method for the incompressible Navier-

Stokes equations in cylindrical coordinates with a no-stress outer boundary;

6
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ii) to generate a spatially resolved database for turbulent flow with

transverse curvature to study curvature effects on the turbulence statistics

as well as instantaneous flow structures;

iii) to identify scaling parameters that link the statistics of the trans-

versely curved flows with those of the planar case;

iv) to study the effects of the transverse curvature on the pressure

field; to generate a temporally and spatially resolved database of the wall
pressure and wall shear stresses and to study the space-time characteristics

of the wall pressure fluctuations.

7



I
U
I
I
I
U
I
I
I
I
I
I
I
I
I
I
I

8 I

I



CHAPTER 2

The Model Problem

This chapter describes the numerical approach used to solve the incompressible

Navier-Stokes equations for the axial flow over a cylinder. The key features of

the method are the truncation of the semi-infinite domain in the radial direction,
the decoupling of the viscous operators of the radial and azimuthal momentum

equations, the calculation of the pressure through a variant of the method of Kleiser

& Schumann (1981) and the imposition of the far field boundary conditions. In

addition, a new dependent variable is defined (T), and the velocity is obtained

from the solution of two partial differential equations for V and T and algebraic3 equations for V and Vz. The validation of the numerical approach is discussed at

the end of the chapter with the calculation of the stability characteristics of several

two- and three-dimensional Taylor-Couette flows.

Throughout the chapter the velocity scale is the friction velocity, Ur = N ,

where rw is the mean wall shear stress. The thickness of the layer is 6, and the

superscript + denotes the scaling with the viscous length, V/ur. Total fields are

indicated by upper case symbols and fluctuating fields are denoted by lower case

symbols. For example, V and V are the total and fluctuating velocity vectors,
respectively.

2.1 Equations of Motion

To solve the Navier-Stokes equations for axial flow along a cylinder we use cylin-

drical coordinates (r, 0, z), where r is the radial coordinate, 0 is the azimuthal co-

ordinate and z the axial coordinate. In cylindrical coordinates the incompressible

Navier-Stokes equations are (see for example Batchelor [1967]):

aVr OP 1 12 V 20V.t +  r ReT r r r2 r2= 2 (2.1.1 a)

9
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aVO lP 1 v2v V 2 0Vr i
rO-R-T - + + V 0--)+ (2.1.1 b)

OV H OP 1 2

S z + -er z, (2.1.1 c)

where i = (H,, Hr, Hq) are the convective terms and the density is absorbed into

the pressure. Note that, unlike their Cartesian counterparts, the viscous operators
of the radial and azimuthal momentum equations are coupled. The continuity

equation is given by

Vr OVr 10V V OVZ
-- +- + - +- =0. (2.1.1 d)r or rO90 az

The Laplacian operator is

V2 02 1 0 1 02 02 (
= Or--- + ro + r- O----5 +  z---- ' (2.1.2)

Or r 9r r 2  + 9Z2

and the convective terms (H,, Hr, He) are

Hr = vr 'Vr +Ve aVr + Vz V ' 0

Hr + - + VI -

Ho = --e + -- e + yae + -- (2.1.3)
Or r0 Oz r

v V OV._ ,o. oz
Hz = r V +  -O1V + V •E _

Or rB 9 0 Z

From the divergence of the momentum equations one obtains the Poisson equa-

tion for the pressure
V2 p - -V. H. (2.1.4)

The flow under consideration is naturally homogeneous in the azimuthal direction
and is assumed to be homogeneous in the axial direction. In the radial direction the

semi-infinite domain is truncated to a finite one, where r E [a, a + 1]. At r = a + 1, 1
model boundary conditions are imposed. The flow is driven by a mild streamwise
pressure gradient and reaches a statistically steady state. This model corresponds

10
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to a boundary layer with no spatial growth and is therefore an approximation to

the physical case. Apart from the numerical advantages, the lack of spatial growth

affords a better statistical sample for turbulence correlations.

Note that the domain truncation of this model prevents the occurrence of large

scale viscous/inviscid interactions. Experiments (Luxton et al. [1984], Lueptow

& Haritonidis [1987]) have reported that such structures periodically cross the

cylinder. As discussed in Chapter 1 the origin of these structures may be due to

vibrations of the cylinder and not purely a fluid dynamic phenomenon. In any case,

our model is incapable of capturing such structures.

2.1.1 Boundary Conditions

On the surface of the cylinder (r - a) no-slip boundary conditions are imposed,

= 0. (2.1.5 a)

In the axial direction, a finite domain of length L, is chosen and periodic boundary I
conditions are imposed. In the azimuthal direction the flow is naturally periodic.

In a semi-infinite domain the far field (y --+ oo) velocity boundary conditions for I
the axial flow along the cylinder are V -, Uo, and (Vr, V) -+ 0. In the truncated

domain in which the calculations are performed, we require that the radial compo-

nent of the velocity be zero at r = a + 1. The boundary conditions for the axial

and azimuthal velocity components are obtained by requiring that the surface shear

stress be zero at the outer edge of the domain, that is, arGtr=a+1 = 0rzlr=a+l = 0.

Thus, we impose

= 0, ( = 0, = O. (2.1.5 b)Yr=a+l 8r r r=a+lI9 r=a+l

The computational domain is illustrated in Figure 2.1. I

1
I
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2.1.2 Radial Coordinate Stretching

In the radial direction Chebyshev polynomial expansions (see for example Got-

tlieb & Orszag [1967]) are used. These expansions promote a high grid resolution

at the edges of the domain (r = a and r = a + 1). This is appropriate for the inner

boundary where no-slip boundary conditions are imposed. However, at the outer

edge of the domain fine resolution is not necessary because no sizable velocity gra-

dients are expected there. To avoid this waste of resolution, the radial coordinate

mapping

S(2.1(.6)

is used, which increases the resolution close to the cylinder surface at the expense of

the resolution at the outer edge of the computational domain. In this expression,

the Chebyshev variable E [-1, 1] <* r E [a, a + 1] and the parameter /3 = 6

was used. Because the axial and azimuthal directions are periodic, we use Fourier

expansions in these directions.

2.2 Uncoupling of the Viscous Operators

In the discussion that follows, the solution procedure is discussed without refer-

ence to the radial coordinate mapping (Equation 2.1.6) because its inclusion would

only increase the algebraic complexity of the equations. Also in the remainder of

the chapter the Fourier transformed (in 0 and z) equations .;ill be considered.

In the solution of the incompressible Navier-Stokes equations it is computation-

ally convenient to eliminate the pressure. The fourth order formulation of (Kim

et al. 1987) or the use of divergence-free expansion functions for the velocity field

(Moser et al. 1983) are examples of how this can be achieved. In Cartesian coor-
dinates, after eliminating the pressure, the momentum equations are only coupled

through the nonlinear terms. In the cylindrical coordinate system the coupling is

in both the convective terms and the viscous terms of the radial and azimuthal

momentum equations. In order to decouple the radial and azimuthal momentum

equations we define T as ( denotes the Fourier transform)

T = ik 'V - imVz. (2.2.1)

13
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and recast the momentum equations in the following form: i

a9Vr 1 Re 4
W 2 T e, r (2.2.2 a)

-+ HT km( - -r)P + 1V T (2.2.2 b)
atr Re7

where

(2.2.3)

-- - ikz ( . 2
HT=kzH -rHz--+im

and
rar Mry2k--) (2.2.4)r Or ar r2  kz 224

is the Fourier transformed Laplacian operator. The axial wave-number is I

I
kz = -k, (2.2.5)

and the azimuthal wave-number is m.

In the numerical approach adopted, we solve first for V.r, so it is convenient to

express the boundary conditions for t as a function of Vr. At the surface of the

cylinder we have t(r = a) = 0. At the outer edge of the domain the boundary

conditions on the velocity (Equation 2.1.5 b) and continuity give

[r 2 + k2 a k,, (a'r (2.2.6) I-ar ,-r=a+l i-br-r ,=,+ 1"
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The computational advantage of this approach is that in Fourier space the con-

tinuity equation (Equation 2.1.1 d) and the definition of T (Equation 2.2.1) deter-

mine an algebraic system of equations for Vz and Ve as a function of Vr and t. The

solution of the system is

(2.2.7)

ICZ-m+ k z frr+ r e'" + M
VZ 2 4 k2 [k( rr)±m]

which is easier to solve than the partial differential equations that they replace.

2.3 Time Advancement

An implicit second order Crank-Nicholson scheme is used to time advance the

viscous terms in these equations. The convective-like terms, Hr and HT, are ad-

vanced explicitly with a second order Adams-Bashforth scheme. Note that the

viscous contributions to Hr and HT do not involve eadial derivatives, which could

lead to numerical stability problems. A von Neumann stability analysis of the cross-

terms in the viscous operators shows that they do not produce a severe stability

limitation and can be treated explicitly.

The time discretized equations for Vr, (Equation 2.2.2 a) and t (Equation 2.2.2 b)

at time step n + 1 are:

(1 At 2 )-,n+l _ ___

2Re r Or
AtAt t2yI n (..1a

2 (3Hr - I-') + (1 + M 2-- (2.3. 1 a)

r0,a=0,
r=a lr = O,

15



U
(1 2 Rt '2 )jn+l = kzmAt( 1 _ r)Pn I

r 5r
2 t L2--nRe ) (2.3.1 b)

iT"f+iIr=a = 0' 3
[ nT+1 i-+ ai4r+'

(m2 + rk 2) - k. 2+1] -mkz --ar n1+

Z rZr a lO r lr = a + 1
t~j~n3 :n _I n-l

2pn - ,H -H H ) (2.3.1 c) I

where the boundary conditions for the pressure (Equation 2.3.1 c) enforce the

continuity equation at the boundaries (see Section 2.4).

In this formulation, two elliptic operators, (1 - AtV 2 /(2Rer)) and t 2 , need to I
be inverted for each wave number pair (m, k) at each time step.

The flow variables are represented by the following expansions 3
VN, No/2-1 N,12-1 2wk

P ZZ ) IC eime Z e Z(i)m(t), (2.3.2)1
1=0 m=-Ne/2 k=-N,/2 I

where Tj( ) are the Chebyshev polynomials and Vlmk(t) and Pmk(t) are the com-

plex spectral coefficients for the velocity and pressure, respectively. (Nr, No, Nz)
denote the number of modes in the radial, azimuthal and axial directions respec-

tively.

With the radial coordinate stretching, each elliptic operator results in a matrix
with 12 diagonals above the main diagonal and 8 below. In addition, the boundary I
conditions fill the two bottom rows of each matrix. The high computational cost
of the inversion of matrices with this band structure was one of the reasons for
the adoption of a constant time step. Substantial savings in computer time are
achieved by the precalculation and storage of the LU decompositions of the matrices

corresponding to the operators (1 - AtV 2 /(2ReT)) and t 2 .
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The const-, at time step was chosen in accordance with numerical stability con-5 straints. The CFL number

CFL = 7rAt( + r- + !.z') (2.3.3)

was required to be less than 0.6 throughout the calculations.

2.4 Continuity at the Boundaries

The role of the pressure is to ensure a divergence free velocity field; thus the

appropriate boundary conditions for the pressure at r = a and r = a + I must

be chosen such that continuity is satisfied everywhere including at the boundaries.

Kleiser & Schumann's (1981) algorithm for the enforcement of continuity is used

here.

We start by writing P and Vr as

Pn+1 =3n+l+ n+Iph + n+lh,

Vn+l nI + + +~rh 2 , (2.4.1)

where an + 1 and an+l are constants to be determined at each time step. Pi and

-. n+IIV are the particular solutions and satisfy

72pin = -V H p~n = ,(..2
S, i r=a,a+l (2.4.2)

and

A At , 2 )V7'n+, gpn

2Re -- Or
A(3t - rt- I) + ( + Ar (2.4.3)

2 r 2ReT

Ii Ir=a =0, r'+1r=a+1 =0,
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respectively.

Phi and h2 are obtained from: 3
=, h I=a = 1 hir=a+ -o, 1

(2.4.4)

2 Ph2 =o, Pl=-o, PLfl =l.

In order to satisfy Equations 2.3.1 a and 2.4.3, Vrh1 and Vrh2 are the solutions of m
(1 At t2

2Rer rrh = -t' '

Vrh4O a , Vrhir~ =0,

(2.4.5) 1
(1 At f2)r = OPh2

2Rer Or ' I

v~rh 2La= 0, V?.h4 r=l0.

With a constant time step At (used in the present calculations), Ph,, Ph2, Vrh and

Vrh2 need to be calculated once, stored and used throughout the calculations. I
The constants a7 + 1 and a 4+ 1 are obtained at each time step from the the con-

straint imposed by the continuity equation at the boundaries. The radial derivative I
of the continuity equation and the velocity boundary conditions, given by Equations

2.1.5 a and 2.1.5 b, lead to the following compatibility conditions at the boundaries I
of the computational domain:

8Vn + l  O[O~~

r7 , (ra1 0. (2.4.6)
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The expansion of Vr according to Equation 2.4.1 and the above compatibility

conditions lead to the following system:

,( (2.4.7)

ra+1 ran + 1
IIr'rhc l' 2an+
Ur- di" a+l ths Ur )lrai

which determines an+
1 and 2n+ '. With these constants, the pressure and radial

velocity fields that satisfy the continuity equation are uniquely determined.

