
11 ~ ~ ~ ~ ~ Vlm 1 IIi Ii II' ' I

Ada Impemntaio

Guie

March -19-

SpcanNaaafr Sysem C om an

REPORT DOCUMENTATION PAGEOMf.0W1t
ftf.~ Ig a ~ g c IbupS n21 J D.. u ~a*H , &ft 1204. &*Von. VAW m z amm MmOhlf -i -imui Noi RPgN of," Or"u of

1. AGENCY UOSE ONLY (L"aiw &dmn) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

CTITE AN SUBITLE5. FUNDING NUMBERS

Ada Implementation. Plan: Department of the Navy. Volumesm 11 N/A

Space and Naval Warfare Systems Command

7. PERFRMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Naval Inonr-tin System Management Center REPORT NUMBER
Space and Naval Warfare Systems Command

9. SPONSOR...IUJ...... L * r.:: AGENCY NAME(S) AND ADDREWSES) 10. -. . O fl.... UTORING AGENCY-

DepatbvrWtW--- - - - REPORT NUIABER

Naval Infomation Systems Managament Center
Washington, DO 20380-5000

11. SUPPANWARY NOTES

12L. DISTROTIKWAVALABIUTY STATEMENT 12b. DISTRBuTrION CODE
Unlimited Distribution jUnlimited

13. AMTRM nwoom 20 wws)

This two-vokirw documen discusses the use of Ada for software system development inl the DoN. It conteints apply to
both AIS aind MCCR communities. The DoN prepared this report ot provide guidance to Navy Program Managers and their
staffs as they implement the (1) DoD Appro priations Act, 1992 Public Law 02-172 (Nov 26, 1991), 105 Stat. 1 188-1189
and (2) ASN (RDA) memo, Interim Department of the Navy Policy on Ada of 24 June 91 (NOTAL).

14. SUBJECT TERM 15. NUMBER OF PAGES

Ada programming language, Navy, systems development, software development, software 124
engineerin Ada9X, policy 16. PRICE CODE

17. SEUIr CASITN 1. SEURT CLASIFICATION 19. SEURT CSIFICATIO 23. DOM TOOF ABSITRAT
OF REPORT OF ABSTRACT

Unclassified Unclassified Unclassified Unclassified
NSN 7540--250-68 Shnde'd Form 298, (Rev. 2-N9)

Preectbed by ANSI Sid. 239-128

Volume 11

1)1

V Ada Implementation

Guide
Acfesioa ForI N'FTS

5Di st r b~t ign/

Marh 192 Dist Special

Mac 199 A

U Naval information Systems Management Center
Spc3n aa afr Systems Command

Contents

VOLUME 11

IAppendix A: Helpful Sources A-1
A.1 Government Sources A-15A.1.1 Organizations A-2
A.1.2 Training A-7
A.1.3 Publications A-1o1A.1.4 Bulletin Boards A-15
A.1.5 Repositories A-17
A.1.6 Conferences and Special Interest Groups A-233!A.1.7 Operational Support Development Tools A-24
A.2 Ada Information Clearingh~ouse A-25
A.2.1 Public Access to the AdaIC Bulletin Board A-27SA.2.2 Access to Ada Information on the Defense Data Network. A-28
A.2.3 Info-Ada Digest A-29
A.2.4 Document Reference Sources............A-30IA.2.5 AdalC File Directory A-30
A.3 Other Sources A-40
A-3.1 Training A-40IA-.3.2 Publications A41
A.3.3 Repositories A-44
A.3.4 Conferences and Special Interest Groups A-46SA-3.5 Operational Support Development Tools A-47

Appendix B: Supplementary Reading B-i
Appendix C: Initial Process C-i
Appendix D: Source Line of Code Metrics Definition D-1
Appendix E: Example of Metric Wording for Use in a Contractual E-1

D 1ocumnent E-1
Appendix F: Software Tool Descriptions F-1
Appendix G: Ada Bindings and Secondary Standards G-i

G.1 Portable Operating System Interface for UNIX G-1
G.2 Structureduery Language G-3
0.3 XC~indows 0-6
0.4 Government Open System Interconnection Profie G-7
0.5 Graphics Standards 0 -9

I
I

Appendix H: Ada Binding Products H-1
Appendix I: Lessons Learned I-1 I

1.1 Advanced Field Artillery Tactical Data System 1-13
1.2 AN/BSY-2 1-14
1.3 Ada Language System/Navy 1-19 3
1.4 Avionics Project 1-21
1.5 PEO-SSAS, PMS-414, SEA LANCE 1-23
1.6 Navy World Wide Military Command and Control System I

(WWMCCS) Site-Unique Software (NWSUS) Project Mission 1-26
1.7 Event-Driven Language/COBOL-to-Ada Conversion

Program 1-29
1.8 Shipboard Gridlock System With Auto-Correlation 1-30
1.9 Combat Control System MK2 1-32
1.10 P-3C Update IV Ada Development 1-34
1.11 Standard Financial System Redesign 1-38
1.12 Reconfigurable Mission Computer Project 1-41
1.13 Intelligent Missile Project 1-43

Appendix J: FY91 Ada Technology Insertion Program Projects J-1
J.1 Education J-1
J.2 Bindings .. J-1
J.3 Technology J-4

Appendix K Navy and Marine Corps Ada Projects K-1
Appendix L: Glossary .. L-1

I
I
I
I
I
I

Iv a

B Ust of Tables and Figures

A-i AdaIC Directories A-30
G-1 POSIX Status ... G-3
H-i Ada Binding Products H-i
1-i Lessons Learned Matrix 1-2

Iv

I
I

I Appendix A
HELPFUL SOURCES

This appendix provides sources to help the Department of the Navy (DON) Program
Manager become knowledgeable about Ada-related issues. Information is provided
on Government sources such as the Ada Information Clearinghouse (AdalC), which
is sponsored by the Ada Joint Program Office (AJPO) and other sources. The
sources listed are not exhaustive, and the information regarding these sources may
have changed since the publication of this document. DON does not endorse these
sources and Department of Defense (DOD) use of the Ada programming language
does not imply in any manner that the DOD endorses or favors any commercial Ada
product. These products are listed to inform Program Managers of what is available.
Program Managers must use their own judgment about the value of the services.
Additional sources can be added to this list for future editions of this guide by
contacting the DON Ada Representative.

A.1 GOVERNMENT SOURCES
Government sources are organized into seven categories: organizations, training,
publications, bulletin boards, repositories, conferences and special interest groups,
and operational development support tools. The type of information contained in
each of the categories is as follows:

* Organizations-DOD, DON, and Marine Corps organizations that focus on Ada
policy, technical guidance, and programs with DON-wide applicability

* Training--sources of training and information about training for various types
of personnel

1 • Publications--sources of newsletters and other publications

* Bulletin Boards--sources that maintain a public bulletin board directed at the3 Ada community

o Repositories-sources of reusable components and libraries

Conferences and Special Interest Groups-information on regularly scheduledSexpositions, workshops, and symposia as well as conferences

o Operational Development Support Tools-information on environments and
tools currently used by the DOD community

£ Ada Implenwntaton Guide A-1

I

!
Helpful Sources i

The amount of Ada-related information available from these sources is too vast to
reproduce in this appendix. However, an address, phone number, electronic mail
address, and short description of the source are provided. Often, the easiest way to
obtain information from these sources is via electronic mail, but contact via mail,
telephone, or facsimile also is possible.

A.1.1 Organizations 3
Ada Joint Program Office

1211 South Fern Street
Room C107
Arlington, VA 22202
(703) 614-0209
DSN 224-0208

AJPO, which consists of a deputy director from each Service and a chairman, is
responsible for managing the effort to implement, introduce, and provide life-cycle
support for the Ada programming language. The AJPO sponsors AdaIC, a primary
source of Ada information. i

Ada 9X Project
Project Manager
WL/MNAG
Eglin AFB, FL 32542-5434
(904) 882-8264
anderson@uv4.egin.af.mll

This project is responsible for revisions to the American National Standards
Institute/Military Standard (ANSI/M-STD)-1815A to reflect current essential
requirements with minimum negative impact and maximum positive impact on the
Ada community. I

Ada Board
Ada Joint Program Office 3
1211 South Fern Street
Room C107
Arlington, VA m202
(703) 614-0209

The Ada Board provides AJPO with balanced advice and information on the
technical aspects related to official interpretations of the Ada language standard and
on issues associated with Ada validation and software environment activities. 3

A-a Departmentl of the Navy

Is

I
3 Helpful Soures

Ada Information Clearinghouse
AdaIC
c/o lIT Research Institute
4600 Forbes Boulevard
Lanham, MD 20706-4320
(703) 685-1477

The clearinghouse produces a quarterly newsletter, which includes special Ada
features, questions and answers, letters to the Ada validation organizations, listings
of validated compilers, Ada usage database, Ada calendar, letters from the Director,
and a bulletin board. (See Section A.2 for directions on how to use the information
clearinghouse and for a description of what is in the directories.)

I Ada Validation Office
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, VA 22311
(703) 845-5501

I This office implements compiler validation policy and oversees development of the
Ada Compiler Validation Capability (ACVC).

I National Technical Information Service
Software Standards Validation Group
Building 225, Room A-266
Gaithersburg, MD 20899
(301) 975-3247

The National Technical Information Service (NTIS) is a self-supporting agency of the

U.S. Department of Commerce that provides free publications and directories of£ Government databases and software components.

DON Softwar Executve Official (SEO)
Commander, Naval Information System Management Center
Building CP5, Room 334
Jefferson Davis Highway
Arlington, VA 22203
(703) 602-2103

I "This office is the point of contact for all DON software and software-related issues.

I
Ada impeeti Guie A-3

.£

I
Helpful Sources i

DON Ada Representative
AST Software and Systems
Naval Information System Management Center (NISMC)
Building 166, Washington Navy Yard
Washington, D.C. 20374 i
(202) 433-4903/3499

This office is the point of contact for all Ada and Ada-related issues. I
Space and Naval Warfare Systems Command (SPAWAR)

Code 224-1
5 Crystal Park
Suite 700
Washington, D.C. 20363-5100
(703) 602-9188

This office is the point of contact for Tactical Digital Standards (TADSTANDs) and i
Mission-Critical Computer Resources (MCCR) waiver processing.

Commander, Naval Computer and Telecommunications Command I
(COMNAVCOMTELCOM)
Ada Program Manager
4401 Massachusetts Avenue, NW i
Washington, D.C. 22036-5000
(202) 282-2563
DSN 292-2563
FAX (202) 282-2563

This Command is the headquarters of the Naval Computer and Telecommunications
Stations (NCTSs). Through the Ada Technical Support Bulletin Board, NCTC
provides support for Ada projects performed by the NCTS activities specifically and
the Ada technical community at large. NCTC chairs the AdaSAGE Configuration
Management Board, oversees the DON Reusable Ada Products for Information
Systems Development (RAPID) site, and publishes CHIPS. 3

I
I
3

A-4 epernei~of U Nav

I
£ Helpful Sources

Commandant of the Marine Corps
Mission-Critical Computer Resources (MCCR) Policy Officer
Headquarters U.S. Marine Corps
Code C2IC
Washington, D.C. 20380
(703) 614-8780

~DSN 224-8780

FAX (703) 697-1959

As the point of contact for Marine Corps MCCR policy, this source can provide
information pertaining to all Marine Corps Ada developments, programming
environments, and education.

3 Commandant of the Marine Corps
Director
Marine Corps Computer and Telecommunications Activity
Headquarters and Service Battalion
Building 2006
Marine Corps Development and Education Command
Quantico, VA 22134-5001
(703) 640-4721
DSN 278-4721

As the point of contact for Marine Corps Automated Information System (AIS) Ada
policy, this source can provide information pertaining to all Marine Corps Ada
developments, programming environments, and education.

Software Engineering Institute
Carnegie-Mellon University
Pittsburgh, PA 15213
(412) 268-7700

The Software Engineering Istitute (SEI) was established in December 1984 at3Carnegie-Mellon University (CMU) as a Federally Funded Research and
Development Center (FFRDC). The SEI is sponsored by the DOD and managed
by the Defense Advanced Research Projects Agency (DARPA) through a joint
program office at the Electronics Systems Division (ESD) of the Air Force Systems
Command (AFSC). Th SEI mission is to provide leadership in advancing the state~of the practice of software engineering to improve the quality of systems that depend

on software. Numerous free publications are available on Ada-related issues fromthe SEL

g~A I hipmmsuilmon Guide -

.

I
Helpful Sources 1

Software Technol,9gy for Adaptable, Reliable Systems
1500 Wilson Boulevard I
Suite 317
Arlington, VA 22209
(703) 243-8655 I
E-mail address for newsletter: newsletter@stars.rosslyn.unisys.com.
E-mail address for STARS Repository: blanchard@stars.startech.com. 5

Software Technology for Adaptable, Reliable Systems (STARS) is a Government
agency that is deeply involved with software. The software project goals cited in the
STARS charter are as follows:

* Improve productivity
" Improve quality and reliability I
* Promote development and applications of reusable software
" Reduce time and cost of developing defense software I

STARS has used four thrusts to achieve these goals:

" STARS foundation contracts i
" STARS competing prime contracts
* STARS Ada Shadows contracts
" STARS Workshop

This Government-sponsored program is attempting to develop the foundation for a
coordinated DOD software solution based on three integrating elements:

" A set of Software Engineering Environments (SEEs)
" A set of tailorable software life-cycle process building blocks
* A software asset library capability

Emphasis is on commercially supported products based on modern process models
with open interfaces and reusable software libraries.

STARS maintains an affiliates' program to provide an opportunity for the DOD
software community to participate in STARS technical activities. Affiliates are
individual representatives of Government agencies, universities, vendors, etc. The
two levels of affiliates are as follows:

• Information Exchange Affiliates play an active role in STARS programs; have 3
access to information, such as newsletters and bulletins; and participate in
briefings and working groups.

A-4 Departmnt of the Navy

I

I

I Helpful Sources

Prime Affiliates work directly with STARS prime contractors in relevant
technical activities such as technology transition, product evaluation, and tool
development.

i Labor, travel, and other expenses associated with participation in the affiliates
program are the responsibility of theparent sponsoring organization.

IA.1.2 Training

Ada Language System/Navy
ALS/N Training
Fleet Combat Direction System Support Activity
San Diego, CA 92147-5081
POC: Code 8D
(619) 553-4440

I Training provided at this source includes Ada Language System/Navy (ALS/N)
courses pertaining to Ada/L (UYK-44 target), Ada M (AN/UYK-43), PPI
(AN/AYK-14 target), and Common Ada Baseline/Project Support Environment
(CAB/PSE) tools (VAX/VMW host with associated PSE tools). Training is

conducted quarterly in conjunction with ALS/N public reviews, and on-site training
I is available.

Ada Software Engineering Education and Training Team
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, VA 223113Attn: Resource Staff Member
(703) 845-6626

3 The Ada Software Engineering Education and Training (ASEET) Team is composed
of representatives from the Army, Air Force, Navy, Marine Corps, other DOD
agencies, and academia. The team conducts workshops and symposia for Ada
educators within DOD and academia and coordinates the activities of DOD
organizations engaged in meeting the Ada education and training needs. An ASEET
resource library of educational materials is located at AJPO.

The team has tri-Service representation on four working groups that address
education and training on requirements, courseware, professional development, and
coordination. Major tasks include the following:

5Ads Impemenltlon Guide A-7

I

Helpful Sources

" Identify education and training requirements within DOD
" Conduct Ada research projects
* Manage Ada course materials
* Perform Ada certification study
* Provide a database of ASEET research data and final reports I
* Provide a DOD focal point for Ada software engineering education and

training I
AdaSAGE

Department of Energy
Idaho National Engineering Laboratory (INEL) I
Idaho Falls, Idaho
(208) 526-0656 3

INEL offers training and support via a Hot Line subscription service.

Application Programming Instructional Department I
Computer Science School
Marine Corp Combat Development Command
Quantico, VA 22134-3554
(703) 640-2962
DSN 278-3554/2962 1

The Application Programming Instructional Department is responsible for the C
curriculum for the DON Data Processing rating. 3
Common APSE Interface Set

CAIS-A !
Commander
Naval Ocean Systems Center
271 Catalina Blvd
San Diego, CA 92152-5000
Attn: CAIS-A Training Coordinator
(619) 553-6858

A 5-day training class is available that provides hands-on experience for Ada tool
designers. (Knowledge of the Ada programming language is a prerequisite.) !
Training will be available on a VMS system and (UNIX) SUN 3. Also available are
the following: !

o
ASDertment of the Navy g

I

I

5 Helpful Sources

* CAIS-A Self study guideI CAIS-A Tool writers guide

Computer Sciences School
Head Applications Programming Instructional Department
Marine Corps Combat Development Command (MCCDC)
Quantico, VA 22134
(703) 640-2962
DSN 278-2962

I The Computer Sciences School (CSS) currently offers two 1-month (20 training days)
Ada programming courses per year; beginning in FY 92, three courses per year will
be offered. Upon completion, the trainee is qualified as a basic Ada programmer.
The course has been offered primarily to active-duty Marines and civilians employed
by the Marine Corps, but the Navy has shown interest in using the training, starting
in FY 92. Active-duty or reserve Marines and civilians employed by the Marine
Corps who are interested in enrolling in this training should contact Mr. Steve
Bruzek, Headquarters U.S. Marine Corps at DSN 224-1886 or Comm (703) 614-8780.
Active-duty or reserve Navy personnel should contact the Navy DP Detailer,
NMPC-406, DSN 223-3537 or Comm (703) 693-3537. Civilians employed by the
Navy should contact the CSS Academics Office, (703) 640-2891 or DSN 278-2891.

I National Audiovisual Center
8700 Edgeworth Drive3 Capitol Heights, MD 20743-3701
Attn: Customer Service Department
(301) 763-1891

I FAX (301) 763-6025

A series of Ada training tapes sponsored by the AJPO is available for purchase
through the National Audiovisual Center of the Department of Commerce. The
tapes include the following:

3 * Introduction to Ada (3 tapes; about 3 hours total; order # A18336; $150)

* Ada from a Management Perspective (2 tapes; about 80 minutes;
order # A18337; $100)

* Software Engineering in Ada (19 tapes; about 8 hours, 20 minutes;
order # A18338; $500)

I Additional information on these tapes is available from the AdaiC.

3 Ada Implemeni t Guide A-

I

<iv'

Helpful Sources !

United States Army Engineering College
Rock Island Arsenal 1
Rock Island, IL 61299-5000
Attn: AMXOM-PMR
(309) 782-0488/0489/0487
Course No. AMEC-140

The U.S. Army Engineering College provides a 2-week Ada overview free to !
Government employees.

All of the major Ada compiler vendors have training available directly through their
offices. I
A.1.3 Publications !

Ada and C++
STSC, OOALC/TISAC,
Hill Air Force Base (AFB), UT 84056
Attn: Gary Peterson
(801) 777-7703
DSN 458-7703

This report describes studies that compared Ada to C+ +. An electronic summary
of this report is available on the AdaIC Bulletin Board.

Ada Information Clearinghouse Newsletter
c/o IIT Research Institute
4600 Forbes Boulevard
I anham, MD 20706-4320
1-800-Ada-ICII or (703) 685-1477

The AdaIC publishes a quarterly newsletter containing information on the Ada
communiys events, working groups, research, publications, and concerns. The
clearinghouse provides its services free of charge to Government, academic, and
commercial software communities.

I
I

I

I

5Helpful Sources

Ada Slices
MITRE Corporation
1120 NASA Road 1SHouston, TX 77057
(713) 335-8541

This newsletter is published by MITRE, a FFRDC. It is a product of the Association
for Computing Machinery (ACM) the Special Interest Group on Ada's (SIGAda's)
Performance Issues Working Group (PIWG) and is available free of charge.

IAda Software Engineering Education and Training Public Report
Ada Software Engineering Education and Training Team
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, VA 22311
Attn: Resource Staff Member
(703) 845-6626

ASEET publishes a DOD ASEET Public Report annually. The report contains an
update and description of the latest efforts of the ASEET Team in identifying
training and education requirements within DOD and the methodology and materials
needed to fulfill those requirements. Copies of the report may be obtained from the
AdaIC.

I Bridge
Linda Pesante

Managing Editor, Bridge5Software Engineering Institute
Carnegie-Mellon University
Pittsburgh, PA 15213-3890
(412) 268-7622
bridge-editor@Lseicmu.edu

5 This magazine reports on SEI projects and activities. To obtain a subscription, send
a written request to the editor.

A
V
I
3 Ads hipmemo GUldo A.-Il

I

Helpful Sources I
C2MUG Bulletin
C2MUG Catalog

Department of the Army
Chief CECOM SEDPMS
Building 138 I
Fort Leavenworth, KS 66027-5600
Attn: AMSEL-RD-SE-MCS-MC (C2MUG)
(913) 684-7550 I
DSN 552-7550
amsel-rd-se-bcs-mc@monmouth-emh2.army.mil 5

C2MUG Bulletin is the bimonthly newsletter of the Command and Control
Microcomputer Users' Group. The C2MUG Catalog is a semi-annual pubLcation
that lists more than 500 military applications, Ada programs, and general utilities.

Crosstalk
Software Technology Support Center
Ogden Air Logistics Center
TISAC 3
Hill AFB, UT 84056
(801) 544-9200
DSN 458-7703 1

Crosstalk is the Software Technology Support Center (STSC) newsletter. STSC is
the Air Force Office of Advocacy and the focal point for the development,
evaluation, and promotion of compatibility in software tools, methods, and
environments for mission-critical computer sources.

DACS Newsletter
Data & Analysis Center for Software
258 Genesee Street 3
Suite 101
Utica, NY 13502
(315) 336-0937 1

Published since 1982, this quarterly is the newsletter of the Data and Analysis Center
for Software (DACS), Griffis AFB. 3
Defmse Technical Information Center

Cameron Station
Alexandria, VA 22304
(703) 274-7633

A-12 Depeuln of Ve Navy

I

I

I Helpful Sources

The Defense Technical Information Center (DTIC) distributes documents only to
military, Government, or defense contractors who are registered users of DTIC. All
unclassified documents that are submitted to DTIC are automatically forwarded to

*NTIS and made available to the public.

Institute for Defense Analyses
Computer & Software Engineering Division
1801 North Beauregard Street
Alexandria, VA 22311
(703) 845-2000 (General)
(703) 845-2059 (References)

The institute is an FFRDC whose primary sponsor is the Office of the Secretary of
Defense. All of the publications prepared by the institute are available through
DTIC or NTIS.

I Language Control Facility Ada-JOVIAL Newsletter
ASD/SCEL
Wright-Patterson AFB, OH 45433-6503
(513) 255-4472
langed@wpafb-jalcf.arpa

£ To support the DOD and Air Force standardization efforts, information is
disseminated about Ada and JOVIAL (J73), standardization and language control
activities, training, compilers, compilers and tools, development efforts, applications,
and user services.

National Standards Association
Bethesda, MD 20816
(301) 590-2300

The National Standards Association is an alternative source for ordering military
standards, specifications, handbooks, etc. There is a charge for the service.IDocuments are shipped within 24 hours of order. ($10 per item up to 50 pages;
additional pages cost $20 each)

INational Technical Information Service
US. Department of Commerce
5285 Port Royal Road

-- Springfield, VA 22161
(703) 4874650

SAda 1- -pie-ellon GuMe A-.1

I

Helpful Sources I
The NTIS is sponsored by the U.S. Department of Commerce and has over 2 million
publications available to the public. I
NISMC Newsletter

Ms. Alcinda Wenberg 5
NISMC
Building CP5
Jefferson Davis Highway
Arlington, VA 22203
(703) 602-2542

This monthly newsletter provides information on NISMC initiatives, status of DON
policy, and upcoming DON activities. 3
STARS Newsletter

1500 Wilson Blvd.
Suite 317 I
Arlington, VA 22209
(703) 243-8655
newsletter@stars.rosslyn.unisys.com

The STARS newsletter contains articles covering software reuse technology, software
process technology, and software engineering environment framework technology. I
It is published three times per year.

Standardization Documents Order DeskI
Building 4, Section D
700 Robbins Avenue
Philadelphia, PA 19111-5094
Special Assistance Desk-(215) 697-2179; DSN 442-2179
Customer Service-(215) 697-2667 3

This desk is the central distributor of all military standard documents, including the
standard for the Ada language reference manual (ANSI/MIL-STD-1815A-1983). To
contact a customer representative, call (215) 697-2179 or DSN 442-2179. DOD
standards, specifications, handbooks, and data items can be ordered by using the
Telephone Order Entry System (TOES). Access TOES by calling (215) 697-1187 1
(DSN 442-1187), Monday through Friday, 8:00 am. to 6:00 p.m. e.L

Written requests must be submitted for ANSI documents and DOD instructions and
directives. Only two copies of the same item are sent, and there is no bulk mailing.

A
A--14 Demtnu of the Navy I

I

I

I Helpful Sources

A.1.4 Bulletin Boards

Ada 9X Project
Project ManagerU[WL/MNAG
Eglin AFB, FL 32542-5434
(904) 882-8264
anderson@uv4.eglin.af.mil

Information can be obtained from the ADA 9X BULLETIN BOARD by calling
1-800-Ada-9X25 or (301) 459-8939 or by using the electronic address shown above.
Baud rates of 300/1200/2400 will work on the system. To access by modem, use the5following settings:

* Baud rate = 300, 1200, or 2400
• Parity = none
- Data bits= 8
" Stop bits =1

I Ada Joint Program Office
1211 South Fern Street
Room C107
Arlington, VA 22202
(703) 614-0209

I The AJPO sponsors a bulletin board called the AdaIC Bulletin Board. This bulletin
board is a primary source for Ada information. Access is available by modem or
through the Internet to the ajpo host. Section A.2 describes this important bulletin
board in detail.

3Ada Language System/Navy Bulletin Board System
(202) 342-4568

The ALS/N has a bulletin board system available for interested Ada users.
Important dates, releases, and policies are posted on the system. Also, this bulletin
board enables users to exchange information on lessons learned.

Use the following settings to access the bulletin board by modem:

e Baud rate = 300, 1200, or 2400
* Parity = none

I
Ada Inl~smumatkon Ouide A-IS

U

.,I

Helpful Sources I
" Data bits= 8
* Stop bits= 1
* Parameters = full duplex

If additional information is needed, please contact Greg Engledove, Naval Sea
Systems Command, (703) 602-8204.

Ada Technical Support Bulletin Board Service 3
Naval Computer and Telecommunications Area Master Station Atlantic
(NCTAMS LANT)
Norfolk, VA I
(804) 444-7841
Autovon: 564-7841 3
To access by modem, use the following settings:

* Baud rate = 300, 1200, or 2400I
* Parity = none
* Data bits= 8
* Stop bits =1

The NCTC sponsors an Ada Technical Support Bulletin Board System (BBS)
maintained by NC'AMS LANT.

