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PREFACE

INSTABILITIES OF DAMAGE AND SURFACE DEGRADATION MECHANISMS
IN BRITTLE MATERIAL STRUCTURAL SYSTEMS

Cotract No. AFOSR-890460
RESEARCH OBJECTIVES

() Review the experimental and theoretical information on surface degradation and
related instabilities.

(i) Study the physical significance of surface (skin) effects.

(iii) Study the relation between surface degradation and scale (size) as well as shape
effects.

(iv) Study surface damage growth instabilities and their relation to bursting observed in
brittle material structures.

(v) Study analytically and/or numerically typical problems and compare with available
experimental information.

(vi) Study the micromechanics of surface effects so that the introduced (surface related)
internal length can be estimated from experiments.

(vii) Use symbolic computations by computer to obtain solutions for near-surtace
instability phenomena. Interpret the analytical solution with respect to internal
length estimation.

(viii) Perform non-destructive (uitrasonic) and mechanical experiments to obtain
quantitative measurements of the surface damage dissipated energy and its
relation to instabilities. Compare theoretical predictions and non destructive
measurements of dissipated energy.

(ix) Study the problem of transferring information from laboratory experiments to large
scale engineering problems.

RESEARCH RESULTS

The research results are shown in the following. Part of the results formed the basis of
F.F. Tang's Dissertation. Additional work appears in the appendix. The list of refereed
Joumal papers, published under the support of the contract , is given next.
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ABSTRACT

In this dissertation, first, the theoretical and experimental v'iewpoints of in-
stability and bifurcation in mechanics are reviewed and discussed. The onset of
instability of bifurcation depends on the constitutive assumptions, and is marked
by the loss of ellipticity, singularity of the stiffness matx;ix, and negative or com-
plex eigenvalues. Non-traditional regularization is necessary to obtain useful post-
instability solutions.

Based on dissipated energy and elastic potential, energy based instability
criterion is considered and developed. The global instability criterion is concerned
with global non-uniform deformation while the surface degradation instability crite-
rion deals with near surface non-uniformities. In addition, the connection between
surface degradation and size, shape effects for brittle materials is examined.

The energy based stability theory is applied for some typical problems
through analytical and numerical implementations. It is shown that the onset
of both surface instability and global degradation instability occurs in the strain
hardening stage, that is, before and close to the peak strength. The theoretical
results are compared with experimental observations.

Both strain gage tests and ultrasonic scanning tests are processed to s-
tudy the degradation mechanisms of a brittle material. The surface effects are
highlighted by the experiments. Ultrasonically dissipated energy shows a random
distribution and it follows, in general, the initial non-homogeneity pattern. The
relationship between the ultrasonically dissipated energy and mechanically dissi-
pated energy is dependent on deformation and can be approximated by a power
function of the factor of load level.

The theory for surface degradation consideration involves a few material
constants, and these constants are identified against experimental observations.

The degradation mechanism and damage growth patterning of simulated
rock under uniaxial load are modeled numerically by implementing the theory for

damage and surface degradation with initial state consideration. The theoretical
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results are compared with experimental observations obtained through ultrasonic
scanning tests,

To extend the study to post-instability modelling by using various consti-
tutive models, three aiternative considerations are proposed to achieve so-called

regularization of the problem.
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CHAPTER 1
INTRODUCTION AND SCOPE

1.1 General

Brittle materials such as rock and concrete contain a multitude of defects
in the form of micro-voids and/or micro-cracks even before any external load is
applied. The term "structure” is associated with such defects. During a loading-
unloading process, these voids/cracks may undergo irreversible growth and new
ones may nucleate. The ultimate coalescence of such defects may result in macro-
crack initiation. The existence of structure and its evolution occurring under the
action of an external load affects the local mechanical properties of the material
as well as the global behaviour of the material system. It is widely accepted that
brittle materials fail by the transformation (nucleation and growth) of the structure.
Stress cycling tests have also shown that the structure-transformation manifests as
a decrease in the stress/strength and in the unloading stiffness. The structural
transformation in particular is the main reason for softening, that is, reduction
in strength at increasing straining. The degradation process of the material by
structural transformation is termed as damage evolution. The damage is treated
as a kinematic variable or tensor (usually second order), the evolution of which
results in the gradual degradation of the material. The transformation of structure
absorbs energy, named as damage energy, and is an irreversible process. That is,
the damage energy is irrecoverable. So it is reasonable to call the damage energy
as dissipated energy.

It is recognized that tote: deformation (strain) in such brittle materials as
rock and concrete is attributed to elastic deformation, plastic deformation and to
formation of damage. The plastic flow (deformation) corresponds to the propa-
gation of plastic slip, which is also irreversible. So the energy corresponding to
plastic deformation, called as plastic energy, is not recoverable either. However,
the elastic energy is recoverable. The laws of plastic flow do not differ formally

from the kinetic equation for damage evolution in the sense that in both cases they
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reflect effects of strain history on the current response of the material. However,
they describe different physical processes each of which corresponds to different
scales of structure.

The dissipated energy from both damage and plastic flow is a mark of the
structural transformation which provides a description of the physical state of the
material system. With the increase in the dissipated energy, the apparent stress-
strain (force-displacement) curve shows the phenomenon of strain hardening and
strain softening, while local stress in the material system changes from homoge-
neous to inhomogeneous (e.g. uniaxial compression test) and the material system
undergoes stable and unstable responses. Some relationship exists between the
dissipated energy and the material state (e.g. stable or unstable). In zhis study,
the relationship between instability onset and energy dissipation (rate) is investi-
gated. The stability problem is a wide area and can be divided into mathematical
or numerical instability and physical instability. Sometimes they are related, while
in other cases they are not. This is concerned with the constitutive law assumed.

Loss of stability and bifurcation are common phenomena in non-linear con-
tinuum mechanics. In non-linear structural mechanics, for example, a large body
of literature exists mainly concerned with buckling of rods, plates and shells. In
non-linear elasticity, bifurcation appears even in seemingly simple problems involv-
ing fairly standard constitutive models, such as the classical problem of multiple
bifurcation in a cube of Neo-Hookean Mooney- Rivlin materials subjected to hy-
drostatic pressure [Marsden and Hughes 1983]. Loss of stability also plays a central
role in non-linear inelastic constitutive theory. Classical examples include the d-
iffusion necking bifurcation from a homogeneous state which arises in the simple
tension test of an eleistic-pla.stic material, and situations where loss of ellipticity
of the governing equations takes place leading to localization and the formation of
shear bands.

The localization implies a non-uniqueness in the incremental elasto-plastic
response of a homogeneous, homogeneously strained body [Rice 1977], and also
implies a vanishing speed of acceleration waves [Thomas 1961; Hill 1962; Mandel

1966]. This non-uniqueness consists of the possibility of the occurrence of more than
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one strain pattern related to the equilibrated fundamental stress state. It is believed
that a constitutive equation can only be used when localization of deformation is
excluded, otherwise, the solution (if available) is not unique. So it is important to
find out the instability point when dealing with nonlinear continuum mechanics.

Mathematically, the instability usually arises at a critical point in the consti-
tutive behavior, particularly a bifurcation or limit point. The occurrence of such a
critical point in a numerical stress analysis is marked by singularity of the stiffness
matrix and negative or complex eigenvalues - conditions that traditionally produce
severe numerical instability sufficient to disrupt a conventional finite element pro-
gram. It appears that the subject of direct calculation of stability point has not
received adequate attention in the engineering literature. Most of the methods cur-
rently employed rely on the inspection of the determinant of the tangent stiffness
matrix, and employ simple bisection procedures (Wagner and Wriggers 1988] to
calculate the critical points.

In this study, the degradation instabilities include surface degradation and
global degradation ones. Surface degradation instability may be related to the
onset of surface spalling and/or bursting on stress free surfaces. Global degradation
instability refers to the incipient growth of inhomogernieities e.g. shear bands. It is
pointed out that the spalling or rock bursting occurs, in general, prior to the global
failure or structure collapse. The point where global degradation instability takes
place is a critical point from which, when further deformed, the material system
is no longer homogeneous and numerical problems may be met for boundary value
or initial value problems.

As pointed out previously, the onset of instability of brittle materials is
due to the damage accumulation or progressive structural transformation. The
term degradation is often associated with damage evolution. The investigation
of degradation mechanisms would be helpful to understand the physical process of
the onset of instability. The degradation process of brittle materials under external
mechanical load can be monitored experimentally, e.g. by using ultrasonic scanning

method, and therefore, the degradation patterning can be identified.
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1.2 Objective of Investigation

In general terms, the objective of this investigation is to study the relation

between instabilities and degradation mechanisms of brittle materials. The energy

dissipation due to damage and plastic flow is addressed. Both experimental and

theoretical viewpoints are considered, with emphasis on the theoretical studies and

interpretation of experimental results.

vil)

viii)

The objectives of the present work can be summarized as follows:

To review the existing theoretical and experimental literature. Mathemat-
ical or physical instability criteria for nonlinear inelastic material are ad-
dressed. Although post instability analysis is not addressed as part of the
theme of this dissertation, the relevant literature on this subject is reviewed.
and possible extensions of the present approach are discussed.

To examine an instability criterion which is physically based on dissipated
energy and potential.

To extend the instability criterion to consider the surface degradation insta-
bility.

To determine the material constants associated with surface degradation for
a brittle material.

To implement the instability theory into a finite element model.

To examine the instability theory for some typical problems, e.g. borehole
problem, analytically and numerically.

To study the degradation mechanism and patterning of a brittle material
under external load as observed through experimental measurements.

To identify the surface effects in a brittle material and to estimate the in-
ternal material length associated with surface degradation.

To study the degradation patterning numerically with the consideration of
initial state and to compare the numerical results with the experimental

measurements.
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x) To propose possible approaches to overcome the mesh-dependent problem in
the post-instability equilibrium path for various models including plasticity

and damage effects.

The main contributions of this dissertation can be summarized as:

1) Investigation of the relation between instability onset and energy dissipation.

2) Numerical implementation and analytical examination of energy based in-
stability criteria (global and surface degradation) and solution of typical
problems.

3) Experimental investigation of surface effects and degradation inhomogeneity.

4) Determination of material constants and estimation of internal material
length associated with surface degradation.

5) Study of evolution of heterogeneity through numerical analysis and compar-
ison with experimental data.

6) Proposition of possible approaches to regularize the solutions for models

including plasticity and damage consideration.

1.3 Summaries of Chapters

Following the introduction and scope chapter, chapter 2 reviews the exist-
ing literature, in which, important theoretical and experimental viewpoints are
considered. First, the basic laws and definitions concerned with this study is re-
viewed. Then a large part of chapter 2 is devoted to the review of recent literature,
particularly stability-related issues.

Chapter 3 describes, in detail, the instability theory which includes global
instability criterion and surface degradation instability criterion. The definition for
surface degradation zone is discussed and the material constants concerned with
surface degradation are identified.

Chapter 4 presents the implementation of the instability theory for some
typical problems. For simple problems with linear elastic material behavior, an-
alytical solution is feasible. But for problems with non-linear, inelastic material
behavior, search for analytical solution becomes very difficult and numerical proce-

dure is necessary. It is shown that the onset of both surface degradation instability
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and global degradation instability occur in the strain hardening stage, that is, be-
fore and close to the peak strength. It is also identified that the onset.of surface
degradation instability occurs before the onset of global degradation instability.

In chapter 5 relevant experimental results are presented. The physical ex-
periments include strain gage tests and ultrasonic scanning tests. The design and
setup for ultrasonic scanning tests is described in detail. Some typical experi-
mental observations and analysis are presented. It is found that the degradation
patterning follows, in general, the initially received ultrasonic energy distribution.
The surface degradation phenomena in brittle materials under external mechanical
load is identified and the material constant related to surface degradation zone is
obtained. The relationship between ultrasonically dissipated energy and mechani-
cally dissipated energy is approximated by a power function of the factor of load
level.

Brittle materials, e.g. rock and concrete, are initially (prior to load appli-
cation) inhomogeneous (in the macro sense). The initial heterogeneity influences
significantly the spatial variation of degradation in a brittle material structure sub-
jected to mechanical load. In chapter 6, the initial heterogeneity is considered by
virtue of the concept of initial state and the degradation progress is simulated nu-
merically by using the theory for damage and surface degradation growth. The
numerical results are compared with experimental observations.

Chapter 7 proposes methods to overcome problems involved in post-
instability analysis. Based on microstructural theories, an internal length pa-
rameter can be incorporated into the nonlinear post-instability analysis. It is
expected that the introduction of internal length parameter can eliminate the
mesh-dependent problem which is met after the onset of instability when FEM
is used. The possibility of using the nonlocal damage concept to eliminate the
mesh-dependency problem is discussed. There is another possibility to overcome
the mesh-dependency problem for a specific damage model, e.g. by considering the
deformation inconsistency between the damaged part and intact part. This is also

discussed in this chapter.
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Finally, a summary of the current work, conclusions, recommendations for

extensions of the study are presented in Chapter 8.
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CHAPTER 2

REVIEW AND DISCUSSION

As mentioned before, instability in mechanics is a broad and extensively
studied area. Mathematically, instability means that a small input may induce
large response. In mechanical field, there are many definitions for instability each of
which may depict a different physical phenomenon. The whole review for instability
is not attempted here. However, only the literature related to this study will be

reviewed [Tang, Frantziskonis and Desai 1992b)].

2.1 Basic Laws and Concepts

It would be helpful to present some basic laws and fundamental definitions
before we go through the general review. It is worth noting that the basic laws and
fundamental definitions can be found from the referenced books [Langhaar 1962;
Howerton 1962]

2.1.1 Law of Kinetic Energy

The work of all the forces (internal and external) that act on a mechanical
system equals the increase of kinetic energy of the system.

In symbols, the law of kinetic énergy is expressed by the equation
W = AT (2.1)

where AT is the increment of kinetic energy that results from work W.

2.1.2 First Law of Thermodynamics
The work that is performed on a mechanical system by external forces plus
the heat that flows into the system from the outside equals the increase of kinetic

energy plus the increase of internal energy.

In symbols, the first law of thermodynamics is expressed by the equation

W, +Q = AT + AU (2.2)
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Here, W, is the work performed on the system by external forces, Q is heat that
flows into the system, AT is the increase of kinetic energy, and AU is the increase

of internal energy. For adiabatic process, @ = 0, then eq. (2.2) becomes

W. — AU = AT (2.3)

2.1.3 Second Law of Thermodynamics

The total entropy S contained in the volume V of the medium corsists of
two parts: the entropy S. which is exchanged with the environment by means of
heat through the surface A, and the entropy S; contained in the volume under
consideration. According to thermodynamics, this second part of the entropy must

satisfy the Clausius-Duhem inequality [Derski 1989}:
5,-:5"—5.}20 (2.4)

where overdot means increment. The second law of thermodynamics is necessarily

statistical, and its validity is limited by the laws of statistics [Howerton 1962].

2.1.4 Holonomic (Nonholonomic) System

A material system, between whose possible positions all conceivable continu-
ous motions are also possible motions, is called a holonomic system [H. Hertz 1899).
A system constituted by an elastic material is a holonomic syétem. A system con-
stituted by the material with plasticity or/and damage behavior is a nonholonomic

system.

2.1.5 Conservative (Unconservative) System

A mechanical system is said to be conservative if the virtual work in a virtual
displacement that carries the system around any closed path is zero. The internal
force of a material with the behavior of elasticity is conservative. The internal force

of a material with plasticity and/or damage behavior is unconservative.
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2.2 Mathematical Theory for Stability and Bifurcation

2.2.1 General Concepts

In its most general form bifurcation theory is a theory of equilibrium solu-
tions of nonlinear equations [looss and Joseph 1980]. By equilibrium solutions, it

is meant, for example, steady solutions, time-periodic solutions, and quasi-periodic

-solutions. It is not possible, yet necessary, to review here all the mathematical

theories for stability and bifurcation. However, some basic concepts are presented
to give insight in the investigation.

Consider evolution equations of the form

dU
— = U 2.

Where t > 0 is the time and u is a parameter which lies on the real line —oc0 <
g < oo. The unknown in (2.5) is U(t)'. F(t,u,U) is a given nonlinear function or
operator. When F is independent of t, t is omitted and write F(u, U). Equation
(2.5) governs the evolution of U(t) from its initial value U(0) = Uy. An equilibrium
solution is a solution to which U(t) evolves after the transient effects associated
with the initial values, have died away.

When F(u, U) is independent of t, the problem

dU
d—t = F(u,U) (2.6)

is said to be autonomous. When F(t,u,U) is periodic in t with period T, the

problem

% =F(t,p,U) =F(t + T, u,U) (2.7)

is said to be nonautonomous, T-periodic.

Bifurcation solutions are equilibrium solutions which form intersection
branches in a suitable space of functions. For example, when U lies in R! the
bifurcating steady solutions form intersection branches of the curve F(u,U) = 0
in the pu, U plane. When U lies in R? the bifurcation solutions form connected
intersection surfaces or curves in the three dimensional (u,U,,U;) space. One e-

quilibrium solution bifurcates from another at u = pq if there are two distinct
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equilibrium solutions U() and U(? of the evolution problem, continuous in y, and
such that UM (ug,t) = UP (yg,t).

Not all equilibrium solutions arise from bifurcation. Isolated solutions and
disjoint branches of solutions are common in nonlinear problems (G.Iooss and
D.Joseph 1980).

Let us subject an equilibrium solution to a small initial perturbation to
obtain the linearized theory. If the perturbation grows the equilibrium solution
is unstable, and if it eventually decays the equilibrium solution is stable to small
disturbances. It may be unstable to larger disturbances, but if it is stable to small
disturbances then there is no other equilibrium solutions of the evolution problem
close to the given one. Since solutions which bifurcate from a given branch are off
that one in a continuous fashion, it is often true (but not always) that a necessary
condition for bifurcation is the instability of the equilibrium solution to indefinitely
small disturbances. The stability theory for indefinitely small disturbances is linear
because quadratic terms in the disturbance equations are negligible compared to

linear one.

Evolution Equations in One Dimension

Consider an evolution equation in R! of the form

d
= = Flu,w) (28)

Where F(.,.) has two continuous derivatives with respect to u and u. Let equilib-

rium solutions of (2.8) satisfy u = ¢, independent of t and
F(ué) =0 (29)

The study of bifurcation of equilibrium solutions of the autonomous problem
(2.8) is equivalent to the study of singular points of curves (2.9) in the (u, €) plane.
In the study of equilibrium solutions, the following classification of points is

introduced [Iooss and Joseph 1980].
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i) A regular point of F(u,€) = 0 is one for which the implicit function theorem

works:

%E#O or %%;éo (2.10)
if (2.10) holds, then a unique curve u = u(€) or € = ¢(u) through the point
can be found.

ii) A regular turning point is a point at which du(e)/de changes sign and
OF (s, €)/0u # 0.
iii) A singular point of the curve F(u,¢) = 0 is a point at which

OF OF
a =5 = 0 (2.11)

iv) A double point of the curve F(u,€) = 0 is a singular point through which
pass two and only two branches of F'(u, €) = 0 possessing distinct tangents.
It is assumed that all second derivatives of F' do not simultaneously vanish
at a double point.
v) A singular turning (double) point of the curve F(u,€) = 0 is a double point
at which %‘f changes sign on one branch.
vi) A cusp point of the curve F(u,e) = 0 is a point of second order contact
V between two branches of the curve. The two branches of the curve have the
same tangent at a cusp point.
vii) A conjugate point is an isolated singular point solution of F'(u,¢) = 0.
viii) A higher-order singular point of the curve f(u,¢) = 0 is a singular point at
which all three second derivatives of f(u,€) are null.
Some of the solutions which bifurcate are stable and some are unstable. To

study the stability of solution u = € people often study the linearized equation

dz _0F(n.¢e),

pr 5 (2.12)
the general solution of which is
z=e%2 (2.13)
where
o= aF(a’:’e) (2.14)
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Since all solutions of (2.11) are in the form (2.13). It is found that distur-
bances z or € grow when o > 0 and decay when ¢ < 0. The linearized theory then
implies that (u(e),€) satisfying F(u,€) = 0 is stable when ¢ < 0 and is unstable
when o > 0. This is the so called Conditional Stability Theorem. |

2.2.3 Stability of Steady Solutions of Evolution Equations
in Two Dimensions and n Dimensions

The most complete results known in bifurcation theory are for problems
which can be reduced to one or two dimensions. Consider two-dimensional au-
tonomous problems

du

where
filp,u) = Aij(p)u; + Bije(p)ujue + Cijr(p)ujurur + 0(|| u |I*) (2.16)

The same equations (2.15) and (2.16) hold in R". In general, the subscripts range
over (1,2,...,n); in R?, n=2.

To test the stability of the steady solution U(u) corresponding to the zero
solution u = 0 of (2.15), people examine the evolution of a disturbance v of u =0

which, in the linearized approximation, satisfies

dv '
@ u(p,0lv) = A(p).v _ (2.17)
or, in index notation,
dv.- '
a = Aij(u)v; (2.18)

The stability to small disturbances of the solution u = 0 is controlled by the

eigenvalues of A(u). Set v = e?'x in (2.17), it is found that
A(p)x = ox (2.19)

where

o(pu) = €(p) + in(p) (2.20)
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is an eigenvalue of A(u) if x # 0. u = 0 is stable by the criterion of the spectral
problem of £(u) < 0 for all eigenvalues o(i), and is unstable if there is a value o
solving (2.19) with x # 0 for which &(u) > 0.

2.3 Stability for Holonomic Conservative System

The stability for a conservative system can be described by the principle
of minimum potential energy. The principle of minimum potential energy dictates
that a conservative holonomic system is in a configuration of stable equilibrium
if, and only if, the value of potential energy is a relative minimum. From this
definition it is understood that:

1) For any mechanical system, it is a sufficient condition. The equilibrium is
unstable if there is a path away from the equilibrium position for which
virtual work is not negative.

2) A mechanical system is sometimes understood to be in a state of stable
equilibrium if positive work must be done on the system in any small dis-
placement away from the equilibrium configuration.

For systems with finite degrees of freedom, the mathematical implications
of the principle of minimum potential energy are comparatively simple. The poten-
tial energy is a single-valued function of the generalized coordinates z,,z;,...z5.
Also, the potential energy V depends on the external loads on the system. The
coordinates r; are considered as regular in a region R of configuration space that
includes the configuration of interest. (Coordinates z; are said to be regular if two
conditions are satisfied: (1) the z;’s are independent; (2) on incremental change
Az; ( Azj = 0,j # 1) in the i** generalized coordinate, will produce a displacement
in configuration space (of magnitude) As* that is of the same order of magnitude
of Az;.) For values of the z's in R, the function V and its partial derivatives to
the third order with respect to z's are postulated to be continuous functions of
the z's. Then the equilibrium configuration is said to be stable if the second order
deviation of the potential energy is positive [Langhaar 1962}. The condition turns

out that the stiffness matrix of the system is positive definite.
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For systems with infinite degrees of freedom, the mathematical implication
of the principle of minimum potential energy is relatively complicated, because the
analytical solution can not be obtained for general boundary value problems. The
solution is approached by numerical analysis. As computer science develops, the
finite element method is popularly used to solve boundary value problems. When
the finite element method is used, the infinite degrees of freedom of the system
are replaced by finite degrees of freedom [Desai 1972; R.D. Cook 1981]. Then the
stability of the system can be evaluated by the general stiffness matrix if proper

elements are used.

2.4 Instability of Unconservative System

Brittle materials, such as rock and concrete, when subjected to external
mechanical load exhibit the feature of plastic flow and damage accumulation and
constitutes an unconservative system, and when compressed at e.g. constant axial
strain rate under conditions of either uniaxial stress or triaxial compression exhibits
a phenomenon called 'strain softening’. Materials which exhibit such softening are
characterized by a constitutive response in which the stress rises monotonically with
strain (strain hardening) to a peak, and then decreases with further increases in
strain (Figure 2.1). Under general states of small deformation, a material element is
said to undergo strain softening when its fourth order tangent stiffness tensor C;;
is negative definite [Read and Hegemier 1984; Valanis 1984]. Experiments show
that even under very low stress, these brittle materials behave nonholonomically.
There are many definitions for stability for these brittle material system. In this

section, the related theories and concepts are reviewed.

2.4.1 Drucker’s Stability Postulate
The stability postulate formulated by Drucker {1951,1956,1959] is basically

for solid metals which exhibit associated flow. According to this postulate, stability

requires that the second order increment of plastic work is positive or zero.

Gijél; 2 0 (2.21)
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Figure 2.1 Schematic of Stress-Strain Curve

in which ¢;; is the increment of stress and €7} is the resulting increment in plastic
strain. For metals, positive values of the second increment of plastic work are
always associated with the stable, ascending part of the stress-strain relationship,
whereas negative values are associated with the unstable, descending part of the

stress-strain curve obtained after peak failure, Figure 2.2.

2.4.2 Hill's Stability Condition
Figure 2.3 shows a schematic illustration of the region in which (2.21) is not

fulfilled for a material with nonassociated flow. The region is shaped as a wedge




Figure 2.2 An Elastic-Plastic Material (Time-Independent): Rising
Curve gé > 0 (after Drucker 1959)

between the current yield surface f and the plastic potential surface g corresponding
to the current stress point. All stresses, including the stress difference o, — o3 are
decreasing within the wedge between f and g, whereas the effective stress ratio
a1// o3/ is increasing in this region.

According to Hill’s condition (Hill,1958), stability should be maintained as

long as

/ gijé;dV = / (Gijes; + 0ijél;)dV 20 (2.22)
v v
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Figure 2.3 Wedge-Shaped Region of Stress Paths with Decreasing
Stresses in which Granular Materials with Nonassociated Flow May
Be Unstable during Hardening inside the Failure Surface (after Lade
1989)

in which ¢}, and ¢; are the total and elastic strain increments, respectively. Along
stress paths with decreasing stresses of the type showr in Figure 2.3, the elastic
second energy increment has opposite sign of the plastic second energy increment.
Hill’s stability condition therefore guarantee stability a little beyond the condition
given by Drucker [Lade 1989)].
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2.4.3 Mandel’s Stability Threshold

For elastic-plastic solids we can assume that stress and strain rates are

related through a fourth order tensor D in general non-symmetric:
c=D:é (2.23)

Tensor D is different in loading and in unloading. Assuming that the elastic behav-
ior (unloading) at every point is characterized by a positive definite tensor, Hill’s
condition is always fulfilled [Ranecki and Bruhns 1981]. If a much more restrictive
condition' holds, requiring that at every point of the body that the second order

work ¥ is positive for every strain rate and corresponding stress rate (2.23):

o]

Y= d:€>0 (224)

Equation (2.24) is referred to as the local criterion for uniqueness [Bigoni and
Hueckel 1991]. The central property of the local criterion is the restriction that
imposes on the constitutive law (2.23). In fact, substituting (2.23) into (2.24), an
equivalent condition of positive definiteness of the constitutive rate tensor D is
obtained:

x:D:x>0, VxeSym-— {0} (2.25)

The above requirement restricts only the tensor D during elastoplastic loading.

A condition weaker with respect to the criterion (2.24), but sufficient to
exclude strain localization, may be obtained by specializing tensor x in (2.25) to
a particular rate deformation mode defined by a tensor product g ® n of a vector
n and a vector g. This yields the requirement of the positive definiteness of every

tensor n.D.n, i.e.:
gon:D:n2g>0, Vg#0,vn3|n|=1 (2.26)

The requirement (2.26) is the condition of strong ellipticity of the system of dif-
ferential equations governing the local incremental equilibrium. If the constitutive
tensor D is symmetric, the condition (2.26) is equivalent to the requirement that
all eigenvalues of the tensor are real and strictly positive. The latter condition was

stated by Mandel [1966] as a threshold to material stability.
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2.4.4 Instability in Domain

The instability of a finite rather than an infinite body has been studied
by Kondaurov, Nikitin and Ryzhak [1989]. The instability criterion used can be
described as: the equilibrium state of the body is considered unstable if there exists
a small virtual displacement field éu for which the work done by the boundary
tractions is not compensated by the work done by the internal stresses. Consider
elasto-plastic material for which the constitutive law is a piecewise-linear relation
between the stress increments and virtual strains, i.e.