U 2.5 The Mean Flow

The mean flow (corresponding to m = 0 and k = 0) in the axial direction is3 governed by the axial mean momentum equation

- 1 1+.- V\1]
WOz Re rr( Or)

u 0, 0(2.5.1)
r=a =r r=a+l

where the overbar denotes average over 0 and z planes.

The flow is driven by a mild axial pressure gradient so that it can reach a

statistical steady state. In the cylindrical geometry the mass flux in the axial

direction is given by
ai+l

M = 21r I Vzrdr. (2.5.2)

a
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Integration of the mean axial momentum equation in the radial direction gives

a+1

dP _ 2 a12a OVZ
dz 1+2a Rer(1 + 2a) Or r=a 3

a

which determines the mean axial pressure gradient necessary to maintain a constant

mass flux.

The only solution for Vr that satisfies the mean continuity equation and the

boundary conditions is

Vr =0. (2.5.4) 1
Finally, the mean flow in the azimuthal direction (V.) satisfies

+HV 1 [e r -O

ORe r Or r2

(2.5.5)S-0.
Vr=a = O ) r=a+l =i0

2.6 Code Verification

The method described above was extensively tested. The eigenvalues of the l

Stokes operator with homogeneous boundary conditions were computed. As ex-

pected, the eigenvalues are real and negative. Furthermore, they were verified =

to be in close agreement with the eigenvalues computed by Moser (1988) using a

different numerical method. 3
In addition several Taylor Couette flow cases were computed. The extensive

experimental and computational data available on Taylor Couette flow makes it an

ideal test case for the code. First, the critical Reynolds number (Re,) for the onset

of Taylor vortices was computed and compared with the existing data. Comparisons

with analytical (DiPrima & Eagles [1977]) and computational (Moser et al. [1983])
results for two gap widths are shown in Table 2.1 a. In this table and the remainder

of the chapter R, and Re are the radii of the inner and outer cylinder, d = Re - R, is 3
20
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the gap width and A is the axial wave-number of the vortices. The two-dimensional

Taylor Couette flow is also characterized by the torque

G =2lrRed (r 2d1. rV ) (2.6.1)( dr o r--ri,

I that must be applied to the inner cylinder to drive the flow. Calculated torque

values for gap widths and Reynolds numbers for which there are both experiments

(Donnelly & Simon [1960]) and computations (Moser et al. [1983]) are reported in

Table 2.1 b. In all cases the two-dimensional calculations of the present code are3 in excellent agreement with both the experiments and previous calculations.

ri/ro = 0.5 ri/ro = 0.95

3 A/d = 3.976 A/d = 4.018

DiPrima & Eagles (1977) t 184.99 68.19
Moser et al. (1983) 185.99 68.2

3 present 184 68.2

Table 2.1 a Critical Reynolds number (Rec) for 2-D Taylor vorticesI
ri/ro = 0.5, Red = 78.8 ri/ro = 0.95, Red = 195IA/d = 3.976 A/d = 4.018

Donnelly & Simon (1960) $ 1.479 x 103 5.26 x 105

Moser et al. (1983) 1.487 x 103 5.42 x 105

present 1.486 x 103 5.43 x 105

3 Table 2.1 b Torque for 2-D Taylor vortices

3 °Computations; t Stability analysis; t Experiments.

* 21
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ri/r,,= 0.868 ri/ro =0.875

Red =458.1 Red =243.5 5
King et al. (1984) 0.33440i t , 3347Qi 0.3757% *

present 0.3343Si 0.3759%

Table 2.1 c Wave speed of 3-D Taylor vortices (A/d = 3.0, m = 6) I

To test the full three-dimensional code, the wave speeds of wavy Taylor vortices

(Coles [1965]) were calculated for several gap Reynolds numbers (Red), axial wave I

lengths (A/d) and wave numbers (m). The results of the present code are compared

in Table 2.1 c to the data of King et al. (1984), which includes experiments and

computations.

2.6.1 Numerical Resolution I
The spatial resolution parameters describing the two turbulent flow simulations

reported here are shown in Table 2.2.

Note that the effective azimuthal resolution, AO = 21rr/No, depends on the radial I
location, with the coarsest resolution at the outer edge of the domain (r = a + 1).

Because of this, the simulations are very well resolved in the azimuthal direction,

near the wall. At the outer edge, the resolution appears to be adequate as shown by
the velocity spectra in Figure 2.2. In Figure 2.3, the axial spectra of the velocity

fluctuations at two distances from the wall are shown. In both simulations the

axial resolution appears to be adequate with no energy accumulation at the high

wave-numbers. I

The length of the computational domain is set to be sufficiently large to ensure

that the velocity is decorrelated for separations larger than half of the computa-

tional box, so that the imposed periodic boundary conditions will have minimal

effects on the turbulence. Axial two-point correlations (Figure 2.4) show that this

is roughly the case. 3

Computations; t Stability analysis; t Experiments. I
22 1
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I 6/a 5 11

Lz 47r 61r

Lz+  2676 4656

3Le+ = 2ira +  268 141

LOo+ = 2r(a+ + 6+) 1608 1692

iA+ = Lz+/Nz 14 14
A+ = Lei + /No  4 1

A+ = Lo +/N, 25 13

(Nz, Nr, N,) (192,96,65) (320,96,129)

3 Table 2.2 Grid resolution paxameters

(a) (b)

!7

I -4

Y*= 214.08 238.7

SV I I~~ I i llurI I * * ,I ..-4i .,,III I lil I II i

4*1-'1of 1id 1c? "1 00 i#1'

i ko bke

FIGURE 2.2 Azimuthal (spanwise, bAko = 6/r) spectra of the velocity fluctuations
normalized by 6 and ur for 6/a = 5 (a) and for 6/a = 11 (b): - Evv,; ---- Evovo.
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U CHAPTER 3I
I1 The Velocity and Vorticity

This chapter describes the major statistical characteristics and time dependent

structure of the velocity field. All the statistics presented are obtained from a

sample collected after the calculations had reached the statistically steady state,
and are calculated using spatial averaging over the domain in the 0 and z directions

and temporal averaging that covers 2.5 6 /ur time units in the 6/a = 5 case and
2.1 6 /ur time units in the 6/a = 11 case. Throughout the chapter the results are

compared to those of the plane channel of Kim et al. (1987).

In Section 3.1 the properties of the mean flow are studied and compared with
the availablc experimental data. In Section 3.2 turbulence intensities and the

Reynolds shear stress are shown to decrease with increasing curvature. In addition,

a curvature dependent local velocity scale, which collapses several flow statistics,

is derived from the momentum equations. The structure of the Reynolds shear
stress is discussed in Section 3.3. Vorticity statistics are presented in Section 3.4.

Finally, the instantaneous structural characteristics of the flow are presented via
contour plots in Section 3.5.

3.1 Mean Velocity Statistics

Mean flow parameters for the present transversely curved flow simulations as well

as for the plane channel (6/a = 0) are reported in Table 3.1. Because the Reynolds

numbers of the three simulations are similar, the differences in Table 3.1 are due
to the transverse curvature. For comparison, Tables 3.2 a, 3.2 b and 3.2 c contain
the mean flow parameters of the experiments of Willmath et al. (1976), Luxton

et al. (1984) and Leuptow & Haritonidis (1987). In agreement with experimental

observations, the skin friction coefficient,

CJ = 2 u ), (3.1.1)
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/b/a 0 5 11

a+  43 21 I
C1  6.04x 10- 3  8.07x10- 3  9.87x 10- 3

Re6  3300 3368 3418
Rer 180 214 239
Rea - 674 311 I
6*16 0.141 0.154 0.152
O*/6 0.087 0.123 0.131

H 1.62 1.25 1.15

Table 3.1 Mean flow parameters I

increases with increasing curvature (by as much as 63% for 6/a = 11) when com- I
pared with the plane channel flow with comparable Reynolds number. However,
in the simulations the magnitude of this increase is larger than has been observed U
experimentally, probably because of the much higher experimental Reynolds num-
bers (Re6 = O(104)). In Table 3.1 the boundary layer displacement and momentum
thicknesses reported for the present transversely curved flow simulations are defined
by (Luxton et al. [19841)

a/6+

(al + *b)2 - (a2 = 2 /+1 - 1 -V -, )dr, (3.1.2ba)

a/6
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I 6/a 4.7 16 37.5

3 a+  751 198 46

Cf 3.04 x 10- 3  4.18 x 10- ' 7.84 x 10- '

3 Re6  90380 69280 27600

Rea 19230 4330 736

3 Table 3.2 a Experimental mean flow parameters (Willmath et al. [1976]).

I
6/a 26 26.9 41.6

N a+  47.4 32.1 13

* Cf 7.3 x 10- 3  0.01 0.017

Re 6  20386 12252 5962

Rea 785 455 140

I */6 0.184 0.185 0.187

6*16 0.181 0.182 0.182

3 H 1.014 1.02 1.03

3 Table 3.2 b Experimental mean flow parameters (Luxton et al. [1984]).

/a 6.74 7.16 8.0

3 a+  288 144 72

Cf 3.5 x 10- 3  3.8 x 10- 3  4.1 x 10- 3

3 Re6  46330 23700 12800

Rea 6419 3209 1605

3 Table 3.2 c Experimental mean flow parameters (Lueptow & Haritonidis [1987]).
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FIGURE 3.1 Mean-velocity profiles: plane channel (Kim et al. [1987)); cylinders
with - 6/a = 5 and---- 6/a = 11; ........ planar law of the wall, U = y+, and
log law, U+ = 2.5 ln(y + ) + 5.5.

respectively. Even though several different definitions for the displacement and

momentum thicknesses in transversely curved flows have been proposed in the lit- I
erature, there are several reasons to adopt the above definitions. The expression for

the displacement thickness (Equation 3.1.2 a) is consistent with the usual mass flux 3
displacement argument, and the momentum thickness defined by Equation 3.1.2 b

arises in the axisymmetric integral momentum equation. In this sense, the two

definitions have the same physical meaning as their planar counterparts, and in

the flat plate limit (6/a --+ 0), Equations 3.1.2 reduce to their planar counterparts

(multiplying by 6/a before taking the limit 6/a - 0). Luxton et al. (1984) mea-

sured 6*16 and 8*/6 according to the above expressions and find higher values than

in the simulations. This is probably a result of the larger 6/a in the experiments. I
The shape factors (H = 6*/6*) measured by Luxton et al. (1984) are around unity,

whereas the shape factor in the simulations is larger than one and decreases with

increasing 6/a due to an increase in the momentum thickness.

30 3
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3.1.1 The Mean Velocity Profile

I The mean velocity profile of the two transversely curved flows (b/a = 5 and 11)
are compared to that in the plane channel flow in Figure 3.1. Because of the small

values of a+ , the viscous sublayer mean velocity profiles are slightly affected by

the curvature of the wall. In contrast most experiments (Rao & Keshavan [1972],
StWillmath et al. [1976], Lueptow et al. [1985]), find no effect of curvature in the

mean velocity profile for y+ < 20. Clearly, in many of these experiments a+ is too
large for there to be a perceptible inner layer effect (for example a+ : 140 and

6/a - 7 in Lueptow & Haritonidis [1987]). However, even in experiments in which

the values of a+ are close to or below those of the simulations (for example Luxton

et al. [1984] and Willmarth et al. [1976]), the measured mean velocity profiles

agree with the planar velocity profile for y+ < 20. This disagreement between

the experiments and the simulations may be due to measurement difficulties close

to the wall of the cylinder. In addition, it should be noted that, in many of the3 mean velocity measurements, the estimation of the friction velocity is estimated

by assuming that the mean velocity profile of the transversely curved flow is not3 affected by the curvature near the wall. The mean velocity profiles of the present

numerical experiments suggest that this assumption is not correct, at least in the3 flow regime of interest here, that of large 6/a and small a+.

In the planar boundary layer, the assumption that the total stress is dominated
by the viscous stress in the viscous sublayer leads to the planar law of the wall, U + =

y+. For the axisymmetric boundary layer in the absence of a pressure gradient, the

mean momentum equilibrium in the viscous sublayer is expressed by

-7 (3.1.3)
ri-w  r

as first noted by Glauert & Lighthill (1955). Assuming that the Reynolds shear

* stress is negligible in comparison to the viscous stress leads to the law of the wall

for axisymmetric flows (Reid & Wilson [1963], Rao [1967]),

U+ =a + In (I + ). (3.1.4)
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FIGURE 3.2 Total stress normalized by u,: analytical for cylinders with -
6 /a = 5

and ---- t/a = 11; symbols for computed results with o for l/a = 5 and with A for
61a = 11.