The main purpose of the BBS is to offer DOS-Ada programmers in the joint Services
and Government contractors a means for obtaining answers to their questions about
the Ada programming language. The BBS is targeted to programmers in the AIS
domain on 80x86 DOS-based systems and to software creation on these systems. 3
The BBS offers several services:

* Ada Question and Answer Service-BBS users can ask questions about the Ada I
language and extensions (e.g., pragmas) that might be included in a particular
implementation. Additionally, user code can be uploaded for evaluation. Such
evaluations can include checks for proper usage of Ada features, Ada style, and
compilation errors that will not go away. I

* Compiler Vendor Comment Service-BBS users can comment on DOS-based
Ada implementations. Comments can report either problems with existing
implementations or suggest enhancements that would benefit the DOS-Ada U
community. These comments will be provided to the appropriate compiler

U
A-,I D umn of Vie NaW

I

I

I Helpful Sources

vendors. The goal is to use this service to improve DOS-based Ada compilers.
A secondary benefit is to make potential users aware of possible problems with
particular DOS-based Ada compiler implementations.

- Ada Limited Debugging Assistance-BBS users can upload small amounts of
code to be debugged. The submitted code must be limited to a few program

g units.

AdaSAGE Question and Answer Service-Many DOS-Ada application
developers use AdaSAGE for database management system (DBMS) functions.
This service is for AdaSAGE users. Users will be able to ask one another
questions about AdaSAGE.

1 AdaSAGE Comment Service-BBS users can comment on Ada application
development using AdaSAGE. Comments can either report problems with
AdaSAGE or suggest enhancements that would benefit future versions of
AdaSAGE. These comments will be collected and presented periodically at
AdaSAGE enhancement meetings. Users may also request AdaSAGE13 enhancements.

* Ada Example Set-This collection of code shows Ada features. BBS users can
download the code, study it, and ask questions about it. Users also can upload
code that shows Ada features.

- News-The BBS will list Ada news, events, and interesting Ada products with
their points of contact.

The service is free and available to the public. However, the limited debugging
service is available to bona fide Government employees and their contractors.

3 A.1.5 Repositories

Ads Softare Repository
ada-sw-request~wsmr-simtel20.army.mil

Ada Software Repository (ASR) is a repository of Ada programs, software
components, and educational material that has been established on the Defense Data
Network (DDN). This repository has been accessible to any host computer on the
DDN since November 26, 1984.

ASR provides a free source for Ada programs and iLfc rmation. By employing thep File Transfer Protocol (ftp) program, users of DDN hosts are able to scan the

g Ads Imp. ta"M Gumd A-17

I

I
Helpful Sources I

directories of the repository and transfer files to their hosts. If the files are Ada
programs, they may then compile these programs and use them as they desire. U
Modifying these programs may be within their rights, and they may freely distribute
these programs as they desire, subject to the restrictions specified for each piece of
software in its prologue.

All members of the Ada community are encouraged to freely extract information and
programs from the repository and to make contributions to it. The only restrictions I
that apply to access and use of this software are presented in the "Distribution and
Copyright" section of the prologue associated with each piece of software.

ASR is one of several repositories located on the SIMTEL20 DDN host computer
at White Sands Missile Range in New Mexico. SIMTEL20 is owned and operated
by the Operations and Systems Integration Division of the Information Systems U
Command of the U.S. Army.

ASR maintains source code from approximately 10,000 Ada programs. These i
programs are maintained by domains of Artificial Intelligence, Benchmarks,
Communications, Reusable Software Components, Database Management,
Documentation, Graphics, Project Management, Ada Software Development Tools, U
and many others. The ASR is available via ftp and on magnetic tape, floppy disk,
and CD-ROM.

An introduction to the ASR can be obtained by using the following commands on a
system that supports ftp on the DDN: 5

> ftp wsmr-simtel20.army.mil
when asked for login name, type in anonymous
when asked for password, type in your user-id
ftp > Is -provides listing of login directory
ftp>get SIMTEL20-ADA.INF -copies file to your local directory
ftp>quit -returns control to UNIX

A
I
I
I

I

I
I Helpful Sources

Tape copy is available from:
The DECUS Program Library
219 Boston Post Road BPO2
Marlboro, MA 01752
(508) 480-3418

MS-DOS high-density diskette copy is available from:
Advanced Software Technology, Inc.
P.O. Box 937
Medford, NY 11763
(516) 289-6646

CD-ROM copy is available from:
ALDE Publishing
P.O. Box 35326
4830 West 77th Street
Minneapolis, MN 55435
(612) 835-5240

I FAX: (612) 835-3401

An electronic mailing list exists on SIMTEL20 for those who are interested in
acessing and contributing software to the ASR. To subscribe to this mailing list,
send a request to the electronic mail address above.

Assodate Dhreor, MCSD
AMSELRD-SE-BCS-MC (C2MUG)
Fort Leavenworth, KS 66027
AV: 552-7550
FTS: 753-7550
(913) 684-7550

The C2MUG Software Catalog for mathematics and various Ada functions is
available to all echelons of the U.S. militazy and elements of the Federal

ernment. Software nts are primarily for microcomputers.

I
I

I

I
Helpful Sources I

Command, Control, Communications, and Intelligence (C31) Reusable Software
System (CRSS) I

Mr. Ron Crepeau
NRaD
271 Catalina Blvd.
San Diego, CA 92152-5000
(619) 553-3990
crepeau@nosc.mil

The CRSS is a repository of Navy command and control (C2) assets, including source
and executable code, documentation, and graphical representations. The library has
been developed under the Operations Support System (OSS) project to promote
rapid prototyping of C2 systems. Replication of the CRSS is available on magnetic
media or via modem transfer.

Common Ada Missile Components Effort
Data and Analysis Center for Software
c/o Kaman Sciences Corporation
P.O. Box 120
Utica, NY 13503
(315) 336-0937

Common Ada Missile Packages (CAMP) are operational flight software parts in Ada I
for tactical missiles. CAMP consists of 454 reusable Ada components. The software
is distributed on ANSI standard labeled 9-track 1600-b.p.i tapes. I
Data and Analysis Center for Software

258 Genesee Street 3
Suite 101
Utica, NY 13502
(315) 336-0937 3

Although not an interactive repository, DACS provides several products and services.
Of importance are the following.- the Ada Compiler Evaluation Capability (ACEC), I
CAMP, a variety of data sets, software sizing models, and a variety of data collection
form sets.

I

I

I
I Helpful Sources

National Aeronautics and Space Administration's AdaNet
AdaNet
c/o MountainNet
Eastgate Plaza, 2nd Floor
P.O. Box 370
Dellslow, WV 26531-0370
(304) 296-1458
1-800-444-1458

AdaNet's primary purpose is to increase U.S. productivity, economic growth, and
competitiveness through development of a life-cycle repository for software
engineering products, processes, interfaces, and related information services. AdaNet3 is sponsored by NASA, and there is no charge for an account.

AdaNet provides the following information and services:

1 * Access to Ada source code libraries

1 Bibliographic references to Ada and software engineering publications

* Descriptions of public and commercial repositories of Ada software

£ • Directories of Ada and software engineering commercial products

£ * Electronic forums on topics such as software reuse and Computer-Aided
Logistics Support (CALS)

1 • Listings of international Ada professional organizations

- Monthly listings of relevant conferences and seminars

- References to public and private Ada information services

I Navy Wide Reuse Center
nhisuavymil

3 The Navy Wide Reuse Center (NWRC), which was dedicated on 16 March 1992, will
provide a comprehensive reuse support environment for all Navy domains. The
center will serve as a repository for all Navy reusable components and provide
interfaces to other DOD and non-DOD repositories as well as information on
commercially available reusable components. NWRC uses the Defense Software3 Repository System (DSRS) hosted on a DEC MicroVax computer. DSRS is

a Implementaton Guide A-21

I

Helpful Sources I
accessible via DDN, modem dial-up, and selected local area networks. An account
on the system is required. A request for an account should be made through the I
following:

Project Manager, Navy Wide Reuse Center 5
Washington Navy Yard
Building 196
Code N53, Room 4508
Washington, D.C. 20374
POC: Angus Faust
(202) 433-0718

Reusable Ada Products for Information Systems Development
U.S. Army
USAISSDCW
RAPID Center
Fort Belvoir, VA 22060-5456
Attn: ASQBI-SS-WRC Stop H4
(703) 285-9007
DSN 365-9007

The RAPID Program is a total Ada software reuse program established at the U.S.
Army Information System Software Center (ISSC) Software Development Center,
Washington (SDC-W). This program has become the basis for the DSRS under the
Defense Information Systems Agency (DISA) Corporate Information Management
(CIM). Under this system a repository has been established for each service. The I
NWRC serves as the repository for all Navy reusable components and provides an
interface to the central repository and other service repositories under the DSRS. 3
Software Technology for Adaptable, Reliable Systems Repository

blanchard@star.startech.com I
STARS maintains a repository of Ada binding to MOTIF, Ada binding to Ada Xt
Windows Intrincint, Reuse Library Framework (RLF), and much more. I

Tape copy is available from:
ASEET
2611 Cranberry Square
Bldg. 2600, Suite 2
Morgantown, WV 26505 I
(304) 594-1762

I
A-42Depimefl o theNav

I

I

I' Helpful Sources

MS-DOS high-density diskette copy is available from:
Advanced Software Technology, Inc.
P.O. Box 937
Medford, NY 11763
(516) 758-6545

3 A.1.6 Conferences and Special Interest Groups

Ada Joint (Services) Users Group
P.S.S. Chairperson
(212) 394-5233
Mike Ryer
(617) 661-1840
Cambridge, MA 02138
Loretta Holden (Boeing)1 (206) 662-0232

Ada Joint (Services) User Group (AdaJUG) (formerly JOVIAL Users Group) is a
non-profit organization whose purpose is to encourage a dialogue between
Government and industry concerning Ada issues. The AdaJUG holds conferences
three times a year. Generally, at least one of the conferences is held in conjunction
with SIGAda. Topics include Ada 9X progress and distinguished Government
corner, which usually represents three DOD components. ($25 per meeting)

ASEET Symposium
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, VA 22311
(703) 824-5531

The ASEET Team Coordinator Working Group (CWG) sponsors the annual ASEET
Symposium. The symposium enables DOD personnel to learn about new education
and training methods from industry, academia, and DOD organizations.

DON Ada Users Group
DON Ada Users Group-Chair
Naval Ocean System Center
271 Catalina Boulevard
San Diego, CA 92152-5000
Tel: (619) 553-2303
FAX: (619) 553-5799U

3Ada -- '-emflto Guid A-01

.I

I

Helpful Sources I
The DON Ada Users Group has been chartered to provide information and support
to the DON on use of the Ada programming language and Ada-related issues
associated with software development and maintenance. Regular meetings are held
in conjunction with national conferences in the Ada community, such as those
sponsored by Tri-Ada, SIGAda, and AdaJUG.

STARS Workshop
IDA/CSED
5111 Leesburg Pike
Falls Church, VA 22041
(703) 845-3520

The STARS Joint Program Office holds workshops to publicize and disseminate
information on various contract efforts.

A.1.7 Operational Support Development Tools 5
Ada Language System/Navy

Naval Sea Systems Command (PMS-412)
NC-3
2531 Jefferson Davis Highway
Washington, D.C. 20362-5101
(703) 602-8204

The ALS/N is a software development environment and Run-Time Environment
(RTE) system that is being developed for the current generation of DON standard
computers, the AN/UYK-43 and 44 and AYK-14. ALS/N has a users group and
a bulletin board available upon request and target-based training available throughaI
the project office.

AdaSAGE
Department of Energy
Idaho National Engineering Laboratory (INEL)
Idaho Falls, ID 3
(208) 526-0656

AdaSAGE is a Government-owned development reuse tool utilized by all DOD 5
components. The tool consists of utilities that support user-developed interfaces,
reports, and data and their relationships. These utilities facilitate user-directed rapid
prototyping. AdaSAGE is free and is supported by a Joint Service Configuration S
Management Board. Enhancements may be requested by leaving a message on the
Ada Technical Support Bulletin Board listed in A.1.4.

ADepartment of the Navy

|I

I

I Helpful Sources

NAVAIR Software Engineering Environment Tool SetI Mr. Ron Conley
Code 7012
Naval Air Development Center
Warminster, PA 18974-5000
(215) 441-2752

I The Naval Air Systems Command (NAVAIR) Software Engineering Environment
(NASEE) Working Group contracted for 12 software tools for use throughout the
software life cycle. NAVAIR has made these tools a standard for its Software
Support Activities. The Naval Air Development Center provides information on theNASEE Working Group and on ways to obtain these tools.

I Tool Box PC
Software Technology Support Center
Hill AFB, UT 84056
1-800-477-2449

This tool, which is written in Ada, is an interactive catalog application tool that has
Ada and other Government and commercially owned software languages. This
system is designed for managers to use. The program is available free to the public

I on 5Y- and 3 2-inch disks. The Air Force supports this program through the STSC.

A.2 Ada INFORMATION CLEARINGHOUSE
AdaIC disseminates information on Ada policy, validated Ada compilers, available
Ada bindings, and Ada software development tools as well as on the Ada
community's events, working groups, research, publications, and concerns. This
information is available to anyone who wishes to know more about Ada. Information
can be obtained in hard-copy or electronic form from our electronic bulletin board
or on the AJPO machine on the DDN. All AdaIC services and products are3 provided free of charge. The AdaIC service is sponsored by the AJPO, which
facilitates the implementation of Ada throughout the Services and maintains the
integrity of the language. liT Research Institute operates the AdaIC for the AJPO.

Hot Une: 1-800-ADA-IC1l or (703) 685-1477
If you have a question about any aspect of using Ada or being part of the community,
call the hot line between 8 am. and 5 p.m. on Monday through Friday.

Ada Impms entaon GuMe A-5

Helpful Sources 1

Written Inquiries
If you prefer to send a written inquiry or would like to share any Ada-related
information with us, send mail to:

AdaIC 1
c/o IT Research Institute
4600 Forbes Boulevard
Lanham, MD 20706-4320

On-Line Information
A variety of Ada-related information is available on-line on the AdaIC's electronic
bulletin board (703) 614-0215 or (301) 459-3865 and on the AJPO host computer on
the DDN. For instructions on how to download files, see the AdaIC flyer, "Public
Access to the AdaIC Bulletin Board" (bulletin-board file ada-rbbs.hlp), and "Access
to Ada Information on the Defense Data Network" (ada-ddn.hlp).

Databases £
Products and Tools-AdalC maintains a database of currently available products and
tools for Ada. To obtain a search, call (703) 685-1477. 5
Ada Usage-AdaIC maintains a database of Ada projects. If you are currently
involved in an Ada development project or have completed a project using Ada,
please contact us. We would like to add your information to our database.

Quarterly Newsletter 5
AdaC publishes a quarterly newsletter containing current news, features, columns,
the most recent Validated Compilers List, and articles on projects using Ada. To
receive a copy of the newsletter, please call and request a free subscription. 1

Iformatlonl Flyers
AdaIC regularly updates and publishes more than 70 separate informational flyers
and lists that provide information on all aspects of using Ada. Among AdaIC
offerings are items such as:

" Ada events calendar
" AJPO, Ada 9X Project Office, and Ada community announcements
" Ada 9X information and copies of the Ada 9X project reports 1
• Information on Ada usage
" Ada products and tools information
" Electronic resources I
" Ada books and documents
" Ada validation information

A-M Depmrheru' of Ule Navy

I

I

IHelpful Sources

* Ada performance information
* Ada education
* Ada policies
* Ada historical information

Ada 9X Project Information
AdalC serves as the distribution point for information related to the Ada 9X Project.
Project report announcements and reports from the Ada 9X Project Manager are
available electronically from the Ada 9X electronic bulletin board (1-800-ADA-9X25
or (301) 459-8939). This information is also available in the DDN on the AJPO host
in the Ada 9X subdirectory.

A.2.1 Public Access to the AdaIC Bulletin Board (ada-rbbs.hlp extract)
The AdaIC Bulletin Board is a publicly available source of information on the Ada
language and Ada activities. Sponsored by the AJPO and maintained by AdaIC, this
bulletin board is used to announce current events and general activities and provide
a current listing of validated Ada compilers. Access to the bulletin board requires
a computer terminal and modem or a personal computer and modem.

I The AdaIC Bulletin Board system can be accessed by dialing (703) 614-0215 or (301)
459-3865, using a 300-, 1200-, or 2400-baud modem. Users should set theirft telecommunications package with the following parameters:

- Baud rate = 300, 1200, or 24003* Parity - none
* Data bits 8
* Stop bits I

Currently, the following 12 directories are available:

- The Ada Information Directory-an alphabetical listing of all available
information files, with a contents description for each one

3 * The Language Reference Manual Directory-the Ada Language Reference
Manual (ANSI/MIDSTD-1815A-1983) in its entirety

3 * The Approved Ada Commentaries Directory-approved commentaries
responding to questions, problems, and/or inconsistencies and perceived
inonsistencies regarding the Ada Language Reference Manual
(ANSI/MIL-STD-1815A-1983)

I 3 d upeta tlo u de A-I

I

Helpful Sources I
" The Ada Language Rationale Directory-the rationale for the Design of the

Ada Programming Language in its entirety I
" The CAIS Document Directory--the Common Ada PSE Interface Set (CAIS)

documents (October 1986) 1
" The AdaIC Newsletter Directory-past AdaIC newsletters

" The CREASE Directory-AJPO'S Catalog of Resources for Education in Ada
and Software Engineering, version 5.0, in its entirety 5

* The Miscellaneous Directory-files such as those used to decompress
compressed files £

" Directories 9 and 10-a guidebook and reference manual, respectively, for the
evaluation and validation of Ada programming support environments I

" Directory 11-the NASA-Goddard Ada Style Guide, which was proposed as the
basis for a military handbook 5

* Directory 12-a catalog of the ASR and the ASR User's Handbook

Files are available in either compressed or uncompressed (ordinary ASCII text-file) I
format. Most are available in both.

A.2.2 Access to Ada Information on the Defense Data Network (ada-ddn.hlp extract) I
The public directory on the ajpo host computer is an official source of information
on the Ada language and Ada activities. Sponsored by AJPO and maintained by
AdaIC, this computer directory is used to announce current events and general
activities and to provide a current listing of validated Ada compilers.

This directory is available only to authorized users of DDN. However, AdaIC also
maintains a bulletin board at (703) 614-0215 and (301) 459-3865. For information,
see the AdaIC handout, "Public Access to the Ada Information Bulletin Board" 3
(AdaIC from G/V51, file ADA-RBBS.HIL).

The DDN is a collection of approximately 80 different computer networks 5
representing DOD facilities, research centers, and academic institutions throughout
the free world. All of the networks are packet-switching systems with

I
A-asDepitmei o theNav

I
3 Helpful Sources

interconnections at various locations. DOD controls access to the DDN. To obtain
access to the DDN, it is first necessary to have an account or access to an account
on one of the several thousand host computers that make up the system.

3 The following set of commands provides an example of the use of ftp to transfer a
file from the ajpo host to a local host. The file is in the directory
public/ada-info/val-comp.hlp.

> ftp ajpo.sei.cmu.edu
when asked for login name, type in anonymous
when asked for password, type in your user-id
ftp >Is uc-provides listing of login directory
ftp> cd public --changes directory to the public directory
ftp> cd ada-info --changes directory to the ada-info directory
ftp> get val-comp.hlp -copies file to your local directory3 ftp > quit -returns control to UNIX

As of 17 March 1992, directories in the public directory include acvc-current,
ada-adoption-hbk, ada-comment, ada-info, ada-lsn, ada-ui, ada9x, adanews, adastyle,
artdata, asis, cais, crease5O, ev-info, infoada, kitdata, lrm, pcis, piwg, rationale,
wbs.sw. These files correspond to those shown in figure A-1. The primary Ada3 information files are provided in the AdaIC File Directory in this appendix.

A2.3 Info Ada Digest
DDN users can also access the Info Ada Digest (to send discussions to the digest,use info ada@ajpo.sei.cmu.edu). To-request that you be added to the discussion list,
use info.ada requests@ajpo.sei.cmu.edu. Alternatively, the same discussions are

I available via USENEWS news group comp.langada.

DDN users can also access the Ada Ed Digest. To send discussions, use ada-
ed@east.pima.edu; to request that you be added to the discussion list, use ada-ed-
requests@east.pima.edu.

3- The Ada electronic mailing list includes the following:

* Ada announcements3* Open forum for discussion
* Open forum for questions
* Requests for information to the entire Ada community

Ads Impntat Guide A-29
1I

F."

Helpful Sources I
A2.4 Document Reference Sources
In addition to the information available from AdaIC, many documents are available
from sources described below. This information is taken from the AdaIC Document
Reference List.

Government Printing Office
Superintendent of Docurents
Government Printing Office
Washington, D.C. 20402
(202) 783-3238 3

The Government Printing Office (GPO) distributes the Reference Manual for the
Ada Programming Language to the general public and industry for $16 a copy. Mail
orders may be sent to the above address with payment included. Phone orders are
accepted with a VISA or Master Card number or a GPO deposit account number.
For additional information, call the number noted above. 3
Government Source Codes

SEI= Software Engineering Institute
AJPO = Ada Joint Program Office
WPAFB f Wright Patterson Air Force Base
CECOM f Communications Electronic Command
USAF = United States Air Force

A.2.5 AdaIC File Directory
The information in Figure A-1 was listed in the AdaIC Bulletin Board in March1992. It details the types of information available from AdaIC.

II
I
I

I
A--40 D,,pevbnw @1 Vhe Navy

I

I
3 Helpful Sources

3 Figure A-1. AdaIC Directories

Directory Numbers and General Description of Contents*

1 Ada Information Files 8 Miscellaneous -
2 Language Reference Manual Unzipping Utilities
3 Approved Ada Commentaries 9 APSE E&V Guidebook V2.0
4 Ada Language Rationale 10 APSE E&V Reference Manual
5 CAIS Document 11 Proposed Ada Style Guide
6 AdaIC Newsletter 12 ASR User's Handbook &
7 Catalog of Resources for Directory3 Education (CREASE)

To list Directory, type 1:13 For a list of all available files on the system, download director.zip

AdaIC Information Files-Directory 1
This directory contains electronic copies of the flyers and other documents offered
by AdaIC. In addition, it contains electronic copies of several DOD directives
relating to the Ada programming language.

The files below are listed with the extension ".HLP". When you use the download
command, you will be prompted for the fiename. If you give the filename with the
.HLP extension, you will get an ordinary ASCII text file. However, to reduce the
time required for downloading to your computer, most of the files listed below are
also available in compressed (ZIPped) format. To download a file in compressed5 format, substitute .ZIP for the .HLP extension.

To view these ZIPPED files, you need an unzipping utility, which is available on thisIand many other bulletin boards. (See Directory 8 and Bulletin 2.)