2.27)

Jmp_ JL®:b6e, for be:S <0
6T—{LP:66, for 6e: S >0 (

where 07T is the Jaumann increment of the Cauchy stress tensor, L¢ and L? are the
fourth rank tensors of elastic and elasto-plastic moduli, e is strain corresponding
to du, and S is tensor prescribing the normal to the yield surface.

The integral criterion of instability reduces to the requirement of loss of the
positive definiteness of the piecewise-quadratic functional [Kondaurov, Nikitin and
Ryzhak 1989]

6{bu} = /v(ée L :be — 67T : 6e)dV < 0 (2.28)

where T? is an auxiliary stress tensor such that T®.n = t®, A.T® =0, and t® are
the boundary tractions.

The preferable mode of instability is assumed to be that one which cor-
responds to the earliest moment of loading, i.e. to the greatest value of plastic
modulus. Under these assumptions, the effect of constraint on the form of rhe-
ological instability manifestation was investigated. Two types of the constraint
were considered, namely kinematic and stiffness ones. It was shown that the ap-
pearance of a localized mode of instability is influenced by the stiffness constraint
[Kondaurov, Nikitin and Ryzhak 1989).

2.4.5 On Plastic Flow Localization

Plastic flow localization refers to circumstances where a macroscopically

homogeneous or smoothly varying pattern of plastic deformation develops at low




37

strains and then at larger strains gives way, more or less abruptly, to a highly
localized deformation pattern [Needleman 1990]. There are several plastic insta-
bility phenomena that can be regarded as localization in this sense. Shear band
localizations are observed in a variety of solids; for example, in geological materials,
Waversik and Brace [1971], Vardoulakis [1979], and Lade [1989]. Depending on cir-
cumstances, localization can arise either as a consequence of the plastic low process
itself or as the result of progressive damage. Since shear bands have significance as
a precursor to fracture and as a mechanism of large strain plastic response, much
attention has been given to the mechanics of shear band localization phenomena,
Rice [1977|, and Needleman and Rice [1978].

For quasi-static deformation histories and rate independent material re-
sponse, there is a framework that regards localization as a material instability.
Deformations in a localized band are permitted provided the velocity field remains
continuous and continuing equilibrium at the band interface is satisfied. Bifurcation
and imperfection analyses within this framework have proved useful in revealing the
influence of constitutive features and stress state on localization, Rudnicki and Rice
[1975], Rice [1977] and Needleman and Rice [1978]. In more general circumstances,
regions of localization propagate from strain concentrations and a full solution to
the relevant initial/boundary value problem is required.

The classical elastic-plastic solid with a smooth yield surface is quite resis-
tant to localization, Rudnicki and Rice [1975] and Rice [1977]. Deviations from
the classical constitutive description, in particular yield surface vertex effects and
plastic non-normality, significantly lower the strain required for the initiation of
localization. Localization can also emerge as a consequence of an explicit soften-
ing process, e.g. damage [Frantziékonis and Desai 1987b]. For structural metals
yield vertex effects are of general significance since, within the rate independent
idealization, the discreteness of slip systems implies a yield surface vertex at the
current loading point [Needleman 1990]. Although on quite general grounds the
flow potential surfaces for rate dependent solids are expected to be smooth [Rice
1970], the high curvature of flow potential surfaces at the current loading point

that comes from the discreteness of slip systems promotes localization when initial
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imperfection are accounted for. However, increasing material rate sensitivity can
act to delay the onset of localization {Needleman 1988].

The existence of stationary body wave disturbance signals the onset of bulk
localization [Hill 1962; Biot 1963; Mandel 1966; Rice 1977]). The effects of bound-
aries and interfaces on localization were investigated by considering conditions for
stationary waves where boundary condition do play a role [Needleman and Ortiz
1991]. In particular, stationary Rayleigh waves along stress free boundaries and
stationary stoneley waves along interfaces were considered. The significance of s-
tationary waves stems from their role in signifying the transition from stability to
instability; when all possible wave speeds ¢ are such that ¢ < 0 for some waves,

there is divergence type growth [Rice 1977].

Analysis of Shear Band Localizations:

An element of a solid is considered subject to displacement boundary condi-
tions that in a homogeneous (and homogeneously deformed) solid would give rise
to a uniform gradient field. Conditions are sought under which bifurcation into
a localized band mode can occur. Current values of field quantities and material
properties inside and outside the band are presumed identical so that one possible
solution for the incremental quantities corresponds to the homogeneous one. At
the considered stage of the deformation history, suppose that within a thin planar
hand of orientation n in the reference configuration incremental field quantities are
permitted to take on values differing from the uniform values outside the band. The
band is presumed sufficiently narrow to be regarded as homogeneously deformed.

- Two requirements must be satisfied across the band interface. First, com-

patibility requires [Thomas 1961; Hill 1962; Mandel 1966; Rice 1977}
Fo,=F,+4®n (2.29)

where ()s and (), denote field quantities inside the band and outside the band,
respectively, and @ denotes the tensor product so that the component form of

q@nis ¢'n;, F is strain rate.
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For an incompressible solid, the strain rate jump across the band is a shear
strain rate jump and, hence, the band is a shear band.

Next, incremental equilibrium requires
n(Sp,—-S,)=0 (2.30)

where S is stress rate.
For classical, rate independent plasticity, and for a material element subject

to continued plastic loading, a localization bifurcation is possible when
[n.Kian..nj.q=0 (2.31)

where the operator .. is defined so that the component form of (2.31) is
n:K}?*'n41 = 0 and K an corresponds to the plastic loading branch. A localization
bifurcation first becomes possible at the earliest stage in the deformation history
at which (2.31) has a nontrivial solution, i.e. when the determinant of coefficients
in (2.31) vanishes. The outcome of the bifurcation analysis is a critical orientation,
n, as well as a critical strain.

Localization is associated with a change in the character of the governing
equations. Under quasi-static loading conditions the equations governing incre-
mental equilibrium lose ellipticity, while under dynamic loading conditions wave
speeds become imaginary. As a consequence the width of the band of localized
deformation is arbitrarily narrow and numerical solutions to localization problems
for rate independent solids exhibit an inheyent mesh dependence, as discussed in
Needleman [1988].

Localization analyses based on (2.31) have revealed the implications of var-
ious constitutive features, e.g. yield surface vertices and plastic non-normality,
and stress state for the onset of shear localization, Rice [1977], Needleman and
Rice {1978]. The Mises solid is quite resistant to localization, Rudnicki and Rice
[1975], Rice {1977]. Deviations from the Mises idealization permit a shear band
localization to occur with positive hardening. However, the greater susceptibility

to localization under plane strain loading conditions remains [Needleman 1990].
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For the rate dependent elastic-viscoplastic solids, the counterpart to (2.31)

1s ‘
[n.Ketastic--n].q =0 (2.32)
As long as stress levels remain small compared to elastic stiffnesses, the only
solution to (2.32) is the trivial one and a localization bifurcation does not occur.
Hence, when material rate dependence is accounted for, there is no loss of ellipticity
in quasi-static problems and wave speeds remain real. Material rate dependence,
in effect, introduces a length scale into the boundary value problem, although the
constitutive description does not explicitly contain a material parameter with the
dimensions of length, Needleman [_1988]. In quasi-static problems, the length scale
is one characterizing the imperfection or inhomogeneity. In dynamic problems,
it is a characteristic length of propagation of elastic waves. Accordingly, for the
viscoplastic constitutive relation, pathological mesh dependence does not occur in

numerical solutions for rate-dependent solids.

2.5 Griffth’s Criterion

The renowned method of studying fracture in the continuum picture employs
energy rate considerations. Consider first the situation of an arbitrarily shaped
body, arbitrarily loaded, containing a single traction free propagating crack with
instantaneous surface area .4(t). Balance of the global energy requires that at each

instant of propagation [Eftis and Liebowitz 1975]
W+Q=E+K+T (2.33)

In (2.33), W is external work rate, Q is the energy related to the temperature
change in the system, E is the strain energy rate, K is the kinetical energy rate,

and T is the fracture energy rate. By Griffth,
I = yA(t) (2.34)

where ¥ > 0 is a fracture surface energy density which represents the energy re-

quired to form a unit of new surface and which is assumed to be a constant for
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a given material. The usual practice assumes thé.t the loading process is quasi-
static, which makes the kinetic energy negligible, and that an initially uniform
temperature distribution through the specimen will remain . Then (2.33) becomes
as

W=E+T (2.35)

By using the chain rule % = .»ib%- we get
— - — = — (2.36)

That part of the work rate of the applied forces which is not taken up as change in
the elastic and plastic strain work is the energy available to promote crack growth.

Consider the situation where the separation is essentially brittle in nature
and the plastic enclave regions are small enough to be ignored. Then E is just
the elastic strain energy. Suppose that at some particular level of applied load
the existing crack experiences a small increment of growth AA. An incremental

balance of energy requires that
-AP =AW - AE=ATl'=~vAA (2.37)

where P = E — W is the elastic potential energy. Two limiting cases are frequently
discussed in the literature. The first assumes that for an arbitrarily small increment
of crack growth the outer boundary surface of the solid on which the load is applied
can be considered to remain stationary, "fixed grips”. If, in addition, the body force
distribution is ignored then the work rate contribution of the applied force vanishes

and equation (2.36) becomes in the limit as Aa approaches zero

oP 0E or
—— e =G = — 2.38
94~ 04 94 (2:38)
In this case the symbol G is appropriately referred to as the "elastic strain energy
release rate”, since the energy rate required to promote crack growth is supplied

at the expense of the existing global elastic strain energy field. In the second

. case during an arbitrarily small increment of crack growth the applied load is
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assumed to remain fixed, the "dead-load” situation. The applied surface traction
on the boundary surface does work as the crack extends. However by application
of Clapeyron’s theorem of linear elasto-statics the work done by the unchanging
boundary loads (neglecting body force) is twice the increase of elastic strain energy
[Eftis and Liebowitz 1975]. Thus f"’a—vX- = 23—% and it follows from equation (2.36)

that at the onset of "dead-load” crack extension
— = =G = — (2.39)

Here there is an increase of global elastic strain energy with "dead-load” crack
extension. When the increment of crack extension is sufficiently small, implying
correspondingly small load and small displacement changes, then the absolute val-
ues of the left sides of equations (2.38) and (2.39) are approximately the same.
Hence the magnitude of the elastic strain energy rate associated with such crack
extension is about the same in both cases, even though the global elastic strain
energy decreases under "fixed-grips” and increases under "dead-load”.

Equation (2.38) and (2.39) are both equivalent to part of Griffth’s criterion
for brittle crack extension, which states that the energy P+ T =E-W + T of a
cracked body has a stationary-maximum value at the inception of crack expansion.

le.,

AP +T)
04

In other words, for an existing crack to expand the quantity P + I" cannot increase

0 (2.40)

with increase in the size of the crack. A sufficient condition for P + T to be

maximum is the added requirement

2
Q_(_P_"iz<0

a2 (2.41)

The two conditions (2.40) and (2.41), taken together, represent an analytical state-

ment of Griffth’s criteria.
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2.6 Surface Instabilities and Interface Instabilities

2.6.1 general

About three decades ago Germer et al [1961] observed surface irregularities
in homogeneously strained metal solids. Based on electron diffraction measure-
ments it was concluded that displacements of a superficial layer toward the interior
of the metal solid is five times as large as that of the next layer.

The possibility that a plane, tractionless surface of a homogeneously strained
solid losses flatness and develops surface undulations, or waves was noted by Biot
(1963] in his study of the plane strain deformation of non-linearly elastic solids.
His bifurcation analysis of the static deformation of a semi-infinite half-space re-
veals that the onset of surface modes occurs at a critical stress, or strain, which
depends on the properties of the solid. Following Biot’s philosophy, an explorato-
ry study was carried out of various aspects of the development of instabilities of
traction-free surfaces of statically strained, rate-independent elastic-plastic solid-
s, Hutchinson and Tvergaard [1980]. It is addressed that the surface instability
phenomena are closely related to yield vertex effects. In other words, existence
of surface instabilities is strongly dependent on the type of constitutive law as-
sumed. Then, localized shear band formation developing from a stress-free surface
in a highly strained elastic-plastic material under plane strain was studied by K-
itagawa and Matsushita [1987], in which, both geometrical and material factors
were considered. Rock bursting as a surface instability phenomenon was investi-
gated by Vardoulakis [1984]. The instability criterion is formulated both in terms
of the ratio of the strengths of the material in uniaxial extension and compression,
and in terms of an appropriate hardening parameter. Based on Mindlin’s theory
[Mindlin 1964] for material micro-structure, a single perturbation parameter was
introduced to the study of surface effects and related instabilities by Frantziskonis
and Vardoulakis [1992].

Thompson (1969] and Benallal et al [1989] have noted that the failure of
the complementing condition at the boundary is equivalent to the existence of sta-

tionary Rayleigh surface waves. An analogous condition for an ill-posed problem
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that arises in cases where interfaces are present is the existence of stationary s-
toneley waves. Similar to the localization condition, the stationary Rayleigh and
stoneley wave conditions determine the condition of shear bands intersecting free
surfaces and interfaces, respectively. The stationary wave analyses [Needleman and
Ortiz 1991] are related to the surface instabilities investigated by Biot [1965] and
Hutchinson and Tvergaard [1980] to the short wavelength limit of the bifurcation
solution obtained by Hill and Hutchinson [1975] for plane strain, by Triantafylidis
[1980] in pure bending for solids obeying normality and by Needleman [1979] for
plane strain and for solids where the symmetry K;;i = Kiuj is lacking, and to
the interface instabilities analyzed by Biot [1963c]. While these stationary-wave
solutions generally correspond to the cuset of instability, their shear-band interpre-
tation ié restricted to the immediate vicinity of the surface or interface when they
precede bulk locaiization.

In order to understand these studies, it is helpful to review Biot’s theory.

2.6.2 Biot’s Surface Instability Theory
A solid half-space is subject to a uniform compressive stress P parallel with
the surface. Consider an incompressible elastic medium of orthotropic incremental
properties. The x axis coincides with the surface, and the y axis is directed pos-
itively outward (Figure 2.4). They are also axes of symmetry for the mechanical
properties of the medium. The incremental deformation analyzed is a state of plane
strain whc?re all variables are functions of x and y. The two-dimensional equations
of equilibrium for the stress field are (Biot 1965)
0s11 ?;52 Ow

——— —_ _ = D)
Bz + By Pay 0 (2.42a)

aSm 8822 8w - 949
_-3_1‘—+a—y—PE—O (2.425)

The rotation w is defined by

w= (LY (2.43)
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Figure 2.4 Half Space and Coordinate System (after Biot 1963)

where u and v are the displacement components. The stress components s;; , s22,
s12 are the incremental stresses referred to rectangular axes rotated locally through

the angle w. The strains are related to the incremental stress by the relations [Biot
1963)

811 —s=2Ne,, (2.444)
822 — 3 = 2Ney, (2.440)

312 = 2Qezy (2.44¢)
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These relations introduce two elastic coefficients N and Q and represent a
material of orthotropic symmetry. It reduces to the familiar isotropic stress-strain

relation for an incompressible rpaterial if
N=Q (2.45)
To consider the medium being incompressible, add the condition:
€zz +eyy =0 (2.46)
The condition (2.46) of incompressibility is satisfied by putting
¢ a¢

u=-22 =2 (2.47)

dy’ Oz

The field equations (2.42) then reduce to two equations with two unknowns:

2
%——[(N Q+3PZE+@+3pItI=0 (s
Js | ¢ 1, 8%,
Solution: of these equations are of the form
o2 = f(ly)sin(lz) (2.49)
s = F(ly) cos(lz) : (2.50)
Then Biot [1963] derived:
1 " " 1
(Q+§P)f - 202NV - Q)f +(Q—§P)f=0 (2.51)
1 1
F(ly) = (2N = Q + 3 P)f = (@ + 3 P)f" (2:52)

The primes denote differentiation with respect to the argument ly. The function

of f is the general solution of equation (2.51), i.e.

f =cieP (2.53)
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where repeat incident means summation and §; are any of the four roots of the

equation
Bt -2mp2 + k=0 (2.54)
It was enforced that:
2_1-¢ . _ P _2AN/Q) -1
=T3¢ (_2Q,m_-———-1+c (2.55)

Exclude all cases where one of the roots is pure imaginary and assume that
m>0 with k*>0 (2.56a)

m<0 with m?-k*<0 (2.56b)

Under these conditions the roots ;3 of equation (2.54) are either real or complex
conjugate. Their real part is different from zero, and it is always possible to choose

two of them such that their real parts are positive, i.e.
B = V{m + (m? - k*)} (2.57a)
8y = /{m — /(m? - k?)} (2.57b)
The solution adopted is then
f=c e’V 4 cpef?ly (2.58)
It vanishes at y = —o0.

2.7 Other Subjects

The stability of the flow of saturated inelastic porous media has been inves-
tigated in idealized initial and boundary value problems in both quasi-static [Rice
1975; Rudnicki 1983, 1984] and dynamiic contents [Vardoulakis 1986]. Emphasis is
laid there on the fluid-solid coupling that occurs due to the inelastic volume change
taking place in the solid phase. Typically, the point is to analyse the growth of

small prescribed inhomogeneities. The qualitative and quantitative results depend
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crucially on the assumed initial inhomogeneities. The analysis given by Loret and
Harireche [1991] aims at defining the acceleration wave-speeds in inelastic rate-
independent porous materials and is centered around the two modes in which the
dynamic equilibrium equations lose their hyperbolic character. These modes are
referred to as stationary discontinuity (one wave speed is zero) and flutter insta-
bility (the squares of two wave speeds are complex conjugate). It is shown that in
some circumstances, some wave-speeds cease to be real in the very early stages of
the inelastic deformation process due to the incipience of a flutter instability.
Petukhov and Linkov [1979] associate the instability with transformation of
the difference between the external forces work increment and the intrinsic energy-
to-kinetic energy transition increment accompanied by acquisition of a certain ve-
locity by elements of the medium, and define the lose of stability as the external
forces work increment excess (or, at least, non-decrease) over the intrinsic energy
increment under constant external conditions. The difference is denoted by AK.
The state of equilibrium is unstable if a possible field of increment of displacements
exist which make AKX > 0. It is pointed out by this theory that the material system
may not lose stability in the strain softening stage. The stability termed there is
for engineering practice, such as for calculation of pressure acting on support.
The instability in atomic level is referred to the existence of an unstable-
symmetric point of bifurcation which precipates the development of an unexpect-
ed shearing strain violating the basic symmetry of the system, Thompson and
Shorrock [1975]. This kind of instability is highly relevant to crack nucleation
and development, since an unstable bifurcation in the tensile zone at the tip of a
crack could be a mechanism for destroying the symmetry of a plane propagating
crack. Macmillan and Kelly [1972] have confirmed on the basis of a linear eigenval-
ue analysis that a mechanically stressed perfect crystal can exhibit a bifurcational
instability at stresses ranging to 20 per cent below that of the limiting maximum
of the primary stress-strain curve. This means that the bifurcational instability in

atomic level is met before the peak point is reached.
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2.8 Calculation of Bifurcation Points

In the finite element literature, mostly the so called arc-length or path-
following procedures are applied to trace stability points, Riks [1972, 1979], Ramm
[1981]). Within this approach several algorithms have been introduced to detect
bifurcation or limit points [de Borst 1989]. Simple methods for this purpose are
given by inspection of the determinant of the tangent stiffness matrix or the cal-
culation of the current stiffness parameter. These methods may not provide a tool
to calculate stability points accurately since the basis of path-following is an incre-
mental procedure {Stein, Lammering and Wagner 1989]. A Newton-type method
for the direct calculation of stability points has been presented in [Wriggers, Wag-
ner and Miehe 1988] and [Wriggers and Simo 1990] which leads to an extension
of the nonlinear set of equation by constraint conditions. By using the linearized
eigenproblem at a single bifurcation point as the constraint condition, one obtains
the bifurcation mode as part of the solution process [Wriggers and Simo 1990]. The
standard iterative solution of extended systems employes a modification of the clas-
sical bordering algorithm. From a computational standpoint, two main issues arise
in the implementation of this procedure. First, Newton’s method often experiences
a severe degradation of the asymptotic rate of quadratic convergence near a mul-
tiple bifurcation point. Second, the implementation of Newton’s method involves
the directional derivatives of the tangent stiffness which can only be computed in
closed form for a very limited class of problems. In the study given by Wriggers and
Simo (1990}, the first issue is dealt with by a penalty regularization of the extend-
ed system which improves the condition number of the Hessian near a bifurcation
point as well as the rate of convergence of Newton’s method. In addition, these
derivatives are formulated in an alternative form suitable for an approximation by
a difference quotient. In the following the general method for bifurcation analysis

in geomechanics is presented.
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Bifurcation Analysis in Geomechanics

Incremental equilibrium of a structure requires that a stress rate distribu-
tion, say J 4, satisfies
/ 675 4dV = 6aTF (2.59)
v

for all kinematically admissible virtual strain vectors de. Here F is the rate at
which- the external forces vary and da is the virtual displacement vector. At a
bifurcation point there must exist yet another stress rate distribution, say &g, that
satisfies incremental equilibrium. Consequently, &g must also satisfy (2.59) and

subtraction of both equilibrium equations results in
/ seTAGdV =0 (2.60)
v

with A¢ as difference between both stress rate distributions.
Define B as the strain-nodal displacement matrix that relates the strain rate

vector ¢ to the nodal velocities a, i.e.
é = Ba (2.61)

and suppose that both stress rate distributions are related to strain rate é by the
same tangential ralation D:

& = Dé (2.62)

Using (2.61) and (2.62), (2.60) can be written as
faTKAa =0 (2.63)

with
K = / BTDBJV (2.64)
v
where Aa is the difference between both velocity distributions, and K is the tan-

gential stiffness matrix. Since (2.63) must hold for any virtual displacement, the

following set of equations is to be valid at bifurcation point [de Borst 1989):

KAa=0 (2.65)
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Write Aa as a linear combination of the n right eigenvectors v, and the n left

eigenvectors w; of the matrix K:

Aa = T(w! Aa)v; (2.66)
Then (2.65) can be recast in the form

T(wlAa)\iv; =0 (2.67)

Since Kv; = \;v; (no summation implied). Assuming that K is not singular, the
right eigenvectors v; and the left eigenvectors w; each constitute a set of n linearly
independent eigenvectors. Consequently, (wl Aa)\; must vanish for each i. Since
Aa can not be orthogonal to each left eigenvector w;, this means that at least one
eigenvalue, say A1, must vanish at a bifurcation point.

In practical numerical analysis, a point where the tangential stiffness has
exactly one or more vanishing eigenvalues will never be encountered. Instead it is
assumed that a bifurcation point has been passed when at least one (slight) negative
eigenvalue is extracted on a monotonically rising part of the load-deflection curve
or when two or more negative eigenvalues have been calculated on a descending

branch of this curve {de Borst 1989].
2.9 Theory for Post-Bifurcation Analysis

Classical theories of plasticity are not suited for addressing problems of s-
train localization and deformation patterning. In particular, they break down in
the post-bifurcation regime where ellipticity is lost. This is evidenced by the in-
ability of the classical theories to provide any information on shear band thickness
and spacings, or any estimate on preferred wavelength in surface instability and
liquefaction phenomena [Vardoulakis and Aifantis 1991]. Moreover, the loss of ellip-
ticity manifests itself dramatically in the numerical analysis of large scale problems
where one often encounters a critical dependence of the solution on the mesh-size,
accompanied by stability and convergence problems.

In classical plasticity analysis, frequent recomputation of the stiffness ma-

trix improves convergence. Yet paradoxically it is a common experience for a
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satisfactory program to encounter numerical difficulties when tangent stiffness ma-
tries replace a constant elastic matrix in the iterations. Typically, the increments
converge with fewer iterations, but the program becomes temperamental about
incremental size and eventually reaches a point where no reasonable choice of size
will permit convergence [Willam, Pramono and Sture 1986, Crisfield and Wills
1988]. Stable iterations merely indicate convergence to the solution of the finite
element model. They do not show whether the discretization in the model is goodl
or whether the physics underlying it is adequate. Thus shear band programs u-
tilizing the strategies mentioned above may converge to a solution, but the shear
band width will shrink indefinitely as the mesh is refined instead of stopping at a
realistic value. Furthermore, the energy dissipated will be wrongly predicted to be
zero [Warburton 1991].

A few approaches have been proposed for removing the aforementioned
mathematical difficulties of classical theory. These approaches are gradient theory.
Cosserat continuum model, non-local theory, and rate dependent consideration.

Brief reviews of these theories are presented in the following.

2.9.1 Gradient Theory

It was shown that inclusion of the second order gradients into the strain en-
ergy function of hyperelastic solids prevents loss of ellipticity to occur in the govern-
ing equilibrium equations and allows for the description of localized deformations
beyond the bifurcation point when the material is well into the softening regime,
Triantaphyllidis and Aifantis [1986], Aifantis [1987], Zbib and Aifantis [1988]. Sim-
ilarly, inclusion of the gradient of equivalent plastic strain into the yield condition
has led to the prediction of stationary shear-band widths in rigidly plastic metals
and the spacing of travelling Portevin-Le Chatelier bands in viscoplastic metals
[Zbib and Aifantis 1988]. The origin of higher order strain gradients in relation
to the underlying inhomogeneously evolving microstructures has been discussed by
Aifantis [1988]. Another approach for incorporating higher gradients through a
"complete balance law” for the inelastic strain containing both a rate and a flux

term was proposed by Muhlhaus and Aifantis [1991].




53

A modified theory of soil plasticity for frictional/dilatant materials was pro-
posed by incorporating second order strain gradients into the dilatancy condition
with the remaining structure of both deformation and flow theory being left un-
altered [Vardoulakis and Aifantis 1989]. The assumption of a gradient-dependent
dilatancy condition was dictated by the experimental observation that localization
phenomena in granular media are characterized by strong spatial density varia-
tions. These gradients provide a physically sound internal length scale into the
problem allowing for the determination of the shear band thickness and the s-
pacing of liquefying strips. The problem of extra boundary conditions required
as a result of the presence of higher order strain gradients has been recently ad-
dressed in connection with the proposed gradien. modification of both flow rule
and yield condition with the aid of a variational formulation of the problem [Var-
doulakis and Aifantis 1991]. A variational principle and the associated problem of
boundary conditions has also been addressed recently by Muhlhaus and Aifantis
[1991] in connection with a gradient modification of metal plasticity incorporating
gradients of the equivalent plastic strain up to the fourth order into the yield con-
dition. It is noted that Mindlin [1964] was among the first to deal with mechanical
theories incorporating higher order strain gradients in the context of linear elas-
ticity, without reference to instability and patterning. However, the underlying
continuum model given by Vardoulakis and Frantziskonis {1991] is formally relat-
ed to Mindlin’s elasticity theory with micro-structure. A gradient regularization
of the classical kinematic-hardening plasticity was presented in Vardoulakis and
Frantziskonis [1991], in which, the flow rule of classical plasticity was modified by

incorporating the Laplacian of the plastic multiplier.

2.9.2 Cosserat Continuum Model

Unlike the gradient approach, in the Cosserat model [Cosserat, E. & F.
1909; Muhlhaus 1985, 1986] both the continuum and the constitutive description
are altered as compared to the classical description. In the pre-bifurcation regime
of the classical description, the assumption is made that mean particle rotations

coincide with the average spin of the representative grain assembly [Vardoulakis
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1989]. Beyond the bifurcation point this assumption must be relaxed. This can
be done by employing the concept of a Cosserat continuum that allows for both
particle displacements and particle rotations. In plane-strain problems, this means
that at any material point of the continuum both a velocity v = v;e; (i=1, 2) and
a spin vector w° = w¢e; are assigned, Figure 2.5(a). In this case the objective
strain-rate measures

€ij = Mij +wij —wij,  Xi = w3, (2.68)

are introduced [Muhlhaus and Vardoulakis 1987] where n;; = (vi,; + v;,i)/2 and
wij = (vi; — v;,;)/2 are the classical strain rate and spin tensors, w;j = —ejjaw; is
the Cosserat spin tensor and x; the curvature-rate vector. Furthermore, strain-rate

and curvature-rate tensors are decomposed into an elastic and a plastic part:
€ij = &; + €k, Xi =xi+x% (2.69)

At any material point of the Cosserat continuum a non-symmetric stress tensor o,
and a couple stress tensor m; are defined, Figure 2.5(b). Intergranular tractions
t; are defined through an equivalent stress tensor which in turn is related to the

Cauchy stress and the couple stress
t; = myyn,, Ti; =0i; + e,~j3mknk/R (2.70)

For vanishing couple stresses, the equivalent stress coincides with Cauchy stress.
Notice that the above defined intergranular tractions are dual in energy to the

Cosserat kinematic field.