Note that to second order in y+ , Equation 3.1.4 is given by I

T+ Y 2a (3.1.5)I I
Thus, the law of the wall for the viscous subalyer in transversely curved flows is

equal to the planar viscous sublayer law of the wall, U+ = y+, plus a curvature 3
dependent correction. Clearly, if a+ is large the mean velocity profile near the wall

does not deviate appreciably from the planar case. The mean velocity profiles given

by Equation 3.1.4 are better approximations to the computed near-wall velocity

profiles than the planar law of the wall.

As observed in several experiments (Lueptow et al. [1985], Luxton et al. [1984] I
and Willmarth et al. [19761), the slope of the mean velocity profile in the logarith-

mic region decreases with increasing curvature and the profiles become negatively 3
V



I
curved. However, the dependence of the slope of the logarithmic region on the cur-
vature is larger in the simulations than in experiments (Willmath et al. [1976]).

The difference seems to be associated with the flow regimes that were investigated

by the various authors. Lueptow et al. (1985), for example, show that the slopeI of the logarithmic region does not change for small 6/a. This is not surprising
because for small 6/a the curvature effects are limited to the outer part of the3 boundary layer in high Reynolds number flows. Based on the same measurements,

Lueptow et al. (1985) also argued that the slope of the logarithmic region is not

a function of a+. The latter conclusion, however, is questionable because in those
experiments a+ is consistently large. These observations are in general agreement

with the asymptotic analysis of the axisymmetric momentum equations in the limit

of 6/a = 0(1) and a+ --+ oo (Afzal & Narahsima [1976]). To lowest order in this

limit, the axisymmetric boundary layer has both a logarithmic region and a outer
velocity defect law. For smaller a+ the parameters of the velocity profile in the two

regions depends on both 6/a and a+. The measurements of Luxton et al. (1984)3 for flows with larger 6/a than in the present simulations but with similar a+ show

logarithmic region slopes comparable to those reported here. The lack of consensus3 on this issue is summarized in the review of Lueptow (1988). A parametric study

is necessary before a conclusion can be reached, but it seems that the slope of the

logarithmic region is a function of both a+ and 6/a when both the inner and outer

layers are affected.

I 3.2 Turbulence Statistics

3 The statistical steady state is characterized by an equilibrium between the mean
total stress and the applied streamwise pressure gradient. For the flows considered

* here this is expressed by

1 dVz 2 a(a+ ) 2 -r 2

-E + Re = PUTr (a + 6) 2  a2 (3.2.1)

I Figure 3.2, shows the total stress (computed and analytical) for the present simula-

tions. Note that the computed and analytical curves coincide in both simulations,

indicating that the statistical steady state has been achieved.
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FIGURE 3.3 Root-mean-square velocity fluctuations normalized by ur: (a) Axial
intensity, (b) Normal intensity, (c) Azimuthal intensity; -- - plane channel (Kim
et al. [1987]); cylinders with -6a= 5 and --- ba= 11.
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FIGURE 3.4 The energy partition paameter K*= 2V )/(VTr + V): ---- plane channel
(Lee et al. [1990]); cylinders with - b/a = 5 and-....,6/a= 11.

I 3.2.1 Turbulence Intensities

I

The turbulence intensities normalized with the friction velocity decrease through-
Sout telayer as tecurvature increases (Figure 3.3). Th temiecomponent i

the most energetic and the location of its maximum moves slightly towards the wall

I as the curvature increases. The smaller turbulent kinetic energy in the transversely

curved flows can be attributed in part to the smaller surface area over which vor-

ticity fluctuations can be generated relative to the volume of turbulent supported.

The cylinder surface is apparently not less efficient as a source of turbulent kinetic

energy; rather it has to supply a larger volume. This geometric difference is one of

the reasons for the reduced intensity levels in the transversely curved flows. As the

curvature increases the turbulence intensities in the outer part of the flow decrease
Sin agreement wihsvrlexperiments (Lueptow et a.[19851, Lueptow& aio-

wiheea al _ _ _ _ _ _ _ _ _ _

dis [1987] a l. [1984). For experiments with comparable a+, Luxton
et the layert a maximum value of the streamwise intensity, reamwiUse c pe 0.16,

similar to the simulation result of 0.15. However, for the larger a+ experiments of
Lueptow & Haritonidis (1987), the maximum value of c/2/ur of 3.3 is higher than
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FIGURE 3.5 Pressure strain term of the streamwise intensity (;2) budget equation
normalized v and ur: cylinders with 6/a = 5 and ,-/a = 11; plane
channel (Mansour et al. [1988]).

in the flat plate, contrary to the simulation results. This may be due to the fact I
that in their flows a+ is too large for there to be an inner layer curvature effect.

Similarly, the normal (vr"/ ) and azimuthal (a-1I2) intensities axe lower than in I
the planar case. However, the reductions in the normal and azimuthal intensities

are greater than that of the axial intensity. The energy partition parameter (Lee

et al. [1990]),

K* -2 z 7 (3.2.2) IVr + Ve'

shown in Figure 3.4, is a measure of the relative contributions to the turbulent I

kinetic energy of the streamwise turbulence intensity and the intensities normal to

the mean flow. The attenuation of the normal and azimuthal velocity fluctuations

is strongest for y+ < 30 and increases with curvature.

Figure 3.4 suggests that the transfer of energy from the streamwise velocity com- I
ponent to the other two velocity components is strongly damped as the curvature

increases. In the budget equations of the intensities (see Appendix A) it is the 3
36 3

I



I

| .

./ o. ............. ......... ..........
--------------------------- 

-....o.......o...........

0.

0 20 40 so

FIGURE 3.6 Reynolds shear stress normalized by ur: cylinders with - 6/a = 5
and ---- 6/a = 11; --- plane channel (Kim et al. [1987]).

pressure strain terms that are responsible for the intercomponent energy transfer.

As shown in Figure 3.5, as the curvature increases, the pressure strain term of the

budget equation for the streamwise intensity decreases significantly throughout the

I layer.

1 3.2.2 Reynolds Shear Stress

The Reynolds shear stress (Figure 3.6) is also reduced by curvature. The loca-

tion of the maximum of the Reynolds shear stress profile is a function of 6/a and

moves towards the wall with increasing curvature. However, this does not affect

the position of the maximum in the production (-F3v--rd z/dy) of turbulent kinetic

energy (y+ - 12, see Figure 3.10 b). In the outer part of the layer the measure-

ments of Lueptow et al. (1985) show that the Reynolds shear stress decreases with

increasing curvature in agreement with the simulation results. In the inner layer,

the measurements of the Reynolds shear stress reported by Lueptow et al. (1985)

for the transversely curved flows do not differ appreciably from those of the pla-

nar case. In contrast with the present simulations the near-wall maximum of the
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FIGURE 3.7 Correlation coefficient: cylinders with - 6/a = 5 and ---- 6/a = 11;
--- plane channel (Kim et al. [1987]).

Reynolds shear stress (--Vr/U2) reported by Leuptow et al. (1985) is about 0.8,

similar to the plane channel result of Kim et al. (1987) (Figure 3.6).

The velocity correlation coefficient, shown in Figure 3.7, suggests that there are

important differences both between the two transversely curved flows as well as

between them and the plane channel. Close to the wall (y/ 6 < 0.2), the streamwise

and normal velocity fluctuations are increasingly better correlated as the curvature I
increases. Away from the wall, the large curvature case (b/a = 11) shows a sig-

nificant reduction in the correlation coefficient. This may be an indication of flow 3
stabilization, although for 6/a = 11 the flow is a self sustaining turbulent flow and

reaches statistically steady state.

I
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FIGURE 3.8 Velocity scaling function .F(y/b; 6/a): -- plane channel (6/a =0);

.cylinders with - ./a = 5 and ./a = 11.

3.2.3 Velocity Scaling

I As a fuction of the distance to the wall the total stress (Equation 3.2.1) can be

rewritten as

rab+ y1 1 + 2a/6) (1 -(3.2.3)

I In this form it can be easily compared with its planar counterpart

-r = PUT 1- /) (3.2.4)

which is a linear function of y/6. These two expressions suggest the definition of a

* new velocity scale for the transversely curved flows

1!= ur/F(y/6; 6/a), (3.2.5)

where

6/lb ba) al /+ y/6 (1 + Y16 (3.2.6)V alb 1 + 2a/6/
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Note that in the planai limit (6/a -- 0), .- (y/S; b/a) --+ 1 and the planar velocity

scale, U = Ur, is recovered. Also, for small curvature (6/a < 1), " . 1 throughout

the layer, (Figure 3.8).

When scaled with u, the turbulence intensities and Reynolds shear stress profiles

of the two curved flows collapse (Figure 3.9 and Figure 3.10 a). The collapse with

the plane channel stresses is also satisfactory except for the transverse turbulence

intensity. Turbulence production and viscous dissipation apparently do not scale i
with u near the wall (Figure 3.10 b and 3.10 c).

3.3 Quadrant Analysis

The correlation coefficient profiles (Figure 3.6) suggest that the Reynolds shear

stress producing events are strongly affected by curvature. In the transversely 3
curved flows, the partition of the Reynolds shear stress among the four quadrants
is very similar to that of the plane channel, as shown in Figure 3.11. It is a

characteristic of wall bounded flows that the Reynolds shear stress is dominated i
by the second quadrant events (Vz < 0 and vr > 0) in the outer layer, and by the

fourth quadrant events (Vz > 0 and vr < 0) in the inner layer. The crossover point

between the domains of second and fourth quadrant events occurs at the same

distance from the wall (y+ -- 12) as in the plane channel. n

The fractional contributions to each of the quadrants of the Reynolds shear stress

are shown in Figures 3.12 and 3.13 for 6/a = 5 and 6/a = 11, respectively. At a n

given distance from the wall, the fractional contributions of each of the quadrants

to the Reynolds shear stress in the transversely curved flows are similar to the

corresponding fractional Reynolds shear stress contributions in the plane channel

(Kim et al. [19871). This invariance of the fractional contributions with curvature

means that Reynolds shear stress events of any intensity contribute the same frac-
tion of the total Reynolds shear stress in the transversely curved flows as in the

plane channel. This is contrary to the measurements of Lueptow & Haritonidis
(1987), who found that, in transversely curved flows, low intensity Reynolds shear

stress events accounted for a larger percentage of the total Reynolds shear stress

than in the planar case.

I
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FIGURE 3.9 Root-mean-square velocity fluctuations normalized by R: (a) Axial
intensity, (b) Normal intensity, (c) Azimuthal intensity; -- - plane channel (Kim
et al. [19871); cylinders with - 6/a = 5 and --- /ba = 11.
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FIGURE 3.10 Reynolds shear stress (a), Production (b) and dissipation(C ) of tur-
bulent kinetic energy normalized by v and u: cylinders with - /l = 5 and
---- 6/a = 11;---- plane channel (Mansour et al. [19881).
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FIGURE 3.12 Fractional contribution to -Fz--vr from each quadrant as a function of
threshold for b/a = 5; --- first; -second; --- third; .... fourth quadrants:
(a) y' = 8 (b) y' = 13.1 (c) y+ = 51.1.
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FIGURE 3.14 Skewness profiles of the velocity fluctuations: (a) S(v,,), (b) S(v,),
(c) S(ve); -- plane channel (Kimn et al. [1987]); cylinders with -6/a = 5 and
--- /ba = 11.__I
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The skewness factors of the velocity fluctuations, shown in Figure 3.14, indicate
that there is a strong effect of the curvature on the streamwise and normal veloc-1

ity fluctuations. As expected from the reflective symmetry of the Navier-Stokes
equations, the skewness of vp is nearly zero everywhere. Deviations from zero are

attributed to an inadequate statistical sample.

Away from the wall (y+ > 40), the skewness of vr is positive and increases
slightly with increasing curvature, as was also observed by Luxton et al. (1984).
In this region there are also strong negative streamwise velocity fluctuations, as

denoted by the negative skewness of vz, which decreases with increasing curvature. i
Increasing the curvature does not significantly affect the skewness of the axial

fluctuations (Vz) close to the wall (y+ < 20). On the other hand, for y+ < 30,
there are significant differences in the skewness of the normal velocity fluctuations

(Vr) between the three flows. While in the plane channel for 5 < y+ < 30 the
skewness of vr is negative, in the transversely curved flows the region of negative
skewness diminishes and, for 6/a = 11, the skewness of Vr is positive throughout

the layer. For y+ < 12, where fourth quadrant events dominate the Reynolds stress,
the skewness of Vz is positive.

The flatness profiles of the velocity fluctuations are shown in Figure 3.15. Near
the wall (y+ < 20), the flatness of Vr and ve decrease sharply with increasing
curvature. The flatness of vz also decreases in the near-wall region (y+ < 5). For i
5 < y+ < 30 the flatness of vz is not affected by the curvature and away from the

wall (y+ > 30) it increases with increasing curvature.