A
I

I

I

I |

Helpft Sources I
FIiame U1pdatd Size CQnxtm

3405-1 7/18/89 18644 Text of 4/2/87 DoD Directive
3405.1, Computer Programming I
Language Policy

3405-2 7/10/89 7709 Text of 3/30/87 DoD Directive I
3405.2 mandating use of Ada
language in computers integral to
weapon systems I

9XDDN 7/09/91 6144 Access to Ada 9X information on
DDN I

9XNEWS 2/10/92 6144 Copy of the most recent Ada 9X
Report to the Public I

9XORDER 11/05/91 4096 Pow to order Ada 9X documents 5
ABSTRACT 12/20/91 20480 Abstracts of Ada-related articles 3
ACEC 8/15/91 61440 How to obtain the Ada Compiler 5

Evaluation Capability (ACEC),
DOD's compiler-performance test
package 3

ACVC 4/29/91 40960 How to obtain a copy of the latest
Ada Compiler Validation
Capability (ACVC), the validation
test suite

ADA-BIB 10/15/91 2048 How to obtain the AJPO'S Ada
Bibliography, Volumes I, IL and MI
(1983-1986) and description 3

ADA-CALR 1/30/92 10240 List of upcoming conferences,
symposia, and programs on Ada 5

i
A-S2DepflmeW o theNav

I

I
3 Helpful Souem

ADA-DDN 8/06/91 6144 How to access ajpo.sei.cmu.edu,3 the AJPO host on the DDN

ADA-PROD 8/07/91 22528 List of articles and books on Ada
costing, sizing, and productivity

ADA-RBBS 2/06/92 6144 How to access the AdaIC Bulletin
Board at (703) 614-0215 or (301)
459-3865

3 ADA-USE 3/14/91 164839 Summary of the Ada Usage
Database, which lists reported Ada
projects from around the world

ADABOOKS 2/10/92 40960 Books relating to the Ada
Programming Language

ADACPLUS 12/20/91 24576 Summary of Ada vs C + + Business3 Case Analysis Report

ADAIC 2/06/92 14336 A description of services offered by
3 AdaIC

ADANET 3/15/91 4096 Text of AdaNet's Executive
Summary describing its on-line
services

ADATODAY 2/06/92 24576 On-line newsletter of current
events, etc., relating to Ada

ADAYEST 2/04/92 36864 Items archived from Ada Today
(ADATODAYJLP)

3 AEO-SEO 1/14/92 4096 Current list of Software Executive
Officials (formerly AEO)

AF-IMP89 7/18/89 29081 Text of 1/1/89 Air Force Ada

Implementation Plan

5 AF-INT91 8/12/91 2048 Text of Air Force 1991
Interpretation of Congressional
Mandate

Ads h iplse ledon GUM@e A--=

Im

I
Helpful Sources I

AF-POL88 11/09/88 41809 Text of 11/9/88 Air Force policy
on programming languages

AF-POL90 12/21/90 10868 Text of 8/7/90 Air Force policy on
programming languages

Al-ADA 8/12/91 24576 Ada and Artificial Intelligence
documents available from DTIC I
and NTIS

AJPO-891 10/28/91 6144 Article announcing that SPC's I
guide would be AJPO's suggested
Ada style guide (with ordering
info) I

ARCHIVES 11/02/89 18341 Items archived from Ada
Yesterday (ADAYEST.HLP) that
are more than 1-year old

ARMIMP90 7/16/90 17928 Text of 7/16/90 Army Ada I
Implementation Plan

ASEETLIB 4/10/91 16446 Training-related materials in the U
ASEET Materials Library at the
AdaIC 3

ATIP-F89 4/24/91 18432 Projects assisted by the Ada
Technology Insertion Program in
FY89

BENCHMRK 7/30/91 12288 How to obtain various benchmark 3
performance test suites

BINDINGS 2/04/92 73728 Available Ada Bindinp 3
CLAS-SEM 2/06/92 51200 Classes and seminars relating to 3

the Ada language

I
I

I

I
3 Helpful Sources

CREASE 11/27/91 2048 How to obtain AJPO's Apr 88
Catalog of Resources for
Education in Ada & Software
Engineering (CREASE Ver 5.0)

CREASFOR Ada Education Survey form for
CREASE Ver. 6.0

DEF-MCCR 3/04/83 4795 Text of 3/4/83 DoD guidelines for
acquiring computer resources
(defines mission-critical computer
resources)

U DOCU-REF 12/05/91 20480 List of Ada-related documents
available through DTIC/NTIS and
information on how to obtain them

DOORS 7/09/91 6144 AdaIC Databases Available
On-line Ada Products and Tools,
and Ada Pragma Support

EMBDSYS 9/09/91 34816 Abstracts of documents and
articles on Ada and embedded
systems

I FAA ADA 11/07/89 6207 Text of 10/20/89 FAA Action
Notice for mandating the use of
Ada in acquisition and major
modifications

GENINTRO 10/10/91 2048 Cover letter to accompany General
Information Packet

3 GLOSSARY 8/11/90 47056 Ada-related terms and their
meanings

3 GRAMM/ 10/04/89 37569 "A LALR(1) Grammar for ANSI
Ada" by Gerry Fisher and Phillipe
Charles, 1983

HISTADA 11/26/91 26624 "The History of Ada--March 1984
article by Robert DaCosta

eAda Implenentatlo Guide A-35

Ug

Helpful Sources I
IMPGUIDE 11/26/91 2048 How to obtain the Ada Compiler

Validation Capability I
Implementers' Guide (1986)

ISO-STAT 11/26/91 10240 Background information on the I
ISO's acceptance of Ada as an
international standard 3

LADY-LOV 11/25/91 10240 Article on life of Ada Lovelace by
Carol L James and Duncan E.
Morrill with note on the naming of I
the Ada language

LRM 11/26/91 4096 How to obtain the Ada Language i
Reference Manual, ANSI/
MIL-STD-1815A 1983

MAIL DDN 8/20/91 51200 A list of UNIX public-access sites
that can be used to send E-mail to
hosts on the DDN

MANDAT90 1/28/92 6144 Text of the Congressional Ada
mandate-plus some background

MARIMP88 3/09/88 32563 Text of 3/9/88 Marine Corps Ada
Implementation Plan

NATO-ADA 11/26/91 2048 Text of 1985 AJPO announcement
of NATO's adoption of Ada as
common HOL in military systems

NAVIPL91 11/26/91 20480 Interim Department of the Navy
Policy on Ada, 24 June 1991

OODBIB 9/05/91 34816 List of articles and documents on
Ada and object-oriented design

REALTIME 6/19/91 40960 List of publications on Ada real
timeI

I

I

I
3 Helpl Sourc

REPOSTRY 11/26/91 14336 How to obtain programs and tools
from the Ada Software Repository
on SIMTEL20

REUSCODE 2/06/92 16384 Sources of Ada source code,
reusable components, and software

repositories

REUSEPUB 9/16/91 24576 List of publications relating to the
reuse of Ada source code

SERIALS 11/26/91 12288 List of serial publications that
feature information on the Ada
language and the Ada community

STYLORD 11/05/91 2048 Ordering information and order
form to order version 2 of Ada
Quality and Style

I SUCCESS 10/17/91 34816 Reprint of article from Miitwy &
Aerospace Electronics

I TNG-TAPE 11/25/91 20480 Description and ordering
information for 19-tape series of
Ada training videotapes

TRADEMRK 4/23/91 6144 Text of 1987 AJPO announcement
that Ada trademark is replaced by
certification mark

VAL-COMP 2/05/92 123280 List of currently validated Ada

compilers

3 VAL-DOC 7/03/91 2048 How to obtain the Ada Compiler
Validation Procedures

3 VAL-NOV 12/01/90 145846 List of validated Ada compilers as
of Nov 90-kept for information

*pupse

MdM Ienenlalon Guide A-37I

Helpfu Souren

VAL-PROC 9/19/90 55320 Text of the Ada Compiler
Validation Procedures, Version 2.1,
August 1990

VALCOVER 4/16/91 2048 Cover letter to accompany 3
Validation packet

VALFACIL 12/04/91 2048 List of Ada Validation Facilities I
(AVFs) performing Ada Compiler
Validation Capability tests

VSR-DOCU 7/03/91 24576 List of Validation Summary
Reports (VSRs)-results from
testing of compilers-and how to
order info from DTIC/NTIS

WITHDRWN 8/05/91 8192 Tests that have been withdrawn i
from the validation test suite,
ACVC 1.11 1

X-SURVEY 11/01/91 12288 X/Ada binding user questionnaire
of the X/Ada Study Team at GHG 3
Corporation

i
I
I

I
I
I

A-4S eperme'W f Ih NHv

iI

3 Helpful Sources

HELPFUL GOVERNMENT SOURCES MATRIX

SOURCE PAGE VMDS TRNG REPS DRDS FURS CONdF. TOOLS

AdmANDC+. A-10 X

AsSUCEU A-11 X
A& UOFnwAR REMOWDRTY A-17 X X
A&INH A-16 ___

A& VAJJD4fON OMfCE A-3 X X

_____________ A-2 X X
AMIC A-3 X X X X X X X3 d.WEA-8 - x X __x

AIOA-2 ,X x x x x x x
ARE/N A-7 x X _ _ X

___ ___ A-7 X X X
__ __ __ __ _ A-8 X x X

CUB _ __ __ _ A-20 X

WsA-fl X x
Embb3WEA1Y A-4 X X X X x X

DWffA IS GW A-23 X X x X x X
LUAOw2A COMIUOLVmaOIm A-13 X X X X X
NUCK POC A-25 X X

71O~1~tLIUA-9 X ___I" M Vu&aU saw* A-3 -

MOTAA&M A-4 X X X XI tww=U A-21 x -

IA-22 X X

ommmA-4 X___

can __ A-6 x X X X
unmoommn A-14 X x ___

____ ___ ___ A-10 X I_

A-5 X X X

-& -1- 4-m

Helpful Sources I

A.3 OTHER SOURCES
The commercial and non-profit organizations cited below are provided to help the
DON Program Manager become knowledgeable about Ada-related issues. These
sources are not endorsed by the DON. They are provided to augment the list of i
Government sources in Section A.1 and to help Program Managers become familiarwith the wide array of available sources.

Other sources (e.g., organizations, training, publications, tools) to be considered for
inclusion in future editions of the Ada Implementation Guide should be sent to the
following address:

Commander
Space and Naval Warfare Systems Command
SPAWAR 2241 (CDR M. Romeo)
2451 Crystal Drive
Washington, D.C. 20363-5100

A.3.1 Training 3
Fastrak Training Inc.

Quarry Park Place
9175 Guilford Road I
Suite 300
Columbia, MD 21046-1802
(301) 924-0050

Fastrak provides courses on topics such as Ada programming, evaluation of Ada
code, and object-oriented requirements analysis and design.

Relfer Consultants Inc.
Marketing Manager
Reifer Consultants Inc.
2555 Hawthorne Boulevard, #208 3
Torrance, CA 90505-6825
(213) 373-8728

Reifer Consultants Inc., founded in August 1980, focuses primarily on consulting in
Ada transition metrics, risk analysis, and cost estimating.

I

I

UI

3 Helpful Sources

Telesoft
5959 Cornerstone Court West
San Diego, CA 92121
(619) 457-2700

Telesoft has been a major Ada compiler vendor for the last 9 years. Telesoft has
developed a set of training courses tailored to the installation and use of its compiler
technology.

Texel Company
Victoria Plaza, Building 4, #9
615 Hope Road
Eaton, NJ 07724
(201) 992-0232

Texel specializes in Ada education and training consulting, Independent Validation
and Verification (IV&V), and application development.

A.3.2 Publications

AdaDATA Newsletter
International Resource Development, Inc.
P.O. Box 1716
New Canaan, CT 06840* (203) 966-2525

This monthly newsletter covers market trends and commercial developments in Ada
software, services, and equipment. The cost of a subscription is $445 per year.

Ada Letters
Assodation for Computing Machinery, Inc.
1515 Broadway
New York, NY 10036
(212) 869-7440
Attn: Membership Services
acmhelp@acmvm.bitnet

Iis bimonthly publication for the ACM SIGAda, has been published since 1981.
($15 per year to ACM members; $44 per year for nonmembers. Annual ACM
Membership dues-$75; Students-=2). The newsletter contains technical Ada
articles as well as a calendar of Ada events.

I
i hnpluneulsan Guide A-41

I

I
Helpful Sources I

Ada Monthly
Grebyn Corporation I
P.O. Box 497
Vienna, VA 22183-0497
(703) 281-0497 I

This monthly newsletter, which has been published since 1987, contains information
on upcoming events of interest to the Ada community, press releases, announcements
by vendors of Ada-related products, and an up-to-date listing of validated Ada
compilers. ($60 per year)

Ada Newsletter
Raytheon Equipment Division
Tim Boutin, Editor I
MS 5-2-508
Sudbury, MA 01776
(508) 440-3607

This newsletter tracks developments in the Ada language through conference reports
and provides vendor news articles and a listing of Ada events. There is no charge
for this publication.

Ada Rendezvous I
Texas Instruments Incorporated
David G. Struble
Software Engineering Department
MS 8503
P.O. Box 869305 1
Plano, TX 75086
(214) 575-5346

The Ada Rendezvous is a free biannual publication. Articles span multiple areas of
interest including results of Ada compiler evaluations for embedded targets, review
of Ada tools, and technical information contributed by Ada developers. Such articles
provide guidance to application programmers on how to use Ada with specific
hardware architectures and microprocessor designs. The Rendezvous also addresses
evolving Government and DOD issues that affect existing and proposed contracts3
with Ada requirements.

I
I

Depalen o Oe ai

I

I

I Helpful Sources

Ada Strategies
Ralph E. Crafts, Editor and Publisher
Route 2, Box 713
Harpers Ferry, WV 25425
(304) 725-6542

This monthly newsletter covers Ada business strategies and contract-evaluation
guidelines. It provides information on Ada policy and trends and on Congressional
and funding issues as well as insight concerning current legislation. The annual cost3 is $100 for Government subscribers.

CAUWG Report
Alsys, Inc.
Lori Heyman
67 South Bedford Street
Burlington, MA 01803-5152
(617) 270-0030

This newsletter for members of ACM SIGAda's Commercial Ada Users Working
Group (CAUWG) contains news and comments. It is available to the public at no
charge.

I FRAWG Newsletter
Martin Marietta Aerospace
MS L0420
P.O. Box 179
Denver, CO 80201
(303) 971-6731

This newsletter is a publication of the Front Range Ada Working Group (FRAWG).
There is no charge for this publication.

Software Engineering Notes
Association of Computing Machinery, Inc.
1515 Broadway
New York City, NY 10036
(212) 869-7440
acmhelp@acmvn.bitnet

I

I

U
Helpful Sources I

This quarterly is an informal publication of the ACM Special Interest Group on
Software Engineering (SIGSOFT), which is concerned with the design and
development of high-quality software. ($16 per year to ACM members, affiliate non-member subscription $38) (Annual ACM Membership dues-$75; Students-$22)

SPC Quarterly
SPC Building
2214 Rock Hill Road
Herndon, VA 22070
(703) 742-8877

This newsletter is a publication of the Software Productivity Consortium (SPC), a
conglomerate of private companies that help one another reduce the time necessary
for software development and the cost of building real-time software. The SPC I
provides computer-based software engineering methods, tools, and services to speed
large-scale software development. SPC has a strong Ada orientation. Its methods
and tools seek to make the Ada software developer more productive. Use of these I
methods and tools helps bridge the gap between well-established software
engineering principles and the actual practice of programming in Ada. The
newsletter is a source of information about companies that are making effective use
of software engineering tools and Ada implementation. There is no charge for this
publication. 3
A.33 Repositories

COSMIC, University of Georgia I
382 East Broad Street
Athens, GA 30602
(404) 542-3265
FAX: (404) 542-4807

COSMIC distributes NASA-developed software including string, numerical, service, I
and linear algebra subprograms. Many are oriented to avionics applications. Source
code is provided with purchase, and a free brochure is available. 3
EVI Software Engineering Ini-

5303 Spectrum Drive 3
Frederick, MD 20910
1-800-877-1815
(301) 695-6060 3
FAX: (301) 695-7734

A
A-44 Dertmenlt of the Navy

I

I

I Helpful Sources

Generic Reusable Ada Components for Engineering (GRACET h) is a library of 275
Ada software components based on commonly used data structures such as strings,
trees, and graphs. Each component includes complete design documentation, source
code, and at least one test program. GRACE is completely portable. (Free samples
available)

IWG Corp.
1940 Fifth Avenue
Suite 200
San Diego, CA 92101
(619) 531-0092

Proplink is an Ada program for analysis of communication link propagation paths
from ELF to EHF.

MassTech, Inc.
3108 Hillsboro Road
Huntsville, AL 35805
(205) 539-8360
FAX: (205) 533-6730

Math pack contains over 320 Ada mathematical subprograms in 19 reusable generic
Ada packages. It includes linear algebra, linear system solutions, integration,
differential equations, eigensystems, interpolation, probaoility functions, Fourier
transforms, and transcendental functions. Purchase includes source code,
documentation, on-line help, and telephone support.

Rockwell International Corporation
Manager, Software Engineering Process Group
M/S 460-225
3200 East Renner Road
Richardson, TX 75081
(214) 705-0000

Rockwell International Corporation maintains a database of tools, software
i omponents, data, and the like that are accessible to all Rockwell software engineers.

Wizard Software
2171 South Parfet Court
Leakwood, CO 80227
(303) 986-2405

I
i da Imlemenauon Gide -

I

I
Helpful Sources i

Booch components feature data types and tools for sorting, searching, and character
matching. Each abstraction has multiple implementations and follows object-oriented I
design. Source code is provided. (Also marketed in Europe and Japan)

A,3.4 Conferences and Special Interest Groups 3
SIGAda

Mr. Mark Gerhardt
ESL, Inc. MS M507
495 Java Drive
Sunnyvale, CA 94088-3510 I
(408) 752-2459
(408) 738-2888 (Switchboard)

SIGAda is a professional society dedicated to the dissemination of information about
all aspects of the Ada programming language, including standardization,
implementation, usage, policy, management, and education. It sponsors meetings
several times per year and also publishes a bimonthly newsletter, called Ada Letters.
Originally known as AdaTEC, SIGAda was established under the auspices of ACM
in 1981. In addition to the national SIGAda organization, there are approximately
50 chartered local SIGAda chapters. Most of these local chapters hold technical
meetings on a monthly basis. The point of contact for each local chapter is published
in Ada Letters. The Washington, D.C., chapter of SIGAda holds an annual
symposium on Ada.

Tn-Ada Conference
Danieli & O'Keefe Associates, Inc.
75 Union Avenue
Sudbury, MA 10776
(508) 443-3330
1-800-833-7551 (in the United States and Canada only)
FAX + 1 (508) 443-4715
(412) 268-777X

Tri-Ada, SIGAda's major annual conference and exposition, combines the availability
of lectures about the technology and management of "what's happening" in the Ada
community with in-depth presentations on project experience. The conference offers n

tutorials, birds-of-a-feather sessions, and the opportunity to see the Ada products and
services available in the marketplace. In addition, information gathered in the coffee
kiatches and informal gatherings, which always occur at these meetings, is not 3

I
A-4S epwtieg f th Nav

I

Helpful Sources

obtainable in any other way. Tri-Ada presents a unique opportunity to be immersed
in the happenings in the world of Ada so that organizations can become or continue
to be at the forefront of Ada understanding and use.

3 Washington Ada Symposium
Washington D.C. Chapter ACM
P.O. Box 6228
Washington, D.C. 20015
(301) 286-7631

I At the Washington Ada Symposium (WAdaS), information is presented on software
engineering dealing with commercial industry, Government, military, scientific,3 academia, weapons, and administration with regard to Ada.

A.3.5 Operational Support Development Tools

I ObjectMaker
Mark V Systems Limited
16400 Ventura Boulevard, Suite 303
Encino, CA 91436
(818) 995-7671

i ObjectMaker (formerly Adagen) is a Computer-Aided Software Engineering (CASE)
tool that supports object-oriented diagramming methods for requirements analysis
and top-level and detailed design. User-interface and diagram types are tailorable.
Optional language modules automatically generate compilable code (C, C+ +, or
Ada) from detailed design diagrams and support reverse engineering. The language
module reverse engineering toolset takes legal code (C, C+ +, or Ada) back to
multiple-level, nested, and detailed design-level diagrams. This is powerful for reuse
and re-engineering as well as documenting as-built code and component libraries.
Older methods supported include dataflow diagrams, real-time extensions, entity
relationship, state transition, and structure charts. ObjectMaker is available on DEC,
SUN, Apollo, Hewlett Packard, MIPS, and Data General Aviion workstations as well3 as Macintoshes and IBM PCs.

I
I
I
3id nlsmetslo Guls A-4

I

I

I Appendix B
Supplementary Reading
This appendix lists publications, including Software Engineering Institute (SEI)
reports on data rights, that are useful to Program Managers. Reports that have
Defense Technical Information Center (DTIC) numbers are available from DTIC
and the National Technical Information Service (NTIS) at the following addresses:

I DTIC Defense Technical Information Center
ATITN: FDRA Cameron Station3 Alexandria, VA 22304-6145

NTIS National Technical Information Service
U.S. Department of Commerce
Springfield, VA 22161

SEI reports that have a DTIC number (i.e., ADA followed by six digits) may be
obtained directly from:

Software Engineering Institute
ATTN: Publications Requests
Carnegie-Mellon University
Pittsburgh, PA 15213-3890

SEI affiliates and Governmental organizations may order documents directly from
SEI by submitting a written request, accompanied by a mailing label with the
requestor's address, to the above address.

Data Rights Reports

Martin, A. and K. Deasy, Seeking the Balance Between Government and Industry
Interests in SoftwareAcquisition. Volume I: A Basisfor ReconcOW DOD and Industry
Needs for Righu in Software (CMU/SEI-87-TR-13, ADA185742).

Martin, A. and K. Deasy, The Effect of Software Support Needs on DOD Software
Acayddon Policy: Part 1: A Franework for Ana&zring Legal Issues (CMU/SEI-87-
TR-2, ADA178971).

I SAda Implemmtntlo Guide B--i

I

I

Supplementary Reading I
Samuelson, P., Understanding the Implications of Selling Rights in Software to the
Defense Department: A Journey Through the Regulatory Maze (SEI-86-TM-3,
ADA175166).

Samuelson, P., Comments on the Proposed Defense and FederalAcquisition Regulations I
(SEI-86-TM-2, ADA175165).

Samuelson, P., Adequate Planning for Acquiring Sufficient Documentation About and I
Rights in Software to Permit Organic or Competitive Maintenance (SEI-86-TM-1,
ADA175167).

Samuelson, P. and K. Deasy, Intellectual Propery Protection for Software (SEI-CM-14-
2.1/July 1989).

Samuelson, P. et al., Proposal for a New Rights in Software" Clause for Software
Acquisitions by the Department of Defense (CMU/SEI-86-TR-2, ADA32093).

I
I
I
I
I
I
I
I
I

B-2 Department of the NavyI

I

I
I

Appendix C
II The Initial Process

The following paragraphs on the Initial Process are from the Carnegie-Mellon
University/Software Engineering Institute (CMU/SEI) publication, Characterizing the
Software Process: A Maturity Framework, by Watts Humphrey (CMU/SEI-87-TR-11,
June 1987.)

IThe Initial Process could properly be called ad hoc or chaotic. Here, the
organization typically operates without formalized procedures, cost estimates,
and project plans. Tools are not well integrated with the process or uniformly
applied. Change control is lax and there is little senior management exposure
or understanding of the problems and issues. Since problems are often
deferred or even forgotten rather than solved, software installation and
maintenance often present serious problems.

While organizations at the Initial Process may have formal procedures in
place for project control, there is no management mechanism to assure that
they are used. The best test is to observe how such an organization behaves
in a crisis. If it abandons established procedures and reverts to merely coding
and testing, it is likely to be at the Initial Process. In essence, if the process
is appropriate, it must be used in a crisis and if it is not appropriate, it should
not be used at all.

One key reason why organizations behave in this chaotic fashion is that they
have not gained sufficient experience to understand the consequences of such
behavior. Since many effective software actions such as design and code
reviews or test data analysis do not appear to directly support shipping the
product, they seem expendable. It is much like driving an automobile. Few
drivers with any experience will continue driving for very long when the
engine warning light comes on, regardless of their rush. Similarly, most
drivers starting on a new journey will, regardless of their hurry, pause to
consult a map. They have learned the difference between speed and progress.
In software, coding and testing seem like progress but they are often only
wheel spinning. While they must be done, there is always the danger of going
in the wrong direction. Without a sound plan and a thoughtful analysis of the
problems, there is no way to know.

Organizations at the Initial Process can advance to the Repeatable Process by
instituting basic project controls. The most important are:

Ada Implementation Guide C-1

I

I

The Initial Process I
1. Project Management. The fundamental role of a project

management system is to insure effective control of commitments. I
This requires adequate preparation, clear responsibility, a public
declaration, and a dedication to performance. For software, this
starts with an understanding of the magnitude of the job to be done. I
In any but the simplest projects, a plan must then be developed to
determine the best schedule which can be met and the anticipated
resources required. In the absence of such an orderly plan, no I
commitment can be better than an educated guess.

2. Management Oversight. A suitable disciplined software development I
organization must have corporate oversight. This includes review
and approval of all major development plans prior to their official
commitment. A quarterly review is also conducted of facility-wide
process compliance, field quality performance, schedule tracking, cost
trends, computing service, and quality and productivity goals by
project. The lack of such reviews typically results in uneven and U
generally inadequate implementation of the process as well as
frequent overcommitments and cost surprises.

3. Product Assurance. A product assurance group is charged with
assuring management that the software development work is actually
done the way it is supposed to be done. To be effective, the I
assurance organization must have an independent reporting line to
senior management and sufficient resources to monitor performance
of all key planning, implementation, and verification activities. This
generally requires an organization which is between 5% and 10% of
the size of the development organization.

4. Change Control. Control of changes in software development is
fundamental to business and financial control as well as to technical
stability. To develop quality software on a predictable schedule, the
requirements must be established and maintained with reasonable
stability throughout the development cycle. Changes will have to be
made, but they must be managed and introduced in an orderly way.
While occasional changes are essential, historical evidence
demonstrates that the vast bulk of changes can be deferred and 1
phased in at a subsequent point. If change is not controlled, orderly
testing is impossible and no quality plan can be effective.

I
C--2 Department of the Navy

I

U
I

IAppendix D
Source Line Of Code Metrics Definition
This definition is useful for measuring the size of software applications in Ada and

other languages. This definition provides a consistent metric for all DON activities.

The Source Line of Code (SLOC) elements are as follows:

3 * TLOC-Total Lines of Code
* SCL-Stand-alone Comment Lines
* ECIS-Embedded Comment Lines in SourceI ECLD-Embedded Comment Lines in Data
" SLOCWC-Source Lines of Code Without Comments
" TCL-Total Comment Lines
• DEl-Data Elements in the Source

The elements are related by the following formulas:

TLOC - SLOC + SCL
SLOC = ECLS + ECLD + SLOCWC
TCL =SCL + ECLS + ECLD

3In addition, we track DEL, which may number more than one per SLOC.

The SLOC elements are described below.

I TLOC: The TLOC is defined as the total SLOC plus the total SCL

SLOQ The SLOC is defined as the lines of source code that are generated by the
software engineer and that can be classified as statements. Each statement is
counted as one SLOC. Data lines, code lines, and code lines with comments all
would be included in this value. Lines with only comments are counted not in
SLOC, but in SCL

j SCL The SCL is defined as the lines of code that are solely comments, as separated
by carriage returns, and are not "attached" to a construct or action line or statement.
SCL does not produce object code for the target. SCL includes, for example, blank
lines, pseudo-op pairs in an assembler, and decorative format lines. The point here
is to understand how much documentation is included in the source code because£ SCL also has a value in the accounting of the software development.

g Ads Implewentaeion Guide D-1

Im

U

SLOC Metrics Definitions 1

ECLS: The ECLS is defined as comments that are "attached" to existing statements.
ECLS lines produce object code for the target. An embedded comment is any I
comment that is included with a single statement; the comment may be at the end
of the line or within the statement itself. The point of ECLS and ECLD is to
determine how much documentation is included and/or required in the source for I
annotation and/or explanation.

ECLD: The ECLD is defined as comments that are "attached" to existing data i
statements. ECLDs produce object code for the target. An embedded comment is
any comment that is included with a single statement; the comment may be at the
end of the line or within the statement itself.

SLOCWC: The SLOCWC is defined as the total SLOC minus the total ECLS and
ECLD.

TCL: The TCL is defined as the total SCL plus the total ECLS and ECLD.

DEI: The DE1 is defined as the individual data unit definitions in the source that
are defined with preset values prior to run time and that are a part of the programsize. More than one data element per SLOC may exist; each data element should I
count as one DEI and may be a table, variable, array, etc.

Note: These definitions evolved from What is a line of Code? by Barry Corson and
Luke Campbell. The paper includes an abstract, background, motivation, and
examples. The definitions are applicable for most languages used by the Department
of Defense (DOD) and hence provide a foundation to compare software
developments across a variety of languages. Automatic SLOC counters are under
development. Examples provided in the paper include the following languages: Ada,
Assembly, COBOL, and FORTRAN. The paper can be obtained from:

Mr. Luke Campbell
NATC Code SY30 Phone: (301) 862-7601 I
Building 2035 FAX: (301) 862-7607
Patuxent River, MD 20670 email: lcampbell@paxrv-nes.navy.mil

i

D-4 Department of the NavyI

I

I
3

Appendix E3 Example of Metric Wording for Use in a Contractual
Document

I Software Management Metrics Requirements

The contractor shall include graphs of Software Management Metrics (SMM) in the
Software Developmental Status Report (SDSR). The abscissa of each graph shall
contain the calendar months of the program and shall depict the times of System
Requirements Review (SRR), System Design Review (SDR), Preliminary Design
Review (PDR), and Critical Design Review (CDR). Should SMM data change as
SDSRs are presented, the contractor shall always show the original estimate together
with the current estimate and indicate the changes since the last estimate.

SMM data shall be depicted for all software, regardless of whether the prime
contractor and/or subcontractors (if any) are involved in the development and
whether the software is newly developed, existing, or reused.

5 The information shown shall be as specified below.

I. Software Size

SThe contractor shall use an automated tool to estimate the size of the software that
needs to be developed and shall report this estimated size using the definitions from3 Attachment 1

During actual software development, the contractor shall report the Source Lines of
Code (SLOC) elements in accordance with the information provided in the
attachment to this appendix. SLOC metrics shall be provided for each Configuration
Item (CI) for each programming language used. The contractor shall utilize an
automated Code Counting Program (CCP) to provide the SLOC metrics results.