2.9.3 Non-local Theory

The concept of non-local continuum, introduced on the basis of statistical

analysis of heterogeneous materials by Kroner [{1967) and Krumhanzl [1968], and
widely applied by Eringen and Edelen {1972] and others, was proposed for ap-
plication to strain-softening models in Bazant [1984] and Bazant, Belytschko and
Chang [1984]. Then, numerous particular forms of non-local formulations were

developed. For example, in Pijaudier-Cabot and Bazant [1987], only the softening
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Figure 2.5 (a) Particle Velocity and Spin in a Cosserat Continuum;
(b) Stresses and Couple Stresses Acting on the Faces of A Material

Element in A Cosserat Continuum

damage was treated as non-local while the elastic behaviour was treated as local;
in Bazant and Pijaudier-Cabot [1987], the model for strain-softening subjected to
non-local description those variables which cause strain softening and retained a
local definition of strain, that is, the material model is characterized as a non-local
continuum with local strain; in Bazant and Lin [1988], some of the variables in the

constitutive equations (e.g. plastic strain) were defined by spatial averaging.
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CHAPTER 3
ENERGY BASED INSTABILITY THEORY

In this chapter, energy based instability theory is presented. A surface
degradation zone is defined to consider the surface effects of brittle materials under
external load. The material constants concerned with surface degradation are

identified against experimental observations.

3.1 General

In the field of mechanics, instability can be classified, generally, as materi-
al instability and geometrical instability. Neglecting the geometrical non-linearity
and considering the inelastic material behavior, then the relevant instabilities be- .
long to the category of material instability. For brittle materials such as rock and
concrete, for the displacement gradient, |u; ;| << 1 stands. For example, the max-
imum strain corresponding to the peak strength for uniaxial compressive test on
rock and concrete is less than 3%. So it is reasonable to assume small deforma-
tion and consider geometrical linearity. However, as pointed out previously, the
mechanical system composed of these brittle materials is a nonholonomic one, and
the total deformation is attributed to elastic deformation, plastic deformation and
to formulation of damage. Then, the instability criteria established in this study
is restricted to material instability. However, the basic idea might be extended to
geometrical instability study.

As for material instability, quite a few criteria have been proposed, as re-
viewed in chapter two. Drucker’s stability postulate, Hill's stability condition and
Mandel’s stability threshold are for elastic-plastic materials. Griffth’s criteria de-
scribes the stability of macro-crack development. When the kinematic damage evo-
lution is included in an elasto-plastic model, a new instability criterion is needed to
predict the onset of unstable damage growth. In this chapter, the proposed insta-
bility criteria are described in detail. These instability criteria are, in some sense,

similar to the well-known Griffth’s criterion. However, essential difference exists
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between the two instability criteria. The Griffth’s criterion deals with the macro-
crack, while the proposed instability criteria deal with the degradation- process.
The onset of unstable damage growth may manifest inhomogeneous deformation,
e.g. shear bands.

The proposed instability criteria are implemented with the two-component
damage model originated by Frantziskonis and Desai [1987]. So, for complete-
ness, discussion and basic formulation of the two-component damage model will
be presented first. It should be noted that these instability criteria are, in gener-
al, applicable to every model accounting (in some form) for material degradation
and relevant dissipated energy. Here, however a specific model is employed, as de-
scribed below. Another important part of this chapter is devoted to the description
of surface degradation instability which depicts the common phenomenon for brit-
tle materials under external load such as surface spalling and/or borehole collapse.
The formulation of surface degradation instability criterion is the extension of the
concept of general damage instability description. However, as can be seen later,
the surface degradation instability criterion can capture some important aspects

such as shape and scale effects.

3.2 Damage Model

A number of investigators have considered the effects of damage on the me-
chanical behavior of brittle materials directly or indirectly [Yamaguchi and Chen
1991]. Within the so-called phenomenological framework, the nonlinear inelastic
response of brittle materials is attributed to the combination of micro-crack growth
and frictional slip. The goal of the phenomenological theory is to evaluate the ef-
fective properties of the material, through consideration of a representative volume
element. This element is a subregion of the heterogeneous material that represents
itself over the entire body. A microcrack or microcrack network contributes to the
properties of the region around it. Thus the region can be regarded as a composite
material having two distinct phases: damaged material characterizing the nucle-
ation and evolution of the microcracks; and undamaged or "normal” accommodat-

ing such microcracks that will develop. This region may appear homogeneous at a




38

large scale with certain effective properties that describe the medium in an average
sense. With this in mind appropriate average static and kinematic variables can be
introduced. In order to determine the effective material properties, the assumption
of absence of diffusion has been employed in [Frantziskonis and Desai 1987} which
leads to equal strains with the two phases. This can be considered equivalent to
the so-called Voigt assumption for composites [Yamaguchi and Chen 1991].

In terms of the decomposition and description of softening, the damage
model proposed by Frantziskonis and Desai [1987)] is similar to that proposed by
Kachanov [1958], Desai [1974]. It is noted that the formulation presented in the
following is referred to Frantziskonis and Desai [1987], and Frantziskonis [1989].

Consider a small volume AV of the material. This volume is subdivided
into an intact (undamaged) part, AV,, and into a "fractured” (damaged) part,
AVy, (Figure 3.1). The first part or fraction represents topical (continuum) behav-
ior, and the material in it is intact in the sense that no microcracks are induced.
Due to inhomogeneity of the material behavior at the microlevel, weak planes are
developed leading to crack formulation and subsequent propagation. The effect of
an isolated or coupled fracture site is that an influenced zone exists around it as
shown schematically in Figure 3.1. This influence zone has volume AV;. Under
continued loading, influence zones increase so that AV, increases. At every instant

of time, the ratio
AVy

AV

is called damage volume ratio. The material point consists of the superposition of a

r=

(3.1)

material point of the undamaged fraction (called the u-part) and of a material point
of the damaged fraction (called the d-part). This suggests the use of the theory
of interacting continua, Bowen {1975]. As a consequence, the following relation is
applicable

gij =(1—r)ol; + rol, (3:2)

where 0}, afj denote the stress tensors in the u and d -part of the material element
respectively and o;; is the average stress tensor. The general theory of mixture

[Bowen 1969, 1975] is simplified considerably if diffusion is absent. In the proposed
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Figure 3.1 Schematic of Damage Influence Zone (after Frantziskonis
and Desai 1987)
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theory, the assumption of no diffusion is employed and as mentioned previously
this is equivalent to the Voigt assumption serving as a bound to the Voigt-Reuss
one (Yamaguchi and Chen 1991; Tang, Desai and Frantziskonis 1991]. Then the
strains in the two material phases are considered equal [Bowen 1973].

Now, a material element is considered. Due to the enforced deformation
in the element, damage influence zones have been created but failure has not oc-
curred yet. Such influence zones depict the mechanical influence of a system of

microcracks. The constitutive equations for the d-part can be established as
6% = Chiuén (3.3)

and C,‘-f,-k, is a function of parameters related to the degraded properties of the
material. Since there are no microcracks in the u-part, its constitutive relations
can be identified as

0.':‘] = C;‘ujklékl (3.4)

and if the undamaged fraction is linearly elastic (e.g. for composites), Clik con-
tains the usual linear elasticity constants. If plasticity effects are included then a
generalized hierarchical elastic-plastic model is employed [Desai et al 1986].

The irreversible nature of damage implies that the material experiencing
it obeys nonholonomic laws. Thus the problem is formulated in rate form of the

governing equations and the constitutive relations are derived from (3.2)-(3.4) as
&ij = Lijuiérs — #(0}; — of)) (3.5)

where
Lijuu=Q1-r)Cli + chju (3.6)

From (3.5) it can be seen that although r, 7 are scalers, a tensor namely, o} —a;‘j ).
is introduced in the formulation. This tensor is responsible for damage induced
aniéotropy, an obvious property of cracked materials. Further, an evolution law for
r is defined and it is directly related to failure where r reaches a critical value r,.

A general law can be written as

= fleij, éij) (3.7)
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Specifically, the following is used:
r = ru = reczp(~x&®) (38)
where
€p = (ehel)/? (3.9)

and e;; denotes the deviator tensor of ¢;;. ry is the ultimate value of r and «, R

are damage related material constants.

3.3 Stability of Damage Growth

In the previous section a structural transformation theory was introduced
for the description of the process of damage growth. When a structural system
is subjected to increasing external load, depending on the state of the material
an instability may occur resulting to sudden and often localized deformation. The
purpose of this section is to establish an instability criterion to examine the stability
of damage growth, Frantziskonis and Desai [1987], Frantziskonis, Tang and Desai
[1991).

From the thermodynamic point of view, the state of the material can be
characterized by its strain energy density ¢ defined as

o = %&,-,e.-j (3.10)
where p is mass density. The dissipated energy density (due to plastic slip and
damage growth) is expressed as

t
o= / gijéjdt — éaijefj (3.11)
0 -

where ¢ is the total dissipated energy density over real time ¢t and superscript e
indicates elastic (recoverable). From (3.10) and (3.11) the internal elastic energy

density rate is obtained as

T VI . ) . .
W= '2‘(0:'1'5.?,' +0ij€) = oijéi; — ¢ (3.12)
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The total dissipated energy density rate is decomposed into plastic energy density

rate and damage energy density rate, as

¢=p+d (3.13)
with
s L o
p= 5(0.';'6,',' + 0ij€;;) (3.14)
. 1 ) ] =
d= E(Ua’jfu’j = dijeij) (3.15)

Let V be the volume of a structure and S its boundary. The rate of work of external

forces T; (neglecting body force) is

H:/nmw (3.16)
S

with u; being the displacements. Let

U= / gij€i;dV (3.17)
14
hd 1 3 - e
E = § /‘;(a.'je,-j + Uijeij)dv (3-18)
P 1 / .p . p
= -2‘Jv(a.-,-e,-j +0'.~J-e.-j)dV (3.19)
. 1 ) .
D= 5 /V(O','je.'j - d.‘je.'j)dV (3.20)

Considering adiabatic process, then from (3.12-3.20) and from the equation of

balance of rate of energy

H=U=P+D+E (3.21)
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The potential energy II is expressed as
-I=H-FE (3.22)
and since during the deformation process the total volume V; changes
on oD oP G (3.23)

T, T oV, Tav
G being the strain energy transformation (from u to d-phase) rate. The stability

of the transformation law is then governed by

_oen _&p &P
(Va)2  o(Va)r  A(Va)?

If the above inequality is satisfied at any time during the loading process, unstable

0 (3.24)

deformation is possible. Such an unstable deformation could, depending on the
problem, localize into a small portion of the structure or could lead to periodic
localizations. It is noted that the above relation represents an analytical criterion
similar to the one proposed according to Griffth’s theory [Eftis and Liebowitz 1975].
The physical interpretation of (3.24) may be expressed as: a brittle material system
mﬁy undergo unstable damage growth if the rate of the increment of external work
per unit damaged volume is higher than that of internal energy per unit damaged

volume.

3.4 Surface Degradation
3.4.1 General Concepts

" Review on surface degradation is presented here. Further details can be
found in Frantziskonis [1989], Frantziskonis and Desai [1991], Frantziskonis, Tang
and Desai [1991].

It has been observed that in many engineering materials surface uneven-
ness (roughness) grows with increase in strain [Kitagawa and Matsushita 1987].
Surface roughness is induced by microstructural inhomogeneity and its growth is
initially stable. It is necessary to mention that there is certain evidence that this

phenomenon acts as a trigger effect on shear bands appearing in the specimen.
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The sudden growth of surface roughness results in the occurrence and development
of shear band pénetrating into the body [Kitagawa and Matsushita 1987; Yuku-
take 1989]. Microscopically a heterogeneous structure of the material produces
an inhomogeneous deformation field from a very early straining stage. However.
irregularity of deformation in the body is not uniform, but there is a part in which
the irregularity is greater than that in other ones, that is, near the surface. These
observations are also evident in existing extensive experiments on brittle materi-
als (Hudson, Brown and Fairhurst 1971; Fairhurst and Cook 1966]. Because the
constraints to crack development are smaller near the surface than far from the
surface and the near surface microcracks have a greater tendency toward propaga-
tion (for the reason that the stress intensity factor for such a crack is higher than
for a same size or even bigger crack in the interior), development of microcracks is
more pronounced near the free surface. Then damage distribution at the edge of a
specimen where surface degradation is of importance is expected to be significantly
different from the damage distribution far from the edge.

Consider that damage at the edge due to surface effects is additive to the
damage accumulation due to deformation without surface effects. So at the edges a
small volume (the total elementary volume) AV, is subdivided into an intact part
AV,y and into a damaged part AV,q, and further, AV,q includes AV,q, (damaged
volume without surface effects consideration) and AV,4; (damaged volume due to
surface effects only). It is considered that the above subdivision holds for a distance
p from the edge (Figure 3.2), where p is a positive real number dependent on the
material properties, the geometry, and the load on the structure. At an instant of

time the edge damage parameter is defined as

_ AV _ AVia + AV,a2

"= A=At An (3.254)
or
re=r+r, (3.25b)
with
' r= %{Zl (3.25¢)
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Figure 3.2 Schematic of Surface Degradation Zones
AV,ar .
re= Ay (3.25d)

Here r. is expected to be maximum at the edge and its value decreases continuously
till a minimum value expected to be at a distance p from the edge. Let us consider
the following volume average, per unit area in the plane parallel to the stress-free

surface:

7= —l-/rcds (3.26)
PJp
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Also the following average stress can be introduced
N 1 _
Oij =~ /a,'jds {3.27)
pJo :

Based on physical reasoning, it is possible to establish a connection between the
average values of damage and stress as defined above and the dimension related
parameter p. At the effective surface degradation volume total damage ratio is

considered as

Fe=r 47 (3.28)

Note that 7; can be greater than r., since 0 < r < r.,. Here r., is the ultimate

value of damage variable r. But in general
0<# <1 (3.29)

The parameter r as a function of £p is well defined [in section 2 at this
chapter, Frantziskonis and Desai 1987]. It is possible to express parameter r. as
another function of £p and space. But it may be more convenient to consider
the damage parameter r, along the surface degradation zone(s) be depicted by
the damage parameter without surface degradation consideration multiplied by an

amplification function. Consider the problem as shown in Figure 3.2, we can write

re = r{ezp[AM(z — D/2+p)]}, D/2-p<z<D/2 (3.30)

where

A= A(F) (3.31)

and z is the distance from the center of the sample to free surface, and D is the

diameter (or width) of the sample. Then, we have

re = r{ezp{Mz -~ D/2+p)]-1}, D/2-p<z<D/2 (3.32)
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It is noted that the exponential assumption considered here agrees with the surface
bifurcation studies originated by Biot [1963, 1965]. Considering the weighting
integration (3.26), we obtain

f=r(5--5-1, D/2-p<z<D/2 (3.33)

For a sample with height=5", width (diameter) D=4", and p = 1” (to
be discussed in the following chapters) under uniaxial compression, if we take
A = constant = 2 (a simplified case and to be discussed later), the distribution of
damage parameter r, and weighted damage parameter 7, can be obtained as shown
in Figure 3.3 and Figure 3.4, respectively. Here, it is noted that, in an average sense.
the damage parameter in the internal zone is amplified by 3.19 times in the surface

degradation zone.

3.4.2 Surface Degradation With Size and Shape Effects

It is well known that the deformational characteristics of brittle materials
depend on the size and shape of a structure. In a specimen subjected to uniaxial
stress, when the ratio of height to width (diameter for cylindrical specimens) of the
sample is increased the level of (macroscopic) stress at unstable failure decreases.
as shown by experiments [Hudson, Brown and Fairhurst 1971; Desai, Kundu and
Wang 1990].

Let us introduce the concept of effective surface degradation volue. For
high ratios of height to width this volume occupies a large percentage of the sample
volume. On the other hand, for low ratio of height to width the effective surface
degradation volume is small as compared to the whole volume of the specimen.
It is expected that as height to width ratio increases surface degradation becomes
the predominant damage mode resulting to an instability at a low stress level. As
the height to width ratio decreases, the effect of surface degradation decreases and
pure damage growth becomes the predominant instability mode.

From the above discussion it seems that the degradation instability theory
is capable of capturing the essential features of the scale effects. This will be shown

further in the next chapter. The characteristic length, p, acts as the bridge and is
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defined as that specimen size (critical radius for cylindrical sample) such that for
that length the entire specimen would experience surface degradation. The length

p is defined as [Frantziskonis and Desai 1991; Frantziskonis, Tang and Desai 1991]

p=a[/st—l], p<d/f2 (3.34)

where W is a weighting function, a is a material constant, [ is the so-called surface
degradation material length and c is the path of maximum (absolute) principal
compressive stress. Putting W = unity, Frantziskonis and Desai [1991] used this
formula to a simple case where a cylindrical specimen is subjected to an uniaxial
compressive load and got satisfactory results. Next, we will find the material

constants from experimental measurements.

3.4.3 Material Constants Concerned with Surface Degradation

A series of uniaxial tests on different size cylindrical specimens of a simulated
rock were performed [Desai, Kundu and Wang 1990]. The simulated rock used
consisted of sand, cement, plaster of paris and water at proportions 15:2:3:4. A wide
range of different cylindrical specimens were tested under displacement controlled
uniaxial compression. An MTS testing machine with appropriate data acquisition
system was used. Both axial and lateral displacements were measured in addition
to the axial force. Figure 3.5 shows typical results reported in [Desai, Kundu and
Wang 1990]. Depending on the specimen size the peak strength and the post peak
response vary. The samples tested had different combinations of length L and
diameter D. Table 3.1 shows the dimensions of the samples used as well as the
peak strength values.

In order to find out the material constant a, let us consider a cylindrical
specimen of length L and diameter D subjected to compressive load P, Figure 3.2.
The load acts parallel to length L and the cylindrical surface is load free. Let o,
be the uniform stress in the core of the sample and ,, the average stress in the

surface degradation zone. Then

P= %(D ~2p)200 + %[D" — (D - 2p)*)om, (3.35)
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We consider the simplest possible constitutive equations for the u and d-parts ex-
pressed in (3.3) and (3.4). Thus we consider C{ix and C;‘jk, to be elastic constitutive
tensors. Then, considering the strains in the core and in the surface degradation

zone to be equal

oy = (1 - r)E'eu + TEdeu (336)
&1 = (1 —7)E%e, + 7FE%,, (3.37)

where E®, E® are Young’s moduli for the u-part and d-part, respectively and 7 is
defined in (3.26). From (3.35-3.37) we have

P = a;D? + azp® — azpD (3.38)

where
a = %[E" — r(E® — E%)jen, (3.39)
a; = m[E* - #(E® — E%))en, (3.40)

For the uniaxial case, with W =1

p=a(L-1)<D/2 (3.41)
From (3.35) and (3.41) we obtain

(L-1? (L)
e,

oc=c +c D2 D

where

¢y =4ay/m, ¢ = 4a2a2/7r, and c¢3 = 4aza/7 (3.43)

.and o is the average or measured stress.

Assuming that a;, a; are constant at the peak strength, from the series
of tests shown in Table 3.1, the values of c;, c; and c3 at peak strength can be
determined. By using the least square fit method, The Values of ¢, = 2197, ¢, =
343, c3 = 1622 were obtained. From (3.43)

a=— (3.44)
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Then we find the material constant a of the artificial rock is approximately 0.21.

Assuming the damage parameter r; in the surface degradation zone follows
the relation as given in (3.8). The material constants associated with damage in
surface degradation zone are £* and R®. They are different from the constants
x? and R? in the internal pure damage zone. It is expected that the damage
amplification along the surface degradation zone can be considered through the
introduction of x* and R’. For cylindrical sample, the parameters were obtained
for various D and L, as shown in Table 3.2. Now, let us find the constants x* and
Re.

For a cylindrical specimen as shown in Figure 3.2, the pure surface degra-
dation occurs with the size of D = 1” and L = 3.38”, and the pure damage occurs
with the size of D = 1” and L = 1” (the assumption | = 1” is used). The results
shown in Table 3.2 can be plotted as.shown in Figure 3.6 and 3.7 [Desai, Kun-
du and Wang 1990], with L?/D as the horizontal axis. From these two figures,
the damage constants for the pure damage zone are obtained as k¢ = 200.34 and
R4 = 1.92, and the damage constants for the surface degradation zone are obtained
as k° = 362217.45 and R® = 2.95.

These two parameters are used for back-predictions of the weighted damage
parameter distribution as shown in Figure 3.8 and Figure 3.9. In Figure 3.8, the
damage parameter (0.05) in the internal zone is amplified, in an average sense, by
5.38 times along the surface degradation zone. In Figure 3.9, the damage parameter
(0.1) in the internal zone is amplified, in an average sense, by 3.4 times (very close
to the number predicted through eq. (3.33)) along the surface degradation zone.
Through comparison of the two amplification numbers, we understand that it is
appropriate and necessary to consider the damage amplification parameter along
the surface degradation zone is a function of damage evolution rate. Further,
the function should be inversely proportional to the damage evolution rate. This
consideration is connected to the development of surface effects observed through

strain gage tests discussed in chapter 5.
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3.5 Degradation Instabilities and Surface Degradation Instabilities

Let us define the region R of a body as R = R; + R; where R, is the
surface degradation volume bounded from the stress-free surface and extended to
a distance p from it. Then, R; is the rest of R such that Ry = R — R;. The
dissipated energy from internal damage and surface degradation growth is

D=Q+S$ (3.45)

with
-1 ) )
Q= 5 /R (0ij€i5 — dij€i;)dV (3.46)
and
S = %‘/R (Cf,'jé,'j - c'r.-,-e,-,-)dV (3.47)
2

where Q and $ represent the energy density dissipated from internal damage growth
and from surface degradation growth, respectively. Let P be the rate of dissipated

energy from plastic deformation such that

$=P+Q+S (3.48)
where
b = / $dv (3.49)
R
P = %/(U;jé,‘j +&,~,~e.~,~)dV (350)
R

¢ is the dissipated energy per unit volume in the period of time ¢ as defined in
(3.11). Considering quasi-static loading, in the absence of body force, rate of

energy balance requires
~/T,-d,-dS:/WdV+Q+S+P (3.51)
3R R

where T; is the external load applied on boundary OR, u; denote displacement, and

W is the internal energy density rate which is given as (3.12).
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Depending on the external load level, the geometry of the structure and the
material properties, the following instabilities may develop:

- Surface degradation instability resulting in spalling of material from the
surface.

- Damage progression instability resulting in overall failure by shear band
or other failure mode.

Note that the surface degradation instability does not necessarily imply
overall failure of the structure. In other words, ”post-spalling” is possible until a

global instability develops. The total potential energy is expressed as
0= / wWdv - Tiu;dS (3.52)
R oR
From (3.24), (3.45-52) the conditions for unstable global damage and surface degra-
dation growth are established as

a1 o*pP Q )

A AR AR CAT 0 (3.53)
o d*P 2*Q 9*S
av.E e Yo Tawy < 0 (3.54)

where Vj is the internal damaged volume, and V, is the surface degradation volume.

In the following chapter, these two instability criteria will be implemented
and applied for some typical problems. It will be shown that the instability theory
is powerful and easy to implement. From this theory, it is understood that the
onset of instability is influenced by the material behavior (constitutive law and/or

flow rule), structural geometry, and the external load.

3.6 Conclusion

In this chapter, energy based degradation instability theory has been con-
sidered and developed. The degradation instability criteria are comparable with
that of Griffith’s and can capture information relevant to damage growth. In order
to consider the surface effects of brittle materials, a surface degradation zone was

defined. The material constants concerned with surface degradation were identified
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against experimental observations. The surface degradation instability criterion is

. expected to predict the shape and scale effects of brittle materials under external
load. The implementation and verification of the proposed theory will be presented
in the following chapter.



Table 3.1 Measured Peak Stress for Artificial Rock with Various
Dimensions (after Desai, Kundu and Wang 1990)

Diameter(D)
(inches)

3
3
3
3
3

Table 3.2 Material Constants x and R (after Desai, Kundu and Wang 1990)

Leagth(L)
(inches)

W W W W VN B WS

Length of Sample Diameter of Sampie 5 _ﬂ
{(inches) (inches)

2 3 131.736  1.847

3 1615.616 2.178 |-
4 17321.240 2.537
5 49199.268 2.725
] 721019.129 2.988
3 1 99242.230 2.583
1.3 13922.442 2.370
2 4139.004 2.221
2.5 2846.494  2.205

74
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Figure 3.3 Measured Stress-Strain Curve (a.fter Desai, Kundu and
Wang 1990)
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CHAPTER 4
IMPLEMENTATION OF THE INSTABILITY CRITERIA

In this chapter, applications of the degradation instability theory will be p-
resented through both analytical and numerical solutions. For analytical solution-
s, we consider (for simplicity) the undamaged fraction as linear elastic material.
However, for numerical solutions, the elastic-plastic behavior of the undamaged
fraction is considered. First, the elastic-plastic constitutive relations and the nu-
merical procedure will be presented, and then, some solutions concerned with both

global degradation instability and surface degradation instability will be given.

4.1 Constitutive Relations for the Elastic-Plastic Undamaged Fraction

The following brief description of the plasticity model used for the u-fraction
is adopted from Desai, Somasundaram and Frantziskonis [1986].‘ As mentioned in
3.2, the material behavior is decomposed into two parts, namely the u-part and
d-part. The undamaged part is assumed to obey an elastic-plastic constitutive law.
Since the damaged part "follows” the deformation of the u-part and since it has no
shear resistance, the damage constitutive relations may be termed as rigid perfectly
plastic with zero yield strength [Frantziskonis and Desai 1987]. The elastic-plastic

constitutive relations for the u-part are written as
d'ij = Ciejt;clé“ (4.1)

for loading, and as .

(.7;']' = Ciejklékl (42)

for unloading. Here, 0;; is stress tensor, € is strain tensor, C:fk, i1s the elastic-
plastic tangential stiffness matrix, and Cfj;, is the unloading stiffness matrix. (.)
denotes increment.

A general hierarchical procedure for developing elastic-plastic models for
isotropic and anisotropic, nonassociative responses and applications for soils, rocks

and concrete are described in Desai [1980], Desai and Siriwardane [1983], Desai and
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Faruque [1984], Desai, Somasundaram and Frantziskonis [1986], and others. This
approach is used here to describe the u-part with basic isotropic hardening and
associative model &g, here 8 denotes zero deviation from normality. It is assumed
that the associative behavior holds for the u-part, and the yield function is given

[Desai, Samasundaram and Frantziskonis 1986]
P =gy [~ a et - 8507 @3

where J; = J; — b, and b is a material constant representing the distance from
the stress origin to the intersection of the surface with the tensile hydrostatic axis.
J1 = o}, is the first invariant of o} stress, S, = (J3,)"/%/(J3;)'/? is the stress ratio,

J3y (J3;) is the third (the second) invariant of the deviatoric part of o};, 3,7, n are
assumed to be material constants related to the shape of the yield function, a;,m
are material constants related to hardening and dé = (def;def;)!/?, superscript p
indicating plastic. In order to derive the C',J & tensor, the usual relations of elastic-
plastic theory are used [Chen and Han 1988]. Finally, the C%; tensor is written
as (appendix A)

Ce. _OF _8F Ce
Ce? Ct z]rnn 36mn 30...; uvkl (4 4)
ijkt = ijkl — TOF_ _ ( OF 8F )1/2 )
60" pqst 30, 80,c 00,

4.2 Numerical (Finite Element) Procedures

As mentioned before, if the two fractions of the mixture are considered to be
elastic-plastic, it is difficult to obtain an analytical solution even for the simplest
uniaxial load case. Hence numerical procedure, here, the finite element method are
used. Let

u = Ngq (4.5)

e = Bq (4.6)
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where u is the displacement vector, ¢ is the strain vector, N is the shape function
matrix, and B is strain-displacement matrix. The principle of virtual work leads

to the following incremental equations [Desai and Abel 1972):
/ BTdodV = dQ (4.7)
R

where d(.) denotes increment, dQ is the increment of the external force, superscript
T denotes transpose matrix, and V is the volume. The constitutive relations (3.5),

(3.6) are written as

do = Lde — drS (4.8)

From (4.6), (4.7) and (4.8), it follows that
Kdq = dQ + dQ* (4.9)

where

K= / BTLBdV (4.10)
R

is the incremental stiffness matrix for the u-part, and
dQ? = / BTdrSdv (4.11)
R

is termed as the "damage force”.