3.4 The Vorticity f
In cylindrical coordinates the vorticity components are given by (see for example

Batchelor [1967])

Q=1 (a(rVs) avr

1r 1 OV e (3.4.1)

Q av0 z i
Oz Or
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FIGURE 3.16 Root-mean- square vorticity fluctuations normalized by v and u,: (a)
Axial intensity, (b) Normal intensity, (c) Azimuthal intensity; - -- plane channel
(Kim et al. [1987]); cylinders with - 6/a = 5 and ---- 6/a= 11.
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6/a 0 5 11

re 16.7 13.8 13.5

Ynaz 21.0 19.7 20.1

V+  2.31 1.26 0.83
7 +  0.139 0.092 0.061

Rer 242.6 110.0 70.2

Table 3.3 Streamwise vortex parameters

The vorticity intensities normalized by the mean wall shear stress, shown in 3
Figure 3.16, decrease with increasing curvature. Unlike the velocity intensities,

the vorticity intensities do not collapse in the outer part of the layer when scaled

with the velocity scale u. As in the plane channel, the axial vorticity intensity

exhibits a near-wall local minimum and local maximum. Kim et al. (1987) linked

the locations and intensity of these extrema to the average position and strength of 3
the near-wall streamwise vortices. In their Rankine vortex model, the mean radius

is estimated from the difference in the positions of the two extrema (Y+ax, Ymin)

r+ = !+n + (3.4.2 a)
e mx-Ymin"

The maximum value of the streamwise vorticity intensity is an estimate of the

strength (7) of the Rankine vortex, and the tangential velocity at the edge of the 3
vortex is given by

= ' +r. (3.4.2 b)

The location of the maximum of the streamwise intensity (Wiaz) is an estimate

of the mean position of the center of the vortex core. From the circulation of the m

near-wall Rankine vortex

" , I Ii VeredO, (3.4.2 c)
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a vortex circulation Reynolds number can be defined by

r
Rer = - = 2rv+r + . (3.4.2 d)

These parameters of the near-wall streamwise vortices are listed in Table 3.3 for
the two transversely curved flows as well as the plane channel flow of Kim et al.

(1987). It is noteworthy that neither the core radius nor the position of the center
of these vortices changes appreciably with curvature, even though the strength of

the Rankine vortex is greatly reduced.

There are other important curvature effects on the vorticity intensities. Near
the wall (y+ < 7), the normal vorticity intensity (4r/2) is virtually unaffected by

the curvature, while the other vorticity components decrease. In the outer part oft floW Z572- 112 '::Z11

the flow -1/2 as shown in Figure 3.17.

The inclination of the projection of the vorticity vector in (r, z)-planes is given

by

Orz = tan- , (W)" (3.4.3)

The probability density functions (p.d.f.s) of Orz, weighted by the magnitude of
the the projected vorticity vector (Moin & Kim [1985]), (r + wz)/< + >
are shown in Figures 3.18 a and 3.18 b. In the expression above, <> indicates

the mean of the quantity inside the brackets taken on the corresponding (z,O)
cylindrical surface. The following discussion refers to the weighted p.d.f.s, even

though all the features described below are also evident in the unweighted p.d.f.s.

The advantage of the weighting is that it enhances the contributions of the strong
vorticity fluctuations.

Throughout the discussion of the orientation of the vorticity vector, the reader

should bear in mind that the plane channel flow fields to which these results are

compared were from the large eddy simulation of Moin & Kim (1985), which was

performed for a Reynolds number of 13800 (based on the centerline velocity and
b). At the closest point to the wall (y+ ; 4) invest:.- ted by Moin & Kim (1985),
the distribution of Erz is centered around 0' and ±180' since the normal vorticity

must go to zero at the wall due to no-slip. In the transversely curved flows, this

effect is not discernable in the histograms of Orz for y+ > 2. At y+ ; 4, both
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I
curved flows have distributions of Orz that peak around ±90'. This distribution of

Or, persists up to y+ - 25 in the ,/a = 5 flow and up to y+ ; 40 in the 6/a =11
flow. Father from the wall, the the distributions gradually broaden, and by y+ , 52

in the b/a = 5 flow and y+ - 75 in the 6/a = 11 the peak shifts to -135' and 450

as was observed by Moin & Kim (1985). It is only beyond these points, which is
most of the domain, that the concentration of the distributions of Orz shift to theI-135' and 450 orientations.

In Moin & Kim (1985) the main mechanism of vorticity stretching in the plane5 channel was attributed to stretching by the mean shear, which has its principal axis

at 45' with the direction of the mean flow. They also pointed out that, according

I to Deissler (1969), when the normal and streamwise vorticity intensities are equal,

the direction of the maximum vorticity in a shear flow is at 45' to the mean flow.

In the transversely curved flows there is an increa.-ingly thicker layer around the

cylinder, in which the vorticity has the ±90' orientation. This suggests that, as

the curvature increases, vortical structures inclined at 450 to the mean flow are

probably more difficult to observe.

I 3.5 Instantaneous Turbulent Flow Structures

Contours of the streamwise velocity fluctuations (Vz) on two (r, 0) planes (normal
to the mean flow) are shown in Figures 3.19 (plane Iz) and 3.20 (plane IIz). In the3 smaller curvature case (6/a = 5, see Figures 3.19 a and 3.20 a), the perimeter of

the cylinder is about 270 wall units and in the snap shots shown only three to four

low-speed streaks are observed around the cylinder. In the strongly curved case

(6/a = 11, see Figures 3.19 b and 3.20 b), the perimeter of about 140 wall units
apparently can only support two low-speed streaks. A better measure of the mean3 spacing between the low-speed streaks is given by the velocity correlations in the

azimuthal direction at y+ -, 12, shown in Figure 3.21. The mean streak spacing is3 about 100 wall units in both flows at this radial location. Note however that the

mean streak spacing has a nearly linear dependence on the distance from the wall3 (y+) with a slope that increases with curvature (Figure 3.22).

Figures 3.23 and 3.24 show contours of the radial (wall-normal) velocity fluc-
tuations in the sane planes as Figures 3.19 and 3.20 respectively. The constraint

imposed by the outer boundary conditions (Equation 2.1.5 b) on the radial motion
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FIGURE 3.19 Contours of axial velocity fluctuations (V,), normalized by u,, on a I
plane (I,) normal to the mean velocity: (a) 6/a = 5 with contour levels from -5.2
u, to 3.55 ur; (b) 6/a = 11 with contour levels from -4.95 Ur to 4.05 ur. The
contour increments of 0.25 ur. The solid contours denote the low-speed fluctuations
(Vz < 0) and the dotted contours denote the high-speed fluctuations (Vz > 0).
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FIGURE, 3.21 Azimuthal two-point correlations of the velocity fluctuations for (a)0/a = 5.0 and for (b) b/a = 11: - Rv,I,, ---- Rvvr, --- Rtvq.
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FIGURE 3.22 The mean spanwise streak spacing A+ estimated from the two-point
correlations of vz: + plane channel (Kim et al. [1987]); cylinders: o, for 6/a = 5and &, , for bl/a = 11.

3 of structures in the outer part of the layer is evident particularly in the 6/a = 5 flow

(Figures 3.23 a and 3.24 a). From the contour plots of Vz and Vr, regions of sweep

and ejection of fluid to and away from the cylinder surface can be easily identified.

In simulations of homogeneous turbulence with a small shear rate, Rogers &3 Moin (1987) showed that, even though the contours of the streamwsie velocity

fluctuations tend to be elongated in the streamwise direction, no streaky structures
were observed. In studies of homogeneous turbulence at a high shear rate, Lee et

al. (1990) observed long streaks in the absence of a no-slip wall, and concluded
that it is the magnitude of the mean shear rate that determines whether streaks

are observed. These two studies suggest that the streamwise extent of the streaks

is controlled by the mean shear. A measure of the strength of the mean shear is3 the shear rate parameter (Lee et al. [1990j)

SS* - S2 (3.5.1)
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FfGURE 3.23 Contours of radial (wall-normal) velocity fluctuations (vr), normalized I
by ur, on a plane (Iz) normal to the mean velocity: (a) 6/a = 5 with contour levels
from -1.8 ur to 1.3 ur; (b) ,/a = 11 with contour levels from -0.95 ur to 1.05
Ur. The contour increment is 0.25 Ur. The solid contours denote the negative
radial velocity (Vr < 0) and the dotted contours denote the positive radial velocity
(Vr > 0).
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FIGURE 3.24 Contours of radial wall- normal) velocity fluctuations (v,), normalizedI by u,, on a plane (II,) norma to the mean velocity: (a) 6/a = 5 with contour
levels from -1.05 ur1 to 1.3 UT; (b) 6/a = 11 with contour levels from -0.95 uT to
1.29 UT. The contour increment is 0.25 u,. The solid contours denote the negative
radial velocity (V,. < 0) and the dotted contours denote the positive radial velocity
(V .> 0)
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FIGURE 3.25 The shear rate parameter S* -2q2(-Vz/dy)/
:  plane channeli

(Lee et a. [19901); cylinders w it -- - th e tu b l n ki et c energyo/ = 1

where S = dVz /dy Iw is the mn wall shear rate, q' is tetren kineti energy tha

and f is the viscous dissipation. As the curvature increases Figur3.5sostt

S* icreses earthe point of maximum production of turbulent kinetic energyi

(y+ - 12), suggesting that the axial lenghsaeotelwspdsrasmy

i nrease as th e cu rva tu re in creases . . h o t u l t f V i z ) s r a e

The low speed streaks can be seen in t e 3.26.u p Not e tha the o n eg)sratie

parallel to the cylinder at Y+' P 5, as shown in Figur ie direti forta the 6eative11

contours seem to be more elongated in the streamwiedrtonorhe$a=1

flow.I

I
A' incease nea the pniintrp of aheu plwsructurioheai of turuest eie

to 12) suggwiesigtathaxl length scale of the low sped9sreas1my,
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i
i

where L(z) and V ) are the axial and azimuthal integral scales of the quantity of

interest. For example, when based on Vz, L(V z) and LV9 ) are given by

L2 /2i

Lz(y)= J Rvzv,(y, z)dz,

0 (3.5.3) i

L(#)(y) = (a±+y)Rvv(yO)dO,

0

respectively. L* based on the streamwise velocity fluctuations, which characterize i
the low speed streaks, was computed by Lee et al. (1990) for the plane channel;

their results are compared to the present simulations in Figure 3.27. Close to the i
wall (y+ < 10), L* is significantly increased with increasing curvature. Since the

spanwise length scale of the low-speed streaks in wall units is not greatly affected

by curvature, their streamwise length scale must increase with ,/a. Away from the

wall (y+ > 20), L* for the ,/a = 5 cylinder has essentially the same value as in

the plane channel. In the larger curvature case (5/a = 11) L* away from the wall

(y+ > 20) is twice as large as its counterparts for the 6/a = 5 cylinder and the

plane channel.'

In addition to the low speed streaks, near-wall flows are also characterized by

near-wall vortical structures and internal shear layers. The near-wall streamwisei

vortices and internal shear layers are characterized by the streamwise and the span-

wise vorticity fluctuations, Wz and w,, respectively. The length scale ratios defined i
in Equation 3.5.2, computed for both w, and wo, are shown in Figure 3.28. For

y+ > 10, the length scale ratios for the two vorticity components are close to their 3
isotropic value of unity. Near the wall (y+ < 10), where the mean shear is largest

(Figure 3.7), the length scale ratios of w and Wz increase with increasing curva-

ture. In particular, the higher near-wall L* based on Wz suggests that the near-wall

streamwise vortices become longer as the curvature increases. Note also that both

vorticity length scale ratios are only affected by curvature near the wall (y+ < 10).i

The near-wall shear layers that develop at the interface of the low and high speed

flow regions are common in the two transversely curved flows as shown in Figures i
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FIURE 3.27 The length scale parameter L* based on Vz: ---- plane channel (Lee
!et a. [19901); cylinders with 6-i/a =5 and ---- b/a =11.
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FIGURE 3.28 The length scale parameter: L* based on w for cylinders with

et = 5 and ---- a = 11; L* based on wz for cylinders with --- a = 5

and ........ b/a = 11.
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(a)
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, ..-, .........