On a single graph, the contractor shall show the current values of total, new, reused,
and modified SLOC counts.

Ads Imphemeimtan Guide E-1

.

I
Metric Wording Example I

2. Design Complexity

As software is developed, for each programming language used, the contractor shall
use the appropriate static analyzer of the Verilog Logiscope tool to show flow graphs,
call graphs, and Kiviat diagrams for each CI. I
3. Software Personnel

The contractor shall record the number of engineering and management personnel
supporting software development in experience categories of 1 through 3 years, 4
through 8 years, and 9 or more years. Software system planning, requirements !
definition, design, coding, test, documentation, configuration management, and
quality assurance personnel shall be included.

For each contractor development organization, provide graphs showing planned and
actual personnel in the various experience categories. 5
4. Software Volatility

The contractor shall provide three different graphs showing software volatility on the U
ordinate. One graph shall contain the total number of "shall" statements
(requirements) in the Software Requirements Specifications (SRSs) and the
cumulative number of requirements changes (including additions, deletions, and 1
modifications). A second graph shall contain new and cumulative Software
Requirements Changes (SRCs), which are the number of unresolved requirement
and/or design issues. A third graph shall depict Software Action Items (SAIs) that I
have been open from I to 45 days, 46 to 90 days, or over 90 days.

5. Computer Software Unit Development Progress U
The contractor shall graph the progress made in Computer Software Unit (CSU)
development against initial plans. This progress shall be reported to show monthly
planned versus actual progress of the number of CSUs designed, tested, and
integrated.

6. Testing Progress

The contractor shall record and graph the progress of CI and system testing against
initial plans and the degree to which the software is meeting requirements. One
graph shall depict the number of CI tests planned and passed, together with the
number of system tests planned and passed. A second graph shall depict the number
of new Software Problem Reports (SPRs) per month and the SPR density, which is g

Departmen of the Navy

I

ft Metric Wording Example

the cumulative number of SPRs per 1000 SLOC. A third graph shall depict the
cumulative number of open SPRs and the number of SPRs that have been open from
1 through 45 days, 46 through 90 days, or over 90 days.

3 7. Build Release Metric

The contractor shall present a graph that contains each build, or release, of the
software, showing the number of originally planned versus currently planned CSUs
for each release.

S8. Computer Resource Utilization

The contractor shall record the utilization of each target computer resource,
including memory (all types), Input/Output (I/0) channels, I/0 bandwidth,
processor throughput under various extreme system loads, expected "normal" system
load (including I/O), and memory use during processing times. Utilization metrics
shall be proposed by the contractor and approved by the Government. The data
shall show the planned versus actual utilization for each target computer resource.

In addition, the contractor shall report on availability and use of host development
station(s) to show planned versus actual usage.

II
I
I
I
I5 d ulnemo md -

I

I
Metric Wording Example i

Attachment i
SLOC Metrics Definitions
This attachment details the SLOC elements and their definitions. The elements are
divided into Source Elements and Target Elements. To show how the proposed
elements "add up," the following formulas have been provided. I
Source ElementsI

(Total created lines of code) = (SLOC) + (SCL)
where SLOC is Source Line of Code and SCL is Stand-alone Comment Line.

(SLOC) = (ECLS) + (ECLD) + (Lines with no comments)
where ECLS is Embedded Comment Lines in Source and ECLD is Embedded
Comment Lines in Data. I

In addition, we track Data Elements (DEI), which may number more than one per
SLOC.

TarIgt Elements

(OFPS) = (Data) + (DBuf) + (all other code generated by source program)

where OFPS is Operational Flight Program Size in words and DBuf is Target I
Code Size of Buffer Data in words.

Finally, the hope is that the Target Capacity (TC) is somewhat larger than OFPS. s
This is not always true, however, as some platforms have overlays.

SOURCE ELEMENTS I
(1) Number of SLOC-the lines of source code that are generated by the software
engineer and that can be classified as statements. Each statement is counted as 1
SLOC. Data lines, code lines, and code lines with comments would all be included
in this value. Lines with only comments are not counted in SLOC but in SCLs (see
item 3 below).

(2) Number of Compiled/Assembled Lines of Code (CLOC)-lines of code in the
final listing that are created by the compiler or assembler. This count would include
any expanding constructs such as assembler or compiler directives (e.g., loops or

E-4 Departmnt of the Navy 3

I

I Metric Wording Example

repeat statements). In many cases, the compiler or assembler numbers the lines on
the listing, and the last value on the last page of the listing can represent CLOC.

(3) Number of Stand-alone Comment Lines (SCL)-lines of code that are solely
comments, as separated by carriage returns, and that are not "attached" to a construct
or action line or statement. SCL does not produce object code for the target. SCL
includes, for example, blank lines, pseudo-op pairs in an assembler, and decorative
format lines. The point here is to understand how much documentation is included
in the source code because SCL also has a value in the accounting of the software5 development.

(4) Number of Embedded Comment Lines in Source (ECLS)--comments that are
"attached" to existing non-data statements. ECLS lines produce object code for the
target. An embedded comment is any comment that is included with a single
statement; the comment may be at the end of the line or within the statement itself.
The point of this element (and ECLD) is to determine how much documentation is
included and/or required in the source for annotation and/or explanation.

(5) Number of Embedded Comment Lines in Data (ECLD)-comments that are
"attached" to existing data statements. ECLDs produce object code for the target.
An embedded comment is any comment that is included with a single statement; the5 comment may be at the end of the line or within the statement itself.

(6) Number of Data Elements in the Source (DEl)-individual data unit definitions
in the source that are defined with preset values prior to run time and that are a part
of the target's object code. There may be more than one data element per SLOC;
each data element should count as one DEL. DEls may be tables, variable arrays,Ietc.

TARGET ELEMENTS

(7) Target Code Size of Data in words (Data)-the total number of target words
needed for the storage of DEL Note that word size is determined by the target.
Data=(#bits/type)/(#bits/word), where type is a character, integer, float, double,
etc.

1(8) Target Code Size of Buffer Data in words (DBuf)-the total number of target
computer words NOT preset to a value prior to run time (e.g., buffers used for I/O
and/or data gathered in flight).

A3Adailmentao Guide E-G

I

I

Metric Wording Example 3
(9) Target Code Size of Operational Flight Program in words (OFPS)-the total
number of words of machine code for the entire OFP, including all types of code, I
data, and buffers.

(10) Target Memory Capacity in words (TC)-indication of the target's memory R
capacity in words. (Note that if the OFP is stored in different types of memory,
indicate the memory types and the percentage of data and code stored in each.)

SLOC metrics shall be reported using an automated Code Counting Program (CCP)
in the following format:

SLOC Data for SCI: Date:
Language: Host: Target:

|

x% of TC I
OFPS D

S T

0 A
U SCL DBuf R
R G
C SLOC E

ECLD
L TC W
I CLOC -O
N R 3
E D
S ECLS S

L!
DE1-x

E
E-4 Dpertment of the Navy

I

Appendix F
,| Software Tool Descriptions

Editor
The editor is a tool for text manipulation. When computers were in their infancy,
source program text was entered by paper tape or punched card. Today, editors are
sophisticated interactive screen/window-management tools. Modem editors are used
not only for creating or modifying source text but also for viewing or modifying files
produced by other tools.

An editor is used primarily to create or modify source program text. The product
of the editor is a file that contains the source program statements. Because these
program files always will have to be compiled, the advantage was recognized of
having a language-specific editor, a tool with some built-in specific language
requirements. These editors simplify the entering of program text and sometimes
perform on-line error checking.

IIn its most elementary form, a language-specific editor may have special options to
assist in formatting the source text. An example for FORTRAN would be£automatically starting a line in column 7 whenever the first character was alphabetic,
thus preventing text from being placed in the field reserved for line numbers.

SAnother form of a language-specific editor is the "syntax-directed editor," which is
tightly linked to the programming language. Most modem languages require opening
and dosing statements for structured programming constructs. A syntax-directed
editor can provide templates for these constructs. For example, the following
template could be rapidly placed on the screen after typing "if':

3 if < condition>
then

else

hk c m I Gm*-

I
43enif

I
hnl!hit~nO~ -

I

Software Tool Descriptions !

In addition, the syntax-directed editor can check the structure of the source text for
compliance with the rules of the language. Thus, the efficiency of the I
edit-compilation process is improved because many programming errors are
eliminated before compilation. 1
Compiler
A compiler is a program that translates a High Order Language (HOL) source
program into its relocatable code equivalent. The term "host" refers to the computer I
that translates the source program, and the term "target" refers to the computer that
will execute the compiled code. The term "cross-compiler" refers to the case where
the target computer is different from the host computer. In many DON applications, I
a source program is cross-compiled on a host computer (generally a commercial
machine) for a militarized target computer that is embedded in a system.

Compilers are usually multiple pass programs that may process the source program
or some intermediate form several times before completion. The output of the
earlier stages is referred to as intermediate code. In some host computer systems,
the intermediate code is used by other tools.

Compilers for real-time applications must produce code to fit in limited storage I
space. In addition, the execution speed on the target computer must allow all of the
required functions to be computed in the assigned time. I
Assembler
An assembler is a program that translates an Assembly language source program into
relocatable code. Note that, usually, a one-to-one correspondence exists between an I
Assembly language source statement and a machine instruction. Assemblers allow
the programmer to use relative addressing and then specify a starting location rather
than having to specify each address in absolute terms. Most assemblers also allow
the use of labels and other defined values and locations.

The Assembly language has been used frequently in Mission-Critical Computer
Resources (MCCR) applications because it allows the programmer to optimize
storage space and execution time. However, Assembly programs are difficult to test I
and expensive to maintain. Today, the use of Assembly is generally restricted to
routines with exceptionally high performance requirements and to hardware
diagnostic software. 1
Source program modules, whether in an assembly language or a HOL, usually are

translated separately into modules of relocatable code. Once translated, the modules

I
F-I Department of the Navy 1

I

3

ISoftware Toot Descriptions

must be linked together before execution. A linker is a program that creates a load
module from one or more independently translated modules by resolving the
cross-references among the modules.

3 Relocating Loader
Relocatable code contains relative addresses of machine instructions and data. This
defers the assignment of absolute addresses until the program is ready for execution
and allows the flexibility of placing the program in any contiguous block of storage.
The linker creates a load module that leaves all addresses in relative form although
it has resolved the cross-references between modules. The relocating loader is a
program that executes on the host computer and translates the relative addresses into
the absolute addresses; its output is an execution module. A bootstrap loader3 executes on the target computer and copies the execution module into its storage.

Run-Time Executive
The Run-Time Executive resides on the target machine and provides a variety of
services for application programs. Typical Run-Time Executive functions are
dynamic storage management, exception processing, input and output, and task
scheduling. Because this executive is used for all application programs, it should be
small and fast to minimize the overhead. The Run-Time Executive usually is
modularized according to the particular services it provides and is automatically
configured when the execution module is created. Thus, if an application program
does not need a particular service, that module is automatically omitted from the
Run-Time Executive.

i Simulator/Emulator
When producing code for a target computer that is different from the host, the
problem of how to test the code must be considered. Testing on the target computer
is usually difficult because the computer may be still under development; it may be
being integrated with other embedded subsystems; or the number of target machines

I may be insufficient to support all of the programmers. Moreover, most embedded
target computers have poor tools to support testing

3 One solution to this problem is to build a software simulator or emulator of the
target computer that executes on the host computer. A software emulator accepts
the same data, executes the same instructions, and achieves the same results as the
target machine. A simulator imitates selected features of the target computer but
is not required to achieve identical results. The best tool is a target computer
emulator that can operate in either batch or interactive mode. The execution speedI of an emulator may be significantly slower than that of the target computer.
However, the emulator has many advantages. For example, the emulator can be

I time shared and used by everyone on the host computer; because the emulator is on

3 tAda Iple meration Guide F-

I

II

Software Tool Descriptions I
the host computer, it is easy to generate test data, load the module and test data into
the emulator, and monitor the test while in progress; and long tests can be run in U
batch mode during off-peak hours.

In-Circuit Emulator I
An in-circuit emulator (ICE) provides the user with a means of executing a software
program located in external Random Access Memory (RAM) rather than internal
Read Only Memory (ROM) or Erasable Programmable Read Only Memory I
(EPROM.) This allows programs being debugged to be modified easily and quickly
during the testing cycle. When connected to the prototype system through the
microprocessor socket, an ICE can emulate, test, and trace the prototype system I
operation. The internal state of the microprocessor, including RAM, accumulator,
internal working registers, and stack and status registers, can be observed and
modified. Some ICEs allow the recording of data bus operations. This feature I
allows the engineer to capture N events before or after a failure or predefined
occurrence. I
Symbolic Debugger
A symbolic debugger allows a programmer to test a module by controlling the
program execution on a target computer emulator or the target computer itself. I
With the symbolic debugger, the programmer can address the variables by using their
source program symbols or names. The facilities generally provided include stop
execution at selected locations, single step in increments of source statements, watch
the value of specified variables, trace execution, examine the contents of variables,
evaluate expressions, display the current sequence of routine calls, display the source
corresponding to any part of the program, execute debug command procedures at
break points, and call procedures that are program parts.

Pretty Printer I
A pretty printer is a program that automatically applies standard rules for formatting
program source code. It will accept an input file and format the text to match a style j
guide. For example, a pretty printer for a block-structured language will produce a
listing where the indentation level of each block shows its nesting level. A pretty
printer helps the programmer read and comprehend the program. After extensive 3
program modifications, for example, it helps eliminate confusion about the program
structure and nesting levels.

Host-to-Target Exporter
If the target machine is different from the host machine, it is necessary to have a tool
to transmit the execution module from the host to the target. Standard I
communications software and hardware may be used, but these are rarely available
for embedded machines. I

F-4 Department of the Navy

I

t
I Software Tool Descriptions

It is desirable to have a flexible, high bandwidth communications link between the
host and target. If the link has a "pass-through" capability, then an interactive user
of the host computer can run tests on the embedded computer from the same
terminal. High bandwidth is desirable because large volumes of data must be
exchanged between the host and target; for example, diagnostic software is typically
sent to the target to test the target hardware, and test data and test results also are
exchanged. A high bandwidth communications link will reduce the time it takes to
do these tasks and allow more time for testing.

I
I
I
I
I
I

I
I
I

Mea Implementation Guide F-6

I .

I

I Appendix G
Ada Bindings and Secondary Standards
Currently, a large number of Ada bindings are available. "Available Ada Bindings"
can be obtained from the Ada Information Clearinghouse (see Appendix A, Helpful
Sources). Appendix H shows the status of Ada bindings.

G.1 PORTABLE OPERATING SYSTEM INTERFACE FOR UNIX

NAME: POSIX-Portable Operating System Interface for
UNIX

SPONSOR: Institute of Electrical and Electronics Engineers
(IEEE) and International Standards
Organization (ISO)

3 STATUS: See Figure G-1

STATUS OF ADA BINDING: See Figure G-1

I DOD APPLICATIONS: Virtually all software applications

IMPORTANCE TO DOD: POSIX defines a collection of system services that
will be widely supported by computer vendors and third-party software developers.
The fundamental goal of POSIX standards is to support applications program

I portability by defining interface standards.

DISCUSSION: POSIX is the name for the IEEE standardization efforts to develop
portable application interfaces to operating systems. The effort is coordinated with
UniForum, X/Open, National Institute of Standards and Technology (NIST), and
other organizations. The resulting IEEE standards follow processes that permit
simultaneous standardization as ISO standards. The IEEE standards typically
become Federal Information Processing Standards (FIPS). Each POSIX standard is
required to include test assertions and test methods that can be used to test

I implementation conformance.

The POSIX interfaces are based on existing UNIX interfaces, but it is important to
note that many non-UNIX systems, such as Digital Equipment Corporation's VMS,
are planning on POSIX compliance. The effort is broken into different areas that
cover the range of interfaces used to access operating systems:

Ada Implgmvenhat Guide ,--

I

I
Ada Bindings and Secondary Standards I

" Basic System Services-process management, file handling, terminal
communications, and basic protection mechanisms

* Real-Time Services-real-time scheduling, synchronization, and process control 3
* Security Services--discretionazy and mandatory security interfaces and

definitions i
" User Command Interface-command syntax, user services, and utilities

* User Graphical Interface-basic windows, toolkits, and user interface I
management systems

* Network Services-transnetwork transparent file access, process-to-processI

communication, directory name services, and generic data exchange

" Mail Services-user name resolution and mail delivery services i

" System Administration-system control, integrity monitoring, failure recovery,
and activity monitoring U

Figure G-1 shows the status for each of the above POSIX standardization areas.
Note that Ada binding and implementation efforts have not even begun for many of I
these areas.

While the POSIX effort covers a wide range of operating system interfaces, several I
notable areas frequently are considered parts of operating systems but are not
considered to be in the POSIX domain. Specifically, Database Management Systems
(DBMSs), graphics other than user interface (e.g., Graphical Kernel System [GKS],
Programmer's Hierarchical Interactive Graphics System [PHIGS]), and
knowledge-based systems are excluded from POSIX.

POSIX standardization efforts also include standard profiles that bring together a set
of standards and narrow the options under those standar!s. Currently, POSIX3
defines profiles for transaction processing, including supercomputing and multi- and
real-time processing. The efforts in these areas began only recently. These profile
areas each may result in more than one profile, depending on how the application I
domains shake out.

I
G2Department of the NavyI

I

I

i Ada Bindings and Secondary Standards

3 _Figure G-1. POSIX Status

POSIX AREA STANDARD WIDE-USE WIDE-USE ADA ADA BINDING
I EFFORT INTERFACE BINDING IMPLEMENTATION

Basic System Done: ISO 9945-1 All Major In Ballot, Not Yet Trial Implementation
Services IEEE 100301 Vendors Stable Done To EarlierI FIPS 151-1 Revision

Real-Time Stable, in Ballot No First Cut Done No Work Yet
Services

Security Services Stable, Going to No No Work Yet No Work Yet
Ballot

Program No Work Yet Some Some Some
Graphical
Interface

Network 1 Year of Work, 1 No, but No Work Yet No Work Yet

Services Year From Ballot TCP/IP, X.500

Mail Services 6 Months of No, but X400 No Work Yet No Work Yet
Work, 1 Year
From Ballot

User Commands Stable, in Final All Major Not Applicable Not Applicable
Ballot Vendors

System 2 Years of Work, All Major Not Applicable Not Applicable
Administration 6 Months From Vendors

Ballot III_ I

IG.2 STRUCTURED QUERY LANGUAGE

3 NAME: Database Management Services:

1. Database Management System Component-Database Language Structured
Query Language (SQL), American National Standards Institute (ANSI)
X3.135.1-1989 (ISO 9075, FIPS 127); Embedded SQL, ANSI X3.168-1989

1 2. Data Dictionary/Directory Component-Information Resource Dictionary
System (IRDS) ANSI X3.138-1989 (ISO DP 10027.N2642 (1988) IRDS
Framework; ISO DP 8800 N2132 (1988) IRDS Services Interfaces; FIPS 156)

3. Distributed Data Component-Remote Database Access (RDA) draft
specification, ANSI (ISO DP 9579, N2971)

Ada Impementation Guide G-3

I

!B

Ada Bindings and Secondary Standards I
SPONSORS:

1. Database Management System Component-ISO/International
Electro-Technical Committee (IEC) Joint Technical Committee 1 (JTC1) i

2. Data Dictionary/Directory Component-ANSI X3H4 Database Group and
ISO/IEC JTC1 i

3. Distributed Data Component-European Computer Manufacturing Association
(ECMA) Technical Committee on Database Standards TC22 and ISO/EC
JTC1 I

STATUS OF BASE STANDARD

1. These standards, developed between 1982 and 1989 by the ANSI X3H2
Database Committee, specify data access capabilities based on SQL and the
relational database model. The X3.135 standard specifies data definitions, data
manipulation, access control, and limited integrity constraints. An emerging
enhanced specification under active development in both ANSI and ISO will
include substantial additional features for schei ia manipulation, Dynamic SQL,
exception handling, enhanced integrity constraints, transaction management,
and data administration. 3

2. The ANSI standard (ANSI X3.138-1988) and the FIPS are the same document.
ISO is working on an IRDS specification. This specification includes user
interfaces only. Data dictionary/directory services consist of utilities and
systems necessary to catalog, document, manage, and use metadata
(information about data). 5

3. Distributed Data Component-The ISO/IEC RDA specification currently is
undergoing draft balloting in ISO/IEC JTC1. The specification is in two parts:
Part 1-Generic RDA, and Part 2-SQL Specialization. Final adoption is
expected in 1992. Vendor consortia, such as SQL-Access and X/Open, are
working on prototypes to demonstrate interoperability among different SQL 5
servers.

STATUS OF ADA BINDING i

1. Database Management System Component-X3.135 deals with SQL
independently of programming languages. X3.168 binds or embeds SQL within
the programming languages Ada, COBOL, FORTRAN, Pascal, PL/1, and C.
DOD does not endorse this binding method. A module language binding has

G-4 Department of the Navy

I

I
3 Ada Bindings and Secondary Standards

been jointly developed by the AJPO and SEI. Entitled the SQL Ada Module
Extension (SAME), this specification is approved by DOD but is not a formally
endorsed standard. SEI is coordinating with ISO to establish the SAME
Description Language (SAMeDL) as an international standard. The document
is now at Working Group 9 in committee draft.

2. Data Dictionary/Directory Component-No current effort exists to develop an
Ada language binding to the IRDS, and there are no commercial
implementations of such a binding.

1 3. Distributed Data Component-No current effort exists to develop an Ada
language binding to the RDA specification. All current Ada bindings are3 proprietary.

DOD APPLICATIONS

1 1. Database Management System Component-This component consists of
definitions, management, and query of structured data stored in a relational3database management system.

2. Data Dictionary/Directory Component-Data dictionary/directory services
consist of utilities and systems necessary to catalog, document, manage, and use
metadata.

3. Distributed Data Component-This component is used to establish a remote
connection between a database client, acting on behalf of an application
program, and a database server, interfacing to a process that controls data
transfers to and from a database. The goal is to promote interconnection of
database applications among heterogeneous environments, with emphasis on
an SQL server interface.

IIMPORTANCE TO DOD: Database management serviccs include the data
dictionary/directory component for accessing and modifying metadata, the DBMS
component for accessing and modifying structured data, and the distributed data
component for accessing and modifying data from a remote database. The relational
data model has been adopted as the standard data model for use in developingIapplications. DBMSs provide a robust environment of database services and
functions. The system designs of software applications are not limited to stand-alone
computer systems. The term system now refers to a terminal (dumb or smart)
connected by some means, either direct or through a network, to a processor. SQL
provides a standard language for designing databases and manipulating the data in

A
Ada Iniplenientation Guide G-6

I

Ada Bindings and Secondary Standards I
them across multiple applications. Information about these data must be
standardized and the method of accessing them common if DOD is to achieve I
interoperability and portability of applications across a large range of systems.

G.3 XWINDOWS 3
NAME: XWindows

DEVELOPER: MIT X Consortium

BASE STANDARD STATUS: Within POSIX Standards Working Group I
CURRENT RELEASE: Xl1R4

ADA: No Standard or Stable Ada Interface

DISCUSSION: Demand and use of graphical window systems that provide interfaces I
to users currently are increasing. This increase is due primarily to the release of the
MIT X Consortium XWindows System. Within DOD, programs often require
XWindows and different toolkits and extensions such as "the contractor shall provide 3
XWindows, PLUGS, and the MOTIF toolkit." This requirement often creates despair
due to the different levels of X and its compatibility with other graphics applications.
In addition, at the higher levels of XWindows, such as the toolkit level, various
competing de facto standards make the progress complex. Each level is described
below, and the status of standardization and implementation at each level is outlined. 3'

* Xhb-communicates with the X System Server through X Protocol; manipulates
X primitives; provides the calls back to the XServer; provides mechanisms for
efficiency, such as caching; and hides the network protocol from the
programmer. 3

" Xt Intrinsics-sets of functions for basic user interface abstractions. It is layered
above the Xhib to provide the user easier mechanisms for writing X
applications.

* Toolkits-sets of basic objects (e.g., menus and buttons) built from a 3
combination of Xhib and Xt Intrinsics calls. Different widget sets have
individual "look and feel." Sample widget sets are Athena, HP, OSF/MOTIF,
and OLIT.

0-6 Department of the Navy

I

3

3 Ada Bindings and Secondary Standards

• Virtual Toolkits-common high-level interface between application programs
and native window systems. Virtual toolkits allow portability of window
applications across a variety of different widget sets (e.g., MOTIF, MacTools)
and across different platforms (e.g., SUN, Mac, DEC).

" User Interface Management Systems (UIMS)-systems that allow application
developers to rapidly prototype user interfaces. UIMS often provides a user
with the capability to quickly construct menus, dialogue boxes, and the like and
to generate code for these applications.

3 G.4 GOVERNMENT OPEN SYSTEMS INTERCONNECTION PROFILE

3 NAME Network Services

1. GOSIP, FIPS 146

I - Message Handling Service (MHS), X.400 Series, ISO 10021

- File Transfer, Access, and Management (FTAM), ISO 857, 8613, 10026,
8650, 8652, 8653, 9735, 9594

3 - Virtual Terminal (VT), ISO draft

- X.500 Directory Services

1 2. Transparent File Access (TFA)-IEEE P1003.8, Draft 3

3. Distributed Computing Services-Open Software Foundation (OSF)/1 NetworkI Computing Services (NCS) Remote Process Communication (RPC)-OSF

3 SPONSORS

1. GOSIP, Version 1-ISO and International Consultative Committee for
I Telegraph and Telephone (CCIIT)

1t 2. TFA-IEEE

3. Distnibuted Computing Services-OSF

I
I

iAda Implementatlo Guide 0.-7

I

I

Ads Bindings and Secondary Standards I
STATUS OF BASE STANDARD:

1. GOSIP-GOSIP is essentially a family of protocols and representations. GOSIP
Version 1.0 provides a complete transparent, end-to-end data communications
capability based on Open Systems Interconnection (OSI) Transport Class 4 U
(TP 4) and Connectionless Network Protocol (CLNP). Version 1.0 provides
electronic mail and file transfer access and management applications. It
operates over a variety of local and wide-area network technologies. GOSIP I
Version 2.0 will add remote logon and office document interchange
applications, will provide a new network addressing structure to support
dynamic routing, will include a provision to operate over the Integrated I
Services Digital Network (ISDN), and will allow an optional connectionless
transport service to support transparent file access and other applications.
Later versions of GOSIP will include substantial added functionality such as 1
distributed directory services, transaction processing, remote database access,
dynamic routing, network management, and network security. Key features
may vary with specific combinations of vendor products and users. Layer 7 of I
the OSI Reference Model generally includes components that are considered
Application Service Interfaces. This interface is used by application
programmers to access high-level network services such as file transfer and Umail.