In order to evaluate the second partial derivatives appearing in the insta-
bility inequalities (3.53) and (3.54) numerically, the central difference method is

employed, thus for example

OVa)?'® ™ (Va)s — (Va)1 - '
where 20 0 0
\ 3 — &2
(a_va)a = o) = (Vo) (4120)
R\ _ Q-@
(a—n) = W= (Van (12




85

and subscripts 1, 2, 3 denote values at three consecutive increments of load. € is
located somewhere between (V4);: and (V3)s.

The programme including strain softening and dynamic analysis (Woo and
Desai 1991; Desai and Woo 1992] was modified for our purposes. In Woo and Desai
(1991], a few alternatives to implement the damage model {Frantziskonis and Desai
1987] into FEM code were discussed, and the mesh dependency of the damage
model was investigated against a footing problem. It is shown that at local level,
mesh dependency is significant at post-peak stage. However, it is also shown that
the mesh dependency can be constrained to a certain level through the introduction
of a simple weighting procedure. Although post-instability investigation is not the

theme of this dissertation, some considerations will be presented in chapter 7.

4.3 On Global Degradation Instabilities

The analytical solution of a simple problem will be presented first, and then

some numerical solutions will be followed.

4.3.1 Analytical Solution of A Simple Problem
If we consider the two fractions in a stressed brittle material to be linear and

elastic, it is feasible to examine the stability inequalities analytically. Then, the
two constitutive tensors C},; and C ;’jk, are functions of the two Lame’s constants,

namely uy, Ay and pgq, Ag respectively. For uniaxial load, from (3.3) and (3.4)
0':;- = :‘jklek‘ (4.13)

O'gj = C:ijklekl (4.14)

and since g2 = 033 = 0 we obtain that the apparent Poisson ratio v is expressed

as
_ Aw = 7w = Aq)

v =
Q(ﬂu + /\u) - 27‘(/‘14 — H4d + /\u - Aci)

Since v is a function of r, and r continuously increases with the damage progression,

(4.15)

the apparent Poisson ratio is not constant. An increase in v is expected, and this

reflects the change in volume due to crack expansion. Figure 4.1 shows the variation
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of v with respect to r (4.15), where an initial Poisson ratio of 0.2 has been assumed.
In figure 4.1, F is the ratio of Young’s modulus between the d-part and u-part. As
shown in the following, the Poisson effect is important for the stability analysis.
If we assume homogeneous deformation under uniaxial load (surface degradation
effects are not considered for the time being), and neglect the volume change in
the process, then the instability inequality (3.24) reduces to
1 [ a*n1 &*D
[ | >0

7 - —

~57 — 53 (4.16)

where (3.1) has been used. From (3.48), (4.13) and (4.14), for uniaxial load in

direction 1, the potential energy II is expressed as

2pu + A + r(2pu — 204 + Au — Ad)

—ve |-
H-Veu[ > 5

+vAy —rv(Ay — ,\4)] (4.17)
where V is the total volume of the structure (specimen). From (3.20), (4.13) and
(4.14), for uniaxial load in direction 1 we obtain

D 2uy — Ay = A
63—7' = e, [—21/2(#,, —pd+ Au — Ad) — £ 2#42-*-

4 F oAy — Ad)]
(4.18)
From (4.17) and (4.18) the derivatives 0°I1/3r? and 8?D/8r? can be calculated,
noting that €;; and v are functions of r. Although the final expression for the left
side of (4.16) is lengthy, at the peak d0;1,/0r = 0 and this simplifies the calculations
significantly. Relation (4.16) after algebraic manipulations finally reduces to

2
3uu(1l + 2v%)a - -g/\,, [% -2v - 1] a’+ 8—/\#—"1/3 <0 (4.19)

where

Eu - Ed
= 2
a (1= )E. + E, (4.20)

and E,, E4 is the the Young's modulus for the u-part and d-part, respectively. From

the above relation (4.19) by setting the left hand side equal to zero (the implicit
function of r with respect to v is obtained), the curves of Figure 4.2 are obtained,

where the initial Poisson ratio is assumed to be 0.2. In this figure F = E4/E,.
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Inequality (4.19) is satisfied for all combinations of v4 and r that are below the
curves shown in Figure 4.2. For example, if F' = 0.05 is assumed (a reasonable
value if one considers the the physical interpretation of damage) and vy = 0.3 then
for stable behavior at peak r must be greater than 0.9 (approximately). Such a
high value of r may only be possible for the post peak range. Even in the case
where such high r values are physically acceptable, it is reached at high strain
values far after peak where the material reaches a residual strength. In addition,
for the material parameters determined for materials like concrete [Frantziskonis
and Desai 1987], the value of r at peak is between 0.1 and 0.3.

In the above analysis, the two material fractions were considered linear
and elastic. Thus no plastic deformation is present. However, for uniaxial load,
the plastic energy versus strain or r curve is convex around the peak stress level.
Convexity implies 82D, /8r? < 0. Then from (4.16) plastic deformation promotes
instébility. Thus the present analytical solution suggests that a homogeneous post
peak state is impossible since basic energy based stability conditions are violated.

In the above analytical solution, surface degradation effects were not con-
sidered. If surface degradation effects are included in the instability analysis, it is
expected that a surface degradation instability will occur first. The onset of such
an instability may indicate spalling type of failure. The remaining part of the body

may still be stable until (3.53) is satisfied. This will be shown later.

4.3.2 Numerical Solutions

For illustration purposes of the occurrence of instability, the following prob-
lems are considered. Figure 4.3 shows the problems considered as well as the finite
element meshes. Two cases were considered. Case A is uniaxial plane strain, sim-
ulating a plane strain test such that there is no friction between load platen and
specimen. Case B imposes non-uniform deformation since horizontal displacements
at the top and bottom were restrained; this represents a full friction condition be-
tween load platen and specimen. For both cases A and B increments of vertical
displacements were applied along the top and bottom interfaces. For each incre-

ment the instability inequalities were checked. The purpose of the present analysis
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is to examine the global degradation instability. Thus (3.24) is used for both cases
A and B.

Figure 4.4 shows the force-displacement curve from the finite element anal-
ysis using one element. The onset of damage growth instability is indicated by a
circle. In case A uniaxial plane strain is simulated. For this case instability implies
the onset of non-uniform deformation that may result to a shear band formation
or other types of non-uniformity. Similar observations hold for case B. Figure 4.5
shows the force-displacement response from the analysis with 4 elements. Figure
4.6 represents the results from the analysis with 16 elements. Table 4.1 shows the
percentage of load with respect to peak load, at the onset of instability. As can be
concluded from this table the finite element analysis converges to the solution of

about 86% of peak load for instability onset for case A and about 85% for case B.

4.3.3 Discussion

Analytical and numerical results on degradation instabilities clearly indicate
that the global damage growth instability is to occur before and close to the peak
strength. This prediction is supported by the experimental results of a series of
triaxial compression tests on quartzite [Hallbauer, Wagner and Cook 1973; Read
and Hegemier 1984]. The tests were done on cylindrical specimens which were
jacketed in thin copper tubes so that their lateral expansion would be resisted
by the increasing confinement. The rate of axial straining was kept constant at
1.675 x 1073 /sec during the tests. The purpose of these tests was to determine the
microstructural changes that progressively take place in the rock as it is compressed
to failure. Particular emphasis was given to the structural changes that occur in
the vicinity of the peak of the stress-strain curve. To accomplish this, the tests
were stopped at various predetermined points along the strain path; the specimens
were unloaded and removed for sectioning and microscopic examination. Figure
4.7 shows the nominal stress-strain curve obtained from the tests, and photographs
of specimen sections at the various points along this curve. It was reported that
as the stress is increased from 80 to 90 percent of ultimate, a rapid proliferation of

microcracks occurs, with the number of microcracks increasing about seven-fold.
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4.4 On Surface Degradation Instabilities

Borehole instabilities and breakouts are often characterized by the slabbing
mode that affects a portion of the material close to the borehole wall [Kemeny
and Tang 1990]. In addition, it is clear that the borehole size has significant effect
on the initiation of breakout. Haimson and Herrick [1989] studied the behavior
of samples with different central hole sizes subjected to external stress. Square
blocks of dry Alabama limestone having different diameters of central holes, ranging
from 2 to 12 cxﬁ were subjected to uniaxial stress. All blocks had side length to
borehole diameter ratio of 5:1. Is was found that small diameter holes required
larger stresses to induce breakouts, Figure 4.8. Since laboratory size boreholes
are usually smaller than the ones in the field, the importance of hole size and its
relation to breakouts is of basic and quantitative nature. Thus in order to achieve
a well-grounded statement about borehole stability that complies with laboratory
and field observations, the dependency of borehole stability on its size (scale effect)
must also be modeled.

Borehole scale effects is an example of the fact that the deformational charac-
teristics of brittle materials depend on the size as well on the shape of the structure
(specimen) [Frantziskonis, Tang and Desai 1991}. As pointed out before, the thecry
for surface degradation instability can capture the information of scale effects. In
the theory, the surface effect region is described by a distance p which is given by
(3.34). The material constants a, «*, R®, x? and R? associated with the theory
have been found from experiments in section 5 at chapter 3. Now, we will present
a simplified solution for a borehole problem, and show some numerical solutions of

borehole problems [Frantziskonis, Tang and Desai 1991].

4.4.1 Simple Analysis of A Borehole Problem
Let us consider the problem depicted in Figure 4.9. The borehole structure

of length and width D contains a central circular hole of radius R. The ratio D/R is

considered constant such that D/2R = 5. Uniaxial compressive stress o is applied

R
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externally. I the material is considered linear, isotropic and elastic, the ogmqaz
occurs at point A [Roark and Young, 1989):

Omaz = 04 = kOnom (4.21)
where
Tnom = D”_DZR (4.22)
k= 3.00 - 3.13(%) + 3.66(-21?)2 - 1.53(27;3)3 (4.23)

In order to demonstrate analytically the capability of the theory to capture the
scale effects in this problem, we make the following simplified assumptions. We
consider that the material is linear elastic and isotropic. This, of course, represents
a "stiffer” material than actual rocks. In addition, we assume that for the external
stress levels at breakout the material in the surface degradation zone has zero
stiffness. Thus at breakout initiation this problem can be analyzed by using the
solution presented in equations (4.21)-(4.23), but now the radius of the hole is
R + p. For this problem equation (3.34) reduces to

p=a(2rR-1) (4.24)
and
oD
Tmaz = kD——2(R+_p) (4.25)

and k is given from (4.23) where R+ p is substituted instead of R. For the simulated
rock [Desai, Kundu and Wang 1990] it was found that a = 0.21 and ! was assumed
to be one inch (for the time being, further discussion in presented in chapter 5).
If we consider that at breakout, omq: in (4.25) assumes a constant value we can
obtain solutions for different R where always D/2R = 5. The curve in Figure
(4.10) is obtained where the diameter (2R) is plotted on the horizontal axis and
the external stress at breakout is plotted on the vertical one. Clearly, the shape

and trend of this curve is similar to the experimental one given in Figure 4.8.




91

4.4.2 Numerical Solutions

The finite element method has been used, long ago, for the stress-
deformation and stability analysis of borehole problems. Initial work in this area,
Desai and Reese [1970), considered nonlinear elastic material response and the Mohr
criterion was used as the criterion for development of plastic zones. It was found
that plastic zones advance close to the borehole at a certain distance depended on
the geostatic loading. The extent of plastic zone may be related to the surface
degradation zone discussed in this study. However, since the surface degradation
zones are dependent on the geometry of the structure, such a relation would be
based on fixed radius of the borehole.

The problem shown in Figure 4.9 is investigated numerically for six different
values of the central hole radius. For all problems, the ratio of D over R is constant
such that D/2R = 5. The finite element mesh used is shown in Figure 4.11. Eight-
noded quadrilateral elements are used. For the six problems studied the hole radii
are 0.5, 1, 2.5, 5, 7.5, and 10 cm. For each problem the surface degradation distance
is calculated. The elements next to the central hole extend to a distance p. The
material properties assigned for these elements are the surface degradation ones.
The purpose of this analysis is to study the surface degradation instabilities close
to the hole. Thus no surface degradation is considered close to the lateral surfaces
of length D, since the surface degradation growth at these points is much slower
than the growth close to the hole.

The calculated load-deformation curve for these problems is monotonically
increasing until a peak load is reached. Beyond the peak load, softening response
is calculated. In Figure 4.12 radius R is plotted on the horizontal axis and the
normal stress o, at the peak load for the lower left Gauss point of element 2 is
plotted on the vertical axis. Here o, represents the so called tangential stress at
the end of surface degradation zone. A simple criterion for spalling of the surface
degradation zone calls for oy, reaching a critical value. In this case, Figure 4.12
shows the capability of the theory to represent the scale effect. The shape of this
curve is similar to the one shown in Figure 4.8 [Haimson and Herrick 1989]. Since

the material constants for Alabama limestone are not available, no quantitative
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comparison can be made. Figure 4.13 is similar to Figure 4.12, but the maximum
(peak) stress is plotted on the vertical axis.

At evéry increment of load, the instabilities (3.53) and (3.54) are examined.
Surface degradation growth (Figure 4.14) showed the following interesting charac-
teristics for these problems. Surface degradation showed an initial unstable region
from the beginning of the external load application. Subsequently the response
became stable until a second instability was initiated. This trend is similar to the
crack propagation problem studied by Sammis and Ashby [1986]. In that reference
the crack propagation problem of a notched specimen with a central hole has been
studied theoretically and experimentally. The geometry of the problem is simi-
lar to the one shown in Figure 4.9 and the propagation of initial surface cracks
parallel to the external compressive load is studied. Crack propagation was found
(theoretically and experimentally) to be initially unstable (from the beginning of
the load application) then stable and then unstable again. Here we note that the
instability inequalities (3.53) and (3.54) are necessary but not sufficient conditions

for instability initiation. Let

In Figure (4.14), e is plotted with respect to the surface degradation volume Vj,
for the case R = 10cm and D = 100cm. Similar curves were obtained for the other
five cases considered. When the curve is convex, surface degradation instability
is possible. The curve shown in Figure 4.14 is initially convex implying possible
unstable growth, up to point A. After point A the surface degradation growth
is stable up to point B. After point B the curve is convex again. Note that the
convexity after B increases rapidly. Point C on this curve is at peak load.

This analysis is similar, in trend, to the problem studied by Desai and Reese
[1970]. It implies that the material is susceptible to surface degradation instability
from the beginning of the load application. After a certain amount of surface
damage has been achieved, the damage growth response is stable for a rather small

range of external load. Then surface damage instability is expected to occur, after
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point B. The scale effect shown in Figure 4.15 corresponds to instability initiation
at point B, where radius R is plotted on the horizontal axis and the externally
applied stress at surface instability is plotted on the vertical axis [Frantziskonis,
Tang and Desai 1991].

4.4.3 Comments

Surface degradation growth is shown to play an important role for phenom-
ena observed in borehole problems such as scale effects and surface degradation
instabilities. Analytical and numerical results show the capability of the theory to
predict such phenomena.

For many problems in brittle material mechanics, analysis is based on simple
elastic-perfectly plastic models that are calibrated on test data from conventional
triaxial compression experiments. These models lead to irregular stability of the
borehole as compared to experimental observations. Maury [1987] and Guenot
[1987] demonstrated that classical design procedures lead to overestimation of the
drilling fluid density by a factor of 2-8.

Papanastasiou and Vardoulakis [1991] used the bifurcation theory to ex-
amine the effect of borehole radius on borehole stability. Material behavior was
described by the deformation theory of plasticity, and internal length was intro-
duced in the formulation through employment of Cosserat theory. The numerical
solutions showed an increase of the bifurcation stress with decreasing borehole ra-
dius. It would be interest to note that the present study is different from the one
given by Papanastaiou and Vardoulakis [1991], in the sense that length is intro-
duced through surface degradation consideration rather than in the constitutive

equations. Furthermore, instabilities are based on global energy consideration.

4.5 Conclusion

Through application to some typical problems analytically and numerically,
it is our understanding that the global degradation instability theory predicts the

instabilities concerned with non-uniform deformation and the surface degradation
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instabilities concerned with spalling and size, shape effects for brittle materials like

rock and concrete.
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Table 4.1 Summary of Numerical Results
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CHAPTER 5
PHYSICAL EXPERIMENTS

In this chapter, relevant non-destructive tests including strain gage tests
and ultrasonic scanning tests are presented and discussed. For a brittle material
under external load, degradation mechanism and patterning are studied, and the
surface effects are identified. The material internal length associated with surface
degradation (defined in chapter 3) is estimated against the ultrasonically dissipated
energy distribution. The relationship between ultrasonically dissipated energy and
mechanically dissipated energy is dependent on deformation and can be approxi-

mated by a power function of load level.

5.1 General

In the previous two chapters, the proposed instability criteria and appli-
cations to some typical problems have been presented. It is understood that the
instability criteria are based on the energy consideration, that is, on the dissipated
energy and elastic potential. Because energy dissipation corresponds to degrada-
tion, the instability criteria are called degradation instability criteria. It is also
pointed out that the onset of the instability may manifest the onset of inhomoge-
neous deformation. In this chapter, relevant experiments are presented.

Surface effects have been reported theoretically and experimentally, especial-
ly for metal materials. For example, a few tests have been made in the laboratory
to observe surface roughness that develops on aluminum bars by Hutchinson and
Tvergaard [1980]. In these tests, it is clear that a large grain size gives more rough-
ness and that the roughness increases with increasing strain. It is seen that the
large strains at the very bottom of the wave troughs lead to shear fracture that
propagates deep into the bar [Hutchinson and Tvergaard 1980]. Surface effects for
brittle materials are not, as discussed previously, analogous to surface roughness
in metals. Experimental evidence on such materials that identify the surface ef-

fects are available in Yukutake [1989] for example, or in other relevant references

discussed previously.




G &N N W G ON OGN G G GN GF O ON GN B oG Gy G ae

112

The surface degradation instability involves the material constants associat-
ed with the surface degradation zone. To identify the internal material [ associated
with the surface degradation is another purpose of this chapter. Also, we are going
to study the degradation patterning and see if some relationship exists between the
degradation patterning and the final failure modes. Then through the investigation
of degradation mechanism, we may better understand the physical inclusion of the
degradation instability criteria.

Numerous methods ranging from the X-radiograph, to neutron radiography
and diffraction have been developed as non-destructive techniques (NDT), to assess
the integrity of structures, machines and other systems involving engineering ma-
terials. However, several non-radiation methods, such as ultrasonic/acoustic, light
and electron microscopy, thermographic and optic, offer very attractive alternatives
to radiation. Each NDT has its own advantages and limitations. A major problems
of many techniques is that the information they provide is qualitative. However,
people, especially engineers, are more interested in quantitative information. In
the experiments described herein, the ultrasonic tests have been chosen.

In addition to the ultrasonic scanning tests, the strain gage tests are preced-
ed, to study the local strain changes with average stress at some typical locations
along the specimen. This may provide information about surface effects for brittle
materials.

The performed experiments involved a lot of work and team effort. Mr.
David Daniewicz contributed significantly in sample preparation, computer pro-
gramming, execution, and data acquisition during the period the experiments were

performed. His involvement is acknowledged.

5.2 Ultrasonic Experiments

5.2.1 Fundamental Terms

Ultrasonic testing of materials makes use of mechanical waves in contrast,
for instance, to X-ray techniques which use electromagnetic waves. Any mechanical
wave is composed of oscillations of discrete particles of material. The frequency

of a wave is the number of oscillations of a given particle per second. Within a
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given wave it is the same for all particles and it is identical with the frequency
of the generator which can be chosen arbitrarily. The wave length is the distance
between two planes in which the particles are in the same state of motion. It is
inversely proportional to the frequency: high frequencies corresponding to short
wave lengths, and vice versa. The speed of sound is the velocity of propagation
of an acoustic wave. This velocity is a characteristic of the material concerned
and in general is constant fc;r a given material for any frequency and any wave
length. The velocities of the various kinds of sound waves can be calculated from
the elastic constants of the material concerned, namely, the modulus of elasticity
E and Poisson’s ratio v.

For longitudinal waves:

Ci

E 1-v 5.1
P+ =22) (5.1)

E 1 G ..
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where p is the density of material, and G is the shear modulus of material.

for transverse waves:

For us the most important quantity in a given sound field is the sound
pressure. At points of higher particle density the pressure is likewise higher than
the normal pressure, while in the dilated zones it is lower. A very small and
inertialess pressure gauge placed in the path of the sound wave would indicate
alternately high pressure and low pressure in sinusoidal sequence. This alternating
pressure is the sound pressure. It occurs not only in gases, but also in liquid and
solid hodies. The mr.ximu-m deviation from the normal pressure (without sound
wave) is called the amplitude of the sound pressure which is closeiy connected to
the amplitude of movements, i.e. the maximum deflection of the particles from
their position of rest.

In the case of plane and spherical waves sound pressure and particle ampli-

tude are connected to each other by the relation [Krautkramer, J. and Krautkramer.
H. 1983]

p = pew€ = Zwf (5.3)
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where p is the sound pressure, p is the density of the material, ¢ is the velocity
of sound, w is the angular frequency, and £ is the particle displacement. Z = pc
is called acoustic impedance (specific acoustic impedance). Materials with high
acoustic impedance are called "sonically hard”, in contrast to "sonically soft” ma-
terials.

In the case of plane and spherical waves, the intensity of a wave (J) is
related to the sound pressure or the amplitude as follows [Krautkramer, J. and
Krautkramer, H. 1983]:

@
”7 = 2w (5.4)

J =

(VIR

The intensity i1s thus proportional to the square of the amplitude of the sound

pressure.

5.2.2 Absorption and Scattering

In ideal materials, the sound pressure is attenuated only by virtue of the
spreading of the wave. A plane wave would thus show no attenuation whatever the
value of the sound pressure along its path, and a spherical wave, or the sound beam
of a probe in the far field, would merely decrease inversely with the distance from
the source. Natural materials, however, all produce a more or less pronounced
effect which further weakens the sound. This results from two causes, that is.
scattering and (true) absorption which can both be combined by the concept of
attenuation (sometimes also called extinction).

The scattering results from the fact that the material is not strictly homo-
geneous. [t contains boundaries on which the acoustic impedance changes abruptly
because two materials of different density or sound velocity meet at these inter-
faces. Such inhomogeneities may either be inclusions, e.g., granular materials or
pores in concrete. They may be genuine flaws of the material concerned, or also
natural or intentional flaws such as porosity in sintered materials. They may also
be material which by their nature are inhomogeneous, e.g. cast iron, in which an
agglomeration of elastically completely different ferrite and graphite grains occurs.

There are, however, also materials which experience anisotropy under deformation.




115

In a material with very coarse grain compared with the wave length the
scatter can be visualized geometrically: on an oblique boundary the wave is split
into various reflected and transmitted wave types. This process repeats itself for
each wave at the next grain boundary. Thus, the original sound beam is constantly
divided into partial waves which along their long and complex paths are gradually
converted into heat because of the always present true absorption. .

In the frequency range used in testing materials the grain size is usually
smaller than the wave length. Under these conditions scatter occurs instead of
geometric division.

The second cause of the attenuation, absorption, is a direct conversion of
sound energy into heat, for which several processes can be responsible [Mason 1958].
Absorption can roughly be visualized as a sort of braking effect of the oscillations
of the particles, which also makes it clear why a rapid oscillation loses more energy
than a slow oscillation; the absorption usually increases with increasing frequency

[Krautkramer, J. and Krautkramer, H. 1983].

5.2.3 Intensitv Methods for the Ultrasonic Testing of Materials

Methods for the ultrasonic testing of materials can be divided into three
categories: intensity methods, pulse-echo method and transit-time method. The
intensity methods have been chosen for our study. As discussed in the sequence the
transit time method did not provide consistent and/or useful information. Then
the following brief description is restricted to intensity methods.

The intensity method in which the intensity of the ultra-sound is measured
after it has passed through the test piece, is the oldest application of the ultrasonic
waves for non-destructive testing. It dates back to 1930 and was originated by
Sokolov and Muhlhauser [Krautkramer, J. and Krautkramer, H. 1983]. The princi-
ple is shown in Figure 5.1 in which the intensity method is portrayed schematically
by passing sound through a test plate, at a flawless and alternately at a defective
point.

The voltage produced by a high-frequency generator excites the transmit-

ting probe to ultrasonic oscillations which are propagated in the coupled test piece.
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A second probe positioned coaxially on the opposite side receives a portion of the
radiated wave and transmits to the input of an amplifier a high-frequency voltage
which is proportional to the sound pressure at the contact point of the receiver.
The amplified voltage is read on an indicating instrument. At the flawed point the
propagation of the ultrasonic wave is impeded by the discontinuity in the mate-
rial, resulting in reduced sound pressure at the receiver and thus a lower reading
on the measuring instrument. Strictly speaking, this measures not the intensi-
ty but primarily the amplitude of the sound pressure if a piezoelectric receiver is
used. Provided the characteristics of both the amplifier and the instruments are
linear, the indication in this case is therefore proportional to the square root of the

intensity.

5.2.4 Review of the Existing Literature

Various researchers have attempted to establish correlations between me-
chanical properties of brittle materials and ultrasonic measurements. As concrete
is concerned, ultrasonic pulse measurement has been applied to assess the compres-
sive strength [Jones 1952], compaction deficiencies, and maturity of young concrete.
The relation between compressive strength and pulse velocity in concrete have been
studied [Sturrup et al 1984; Ben-Zeitun 1986}, but the scatter is found to be consid-
erable. Mindess [1982] loaded specimens in compression monotonically to failure
and measured the pulse velocity at the same time. He found that the velocity
remains constant until significant internal cracking occurs, i.e. between 1/3 and
2/3 of the strength. Spooner and Dougill [1975], however, experienced in their
experiments that pulse velocity decreased only near the peak stress. Al-Kubaisy
and Young [1975] showed that transit time increases in a specimen when the tensile
loading is increased and that strain discontinuities also cause transit time disconti-
nuities. Reinhardt and Hordijk [1988] used ultrasonic pulse measurements for the
assessment of damage in high strained zones such as that between two saw cuts. It
was concluded that close correlation between ultrasonic pulse measurements and

strength, and the size of the damage zone within a specimen can be established.
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Shah and Chandra [1970] studied the velocity and attenuation changes of
ultrasonic pulses transmitted across concrete and paste specimens subjected to
monotonically increasing, cyclic, and sustained loading. The measurements were
used in contrasting mechanisms of fracture. It was observed that:

1) There is no pulse velocity change for hardened paste specimens;

2) For mortar specimens, the velocity decreases prior to failure;

3) The same observation is true for concrete specimens as for mortar. Howev-
er, the velocity decrease is more pronounced for concrete than for mortar
specimens. [t was also observed that for concrete specimens attenuation s-
tarts to continuously increase at 48.5 percent of the ultimate and for mortar
specimens at 89.5 percent of ultimate, while there was very little change in
amplitude until failure in paste specimens. It is noted that Robinson [1965]
also found that, the greater the quantity of aggregates, the lower the relative
values of stress at which the pulse velocity begins to decrease.