(b) 3

FIGURE 3.29 Contours of axial (streamwise) vorticity fluctuations (Wz), normalized I
by u, and v, on a plane (I,) normal to the mean velocity: (a) 6/a = 5 with contour
levels from -0.34 uIr/v to 0.5 u,./,; (b) 6/a = 11 with contour levels from -0.3
u' /v to 0.38 u' /V. The contour increment is 0.04 u'r/v. The solid contours denote
the negative vorticity (Wz < 0) and the dotted contours denote the positive vorticity

(wz > 0).
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FIGURE 3.30 Contours of axial (streanwise) vorticity fluctuations (Wz), normalized
by U, and v, on a plane (II,) normal to the mean velocity: (a) 6/a = 5 with
contour levels from -0.34 u'r/v to 0.5 Ut/v; (b) 6/a = 11 with contour levels from
-0.26 u 2 /v to 0.22 U /v. The contour increment is 0.04 u /v. The solid contours
denote dhe negative vorticity (Wz < 0) and the dotted contours denote the positive
vorticity (WZ > 0).
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6I

(b)3

FIGURE 3.33 Contours of azimuthal vorticity fluctuations (we), normalized by lurI

and v', on a plane (I,) normal to the mnean velocity: (a) 65/a = 5 with contour

levels from -0.58 U2 IV to 0.54 U2 IV; (b) 6/a = 11 with contour levels from -0.66

u~/ to 0.5 u2/v. The contour incremept is 0.04 u'/v. The solid contours denoteI
the negative vorticity (wo < 0) (aligned with the mean vorticity) and the dotted

contours denote the positive vorticity (we > 0).
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(b)

FIGURE 3.34 Contours of azimuthal vorticity fluctuations (we), normalized by urand v, on a plane (Iz) normal to the mean velocity: (a) ,/a = 5 with contour
levels from -0.38 u4/v to 0.5 u/g'; (b) 6 /a = 11 with contour levels from -0.9I u/v to 0.46 u,/v. The contour increment is 0.04 ur/v. The solid contours denote
the negative vorticity (we < 0) (aligned with the mean vorticity) and the dotted
contours denote the positive vorticity (we > 0).
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3.31 (plane Iz) and 3.32 (plane IIz) and have features similar to those of the plane

channel. These two figures suggest that the higher curvature (6/a = 11) flow is

more quiescent in the outer region in agreement with the lower velocity correlation

coefficient (Figure 3.6). In Figures 3.33 and 3.34, cross sections of the internal shear
layers by (r, 0) planes show that the shear layers have large azimuthal (spanwise)
length scales relative to the cylinder radius. As the curvature increases the ratio

of the spanwise length scale of the shear layers to the cylinder radius increases.

These contour plots also suggest that the shear layers have a milder transverse

curvature than the cylinder. Cuts of these shear layers by (z, e) surfaces parallel

to the cylinder (Figure 3.35) at y+ 15 show a characteristic arrow shape that is

more noticeable in the higher curvature (6/a = 11) flow. Such arrow shapes are

geometrically consistent with nearly planar inclined shear layers intersected by a

cylindrical surface.

Kim (1989) demonstrated that the near-wall streamwise vortices contribute sig-
nificantly to the source term of the pre.-_,re Poisson equation. As the curvatureU increases, there is an additional important source of pressure fluctuations (see Sec-

tion 4.1, Figure 4.3) associated with the strong near-wall radial (wall-normal) vor-

ticity fluctuations (Figures 3.18 a and 3.18 b). Contours of the radial vorticity
fluctuations in the same (r, 0) planes are shown in Figures 3.36 and 3.37. As in

the plane channel, near the wall the regions where the radial vorticity fluctuations
change sign are well correlated with the locations of the low-speed streaks but not

necessarily with the streamwise vortices. Contours of the pressure in the same

(r, 0) planes (Figures 3.38 and 3.39) show low pressure regions well correlated with
the locations of the near-wall streamwise vortices. Apparently the normal vorticity

fluctuations become a more prominent feature simply because, as the curvature

increases, more of the turbulent kinetic energy is in the streamwise velocity fluc-

tuations (Figure 3.4). Contours of the normal vorticity are shown in Figure 3.40
on (z, 0) surfaces parallel to the cylinder at y+ ;, 15. In the 6/a = 11 flow (Figure

3.40 b), the strong posicive and negative contours of Wr are well correlated with the
intersections of the cylindrical surface at y+ - 15 with the wall shear layers (Figure

3.35 b).
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(b)

FIGUFE 3.36 Contours of radial (wall-normal) vorticity fluctuations (wr), normalized
by ur and v, on a plane (Ii) normal to the mean velocity: (a) 6/a = 5 with contour
levels froi -0.38 ul/v to 0.46 U~r/r; (b) 6/a = 11 with contour levels from -0.3
u2/v to 0.38 u2./v. The contour increment is 0.04 u' /V. The solid contours denote
the negative vorticity (wr < 0) and the dotted contours denote the positive vorticity
(Wr > 0).
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(a)
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3 (b)

I FIGuREr 3.37 Contours of radial (wall-normal) vorticity fluctuations (Wr), normalized
by ur and v, on a plane (IIz) normal to the mean velocity: (a) 6 /a =5 with contour
levels from -0.46 I/V to 0.5 U24IV; (b) 6/a = 11 with contour levels from -0.26
u,2/v to 0.22 4,/v. The contour increment is 0.04 u2/v. The solid contours denote
the negative vorticity (w, < 0) and the dotted contours denote the positive vorticity
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FIGURE 3.38 Contours of the pressure fluctuations (p), normalized by p and u'r,
on a plane (I,,) normal to the mean velocity. (a) 6/a = 5 with contour levels fromI
-4.1 pu'. to 2.1 pu'; (b) 6/a = 11 with contour levels from -2.5 pu' to 1.5 p4.
The contour increment is 0.2 p4'. The solid contours denote the aie pressure
(p < 0) and the dotted contours denote the positive pressure (p >0
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FIGURE 3.39 Contours of the pressure fluctuations (p), normalized by p and ur, on
a plane (Ili) normal to the mean velocity: (a) 6/a = 5 with contour levels from
-2.5 p4' to 1.5 p, (b) S/a = 211 with contour levels from -1.7 4t0.p.
The contour increment is 0.2 p4,. The solid contours denote the ne ative pressure
(p < 0) and the dotted contours denote the positive pressure (p > 01.
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UCHAPTER 4I
* Pressure Fluctuations

I
Wall pressure fluctuations affect the acoustic characteristics (both radiation and

detection) of underwater vehicles. In addition, in transversely curved turbulent

flows over sonar devices, it is important to identify the pressure signals generated

by the turbulent flow field. The aim of this chapter is to describe the effects of

transverse curvature on the wall pressure fluctuations when both the outer and

inner parts of the flow are affected by the curvature of the wall. For this flow

regime (large 6/a and small a+), there is only limited experimental data available
on the statistical properties of the wall pressure fluctuations.

i For comparison, the spatial and temporal spectra of the plane channel wall

pressure fluctuations were also calculated from a database generated by Kim et

al. (1987) and Choi & Moin (1990). As noted earlier, the Reynolds number of the

plane channel flow and those of the present flows are similar, and thus differences

in the statistical characteristics can be ascribed to the transverse curvature alone.

The wall pressure database on which the results of this chapter are based was

generated after the flow had reached statistical steady state (Section 3.2). Addi-

tional integration of the governing equations for wall pressure statistics were carried
out for a period of 12.8 6 /u, time units in the 6/a = 5 flow and for 8.6 time units

in the 6/a = 11 flow.

The effects of transverse curvature on the sources of pressure fluctuations are

discussed in Section 4.1. The computational method used to obtain the space-time
characteristics of the wall pressure data is described in Section 4.2. Section 4.3

Scontains the spatial spectra of the wall pressure fluctuations and in Section 4.4 the

two-point correlations are presented. The fractional contributions of various flow
* regions to the wall pressure are studied in Section 4.5. The temporal spectra are

presented in Section 4.6. Two-dimensional spectra and correlations are discussed in

Section 4.7. Finally, Section 4.8 treats the convection velocity of the wall pressure

fluctuations.
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FIGURE 4.1 Root-mean-square pressure normalized by u7 in global coordinates: I
--- plane channel (Kim [1989]); cylinders with - ,la = 5 and ---- /a = 11.

4.1 Pressure Source Terms I
The Poisson equation for the pressure field is obtained from the divergence of

the Navier-Stokes equations (Equation 2.1.1),

V2p = -Vz OVr & 2,v2 2 (O v _
or clz \ j r-: 5T e5

(4.1.1 a)
-2----; 0-+0)0 0 0

Boundary conditions for the pressure are obtained by evaluating the radial momen-

turn equation at both edges of the domain,I

r=a Re r O r=a' r=a+l [ Rer r2 09 + r=a+ 1
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FIcuE 4.2 Profiles of the root-mean-square value of the pressure source terms
normalized by v and Ur: (a) linear contribution: cylinders with - /a = 5
and --- /a = 11; (b) nonlinear contribution: cylinders with -,b/a = 5 and
---- 6/a = 11; total source terms: cylinders with --- ,b/a = 5 and ---- 65/a=1.

81



mI

I
The first term on the right hand side of Equation 4.1.1 a represents the pressure

source that results from the linear interaction of the mean shear with the turbulence.

The next six terms are the pressure source terms that result from the nonlinear

interactions within the turbulent flow field.

The pressure intensity normalized by the mean shear, shown in Figure 4.1, de-

creases across the layer with increasing curvature. In particular, the near-wall

maximum of the pressure intensity is reduced by increasing the curvature. This

suggests that the structures that are responsible for the maximum in the pressure

intensity are weakened.

Contrary to what was generally accepted, Kim (1989) found that in turbulent

channel flow the turbulence field interactions constitute the strongest sources of

pressure fluctuations. In fact, the magnitude of the mean-square of the linear

source term was about five times lower than the magnitude of the mean-square

of the nonlinear source term. In the transversely curved turbulent flows reported

here, the ratio of the magnitude of the mean-square of the nonlinear to the linear

pressure source terms is large (Figure 4.2), even though, as the curvature increases,
both sources of pressure fluctuations (linear and nonlinear) decrease.

In the plane channel the maximum of the mean square of the nonlinear terms

occurs at about y+ ; 20, which is the same as the mean position of the near-wall

vortices as well as the position of the maximum of the pressure intensity (Kim

[19891). In the transversely curved flows, the maximum of the pressure intensity is

weakened as the curvature increases and at about the same pnsition as in the plane

channel flow (y+ - 20, Figure 4.1). As the curvature increases, the average strength

of the near-wall vortices is weakened while the average position of the vortex cores

remains the same (y+ 20) (see Section 3.4).

In order to associate the pressure intensity with the sources of pressure fluctu-

ations in the flow, the various contributions to the nonlinear source terms of the

pressure are examined (Figure 4.3). As in the plane channel the most important

nonlinear source term is
2 aov - 9V (4.1.2)

which contains significant contributions from the near-wall streamwise vortices.

Note also that in both flows this source term develops near-wall (y+ - 5) local
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FIGURE 4.3 Profiles of the root-mean-square value of the nonlinear contributions to
the source terms normalized by v' and u,: (a) h/a = 5, (b) b/a = 11;-, (Ov,/ar)2,
.... (2/r)(Ov,/8O0 - vo)(LOv@/.r), - (i/r2)(aVo/80 + Vr ) 2 , V/Z2

83



I
I

6/a 0 5 11 1
LT(Ur/6) 9.36 12.9 8.6 1
Lt(ur/r5) 1.20 0.806 0.659

Ats(UT/6) 3.75 x 10- 3  2.52 x 10- ' 2.06 x 10- 3

Ats(U2 /V) 0.675 0.539 0.494

Aw(b/ur) 5.2 7.8 9.5

Ns 2560 5120 4160

Table 4.1 Temporal resolution parameters

extrema. Near the wall vorticity of opposite sign to the primary vortices may be

responsible for this behavior.

Figure 4.3 also shows that, as the curvature increases, another nonlinear term,

2 o0VOOz (41.3)!
2 00 z 'I

plays an increasingly important role in the pressure fluctuations. Note that the

factors in this product are the two velocity gradients that define the radial compo-

nent of the vorticity (Equation 3.4.1). As the curvature increases, strong normal
vorticity fluctuations (with respect to the local streamwise vorticity fluctuations)

become increasingly more common farther away from the wall (when measured in

wall units).

4.2 Computational Considerations

The wall pressure was sampled at intervals Ats for a total period LT, resulting

in N, time samples. In the temporal analysis a window of length Lt is used. These
parameters are given in Table 4.1 for the three simulations under consideration.

For the sake of simplicity only the one-dimensional spectra are discussed. The I
computation of the two-dimensional spectra is identical.
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4.2.1 Spatial Spectra

I The spatial spectra of the wall pressure fluctuations are obtained by averaging

over all Ns samples. Thus the spectra in the axial and azimuthal directions axe

given by

Akz~ i=1m=-Ne/2I __(4.2.1)

2 N. 1 2AkONs pw( 27rk /Lz, ko, tj ) ( 27rk /Lz, ktIEpp(ke) = A k.N W tj

I respectively. The Fourier transform of pw(z,O,t) is pw(kz, k9, tj) and P* (kz, ke, tj)

is its complex conjugate. Note that the mean-square wall pressure is given by

N./2 N/2

7 = kz Epp(27rkILz) = Ak, E Epp(rn/a). (4.2.2)
k=O m=O

3 4.2.2 Temporal Spectra

In the calculation of the temporal characteristics of the wall pressure the same

techniques were used as in Choi & Moin (1990). The total length of the temporal

domain for each of the flows (LT), is divided into m overlapping intervals (with

3 50% overlap) of equal length (Li). The length of each interval is thus given by

I = 2 LT (4.2.3)
m + 1 "

I The choice of m = 31 and m = 25 was made for the 6/a = 5 and 5/a = 11 flows

respectively, resulting in 320 samples in each interval. Since the wall pressure is

I
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I

not temporally periodic in any of the intervals, the data is tapered at the edges of
each interval by a window function fw(t), according to I

Pw(t) = fw(t)pw(t), 0 < t < Lt, (4.2.4)

where pw(t) denotes the wall pressure at a given time instant. For the sake of

simplicity, in this section, the spatial dependence of the wall pressure fluctuations

is omitted. In the analysis of the wall pressure for the plane channel Choi & Moin

(1990) experimented with several window functions and reported no significant

difference in the resulting temporal spectra. In the present calculations the Hanning
window function

f(t)- 2 cos -(4.2.5)

is used. The properties of fw(t) as a window function are discussed by Harris

(1978).