2. TFA-TFA includes capabilities for managing files and transmitting data I
through heterogeneous electronic transmission networks in a manner that is
transparent to the user (i.e., does not require knowledge of file location or of
certain access requirements). Many functions of TFA are widely available in
existing vendor implementations, but some functions rely on the underlying
protocols. The eventual TFA specification should overcome this limitation.

3. Distributed computing services-These services include specifications for remote
process communications and distributed real-time support in heterogenous
networks. Distributed access services include functional support for submitting,
starting, and stopping processes among processors in a network. No
specifications exist that define a complete set of functions necessary to provide 3
remote procedure communications for all types of application platforms (i.e.,
the language-independent representation of remote procedure calls).

STATUS OF ADA BINDINGS: No efforts are ongoing to develop an Ada language
binding to the high-level network services provided by GOS P protocols.

G
G-4 Department of the Navy

I

I
3 Ads Bindings and Secondary Standards

DOD APPLICATIONS: GOSIP is applicable to all data communicationsI environments where multivendor computing is anticipated. GOSIP is based on OSI
standards, the worldwide consensus standards for multivendor data communications.

I IMPORTANCE TO DOD: GOSIP will allow interoperability of systems used within
DOD and its international allies. Network services are the standard services needed
to transport data between any two service access points within connected
OSI-compliant systems and to manage the data communications infrastructure.

5 G.5 GRAPHIC STANDARDS

NAME: GKS-Graphical Kernel System
PHIGS-Programmer's Hierarchical Interactive

Graphics System

3 SPONSORS: ANSI and ISO

STATUS: GKS is complete, but a major revision is in3 progress. PHIGS is complete.

STATUS OF ADA BINDING: Ada/GKS binding is provided for the upper level,3 but not the lower levels, of GKS.

Ada/PHIGS binding has been published by ISO
3 and ANSI.

DOD APPLICATIONS: Graphical displays, cartography, user interfaces

IMPORTANCE TO DOD: Transportability of graphics software and
compatibility of software with a variety of
input/output devices

DISCUSSION: The GKS is an ANSI Standard (X3.124-1985) and an ISO Standard
(ISO 7942) that defines a set of language- and device-independent types and
operations that facilitate the programming of two-dimensional color graphics
applications. To be used directly biL a program, the GKS entities must be mappedI to a particular programming language. Such a mapping, or binding as it is generally
called, has been carried out with FORTRAN, Pascal, C, and Ada. The Ada
Language Binding to GKS is also an ANSI Standard (X3.124-3) and ISO Standard
(ISO 8651-3).

A
SAda Impnntto Guide 0--4

Iw

Ada Bindings and Secondary Standards I
GKS includes the following concepts:

" Graphical output primitives-The basic building blocks under GKS are four
main primitives. Polyline draws a sequence of connected line segments.
Polymarker marks a sequence of points with a designated symbol. Fill Area I
displays a closed area (polygon). Text displays a character string and is
supported by attributes such as character height, character spacing, and
character up vector.

* Coordinate systems-GKS distinguishes between user and device coordinates
and supports three different coordinate systems. The World Coordinates I
(WCs) system is a device-independent system specified in user coordinate space
by the application programmer. The Normalized Device Coordinate (NDC)
system is an intermediate system used by GKS that maps the WC into a virtual
space on the x and y axes from 0 to 1. The Device Coordinate (DC) system
is device dependent, and coordinates are expressed in terms of the device being 3
used.

" Segments-This group of graphical primitives is identified by a unique name.
Segmentation allows the collection of output primitives to be manipulated as
a unit.

* Logical input devices-A logical input device is an abstraction of one or more I
physical input devices. Each logical input device can be operated in three
modes: Request, Sample, and Event. 3

* Workstation-This is a GKS abstraction of graphical devices. The graphical
workstation provides the logical interface through which the application
program controls the physical devices.

GKS also provides an interface to a system for filing a graphical image for long-term
storage and exchange of graphical information known as a metafile. I
PHIGS supports the storage and manipulation of data in a centralized hierarchical 3
data structure known as the Centralized Structure Store (CSS). The fundamental
entity of data is a structure element; these entities are grouped into units called
structures. Structures are organized as directed acyclic graphs called structure 3
networks. The creation and manipulation of the data structure are independent of
the display.

I
G--IO Department of the Navy!

I

U
3 Ads Bindings and Secondary Standards

Graphical output on a workstation is produced by traversing a structure identified for
display on the workstation and interpreting the structure elements. The workstation
maps between four coordinate systems, namely:

I • World Coordinates (WCs)-used to define a uniform coordinate system for all

abstract workstations

* View Reference Coordinates (VRCs)-used to define a view

- Normalized Projection Coordinates (NPCs)-used to facilitate assemblies of
different views

• Device Coordinates (DCs)--one coordinate system per workstation representing
its display space

PHIGS supports two- and three-dimensional primitives, hidden line, hidden surface
removal, and viewing transforms that support parallel and perspective
transformations. PHIGS maps the graphical information that is input from a device
as a result of operator actions into six classes of input, each represented by a data
type referred to as a logical input value.

I
3
U
I
I
I

I

Ada Imnlmention Guide G-11

.

I Appendix H

Ada Binding Products

I _ _ _ _ _ _ __Lt._ I I

* Concurrent Comp uter CorpA D

Convex Computer CorporationAIA I IP

IDigtal Equapmant Corporation Pp P P PA/P P P P A/P P IP A/D P A/D

.mA _ A A

InforruxD

Ia c A. A)

Ib~W~AfC* Inc D D, AAD

YmkkFtm A. A

M hnmic Won H-Iks [/

"IK oq~,I

I Appendix I
Lessons Learned
Historically, the Department of Defense (DOD) has failed to take advantage of past
experiences in developing software systems. The process of reviewing past
experiences and formulating new decisions based on these experiences should be
ongoing. It must start from the beginning of the process and continue through
development and into deployment. The software process also should be adjusted for
overall system size, technical complexity, and development phase.

This appendix describes decisions and evaluations made about software system
developments that led to lessons learned. Figure I-1 presents a matrix of the lessons
learned by project in the following areas:

3 * Standards and policy
- Project management
* Development processI Corporate knowledge and software development
* Training
* Resources and facilities
- Support environment and tools
* Reuse

1 Project costs

In some cases, the information presented in the project descriptions came from
internally developed evaluations; in others, the information is based on externally
developed assessments. Note that, except for editorial changes, the descriptions are
reproduced here as submitted by the originators.

I As the examples show, different projects often experienced similar problems and

applied similar remedies. Frequently, a series of non-software-related errors
culminated in the production of the wrong set of software components. The lessons
learned from these and other project experiences may help managers of new projects
to avoid such problems.

AU

Ada Impementation Guide I--1

Um

1

Lessons Learned 1

Figure 1-1. Lessons Learned Matrix (1) 3
4 *0 I

//Lesson1

1.1 ADVANCED FIELD ARTILLERY
TACTICAL DATA SYSTEM I
Anticipate trouble with the Ada develop-
ment tools/environment, no matter who is x
supplying them or when you get them. 3

2 Budget for training. X X X I

Anticipate that original estimates for 3
support hardware and facilities will have
to be revised. Project experience resulted X
in a quadrupling of original estimates for
support hardware and facilities.

Ensure that both the contractor and
Govenment teams are knowledgeable
about and understand the rationale for all X X 1
software.related topics.

Have the team develop a viable
tedhiicalmanagement plan and adhere to X X I
it so hat requirements and design can be
inMlanented correctly.

Reporl major problems up the line as I

SrmOifltered. X X

Do not mistakenly blame software
developnent for failure. Careful sruiny 1
of nusy projects fequently shows that
Wall od ml software development
ae responsible for failure.

I

I

I Lessons Learned

Figure 1-1. Lessons Learned Matrix (2)

Lesson
c

31.2 AAS-

When externally supplied schedule

constraints exist, the level of planning and
execution analysis becomes much more

-critical.

'The greatest number of "lessons learned-
2 is related to the contract requirements. X X X

Coordination frequently receives the least
3 attentionalthough it isone of the more X X

ipratefforts.

For large projects, it is mandatory that anI 4 adeqz'tely sized, qualified Techntical
Direetive Authority Oversight Group be X X X
established and ftmnction for the duration
of the project.

Software developmeunt planning and

j little, test a little").

6 Even the best maide plans require changes X
during execution.

For large efforts that wre geographically
7 disbured, the goal should be to strive for

earmasality of development X X X X X
environiua tools, procedures, and

g ~Aft hplemuso Gu~da1-

I

Lessons Learned I

Figure 1-1. Lessons Learned Matrix (3) 3

tt I
Lesson1

L3 ADA LANGUAGE SYSTEMNAVY 1I
For DON Standard Embedded Computer

Resources applications, top priority must X X X X x
be given to the real-time performance of
the generated code. I
Even though actual software code
production is only a relatively small X X X
portion of the total life cycle, it is critical

to have a reasonable level of performace
within the tool set.

Each development effort should be
3 managed under the asumption that there

will be a formal production delivery to X X X
DON and a separate DON-controlled
post-deployment phase.

Requirements must be understood, and
both formal and informal checks on the
progress to meet these goals must be X X X X

conducted throughout development.

Because post-deployment support will be

DONs responsibility, it is critical to build
1

an adequat in-hous teamn that is X X X X

thoroughly famniliar with the product

before acepance.

The lack of full program funding

6 omminilmat and support will have a X X X
negative impact on development plans.
Be prepared to either alter the course
aw/ extend delivery schedules.

Poducing a quality soEtwae-4ed
7 product that mees its specified

wa u is a diffiuh task. X X X X X X X I
No prdc is truly exercised and teae X XI

until it reaches the target user community.

I--4Departmnt of Owe Navy1

Lessions Learned

Figure 1-1. Lessons Learned Matrix (4)

A\ 4

Lesson c3 .y/ ~ <

U I. AVIONICS PROJECT

I Ensure that software production/cost
I modeling includes adequate time for the x x x

requirements/design phase before
accepting externally generated completion

dates.

Be sure that requirements are fully
2 defined and are traceable to test x x xx

mechanisms.

3 Do not plan to use equipment that is under
3 development unless absolutely necessay.

Apply a risk engineering approach to X X X X
tdose items that must be used. place item
on critical path, and monitor them closely.

Always assume that everything could go
4 wrong and perform full risk engineering

anUaaeet
Use a bands-on mantagement approach

5 frm bth ie pimeandGovermnai
perspectives, delineating clear lines of X X X X X
authority and responsibility for con-
tractual requirements, especially for large
proiects.

Specify in the contract requirements that

6 capabilities must be established early,
with adequate resources aid authority. x x x x x x

Closely monitor progress.

-Do not disregard the critical elements of

thde Milsary S~idards (MIL-STDs) u- x x
less it is technically and managerially
neesay to tuse alternative means.
Develop a syatn-WIde inWfrnon plan

TIgu that the scedule can aeoaunn-
g dwe slack and the possibility of DON

Wapiim s timuefortbeamnproducets X X X X x
-d tbot theresources ae available to

A&aI I&pw ebon Guldef-

Lemsns LearedI

Figure I-1. Lessons Learned Matrix(5)3

Do not disregard critical MIL-STD3
9 interim products in the contract X x

requirements, and adequately plan for and
execute the Governments role to ensure
quality and delivery.3
Ensure that adequate development-

10 aupport facilities exist by requiring these
facilities to be contractually specified and X X X X X
monitored during the PRR process. Con-
tingency plans should be available when

Iand if problems develop.
Do not let external schedule events drive

II the program. Develop input and output
criteria for major milestones and adhere to X X XU
them. It is very easy to build the wrong
software.

Where possible, use real productionI
12 hardware and/or commercial prototypes t

decrease the amount and scope of XX X

ainitwation.

Ensure non-approval until requirements
13 are uset because when system.

tnrq iets are not met anid "as built" X X X

syOwem are approved, the contractor is no

longer responsible for fixing the system

LS PEOSSAS, PMS.414, SEA LANCE3

Ueacottsistem methodology throughout -- -

I doporamrequirme,deign, msd X X X X X X
codng hass t faibutetracing

111quirements1 to the code.

Use a conuin Program Design Language - - - - - - - - -1

2 (PDL) sas the project. On medim-i- X , X
large-scale systems, tte PDL will contain
a wide variety of differing coding

Include Maim"sfrc a requiranent for a
3 nidnm ratio of 50/50 cmnums-to- X X x

code in the contract, software

5-6 Depaitmen of thMNvy

I Lessons Leamed

gFigure 1-1. Lessons Learned Matrix (6)

sLesson

I Use an automated format utility or

4 equivalent software tool to ensure
uniform code appearance. This can be X X

applied by either quality assurance or
configuration management.

Develop a style guideline for the Ada
code and PDL before doing any design X3 work.

Use software metrics from the beginning,
6 and define basic terminology between

Ada and the selected software X x x
development standard.

Hammer out documentation requirements
and licensing agreements between the
Government and the contractors regarding X X X
the use of third-party software and the
way it is to be tested and identified

Early in the development process, have
$ the conractor provide a detailed list of

tools that will be used in the development X X X X X
p r and specify the format that will be
used for transfer of so ce code.
executable code.ad softwar.

NAVY WORLD WIDE MILITARY
LO COMEMANJD AND CONTROL

I It is always safe to build and test

incremenally.

Plannifg for aid designing i reuse yield
long-ter i benefits.

Isar lap software uinderalings. use of
3 usaagied tools is nm dAory. X X X X

I

Lessons LearnedI

Fig ure 1-.1. Lessons Learned Matrix (7)3

Until the design baseline has beenI

4 approved and frozen, it is inadvisable to X X X
initiate with full-blown coding.

If a risk engineering approach is Laken to--
development (i.e.. awareness, identifica-

5 tion, technical/imagement of alternative x x x
solutions). then it is possible to undertake
technologicaliy challenging develop-

EVENT-DRIVEN LANGUAGE/
1.7 COflOL.TO-ADA CONVERSION

PROGRAM

I Training is essential for both technicalI
and management personnel. X X X

2 prorunmers require 4 to 9 months of
2 training before they become proficient. 3

Military transfers often result in a loss of
3 invstment in Ada training. X X XU

Systems originally written in languages - - -- - - -j

4 taat predate Ada that mus be converted to x x x
Ada shouldl be redesged, not translated.

5 Ada facilitates reuse. X X X X

6 Ad knd an to efiin coeadhg3
propmn prodtictivity.

5-S Departrneii of the Navy

3 Lesons Learned

3 Figure 1-1. Lessons Learned Matrix (8)

/I Lesson

I Development tools are essential X X X X

Development and maintenance time can
g be significantly reduced by applying X x X X X X

software engineering principles andI capitalizing on reuse.

18 SHUflOARD GRIDLOCK SYSTEMI WITH AUTO-CORRELATION

3 - Before committing to large projects, the
I methods and tools tobe used should be x x x X X

exercised. Quantitative evaluation of the
expended resources should lead to better

estbiates for the work contemplated.

2 The Ada code itself will have major
architectural and design impact on a X X
inysem; therefore, the two must be
winksed on simltaneously.

3 project shoud always ty to build a X

little and test a little, building and testing

A project should Always attemipt to
4 involve the production hardwe as early X X X X

in the progrurn as feasible.

The team mut be well trained in the use
5 of supplied toolsand the ools must wo X X X X X X

a advertised.

6 Adaaue to good engineeing praetics
6 i seesarywI= aigniig to "sem X X X X X

amd its hfdwr and software

3~ ~ ~ M Adahupenmentatn Guide -

Lessons Leared

Figure 1-1. Lessons Learned Matrix (9)3

OVI
II

Lesson ___ Il

2 Support software, practices, and products X X X ,
need constant attention.

Mhe need to interface with other language
3 programs may place constraints on th x x x

type of Ada features that can be used.

4 To ensure programing uiformity, aI
style guide should be developed and used X X
across all developer teams.

Ijk #41CUDATE IV ADA
DaEWIPMENT

Ada code requires more up-front time and
efort. asid the learning curve is slowr X X

2 nsresad facilities and memory are XX X
2 equh eto accommnodate Adscd.X

1-lO Department of fth Navy

I

I Lessons Learned

IFigure 1-1. Lessons Learned Matrix (10)

I/
Lesson 4.9Sonic sofware developmn tools awe

immature and have not been proven for X X X
many applications.

I Tailoring of DOD software development x x x
standards must be addressed to accommo-
date Ada-unique capabilities.

S- Although the adoption of Ads was
5 envisioned to enhance the software

development process, use of Ada does X X X X
not gumuee sound software engineering
practice.

Sictconfiguraion mangemen and6 control we required to enforce discipline X X X X
to counter' comlilexity-induced cofusion.

IL $ TAMDA RD FNCIAL SYSTEM

I Ti available pool of developers skilled

2 Few compilars nd suppor tools ae

availabe to support information system X
development in the IBM envirosinent

3 Symsm developed in Ada may be
3 inab le thm thoe wnten in X X X
ODBOL

4 npricpK portbilty is awrdb
do afflpi code in Ada, but it is lintite X X

3 Ad lnlplemenlako Guide I-Il

U

Lons LearnedI

Figure 1-1. Lessons Learned Matrix (11)3

eueprefsiebenefits of reuse to be realized at several
levels.3

6 Current documnentation standards need to Xbe reexamined.

RECONFIGURADLE MISSION
COMPUTER PROJECT

For small technology de mansiastioni-
I projects. anticipate a lack of Ada X x x

compilers for small embedded computers
that use advanced microprocessors.

Planman allocating a portion of the CPU

2 atilizstion to the inefficiencies of using a x x x x x x
moduiw design approach and design
implementation in Ada.U

3 Planoanthrowing away some or all of the x x x x
frstsoa re dsigned.-

4 Dedicate an individual or group
(depending on the size of die project) to X X X X
the Ada hwdware inierface.3

.. 104ThLUEI4TftisSR PROJECT3

Syssan analysis zst be conducted at the
beginning to ene adequate resore
(compsilers, hwdwme phaorm) will be X X X X X
avaliable for meeting the systemI

Even though Ada ba many features. it
2 does; ame have everything ftom every

in tpe "Of ARcWi huelli$Wn
systm for which it cut be used.

I -

1

1-12 Departmnt of tde Navy

I
Lessons Learned

1.1 ADVANCED FIELD ARTILLERY TACTICAL DATA SYSTEM
The Advanced Field Artillery Tactical Data System (AFATDS) is a system of
computers, printers, displays, and software that helps Army commanders plan, direct,
and control artillery fire in combat situations. AFATDS was intended to replace the
former Tactical Fire Direction (TACFIRE) system.

-- AFATDS was a concept evaluation effort that began in May 1984 with Magnavox
Electronic Systems as the prime contractor. The paragraphs below summarize the
lessons learned during this effort.

Lesson 1: Anticipate trouble with the Ada development tools/environment, no matter
who is supplying them or when you get them. Especially expect problems with the abilityI of the Ada Run-Time Executive to meet all of the project needs. The Army had
required Ada as the High Order Language (HOL). During the source-selection
phase, only three validated compilers were available, none of which could down-lineI load to a target processor that met the AFATDS-derived requirements. The
language, methodology, and tools were new; the approach was to be "software first."

I-_ Lesson 2: Budget for training. Be prepared for and include additional funds for training
over a long period of time- Note that for this training to be most effective, it must be
accomplished just before or during the development effort. Magnavox recognized thatIreal-time expertise in Ada did not exist and immediately went to the Ada community
to establish a comprehensive, long-term Ada and software engineering training
program. Magnavox also proceeded to hire selected consultants and subcontractors
to handle specialty items (e.g., database design).

Lesson 3: Anticipate that original estimates for support hardware and facilities will have
to be revised. In this project original estimates quadrupled for support hardware and
faciities. Magnavox also purchased multiple mainframe and workstation computing
systems; however, these resources proved insufficient but were relatively easy to
upgrade.

3 Lesson 4: To accomplish the projec succesfully, ensure that both the contractor and
Govemment teanis are knowledgeable &bout and understand the rationale for all
software-related topics. At that time, none of the DOD policy standards had been
updated (this is still true today in many cases), and very few people on the
Government side understood their ramifications. The Army had taken a sound,
long-term view when it awarded this contract, but early into implementation, theI pressure of outside scrutiny began to erode that resolve. Coupled with limited
understanding of Ada and its software engineering ramifications, serious disconnects

A
Ada Imlplemenhttlon Guide 1-13

I

I
Lessons Learned I

began to develop between the contractor and the Army acquisition team (e.g.,
"where's the code" syndrome). I
Lesson 5: If the team develops a viable technical/management plan and remains
steadfast, requirements and design can be implemented correctly. Although it will take I
longer to begin writing the actual code, it will be worth ii because fewer design problems
will be encountered during test and integration. Some of the hardest work will be
associated with trying to handle the external nay sayers. I
Lesson 6: Report major problems up the line as encountered Magnavox and the
Army Program Office were never aggressive in promoting their initiatives. Had they
been, many of the external groups might not have felt compelled to investigate, and
more time would have been available to resolve the technical problems. Others can
benefit from lessons learned only if people are informed about them. Such publicity l
could have helped the AFATDS project and provided insight to other projects that
were beginning.

Lesson 7: Do not mistakenly blame software development for failure. Careful scrutiny
of many projects frequently shows that things other than software development are
responsible for failure For AFATDS, three formal General Accounting Office
(GAO) evaluations were performed and reported on during 1986-87:
GAO/NSIAD-86-184FS, GAO/NSIAD-86-212FS and GAO/NSIAD-87-198BR.
None of these reports identified Ada as a problem. Major impact items included the
reduction in scope due to budget constraints, the changing of requirements to
accommodate different equipment and software, and the Army's ability to manage
this activity.

1.2 AN! BSY-2
The AN/BSY-2 Submarine Combat System (SCS) is the suite of hardware, software
and equipment that will be used on the Department of the Navy's (DON's)
next-generation attack-class submarine, the SSN-21. General Dynamics Electric Boat
Division is building the first hull in this series, and the hull will be ready in 1994.

Lesson 1: When externally supplied schedule constraints exist, the level of planning and 3
execution analysis becomes much more critical This was especially true for BSY-2 due
to the estimated volume of software and separately defined hull completion dates.
The AN/flSY-2 software is being developed under DOD-STD-2167A in an effort 1
that has combined aspects of the Concept Evaluation, Demonstration and Validation
(D&V), and Full-Scale Development (FSD) phases of the life cycle. Commencing
in 1985, a draft set of DON-generated SCS requirements was used for the System
Design Definition (SDD) activity. Leading up to FSD and contract award, the two
successful bidders, IBM and General Electric, worked with the Navy Team to solidify 1

1-14 Department of the Navy

I

I
3 Lessons Leamed

requirements, develop design approaches, analyze ongoing prototyping efforts,
identify critical items, fine tune the FSD Statement of Work (SOW), and generate
three separate Source Lines of Code (SLOC) preliminary size estimates for the
AN/BSY-2 System.

The other lessons learned on AN/BSY-2 fall into six distinct categories: contract,
coordination, process, schedule, standards, and tools. Multiple lessons are presented
for each of these areas. Note that the lessons do not apply exclusively to an Ada
development and that they are presented randomly within each category (i.e., no3 attempt has been made to prioritize them).

Lesson 2: The greatest number of '7essons learned" are related to the contract
requirements. The SOW should require regular reports on the status of all
commercial products delivered as part of the system. This update should include
information such as vendor, version number, performance statistics, licensing
agreements, and plans for future modifications. In addition, when the same type of
documentation is to be produced by multiple developers, implementation of a
standardized style guide should be called out in the SOW. Furthermore, a provision
should be included to allow deliverables to be transmitted in an electronic format.
On systems that have classified information, installation and use of encrypted links
between developer sites should be mandatory.

I To ensure that requirements flow down adequately, the prime contractor should be
required to provide copies and/or updates of all subcontract agreements to the3 acquisition agency.

To be fully effective, software quality assurance should be totally independent and
organized to avoid a double chain of command (i.e., development program in the
place of corporate quality assurance).

3 Identification, reporting, and close monitoring of available metrics should begin early
in development. The level of detail should increase in tandem with advanced
development. Metrics should be analyzed thoroughly, and results should be3 incorporated into quarterly program assessments. Progress or regression relative to
the program plan baseline should be a key element in this assessment. Separate
analyses conducted by DON for comparison purposes produced additional benefits
for AN/BSY-2 when results of these analyses were shared with the developer.

To ensure that the metrics data received are comparable across all development
teams, a uniform SLOC counting methodology must be defined and followed.

Ada Implmentation Guide I-S

I

I

Lessons Learned I
Lesson 3: Coordination frequently receives the least attention although it is one of the
more important efforts. Early in the contract, direct lines of communication should I
be established among key participants: acquisition agency, developer, technical
agency, Independent Verification and Validation (IV&V) agency, quality personnel,
and Commercial-Off-The-Shelf (COTS) software vendors. Such "shortcut" I
communiques result in more efficient problem identification and resolution, which
have an overall positive effect on cost and schedule. 3
Informal networking among groups of like interest will increase the effectiveness of
each group. Regularly scheduled communication tends to short-circuit problems
while providing a broader perspective to participants. For example, AN/BSY-2 holds
a monthly user group meeting to discuss problems, workarounds, and successes with
the operating system. The vendor's active participation at these meetings has
increased responsiveness to and visibility of AN/BSY-2 needs.

The prime contractor should maintain tight control of subcontractor efforts through
weekly monitoring and quarterly audits. Furthermore, attendance at technical and
working group meetings should be mandatory for all team members.

Lesson 4: For large projects, it is mandatory that an adequately sized, qualified i
Technical Directive Authority (TDA) Oversight Group be established and function for
the duration of the project. Very early in development, the contractor should detail
each process proposed for use in the program. These processes should be defined
in approved, baselined documentation. (Data Item Descriptions [DIDs] need to
include more stringent, detailed guidelines.) Multidisciplinary contract agency
representatives should then closely review each process in software development and
in related areas (configuration management, quality assurance, test) for adequacy,
consistency, and completeness. Contractor modifications to these processes should
be presented during formal reviews and entered into the baseline document only
upon approval.

A streamlined waiver request process should be established for reporting proposed
contract deviations to language and/or contract requirements. Waiver packages
should be initiated every 6 months, depending on program size and life span. 3
A comprehensive Ada training program should be developed to address
application-specific requirements. This program should be capable of transitioning 3
seasoned engineers yet flexible enough to instruct entry-level programmers.

Ada methodologies (e.g., exception handling) should be defined early in i
development. Partial tasking should be considered as an alternative for reducing

D
I--1S Department ot the Navy

I

I
3 Lessons Learned

rendezvous time. Establishing global error models well in advance of detailed design
will result in a more robust system.