The effects of frequency of crystals were also investigated by Shah and Chan-
dra [1970]. The following observations were made from those tests:

1) The initial no-load velocity of the ultrasonic pulse increases with an increas-
ing frequency of the crystal. The average initial velocity for the 25-kHZ
crystals was 13,300 ft/s, while that for the 2250-kHZ crystals was 83.200
ft/s.

2) Initial amplitudes or intensities of the pulse decreased with increasing fre-
quencies.

3) The higher the frequency of the crystal for a given amount of cracking, the
greater the changes in the ultrasonic measurements.

A geological material when subjected to a sequence of loading, unloading and
reloading, exhibits anisotropic response. This is usually attributed to reorientation
of particles and to the formation of micro-cracks and damage within the material.
To characterize the induced anisotropy in geological materials and to compare, to
quantify, and to correlate such response with the anisotropic response, Jagannath,
Desai and Kundu [1991] developed an ultrasonic testing procedure. The ultrasonic

response was presented in the formn of wave signatures, velocities and attenuations.
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In Jagannath, Desai and Kundu [1991], the mechanical anisotropy is com-
puted based on the available constitutive laws [Desai et al 1986]. Let ¢; be the
strain increment in three main directions, and é be the average incremental strain
in the material. Then, the ratio ¢;/¢é gives a measure of anisotropy in the ith direc-

tion. An over-all measure of mechanical anisotropy at any given state is defined as
[Jagannath, Desai and Kundu 1991]: -

Manis = VI3, (1 - &/8)] (5.5)

The ultrasonic anisotropy is a physical measure of the anisotropy and can be quan-
tified based on the experimentally available velocities and attenuations. Let V and
A be the average velocity and attenuation in the material, respectively. Then, the
ratio V;/V and A;/A gives a measure of ultrasonic anisotropy in the ith direction
at any given state of the material. An over-all measure of ultrasonic anisotropy at

any given state was defined as [Jagannath, Desai and Kundu 1991}:

Vanis = V[Si21 (1 = Vi/ V)] (5.6)
Aanis = V[T, (1 - 4,/4)3 (5.7)

Based on experimental results, correlation functions between mechanical anisotropy
and ultrasonic anisotropies have been established [Jagannath, Desai and Kundu
1991]. It is found that the mechanical anisotropy can be expressed as a second

order polynomial of ultrasonic anisotropies.

5.3 Objectives of the Experiments

For decades, laboratory tests on brittle materials sought to achieve a ho-
mogeneous state of stress and deformation on samples subjected to uniaxial load.
However, even-under ideal testing conditions, the heterogeneous micro-structure
of the material yields an inhomogeneous deformation field from the early straining
stage, Fairhurst and Cook [1966], Hudson et al [1971], Read and Hegemier [1984],
Yukutake [1989]. In the uniaxial compression test the density of microcracks rapid-

ly proliferates, leading to vertically aligned microcracks resulting in gross slabbing
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of material from the tractionless surfaces. It is difficult to observe and/or simulate

the spatial pattern of material heterogeneity on the microscale. Undoubtedly, im-

portant information can be extracted from models simulating the microstructure

and spatial randomness of heterogeneity, Bazant et al [1990).

The proposed experiments include pure strain gage tests, ultrasonic scan-
ning tests, and combined strain gage and ultrasonic scanning tests. The uniaxial
external mechanical load is exerted through a servo-controlled MTS system as de-
scribed in detail later. The purposes of the experiment studies may be generalized
as: ,

1) to identify the initial (without external load exerted) material state.

2) tostudy the spatial variation of degradation mechanisms in a brittle material
subjected to mechanical load.

3) to study the local deformation development and damage evolution and pro-
vide information to identify the surface effects for a brittle material.

4) to estimate the internal material length ! associated with surface degradation

for a brittle material.

5) to investigate the relationship between mechanically dissipated energy and
ultrasonically dissipated energy and see if the relationship is scale or size
dependent.

6) to generate data to verify the theory for damage and surface degradation.

A scanning device was developed for these purposes and existing ultrasonic

equipment was used.

5.4 Equipment and Testing Material

5.4.1 Ultrasonic Apparatus

The ultrasonic test device described below was acquired, and its use for
modeling and testing of geomaterials experiencing induced anisotropy due to plas-
tic straining, damage and microcracking was conceived and developed by C.S. Desai
under a grant No. CES-8711764 from the National Science Foundation, Washing-
ton, D.C. Mr. S.V. Jagannath participated in this research project for his doctoral
work, and the results of the study are available in Jagannath et al [1990, 1991]. A
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- Model 5055PR Pulser-Receiver, Panametrics, in combination with a digital oscil-

loscope, Hewlett-Packard 54501A was used.

For the purpose of this research, modifications and additions described be-
low were made to develop computer controlled device for the movement of the
transducers on the surfaces of the test specimen [Frantziskonis, Desai, Tang and
Daniewicz 1991].

Figure 5.2 shows the schematic of the test system for ultrasonic measure-
ments on specimens subjected to external mechanical load. The ultrasonic trans-
ducers used (D, E in Figure 5.2) were the P/N Z-10016-3, Zevex Inc., Salt Lake
City, Utah, resonant frequency of 50 IKhz. The diameter of each transducer is 1.5
inches (1 inch=2.54 cm). With these characteristics, the waves produced are ap-
propriate for transmission through brittle attenuating materials like the one tested.
In order to take ultrasonic measurements at several locations in a sample subject-
ed to mechanical load, it was necessary to develop a scanning system that would
provide the following:

(i) continuous alignment of the ultrasonic pulser and receiver through a frame,

for the transmission of the wave through the sample,

(ii) arrangement for the movement of the frame in horizontal and vertical direc-
tions so that different points of the sample can be located accurately,

(iii) easy and quick alignment of the pulser and receiver,

(iv) constant and consistent contact pressure between the transducers faces and
the sample while measurements are taken,

(v) movement of the transducers away from the sample when they progress from
one measurement location to another.

For this purpose an appropriate system schematic shown in Figure 5.3, was
developed. Horizontal (x) motion of the transducers is accomplished through two
identical stepper motors (B in Figure 5.3) and so is the vertical (y) motion (C in
Figure 5.3). In order to take measurements at a certain location of the sample, air
pressure of 7 psi (1 psi=6.89 KPs) is applied to the transducers in the Z-direction.
After measurements are taken the air pressure is released, negative air pressure is

applied so the the transducers move away from the sample, and the transducers
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move to the next measurement location. All four stepper motors (K33505, Air-
pax, Cheshire, Connecticut) and the air pressure regulators are controlled through
prototype controllers from a micro-computer, Motorola M6BKVOVER/09. Ap-
propriate computer prograxﬁs were developed for the automated horizontal and/or
vertical movement of the transducers, and application of air pressure. Data were
extracted from the oscilloscope and the pulser-receiver.

The contributions of Mr. Pete Boyle towards the development of the scan-
ning device, and of Mr. Todd Booth and Mr. Tom Cram towards the electronics

are gracefully acknowledged.

5.4.2 Mechanical Load And Material Tested

The system for the movement of the transducers described above was mount-
ed on an MTS testing machine, Figures 5.2 and 5.4. This allowed acquisition of
ultrasonic measurements while the sample was subjected to external compressive
mechanical load from the MTS frame. Three series of prismatic samples were *est-
ed for ultrasonic scanning tests. For all samples the hight (H) was 5 inches (12.7
cm) and the depth (D) was 1.3 inches (3.302 cm), Figure 5.5a. For the three series,
width (W) of the samples was 3.0, 3.5 and 4.0 inches (7.62, 8.89 and 10.16 cm).
respectively. The ultrasonic pulse was transmitted through the depth (D) at dif-
ferent locations of the sample, Figure 5.5a. Compressive load was applied parallel
to the height (H). Because eccentricity of loading will cause a lot of problems (e.g.
consistent results can not be achieved), the placement of load platen was carefully
processed.

In order to reduce friction between the sample and loading end platens, the
following procedure was followed. The end platens and the faces of the sample
subjected to compressive load were lubricated by a thin layer of silicon grease.
In addition, a thin layer of teflon lubricated on both sides was placed between
end platen and sample. All sides of each specimen were machined in order to
obtain smooth surfaces for uniform load application, uniform coupling between

transducers and specimen, and for mounting strain gages.
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The material specimens were made of simulated rock and were cast in a-
luminum molds with casting direction parallel to the height. This material was
developed by Desai et al [1990] through a parametric variation of various compo-
nents such as sand, cement and plaster of Paris, and air entraining agent. The
three main criteria used for the development of such a material were: (i) consistent
material response, (ii) low compressive strength so that accuracy of measurements
with available measuring devices is enhanced, (iii) to achieve as initial homogeneity
as possible. In Desai et al [1990] it was concluded that the following combina-
tion showed the most consistent results from the view point of the above criteria:

sand:cement:plaster of Paris:water=15:2:3:4, by volume.

5.4.3 Strain Gages

The bonded electrical resistance strain gaee is widely recognized as the most
practical technology for measurement of st.ains in loading-bearing parts, members,
and structures. Because both excellent accuracy and repeatability can be achieved,
strain gages are also beconiing increasingly important as primary sensing elements
in load cells as well as in pressure, force, torque, displacement, and others. To
make strain measurements of acceptable quality, several parameters.should be con-
sidered: quality of strain gage itself; environmental protection, and other strain
gage accessories; proper circuit design, proper installation of the strain gage; and
quality of the strain gage instrumentation. Specifically, the strain gage labeled
CEA-06-500UW-120 manufactured by Measurements Group, Inc. Raleigh, North
Carolina, USA was chosen for our tests. CEA gage is a general-purpose family
of constant strain gages widely used in experimental stress analysis. The gages
are supplied with a fully encapsulated grid and exposed copper-coated integral sol-
der tabs. The temperature range is -100 to +400°F for continuous use in static

measurements. The fatigue life is about 103 cycles.

5.5 Ultrasonic Measurements

Consider a structure (specimen) subjected to external mechanical load, Fig-

ure 5.5a. As load increases, the sample experiences degradation or microcracking.
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Within the volume V of the structure an elementary volume dV; with cross-sectional
area dA; perpendicular to the direction of the ultrasonic wave transmission is iden-
tified. For piezoelectric ultrasonic transducers of diameter d, d4; = nd?/4. Let Q;
be the dissipated energy due to degradation progression in dV;. we can assufne, n

general

Qi = YR; (5.8)

where R; is a measure of degradation within dV;, and v is the dissipated energy
per unit of ?;.

Let an ultrasonic pulse be transmitted through dV;. Let zero (0) denote
the state of the sample where no external load is applied. Let the energy of the
received (after transmission through dV;) ultrasonic wave at zero state be Ey;. Let
the energy of the received wave at a deformed state be E;. Due to the degradation
progression in dV;, the attenuation of the transmitted wave increases. It can be
written, in general

AE,‘ = Eo,' - E,' = CR,' (5.9)

where c is the transformation coefficient relating degradation R; to ultrasonic wave
attenuation AFE,. It measures the intensity of influence of the structure transfor-

mation to the ultrasonic wave attenuation. From (5.8) and (5.9) we have
c
AE; = ;Qi = aQ; (5.10)

Equation (5.10) indicates that the local ultrasonic attenuation is proportional to
the local degradation dissipated energy; here local pertains to the fact that the
ultrasonic wave passes through the volume dV;. The question is whether a is a
constant or not; its possible dependence on deformation or load level is considered
later. For the specimens tested, volume dV; is of cylindrical shape of diameter
d = 1.5 inches (3.81 cm) and depth D = 1.3 inches (3.302 cm). It should be
noted that when a pulse is transmitted from the ultrasonic transducer through the
sample, the wave energy is not uniform on the transducer’s face. The energy is

maximum at the center of the circular face and reduced smoothly to a minimum
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at the periphery. In addition, as discussed later, the transmitted wave experiences
the so-called near field effects, in which the wave characteristics are different from
the ones far from the pulser transducer’s face [Krautkramer, J. and Krautkramer,
H. 1983]. In this study, we assume that the wave energy is uniform on the area of
the transducer’s face. As shown subsequently, the near field is rather short so the
received wave was not close to it.

The velocity of an ultrasonic P-wave in an elastic material can be related
to the Young's modulus E and Poisson’s ratio v as shown in (5.1). The material
examined in this study shows inelastic response from the early straining stages. For
strains up to the peak the Young’s modulus (from the unloading/ reloading slope)
was found from the present study and Desai et al {1988, 1990] to be approximately
180,000pst (1240 MPa) and v = 0.3. The initial density of all samples tested was
0.066 1bm/in® (1.825 g/cm®). For these values, if for the time being we assume that
(5.1) is valid, we obtain ¢; = 37,664 in/s (957 m/s), thus for a sample depth of
1.3 inches (3.302 cm) the transit time is 33.8 us. The transit time measured in the
experiments was 34 us with 0.5 us accuracy of the time measurement. The pulse
velocity remained constant while the sample was loaded and changed only when the
external load was close to the peak. This is consistent with the results obtained for
hardened paste and mortar specimens [Shah and Chandra 1970], and for concrete
specimens [Spooner and Dougill 1975]. However, as discussed subsequently, the
attenuation of the pulse showed significant changes from the early straining stages.
Achenbach et al [1991] found increase in pulse velocity of surface waves while the
attenuation increased. However, such effects may be peculiar to surface and not
to P-waves. Through the measurement of the transient time, the constant pulse
velocity for load levels in the load range between zero and close to peak was found
to be ¢; = 38,230 in/s (971 m/s). Reduction in pulse velocity close to peak was not
insensitive or very consistent in the performed tests. Thus the only conclusion is
that pulse velocity remained constant and was reduced rapidly and inconsistently
close to the peak load.

For the resonance frequency of the transducers of f = 50,000 cycles/s, the

wave length A of the transmitted pulse can be calculated, A = ¢;/f = 1.94 cm. For




125

the ultrasonic transducers of circular cross section of diameter d, the length of the

near field N can be evaluated as [Krautkramer, J. and Krautkramer, H. 1983]

d? — \?
N =
) 4\

(5.11)

For the transducers used d = 1.5 inches (3.81 c¢cm), and (5.11) yields N = 1.38 cm
which is much smaller than the thickness of the samples used, which is 1.3 inches
(3.302 cm). Thus the received wave was always far from the near field.

The average energy, E;, of a received ultrasonic wave is proportional to the
square of its maximum amplitude. Mathematically, we can write [Krautkramer, J.
and Krautkramer, H. 1983]

E; = pA? (5.12a)

Eoi = BAL; (5.12b)

where A is the maximum absolute voltage of the received wave while the sam-
ple is under external load, Ag; is the maximum absolute voltage of the received
wave before any external load is applied, and 3 is a constant relevant to the elec-
tromechanical characteristics of the receiving transducer. From (5.9) and (5.12), it
follows that

AE; = B(A%, — A®) = 3G (5.13)

So G = A2, — A? can be used to monitor the structural transformation or degrada-
tion progress. From (5.10) and (5.13) we conclude that the mechanically dissipated
energy is proportional to G. This connects the ultrasonic measurements with me-
chanical measurements and makes the quantitative assessment for the degradation
of brittle materials subjected to external load be possible. For this reason, in all
measurements presented in the following, by the term dissipated energy we imply
the difference G = A2, — A2. However this term could be replaced by "ultrasonic

pulse attenuation”, or "intensity reduction”.
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5.6 Test Results

5.6.1 Strain Gage Test Results

Eight specimens were processed with strain gages attached. Strain gages
were mounted at specific locations along the specimen, as shown in Figure 5.6.
Further, 3 tests (S4s, M4s, L4s) included strain gages and ultrasonic testing, Fig-
ure 5.7. Loading for all specimens was displacement controlled with the rate of s-
train increment about 1076 /second. All specimens for strain gage tests were loaded
monotonically up to peak and experienced with post-peak to residual stage. Figure
5.8 shows a typical (average) stress-strain curve including post-peak response. For
each load step, in addition that the four strain gage readings were checked. the
displacement of the top surface of the specimen was measured through the MTS
system, to make the calculations of the average strain. Among the eight specimens,
four specimens are relatively smaller, with the dimensions of 5 x 3 x 1.3 (in?), and
are labeled with PS; another two specimens are medium, with the dimensions of
5 x 4 x 1.25 (in%), and are labeled with PM; the other two specimens are relatively
bigger, with the dimensions of 3 x 5 x 1.25 (in®), and are labeled with PL. It was
observed that the strains from strain gages are considerable smaller than the av-
erage strain obtained. On three specimens (S4s, M4s, L4s), four strain gages were
mounted on the free surfaces as shown in Figure 5.7. Figure 5.9a shows the overall
readings from the MTS load cell and the attached LVDT’s of the MTS frame and
Figure 5.9b shows the strain gage readings. One possible explanation of the consid-
erable difference between the local strain on surface and the average strain is that
unloading takes place in the outer surface layers of the specimen, and the carrying
capacity of the fractured specimen is mainly due to the "intact” specimen core.
Experiments on éoncrete justify this {Vanmier 1984]. Further discussion will be p-
resented later. However, here we are interested in the local strain distributions and
the relative changes of local strains with external load along characteristic points.
Figure 5.10-5.14 are typical results with strain gage readings versus applied stress.
It is obvious that the local deformation is not uniform, and the non-uniformity

for different samples is different. It is also seen that the increasing rate of strains
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from different locations are different. In order to analyze these data and to identify
the information of surface effects, let us process the following procedure [Tang,
Frantziskonis and Desai 1992a).

Pick up the local strains at different external mechanical load levels, say at
P/P,.ar =0.5, 0.85, and 1.0, as shown in Table 5.1, 5.2, and 5.3, respectively. For
each sample at each external load level, find the smallest local strain'and regard it
as reference. If we assign a weight of 100 to the smallest local strain, the weights
of other local strains can be obtained by calculation €;/e, x 100, where ¢, is the
smallest local strain, and ¢; are the local strains of the other gages. The weight
distribution for P/Pyeqx =0.5, 0.85, and 1.0 are shown in Table 5.4, 5.5, and 5.6,
respectively. The results for Test-1 are not shown in these tables, because one
of the strain gages was broken by accident. We add together the weights of the
same gage number for all the samples listed, and compare the results as shown in
Table 5.7. It is interesting to see that, at the early straining stage, the deformation
is concentrated at gage 4 which is located at top (or bottom) of the right (left)
surface (perpendicular to the width) as shown in Figure 5.6, then with increase of
external load, the strain concentration transfers to gage 1 which is located at the
middle of the front surface (perpendicular to the depth), at or close to the peak.
the maximum local deformation occurs at gage 1. It is noted that this conclusion
1s based on the statistical sense. Because of the randomness of the initial (without
external load exerted) material inhomogeneity, some measurements do not agree
with this conclusion.

The observations discussed above can be explained by the so-called surface
spalling (slabbing) mechanism. The surface slabbing is depicted as shown in Figure
5.15. For the specimens tested, because the width is about three times as large
as the depth, the surface spalling effects are more pronounced along the surface
with normal perpendicular to depth (left or right surface). At the early straining
stages, the damage is concentrated in the volume close to these surfaces. Along
these two surfaces, the top and bottom part are more severly influenced by other
boundaries. and the microcracks start to proliferate in these parts, so the strain

gage readings there are expected to be relatively large. After some load steps, say
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at 0.5 < P/Pp.ax < 0.8, the macrocrack for surface spalling is formed, and inner
part (other than the slabbed material) becomes the main load-supporting material.
This may be the reason why fast increase in the rate of strain at gage 1 was observed
at subsequent straining stages. As the stress is increased exceeding 80 to 90 percent
of the peak strength, the non-uniform local deformations are greatly pronounced
(comparing the changes of strain gage readings). This may be responsible for the
physical explanation of the degradation instability theory discussed in the last two

chapters.

3.6.2 Ultrasonic Test Results

In the following we first summarize the outcomes from the ultrasonic test
results. Subsequently, various test results from the twelve specimens tested are

presented in detail as discussed in [Frantziskonis, Desai, Tang and Daniewicz 1991].

Summary of the Observations:

e Scanning the samples at zero external load showed that all samples were
not initially homogeneous with respect to the energy of the received wave.
Note that the initial density of each sample was consistent and equal to
about 0.066 lbm/in® (1.825 g/cm?®). In addition, in order to avoid non-
homogeneous material (through depth D) due to casting, the casting surface
was transverse to the direction of the transmitted wave. We consider that
even before any external load is applied on the samples, the material contains
flaws in the form of voids and microcracks. Thus since the energy of the
transmitted pulse is constant, the energy of the received wave decreases with

increasing initial density of flaws.

¢ The initial non-homogeneity was rather random for all samples. The pattern

of inhomogeneity was different for each sample.

o For all load steps up to the peak, dissipated energy shows a random distri-
bution and it follows, in general, the initial non-homogeneity pattern. The

dissipated energy pattern showed no symmetry.
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¢ Dissipated energy was, in general, concentrated on one of the two load-free

surfaces.

o In those cases where the initial non-uniformity showed higher concentration
of received pulse energy in the center of the specimen (far from the free-
edges), the dissipated energy pattern under load did not follow the initial

non-uniformity pattern.

e Surface concentration of dissipated energy is shown to extend over an iden-
tifiable distance p from the free surface, Figures 5.18, 5.19, and 5.22. This is
used in connection with the proposed theoretical considerations on surface

degradation mechanisms, as a tool to identify the internal material length 1.

¢ Under unloading the dissipated energy essentially remains constant or de-

creases slightly.

o Although the dissipated energy pattern is random, more energy is dissipated
close to the load-free surfaces. All twelve specimens tested experienced
formation of a macro-crack network, in a brittle fashion, at peak or slightly
before peak. Since each sample showed formation of different macrocrack
pattern it seems appropriate to conclude that such a pattern is random.

This is consistent with recent theoretical studies [Bazant et al 1990].

e For monotonically increasing load, a large percentage of the total dissi-
pated energy occurred at relatively low load levels. Some measurements
showed decrease in dissipated energy under increasing external load. This
may imply unloading of partially formed cracks and is consistent theoretical
considerations [Bazant et al 1990].

Figure 5.5b shows the location of the centers of the transducers that provided
ultrasonic measurements. Since the diameter of the transducers is 1.5 inches only
12 point measurements were considered for the small and medium samples while
16 points were considered for the large samples. (A denser array of measurement
locations would result in significant overlapping between measurement locations).

Loading for all specimens was displacement éontrolled, and all samples were

broken finally to obtain the peak stress. Some specimens were loaded monotonically
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up to peak and measurements were taken at different load levels. In order to study
the effect of unloading and reloading on the energy dissipation distribution, some
specimens were. unloaded, and ultrasonic measurements were taken in the unloaded
state. Then the specimens were reloaded for further measurements. It is noted that
all the samples were loaded to peak to identify the peak strength. At the peak or
slightly before the peak, formation of a macrocrack network occurred. After this
crack formation it is rather impossible to take reliable ultrasonic measurements
since the presence of macrocracks do not allow a consistent output signal. Thus
the purpose of the experiments was to examine the behavior for loads up to or
close to the peak load. Typical failure modes discussed later are shown in Figures
5.161 and 35.16II.

In the displacement controlled testing, the actuator fluctuates the load in
a saw tooth way so that the prescribed displacement can not be controlled in a
smooth manner. For this reason, very close to the peak it is difficult to "freeze”
the load. even for short period of time. Ultrasonic measurements were taken for

loads close to the peak, up to 95% of the peak stress.

Test Results:

We first present typical results from each series of tests. Four samples from
each series were tested. S1, S2. S3 and S4s designate the four small samples tested
and the lower case s indicates that strain gage measurements were taken in addition
to the ultrasonic ones. Similarly, the medium series samples are designated as M1.
M2, M3, and Mds, and the large ones as L1, L2, L3, and L4s. Figures 5.17a,b,c
show the dissipated energy distribution (G = A2, — A?) versus the external load
for different locations (Figure 5.5b) within the sample for M2. The external load
was increased monotonically until about 92% of the peak load and then unloaded
to about 8% of the peak. As can be seen from this figure, significant energy is
dissipated in the early loading stages. Up to about 20% of the peak, the energy
dissipates rapidly. Subsequently, the dissipated energy increases at a much slower

rate. For some locations, the dissipated energy decreases with increasing load, and
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as discussed before this may indicate unloading of partially formed microcrack-
s. After the specimen is unloaded, the dissipated energy decreased for locations
1,2,3,4,10,11,12 by small amounts, while greater decrease was observed for locations
5,6,7,8,9.

Figure 5.18a shows the spatial variation of the initial energy of the received
wave. Clearly the sample is initially not uniform and shows a lower concentration
of initial flaws along the middle column of the sample. However, this initial pattern
is not followed when the sample is subjected to external load. This is depicted in
Figure 5.18b where the dissipated energy distribution at 20% of the peak shows
concentration near the right free surface. If we observe the failure mode of this
sample (M2), Figure 5.16I(a), we see spalling near the top right corner indicating
higher damage in that area. The dissipated energy pattern, Figure 5.18b shows
such characteristics. A similar pattern was followed for subsequent loading; Figure
5.18c shows the distribution of G at 68% of peak. At the unloaded state, Figure
5.18d, the pattern changes slightly and dissipated energy shows concentration on
both free surfaces.

Figure 5.19a, from test S3, shows that the initial energy E, (at zero load)
of the received wave shows concentration at the upper end of the free surfaces.
A similar pattern was observed when the sample was subjected to monotonically
increasing load, Figure 5.19b,c, which show the dissipated energy pattern at 36%,
92% of peak. respectively. Failure of this sample occurred by severe damage con-
centration on the right top side and on the left side in the middle. Those two
damage zones finally resulted in the macrocrack along the width, Figure 5.16I1.
'Wé consider that higher received energy at the initial zero load state indicates a
smaller level of initial flaws. Then, as implied from the test results, we observe
higher rate of damage increase at places of low initial flaw concentration.

Figure 5.20a shows results from test L1, where the initial energy, Ey, of the
received wave was concentrated on one surface with greater concentration near the
right top. Figure 5.20b shows the dissipated energy distribution at 93% of peak.

Figure 5.20 shows that the dissipated energy pattern remained similar to the initial
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one. This sample failed by damage concentration near the right top corner and
macrocrack initiation from the region, Figure 5.161(c).

In the above typical results from a small, medium and 1arge sample were
presented. In order to demonstrate the concentration of dissipated energy close to
the load free surfaces and to provide the ground for the estimation of the internal
length, we present typical patterns observed from other samples. Figures 5.21a,b
show the energy dissipation pattern for test M4s recorded at zero, 92% of the
peak load, respectively. Failure of this sample occurred by macrocrack formation
initiating near the top at the middle, (point 5), Figure 5.5b. This sample was
loaded to 92% of peak then unloaded to 9% and then reloaded to failure. Figure
3.21c shows the dissipated energy distribution in the unloaded state.

Figures 5.22 and 5.23 show results obtained from test S4s. This specimen
was loaded monotonically to 81% of peak, then unloaded to 8%, and then reloaded
to peak. Figures 5.22a,b,c,d show the dissipated energy pattern for test S4s, at
zero, 81%, unloaded state, reloaded state to 93% of the peak load, respectively.
It can be seen that the energy dissipation pattern remained remarkably similar
in shape from the very beginning of the load application. Figure 5.23a shows
the distribution of G along columns 1, 2 and 3, for the loading steps. Energy
dissipation is concentrated at the left side of the sample and the core experiences
the least dissipation. Figure 5.23b shows the local strains along the left and right
free surfaces versus external stress for specimen S4s. Figures 5.24a,b show the
initially received energy distribution and local strains for specimen L4s. Sample
M3 was loaded to 91% of peak, then unloaded to 7%. Figures 5.25a,b,c show
the distribution of initially received energy and G for test M3 at zero, 23%, 91%,
respectively. Again, for this sample, the G pattern shows concentration on the left
side. Failure occurred by macrocrack formation on the left side.