The temporal spectrum is estimated from 3
1 M

Opp(wj) - 1 W P (4.2.6)

/wm Zzi(Wj) -(wj),I

where tw is the Fourier transform of 5w in the ith interval. The discrete frequencies,

wj, are given by 5
2ir.

W= 7 rj, j = 0, 1,2,...,M/2, (4.2.7) I

where M = 2N 8/(m + 1) is the number of samples in the interval. In general,

because of the windowing, the variance of Piw will not be equal to the variance of

pw. To preserve the root-mean-square (r.m.s.) value of pw the spectrum qpp is
rescaled so that 3

M/2

Pw = Aw E Opp(wj). (4.2.8) I
j=-M12

I
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FIGURE 4.4 Signal of the wall pressure fluctuations normalized by p 2 : (a) plane
channel; cylinders with (b) 6/a = 5; (c) 6/a = 11.
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6/a 0 5 11

p 1.54 0.84 0.58

S(pw) -0.03 -0.70 -0.78
F(pw) 5.16 7.16 6.18

Table 4.2 Wall pressure parameters.

4.3 Spatial Spectra

Figure 4.4 shows a sample of the time traces of the wall pressure fluctuations

normalized by their r.m.s. values. Note that, as the curvature increases, the high

frequency content of the fluctuations is weakened. Apparently the different appear-

ances of the wall pressure fluctuations in the two transversely curved flows, does I
not noticeably affect the flatness and skewness values (Table 4.2).

The strong dependence of the wall pressure intensity on the Reynolds number, 3
documented by Choi & Moin (1990), is not a factor in the comparison of Table 4.1

because the Reynolds numbers of the three simulations are similar. In measure- 3
ments of the wall pressure intensity in a boundary layer Willmarth & Yang (1970)

concluded that the transverse curvature did not have a significant effect. However,

this result is for a mild transverse curvature (6/a ! 2, a+ - 4500), in which only

the outer part of the boundary layer was affected by the curvature. In addition, any

small curvature dependence that was present in their study was probably overshad-
owed by the strong Reynolds number dependence of the wall pressure intensity. In

subsequent wall pressure measurements on a cylinder (Willmarth et al. [1976]), for I
which 6/a _ 4, the value of the wall r.m.s. pressure was not reported.

The one-dimensional wall pressure spectra as a function of the azimuthal (span-

wise) and axial (streamwise) wave-numbers are shown in Figure 4.5, along with

their planar counterparts (Choi & Moin [1990]). Note that the spanwise spectra

(Figure 4.5 a) is not affected by the transverse curvature in the high wavenumber
range. In the low wavenumber range the energy of the spanwise spectrum decreases I
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FiGURE 4.6 Axial (streamwise) spectra of the wall pressure fluctuations normalized
by bf and ur: --- plane channel (Choi & Moin [1990]) (65/a = 0, bf = 6); cylinders
with - 61a = 5 and ---- 61a = 11.

with increasing curvature. This suggests that the curvature mostly affects stru-

tures with large spanwise length scales (small bk) than those with small spanwise

length scales (large 6k). The streaxawise spectral density of the wall pressure

fluctuations decreases significantly with curvature for all scales (Figure 4.5 b). As

expected, the three flows display a negligible wave-number range with the - 1 slope

in the streamwise spectrum. This feature is probably a result of the low Reynolds!

numbers of the three flows. The high wave-number range of the streamwise spec-

trum is associated with small structures and has a -5 slope in the planar case. In

the transversely curved flows the axial spectra exhibit steeper slopes in the high

wave-number range, indicating a weakening of structures in the buffer layer (Blake

[19861) that contribute to the wall pressure fluctuations.t
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In a transversely curved boundary layer, the volume of turbulent flow that must

be supported per unit wall surface area is larger than in the plane channel case by

a factor of 1 + b/(2a). This is a natural curvature parameter. It was found that

when scaled with the curvature dependent length scale given by

= (i+76), (4.3.1)

the axial (streamwise) spectrum of the wall pressure fluctuations of the plane chan-

nel flow and of the transversely curved flows collapse in the high wave number

range, as shown in Figure 4.6. This length scale is related to the velocity scale de-

fined in Section 3.2.3 (Equation 3.2.5, see Section 4.6). Spectra normalized with

p . are shown in Figure 4.7.

The two-dimensional spatial wall pressure spectra are shown in Figure 4.8. As in

the planar case (see Fig. 12 of Choi & Moin [1990]) the transversely curved spectra

are elongated in the the spanwise direction. However, as the curvature increases the

azimuthal (spanwise) elongation of the spectrum increases. In addition the energy

of the large structures (small bkz or 6ko) decreases with increasing curvature.

I 4.4 Two-point correlations

* In the two previous studies of the wall pressure fluctuations in boundary layers
with transverse curvature (Willmarth & Yang [19701 and Willmarth et al. [1976])

it was shown that, as the curvature increases, the wall pressure becomes better

correlated around the cylinder. This trend is also evident in the present flows as

shown in Figure 4.9 a. Note, however, that in viscous units the azimuthal (spanwise)

correlation length decreases with increasing curvature (Figure 4.9 b). In the axial

two-point correlations (Figure 4.10), the zero-crossing point, Rpp(z/l6*) = 0, is

reached at z/S* = 3.9 in the 6/a = 5 flow and at z/* = 4.6 in the 6/a = 11
flow. Both values are higher than the value of 2 reported by Willmarth & Yang3 (1970) and Wilmarth et al. (1976), however, when compared with the value of 3.4
reported by Choi & Moin (1990) for the plane channel, a trend towards larger axial3 length scales with increasing curvature is discernible.
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I FIGURE 4.8 Spectra of the wall pressure fluctuations normalized by u,. and 6
S6.ke = 6/a, and the scale of the ordinate is twice that of the abscissa): (a)
/= 5, (b) b5/a = 11. The contour levels are logarithmically distributed from 10-I to 10O' with exponent increments of 0.3.
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FIGuRE 4.9 Azimuthal (spanwise) two-point correlations of the wall pressure fluctu-
ations as a function of (a) 0 and of (b) Oa+: -6/a = 5 (a+ -_43); --- /ba = 11I
Wa A- 21).
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n Ft(OURE 4.10 Axial (streamwise) two-point correlations of the wall pressure fluctu-

ations: - 61a = 5 and --- /ba = 11.

m For small separations, the wall pressure correlation contours in the planar case

(Willmarth et al. [1962], Choi & Moin [19901) are nearly circular and, as the sepa-
m ration increases, the ratio of the spanwise to the streamwise length scales increases.

In contrast with the planar wall pressure correlation contours, in a transversely
m curved flow Willmarth & Yang (1970) (bia = 2 and a+ ;:t 4500) report wall pressure

correlation contours which, for large separations, are compressed in the spanwise

m direction. However, the 61a = 4 measurements of Willmarth et al. (1976) seem to

be inconsistent with this apparent trend. Figure 4. 11 shows the correlation contours

m of the wall pressure fluctuations for the plane channel flow. For large separation the

correlation contours are elongated in the spanwise direction. In contrast, Figure

4.12 shows that, as the curvature increases, there is a significant increase in the
m ratio of the axial to azimuthal length scales for all separations.
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FIGURE 4.11 Contour plot of two-point correlations -f the wall pressure fluctuations I
for plane channel (Choi & Moin [1990]) as a function of the streamwise (r + ) and
spanwise (r + ) separations. The contour levels are from 0.1 to 0.9 with increments
of 0.1.

4.5 Green's Function Representation

Further insight into the spatial structure of the the wall pressure fluctuations

can be obtained by representing the pressure field in terms of the Green's function

of the Poisson operator.

From the analysis presented in Appendix B, in transversely curved flows the

Fourier coefficient of the wall pressure fluctuations are given by

P(r) 1, G(r, ro)f(ro)rodro-t

a d(r,a) ±P: (a+ 1)d(r,a + 1) L I
r La - (a lr~a+1'

where ro is the radial position of the source, f denotes the Fourier transform of

the source of the pressure Poisson equation (Equation 4.1.1 a) and d is the Green'sI
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FIGURE 4.12 Contour plot of two-point correlations of the wall pressure fluctuations
for (a) 6/a = 5 and for (b) 6 /a = 11 as a function of the axial (r + - streamnwise)
and azimuthal (a+O - spanwise) separations. The contour levels are from 0.1 to 0.9
with increments of 0.1.

function of the Laplacian operator in cylindrical coordinates with derivative bound-

ary conditions. The global nature of the pressure field is clear in Equation 4.5.1

due tL the volume integral of g(r, ro)f(ro) over the whole flowfield. From Equation

4.5.1 the contributions to the wall pressure fluctuations (ipr-) from sources located

3 ~in the volume close to the cylinder surface at a < ro < rs are given by

I 9'

I

m , ,s.I mm il l~nI IIIlim llmlm i~ill nl m+m
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FIGURE 4.13 Fractional contributions to the root-mean-square wall pressure fluc-
tuations from sources located at yo E [0, ys]: --- plane channel; cylinders with

-5/a = 5 and ,-/a = 11 (y, = r - a). The result is normalized by the
total wall pressure intensity. 3

D - 9(a, ro)f (ro)rodro+

ao (a, 1 a)- : r,O(o,,-,)Lp .(4.5.2)

d r Ir= a - da , r= r, I

Likewise, the contributions of the outer part of the volume of the flow (rs <_ ro <
a + 1) to the wall pressure fluctuations (Pr+) are given by 3

a+1
[r+ !9(a, ro)f(ro)rodro+ U

(4.5.3)

r'q~,r):(a + 1)0(a, a + dj U
d Lr 8  dr r=a+l
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FIGURE 4.14 Contour plot of two-point correlations of the contributions to the wall
pressure fluctuations in the plane channel from flow perturbations in the interval
(a) [0, ys] and (b) [ys, 1] (1 denotes the channel centerline) as a function of the
streamwise (r+ ) and spanwise (r+ ) separations. The contour levels are from 0.1 to
0.9 with increments of 0.1 and ys ;, 0.2 (y+ ,,t 36).
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FIGURE 4.16 Contour plot of two-point correlations of the contributions to the wallpressure fluctuations for 6/a = 11 from flow perturbations in the interval (a) [a, rs]

and (b) [r,, a + 1] as a function of the axial (r+ - streamwise) and azimuthal (a 0
- spanwise) separations. The contour levels are from 0.1 to 0.9 with increments of
0.1 and ys ;, 0.2 (y+ = r+ - a+ ,:t 49).

Similar expressions can be obtained for the plane channel. The root-mean-square3 of the contributions to the wall pressure fluctuations normalized by the total wall

r.m.s. pressure is shown in Figure 4.13 as a function of the cutoff r. For the

two transversely curved flows as well as the plane channel more than 80% of the

wall r.m.s. pressure fluctuations are produced by the inner part of the domain

(0 < ro < y. = r, - a -, 0.2). Note that, as the curvature increases, there is a slight

increase in the wall pressure fractional contributions from the near-wall (ys < 0.2)

* part of the flow.
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Small separation correlation contours result from small scale pressure fluctua-

tions typically associated with the inner part of the boundary layer, while the large

separation correlation contours have significant contributions from large scale mo-

tions in the outer part of the boundary layer. This is emphasized in Figure 4.14

which shows the plane channel two-point correlations of P -sand fi+ for ys _ 0.2. I
It is clear that the spanwise elongation of the planar wall pressure correlation con-

tours is due to disturbances in the outer part of the layer (Figure 4.14 b). Note

also that for this cutoff (ys ; 0.2) the shape of the planar wall pressure correlation

contours due to the inner part of the flow are slightly elongated in the streamwise

direction (Figure 4.14 a).

The two-point correlations of P,_ and P3,r+ for ys = rs - a ;z 0.2 are shown in

Figures 4.15 and 4.16 for 6/a = 5 and for 6 /a = 11, respectively. In both cases

the two point correlations of the wall pressure fluctuations due to contributions

from the volume close to the cylinder have a streamwise aspect ratio similar to I
that shown in Figure 4.12 for the contributions of the whole flow. On the other

hand, in the 6/a = 5 flow, the shape of the correlation contours of the wall pressure

fluctuations due to the outer part of the flow (Yo E [ys ;t 0.2,1.0], see Figure

4.15 b) have nearly circular shapes for small separations and a spanwise orientation 3
for large separations. The same trend is also evident in the 6/a = 11 flow, although,

a streamwise orientation is discernible in the wall pressure correlation contours due

to sources in the outer part of the flow (Figure 4.16 b). Wall pressure correlation

contours due to the outer part of the flow, obtained for larger values of the cutoff

(yB > 0.2, not shown), become increasingly oriented in the spanwise direction in I
both transversely curved flows (6/a = 5 and 6/a = 11), however, the spanwise

stretching effect of the outer part of the flow on the wall pressure correlations 3
decreases as the curvature increases.