Ada guidelines and procedures should be established primarily by the program's
resident Ada experts. These lessons learned should be provided in an Ada style
guide as an appendix to the software Standards and Procedures Manual. For
example, compilation dependencies can be reduced and debugging smoothed by
avoiding subprogram nesting. This think tank of Ada experts should also be
convened to resolve complex, persistent, Ada design problems. For example,
enhancement of time-critical processes can be effected through expert application of
Rate Monotonic Scheduling techniques.

Lesson 5: Software development planning and monitoring must be done from the onset
of FSD and should take a phased approach (ie., 'build a little, test a little"). Ada
software development schedules should allow for longer requirements and design
phases and shorter test and integrat;on phases. The schedule should contain Critical
Design Reviews (CDRs) to corresp Jnd to the incrementally developed software. In
addition, testing should occur using manageably sized units at phased steps with3 explicit success criteria.

The delivery schedule for software plans, standards, and procedures should show
compressed early deliveries. Multiple early drops should accelerate establishment
of a baseline. These planning documents should be baselined and under formal
configuration control no later than close of the preliminary design phase. Conversely,
software requirements specifications should have fewer drops, a longer document
review cycle, and a baseline before preliminary design.

Product Readiness Reviews (PRRs) should be held early in development. These
reviews have a positive, cohesive effect and provide a close, systemwide look at
processes, products, personnel, and facilities. Implementation of an action item

Ssystem is key to PRR effectiveness.

The developer should identify critical-path software items (e.g., shared system
services). Close management of this process should ensure early delivery and test of
these functions.

3 Lesson 6: Even the best made plans require changes during execution. AN/BSY-2
used DOD-SID-2167A for software development guidance. The intent of this
standard, however, is to provide a software development superset from which
extraneous requirements can be eliminated. AN/BSY-2 staff carefully tailored this
standard, mindful that it is easier to provide relief from requirements than to "buy"3 them in later. The contracting office should remain open to negotiations on tailoring

Ada Impiementtlion Guide 1-17

I

I
Lessons Leamed n

DOD standards as phases unfold, technology advances, and/or lessons are learned.
As an example, support software documentation has been reduced from the full suite
to design notebooks and operator/maintenance manuals.

As part of tailoring the standards, a cross-check should be performed against the
SOW. Checking requirements in the SOW for potential ambiguities or even conflicts
within the military standards may avoid costly rework during later phases.

Lesson 7: For large efforts that are geographically disbursed, the goal should be to strive
for commonality of development environment, tools, procedures, and product stucture.
The contracting agency should require standardization of support tools across the I
program. Although the up-front cost is greater, long-term benefits gained from such
commonality make it a worthwhile investment. Use of common tools allows
problems to be identified and workarounds made only once and results entered into U
a shared electronic reporting system. In addition, data exchanges among
development teams are less time-consuming and more efficient, thus reducing the
risk of error.

For large projects, it is imperative that the configuration management system be
capable of supporting rapid turnaround during the integration and test phase. The
system should provide configuration management of all software support tools as well
as the development code. In addition, a version control process must be established
and enforced by the prime contractor for these tools.

A common database should be established to electronically track requirements down
through software requirements specifications and hardware unit specifications and,
later, into test. Use of this method will enhance traceability and ensure flowdown
of requirements. A common database also should be created to track connectivity
of software interfaces. Consistency checks should be run for early detection of
misaligned interfaces.

Commercial support tools may require modifications to handle large Ada I
developments, and non-Ada commercial code slated for incorporation into the
product may create interface and performance problems. Additional time and
resources should be factored into development plans to allow for these potential
stumbling blocks. (Computer resources also should be supplemented to account for
the increase in demand that traditionally occurs during Ada developments.)

Compiler benchmarks should be evaluated before compiler selection is finished.
(Compilation time should be factored in as an additional consideration.) The I
developer should know the weaknesses as well as the strengths of the Ada constructs
(link library sizes, nesting of generics, etc.) as used in the compiler and/or Ada

1-48 Department of the Navy

I

U
Lessons Learned

Programming Support Environment (Ada PSE). Binding approaches should be
established and benchmarked early in the development.

Use of an Ada standards checking tool is highly recommended. Using a standards
checker not only encourages production of high-quality code but also reduces
manpower efforts and enhances maintainability.

1.3 ADA LANGUAGE SYSTEM/NAVY
The Ada Language System/Navy (ALS/N) FSD program implements Ada for use
with DON's standard embedded computers: AN/UYK-43, AN/UYK-44 and the P31
AN/AYK-14. Since January 1989, DON has mandated the use of ALS/N as the
first-line support software consideration for the DON standard processors. Although
ALS/N is a support software effort, it also is a large software-based systems
development effort. The ALS/N development project has produced more than
1 million lines of Ada code that also support DOD-STD-2167A documentation.

I The DON Ada Standard Embedded Computer Resources (SECR) effort began in
the early 1980s and closely monitored the other Service efforts, such as the Army
Ada Language System (ALS) effort and the Air Force Ada Integrated Environment
(AIE) effort. The DON goals were to avoid reinventing the wheel and to maximize
the benefits of the Ada reuse/portability concepts for developing support software.
In 1984, DON opted to establish the baseline with the Army ALS and proceeded to
develop specific SECR-retargeted compilers and tools.

Lesson 1: For DON SECR applications, top priority must be given to the real-time
performance of the generated code. Performance requirements must be formally
specifed, and performance capabilities must be tested before product acceptance and
deployment. Due to the number and severity of the problems encountered, the Army
paid little attention to performance issues for the support environment and the
targeted real-time environment.

Lesson 2: Although actual software code production is only a relatively small portion
of the total life cycle, it is critical to have a reasonable level of performance within the
tool set At a minimum, the tool set must meet both pogrammer functional and CM
needs. The Army ALS tool set had been implemented in Ada but operated on the
VAX/VMS host environment through an additional layer called the Kernel Ada
Programming Support Environment (KAPSE). This arrangement made tool
performance unacceptably slow. The Navy, therefore, redirected the contractor to
eliminate the KAPSE requirement.

lAeson 3: Each development effort should be managed under the assumption that there
will be a fomal production delivery to DON and a separate DON-controlled

Ada Impeme1 on Guide I--1

I

Lessons Learned I
post-deployment phase. To ensure continuous development oversight, DON
laboratory personnel were provided to facilitate the transition to life-cycle support.i

Lesson 4: Requirements must be understood, and both formal and informal checks on
the progress to meet these goals must be conducted throughout development. More than I
15% of the budget was expended on an independent test team, an approach used by
the Air Force for its effort. This team performed TDA-type testing that included full
knowledge and understanding of the product internals. Concurrently, a separate U
IV&V agent performed "black box" testing to evaluate formally the specified
requirements. Expenditures for this support were approximately 5% of the total
budget.

Lesson 5: Because post-deployment support will be DON's responsibility, it is critical
to build an adequate in-house team that is thoroughly familiar with the product before I
acceptance. The ALS/N development has actively funded various Navy laboratories
(e.g., Naval Surface Weapons Center [NSWC], Naval Avionics Center [NAC], Naval
Undersea Command [NUSC], Naval Air Development Center [NADC], and Naval
Ocean Systems Center [NOSCI) to participate in the program and also involved the
Navy's life-cycle agent (i.e., Fleet Combat Direction System Support Activity
[FCDSSA], San Diego).

Lesson 6: Lack of fidi program funding commitment and support will have a negative
impact on development plans. Be prepared to either alter the course of and/or extend
delivery schedules. Always try to maintain the best possible product quality and
maximize life-cycle supportability within the program constraints. The vagaries of
year-to-year funding support tend to disrupt large undertakings that involve many
elements such as laboratories, prime contractors, subcontractors, IV&V, and
independent test organizations. All parties have to be motivated, good informal
communication mechanisms must be in place, and all development efforts must be
carried out according to an agreed-to plan that can accommodate a certain degree
of flexibility.

Lesson 7: Poducing a quality software-based product that meets its specified
requiements is a difflcult task ALS/N provides a software means to upgrade
deployed SECR processor-based systems indefinitely. ALS/N also can be considered
as the front-line consideration for new systems developments because DON has
100% ownership or change control rights. Many U.S. commercial companies provide
Ada compiler technology. Investment costs for those technologies that have been
commercially successful are consistent with DON expenditures for ALS/N. However,
few of these commercial Ada technologies specifically addressed real-time I
performance to the degree of AIS/N capabilities, which is required for
Mission-Critical Computer Resources (MCCR) applications. In fact, two out of every

1-20 Department of the Navy I
U

U
Lessons Learned

three DON dollars have been spent on DON standard Run-Time Environment
needs. The ALS/N FSD program has produced compilers and run-time operating
systems that will meet many of the performance requirements as specified.

Lesson 8: No product is truly exercised and tested until it reaches the target user
community. It is best to phase systems into deployment via beta testing and friendly
users before public release Currently, four DON Research and Development (R&D)
centers use ALS/N in a test and evaluation mode. The DON MCCR waiver process
now includes ALS/N consideration as part of the standard acquisition formula for
both new starts and upgrades.

1.4 AVIONICS PROJECT
The avionics project is a major system upgrade for an airborne Command, Control,
and Intelligence (CC&I) application that targets existing platform and potential
forward fit into next-generation aircraft. The upgrade is to improve acoustic and
nonacoustic processing capabilities as well as signal processing, detection and
classification, multistation integrated systems, data buses, and communications.

Lesson 1: Ensure that software production/cost modeling includes adequate time for
the requirements/degn phase before accepting externally generated completion dates.
The contract was awarded in July 1987 with a prototype scheduled for delivery in

I July 1990. An optimistic schedule of 1.2 million SLOC is projected.

Lesson 2: Be sure that requirements are fully defined and are traceable to test
mechanisms. Include necessary Government visibility into the process. Beware of
shortcuts and bad engineering practices, especially when there is a prime
contractor-subcontractor team organization. The Firm Fixed-Price (FFP) contract
included production options. The contract options were tied to calendar exercise
dates, without a requirement to demonstrate performance capabilities.

Lesson 3: Do not plan to use equipment that is under development unless absolutely
necessary. Apply a risk engineering approach to those items that must be used, place
items on critical path, and monitor them closely. The contract included the planned
use of "in-development" Government-Furnished Equipment (GFE) and Contractor-
Furnished Equipment (CFE).

Lesson 4: Always assume that everything could go wrong and perform full risk
gineering and managemenL

I Lesson 5: Use a hands-on management approach from both the prime and
Government perspectives and delineate clear lines of authority and responsibility for

U
iAda Implementation Guide 1-21

I

I

Lessons Learned I
contractual requirements, especially for large projects. In addition, do not take a
hands-off approach to subcontractor management. I
Lesson 6: Specify in the contract requirements that capabilities must be established
early, with adequate resources and authority. Closely monitor progress. A plan must be I
developed for handling distributed development environments/deliverables
exchanges. Such planning must have been contractually required and completed, and
it must receive some degree of Government approval/monitoring before the program U
is executed. A "sell off' from a subcontractor to the prime contractor must address
all contingencies when the prime contractor-to-DON delivery requires changes,
retesting or documentation, and the like. Configuration management and quality l
assurance should be standardized and coordinated across the whole effort. Formal,
standardized software development procedures should be specified in the contract
and approved before being implemented. Lack of such formal, standardized m
procedures cannot be condoned, especially across larger projects. The procedures
should be monitored to ensure that the documented process is being implemented. m

Lesson 7: Do not disregard the critical elements of the Military Standards (MIL-STDs)
unless it is technically and managerially necessary to use alternative means. Develop a
systemwide integration plan and follow it. During the development of the avionics
project plan, a systemwide integration plan was not developed.

Lesson 8: Ensure that the schedule can accommodate slack and the possibility of DON
independent test time for interim products. Also ensure that the resources are available
to support regression testing. The avionics schedule contains no plan for slack or for
resources to support regression testing.

Lesson 9: Do not disregard critical MIL-STD interim products in the contract
requirement, and adequately plan for and execute the Government's role to ensure I
quality and delivery. Mutually agreed-to criteria for major milestones must be met,
or action item work plans must be created for unmet criteria.

Lesson 10: Ensure that adequate development support facilities exist. Existence of these
facilides should be contractualy specified and monitored during the PRR process. 3
Contingency plans should be available when and if problems develop. Inadequate
facility estimates, combined with no forward-looking projection analysis and
unavailability of contingency plans, resulted in severe problems as the interim
product grew in size.

Lesson 11: Do not let external schedule events drive the program. Develop input and
output critena for major milestones and adhere to them. It is very easy to build the

I
I-2Department of the Navy!

I
mm m III

I

Lessons Lamed

wrong software During the avionics project, time spent in the requirements/design
phase was insufficient to mature the software baseline.

Lesson 12: Where possible, use realproduction hardware and/or commercialprototypes
to decrease the amount and scope of simulation. The simulator software must be
treated as critical-path material if it is to be used during development. Simulator
software also should be documented as operational software because it will be critical
when mission requirements are being tested. (For example, the system may function
in a simulator environment but fail in the real world.)

Lesson 13: When system requirements are not met and "as built" systems are approved,
the contractor is no longer responsible for fixing the system. The system should not be
approved until requirements are met. Design information should not be placed in
Software Requirements Specifications (SRSs) and Interface Requirements
Specifications (IRSs).

1.5 PEO-SSAS, PMS-414, SEA LANCE
The SEA LANCE Anti-Submarine Warfare Standoff Weapon (ASWSOW) was being
developed to provide Vertical Launching System surface combatants and nuclear
power attack submarines with a standoff-range missile for use against hostile
submarines. Before partial program termination in December 1989, the program was
in FSD.

The SEA LANCE is a long-range Anti-Submarine Warfare (ASW) missile system
developed to complement ship-launched torpedoes and helicopter-borne weapons by
providing a quick-kill opportunity at long ranges. The SEA LANCE also can be
launched in a buoyant protective capsule that floats to the surface from a submarine
torpedo tube. The tactical missile employs seven embedded processors for providing
guidance, navigation, and flight control functions. These tactical processors are the
Guidance Electronics Unit (GEU), which uses a Motorola 68020/68881 processor;
the Inertial Measurement Unit (IMU), which uses a Zilog Z8002 processor; the Pulse
Driver Unit (PDU), which uses an INTEL 8797 processor; and four Fin Actuator
Units (FAUs) each of which uses an INTEL 8797 processor. Software has been
developed under the guidelines of DOD-STD-1679 for each of these subsystems, the
most extensive development effort being for the Guidance, Navigation, and Control
Program (GNCP) in the GEU.

SEA LANCE system software consists of the embedded GNCP; three embedded
small systems software programs (IMU, PDU, FAU); two embedded
instrumentation/flight termination system programs; and missile test set, support,
simulation, and adaptor/interface electronics software. Ada was used as the Program
Design langWage (PDL) and the high-order implementation language only for the

Ada Impheatlon Guide I-23

I

U

Lessons Learned I
development of the GNCP. The following languages were used in all of the other
SEA LANCE software development efforts: IMU-Z8000 Assembly; PDU-PL/M I
96; FAU-PL/M 96; Arm and Control Unit-PL/M 96; Instrumentation Data
Unit--68020 Assembly; missile test set software-Pascal; support software-Pascal,
FORTRAN, and Assembly; simulation software-FORTRAN and specialized U
languages. All discussion and lessons learned are concerned only with the GNCP.

The GNCP is a digital computer program totally contained in nonvolatile memory, I
which resides in the missile's GEU. It consists of approximately 20,000 SLOC
(100,000 Physical SLOC). The GNCP was being developed in accordance with the
guidelines of DOD-STD-1679 using the VERDIX Ada Development System i
(VADS). Before program termination, the GNCP had successfully passed through
program milestones such as Preliminary Design Review (PDR) in August 1984, a
Delta-PDR in February 1988, an In-Process Review (IPR) in March 1989, and U
numerous Technical Interchanges between 1983 and 1989. Draft versions of a test
specification, test plan, and test procedures were developed in parallel to the design.
The GNCP was developed, tested, and integrated at the module and system level in
the contractor's Computer Program Development Laboratory (CPDL), Operational
Mock-Up (OMU) Laboratory, and System Integration Laboratory (SIL).
Performance and most preflight testing of the GNCP was done in the SIL to fully
exercise each function specified by the performance specification. The GNCP guided
the test missiles along two near-perfect trajectories in the only two SEA LANCE •
Contractor Test and Evaluation flight tests in February 1990.

Because the GNCP had not yet reached CDR at the time of program termination,
DON never approved or accepted it. As part of the partial termination efforts, the
GNCP design of record was documented in accordance with DON direction and
archived.

As part of the partial termination efforts, a DON/Boeing study is in process. This
study shows the impact of switching to the newer defense software development
standards (DOD-STD-2167A and DOD-STD-2168. The study is being conducted
in accordance with the guidelines of Military Handbook (MIL-HDBK)-287.

Lesson 1: Use a consistent methodolo throughout the program requirements, design,
and codbg phases to facilitate tracing quirements to the code SEA LANCE used a
functional decomposition method in developing the requirement specifications, then
used an Object-Oriented Design (OOD) methodology when developing the design
specification and the code. The two methods had to be combined. Because SEA

I
I--44 Department IfteNv

I

U

I Lessons Learned

LANCE was a fire-and-forget weapon, the traceability of every performance
requirement was considered extremely important. Use of two design methods made
it difficult to trace the requirements from the Performance Specification into the
Design Specification and then into the code itself.

Lesson 2: Use a common PDL across the project. On medium to large-scale systems,
the PDL will contain a wide variety of differing coding techniques and code fragments.
SEA LANCE used Ada as its PDL It was learned that when using Ada as a PDL
the software development and uniform coding standards should be enforced on the
PDL as well as the actual Ada code.

Lesson 3: Include and enforce a requirement for a minimum ratio of 50/50
comments-to-code in the contract, software development plan, or coding guide
Although Ada is more readable than many other languages, it still requires a liberal
use of comments to describe what is going on and why. Generally, Government code
reviewers needed more review time)ecause of the lack of comments.

Lesson 4: Use an automated format utility or equivalent software tool to ensure uniform
code appearance. This can be imposed through either quality assurance or configuration
management. The SEA LANCE contractor did not always use a printer format utility
or other automated tools to ensure uniform appearance of the code. As a result,
many Ada specifications and bodies had a unique appearance, depending upon the
individual coder.

Lesson 5: Develop a style guideline for the Ada code and PDL before doing any design
work. The SEA LANCE contractor developed most of the PDL without a formalized
Ada coding guideline. The result was a PDL that sometimes differed from module
to module in appearance, style, and coding format.

Lesson 6: Use software metrics from the beginning and define basic terminology
between Ada and the selected software development standard The minimal use of
software metric tools and the defining of basic terms in the early development
process gave rise to conflicts between the contractor and the Government as to whatIconstituted a module, a line of code, or the difference between a PDL line of code
and an operational line of code.

I Lesson 7: Hammer out documentation requirements and licensing agreements between
the Government and the contractors regarding the use of third-party software and the
way it s to be tested and identified. The SEA LANCE contractor employed a
proprietary third-party Ada Run Time Executive, and the Government had trouble
obtaining documentation on the inner workings and testing of the Run Time
Executive software.

Ada Impe menla Guide

I

Lessons Leamed I
Lesson 8: Early in the development process, have the contractor provide a detailed list
of tools that will be used in the development process for the PDL/code and specify the I
format that will be used for transfer of source code, executable code, and software
documentation to the Government. (Note that DOD-STD-1679 did not require a
Computer Resource Integrated Software Document [CRISD].) The Government had I
some difficulty finding compatible computers to load in contractor-transferred
software listings. It also proved difficult to identify the exact format of software
deliverables and the exact configurations of the contractor-used development tools.

1.6 NAVY WORLD WIDE MILITARY COMMAND AND CONTROL SYSTEM
(WWMCCS) SITE-UNIQUE SOFTWARE (NWSUS) PROJECT MISSION

Lesson 1: It is always safer to build and test incrementally. Space and Naval Warfare
Systems Command (SPAWAR) PMW 161-5 is responsible for modernizing eight I
existing site-unique COBOL 1968 applications with approximately 300K of Ada
source code on the NWSUS project. These applications are operational on the
WWMCCS Honeywell DPS8 mainframe and are being reengineered using Ada OOD I
with DOD-STD-2167A because Honeywell is phasing out maintenance of COBOL
1968. This is within the WWMCCS Automatic Data Processing (ADP)
Modernization (WAM) Program. The NWSUS project, which is divided into three I
increments, is in the 3d year of a 5-year effort. The first increment consists of six
smaller applications with the larger applications in the later increments.

Lesson 2: Panning for and designing in reuse yield long-term benefit The project is
in accordance with DOD-STD-2167A/2168 tailored for OOD. The existing COBOL
applications are used to capture requirements. Development is performed on a
Rational R-1000 model 40 with Honeywell DPS8 and IBM PC/XT clones as targets.
With one exception, the applications are management information systems (MISs),
and the development makes extensive use of a common set of reuse components.

Lesson 3: For large software undertakings, use of automated tools is mandatory. The
2167A documentation is being developed on the Rational, and a Computer-Aided
Software Engineering (CASE) tool has been developed to validate the completeness
and consistency of the requirements, design, object/class specifications, and Ada
specifications. Two "4GL-like" productivity tools, used in conjunction with the reuse
components to create application screens and reports, are used for rapid prototyping
and to support the generation and standardization of the user interface.

Lesson 4: Until the design baseline has been approved and frozen, it is inadvisable to
initiate fi-blown coding. An initial CDR was completed for Increment 1 in April
1990, and a second CDR to review redesign caused by a change of target is being
conducted this spring. Development of many of the reuse components has been

I-6Department of the Navy

I

I
Lessons Learned

completed, and an operational prototype of one of the applications will be completed
by CDR. Full development of the Increment 1 configuration items has begun and
is scheduled for completion in FY 1992.

A full Object-Oriented Requirements Analysis (OORA) and specification for the
Increment 2 configuration items were completed at the System Design Review
(SDR), which was very successful. Both the site customer and SPAWAR commented
on the effectiveness of OORA. The CDR occurred in October 1991.

Lesson 5: If a risk engineering approach (Le., awareness, identification, technical
management of alternative solutions) is taken to development, then it is possible to
undertake technologically challenging developments. Conventional wisdom has it that
a project with a new application area, a new programming language, or new
personnel will have trouble. NWSUS had all three; consequently, the project has had
its share of problems. The problems spanned development methodology and
standards, target development environment (both Ada compiler problems and
problems with the compiler/operating system bindings), Ada training and startup,
software reuse, contract structure, and management. However, NWSUS has
managed to survive these problems and is currently in a productive mode.

The following lists some of the problems encountered and their solutions or3workarounds.
Problem Resolution

I Ada compiler was unavailable for The Rational was selected as the host
Honeywell DPS8, and WWMCCS development environment for all
Information System (WIS) applications. Testing is first done on
Workstation target was unavailable at the Rational and then on the target.
contract start.

Functional analysis was required for The functional analysis approach did
the first increment. not work out well. Full object-3 oriented analysis was used for the

second increment, and that approach
has been very beneficial.

I
I

Ad huleenino Guide 1-2

I

Lessons Loomed I

Contract assumed that all The contract structure was modified
configuration items were the same, to reflect the diversity of the
and a hard split between design and configuration items and the R&D
code hindered Ada OOD. nature of the project and to allow an

efficient mechanism for reuse
components and prototyping. I

Contract and management of reuse An internal approach was used to
between applications initially was support reuse on a level-of-effort
weak and/or missing. Work Breakdown Structure (WBS). U

DON recognized the need in thecontract update.

DPS8 Ada compiler was not mature The workstation target was changed
and late; the WIS Workstation was to a personal computer (PC).
canceled. Redesign is under way for the new I

target and the problems encounteredwith the DPS8 Ada compiler.

Initial training was affected by the Initial training was too compressed
"3-week syndrome." and not project specific. NWSUS

now uses a part-time, 2-month, I
in-house training seminar with a "lab
session" that uses project deliverables.

OOD proved to be labor intensive Ada OOD proved to be a very
during the first increment. effective development approach

because it gives much more visibility I
and control of the analysis and
design. The downside is that this
requires much more effort. We
found no available CASE tools that
supported it, and too much had to be
done manually. The validation
process was automated for the
second increment.

o
I

I-SDepen t Of the Navi

I

I
5 Lessons Leamed

1.7 EVENT-DRIVEN LANGUAGE/COBOL-TO-Ada CONVERSION PROGRAM
From 1987 to 1989, the Marine Corps replaced its aging inventory of ruggedized IBM
Series-1 minicomputers with hardened IBM-compatible microcomputers. The

Itransition required that all of the systems originally programmed for execution on the
Series-1 be ported to the microcomputer. Approximately 25 systems were written in
Event-Driven Language (EDL) or COBOL At about the same time, Ada was
introduced as the standard programming language for DOD. The close proximity of
the two events provided the Marine Corps with an opportunity to gain valuable
expertise in the new DOD standard programming language through reverse
engineering of well-known systems. At the time, the Marine Corps had no organic
Ada programmers and no expertise in its associated design methodologies.

I The reprogramming effort was divided among three Marine Corps Central Design
Programming Activities (CDPAs) along functional boundaries. In the process of the
reprogramming effort, the Marine Corps learned several lessons.

Lesson 1: Training is essential for both technical and management personneL To take
full advantage of Ada, designer/analysts must be familiar with the principles ofI software engineering and the way Ada supports those principles. Because few
Marines had knowledge of Ada design methodologies at the outset, the tendency was
to recode the original system designs in Ada. The original system designs were often
derived directly from the existing EDL/COBOL code. Because neither of those
languages contains all of the Ada constructs, the advantages of Ada did not always5 materialize.

Lesson 2: Prvummers require 4 to 9 months of training before they become profiient.
It takes 4 to 9 months of formal and on-the-job training before a programmer
becomes proficient in Ada. However, after that initial training period, the
programmer should be capable of producing code very rapidly when given a good3 design and programming library.

Lesson 3: Military transfers often result in a loss of investment in Ada training.
Because proficiency in Ada can take as much as 9 months to attain, a newly trained
programmer is productive only for a portion of his or her tour. Unless steps are
taken to ensure reassignment to another Ada shop, the training investment is likelySto be lost.

Lesson 4: Systems originaly writen in lanuages that predate Ada that must be
converted to Ada should be redesigne4 not translated After the first few projects, it
was evident that inefficiencies in the original designs were being duplicated in theAda translations.

Ad Implemeation Guide

I

I

Lessons Learned I
Lesson 5: Ada facilitates reuse. During the conversion effort and on subsequent
projects, the Marine Corps found that on an average project, only 45% of the code I
had to be written from scratch; the other 55% came from reuse. Reusable code
generally came from previous projects and development tools (e.g., AdaSAGE). In
recent projects, the Marine Corps has consulted Ada software repositories for I
reusable code in an effort to reduce development time and effort wherever possible.