Now. let us compare the initial states and local strain readings for specimens
Mis, S4s, and L4s, Figure 5.19a, Figure 5.21b, Figure 5.22a, Figure 5.23b, Figure
5.24a and Figure 5.24b. For specimen S4s, the material around the right top is
relatively more disintegrated, and the local deformation is relatively smaller there

at early straining stages; the local strain reading is relatively larger for gage-3,
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the damage development is concentrated along the left side, and after the load
reaches about 70 percent of the peak, unloading occurs for the left top part. It is
noted that, after the first load step (23 percent of the peak), there is only very small
dissipated energy increase (Figure 5.23a). For specimens M4s and L4s, the right top
is relatively more disintegrated as compared with the left top, readings from gage-1
are smaller than those from gage-3, but the local deformation is less diverted as
compared with specimen S4s. It is important to know that the initial inhomogeneity
is more pronounced for specimen S4s than for specimens M4s and L4s. For example.
the initially received maximum and minimum energy for specimen S4s are 77.7
Joule and 12.5 Joule, while for specimen Md4s, they are 86.1 Joule and 34.1 Joule,

here, 3 = unit is assumed for (5.12b).

5.7 Analytical Considerations

In chapter 3 and chapter 4 [Frantziskonis, Tang and Desai 1991; Frantzisko-
nis and Desai 1991] a mechanics based theory and verification for surface degrada-
tion in brittle material systems was introduced. The basic idea behind the theory
is that close to free surfaces degradation progression is different from the one oc-
curring far from the surface. It is shown that surface degradation consideration
can capture important properties of brittle materials such as scale (size) and shape
effects. surface damage growth and subsequent bursting instabilities. Although the
theory does not consider any type of statistical material inhomogeneity distribu-
tion, it describes the surface degradation process in an average sense. Damage
distribution at the edge of a body where surface degradation is important is con-
sidered to be different from the damage distribution far from the edges (in the
body). A so-called surface degradation zone is defined in (3.34). Consider «a is
independent of [ and its value was estimated from a series of uniaxial compression
tests reported in [Desai. Kundu and Wang 1990] for the same material described
herein on different size cylindrical specimens. The value of a = 0.21 was estimated

(in section 4 at chapter 3). For the specimens tested, (3.34) reduces to

p=alH -1 (5.14)
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where H is the specimen height. From the test results reported herein, distance
p can be estimated from the dissipated energy distribution within the samples
tested. From the test results it seems that the concentration of G close to the free
surfaces is distinguishable and can be approximated to about one inch, Figures
5.18, 5.19, and 5.22. Then from (5.14) | = 0.24 inches. In Frantziskonis and
Vardoulakis [1991], material micro-structure is examined with respect to surface
effects. Surface instability analysis shows nonuniform deformation for a layer of
specified distance from the surface. It was identified that a significant percentage
of the uniform deformation is obtained at a depth of 5/. Then if we consider that
the nonuniform deformation, in an average nonstatistical sense, is about one inch.
the internal length ! is estimated to be-0.2 inches [Frantziskonis, Desai, Tang and
Daniewicz 1991].

From the average stress-strain response of the tested specimens, the dissi-
pated energy in the whole sample can be estimated by subtraction of the elastic
strain energy from the total one. In Figure 5.26, this dissipated energy is plotted
with respect to the ratio P/Pp.qk, for tests M2, M3, and M4s. Note that the di-
mensions of these samples are the same. The curves in Figure 5.26a are similar
in shape to the ones observed for concrete in [Spooner and Dougill 1975]. The
ultrasonic dissipated energy G for the whole sample can be caiculated from the
local measurements on it. This results in the curves of Figure 5.26b for samples
M2, M3 and M4s. If we compare Figures 5.26a and 5.26b we conclude the follow-
ing. A significant percentage of the average ultrasonic attenuation occurs at low
stress levels. This implies that relatively low energy is required to produce damage
occurring at the prepeak load levels. The randomness of this damage distribution
occurring at low levels could serve as an explanation of the fact that brittle ma-
terials show a wide scattering with respect to the peak load for specimens of the
same size and shape. Also Figures 5.26a,b show that parameter a in (5.10) is not
constant. Its value as can be determined from the curves in these figures shows a
high value for low load levels and its value decreases continuously to a minimum
close to peak load. The exact variation of a and its possible dependence can be

examined through the following considerations.
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Because £ (5.13) is a constant for a specific ultrasonic system, we can as-
sume 3 = 100 (arbitrarily). It is noted another value of B does not change the
analysis procedure. Then, G/100 is regard as the ultrasonically dissipated energy.
Considering Test-M2, Test-M3, and Test-M4s, we obtain the distribution of the
values of a for different load levels as shown in Figure 5.27. Assume a is power

function of load level ¢ = P/Pp.qk, That is,
a = B,cB (5.15)

where B, and B, are constants. The two constants B; and B, are identified to be
1.7162 and -1.6 through best-fit analysis against Test-M2, Test-M3, and Test-M4s.
The best-fit curve is shown in Figure 5.27. '

The power function of (5.15) is used to process back-prediction of a for Test-
S1 and Test-S2. The predictions are compared with the values obtained directly
from experiments as shown in Figure 5.28 and Figure 5.29. It is seen that the
power function (5.15) works well. But the experimental vulues are over-predicted.
This may be due to the shape effects and different overlapping areas for ultrasonic
measurements.

It is interesting to evaluate the change rate of a with respect to the load level
¢ = P/Ppeak. a changes very fast at low load levels and claim very small change at
high load levels (say over 80% of the peak load). High change rate of a corresponds
to faster microcrack deveiopment. and slower plastic flow, relatively. However, low
change rate of a corresponds to slower microcrack development and faster plastic
flow, relatively. It is widely accepted that for brittle materials (such as rock and
concrete) under uniaxial compression microcrack development is predominant at
low load levels while shear band processes at load levels higher than about 85%
of the peak stress [Hallbauer, Wagner and Cook 1973]. The discussions presented
here support the theoretical considerations proposed in chapter 3.

In chapter 3, the onset of degradation instability corresponds mathemati-
cally to the change of the second derivative of energy with respect to the damaged

volume. This has been implemented and examined against experimental observa-

tions [chapter 4, Frantziskonis, Tang and Desai 1991]. Here, we process the energy
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analysis based on experimental measurements. From the average stress-strain re-
sponse of the tested specimens, the elastic strain energy stored in the sample at
each load level can be calculated. The external work can be calculated from the
load and displacement readings. Then, the potential energy can be obtained at
each load level. Figure 5.30 and Figure 5.31 show the chages of energy with load
level. In Figure 5.30, the energy is given as the potential (II) added by mechani-
cally dissipated energy (D). In Figure 5.31, the energy is given as the potential
(II) added by ultrasonically dissipated energy (D,). From these two curves, it is
clear that the second derivative of the curve changes with respect to load level.
Because the damaged volume or its connection with load level is not available by
the time being, the instability point can not be identified, and the comparison
between the experimental results and the numerical and analytical predictions p-
resented in chapter 4 (Frantziskonis, Tang and Desai 1991] can not be achieved.
Further, an appropriate evaluation of the changes of the second derivative requires
smaller load steps. To identify the instability point experimentally and to compare
it with numerical and analytical predictions and other experimental observations,
and to identify the possible dependence of a on scale and shape effects, further

experimental and theoretical investigation seems to be necessary.

5.8 Conclusion

The experimental program presented in this chapter was designed mainly
to provide an insight into the problem of initial (under no external load) and sub-
sequent (under load) inhomogeneity and damage distribution of brittle materials.
Both the ultrasonic attenuation pattern and the failure mode were different for the
specimens tested. The results from both strain gage tests and ultrasonic scanning
tests highlight the surface degradation (skin) effects, the randomness of damage
evolution, and their consequence on the phenomenological behavior of brittle ma-
terials. Relatively low external energy is required to produce degradation occurring
before the peak load. This implies that from low load levels the specimen may be

susceptible to instability, and this may explain the large range of peak load values
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observed for specimens of the same shape and size. The relationship between me-
chanically dissipated energy and ultrasonically dissipated energy is dependent on
deformation and can be approximated by a power function of load level. Further
verification of the energy based instability theory requires further theoretical and

experimental investigation.




Table 5.1 Strain Gage Readings at P/Pp.qt = 0.5

| Gage-1 | Gage-2 | Gage-3 | Gage-4
Test-2 0.041 0.045 0.055 0.017
Test-3 0.043 0.046 0.045 0.074
Test-4 0.041 0.033 0.041 0.071
Test-5 | 0.0575 0.041 0.033 0.164
Test-6 0.02 0.028 0.025 0.082
Test-7 0.05 0.0445 0.03 0.048
Test-8 0.028 0.034 0.0305 0.066

Table 5.2 Strain Gage Readings at P/ Ppear = 0.85

Gage-1 | Gage-2 | Gage-3 | Gage4
Test-2 0.09 0.093 0.111 0.043
Test-3 0.05 0.052 0.052 0.081
Test-4 | 0075 | 00675 | 0.071 0.0955
Test-5 | 0.1085 0.07 0.064 0.195
Test-6 | 0.098 0.08 0.0625 0.18
Test-7 | 0.099 | 0.0865 | 0.0615 0.075
Test-8 | 0.0875 | 0.083 0.067 | 0.0775

Table 5.3 Strain Gage Readings at P/ Ppear = 1.0

Gage-1 | Gage-2 | Gage-3 | Gage4
Test-2 | 0.1245 0.117 0.145 0.061
Test-3 0.116 0.091 0.099 0.115
Test-4 | 0.0985 0.093 0.09 0.103
Test-5 0.141 0.087 0.085 0.216
Test-6 0.13 0.1 0.075 0.2
Test-7 0.127 0.109 0.078 0.079
Test-8 0.108 0.098 0.077 0.0735




Table 5.4 Relative Numbers for Strain Gage Readings at P/ Ppeak = 0.5

Gage-1 | Gage-2 | Gage-3 | Gage-4
Test-2 241 | 265 324 100
Test-3 100 107 105 172
Test-4 124 100 121 215
Test-5 174 124 100 497
Test-6 100 140 125 410
Test-7 167 148 100 160
Test-8 100 121 109 236
Sum. 1006 1005 984 1790

Table 5.5 Relative Numbers for Strain Gage Readings at P/Pp..x = 0.85

Gage-1 | Gage-2 | Gage-3 | Gage-4
Test-2 209 216 2358 100
Test-3 100 104 104 162
Test-4 111 100 105 141
Test-5 174 109 100 305
Test-6 157 128 100 288
Test-7 161 141 100 122
Test-8 131 124 100 116
Sum. 1039 922 ‘867 1234

Table 5.6 Relative Numbers for Strain Gage Readings at P/P,eqx = 1.0

Gage-1 | Gage-2 | Gage-3 | Gage—4
Test-2 204 192 238 100
Test-3 127 100 109 126
Test-4 109 103 100 114
Test-5 166 102 100 254
Test-6 173 133 100 267
Test-7 163 140 100 101
Test-8 147 133 105 100
Sum. 1089 903 852 1062
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Table 5.7 Statistical Distribution of Strain Gage Readings

Gage-1 | Gage-2 | Gage-3 | Gage-4
P/Ppeak=0.5 1006 1005 984 1790
P/Ppeak=0.85 1039 922 867 1234
P/Ppegk=1.0 | 1089 903 852 1062
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Figure 5.1 Schematic of Intensity Method with Sound Transmission
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Figure 5.3 System Designed for the Movement of the Transmit-
ting and Receiving Transducer; A: Transducer Housing, B: Step-
per Motors for X-Movement (Horizontal), C: Stepper Motors for
Y-Movement (Vertical), D: Vertical Motion Screws, E: Horizontal
Motion Screws, F: Air Pressure Connections, G: MTS Frame




Figure 5.4 Photograph of the Setting-up of Test
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Stress (Psi)

Test—5
HeWeD: 5+3+1.33
1400
1200
1000
800
600

400

L ] goge—]
sttt gqge—z
arararere gqgg—}
oo gqgg—4

200

6o 03 0S5 08 10 13 1S5 1.8 20 23
Strain (E-3)

Figure 5.12 Strain Gage Readings for Sample PS1

152




153

--------A--
Stress

2000.00

1500.00

(Psi)

1000.00

Test—-7
HeWeD 52321.33

o, goge—]
ettt gqgg—z
& & +e gage—3
ceees gage—4

500.00

OQOO FTrevrTiIry oy irrrryvy iy yryyrTT ey ey vrivTrryyTrTyg

0.00 0.04 . 0.08 0.12 0.16
Strain (percent)

Figure 5.13 Strain Gage Readings for Sample PS2




(Psi)

Stress

154

2000.00
3 Test—-8
3 HaWeD Ss4e1.24
]

1500.00 -
]

1000.00 -

500.00 3
p e gaqge~—1
p PR 4 ettt gqgg-z
. -~ s o >« gage—3
B oeeee gage—4

000 002 004 006 008 010 0.2
Strain (percent)

Figure 5.14 Strain Gage Readings for Sample PM1




Figure 5.15 Schematic of Surface Slabbing (Spalling)
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Figure 5.161 Picture of Three Samples after Failure at Peak; (a)
Sample S3. (b) Sample M2, (¢) Sample L1




Figure 3.161I Showing of Surface Spalling From Sample PM?2
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Figure 5.18 Spatial Distribution of Initially Received Energy and G

for Test-M2
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CHAPTER 6
INITIAL HETEROGENEITY AND DEGRADATION

In this chapter, the concept of state of degradation is employed in order
to consider the initial material (structure) inhomogeneity. Then, degradation and
its patterning in simulated rock specimens subjected to external load are mod-
eled numerically by implementing the theory for damage and surface degradation
with incorporation of the initial state. The theoretical results are compared with

experimental observations obtained through ultrasonic scanning tests [Tang et al
1991].

6.1 General

Structures composed of brittle materials, e.g. rock and concrete, experience
damage due to microcracking and fracturing when loaded. The term degradation
is often associated with damage evolution. Depending on the external load on
a structure, the degradation process may become unstable. Physically, when the
inflow of energy from the external loading system on a structure exceeds the energy
absorbed in the process of degradation and plastic deformations, an instability can
ensue, Salamon [1970], Petukhov and Linkov [1979], Zubelewicz and Mroz [1983],
Frantziskonis, Tang and Desai [1991].

For decades, laboratory tests on brittle materials sought to achieve a ho-
mogeneous state of stress and deformation on samples subjected to, for example,
uniaxial load. However, even under ideal testing conditions, the heterogeneous
micro-structure of the material yields an inhomogeneous deformation field from
the early straining stage, Fairhurst and Cook [1966], Hudson et al [1971], Read
and Hegemier [1984], Yukutake [1989], Frantziskonis et al [1991], Chapter 5. The
initial hetérogeneity significantly influences the spatial variation of degradation in
a brittle material structure subjected to mechanical load. This spatial variation
may provide an explanation why the experimentally observed failure (or instabil-

ity) modes are rather random, and why the peak strengths from same size and
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shape samples of the same material are diversely distributed, Bazant et al [1990].
The onset of an instability depends on the accumulation of damage. The initial
heterogeneity influences the spatial variation of damage or microcracking. Also,
microcrack propagation is dependent on the geometric configuration, i.e., different
relative locations of aggregates are expected to cause different microcrack propa-
gation patterns even if the external loading conditions are identical.

The influence of initial material heterogeneity on microcrack propagation
has been studied recently by Yamaguchi and Chen [1991], in which, the represen-
tative volume element of concrete is modeled as a two-phase composite, consisting
of a mortar matrix and aggregate inclusions, and two distinct types of microcracks
(mortar crack and bond crack) are considered. It is assumed that there are no
initial flaws, but the material properties of the inclusions are different from those
of the matrix. It is then found that the location of neighboring aggregates do not
influence the propagation of bond cracks significantly. However, the relative loca-
tions of neighboring aggregates exert a considerable influence on the development
of mortar cracks.

In chapter 5, an experimental study of degradation mechanisms and pat-
terning in simulated rock has been performed. The results from both the strain
gage tests and ultrasonic scanning tests highlight the surface effects and the influ-
ence of initial state on the local deformation and damage evolution. It was found
that the ultrasonically dissipated energy from load application follows, in general,
the initial non-homogeneity pattern. In this chapter, the initial heterogeneity is
considered by virtue of the concept of initial state and the degradation progress
is simulated numerically by using the theory for damage and surface degradation
growth. The numerical results are compared with the experimental measurements.
It is understood that the initial heterogeneity implementation is not random [Yuan
et al 1991}, but rather inspired and "extracted” from relevant ultrasonic experi-
ments. In Yuan [1991] and Yuan et al [1992], the implications of random initial
material inhomogeneity on degradation evolution and material response were stud-
ied. It is also noted that the initial heterogeneity considered here is based on the

experimental observations and the way to deal with the initial heterogeneity herein
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is different from that studied by Yamaguchi and Chen [1991], in the sense that
inhomogeneity is considered in the whole structure (specimen) rather than in the
representative volume element.

The theory used for the purposes of this chapter, namely, damage and sur-
face degradation growth, has been presented in chapter 3. It is noted that the
damage model and the concept of surface degradation consideration were originat-
ed by Frantziskonis and Desai [1987,1991], Frantziskonis [1989], Frantziskonis, Tang
and Desai [1991]. The used constitutive law for the undamaged part and numerical
procedure is referred to appendix-A and chapter 4, separately. In the following sec-
tion, the considerations for initial damage implementation are discussed. Then, the
numerical solutions of demonstration problems and comparison with experimental

measurements are presented.

6.2 Implementation of Initial Damage

As presented in the previous chapter, three series (S, M, L) of samples were
tested through ultrasonic scanning. For S and M series we have 12 representa-
tive measurement points, and for L series we have 16 representative measurement
points, Figure 5.5b. For each test, about six load steps were applied up to the peak,
and the ultrasonic measurements were obtained at each load step. For each sam-
ple tested, the initial ultrasonic measurements (without external load exerted) have
been taken as the reference to assess the structural changes of the sample. Shown in
Figure 6.1 and 6.2 are some typical initial measurements of received ultrasonic en-
ergy. The contour lines are obtained through transforming the maximum absolute
voltage of the received wave to ultrasonic energy with the unit of Joule (equation
5.9b). It can be seen that the distribution of the received ultrasonic energy along
the sample is not uniform. Because the wave transmitted along all monitoring area
has the same intensity, we conclude that the micro-structure of the sample is not
initially uniform. In the following, we will discuss how the initial heterogeneity is
considered so that the degradation process can be modeled numerically.

The experiments described in chapter 5 showed that the dissipated energy

distribution follows, in general, the initial heterogeneity pattern [Frantziskonis et al
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1991, Tang et al 1991]. It seems that degradation is more likely to occur within the
volume of high material integrity than of low material integrity. This agrees with
the theoretical studies of Yamaguchi and Chen [1991] and the random studies of
Yuan et al [1992]. Equt;.tion (3.8) is plotted in Figure 6.3, for x = 50, R = 0.5. The
present analysis showed no sensitivity (qualitatively) on the values of R and «. It
can be seen that the rate of damage evolution changes with deformation. As noted
previously, damage is a relative concept. If we assume that the material points
along the sample correspond to different points along the r-£p curve, the initial
heterogeneity can be considered, and more accurate simulation of the degradation
progress can be achieved.

As shown in Figures 6.1 and 6.2, the initial received ultrasonic energy dis-
tribution along the sample shows two extreme numbers, the highest and the lowest
ones. Let us consider the point with the highest initial received ultrasonic energy as
reference state. Then other material points can be considered as initially damaged
with respect to the reference state. The point with the lowest initial (received)
ultrasonic energy is most seriously "damaged” initially, and has the maximum ini-
tial damage parameter, say r***. The initial damage parameter at other points
can be obtained by (linear) interpolation. So we have, generally, 0 < ry < rj*®*,
0 < r < ry. Here, rg is the initial damage parameter corresponding to different
points along the sample; r, is the ultimate value of damage parameter r. Follow-
ing this procedure and considering, in a qualitative sense as described previously,
ro'®* = 0.2 (this is discussed further in the following), we get the initial damage
distribution for test samples S4 and M2 as shown in Figure 6.4 and Figure 6.5, re-
spectively. This initial damage distribution will be taken as input for the numerical

(FEM) simulation in the next section.

6.3 Numerical Solutions

For illustration purposes we consider samples S4 and M2. Consider the problem
to be solved as two-dimensional one (idealized as plane strain). The end platens
and the faces of the sample subjected to compressive load were lubricated by a

thin layer of silicon grease, and ‘additionally, a thin layer of teflon lubricated on
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both sides was placed between end platens and sample. So it is reasonable to
assume friction free along boundaries of the sample for the FEM computations.
It is assumed that the central line along the depth of the bottom surface of the
sample is fixed, to avoid singularity for FEM solution.

From the results presented in section 5 at chapter 3, we have x*/x? = 2621
and R*/R? = 1.53, where x and R are material constants associated with damage
evolution, the physical meaning of which is defined in equation (3.8); superscript
s, d indicates value for the surface degradation zone and pure damage zone respec-
tively. Specifically, the following values are used herein: x* = 131050, R* = 0.765,
k4 =50, R* =0.5, r, = 0.8.

6.3.1 Damage Growth Consideration
Initially, we neglect the surface effects and consider the damage growth

only. Figures 6.6 and 6.7 are the FEM meshes for samples S4 and M2, respectively.
Eight-node quadrilateral elements and four-point Gaussian integration method are
employed. Although coarse meshes were used, as shown subsequently even such
meshes can capture the inhomogeneity patterns of such problems. The initial
damage parameter ry for each integration point is given as input. The ex:ternal
displacement is taken as known in the process of calculation. In order to assess the
structural changes and to ccmpare the numericai results with experimental output,
the damage growth Ar = r — rg is used in the following plots. For saxnble S4, the
damage growth pattern obtained at P/Pp.ak = 0.46 along the force-displacement
curve is shown in Figure 6.8a, and, for comparison, the ultrasonically dissipated
energy pattern at P/Pp..x = 0.45 is shown in Figure 6.8b; Similarly, the damage
growth pattern at P/Pp.qk = C.92 is shown in Figure 6.9a, and the ultrasonically
dissipated energy pattern at P/Pp..x = 0.93 is shown in Figure 6.9b. For sample
M2, the damage growth pattern at P/P,..& = 0.18 is shown in Figure 6.10a, and
the ultrasonically dissipated energy pattern at P/Ppeqx = 0.20 is shown in Figure
6.10b. Similarly, the modelling results (experimental observations) for sample M2
at P/Ppeak = 0.70 (P/Ppeak = 0.68) are shown in Figure 6.11a (6.11b).
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As noted previously, the comparison between the numerical results and ex-
perimental observations is qualitative. Since the FEM calculation is processed by
displacement control, specific values of P/P,.q are approximately achieved for
comparison purooses.

An important outcome here is that the initially high intensity regions seem
to dissipate energy at a (much) higher rate than the low intensity ones. Both
experiment and theory clearly depict this behavior. It is noted that higher rate of
energy dissipation corresponds to increased change in microstructure or damage.
Then we conclude that the microcrack development is more pronounced in and
around the initially high intensity regions. This agrees with the theoretical study by
Yamaguchi and Chen [1991] and experimental investigation by Hsu et al [1963]. The
experimental results of Hsu et al [1963] have shown that bond cracks begin to grow
at 30% of the compressive strength, and that mortar cracks start propagating at
the critical stress. The theoretical study by Yamaguchi and Chen [1991] concluded
that the propagation of bond cracks is not greatly influenced by the stress state
and that the development of mortar cracks and the formation of continuous crack

patterns are significantly influenced by the stress state.

6.3.2 Damage Growth and Surface Deg;a.da.tion Consideration

Let us take sample M2 as illustration problem for both damage growth and

surface degradation consideration. For this problem, equation (3.30) reduces to
p=a(H-1) (6.1)

where H = 5in is the specimen height, @ and [ are two material constants. In
chapter 5, the surface degradation zone was estimated from the ultrasonic data
and from surface instability analysis of Frantziskonis and Vardoulakis [1992] and
shear band analysis of Vardoulakis and Frantziskonis [1991]. It was found that
for the 5 inches (12.7 cm) height specimens p = 1 inch (2.54 cm). With this
value and from the test results on different size specimens the values & = 0.21 and
I = 0.24 inches (0.71 cm) were approximated from the ultrasonic measurements

(chapter 5) and instability analysis [Frantziskonis and Vardoulakis 1992]. From
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shear band analysis the [ was found to be approximately 10 times the thickness of
the shear band [Vardoulakis and Frantziskonis 1991). The FEM mesh (Figure 6.7) is
changed as shown in Figure 6.12 to consider the surface degradation. The elements
along the two free edges are in the surface degradation zone, and the appropriate
material parameters are assigned to them as discussed previously. Following the
same procedure as in section 6.3.1, the damage growth, Ar = r — r¢, at the stage

P/Pyear = 0.2 along the force-displacement curve is obtained as shown in Figure
6.10c.

6.3.3 Discussion

As explained in chapter 5, G can be used to monitor the degradation progress
of brittle materials subjected to external mechanical load. In order to show how the
theory for damage and surface degradation with initial state consideration describe
the degradation process of brittle materials subjected to external mechanical load,
we presented some experimental results for samples S4 and M2 as shown in Figures
6.8b-6.9b and Figures 6.10b-6.11b, respectively. Comparing Figure 6.8a (6.9a) with
Figure 6.8b (6.9b), it can be seen that the degradation mechanism of sample 54,
the initial non-uniformity of which showed higher concentration of received pulse
energy along the edge(s), as subjected to external load, is modeled satisfactorily.
As for sample M2, where the initial non-uniformity showed higher concentration
of received pulse energy in the center of the specimen, the degradation mechanis-
m is not well modeled by considering only the damage growth (compare Figure
6.10a (6.11a) with Figure 6.10b (6.11b)). If both the damage growth and surface
degradation are considered in the FEM model, the degradation of sample M2 as
subjected to external load can be modeled better (compare Figure 6.10b and Figure
6.10c). But the surface effects is over-predicted by the material parameters used.
It seems that more accurate material parameters need to be achieved by further
study.

In this study we examine the effects of initial inhomogeneity on the material
response to mechanical load. Such inhomogeneity is implemented in the theory via

the experimental observations described previously. It was found that the relative
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spatial distribution of the inhomogeneity variables is of paramount importance. For
the quantitative comparison of theory and experiment a parametric study, e.g. an
experimentally obtained value of r§***, together with introduction of random vari-
ables would be necessary. This would require further experimental and theoretical

studies.

6.4 Conclusions

The material heterogeneity is considered by virtue of the concept of state of
degradation. The degradation mechanism and damage growth patterning of simu-
lated rock under uniaxial external load are modeled numerically by implementing
the theory for damage and surface degradation with initial state consideration.
Comparing the theoretical outputs and experimental measurements, in a quali-
tative sense, it is found that the damage growth patterning can be satisfactorily
modeled if the initial non-uniformity showed higher concentration of received pulse
energy along the edge(s) of the sample. Much better results will be achieved by
considering the surface degradation, in addition to the theory for damage and initial
damage implementation, if the initial non-uniformity showed higher concentration
of received pulse energy in the center of the sample. Overall, it may be concluded
that the theory for damage and surface degradation, as combined with the con-
cept of initial state, is capable of describing the degradation patterning for brittle
materials. The present comparison of theory and experiments is qualitative. The
relative spatial distribution of the inhomogeneity variables, rather than their actual
value, is of paramount importance. Parametric studies through extensive experi-
mental results and introduction of random variables are needed for the quantitative

implementation of the theory.
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CHAPTER 7
EXTENSION TO POST-INSTABILITY STUDY

7.1 General

The instability criteria proposed in this study has been verified through the
applications to some typical problems. It is understood that identification of the
instability point along the force-displacement curve is by checking the d%ssipated
energy (rate) and elastic potential step by step rather than by checking the stiffness
matrix step by step. So, the proposed instability theory is physical model rather
than mathematical model such as bifurcation instability theory and localization or
shear band analysis. However, we believe that some relationship exists between the
physical and mathematical considerations. The establishment of such a relationship
will be examined in future effort.