The fact that, in the three flows, the wall pressure correlations due to the near- 3
wall part of the flow are elongated in the streamwise direction implies that the

near-wall structures are responsible for this shape. The curvature trend shown in 3
Figures 4.14 through 4.16 is consistent with the length scale parameter L* based on

Vz (see Section 3.5, Figure 3.25) which suggests that relative to the plane channel,

as the curvature increases, the ratio of the streamwise to spanwise length scales

increases near the wall for both flows and away from the wall in only the 6/a = 11 i
case. Thus, it is coxjectured that, as the curvature increases, the inner part of the
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flow plays an increasingly important role in determining the length scales of the

wall pressure fluctuations.

3 4.6 Temporal Spectra

The temporal spectra of the wall pressure fluctuations of the two transversely

curved turbulent flows is compared to their planar counterpart in Figure 4.17 a. As

expected from the streamwise one-dimensional spectrum, the temporal spectrum

decreases at all frequencies with increasing curvature.

In the wall pressure temporal spectra measurements of Willmarth & Yang (1970)3 and Willmarth et al. (1976), a reduction in the intensity of the high frequency

range was also observed. However, the effect of curvature on the inner part of the

boundary layer in their flow regime (high a+), and therefore on the high frequency

range of their wall pressure temporal spectra should have been negligible. This

apparent inconsistency in the experimental data may be related to probe spatial

resolution problems, which were not corrected for.

Using the curvature dependent length scale defined in Section 4.3 (Equation

4.3.1), a curvature dependent time scale (bf /ur) can be defined:

I a~ (+b) (4.6.1)
I

When scaled with this curvature dependent time scale the temporal spectrum of the

wall pressure fluctuations of the two transversely curved flows collapse with their

planar counterpart in the high frequency range (Figure 4.17 b). Also note that this3 time scale is related to the velocity scale u defined in Section 3.2.3 (Equation 3.2.5)

by

f u1(4.6.2)
UT RA(Y/ 6 = 1
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I
4.7 2-D Spectra and Correlations

I The frequency/axial (strearnwise) wave-number power spectra, (Ip(kz,w), for

the two transversely curved flows are shown in Figure 4.18. As has been the case

throughout this study the intensity decreases as the curvature increases for all
frequencies and axial length scales. In both cases the narrow aspect ratios of the

iso-contours denote well defined convection velocities.

The space-time correlation of the wall pressure fluctuations is given by the

Fourier transform of the frequency / streamwise wave-number spectrum,

Rpp(rz, rt) = E 1 -Iipp(kz,w)e-iwr e-ikzrz, (4.7.1)

kz w

and is shown in Figure 4.19 for the two transversely curved flows. When measured in

viscous units, the axial length scales of the auto-correlation contours are virtually

unaffected by curvature, however, the temporal extent increases with curvature.

Again, clearly defined convection velocities are evident from the oblong shape of

* the contours.

4.8 Convection Velocity and Taylor's Hypothesis

The idea that structures in the flow are convected at a velocity close to the free

stream velocity is an attractive one which has received substantial experimental

support in planar boundary layer flows. Experimentally, it is typically easier to

measure temporal spectra, from which streamwise spectra are obtained by invoking

the concept of a convection velocity and Taylor's hypothesis.

Several definitions for the convection velocity have been proposed in the litera-

ture. The most common are obtained from the frequency streamwise wave-number
spectra, tpp(kz, w), or from its Fourier transform, Rpp(rz, rt ).

I For example, the convection velocity as a function of the axial (streamwise)

separation (rz) for a given time delay (rt,), is defined as the ratio rz/rt, for which

Rpp(rz, rt.) is a maximum,

Uc(rz) = ,rz ORP(rri) -0. (4.8.1 a)
rie Or rt--rtc

105



00

0 to

60 c

QQ

,0-

0&4.

jV
00

CC

04~

4'4 0I

10-6V



00

.00

W

co 0

W 15

0U 6
Ir



I
I

Likewise, the convection velocity can be defined as a function of the temporal
separation (rt) according to

rz~ -rzrj=0

Uc(rt) =(rz rt) 0. (4.8.1 b) 3rrt ir = rzc

The convection velocities of the wall pressure fluctuations computed from Equa-
tions 4.8.1 are shown in Figure 4.20. The convection velocities are lower than in the
plane channel. As the axial separation increases, the convection velocity increases
to about 0.7UWo for 6/a = 5 and to about 0.65U,, for 6/a = 11. Note, however,
that as a function of the temporal separation the convection velocity is practically

constant in both flows (Uc "" 0.6U,).

The convection velocity can also be defined as a function of the streamwise

wave-number (Wills ([1970]),

k) WC IPp(kz,w) =0, (4.8.2 a) I

and as a function of the frequency,

W 84!PPkW =0
Uc(w) - k' kzw) = . (4.8.2 b)kz z lkz=k , =I

When expressed as a function of the axial wave-number (Figure 4.21) the con-
vection velocity is about 0.6U, for large wave-numbers in all three flows. Likewise,
as a function of frequency the convection velocity (Figure 4.22) is about 0.65Uo
in the curved flows, which is lower than the value of about 0.8U,,, for the plane

channe! (Choi & Moin [19901).

In the cylinder flows, the various convection velocities show little variation among

themselves. In the following a constant value of the convection velocity, 0.65U.., i
is used to scale the temporal spectrum (¢pp(w)) into the axial spectrum (Epp(kz))
according to Taylor's hypothesis: 3

Eppc(kzc) =pp(W) (4.8.3)
Uc U 483
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FIGURE 4.21 Convection velocity normalized by U., as a function of the streamwiseI
wave number: cylinders: o, for 6/a = 5 and, , ,for 6 1a = 11.
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FIGURE 4.22 Convection velocity normalized by Uc,, as a function of frequency:
cylinders: o, for 6/a = 5 and t~,for 61a = 11.
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Comparison of Opp(w) with Eppc(kzc) (Figure 4.23) shows that Taylor's hypothesis

is a better assumption for low frequencies, as was also observed in the planar case 3
(Choi & Moin [1990]).

The decomposition of the two-dimensional spectra (Dpp(kz, w) and bpp(ke, w) into 3
their streamwise and spanwise similarity functions Fz(kzUc/w) and Fe(k9 U/w), are

given by 3
4ppp(kzw) = Opp(w)U Fz(kzUc/w),

w (4.8.4) I

- pp(kew) = Cpp(w) Uc(w) F(keUc/w),

respectively (Corcos [19641). Unlike the plane channel where a self similar behavior

in the spanwise direction was observed, no self similar behavior is apparent in either

Fz(kzUc/w) or F(kaUc/w), as shown in Figures 4.24 and 4.25.
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CHAPTER 5

Summary and Conclusions

The main objective of this study was to investigate the space-time characteristics

of turbulent lfows over long towed cylinders. The main conclusions are recapitulated

in this chapter.

For a sufficiently large ratio of the cylinder radius to the boundary layer thickness
(6/a) curvature affects the outer part of the layer. If the inner flow is to be influ-

enced by the curvature then the ratio of the cylinder radius to the viscous length

scale a/(v/ur.) must also be small. Two simulations of transversely curved turbu-
lent flows were successfully performed. The curvature parameters were 6/a = 5
Wa ;: 43) and 61a = 11 (a+ ;z 21).

In agreement with experimental measurements, as the curvature increases, the
skin friction coefficient (CJ) increases and the slope of the mean velocity profile in

the logarithmic region decreases. When a+ is sufficiently small, the viscous region
of the velocity profile deviates slightly from the planar law of the wall.

Measurements of the turbulence intensities and the Reynolds shear stress (when
scaled with wall variables) show a decrease with increasing curvature in the outer

part of the flow. These outer flow characteristics are reproduced by the present

computations. In addition, and unlike their experimental counterparts, close to the
wall, the computed turbulence intensities and the Reynolds shear stress decrease
with increasing curvature. The reason for the difference is attributed to the large
values of a+ in most experiments, where only the outer layer is affected by the cur-
vature. The reduction of the turbulence intensities with curvature is not the same
among different components and, as the curvature increases, more of the turbulent

kinetic energy is in the streamwise velocity fluctuations. This is a result of the

lower intercomponent energy transfer due to the lower pressure strain correlations

in the Reynolds stress budget equations of the transversely curved flows.

A new local velocity scale, which is a function of both the curvature parameter
6/a and the distance to the wall y/6 has been obtained from the mean streamwise
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momentum equation. When normalized with this new velocity scale some turbu-

lence statistics of the plane channel and the transversely curved flows collapse in

the outer part of the flow (y+ > 30). Near the wall the new velocity scale is unable

to account for all the differences observed.

As the curvature increases, the correlation between the streamwise and wall

normal velocity increases near the wall. In the higher curvature case (,/a = 11)

the correlation coefficient decreases in the outer layer indicating a tendency towards

stabilization. However, both flows computed are fully turbulent and statistically

steady. I
All vorticity intensities decrease with increasing curvature throughout the layer,

with the exception of the normal vorticity intensity, which is not affected near the 3
wall (y+ < 7). The axial (streamwise) intensity suggests that, as the curvature

increases, the near-wall streamwise vortices are weaker but have a radius similar to

that of the plane channel. Their position away from the wall is also not affected by

the curvature. As the curvature increases, the vorticity near the wall tends to be

increasingly oriented in the direction normal to the wall.

Another effect of the transverse curvature is the longer streamwise length scale I
of the low-speed streaks. The mean spanwise spacing of the low-speed streaks is

slightly less 100 wall units in both transversely curved flows at y+ z 12. Thus, as

the circumference of the cylinder decreases (as the curvature increases), there are I
fewer low-speed streaks around the cylinder.

Near-wall internal shear layers are common in the two transversely curved flows

computed. As the shear layers lift off from the surface of the cylinder they have

large spanwise leng'h scales relative to the cylinder radius. I
The linear and nonlinear sources of pressure fluctuations are strongly reduced as

the curvature increases. The sources associated with streamwise vortices are still I
the strongest, however, as the curvature increases, a new source of pressure fluctua-

tions associated with the strong normal vorticity fluctuations becomes increasingly I

important.

As the curvature increases, the axial (streamwise) wall pressure spectrum de-

creases for all scales, whereas the azimuthal (spanwise) wall pressure spectrum

decreases only for small wave-numbers (large scales). A curvature dependent outer
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length scale, which increases with curvature, is proposed from geometrical argu-

ments. This length scale collapses the streamwise spectra of the wall pressure

fluctuations of the two transversely curved flows studied with that of the plane

channel in the high wave number range.

Even though the wall pressure fluctuations become increasingly better correlated

around the cylinder, the azimuthal correlation length, when measured in wall units,

decreases as the curvature increases. On the other hand, the axial (streamwise) cor-

relation length increases with curvature. Unlike in the planar case, the wall pressure

iso-correlation contours are elongated in the streamwise direction, for both large

and small separations. Since the streamwise elongation of turbulence structures

with curvature is most pronounced near the wall, it is conjectured that the near

wall fluctuations are more important in determining the length scales of the wall

pressure fluctuations. Fractional contributions of the flow (from inner and outer

layers) to the wall pressure intensity show a minimal effect of curvature relative to

the plane channel.

Like the axial (streamwise) one-dimensional spectra, the temporal spectra of

the wall pressure fluctuations of the transversely curved flows also decreases as

the curvature increases. A new curvature dependent time scale which increases

with increasing curvature was propsed. When scaled with the mean wall shear and

this time scale the temporal spectra of the wall pressure fluctuations of the two

transversely curved flows studied and that of the plane channel collapse in the high

frequency range.

The two-dimensional spectra and space time correlations of the wall pressure

fluctuations give a lower convection velocity (U, - 0.6Uoo) than in the plane chan-

nel. With this convection velocity Taylor's hypothesis holds in the two transversely

curved flows studied.
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APPENDIX A

lI Reynolds Stress Budgets

In this appendix the transport equations for the Reynolds stresses and turbulent

kinetic energy are presented. They are derived from the Navier-Stokes equations

in general tensor notation (see for example Moser & Moin [1984])

e + VkVi = -gikPk + 1 VNOt' i = 1,2,3, (A.1)

where the superscripts denote contravariant tensors and the subscripts following

a comma denote covariant derivatives. The contravariant tensor g3 is the metric

tensor, which in cylindrical coordinates is

Igx' ) (A.2)
(0 0 1

I and the coordinates (x 1 , x 2 , x3) correspond to (r, 0, z), respectively.

The evolution equation for the mean velocity is given by

OV, + VkVi + vkvi k- +kI (A.3)

and the velocity fluctuations equations,

Ovi + vkvi k- iki 1 k i (vivk (A.4),k + v ,k = -9 kP,k + -9 v,kl W - v )k

are obtained by subtracting Equation A.3 from Equation A.1.
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From Equation A.4, evolution equations for the Reynolds stresses are:

.9vIvj- ,- v- total rate of change,

(vv k Iikjk

- [gik vp,k + gjk vpk] velocity pressure-gradient term,
___(A.5)

- (vivJvk),k turbulent transport rate,

+ - g (v v ,)kl  viscous diffusion rate,

Re9 k vjlv,k) viscous dissipation rate.