Lesson 6: Ada lends itself to efficient code and high programmer productivity. The
syntactical structure of Ada helped the Marine Corps implement many of the
software engineering principles. Modularity, information hiding, localization, and
abstraction were easily implemented.

Lesson 7: Development tools are essential. Initially, lack of a good tool kit hindered
the conversion effort. In-house tools were built to overcome Ada file limitations and $
to enhance screen management. Shortly thereafter, the Marine Corps funded the
development of AdaSAGE, which reduced development time by as much as 50%. l

Lesson 8: Development and maintenance time can be significantly reduced by applying
software engineering principles and capitalizing on reuse. The Marine Corps estimates
that from 15% to 60% reduction in development and maintenance time are being I
achieved when software engineering principles and reuse are applied.

1.8 SHIPBOARD GRIDLOCK SYSTEM WITH AUTO-CORRELATION 1
The Shipboard Gridlock System with Auto-Correlation (SGS/AC) application plays
a fundamental role in the coordination of multiplatform shipboard systems by
processing own-ship and remote track data within a common positional frame of
reference. This application performs gridlock processing to correct for sensor and
navigational errors while correlating the identified tracks from remote systems. This
software-based application is characterized by hard deadlines; multiple external
interfaces; and time-critical, computationally intensive processing. The SGS/AC is
deployed on the Aegis cruiser/destroyer class of surface ships. I

Lesson 1: "Fly before you buy." Before committing to large project, the methods and
tools to be used should be erenised Quantitative evaluation of the expended resources i
should ad to better estimates for the work contemplateL This project is being
performed by the Naval Surface Warfare Center (NAVSWC). It can be
characterized as a D&V development effort that parallels the SGS/AC program 3
implemented in Compiler Monitor System-2 (CMS-2) for either the AN/UYK-20 or
the AN/UYK-44 target processors. This parallel effort uses ALS/N as the host
development tool set and targets an AN/UYK-44 processor configuration. An I
additional objective of the effort is to generate a comprehensive comparative analysis

o
iaDepartment of the Nlavy

ia

I

I Lesson Learned

of the CMS-2 and Ada developments that includes quantitative data and information
pertinent to future Aegis-class combat direction system upgrades.

Lesson 2: The Ada code itself will have major architectural and design impact on aIsystem; therefore, the two must be worked on simultaneously. From the outset, it was
recognized that to simply translate CMS-2 code to Ada would be technically feasible
but would not produce any long-term benefit.

Lesson 3: A project should always try to build a little and test a little, building and
testing the harder things first (eg., system services and communications). The newIdesign effort attempted to minimize the run-time overhead, include portability in the
design, manage interfaces to get best-case response under worst-case loads, and3 maximize robustness and predictability. A multiphased build plan was initiated.

Lesson 4: A project should always attempt to involve the production hardware as early
in the program asfeasible. Successful simulator and emulator runs mean nothing when
the delivered code does not work on the real hardware Acceptance requirements must
be set correctly, or development schedule reserve must be allocated to absorb such
diffculty. Things will go wrong and this should be anticipated All development is
being carried out on VAXs, with DEC Ada being used during the early code and test
phases. The target AN/UYK-44 processor requires special cards to run the Ada
code. The particular configuration was unavailable until well into the project.

Lesson 5: The team must be well trained in the use of the supplied tools, and the tools
must work as advenised The ability to fully define a working set of integrated tools
early in development and to acquire them as they are needed is critical. For
example, a symbolic debugger is an absolute necessity.

Lesson 6: Adherence to good engineeing practices is necessary when designing the
system and its hardware and software. Although this project is a relatively small
software undertaking, establishing and enforcing sound software design methodology
and development processes, such as coding standards, documentation production, and
code reviews, help overcome lapses in memory, personnel turnover, lack of focus, and
lack of requirements to trace verified design/code.

Lesson 7: Until more technological progress is achieve4 the potential for lage-scale
software component reuse is imited This project has shown that achieving real-time
developments requires meeting hard deadlines and getting close to the target5 machine, which often conflicts with the concept of code component reuse.

I
g d nlnnm!nG~e13

Lessons Learned i
1.9 COMBAT CONTROL SYSTEM MK2
The Submarine Combat Control System (SCCS) Program focuses on consolidating !
the various Combat Control and Defensive Weapon Systems (DWSs) software
configurations that are in use on deployed SSN-688 and SSN-726 class submarines.
These vessels constitute both the defensive (attack) and strategic platforms for the i
DON submarine force. The SCCS upgrade will either upgrade or replace obsolete
general-purpose computers, peripherals, display consoles, and weapons simulators.
This software upgrade provides a common software package for both classes of I
submarine and incorporates operational and maintenance-related enhancements.
The SCCS Program also includes the development of systems to support crew
training and land-based testing.

The software for the SCCS consists of new development software and firmware,
modified Government-Furnished Software (GFS) and firmware, and unmodified i
commercial software and firmware.

Most of the modified GFS software has been written in either DON standard CMS-2 £
HOL or the ULTRA-32 Assembler. The project mission is to develop a maintenance
capability that improves the chances for coordinating evolutionary change in these
shipboard systems.

The new portion of the CCS MK2 program involves integrating a replacement
man-machine interface display console and associated Ada application software into
the existing deployed systems. The approximate language mix is as follows:

Language SLOC I
CMS-2 & ULTRA-32 2M (GFS/Modified)
Ada 581K (new)
C 279K (commercial)
FORTRAN 149K (retained)

The Ada SLOC are being developed under DOD-STD-2167A requirements. The -

CMS-2, FORTRAN, and ULTRA-32 software were all developed under DOD-STD-
1679A. 3
The paragraphs below summarize the lessons learned about Ada on this project.

Lesson 1: Ada cpeienc and trining are needeA The majority of experienced
personnel in this defense area had little or no experience with Ada and modern
software engineering practices. It was necessary to evaluate bidders on their in-place I
Ada expertise and on their ability and/or plans to acquire or build on that base. To
properly monitor or manage the development, in-house capabilities had to be built

-Department of the Navy 1

I

I
3 Lessons Learned

up in these areas. It is especially important to use hands-on training as close to
development as possible or during development.

The relative immaturity of candidate Ada products, coupled with the specific need
to handle many foreign language interfacing requirements, meant that the developer
team needed a very close relationship with their candidate Ada development toolgsuppliers.
Lesson 2: Support software, practices, and products need constant attention. This
undertaking required that the chosen contractor be capable of using automated tools
to manage and technically execute this large programming development. To that
end, source selection criteria were established and used during the source selection3 process.

Each project has to generate its own Computer Resources Life-Cycle Management
Plan (CRLCMP) and Integrated Logistic Support Plan (ILSP) before the Defense
Acquisition Board (DAB) Milestone I. However, unless the Government defines the
total development environment fully and requires its use as part of the proposal,
difficulty will ensue as differences develop between the methodology, tools, and'I equipment used by the developer and those specified by the Program Office.
Typically, the parties involved will have opposing agendas. Coupled with the inability
of many tools to scale up to programming in the large or even to exchange data
structures efficiently, this diversity will create problems that all parties will need to
address and work out on a continuing basis. Examples of areas where this problem
resolution may be required include tool standardization; data exchange; version
management; electronic communication; data rights; documentation uniformity;
configuration management; error identification, analysis, and elimination; product

i ownership; component integration; and testing.

Lesson 3: The need to inteface with other language programns may constrain the type
of Adafeatures that can be used The Ada language design run-time concept does not
map directly to the hard real-time environment within the MK2 system. Therefore,
attempts must be made to overlay the Ada model on top of the inherited real-time5operating system, which has necessitated eliminating certain Ada features (e.g.,
tasking). Other Ada features not used include generics, dynamic allocation, and
full-range data typing. Performance also has suffered, and portability has been
minimized. The need to interface with other language programs may result in a lossintoffthe deuin tessg
of the advantages of strong Ada typing and may affect debugging, testing,
certification, and the like.

Lesson 4: To ensure programmg unifomity, a style guide should be developed and5 used acmus al developer teams. Use of a common style guide will enhance overall

Ads hVWle -as GW W

I
Lessons Learned I

maintainability of developed code. It also will help control Ada feature utilization,
and the code can be automatically checked by applying a pre-process tool. The use
of a "pretty printer" post-processing mechanism for human-readable outputs could
also enhance software maintainability.

1.10 P-3C UPDATE IV Ada DEVELOPMENT
The objective of the P-3C UPDATE IV Program is to develop a fully integrated,
distributive bus, data processing system with improved mission avionics systems. The I
full weapon system is to be tailored for both retrofit into P-3C predecessor aircraft
and forward fit into successor Maritime Patrol Aircraft. The program successfully
progressed through the D&V phase between November 1984 and April 1987. After I
the Milestone H decision in July 1987, Boeing was awarded an FFP contract for FSD
to develop, fabricate, qualify vendors, install the system into a P-3C platform, and
conduct vendor flight tests by July 1990. The schedule called for Government testing I
of the flying test bed between July 1990 and February 1992 with subsequent approval
for full production to be granted in April 1992. 3
The program includes the distributive bus data processing Distributed
Processor/Display Generator Unit (DP/DGU) system, which consists of six
Motorola 68020-based processor modules/DGUs tied together via a dual 1553B bus
architecture. Major mission systems avionics include the AN/UYS-2 acoustic
processor, the Motorola 68020 based AN/ALR-66(V) 5 Electronic Support Measures
(ESM) system, and the AN/APS-137 (V) 3 Inverse Synthetic Aperture Radar. The
data processing system and ESM are CFE, and the acoustic processor and the radarare GFE. I

The program has been delayed by both hardware and software development
difficulties. The current schedule calls for Boeing to deliver the flying test bed to the
Government between October 1992 and February 1993.

As one of the first large Ada developments (over 1 million SLOC), the P-3C
Update IV program has been a pioneer in the use of Ada. Boeing personnel have
made several correct choices in developing software in a new programming language
for which the software development environment was immature or limited. First,
Boeing's choice of using the VERDIX VADS was a good one. VERDIX has been
a leader in the development of Ada software engineering tools, and VADS was one
of the best Ada software development environments available at the time of program 3
initiation. Equally good was the choice of the Ready Systems kernel as the core for
the operating system. Finally, Boeigs naming convention for Top Level and Lower
Level Computer Software Components (T.CSCs/LCSCs), packages, units, and 1
identifiers has also been beneficial. The naming convention has been very useful in

I
~-34Deprtmet o theNav

I

I
SLessons Learned

tracing requirements to design and code and is helpful when reading the PDL and
computer source code.

The paragraphs below summarize the lessons learned about Ada use in this program.

Lesson 1: The Ada code requires more up-front time and effort, and the learning curve
is slower. The software size and development schedule estimates were understated
by all parties during the initial phase of the program. The table below lists SLOC
estimates at program initiation, at completion of PDR, and in August, 1991.

£ Computer Best and Final June 1988 August 1991
Software Offer (BAFO)

"Configuration (April 1987)
Item (CSCI)

5 DP/DGU 383,530 468,654 565,431

Minimum Mode 0 37,900 52,764
Software (MMS)

Electronic Support 52,340 58,000 55,516
Measure (ESM)

i Acoustic Interface 68,900 68,900 97,371

Unit (All)

5 AN/UYS-2 37,320 38,000 147,500

System Avionics 218,600 172,870 211,766
Integraton

Laboratory (SAIL)

Integration Test 5,000 96,900 109,359
Software (rms)

Software 37,500 45,500 62800

Laboratory (SDL)

Deelpe Code
Only)

TOTAL 803190 9K724 1,%57

Ad@ IMpunt lon Gude s
I

I

Lessons Learned I
The final SLOC total should exceed August 1990 estimates by over 10% before
completion of software development. The initial sizing estimates will be in error by U
approximately 100% at program completion.

The Boeing estimates for the software development schedule were predicated on 3
available non-Ada HOL usage. Individual task estimates were too short and did not
anticipate the increased up-front work in Ada design and coding that was needed.
This fact and a slower than anticipated learning curve for coders resulted in a m
realized progress rate of 85% of plan for coding, test, and integration activities.

Lesson 2: Increased facilities and memory are required to accommodate Ada code. I
The physical number of hardware tools was initially insufficient to support a software
development of this magnitude. This lack of hardware capacity was experienced in
all areas of the software development environment, from the SUN workstations used I
during initial code and testing to the SAIL used for system integration. More SUN
workstations were needed to avoid bottlenecks in coding, both in the SDL and at the
subvendor locations involved in tactics and correlation programming efforts. The
Boeing SDL grew from two SUN 3/280 server stations with 33 SUN client
workstations in the fall of 1987 to five SUN 3/280 server stations with 45 SUN client
workstations in the fall of 1990.

The SDL mainframes used for the target hardware software build process could not
construct a software build in an acceptable period. Initial software program builds
took up to 1 week to compile and link. The SDL initially contained one
VAX 11/785, one VAX 11/750, and two VAX 8700s. To accommodate the software
development demands, the SDL was upgraded by the fall of 1990 to include one
VAX 11/785, one VAX 11/750, two VAX 6000/440s, and one VAX 8600. Disk
storage capacity was also increased to approximately 40 gigabytes. This increase in
hardware capacity has reduced system build time to approximately 8 hours.

Initial plans called for target integration to be conducted on a single SAIL that
contained as much actual UPDATE IV hardware as possible, including the full
DP/DGU system. A DON SAIL was held at Boeing instead of being delivered to
DON to accommodate the integration overload impact on the Boeing SAIL I
Lesson 3: Some software development tool are immature and have not been proven
for many applicaion Immaturity and/or unavailability of software development
tools also complicated early software development efforts. A comprehensive Ada
support environment was unavailable for early development work. Available tools
were immature and were not integrated into a comprehensive package. In addition, I
available tools were very resource intensive, which exacerbated the previously
mentioned hardware problems. n

I-asDepartment of the Navy

I

I
3 Lessons Learned

The SUN workstation software build installations initially required 1 week and
contained numerous errors because of excessive operator intervention. Upgraded
SUN station software and software tool/automation development resulted in eventual
turnaround times of 1 day. Error reduction was excellent as a result of the
automated tools.

The initial SDL VAX systems were plagued with software and hardware faults, which
resulted in numerous system crashes and an average down-time of 1/2 day per week.
By applying pressure to Digital Equipment Corporation, fixes were put in place over3 a period of 1 year, which resulted in mature, stable system performance.

The VERDIX compiler was selected for use after screening available compilers by
the procedures recommended in 1987. However, numerous early software and
hardware errors were encountered before stable performance was achieved. As late
as January 1991, the VERDIX Ada compiler with the version 6.0 program was found
to have an optimizer error. After the compiler is corrected, the UPDATE IV
program will require a total recompile to remove inefficiencies scattered throughout.

Lesson 4: Tailoring of DOD software development standards must be addressed to
accommodate Ada-unique capabilities. Although DOD-STD-2167A does not require
that software development efforts follow the traditional waterfall model associated
with DOD software developments, it does not provide guidance on alternatives. Ada
forces more detailed design earlier in the software developments than do previous
languages because of the Ada package specifications and the strong data types
imposed by Ada. These factors encourage a pseudo "rapid prototyping" approach
rather than the traditional waterfall during the design phase&

3 DOD-STD-2167A does not address distributed processor systems or multiple
configuration item developments. Ada was designed specifically for a modular
approach to large software developments. For example, DOD-STD-2167A does not
adequately address testing between multiple configuration items or the integration
phase issues. DOD-STD-2167A documentation neither reflects Ada terminology or
structure nor addresses an appropriate approach to documentation development.

Lesson 5: Although the adoption of Ada was envisioned to enhance the software
developmentprocess, use ofAda does not guanwtee sound software engineeringpractice.
Specific areas where Ada does not substitute for sound engineering practices include:

Establishment of system and software requirements-A requirements analysis
phase must be conducted to produce appropriate system-level requirements
that are then allocated to hardware/software as appropriate. Participation by

I
ifAahpuelmoiGieI3

I

Lessons Learned I
both contractor and Government system engineering personnel throughout this
evolution is critical to program success.

Enforcement of control points-The contract must require and the Government
must enforce a variety of control points. These control points must take into I
account Ada-unique development approaches where the approach differs from
the traditional DOD-STD-2167A waterfall model. Allowing the contractor to
proceed past these control points, even if he does so "at risk," imposes I
significant risk on successful program completion.

" Configuration management-Use of Ada does not preclude Government i
requirements for establishing and controlling the functional, allocated, and
product baselines. Use of Ada may complicate control of the software
allocated baseline by inviting inclusion of design detail into the software I
requirements documents. Although Ada forces more detailed design earlier
in the software development process, the temptation to include this detail into
the software allocated baseline must be avoided.

* Testing-The mapping of Ada constructs to DOD-STD-2167A "units,"
"modules," and "system" is imprecise and can lead to inadequate testing of Ada
code. The DOD-STD-2167A premise of fully qualifying a software entity at
one level of abstraction before combining that entity into larger integrated
components should be maintained. A software entity should not be considered
fully qualified solely because the higher level entity into which it is
incorporated successfully passes its qualification requirements. I

Lesson 6: Strict conflguration management and control are required to enforce
discipline to counter complex*-induced confuiion. Lack of familiarity with Ada, a
slow learning curve for new coders, and schedule delays re-emphasize the absolute
requirement to maintain strict software and hardware control within all facilities.
With differing levels of coding, unit and package testing, informal integration testing, I
and formal systems testing occurring in the respective facilities, strict configuration
management within the facilities and within the software development library was
mandated. Initial SDFs were audited by the Government and found deficient.5
Replication of numerous informal tests could not be accomplished f'rom the SDFs,
as written.

LII STANDARD FINANCIAL SYSTEM REDESIGN
The Standard Financial System (STANFINS) is part of the total U.S. Army
accounting system and serves as a field-level system for general funds servicing posts, I
camps, and stations. The original STANFINS was a batch processing system written

I

I

I

Lessons Learned

in COBOL A STANFINS Redesign project (STANFINS-R) was undertaken toIoverhaul the system and make it interactive.

STANFINS-R consists of two subsystems-Subsystems I and II-to be developed
independently. This large system is designed to handle mainstream accounting
applications such as the general ledger, accounts receivable, fixed assets, and cost
accounting standards. The system consists of 500 programs with approximately
2 million lines of code, and it generates 147 reports. The contract for developing
Subsystem H, which originally was viewed as a large COBOL project, was awarded
to the Computer Sciences Corporation (CSC) in the fall of 1986. However, the
contract was modified in the spring of 1988, and Ada was designated as the
development language. The first pilot teams were formed in the spring of 1988, and
the actual writing of code and Ada bindings began in the fall of 1988. Software
development testing and software qualification testing started in the summer and fall
of 1989, respectively. Most of the system tests have been completed, and part of the5 project is operational.

The project was developed in an automated program support environment composed
of six Rational R-1000 machines. The code was eventually ported to the target
environment, an IBM mainframe running OS/VMS.

Despite delays in the implementation schedule and budget overruns, the
STANFINS-R project indicates that there are several advantages to using Ada in
information systems development. For example, programmer productivity has been
quite high (594 lines of code per staff month), almost double that of typical COBOL
projects, and the quality of the software, as evidenced by the test results, appears to
be uniformly high.

In many ways, STANFINS-R is a prototypical information systems project from which
many lessons, including those described below, can be learned about Ada use.

Lesoa 1: The available pool of developers skiled in Ada is limited When making
projections about project costs, the issue of the limited number of available personnel
skilled in Ada and the need for training should be considered. STANFINS-R
originally was conceived as a COBOL project. When denial of the waiver resulted
in a switch to Ada as the development language, it became apparent that the
available pool of developers with Ada/MIS experience was small. The existing staff
of COBOL programmers had to be trained in Ada, which caused delay in project
execution.

LIo I Few conpil and support tools ae avaiabl for ifomation system
i development in the IBM enviommen that use Ada. STANFINS-R demonstrated that

3 M hAdl imestm aln GudMe 1-a

I

I

Lessons Learned I
Ada is a viable language for developing information systems in environments where
COBOL has been the dominant development language. However, the IBM I
environment, which is the primary environment for developing such systems, is poorly
supported in terms of compilers and support tools. STANFINS-R was the first Ada
application of its kind and size to be developed to run on an IBM OS/VMS I
environment. Because of the lack of available tools to support Ada in this
environment, a set of support tools, such as code generators and screen painters, had
to be developed as part of the project. Moreover, the compiler, which was developed I
by Intermetrics but had not been validated, did not provide support for a
Configuration Item-based teleprocessing monitor; therefore, the contractor had to
write one. In addition, the Database Management System (DBMS) package chosen
for the project (i.e., Datacom DB) did not contain a suitable Ada interface;
therefore, a hook had to be written. For Ada to be a feasible language for use in
developing information systems, the issue of availability of compilers and support I
tools must be addressed. Most Ada vendors do not offer products in this
environment. The dominant compiler in this environment (offered by Intermetrics)
has not been validated. The unavailability of suitable compilers has been a I
significant factor inhibiting the use of Ada in information systems and has created
an adverse cycle of events. On the one hand, because Ada is not the preferred
language in information system development, vendors have little incentive to offer
products to work on the platforms on which such applications are traditionally
developed. On the other hand, the paucity of suitable products works to limit the
consideration of Ada in developing information systems. Successful implementation
of the mandate to use Ada will require a suitable resolution of this cycle. A
plausible way to address this problem would be to create appropriate incentive
structures that will encourage vendors to develop such products.

Lesson 3: Systems developed in Ada may be more maintainable than those written in 3
COBOL Although it is too early to state definitively that Ada maintenance
requirements are lower than those for COBOL preliminary evidence indicates this
may be so. Part of STANFINS is operational and has a maintenance staff of six n
programmers, a much smaller team than would be required to maintain a system of
similar size that uses COBOL

Lesson 4: In principle, portability is ensured by developing code ir Ada, however, in
practice, portability is limited. Porting the code from the Rational environment to the
target environment was problematic. For a variety of reasons, parts of the code that I
worked well on the Rational environment did not work in the target environment.
For example, nested generics would not work on the target although they tested and
compiled on the development machine. Executable code sharing could not be 3
implemented on the target, thereby causing the executable sizes to grow to
unmanageable proportions. Other features, such as representation specifications, u
--40 Department of the Navy

I

I

1 Lessons Learned

Unchecked-Conversion, and Pragma Inline, were not implemented in the target
compiler.

Developers in this project had significant problems with porting code from the
development environment to the target environment. What compiled on the
Rational R-1000 also compiled on the IBM mainframe using OS/MVS. However,
lack of compiler support for the teleprocessing monitor and interfaces to the DBMS
necessitated the creation of low-level functionally limited code, thereby limiting
portability to other environments without significant modifications. Thus, while most
of the code can be ported to a VAX/VMS environment, for example, complete
portability would require significant alterations.

Lesson 5: Ada has special advantages that make reuse more feasible and enables the
benefits of reuse to be realized at several levels. At one level are specific packages and
templates that can be used in other parts of the project or in other projects. While
the same could, in principle, be accomplished with code written in COBOL, the use
of generics and packages gives Ada a special advantage over COBOL that makes
such reuse much more feasible. There was significant use of these templates at
STANFINS. The issue of reuse can also be thought of in terms of tools that are
developed for specific projects but with suitable modifications can be used in other
projects. The STANFINS project, for example, entailed the development of
PSL/PSA tools for writing design specifications. These tools can plausibly be
modified and reused in other projects. A follow-up project, the Standard Army
Financial Accounting and Reporting System (STARFIARS), demonstrates reusability
at both levels. While STARFIARS is likely to be at least 33% larger than
STANFINS, the project is scheduled to take 50% less time than STANFINS. The
rationale for this aggressive schedule is twofold: STANFINS provided a useful
learning curve from which STARFIARS will benefit, and more importantly, the
implementation of STANFINS has created system templates and tools that can be
reused to create the new system with greater productivity.

Lesson 6: Curent documentation standards need to be reexanine. The
documentation required for STANFINS-R, which was prepared according to the
requirements mandated in AIS DOD-STD- 7935-A, was inordinately large. While
the exact figure is difficult to ascertain, a conservative estimate is that every line of
code generated at least ten lines of documentation. The voluminous documentation
dearly limits its usefulness and points to the need to reexamine current
documentation standards.

1.12 RECONFIGURABLE MISSION COMPUTER PROJECT
The Reconfigurable Mission Computer (RMC) Project sought to demonstrate that1 modularity in both hardware and cftware would reduce the cost of developing new

Ada I pnenteio Guide 1-41

I

Lessons Learned I
or upgrading existing embedded systems. The thrust of the project was to exploit
hardware and software commonality in different embedded systems.

Lesson 1: For small technology demonstration projects, anticipate a lack of Ada
compilers for smal, embedded computers that use advanced microprocessors. Primary I
constraints on missile general purpose data processors are size, power, and cycles per
second. There is always a drive to use the most advanced microprocessors available
to get as much performance as possible in as small a space as possible while U
consuming the least power possible. Ada compiler vendors, however, are not going
to market a compiler until they can determine that it is financially realistic to do so.
Small technology demonstrations that want to use Ada in the software development I
may be restricted to using processors for which a commercial Ada compiler exists.

Lesson 2: Plan on allocating a portion of the Central Processing Unit (CPU) utilization I
to the inefficiencies of using a modular design approach and design implementation in
Ada. The RMC project goals included creating portable Ada programs, running
them on several platforms, measuring the code change required, and learning what I
it took to make an Ada program portable. A modular design based on Abstract
Data Types was used to hide machine interfaces. We also hid the "goodies" the
compiler vendors offered outside of the Ada language behind our own package
interfaces. The results were a reduction in performance that can be made up with
a higher throughput CPU. However, any throughput increase realized by upgrading
platforms is usually given to the analyst to develop more capable algorithms. A
modular design in Ada can reduce code, test, and modification times and is well
worth the extra overhead incurred. 3
Lesson 3: Plan on throwing away some or all of the first software designed After the
first design and implementation of demonstration software in Ada, it was felt that the
implementation would be improved the next time. Fortunately, we had the luxury
of doing just that, and we understood and implemented a much better software
system the second time. It is not necessary to wait until all of the tools and hardware
are in place to begin coding. As much of the design as possible should be
implemented as soon as possible. A commercial prototype or similar system should
be used to gain understanding of the system, and the first cut should be used to verify I
that the requirements can be met.

Lesson 4: Dedicate an individual or group (dependitg on the size of the project) to the 3
Ada-hardware interface. Ada touches the "iron" in several places: the target debug
monitor for on-target program development; the kernel for time, memory, and
processor management; and device drivers used by the application. A person or U
group needs to be familiai with hardware registers, ports, memory locations, and the

i
1-2Department of the NavyI

I

1

3 Lessons Leamed

low-level facilities available in Ada. Evolving hardware architectures and compiler
upgrades make this an absolute necessity.