As discussed in Chapter 2, even though the classical continuum theories
may describe satisfactorily the onset of instability, they break down in the post-
bifurcation regime leading to mathematical problems which are either ill-posed or
of changing type. It is clear that classical computations are severely imperfection
sensitive. In the damage formulation presented in Chapter 3, the wave-number
of the corresponding eigen-mode still depends on mesh size due to the absence
of internal length in the flow or constitutive theory. The mesh dependency of
the damage model [Frantziskonis and Desai 1987] was investigated by Woo and
Desai {1991]. In this chapter, some considerations to eliminate the mesh-dependent
problem of various models will be proposed and discussed. The detail solutions will

be achieved by future effort.

7.2 Gradient Consideration

7.2.1 Gradient Regularization for A Plasticity Model

For removing the mathematical difficulties of classical constitutive theories,

higher order strain gradients have been considered by many researchers. General
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review of-this topic has been presented in chapter 2. However, for completeness,
some basic equations will be presented.

As for the hydrostatic part of the flow-rule or dilatancy condition, Var-
doulakis and Aifantis [1991] assume that the volumetric plastic strain-rate ¢? at
a point z; depends linearly on the average rate of slip 47, among the grains con-
tained in a small but finite material volume V surrounding the point z; and is
also a (non-linear) function of the cumulative average slip ¥, during the considered
deformation process at this point. The non-local hypothesis is expressed formally
by the relations [Vardoulakis and Aifantis 1991):

€& = 5(3P)3P, 3* = /‘?”dt (7.1)

and .

4P = (l/V)/"y"(z.' + &;)dV (7.2)

Assume the region V being a circle of radius R and use the Taylor’s expan-

sion of function, then

3P =3P+ 2P 01 (7.3)
where /2 = R?/8. The numerical factor in (7.3) depends on the dimensionality of
the problem; e.g. 1/8 is replaced by 1/10 if the calculation is carried on in three
dimensions. By assuming for example that ! is constant, it follows from (7.1) and
(7.3) that the cumulative plastic shear strain is given by a similar expression as 4?7,
le. _

=P+ B9y +O() (7.4)
Accordingly, the gradient dependent hydrostatic part of the flow-rule is expressed
by the following condition [Vardoulakis and Aifantis 1991}:

€ x B(FP)AP + 2 9 4P) (7.5)

To show how to modify yield condition, take Coulomb yield condition as

example. The Coulomb yield condition is modified as:

F=7/p-i(+*,v*¥") =0 (7.6a)
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A= p(r") = (*, V) VP AP (7.6b)

For reasons to be apparent later the following “initial” condition for the

growth of the gradient coefficient c is assumed.
c=0 for Yiy?=0 (7.7)

To find a more specific form of the function c, the so-called Prager consis-

tency condition is utilized. From (7.6a) we have
i'—pﬁ—[iﬂ=0 (7.8)
An expression for [4 can directly be obtained from (7.6b) as
i = AP + BéP (7.9)

where 67 = y29P is set for convenience and the coefficients A and B are defined

by the relations

_ Op Jdc » -
A= 57 - 6‘7"6 (7.10a)
Oc
- _ P _ .
B 05"5 c (7.100)

An expression for p can be determined from the elasticity of the material

and the dilatancy condition (7.5) as follows

p=—Ké = ~K(é~é) = -K[é — B(3? + 126”)) (7.11)
with K denoting the bulk modulus and (¢é¢, €) the elastic and total volumetric strain
rates respectively. In view of (7.9) and (7.11), (7.8) can be written as

++ Kjé — (KB + Ap)y? — (Kiapl* + Bp)é? = 0 (7.12)

To dispense with difficulties in the loading-unloading criteria arising from

the explicit presence of 6§ = Y%+4” in the consistency condition (7.12), a special
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non-linear model by requiring that the coeficient of 67 is identically equal to zero
is assumed [Vardoulakis and Aifantis 1991}, i.e.

KaBl! + Bp=0 (7.13)

By substituting in (7.13) the definition (7.6b) for i, and the definition
(7.10b) for B, we obtain a first order linear differential equation for ¢ = ¢(6?),

of the form
Jc » »
3or T [(67)e =g(8%) (7.14)
where
f(67) = 1/6% + al?, 9(67) = aul?® /67 (7.15)
with
a = (K/p)B ' (7.16)

The solution of this differential equation is

.14

c=e"Fle(0) + /h g(x)efdz], F= f(z)dz (7.17)
0 0

On recalling (7.7) and carrying out the integration in (7.17), An explicit expression

for ¢ of the following form is obtained [Vardoulakis and Aifantis 1991]:

c= 6%[1 ~ exp(—al?§?)) (7.18)

This, in turn, in conjunction with (7.6b) gives the following exponential expression

for the gradient dependent mobilized friction coefficient ji

= p(yP)exp(—al® 2 47) = p(yP)(1 - al® 9? 4P) (7.19)

On returning to the consistency condition (7.12) we obtain, in view of (7.13),

the relation
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++ Kjé = (KB + Ap)i® (7.20)

From this equation and with definition (7.10a) for A, the desired expression for

the rate of the equivalent plastic strain rate ¥? can be derived [Vardoulakis and
Aifantis 1991].

"7P=iGLX_ﬁé

7.21
by (7.21)
with
h = (p/G)h, (7.22a)
he = hyezp(—al® 9% v#) = hy(1 - al® g2 7P) (7.22b)
he = du/dvy? (7.22¢)
hr = —xiB (7.23a)
B =8~ (dB/dyP)I* g% 4P (7.23b)

where y = I\'/G is the ratio of the elastic moduli with G being the elastic shear
modulus of the material.

Following the standard decomposition of stress tensor o;; and strain tensor
€,j into a spherical part and a deviatoric part, and assuming that deviatoric plastic
strain-rates are coaxial with the stress deviator and proportional to the plastic
hardening parameter 4P, the rate-dependent constitutive equation can be derived
as [Vardoulakis and Aifantis 1991):

6i; = G(Lijiéxi — Nijut 72 éxt) (7.24)
where
Lijer = Lije — L¥jy (7.25)

L, is a tensor concerned with the elastic constants of the material; L%, and

Nijxi are tensors concerned with the plastic behavior of the material.
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It is seen that the theory is essentially a second-grade flow theory of plas-
ticity; i.e. a plasticity theory for which the stress-rate depends on the strain-rate
as well as on its Laplacian.

Based on Mindlin’s elasticity theory with micro-structure, Vardoulakis and
Frantziskonis (1991] have receﬁtly achieved a gradient regularization of the clas-
sical kinematic-hardening plasticity. The outcome is that their Laplacian were
introduced into the flow rule, constitutive equation for double force, and incremen-
tal stress-incremental strain constitutive equation. Shear-band analysis shows that

the theory provides the band thickness, and regularizes the governing equations.

7.2.2 Gradient Regularization for A Specific Model

The model described in section 1 at Chapter 4 [Desai et al 1986] is a con-
stitutive model which is relevant to various yield functions used in the context of

plasticity. For reading convenience, let us write down the yield functions as:

F= JQD—(—aJ{'+‘yJ]2)(1 -85,)" =0 (7.26)
with
ay -
= 1 7.2
> (7.27)

where .J24 is the second invariant of the deviatoric stress tensor, S;;, a1, n1, n, v, 3,

and m are treated as material constants, J, is the first invariant of stress tensor,
1 1

a,;. S, is the stress ratio such as J.j‘D/J,}D and Lode angle, J3p is the third invariant

of Si,, and £ is plastic strain trajectory defined as
£ = / (de?,de?, )12 (7.28)

To consider the gradient effect, the yield function (7-26) is modified as

F' = Jp-(=a'J} +vJ)(1-35)" =0 (7.29)
with
o = alf, 7%) = :T’ ~ (£, V) VP € (7.30)
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The coefficient ¢ can be derived by considering Prager’s consistency condi-
tion, AF' = 0. For simplicity, c may be taken as a constant. However, ¢ can be

redefined as a function of damage parameter, r, such that

¢ = f(r,7) (7.31)

with the principle that c is prdportional to r, and that c reaches its maximum as
r approaches its ultimate value r,. In (7.31), f means function.

Let us decompose the strain rate é;; into elastic éf; and plastic €?;. The
standard flow rule requires that

oQ

.pA = KA —— -
€,; A/\aa,-j (7.32)
with

. _ _BF .
k={1, if F=0 and okt >0 (7.33)

LY
0, otherwise
The expression of A can be achieved by following the standard plasticity theory
(see Appendix A). Now, the flow rule (7.32) is modified as
2Q

p _ . Y% 2 2 -
e,.,._ka%(,wz T2 ) (7.34)

with [ being the ’internal length’. As discussed in (Vardoulakis and Aifantis 1991),
prior to localization the coordinates z; must be non-dimensionalized by some global
dimension L of the structure under consideration. Before localization ({2/L?) < 1.
However, when the deformation is localized in a narrow zone of intense shear then
the spatial coordinates are non-dimensionalized by say the thickness d of the shear
band. Accordingly, the gradient effects are not necessarily negligible.

By using the yield function (7.29) and flow rule (7.34), and following the
standard plasticity procedure, the following incremental stress-incremental strain

relation is expected if associated flow is assumed.

Gij = Ciluén — 120.-’,-,,, V2 én (7.35)
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with
it = Clin — Cliy (7.36)

where C7;,; is a tensor concerned with elasticity, and C7,,, is a tensor concerned
with plasticity.

It is noted that the above modification is processed for undamaged (intact)
part of the material if 4o+ model is concerned. For the damaged part, the assump-

tion of perfect rigid plastic behavior with zero shear strength is kept unchanged.

7.3 Non-Local Damage Consideration for A Specific Model

The concept of non-local continuum [Kroner 1967; Krumhanzl 1968; Erin-
gen and Edelen 1972] was formalized [Bazant 1984; Bazant, Belytschko and Chang
1984; Bazant and Pijaudier-Cabot 1988] to overcome the macroscopic strain-
softening problem in brittle materials which causes localization instabilities, spu-
rious mesh sensitivity and incorrect convergence. One very effective version of the
non-local concept is the nonlocal continuum with local strain [Pijaudier-Cabot and
Bazant 1987]. The key idea is to prevent localization of damage to regions of zero
volume by a non-local formulation of the stress-strain relation in which only the
damage, i.e. strain-softening response is non-local while the elastic response is
local. Being stimulated by this idea, we now propose an alternative to eliminate
the post-instability mesh-dependent problem for specific damage model. Here, we
keep the constitutive descriptions for the two parts (intact part and damaged past)
unchanged. and consider the damage parameter r (which measures the structural
transformation of the system under external mechanical load) non-local modifica-
tion. It is noted that the damage description and its function are different from
the damage theory utilized by Pijaudier-Cabot and Bazant [1987]. Then, the pro-
posed non-local damage consideration is expected to be different from that used
by Bazant and Pijaudier-Cabot [1088].

The damage model was originated by Frantziskonis and Desai [1987]. Dis-

cussion about this model has been presented in Chapter 3. The evolution law of
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damage parameter r is described by equation (3.8) and (3.9). The damage param-
eter is used to calculate the average stress and to modify the constitutive tensor.
As can be seen from equation (3.4), along localization zone or shear band, the
incremental shear stress approaches zero or a very small value (dependent on the
material) as r reaches its ultimate value r,. This may be responsible for the ze-
ro energy dissipation along shear band. If the neighboring effects are considered
and therefore the local damage parameter is regularized, then the problem of zero
energy dissipation may be eliminated.

Let us regularize the local damage parameter as follows. The spatial average

of the magnitude of deviatoric plastic trajectory at location x may be defined as

En(x) = vjx) /V als — x)€p(s)dV = /V o (x,)o(s)dV (1.7

in which
Ve(x) = / a(s — x)dV (7.38)
»’

a'(x —s) = als — x)/Vi(x) 7.39)

The above bar denotes the averaging operator, V=volume of the body and a(x) =
weighting function which defines the averaging; s is the general co-ordinate vector.
The averaging may be specified by a uniform function, a = 1, which is non-zero
only within a representative volume such as a circle in two dimensions or a sphere
in three dimensions. However, the normal distribution function is recommended
[Bazant and Lin 1988):

a(x) = ¢~ (kixI/0? (7.40)

in which, for one, two and three dimensions:

1D:  |x*=z° k=7r=1772 (7.41)
2D:  |x*=«t4+y%, k=2 (7.42)
3D:  |x*=z*+y*+:% k=(6V7)/% =2149 (7.43)
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l is the characteristic length, a material property which defines the diameter of
the representative volume. From experiments, Bazant and Pijaudier-Cabot (1988)
found that ! = 2.7 times the maximum aggregate size for concrete.

Now, we can use the averaged £p to get the regularized damage parameter

F=r, — r,,ez:p(—nfg) (7.44)

As defined in chapter 3, r,, &, and R are material constants, and they have
been identified for a brittle material [Desai, Kundu and Wang 1990]. Then the

constitutive tensor L (3.6) can be modified as
Lijkl = (1 - f')C:;k( + chjkl (745)

It is important to note that these modification are processed in load step.
If we implement these modification along iteration step, convergency problem may

be involved.

7.4 Physical Modification through Diffusion Assumption

The damage model [Frantziskonis and Desai 1987] assumes that there is no
diffusion, as in the mixture theory, between the damaged and intact parts of the
deforming materials. As a result, the strains in the damaged part and intact part
and the observed strains, defj, det ; and def;, respectively, are assumed to be the
same. In order to eliminate the mesh-dependent problem in post-instability stage,
Desai [1991] proposed a procedure and algorithm to allow the relative motions
between the damaged and intact parts of deforming materials. It is suggested that
this approach that introduces a physically consistent constraining condition can

lead to results similar to those in the foregoing procedures. The Finite-Element

implementation and examination of this algorithm is being currently pursued.




CHAPTER 8
SUMMARY AND CONCLUSIONS

In this study, first, the theoretical and experimental view points concerned
with instability and bifurcation were reviewed and discussed. In its most general
form, bifurcation theory is theory of eduilibrium solutions of an nonlinear equa-
tion. For brittle materials such as rock and concrete, the non-linearity of the
(incremental) equilibrium equation comes from the constitutive description which
reflects the unconservative (plastic and/or damage) behavior of the deforming ma-
terial system. Then, the onset of bifurcation or localization is relevant to the yield
function and plastic potential assumed. The occurrence of a bifurcation or limit
point in a numerical stress analysis is marked by singularity of the stiffness matrix
and negative or complex eigenvalues—conditions that traditionally produce severe
numerical instability sufficient to disrupt a conventional finite elemcnt program.
Classical theories of plasticity, in particular, break down in the post-bifurcation
regime where ellipticity is lost. In order to eliminate this mathematical prob-
lem, a few non-traditional considerations have been proposed. They are gradient
regularization, Cosserat continuum model, non-local theory, and rate-dependent
consideration.

Based on energy consideration, an alternative instability,criterinn has been
developed and examined. According to this criterion, a brittle material system
may experience unstable damage growth if the rate of decrease of elastic potential
per unit damaged volume is higher than that of increase of dissipated energy per
unit damaged volume.

The definition of surface degradation zone was discussed and the material
constants concerned with surface degradation were identified against experiment
results. The damage growth instability criterion was extended to consider the
surface degradation instability resulting spalling of material from the stress-free
surface(s). The onset of surface degradation instability is influenced by the material

behavior, structural geometry, and the external load.
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The proposed pure damage growth instability criterion and surface degra-
dation instability criterion are, in some sense, similar to the well-known Griffth’s
criterion.

The energy-based stability theory was implemented a.nalyticaily and nu-
merically. It was shown that the onset of both surface degradation instability and
global degradation instability occur in the strain hardening stage, that is, before
and close to the peak strength. It was also identified that the onset of surface
degradation instability occurs before the onset of global degradation instability.
The comparison of theoretical prediction and experimental results highlights that
the degradation instability theory predicts the global instabilities concerned with
non-uniform deformation and the surface degradation instabilities concerned with
spalling and size, shape effects for brittle materials like rock and concrete.

Relevant physical experiments were performed to study the degradation
mechanism of a brittle material. Ultrasonic energy analysis reported that dissi-
pated energy shows a random distribution and it follows, in general, the initial
non-homogeneity pattern. The surface effects of simulated rock under uniaxial ex-
ternal compression were highlighted by both pure strain gage tests and ultrasonic
scanning tests. The material internal length associated with surface degradation
was estimated. Relatively low external energy is required to produce degradation
occurring before the peak load. This implies that from low load levels the specimen
may be susceptible to instability, and this may explain the large range of peak load
values for specimens of the same shape and size. The relationship between the ul-
trasonically dissipated energy and mechanically dissipated energy is dependent on
deformation and can be approximated by a power function of load level coefficient.

Experiments showed that the simulated rock is initially heterogeneous. The
material heterogeneity was considered by virtue of the concept of state of degra-
dation. The degradation mechanism and damage growth patterning of simulated
rock under uniaxial external load were modeled numerically by implementing the
theory for damage and surface degradation with initial state consideration. It was
found that the damage growth patterning can be satisfactorily modeled if the ini-

tial non-uniformity showed higher concentration of received pulse energy along the
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edge of the sample. Much better results would be achieved by considering the
surface degradation, in addition to the theory for damage and initial damage im-
plementation, if the initial non-uniformity showed higher concentration of received
pulse energy in the center of the sample. The presented comparison of theory
and experiments was qualitative. It is felt that parametric studies through exten-
sive experimental results and introduction of random variables are needed for the
quantitative implementation of the theory.

Although it is believed that damage concepts can provide a general and
simplified approach for characterizing behavior of (geologic) materials undergoing
microcracking and fracture leading to loss of strength and strength softening, the
post-instability mesh-dependent problem is involved as far as the Finite Element
solution is concerned. Three alternatives were proposed to eliminate the post-
instability mesh-dependent problem. They are constitutive gradient regularization,
non-local damage consideration, and diffusion assumption. The internal .length

introduction is crucial and physically meaningful herein.
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APPENDIX A
ELASTOPLASTIC CONSTITUTIVE RELATIONS

In this appendix, the details of the derivation of the elastic-plastic relation
for the topical part are given. The yield function involved were described in section
1 at Chapter 4. In general, we can write the incremental (rate) constitutive relation

for the topical part as

&:J = C:J-;fékl (A.1)

In the above relation, C;; 7 is termed as the elastoplastic constitutive tensor. In

ijk
order to derive the expression for this tensor, the relations of elastic-plastic theory
are used [Hill 1950; Chen and Han 1988|

€ij = € + €, (A.2)

that is, strain rate (increment) are decomposed into elastic ¢;; and plastic e” Also

0Q
e = k,\ad (A.3)
known as the fow rule such that
k_:{l, if F=0 and 25-6f >0; (4.4)
0 otherwise

For a hardening material (topical part) A > 0 and in the present theory the topical
behavior is hardening (non-softening); thus, always A > 0. The elastic strain

increments (rates) are related to stress rates

= Clinikij (A.3)

where Cf;\ is the elasticity constitutive tensor. In the present case, elasticity is

assumed linear and isotropic; thus,

L osb — K
2G *°" T 2G(2G + 3K)

Cin= Oxidij (A.6)
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where G, K denote the initial elastic shear and bulk moduli, respectively. From
(A.2) and (A.5), we have

61 = Cim(ér — €) (4.7)
From the definition of the plastic strain trajectory £, we have
= (&,e0)'? (A.8)

It follows from the flow rule, (A.3) and (A.8), that

1/2
£=2A ( 9Q od ) (4.9)
Oo}, 0o},
The consistency condition for the yield function F is expressed as
. oF OF .
F=_— 30T, —064 + 6{6— 0 (4.10)

Substituting (A.7) and (A.9) into (A.10), we have

A[aF . 0Q OF 9Q aQ)m}_BF

anj z‘jk‘ao.t aE a"kl Dot = aTHC,]“eu (A.11)

The above equations can be solved for A so that (A.3), (A.7) and (A.11) yield

e 9Q_ _38F
- e C'JPQ 9o}, dol C"m“ p (4.12)
O’x = kl Ji.12
2 1 _OF g 1/2
agl C&urs agt (60 ) /

The above relation is the final elastoplastic relation for the topical part. In this

study, associative flow (Q = F') is assumed.
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Introduction

Experimental and theoretical information on degradation mechanisms of britte material struc-
tures is reviewed first. It is conciuded that although a considerable amount of research on the sub-
ject of damage and, 10 a much Jess extent, on surface degradation has been performed in recent
years, the related stability problems have not been studied adequately.

The analytical solution of the esergy based stability problem shows that surface degradation
instability and/or damage progression insmbility occurs before the peak strength is reached. Thus a
homogeneous post-peak state is impossible, since basic energy relations are vioiated.

Damage and surface degradation are closely related to the weil known size and shape effects
of brittle materials. It is shown that surface degradation is important for both size and shape dep-
endent properties of such materials. The theoretical developmenns are compared to the observed
behavior of an artificial rock.

1. Background and Review

In constitutive modeling research the material is commonly thought of as a continuum without
any cracks or discontinuities. However, in recent years it is reslized that a slighty damaged mater-
ial does not necessarily mean the end of it life, and it is important to understand the behavior of
materials contining acceptable levels of damage in it in order to predict its remaining strength. In
the light of the information known on the subject of damage growth, a Griffith crack characteri-
zation of damage is far from reality. The need for a realistic description of damage guides to the
development of a theory that contains the essentiai feartures of the known damage mechanisms.
Such analytical modeis have only recently been developed. A great majority of the literature con-
siders uniaxial stress conditions. Damage is so defined that the effect of a developed microcrack
nerwork is taken into account. A number of investigators have considered the effects of damage in
their models directly or indirectly, 2 review on this subject can be found in {1,2) '

135




[N U Y S L L IR T e B T A
M PR 2V R i

136 G. FRANTZISKONIS ana C.S DESAI

It is interesting to note that the mode! wnciuding damage proposed in [1-8] has been investi-
gated successfully with respect to different materials such as concrete and composites. The material
constants have been ideatified and the proposed theory has been validated through comparison
with experimental data. Oniy slight modifications in the model, while transferring from one mater-
ial to another, are necessary for the rational description of the above materiais. The fact that the
constitutive equations can be used, with minor modifications, for apparendy different looking mat-
erials is being examined towards unmification of material modeling for engineering applications.
This damage based approach is a2 branch of a general hierarchical approach o constitutive modei-
ing of engineering materjals introduced in [8]. Also, as far as decompasition of material behavior is
concerned, we note the model proposeg in [5).

2. Damage Deveiopment

Let us consider 2 small volume AV of the material This volume is subdivided into an intact
(undamaged) part AV, and into 3 “fractured” (damaged) part AV,. The first part or fraction
represents topical (continuum) behavior and the material in it is intact in the sense that no micro-
cracks exist. Due to the inhomogeneity of the materiai behavior at-the microlevel, weak planes can
deveiop leading to formation and subsequent propagation of micro-cracks. The laws that govern
the above structural changes are not fully understood. The effect of an isolated or coupled fracture
site is that an influence zone exists around it. This influence zone is of volume AV,. Under con-
tinued loading, influence zones increase so that AV, increases. At every instant of time we
define the ratio

AV
- —i
N 1)

cailed the volume damage ratio. The materiai point of the two fractions material copsists of the
superposition of a material point of the undamaged fraction, berein called the u-part, and of 2
material point of the damaged fraction, herein called the d-part.

The above suggests the use of the theory of mixtures, or theory of interacting continua. As 2
consequence the following relation is abplicable (1-4]

oy = (1 - D)o + rof} (22)
where o}, off denote the sress tensors in the u and d-part of the material element respectively and
0, is the average stress tensor. The generat theory of mixrures, {10, 11] is simpiified considerably if
diffusion is absent. In the proposed theory there is no diffusion between the components thus the
strains in the two material fractions are considered equal {11},

We now consider a material element. Due to the enforced deformation in the element, damage
influence zones have been created but failure has not occurred yet. Such influence zones depict the
mechanical influence of a system of microcracks. The constitytive equations for the d-part can be
established as [4, 6]

~
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% = i u (23)
andqukafmﬁondmmmmhwdmmedeaadingpmaﬁaofmmﬁnsmmeu
are no microcracks in the u-part, its constitutive relations can be identified as

oﬁ - C,';n & . (2.4)
if the undamaged fnc:ionhﬁnuﬂyehsﬁc(ufammpod&)qumnmmmﬁnwehs-
ticity constants. If plasticity effects are included then 2 generalized elastic-plastic model can emp-
loyed and the above reiations are written in rate form.

The irreversible nature of damage implies that the material experiencing it obeys non-holo-
nomic laws. Thus the problem is formulated in rate form of the governing equations and the con-
stitutive relations are established as

& = Lyn & - e} - of) @3)
where
Ly = (1 - 1) Cly + rCly (2.6)

Further an evolution law for t is defined and it is directly related to failure. A simple and general
law can be written as

t = fley)ey @7
Based on the physical interpretation of damage and failure criteria the function f can be specified
(1,2,4,6).
NOTE: The damage formulation briefly described above has been examined with respect to its
basis on principles of mechanics and physics as well as with respect to its capability to predict the
experimentaily observed response. Properties such as degradation, induced anisotropy, elastic pro-
perties degradation are attributed to damage development. The damage related constants have been
identified for different brittle materials such as a concrete. Also, the constants have been evaluated
for different composite materials such as graphite-epoxy and boron-epoxy. Test data have been
back-predicted (simple ones analytically and more complicated ones numerically). The predictive
capability of the theory has proven to be surprisingly good, especially for the material behavior
highly deviating from the linear elastic one. Such comparisons can be found in references {1-3].

Surface Degradation

It has been observed that in many engineering materiais (metals, brittle materials, geomaterials,
etc.) surface unevenness (roughness) grows with increase in strain, e.g. [12). Surface roughness is
induced by microstructural inhomogeneity and its growth is initially stable. It is important to men-
tion that there is certain evidence that this phenomenon acts as a trigger effect on shear bands
appearing in a specimen. The sudden growth of surface roughness resuits in the occurrence and
development of shear band penetrating into the body [12]. Microscopically a heterogeneous struc-
ture of the material produces an inhomogeneous deformation field from a very early straining
stage. However, irregularity of deformation in the body is not uniform, but there is a part in
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which the irregularity is greater thas that in other ones, that iy, nesr the surface.

The above observations are aiso evident in existing extengive experiments on brittle materials,
where the following have been identifiec as loading incresses, e.g. in 3 unisxial compression test,
the density of microcracios rapidly prouferates, jesding to vertically aligned macrocracks which
result in gross siabbing of materiai from the specimens (lateral) surfaces {13,14] In general, the
axial cracks are concentrated in the centrai portions of the specimen leagth becguse lateral restraint
caused by friction at the specimen ends nhibits thexr growth pear the specimen-plsten interface.

Damage distribution at the edge of 2 bodv (specimen) where surface degradation i of impor-
wnce, and is expected to be signuficanuy different from the damage distribudon far from the
edge. Here we consider that damage at the edge due to surface effects is additive to the damage
accumulation due to deformations far from the surface. So at the edges a small volume, AV, &
subdivided into an intact part AV, ang i a fractured part AV, . We consider that the sbove
subdivision holds for a distance » from the edge, where p is a positive real number dependent
on the material properties, the geometry. and the ioad on the structure. At an instant of time the
edge damage concentration volume -auc 4 iefined as

\
e S 28)

Here r, is expected to be maxumum at the ecge and its value decreases coptinuously till a mini-
mum value expected to be at a duismance ; ‘rom the edge. When r, = | hoids then complete sur-
face degradation is observed in the sense thar material has no strength. Let us consider the follow-
ing volume average, per unit area in the plane parallel to the swess-free surface.