The transport equation for the normal stress, r,

w= |p
a .2vr- I l

- {a2 [r(vr-vrvr)] - 2v~vvoV9

2 (r r Or\

1 1 a [0-r .2v ) (A.6)I

Rer Or r9V9 .IIRer r, ao _v'Oz,

is obtained from Equation A.5 by setting i j = 1, evaluating the contravariant

derivatives and taking advantage of the homogeneity in the 0 and z directionI

I
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The transport equation for the azimuthal stress, v2,

-2 r O

___ 212.[r(Mveve)] + vrvel

+i-[ (r ) + 24V) A7

2 1 22 2.v( V
+ l- -(-t- + ;r

Re, +- +v,.+ r2 V

is similarly obtained from Equation A.5 by setting i = j = 2.

The transport equation for the axial stress, TY,

aZ ap6-= -2v

___dVz
- vzv -

-{' [r(v -zvv)]} (A.8)

I-(r-vz2II+ W--r ; W

2 (1vZ + 1iVz'\2(O'2+ \2]

is similarly obtained from Equation A.5 by setting i = j = 3. The budgets of

Vz, ;r and v for 6 /a = 5 and 6/a = 11 are shown in Figures A.1, A.2 and A.3,

respectively. The various terms of the budget equations are qualitatively like their

planar counterparts (Mansour et at. (19881) but have their magnitude decreased as

the curvature increases.
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The transport equation for the Reynolds shear stress, VzVr,

8v-z-vr = -dVz

I aot V d 0IZ
- 9--P- I

- [r(vrv-zvr)] - V-.9} (A.9)

Or r- 2 r2

2 [Ovr19vz 1 a z (OvVr avOz]
+ L - -z - - e + J 1

Re, [ Or r r2 00 (0 ' z az

is similarly obtained from Equation A.5 by setting i = 1 and j = 3. The budget I
of i3zv for 6/a = 5 and 6/a = 11 is shown in Figure A.4. As in the case of the

normal stresses, the budget of the Reynolds stress izVr is also similar to its planar I
counterpart (Mansour et aL. [1988J) but the magnitude of the terms decreases as

the curvature increases. 3

I
I
I
I
I
I
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The transport equation for the turbulent kinetic energy, q2 =(1/2)( + +v;),

Oq2 7z
-t = -Vzvr.--=-,t,.d7

zr O

e ( ) + (& ) + (ar ) 2

Rerr2  20 +e r 06,1])

is obtained from the trace Equation A.5.

The budget of turbulent kinetic energy for 6/a = 5 and 6/a = 11 is shown in

Figure A.4. The five terms in the right hand side of the transport equation for

the turbulent kinetic energy (Equation A.10) of the two transversely curved flows

are compared to their planar counterparts (Mansour et al. [1988]) in Figures A.6
through A.10. The magnitudes of all terms decreases as the curvature increases.
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Smalized by v and Ur for (a) 6/a = 5 and (b) b/a = 11.: production, --- dis-
sipation rate, ........ velocty-pressure gradient (pressure diffusion), --- turbulent
transport, --- viscous diffusion. 1

125

f|C

" mI lIIII III~nI



I
i I

!oo I
.. .. ..... . . .............

" .""\ *. ............................... .... ........................................................................................... ....................I
f" ............................................................. ......... .. .

:------ - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - -

C I' I

(a)

0 20 4s 80

0' I
0

s. ......... . -- p-- diff u si o n)..-

12

• I

I
FIUE A.3 Transport equation balance of the azimuthal turbulence intensity nor-
malized by v and u for (a) /a = 5 and (b) /a = 11. - production, dis-

sipation rate, ...... velocity-pressure gradient (pressure diffusion), ---- turbulent
transport, --- viscous diffusion.

I
126 I

I



04 ~ ., -

I ...........

5 (a)

0 20 40 60 80

* 
+,

FIGURE AA4 Transport equation balance of the Reynolds shear stress normalized
by v and wr for (a) 6 /a = 5 and (b) b/a = 11 : - production, --- dissipationIrate, .... velocity-pressure gradient (pressure diffusion), -- turbulent transport,
--.- viscous diffusion.

127



20 Usos
NU

o4 - - --- - - - - - - - - - -- - - - - - -- - --- - - - - - -- -- -

(b)

0 20 40 6080

Y +
FIUt - rnpr qainblneo h ubln iei nrynraie

by v n rfr()6a=5ad()6a= 1: - pouto,-- ispto

rae .... vlct -rsueg ain prsuedfuin,- -tr uettas ot

visou difuson

-12



a*

aj

*,.
%

020 40968

FIGURE A.6 Velocity pressure gradient term of the turbulent kinetic energy equation
normalized by vi and u7 : -- plane channel (Mansour et al. [19881); cylinders with

6/a5and ---- 6/a=11.
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FIGURtE A.7 Dissipation of turbulent kinetic energy normalized by v' and u,: --

plane channel (Mansour et a!. [19881); cylinders with - 6/a = 5 and - --- 6/a=
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APPENDIX BI
*The Green's Function for Pressure

I
In cylindrical coordinates the Poisson equation for the pressure is given by Equa-

tion 4.1.1. For each wave-number pair (m, k,) the Fourier transform of Equation

4.1.1 is given by
I dlj3 .Id3 (m2 2

d r T1dp M2 +k} p=f(r),
m =43 

[r- 
d-;T 

+) (B.1)

R7 d r 2 
.' 1 a1-er r]ra+3 r eR _aRrr r ~+

where 1(r) is the Fourier transform of the pressure source terms. In the Strum-

Liouville form the Equation B.1 is

i(P) = rf(r), (B.2)

3 where the operatorC is given by

= r rr r -T -+ki). (B.3)

The Green's function, 0, of the operator £ with homogeneous derivative bound-
m ary boundary conditions is the solution of

( ) = ( - r,),

I od (=.4)
r ___ -0 Wd r=a+1
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where 6(r - ro) is the Dirac delta 'function' and ro denotes the radial position of

the source. At r = ro, d is continuous 3
9(r, ro) I r+ rg(,7 ) ~ , (B.5)

and satisfies the jump condition

d O(rlro) I - -dr(r, ro) = -- (B.6)
r, r=r+ dr= ro

For this system, Green's identity is given by 5
fa0,CL -~ pz)] dr = [r (Pdd - a.i~ (B.7)I

Ja 'dr dr

which, upon integration, gives the general form of the Fourier coefficient for the

pressure fluctuations, 3

P(r) (r), r o)j(ro)rodro+
(B.8)

aj(r, a) - (a + 1)0(r, a + 1)±P:(Ba8 
)

The Fourier coefficient of the wall pressure fluctuations is obtained by evaluating i

this expression at r = a,

W j= 9(a, ro)f(ro)rodro+ 5
(B.9)
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The contributions to the wall pressure from a volume around the cylinder bounded
by a < ro _5 r8 are given by

Pr, =far !(a, ro)f(ro)rodro+

(B.1o)
ad(a, a) d' s~,r)

r La 7 rl=75

Likewise, the contributions of the outer part of the volume (rs < ro < a + 1) are
obtained by subtracting Equation B.10 from Equation B.9

+= ja+1O(a, ro)f(ro)rodro+
(B.11)

3rsd(a, r4- (a + 1)0(a, a + 1±dr L=s - ) ' l=a+l

I1

I

I
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APPENDIX C

Flow Databases

Velocity and pressure fields for the two transversely curved flow calculations

(6/a = 5 and 11) were saved every 200 time steps. The time step was 2.52 x 10 - 4

b/ur time units for the 6/a = 5 case and 2.06 x 10- 4 6/uT time units for the 6/a = 5

case. The wall pressure and wall shear stresses were saved every 10 time steps in

both calculations.

The data was archived in Fourier space in the axial and azimuthal directions

and in physical space in the radial direction and in time. The spatial character-

istics of the data are described in Table 2.2, and the temporal characteristics are

summarized in Table 4.1.

I C.1 Velocity and Pressure Data

The first record of each restart file is a header containing: (NR, NZ, NTH,

MTH, MR, REY, MEANPG, DT, LTH, LZ, RA, TIME, TSTEP), which

are the number of planes in the radial direction minus 1 (NR), the number of

Fourier modes in the axial direction (NZ), the number of Fourier modes in the

azimuthal direction (NTH), the drawer size in the azimuthal direction (MTH),

the drawer size in the radial direction (MR), the Reynolds number based on the

unity velocity in which the data is reported (in these units the friction velocity is3 1.2615 for the 6/a = 5 case and 1.3947 in the 6/a = 11 case) and 6/2 (REY) (in

both cases this Reynolds number is 85), the time step in these units (DT), the

length of the computational domain in the azimuthal direction (LTH), the length

of the computational domain in the axial direction (LZ), both in units of 6/2,

the ratio of the outer to inner radius of the computational domain (RA), the time

(TOLD) and the time step (TSTEP) (in these units the time step was 4 x 10- 4 for
6/a = 5 and 3 x 10- 4 for 6/a = 11). Next there are (NR/MR+ 1) x (NTH/MTH)

VDATA[RGR, THGR records containing the complex Fourier coefficients of the
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I

velocity field in the order (V, Vr, V) followed by (NR/MR + 1) x (NTH/MTH)

PDATA[RGR, THGR] records containing the complex Fourier coefficients of the

pressure field. The indices RGR and THGR identify the drawers of the database.

Each VDATA and PDATA drawer is a complex array dimensioned as DATAV

[NZ/2, MTH, 3, MR] and as DATAP[NZ/2, MTH, MR], respectively. The first

index indicates the axial (streamwise) wave number I = 1, ... , NZ/2. The second

index indicates the azimuthal (spanwise) wave number 12 = 1, ... , MTH, and the

wave number associated with each 12 is givcn by

(THGR - 1) * MTH + 12, 12 !5 MTH/2,

-[(THGR -1) *MTH + 12- MTH/2], I2> MTH/2.

The third index in DATAV indicates the velocity component according to/3 = 3
(1 -4 V,2 --+ Vr,3 -- Vz).

The velocity field is given in physical space in the radial direction according
to the radial coordinate mapping described by Equation 2.1.6. The last index

indicates the radial plane RPLANE = 14+ (RGR - 1) x MR, I4 = 1, ... , MR, and

= - cos(ir(RPLANE - 1)/NR).

The restart files described above are in the mass storage system Columbia. arc.

nasa. gov at the NASA Ames Research Center in the directory /csf/rf/rft/neves
/runO6/rst for the 6/a = 5 calculation and in the directory /csf/rf/rft/neves

/runl2/rst for the 6/a = 11 calculation. The file names are vire.R. [edititon 3
number]. I
C.2 Wall Data

There are 32 files with the wall data for the 6/a = 5 calculation and 26 files for i
the 6/a = 11 calculation. Each file contains 160 time samples of the wall pressure

(pw) and wall shear stresses (OVa/Or I) and (OVz/Orjw). The first record of each

file contains (NTI, NZ, NTH, MTH, MTI, REY, LTH, LZ, RA), which are

the number of time samples (NTI), the number of Fourier modes in the axial i
direction (NZ), the number of Fourier modes in the azimuthal direction (NTH),

the drawer size in the azimuthal direction (MTH), the drawer size in the temporal 3
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direction (MTI), the Reynolds number based on the unity velocity in which the

data is reported (in these units the friction velocity is 1.2615 for the b/a = 5 case

and 1.3947 in the 6/a = 11 case), and 6/2 (REY), the length of the computational

domain in the azimuthal direction (LTH), the length of the computational domain

in the axial direction (LZ), both based on 6/2 and the ratio of the outer to inner

radius of the computational domain (RA).

Next there are (NTI/MTI) x (NTH/MTH) PDATA[TIGR, THGR records

containing the complex Fourier coefficients of the wall pressure (pw), (NTI/MTI) x

(NTH/MTH) WDATA[TIGR, THGR] records containing the complex Fourier

coefficients of the azimuthal wall shear stress (aVe/i9rjw) and (NTI/MTI) x (NTH

/MTH) UDATA[TIGR, THGR] records containing the complex Fourier coeffi-

cients of the axial wall shear stress (OVz/arjw). The indices TIGR and THGR iden-

tify the drawers of the database. Each PDATA drawer is a complex array dimen-

sioned as DATAP[NZ/2, MTH, MTI]. The first index indicates the axial (stream-

wise) wave number I, = 1, ... , NZ/2. The second index indicates the azimuthal

(spanwise) wave number I = 1, ... , MTH as described in the previous section. The

third index indicates the time sample within the file TPLANE = I3+TIGRxMTI,

13 = 1, ... , MTI. The time sequence through the files is identified through the file

edition number. The structure of UDATA and WDATA is the same as that of

PDATA.

The wall data files described above are in the mass storage system Columbia.

arc.nasa.gov at the NASA Ames Research Center in the directory /csf/rf/rft

/neves/run06 for the 6/a = 5 calculation and in the directory /csf/rf/rft/neves

/runl2 for the 6/a = 11 calculation. The file names are waldat.R. [edititon

number].
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