1.13 INTELLIGENT MISSILE PROJECT
The purpose of this project, which is funded by the Office of Naval Technology under
the Missile Support Technology block NW2A, is to develop generic software
techniques and to design tools that will allow the use of knowledge-based artificial
intelligence (AI) paradigms for control and decision-making functions in missiles.
These capabilities are to be implemented in Ada. Having these features will yield3 more adaptive and autonomous missile operation.

A simple, forward-chaining inference engine was developed and tested on several
computers. Next, a decision-tree type of expert system was developed along with a
tool (in Ada) to generate the Ada decision tree. (None of the commercial expert
system shells could do this at the time.) Finally, a hybrid system was developed that
combined the flexibility of an inference engine with the speed of a decision tree.
Execution performance was measured for all three types of systems. The decision
tree was the fastest, and the hybrid system was a close second.

I Lesson 1: System analysis must be conducted at the beginning to ensure that adequate
resources (eg., compilers, hardware platform) will be available for meeting the system
requirementf The tendency to favor particular hardware or compiler systems just
because they are available must be avoidedL Choosing a particular CPU simply
because it is available can lead to problems that could have been avoided by
performing adequate system analysis. One problem encountered was that the CPU
needed an assembly language program to be downloaded and run to "kickstart" the
CPU so that Ada code could be downloaded and executed. The CPU was hardwired
to have a certain memory configuration that was incompatible with where the Ada
code had to be.

Similarly, using a compiler that already is on hand without ensuring it can do the job
also will lead to delays. In this case, the compiler had been validated for a particular
single-board computer. Although the vendor stated that it should work with the3chosen target board, the vendor would not provide any help because compilers for
other CPUs had a much higher priority, although the highest level of maintenance
available had been purchased for this project.

ILmon 2: Athough Ada has many features it does not have everything from every
language. Ada s restricted in the tpe of AI systems for which it can be used Because
it is a procedural language, Ada has some restrictions, particularly with regard to
certain AI applications. In USP, an arbitrary string of characters can be handled in
three different ways: as test, as a variable, or as a function to be called. This ability,

A&a hplenemelatlo Guide 1-43

I

I

Lessons Learned I
which is very useful for building production-type expert systems, results from LISP
being not only a language but also an environment. Because Ada is only a language,
there are restrictions on the types of production expert systems that can be
implemented. Although it would be possible to implement the equivalent LISP
environment in Ada, LISP is too slow and big for a missile system, which was the
reason for its not being used in the first place.

o
I

I
I

I
I
I
I
I
I
I
I

I-.44 Depetment of th NavyI

i

I

I Appendix J
FY91 Ada Technology Insertion Program Projects

This appendix provides a brief description of the Ada Technology Insertion Program
(ATIP) projects funded in FY91. The projects fall into three primary
categories-education, bindings, and technology. For more information on these
projects, contact the Ada Joint Program Office at (703) 614-0209.

3 J.1 EDUCATION
Of the 14 projects funded, one addresses Ada education.

Undergraduate Curriculum and Course Development in Software
Defense Advanced Research Projects Agency (DARPA)

3 This program will support the development of educational materials using Ada that
will be widely distributed to and used by educators; will enhance the software
engineering content of courses and course sequences in computer science curricula;
and will demonstrate, through pilot implementations, the feasibility and viability of
a comprehensive undergraduate curriculum in software engineering using Ada.

I J.2 BINDINGS
The eight bindings projects are grouped into the following categories:

1 * Government Open Systems Interconnection Profile (GOSIP)
- Management Information System (MIS) Mathematical Binding
* Military Standard (MI,-STD)-1553
* Portable Operating System Interface for UNIX (POSIX)
* Structured Query Language (SQL)

I XWindows

Ada Application Program Interface to GOSIP Network Services3 Defense Information Systems Agency (DISA) (Formerly DCA)

GOSIP is a family of protocols that supports network services. Although Ada3 bindings to GOSIP exist, this project will develop a robust Ada/GOSIP binding for
standardizing the interface of Ada applications to GOSIP network services.

A
I

iAds lmpleunentation Guide J--1

I

I

FY91 ATIP Projects I
Decimal Arithmetic
U.S. Air Force i
Compiler vendors support decimal arithmetic but in nonstandard ways. This project
will standardize a mechanism for realizing COBOL-style exact decimal arithmetic in
Ada 83. It will provide sufficient functionality to handle financial applications with
at least 18 digits of precision. It will offer early availability with Ada 83 compilers,
notational convenience, ease of transition to Ada 9X, and run-time efficiency.

Generic Avionics Data Bus Toolkit
U.S. Navy

This project will offer a standard software interface that can be reused for various
M.,STD multiplex data buses with minimal changes. The initial software will focus I
on the MIL-STD-1553B protocol because this protocol is the most prevalent, but it
will be designed to be configured for expansion to other types of data buses. An
integrated MIL-STD-1553B monitor with debugging tools is planned.

POSIX/Ada Real-time Bindings
U.S. Air Force/Navy

POSIX defines a collection of system services that provide portable application
interfaces to operating systems. The POSIX effort is divided into several areas that
cover the range of operating system services. These include basic system services,
real-time services, security services, user command interface, user graphical interface,
network services, marl services, and system administration. This project will develop
draft Ada bindings for the real-time service area (POSIX 1003.4 and 1003.4a
standards), work with the Institute of Electrical and Electronics Engineers (IEEE)
standards organization to promote the use of these drafts as a starting point for
development of standard Ada bindings, and develop a test prototype implementation
of Ada tasking using the 1003.4 (real-time) and 1003.4a (threads) services. 3
Ada SQL Interface Standardization
Defense Advanced Research Projects Agency (DARPA) 5
SQL is a set of standards associated with relational databases and data dictionaries.
The SQL Ada Module Description Language (SAMeDL) provides an interface 3
technology for Ada applications accessing SQL database management systems. The
ATIP program will fully document both the SAMeDL as a language and its
supporting methodology, respond to the needs of the standardization process, and 3

o
J1-4 Department of the Navyi

I

3 FY91 ATIP Projects

coordinate efforts of potential vendors of SAMeDL processors as well as identify
needs of potential SAMeDL customers to assist the transition to the SAMeDL

A SAMeDL Pilot Project on SIDPERS-3
U.S. Air Force/Army

A SAMeDL tool set will be developed consisting of a SAMeDL Module Manager
and a SAMeDL compiler. These tools will target a designated database running on
an Everex Personal Computer (PC) under UNIX. Both an existing application and
a new application will be developed using this tool set. This effort is designed to
prove that the SAMeDL tool set has the robustness, maturity, and potential for
reusability to be employed as the Ada/SQL binding of choice on any large
Department of Defense (DOD), Ada Management Information System (MIS)
program.

Common Ada XWindow Interface (CAXI)
U.S. Navy

XWindows is a de facto industry standard that provides a graphical user interface.
Popular toolkit extensions to XWindows include Open Look (used by AT&T, SUN,
and others) and Open Software Foundation MOTIF (used by IBM, Digital
Equipment Corporation, Hewlett Packard, Apollo, and others). This project will
design and produce a common interface to both the Open Look and MOTIF toolkits.
The interface will be written in Ada and will allow application programs to use either
toolkit without modification to the application program. This will increase the
portability of Ada applications and provide flexibility in the selection of hardware.

5 An Interactive Ada/XWimdows User Interface Generator
U.S. Army

This project proposes to develop a general-purpose Ada/XWindows User Interface
Generator that automatically generates Ada source code. Using this tool, a
developer will be able to interactively develop a functioning user interface by

I selecting user interface primitives and arranging them on the screen. This tool is
intended to reduce the bottleneck imposed upon Ada systems developers when
developing window-based user interfaces based on the XWindows system and the
MOTIF toolkit.

Adel hnplsm-itdon Gtdd J-
I

I

FY91 ATIP Projects I
J.3 TECHNOLOGY
The five projects in the technology category deal with the following:

" Engineering environments
* Prototyping I
" Reuse
* Security

AdaSAGE Enhancements
U.S. Air Force/Army/Navy

AdaSAGE is an applications development set of utilities designed to facilitate rapid
and professional construction of systems in Ada. AdaSAGE was developed by the
Department of Energy at the Idaho National Engineering Laboratory. Applications I
may vary from small to large multiprogram systems using special capabilities. These
capabilities include database storage and retrieval (SQL compliant), graphics,
communications, formatted windows, on-line help, sorting, and editing. AdaSAGE I
operates on various systems including MS-DOS platforms, UNIX System V, and
OS/2. A developer using the Ada language and the AdaSAGE development system
can design a product tailored to a specific requirement that offers outstanding I
performance and flexibility. The ATIP proposal provides enhancements to
AdaSAGE requested by the user community and supports the creation of a
computer-aided training program.

ATLAS/Ada-Based Enhancements for Test (ABET)
U.S. Air Force

ABET is an Air Force and IEEE effort to provide an international standard for an
automatic test environment for maintenance activities. Ada is the language to be
used for implementing this standard. ABET will intelligently incorporate Ada into
the test arena by providing a set of layered standards to the test community. 5
A Computer-Aided Prototyping System for Real-Thme Software

U.S. Air Force 3
The program will demonstrate a high-technology, low-cost approach to providing
state-of-the-art software prototyping tools for real-time Ada programs. It provides I
the opportunity to use the thesis efforts of students at the Naval Postgraduate School,
who are DOD personnel familiar with Ada and its embedded applications. g

I

I

I
t FY91 ATIP Projects

Reusable Ada Products for Information Systems Development (RAPID)
U.S. Army

RAPID is an Ada reuse program that includes an automated library tool for
configuration, identification, and retrieval of reusable Ada software components and
a staff that supports and trains developers in reusability and sound software
engineering principles. Its mission is to ensure that the DOD objective of reusable,
maintainable, and reliable Ada software is achieved. It provides a total reuse
program supporting the entire software development life.

I Ada Reuse in a Trusted Message Processing System for Real-Time Software
U.S. Navy

U This project will investigate Ada reuse in developing software that satisfies the
Orange Book B2-Level security requirement. The system will be fielded as the
Submarine Message Buffer (SMB) System, supporting personnel with two levels of
security clearance.

II
I
I
1
I
I

I
gAahipnetln uide J-i il4IilII

I

U DON Ada Projects

I
Appendix K

5 Navy and Marine Corps Ada Projects
A database of Navy and Marine Corps projects that use Ada has been assembled for
reference by Program Managers who are planning to use or currently are using Ada.
The database includes the following information:

I Project Name

- Project Description

- Application Area, (i.e., C2, C3, C4I, EW, Space, Communication, Armament,
Ordnance, Acoustic, Navigation, Financial, Personnel, Contracting, Material
Management, Medical, Depot Maintenance, Tool, DBMS, Graphical,
Education, Simulation, Other)

I * Sponsor/Developer

- Point of Contact and Phone Number

* Program Status (in planning, developed, completed, or canceled)

I Source Lines of Code

5 * Host System

e Target System

I Because this database is very large, its contents have rot been included in this
version of the Ada Implementation Guide. This database is available either on disk
as a Lotus 1-2-3 file or in hard copy. To obtain a copy, please fill out the attached
order form.

3 If you would like your project to be considered for inclusion in this database, please
provide the information listed on the order form.

I
U
3 Ad hnlinlamtlkn Guid K-1

U

I

DON Ads Projects I

ORDER FORM

Program Name
Prog. Manager _

Address
City, St & Zip

Please send:

(1) Copy of DON Ada Projects Database on Disk (LOTUS I
1-2-3 File) and/or

(1) Hard copy of DON Ada Projects Database I

I
To have your project considered for inclusion in this database, please
provide the following information:

* Project Name
* Project Description (brief & concise)
* Application Area, (i.e., C2, C3, C4I, EW, Space,

Communication, Armament, Ordnance, Acoustic,
Navigation, Financial, Personnel, Contracting, Material
Management, Medical, Depot Maintenance, Tool, DBMS,
Graphical, Education, Simulation, Other)

* Sponsor/Developer
* Point of Contact and Phone Number
* Program Status (in planning, developed, completed, or

canceled) I
Source Lines of Code

* Host System
Target System

Please send this order form and/or project information to:

Space & Naval Warfare Systems Command
SPAWAR 2241 (CDR M. Romeo)
2451 Crystal Drive (CPK-5, 700) I
Washington, DC 20363-5100 I

u tme of One Navy

1
1

Appendix L
GLOSSARY

ABET Ada-Based Enhancements for Test
ACEC Ada Compiler Evaluation Capability
ACM Association for Computing Machinery
ACVC Ada Compiler Validation Capability
AdaIC Ada Information Clearinghouse
AdaJUG Ada Joint (Services) Users Group
Ada PSE Ada Programming Support Environment
ADP Automatic Data Processing
AES Ada Evaluation System
AFATDS Advanced Field Artillery Tactical Data System
AFB Air Force Base
AFSC Air Force Systems Command
AI Artificial Intelligence
AIE Ada Integrated Environment
1 S Automated Information System
AIU Acoustic Interface Unit
AJPO Ada Joint Program Office
AL/S Ada Language System
A-S/N Ada Language System/Navy
AMMWS Advanced Millimeter Wave Seeker
AMPS Advanced Message Processing System
ANSI American National Standards Institute
AP Acquisition Plan
APP Application Portability Profile
ASEET Ada Software Engineering Education and Training
ASIS Ada Semantic Interface SpecificationU ASP Acquisition Strategy Plan
ASR Ada Software Repository
AST Advanced Systems TechnologyIASW Anti-Submarine Warfare
ASWSOW Anti-Submarine Standoff Weapon
AT&T American Telephone & Telegraph
ATCCS Army Tactical Command and Control System
ATF Advanced Tactical Fighter
ATIP Ada Technology Insertion Program
ATRIM Aviation Training and Readiness System
AVF Ada Validation Facilities

I
Ads hnmmntalon Gud L-1

I

Glory I
BAFO Best and Final Offer
BBS Bulletin Board System 3
BP Backplane

C3I Command, Control, Communications, and Intelligence I
C41 Command, Control, Communications, Computers, and

Intelligence
CAB Common Ada Baseline I
CAIS Common Ada PSE Interface Set
CALS Computer-Aided Logistics Support
CAMP Common Ada Missile Packages
CASE Computer-Aided Software Engineering
CAS REPS Casualty Reporting System
CAUWG Commercial Ada Users Working Group
CAMI Common Ada XWindow Interface
CC&I Command, Control, and Intelligence
CCITT International Consultative Committee for Telegraph

and Telephone
CCP Code Counting Program
CCS Combat Control System
CDA Central Design Agency
CDIF CASE Data Interchange Format
CDPA Central Design Programming Activity
CDR Critical Design Review
CDRL Contract Data Requirements List
CECOM Communications Electronics Command
CERT/CC Computer Emergency Response Team Coordination

Center I
CFE Contractor-Furnished Equipment
CGI Computer Graphics Interface
Cl Configuration Item 3
CIF Central Issue Facility
CIM Corporate Information Management
CLNP Connectionless Network Protocol I
CLOC Compiled/Assembled Lines of Code
CMM Capability Maturity Model
CMS-2 Compiler Monitor System-2 I
CMU Carnegie-Mellon University
CMU/SEI Carnegie-Mellon University/Software Engineering

Institute
COBOL Common Business Oriented Language
COE Common Operating Environment

L-2 DputnwIl of lbs Navy

,I

3 Gulomry

COMNAVCOMTELCOM Commander, Naval Computer and
Telecommunications Command

COMSPAWARSYSCOM Commander, Space and Naval Warfare Systems
Command

COTS Commercial Off-The-Shelf
CPDL Computer Program Development Laboratory
CPU Central Processing Unit
CREASE Catalog of Resources for Education
CRISD Computer Resource Integrated Software Document
CRLCMP Computer Resources Life-Cycle Management Plan
CRSS C31 Reusable Software System
CSC Computer Sciences Corporation
CSCI Computer Software Configuration Item
CSS Centralized Structure Store
CSS Computer Sciences School
CSU Computer Software Unit
CWG Coordinator Working Group

D&V Demonstration & Validation
DAB Defense Acquisition Board
DACS Data and Analysis Center for Software
DARPA Defense Advanced Research Projects Agency
DBMS Database Management System
DC Device Coordinate
DCDS Distributed Computing Design System
DDI Directorate of Defense Information
DDN Defense Data Network
DDR&E Director of Defense Research and Engineering
DE Data Elements in the Source
DEMVAL Demonstration Evaluation
DFCS Digital Flight Control System
DID Data Item Description
DISA Defense Information Systems Agency3 DOD Department of Defense
DON Department of the Navy
DP/DGU Distributed Processor/Display Generator Unit

SRS Defense Software Repository System
DTC I Desk Top Computer I
DTIC Defense Technical Information Center
DWS Defense Weapons System

Ads h ftft Guide L-3

I

I

GloEery I
ECLD Embedded Comment Lines in Data
ECLS Embedded Comment Lines in SourceI
ECM Electronic Countermeasures
ECMA European Computer Manufacturing Association
EDL Event-Driven Language I
EMR Extended Memory Reach
ENB Engineering Notebook
EPROM Erasable Programmable Read Only Memory U
EP Enhanced Processor
ERA Entity Relationship Attribute
ESD Electronic Systems Division
ESM Electronic Support Measure

FAR Federal Acquisition Regulations U
FAU Fin Actuator Unit
FCDSSA Fleet Combat Direction System Support Activity
FFP Firm Fixed Price
FFRDC Federally Funded Research and Development Center
FIPS Federal Information Processing Standards
FRAWG Front Range Ada Working Group
FSD Full-Scale Development
rAM File Transfer, Access, and Management

ftp File Transfer Protocol
43RSS AN/UYK-43 Run-Time Support System

GAO General Accounting Office
GEU Guidance Electronics Unit
GFE Government-Furnished Equipment
GFS Government-Furnished Software
GKS Graphical Kernel System
GNCP Guidance, Navigation, and Control Program
GOSIP Government Open Systems Interconnection Profile
GPEF Generic Package of Elementary Functions
GPPF Generic Package of Primitive Functions I
GPO Government Printing Office
GRACE' Generic Reusable Ada Com tents for Engineering
GSIS Graphics System Interface Standard
GTRIMS Ground Controller Training System

HOL High Order Language
HPBP High-Performance Backplane
HPP High-Performance Processor

L-4 Dp Mhn1 of Urn Navy

I

I

3 Glossry

IBM International Business Machines
ICE In-Circuit Emulator
IEC International Electro-Technical (Committee)
IEEE Institute of Electrical and Electronics Engineers
IGES Initial Graphics Exchange Specification
ILSP Integrated Logistic Support Plan
IMU Inertial Measurement Unit
INEL Idaho National Engineering Laboratory
InProc In Processing
I/O Input/Output
IPR In-Process Review
IPS Integrated Project Summary
IPSE Integrated Project Support Environment
IRAC International Requirements and Design Criteria
IRDS Information Resource Dictionary System
IRS Interface Requirements Specification
ISA Instruction Set Architecture
ISDN Integrated Services Digital Network
ISEA In-Service Engineering Activity
ISEE Integrated Software Engineering Environment
ISO International Standards Organization
ISSC Information System Software Center
ITS Integrated Test Software
IV&V Independent Verification and Validation

U JCS Joint Chiefs of Staff
JTC Joint Technical Committee

1 KAPSE Kernel Ada Programming Support Environment

3 LAN Local Area Network
LCM life-Cycle Maintenance
LCSA Life-Cycle Support Activity

MAPSE Minimal Ada Programming Support Environment
MCCDC Marine Corps Combat Development Command
MCCR Mission-Critical Computer Resources
MCCRES Marine Corps Combat Readiness Evaluation System
MENS Mission Element Need StatementI MEPS Message Edit Processing System
MHS Message Handling Service

SMIL-HDBK Military Handbook

Ada Impimnemtatm Guide L-6

I

I

Glossary i
MIL-STD Military Standard
MIMMS Marine Corps Integrated Maintenance Management

System
MIS Management Information System
MMS Minimum Mode Software i
MOA Memorandum of Agreement
MOTS Military Off-The-Shelf

NAC Naval Avionics Center
NADC Naval Air Development Center
NARDAC Navy Regional Data Automation Center I
NASA National Aeronautics and Space Administration
NASEE NAVAIR Software Engineering Environment
NATO North Atlantic Treaty Organization 1
NAUG Navy Ada Users Group
NAVAIR Naval Air Systems Command
NAVDAC Navy Data Automation Command
NAVSEA Naval Sea Systems Command
NAVSWC Naval Surface Warfare Center
NCS Network Computing Service
NCTAMS Naval Computer and Telecommunications Area

Master Station
NCTAMS LANT NCTAMS Atlantic
NCTAMS EASTPAC NCTAMS Eastern Pacific
NCTC Naval Computer and Telecommunications Command
NCTS Naval Computer and Telecommunications Station
NDC Normalized Device Coordinate
NDI Nondevelopmental Item 3
NGCR Next Generation Computer Resources
NISBS NATO Interoperable Submarine Broadcast System
NIST National Institute of Standards and Technology
NISMC Naval Information System Management Center
NOSC Naval Ocean Systems Center
NSWC Naval Surface Weapons Center U
NTIS National Technical Information Service
NUSC Naval Undersea Command
NWRC Navy Wide Reuse Center
NWSUS Navy WWMCCS Site-Unique Software

OAS Offensive Avionics System
OASD Office of the Assistant Secretary of Defense
OCD Operational Concept Document

I

U
I Glossary

OFPS Operational Flight Program Size
OMU Operational Mock-up
OOD Object-Oriented Design
OORA Object-Oriented Requirements Analysis
OPE Open Systems Environment
OPNAVINST Naval Operations Instruction
OPR Office of Primary Responsibility
ORG Organization Chain of Command
OS Operating System
OSA Open Systems Architecture
OSE Open Systems Environment
OSF Open Software Foundation
OSI Open Systems Interconnection
OSS Operations Support System
OSSWG Operating Systems Standards Working Group

U PC Personal Computer
PCIS Portable Common Interface Set
PCTE Portable Common Tool Environment
PDL Program Design Language
PDR Preliminary Design Review
PDS Post-Deployment Support
PDSS Post-Deployment Software Support
PDU Pulse Driver Unit
PHIGS Programmers Hierarchical Interactive Graphics System
PIWG Performance Issues Working Group
PMC Project Management Charter
POSIX Portable Operating System Interface for UNIX
PPBS Planning, Programming, and Budgeting System
PRR Product Readiness Review
PSE Project (or Programming) Support Environment
PSESWG Project Support Environment Standard Working

Group

R&D Research and Development
RACS Registration and Access Control SystemIRADC Requirements and Design Criteria
RAMd Random Access Memory
RAPID Reusable Ada Products for Information Systems

Development
RCL RAPID Center Ilibrary3 RDA Remote Database Access

Ads OWplmemm Guii L-7

I

I
Glossary i

RDBMS Relational Database Management System
RDT&E Research, Development, Test, and Evaluation
RES Resources
RFP Request for Proposals
RLF Reuse Library Framework i
RMC Reconfigurable Mission Computer
ROM Read Only Memory
RPC Remote Process Communication n
RSC Reusable Ada Software ComponentRTE Run-Time Environment

SAE Software Architectures Engineering
SAFENET Survivable Adaptable Fiber-optic Embedded Network
SAI Software Action Item n
SAIL System Avionics Integration Laboratory
SAME SQL Ada Module Extension
SAMeDL SQL Ada Module Description Language I
SASSY Supported Activities Supply System
SCCS Submarine Combat Control System
SCE Software Capability Evaluation U
SCL Stand-alone Comment Lines
SCMP System Configuration Management Plan 3
SCS Submarine Combat System
SDC-W Software Development Center, Washington
SDD System Design Definition
SDE Software Development Environment
SDF Software Development Folder
SDIO Strategic Defense Initiative Organization
SDL Software Development Laboratory
SDP Software Development Plan
SDP System Division Paper
SDR System Design Review
SDSR Software Development Status Report
SECNAVINST Secretary of the Navy Instruction
SECR Standard Embedded Computer Resources
SEE Software Engineering Environment
SEI Software Engineering Institute 3
SEMP System Engineering Management Plan
SEO Software Executive Official
SEPO Software Engineering Process Group 3
SGS/AC Shipboard Gridlock System with Auto-Correlation
SGML Standard Generalized Markup Language

L,-4 Depwbed of the Navy

I

I

Glossary

SIGAda Special Interest Group on Ada
SIGSOFT Special Interest Group on Software Engineering
SIL System Integration Laboratory
SIP System Integration Plan
SLOC Source Lines of Code
SLOCWC Source Lines of Code Without Comments
SMB Submarine Message Buffer
SMM Software Management Metrics
SMP Software Master Plan
SOW Statement of Work
SPA Software Process Assessment
SPAWAR Space and Naval Warfare Systems Command
SPC Software Productivity Consortium
SPR Software Problem Report
SOAP Software Quality Assurance Plan
SQL Structured Query Language
SRC Software Requirements Change
SRR System Requirements Review
SRS Software Requirements Specification
SSA Software Support Activity
STANFINS Standard Financial System
STARFIARS Standard Army Financial Accounting and Reporting

System
STARS Software Technology for Adaptable, Reliable Systems
STSC Software Technology Support Center
SUP Support Planning
SWAP Software Action Plan
SWG Special Working Group
SWTP Software Technology Plan

TACAMO Take Charge and Move Out
TACFIRE Tactical Fire Direction
TADSTAND Tactical Digital StandardITC Target Capacity
TCL Total Comment Lines
TCP/IP Transmission Control Protocol/Internet Protocol
TDA Technical Directive Authority
TDT Theater Display Terminal
TEMP Test and Evaluation Master Plan

TEP Test and Evaluation Plan

TFA Transparent File Access
TCSC/LLCSC Top Level/Lower Level Computer Software Component

Ada pi u IamUm Ou,-e

I

I

GlossryI

TLOC Total Lines of Code
TOES Telephone Order-Entry System
TSGCEE Tri-Service Group on Communications and Electronics

Equipment

UIMS User Interface Management System
ULLS Unit Level Logistics System
USMC U.S. Marine Corps
USW Undersea Warfare

VADS Verdix Ada Development SystemI
VDI Virtual Device Interface
VHSIC Very High-Speed Integrated Circuit
VRC Virtual Reference Coordinate
VSR Validation Summary Reports
VT Virtual Terminal

WAdaS Washington Ada Symposium
WAM WWMCCS ADP Modernization
WBS Work Breakdown Structure
WC World Coordinate
WIS WWMCCS Information System
WWMCCS World Wide Military Command and Control System

Ii
I
I
I
I
I

L,-IO Dpsfmu of Urn Navyi

I