»
i

?-i ¢, dA 2.9
“p

Also the foliowing average stress can de wncroduced

( 5
%= J,% da (2.10)

Based on physical reasoning, it ® posuble o establish a connection between the average values of
damage and stress as defined above and the dimension relatad parameter p. As mentioned in [15]
equilibrium transverse to the surtace as weil as moment equilibrium are to be used in estabiishing
the relation between 3;; and ? A" ‘ne effecuve surface degradation volume total damage ratio is
defined as

Lt ? (2.11)
Note that r, can be grater than 1, since tisr<r,, Here r is the value of damage variable r at fai-
lure. So, in general

O crg+! (2-12)
NOTE: It has been predicted theorencally that :n 2 body with stress free surfaces, an inhomogene-
ous deformauon with relatively short waveiength is possibie near the surfaces at (high) strained
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states, which is known as the surface instability phenomenon, [16]. Surface unevenness and degra-
dation as described in this paper may be related to surface instability at its initiation. However, the
approach herein is different than surface instability in the sense that progressive degradation is also
accounted for.

3. Instability Conditions

Consider 2 body occupying region R. The rate of work of the external forces acting on a mat-
erial element of volume AV, denoted by E, is

. ] .
E-—I oy & dV : (3.1)
av |,y (]

Part of this work will be stored as elastic energy in the u-part and part as elastic energy in the d-
part

E=ER4+Q+$§ (32)
where
éR-J' a{',e,,dV+I of & AV (33)
Av, Av,

andQ,Saréthedisipawdenergyduetodamge growth and surface degradation growth respec-
tively. Conditions for unstable damage, surface degradation growth are established as (7]

S | S o > M .. ¢ IR .- M (3.9)
AVa? AV~ AVyP  AVe? -
- | S I L. O B B\
AV P~ AP~ AV, &V

where II is the total potential energy and D is the dissipated energy due to plastic deformations.
When (3.4) is satisfied first unstable damage growth occurs resultiug to the catastrophic failure of
the structure. When (3.5) is satisfied surfacé degradation instability takes piace. The physical in-
terpretation of such an instability is that bursting growth close to the surface becomes unstable
resulting in spailing of material elements.

(339

4. Analytical Solution of a Simple Problem

For simple problems it is possible to examine the above instability conditions anatyticaily. Irre~
spective of which of Eqns. (3.4) or (3.5) will be satisfied first, the following conclusions can be
made. Brittle materials subjected to uniaxial load show a2 decrease in strength after a peak load has
been reached. It is interesting to examine under what conditions stability at the peak strength is
possible. First we examine the case where the two material fractions are assumed linear and elastic.
Then the condition for stable behavior at the peak is derived as
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1

3
3u, (1+24% - %).“ [i-z»-n};z . ..E_‘ oo (4.1)
where
- _.5_-_E1_ 4
' TE w iy (42)

E,, sy, Ay (Bgs iy, Ag) tre the Young moduhws and Lame constants for the u-part (for the d-part)
and v is the apparent Poisson ratio for the two material fractions. Analysis of the above equation
shows that in order to have stabiliry at the peak, the value of r at that point must be ciose to unity
which is physically unacceptable. Even if such 3 vaius of r was acceptable, it would be reached at
h}ghnlueofsuﬂmwhemtbcmn‘um:midualmofmfarbeyondthep&k.
Although this smability anatysis s based on the condition that no plastic deformations are present,
note that at the peak the pisstic energy dissipanon curve is convex thus (-%3;
be seen from relations (1.4) and (3.5) plasuc deformanion promotes inszability. Thus a homogeneous
post pexk state is impossible since basic energy hased stability conditions are violated If surface
degradation instability occurs first, ths may oot necessarily imply the overall failure of the souc-
ture. However, initiation of such an wsability dictatss the onset of non-uniform deformation close
t0 the surfacs.

< 0. Then as can

5. Connection o Scale (Size) and Shape Effecn

It is well known that the deformanonal characteristics of brittle marerizis depend on the size
as weil as on the shape of 2 structure (specimen; ln a specimen subjected to uniaxiai stress, when
the ratio of height to width (diameter for cylindrical specimens) of the sample is incressed the
levei of (macroscopic) stress at unstabie fauure decreases [11,15]. Also for constant width
(diameter) and increasing height, peak strength decreases, while for constant height and increasing
width, peak strength increases. In the proposed theory the so-called effective surface degradation
volume is introduced. For high ratios of height m width this volume occupies a large percentage of
the sampie volume. On the other hand, for jow rato of height to width the effective surface deg-
radation volume s small as compered to the whole volume of the specimen. As expected when
height to width ratio incresses, surface degradation becomes the predominant damage mode resuit-
ing to an instability at a low stress level As height to width ratio decreases, the effect of surface
degradation decreases and damage growth decomes 'he predominant iastability mode. Disance o
introduced previously 18 now defined as

p-cJWdS-l 5.1
<

where W is a weighting function (Weumity provides sausfactory resulss), | is the so-cailed surface
degradation length, ¢. is the path of maxupum principal compressive stress and g is 2 constant.
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Note that | is a new definition of the material characteristic length; it is defined as that specimen

" size so that the whole structure is in the surface degradation zone. For a cylindrical specimen of

length L and diameter D subjected to uniaxial compression we have

p=aoll -l) (52)
where a is constant. The stress at peak is given as
omc,s D _ 2L 53)

Constants C,, C, and a have been determined from a series of tests on artificial rock (18] and it is
verified that the theory (expressed through Eqn. 5.3 for the uniaxial load case) is capable in pred-
icting the size as well as the shape effect of brittle material specimens satisfactorily.
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Abstract. A mechanics based theory for surface degradation in brittie material systems is introduced. Surface
degradation is directly reiated to damage progression. For this reason the mechanics of damage evolution is
presented first. Subsequently, relations governing surface degradation mechanisms are denived and discussed in
detail. It is shown that surface degradation can capture important properties of brittie materisis such as scale (size)
and shape effects, surface damage growth and subsequent bursting instabilities. Finally, the problem of transferring
information from laboratory expetiments to large scale problems is discussed; the need for further experimental
and theoretical research is pointed out.

1.0. Introduction

In many engineering problems such as underground openings, rock strata tend to move
suddenly into the opening. Catastrophic events of this kind are called rock bursts and are
the result of rock fracturing by spalling. Much of the research in brittle material (i.e., rock.
concrete) mechanics has been concerned with the progressive failure of laboratory specimens
under external loads. It is theorized that such faiiure is analogous to large scale problems
such as the stability of wall rock in underground openings. The problem is to carefully
simuiate and observe the deformation, fracture. and unstable collapse of larger scale (as
compared to laboratory specimen size) problems. For such problems related to fracturing
and stability close to boundaries, much information can be collected from laboratory
experiments i.e. uniaxial compression tests.

For decades. laboratory tests on brittle materials (rock. concrete) sought to achieve a
homogeneous state of stress and deformation on a sample subjected to uniaxial load.
However, even under ideal testing conditions, the heterogeneous micro-structure of the
material produces an inhomogeneous deformation field from the early straining stage,
Fairhurst and Cook [1], Hudson et al. {2], Read and Hegemier (3]. In a uniaxial compression
test, the density of microcracks rapidly proliferates leading to vertically aligned microcracks
resulting in gross slabbing of material from the tractionless surfaces. However. irregularity
of deformation in the specimen is not uniform, but there is a part in which the irregularity
is greater than in other ones. that is near the tractionless surface. In general. the axial cracks
are concentrated in the central portions of the specimen’s length because lateral restraint due
to friction at the specimen ends inhibits their growth near the specimen-platen interface.

Based on Griffith type crack analysis, buckling failure of an elastic. anisotropic half-space
containing co-planar cracks at arbitrary locations and subjected to horizontal compression
has been studied recently. Vardoulakis and Papamichos {4]. From this study. the following
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important conclusions are made: (a) the critical buckling stress decreases dramatically as the
distance between the free surface and the cracks diminishes; (b) the influence of cracks far
from the surface has very little or no influence on the buckling stress. This analysis suggests
that a surface layer exists for which the presence of cracks has significant influence on the
buckling stress. In a gross sense, this layer is the spalling part of the specimen as observed
in uniaxial compression tests of brittle materials.

It has been predicted theoretically that in a body with stress free surfaces, an inhomogeneous
deformation with relatively short wavelength is possible near the surfaces at (high) strained
states, which is known as the surface instability phenomenon, Biot [5}, Hill and Hutchinson
" [6], Vardoulakis [7). Surface unevenness and degradation as described in this paper may
be related to surface instability at its initiation. However, the approach herein is differ-
ent than surface instability since progressive degradation is accounted for in this paper.
Kitagawa and Matsushita [8] reviewed the experimental and theoretical information on
such surface effects, herein termed surface degradation. It is concluded that surface rough-
ness is induced by material inhomogeneity at the micro-level and its growth is initially
stable. As surface unevenness grows localization develops and it is initiated from the
free-surface.

In the following, a theory that accounts for surface degradation mechanisms is pre-
sented. The close relation between damage development and surface degradation necessi-
tates a brief description of the damage theory presented in [9-12). Subsequently, the
relation between surface degradation and the well known size and shape effects of brittle
materials is emphasized and discussed. Furthermore, the relation between laboratory
experiments and catastrophic events of larger scale problems is discussed: the need for
further experimental and theoretical research is pointed out. Finally, energy based stab-
ility criteria relevant to surface bursting and overall failure of a body are developed and
discussed.

2.0. Damage and surface degradation
2.1. Damage development

Analytical models for the influence of microcrack initiation and growth on the constitutive
behavior of brittle materials have only recently been studied. A great majority of the
literature considers uniaxial stress conditions. Damage is so defined that the effect of the
induced microcrack network is taken into account. A number of investigators have con-
sidered the effects of damage in their models directly or indirectly, a review on this subject
can be found in [9], and the references cited there. Note that the model including damage
proposed in [9-12] has been investigated successfully with respect to different materials such
as concrete and composites. The material constants have been identified and the proposed
theory has been validated through comparison with experimental data. Oniy minor modifi-
cations in the model are necessary for the rational description of different materials. The fact
that the constitutive equations can be used, with minor modifications. for apparently
different looking materials is now being examined towards unification of material modeling
for engineering applications. Also, properties such as degradation, induced anisotropy.
elastic properties degradation are attributed to damage development.
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2.1.1. Formulation

Let us consider a small volume AV of the material. This volume is subdivided into an ntact
(undamaged) part AV, and into a “fractured” (damaged) part AV, (Fig. 1). The first part or
fraction represents topical (continuum) behavior. and the material in it is intact in the sense
that no microcracks are contained. Due to inhomogeneity of the matenal behavior at the
microlevel, weak planes are developed leading to crack formation and subsequent propa-
gation. The laws that govern the above structural changes are not fully understood. The
effect of an isolated or coupled fracture site is that an influence zone exists around it as shown
schematically in Fig. 1. This influence zone has volume AV,. Under continued loading,
influence zones increase so that AV, increases. At every instant of time, we define the ratio

=3
o~

(h

.,
1l

>
AN

called the volume damage ratio. The material point consists of the superposition of a
material point of the undamaged fraction, herein called the u-part, and of a matenal point
of the damaged fraction, herein called the d-part. This suggests the use of the theory of
mixtures, or theory of interacting continua, Bowen [13]. As a consequence. the following
relation is applicable:

[ 19]

0, = (1= 1) + rol, (
where ¢, 0% denote the stress tensors in the u and d-part of the matenial element respectively
and o, is the average (measured) stress tensor. The general theory of mixtures. [13. 14] 15
simplified considerably if diffusion is absent. In the proposed theory, there is no diffusion
between the components thus the strains in the two matenal fractions are considered equal [14].

We now consider a material element. Due to the enforced deformation in the element.
damage influence zones have been created but failure has not yet occurred. Such influence
zones depict the mechanical influence of a system of microcracks. The constitutive equations
for the d-part can be estabilshed as [10, 12]

0':’, = Cgklekl 3

A: Porenial Crach Exensisn Sites
8: Unikely Zone for Crack Extension

L
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Fig. I Schematic of damage nfluence zones
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and Cj, is a function of parameters related to the degraded properties of the material. Since
there are no microcracks in the u-part, its constitutive relations can be identified as

o; = Ciutu- 4
If the undamaged fraction is linearly elastic (e.g., for composites), C;,, contains the usual
linear elasticity constants. If plasticity effects are included then a generalized elastic-plastic
model is employed, Desai et al. [15], and (3) and (4) are expressed in rate form.

The irreversible nature of damage implies that the material experiencing it obeys non-
holonomic laws. Thus the problem is formulated in rate form of the governing equations and
the constitutive relations are established as

dlj = uklakl "( d,)’ (5)
where
Ly = (1 = r)Cliy + rCly. (6)

From (5) it can be seen [12] that although r, t are scalars. a tensor namely, /(d% — d%), is
introduced in the formulation. This tensor is responsible for damage induced anisotropy, an
obvious property of cracked materials. Further, an evolution law for # is defined and it is
directly related to failure where r reaches a critical value r,. A simple law can be written as

Fo= fle)E ©))

Based on the physical interpretation of damage and failure criteria the function f can be
specified [9-12]. However for the purposes of this paper specific expression for f need not be
specified.

2.2. Surface degradation

As mentioned in the introduction. surface degradation is induced by microstructural
inhomogeneity and its growth is initially stable. It is important to mention that there is
certain evidence that this phenomenon acts as a trigger effect on the shear band appearing
in a specimen. The sudden growth of surface degradation results in the occurrence and
developement of shear bands penetrating into the body (8].

The damage distribution, at the edge of a body where surface degradation is of importance,
is expected to be significantly different from the damage distribution far from the edge
(in the body). Here we consider that damage at the edge due to surface effects is additive to
the damage accumulation calculated as if no surface effects were present. So at the edges. a
small volume AV, is subdivided into an intact part AV,, and into a fractured part AV,,. We
consider that the above subdivision holds for a distance p from the edge. p being a positive
real number dependent on the material properties. the geometry. and load acting on the
body. At every instant of time. the edge damage concentration volume ratio is defined as

AV,
= — 8
rl' AV ( )
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Here , is expected to be maximum at the edge and its value decreases continuously ull a
minimuwn value expected to be at a critical distance p from the edge. Let us consider the
following volume average, for unit area on the plane parallei to the edge:

F = lf r,dA4. 9
pr
Also the following stress average can be introduced:
5, = <[ a,d4 (10)
g, ‘= ;L G’,I .

Similarly, average partial stresses 6%, 6% and strains £, can be introduced. Since the constitutive
equations (3, 4) are linear or incrementally linear, we can write equations similar to (5) and
(6) for the average (.) quantities. At the effective surface degradation volume the total
damage ratio is defined as

r=r+r (11)

Note that r, can be greater than r, since 0 < r < r_. So. in general

0<r,<r,+ L (12)
In general
F = glor, (13)

where g{(¢) is the surface degradation amplification function. For the purposes of this paper
g need not be specified.

2.2.1. Surface degradation, size and shape effects

It is well known that the deformational characteristics of brittle materials depend on the size
of a structure (specimen). In a specimen subjected to uniaxial stress. when the ratio of height
to width (diameter for cylindrical specimens) of the sampie is increased, the level of (macro-
scopic) stress at unstable failure decreases, Hudson et al. [2], Desai et al. [16].

In the proposed theory the so-called effective surface degradation volume is introduced.
For high ratios of height to width this volume occupies a large percentage of the sample
volume. On the other hand. for low ratio of height to width, the effective surface degradation
volume is small as compared to the whole volume of the specimen. It is expected that as
height to width ratio increases surface degradation becomes the predominant damage mode
resulting in an instability at a low stress level. As the height to width ratio decreases. the effect
of surface degradation decreases and damage growth becomes the predominant instability
mode.

In order to study the effect of stress path on the scale effect the thick wall cvlinder tests
seem appropriate. Haimson and Herick [17] studied the behaviour of sampies with different
central hole sizes subjected to external stress (Fig. 2). It was found that small diameter holes




236 G. Frantziskonis and C.S. Desai

' §

TANGENTIAL STRESS (MPa)

Fig. 2. Relation between hole diameter and hole-wall tangential stress required for breakout initiation in hollow
cylinder tests. After [17].

required larger stresses to induce breakouts, as depicted in Fig. 9 in that paper. In the
proposed theory, similarly to the problem of different height/width ratio specimens. for small
diameter holes the overall effective surface degradation volume is a small percentage of the
total volume. Then the effect of surface degradation is reduced for such a case. As the hole
size increases surface degradation becomes important. From the above discussion it seems
that the proposed theory is capable of capturing the essential features of the scale (size)
effects.
Distance p introduced previously is defined as

p = a([ Wds — l). (14)

where W is a weighing function, x is a material constant, / is the so-called surface degra-
dation material length and ¢ is the path of maximum (absolute) principal compressive
stress. Material related constant / defines a new characteristic length. It is defined as
that specimen size so that the whole specimen is in the surface degradation zone. The
simplest case calls for W = unity and as shown subsequently even this provides satistactory
results.

Consider a cylindrical specimen of length L and diameter D subjected to compressive load
P, Fig. 3. The load acts parallel to length L and the cylindrical surface is load free. Let 5,,.
be the uniform stress in the core of the sample and &,, the average stress (Eqn. 10) in the
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Fig. 3. A uniaxialy loaded cylindrical specimen and surface de'gradation zones.

surface degradation zone. Then
n 2 T Iy
P = Z(D = 2p)o, + Z[Dz - (D - 2pylay,. (15)

We consider the simplest possible constitutive equations for the u and d-parts expressed in
(3) and (4). Thus we consider C};,, and C}ly, to be elastic constitutive tensors. Then, consider-
ing the strains in the core and in the surface degradation zone to be equal
e, = (1 = nNE“g, + rE%,, (16)
&“ = (1 - r‘)E"GH + ’:Edsn, (17)

where £, E* are Young's moduli for the u-part and for the d-part, respectively. From
(15-17) we obtain

P = a, D'+ a,p* -~ a,pD, (18)
where
T ] u rl
a, = Z[E - nE* = E%ey, (19)
8, = n(f — r(E" — E%g,,. _ (20)

For the uniaxial case, with W = |
p = oL ~-1)< D2 2h
From (15) and (21) we obtain

L= L=l

0= o+ o —ps 6 =% (22)
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2000
11 (psi)

1000

0.00 0.10 .20 0.30

(4}

Fig. 4. Experimental results for uniaxial compression of cylindrical specimens of different length L. After [16}
(Diameter of samples, D = 3 inches).

where
¢ - da)/n, ¢; = 4a,@dIn, and ¢, = 4da.afzm. (23)

Before we study relation (22) further we discuss results of [16] on experimental studies on
scale and shape effects.

2.2.2. Verification

A series of uniaxial tests on different size cylindrical specimens of a simulated rock were
performed [16]. The simulated rock used consisted of sand. cement, plaster of paris and water
in proportions 15:2:3:4 by weight. A wide range of different cylindrical specimens were
tested under displacement controlled uniaxial compression. An MTS testing machine with
appropriate data acquisition system was used. Both axial and lateral displacements were
measured in addition to the axial force. Figure 4 shows typical results reported in [16].
Depending on the specimen size the peak strength and the post peak response vary. Up to
peak, the response is rather linear with the elastic modulus being approximately 180000 psi
(1241 MPa). The strain at peak strength varied between 0.0l and 0.02 for different size
specimens. The samples tested had different combinations of length L and diameter D. Table
1 shows the dimensions of the samples used as well as the peak strength values.

Table 1. Experimental results for uniaxial compression of different size
specimens of artificial rock. (After [16])

Diameter (D) Length (L) Stress at peak
(inches) (inches) (psi)

1333
1303
1228
976
982
En2
650
918
1130
1303

w

W

W = —
n

Wi Wi W b Wiy
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Fig. 5. Comparison of experiment and theory for peak strength of different specimens. Constants ¢,. ¢,. ¢,
determined from first three tests of Table 1.

Assuming that a,, g, are constant at the peak strength, from the series of tests shown in
Table 1, the values of ¢, ¢, and ¢, at peak strengths can be determined. A minimum of three
tests is required for this purpose. Two different procedures were used for determining c,. ¢,
and c,. For the first procedure, the first three tests shown in Table | were used. while for the
second procedure all tests were used and a least square fit was employed. Values of ¢, =
1408, c, = —162. ¢, = 165 were obtained from the second procedure. The analysis is rather
insensitive to variations of ¢,. ¢,. ¢,. Figures 5. 6 show comparisons between experiment and
theoretical predictions {rom the first and the second procedure respectively. In these figures.
the dimensionless ratio Df/ or L/! is plotted on the horizontal axis. The average stresses at
the peak of different specimens is plotted on the vertical axis. As can be seen for the test series
of constant sample diameter and increasing height the peak strength reduces significantly
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Fig. 6. Comparison of experiment and theory for peak strength of different specimens. Constants ¢,, c,, ¢
determined from all tests of Table !, by least square procedure.

and a concave curve of peak strength versus height is observed. On the other hand for
constant height and increasing diameter peak strength, a convex curve is observed, Figs. 5.
6. As can be seen the theory is able to capture such responses satisfactorily. The above series
of tests and back-predictions are part of the shape effects of brittle materials. The so-called
size effect is for different responses of specimens of the same shape but different size. For the
size effect of cylindrical specimens the height over diameter remains constant. If d = L/D
is constant, then for increasing L or D the peak strength decreases, Fig. 7. Bazant. [18. 19].
From the available test results shown in Figs. 5, 6, two different tests of d = 1/2 can be
back-predicted. In addition, Fig. 7 shows predictions for different lengths L that are not
available in test results. However, the shape of this prediction curve is similar to the one
shown in [18, 19].
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2.2.3. Stress paths and effect of confining pressure

As mentioned previously, it is not easy to simulate and observe the deformation, fracture,
and unstable collapse of larger scale (as compared to laboratory specimen size) problems.
Towards the solution of this problem, we mention the experimental work of Ewy et al. [20]
on thick-walled cylinders on rock with the incorporation of several important features such
as the ability to impose several stress paths, “freezing” of the fracture geometry under load,
and measurement of the extent of failure and study of its connection to the observed
instability modes. From these test results, it is observed that the presence of a surface
(boundary) makes the stress conditions in the rock similar to those leading to splitting failure
under uniaxial stress. Thus it appears that surface degradation and its connection to unstable
collapse is important. Capturing the essential features of a brittle material specimen under
uniaxial force is of vital importance. However, the information from the thick walled
cylinder tests provides further information such as the effect of stress path on the extent of
damage zones and instability modes. For low or zero confinement surface degradation s
important; such instabilities lead to splitting close to the opening wall. For high confinement
however, damage progresses within the whole specimen leading to a damage progression
instability mode. In other words, for low (or zero) confinement surface degragation is
predominant resuiting in spalling types of instabilities while for high confinement damage
progression is predominant leading to a global instability.

In the theory proposed herein. surface degradation is active in the region from the surface
up to a distance p from it. Such degradation is quantitatively related to stress. so that for
high confinement. the rate of surface degradation growth is reduced. It is expected that for
low and zero confinement surface degradation instabilities are predominant; as confinement
increases surface effects become less effective and damage progression. in a wide range of the
structure (specimen) becomes predominant. The different stress paths. as reported in {20] can
be simulated numernically and the different instability modes can be analyzed. It is important
to note that such an analysis will provide further information on parameter p as related to
the final unstable instability mode. and it will be presented elsewhere.
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2.2.4. Comments on related research

Consider a structure (specimen) occupying region R and subjected to external tractions.
Depending on the external load level, the geometry of the structure and the material properties,
the following instabilities may develop:

— Surface degradation instability resulting in spalling of material from the surface.-
— Damage progression instability resulting in overall failure by shear band formation or
other non-homogeneous failure mode.

Note that the surface degradation instability does not necessarily imply overall failure of the
structure. In other words *‘post-spalling” is possible until a global instability develops.

The rate of work of the external forces acting on a material element of volume AV, denoted
by E, is

1

E= ER+Q+S=K[_/AV

a,6,dV + Q + S, (24

where Q, S denote the dissipated energy due to damage progression and due to surface
degradation, respectively. Balance of global energy of the body R requires that

; \ ap d
H = [ TudS+ | pfindV = [ EdV + 4| p 3 i AV, 25)

where the last integral on the right hand side is the rate of kinetic energy, p denotes density,
and f, are the body forces acting on R. By setting

U= [ Etav ' (26)
it follows from (24)-(26) that
U+0+$ = A (27

where Q and § are defined in volume V.
The total potential energy is now expressed as

N =U-H (28)

The strain energy tranformation rate G(G*) being the energy required to transform u-volume
to d-volume (the energy required so that surface degradation proceeds) is

M éQ &S s
v, Twtw - ¢ (29)
anm Q@S .

S &_V,+—_("V, = G*. (30)
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As damage progression is assumed quasi-static

oK 6K
kL2 L, x
v, v =0 h

where K is the total kinetic energy. If damage and surface degradation occur, the kinetic
energy is increased so that

FK _
= 32
aUQZ>0' (32)

&K

Here, if only damage occurs then (32) is valid, if only surface degradation occurs then (33)
is valid, and if both damage and surface degradation grow then (32) and (33) are valid. From
the above relations the conditions for unstable damage and surface degradation growth are
established as [12]

_#n _#p _FQ ¥
AV VY T YT vy

0, (34

_62I1_6’D_&:Q_535>
avy avy avy ovy

0. (35)

In [21}, these inequalities have been examined analytically for the uniaxial compression test.
i¢ i concluded that surface degradation instability precedes the damage growth one. In
ad-.ition, it is shown that such instabilities occur before the peak strength is reached. This
implies that a post peak homogencous state is impossible. Although the analytical solution
for the uniaxial test provides important information. further analytical and numerical
studies are needed. Numerical results are currently being studied.
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BOREHOLE SCALE EFFECTS AND RELATED
: INSTABILITIES
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Abstract—4A new mechanics besed approach is propossd for scule effects and instabilities o
borehole problems. [n borebole types of structural sysems, two types of instabilities can taice place.
The drst is dus to surface degradation growth and results into spailing of layers az the hole wail.
The second is dus to damage progression, and resuits-inta globally unstabls responss of the -

and shape of 'a specimen subjectsd 0 umiaxial or trisxiai compression. This work acempts
incorporate size and scals «ffects into the instability initiation conditions. The imporant task of
transferring information from laboratory experiments to actusi large scaie enginesring probiems
is analyssd and discussed. The potential of the theory is demonstrated, The need for further
experimental aod theoretical work is identified. .

L INTRODUCTION AND REVIEW

BOREHOLE instabilites and breakouts are often characterized by the slabbing mode that affects a
portion of the materiai close to the borehoie wail. In addition, it is ciear that the borehole size has
significant effect on the initiation of breakout, Haimson and Herrick{1]. In general, ‘smail’ holes
fail at higher external stresses than ‘large’ ones. Since laboratory size borehoies are usuaily smailer

than the ones in the field, the importance of hole size and its relation to breakouts is of a basic’

and quantitative nature. Thus in order to achieve a2 weil-grounded statement about borehole
stability that complies with laboratory and field observations, the dependency of borehole stability
on its size (scale effect) must aiso be modeled.

Borehole scale effects is an example of the fact that the deformational characteristics of brittle
materials depend on the size as weil as on the shape of the structure (specimen). In a specimen
subjected to uniaxial compressive stress, when the ratio of height to width (diameter for cylindrical
specimens) of the sample is increased, the level of (macroscopic) stress at unstable failure decreases,
Hudson er al[2], Desai er 2/[3]. In ref. (3] 2 aumber of uniaxial compressive tests on cylindrical
specimens are reported, from which the following conclusions are made. For the series of tests of
coustant sampie diameter and increasing height, the peak stress reduces significantly, and a2 concave
curve of pesk strength versus height is observed, Fig. 1(a). On the other hand, for constant height
and increasing diameter the peak strength increases and 2 convex curve is observed, Fig. 1(b). The
above test resuits represent a part of the shape effects in brittle materials, The size effect cails for
different response of specimens of the same shape but different size. For cylindrical specimens, size
edfect is observed if the heignnt over diameter (L/D) remains conswant: as the size - ‘.2 sample
increases, the peak strength reducss as shown in Fig. 1(c).

Haimson and Herrick{l] studied the behavior of samples with differeat cenu.: hole
subjected to external stress. Square blocks of dry Alabama limestone having different diameters
of ceatral holes, ranging irom 2 to 12 cn were subjected to uniaxial stress. All blocks had side length
to barehole diameter rado of S:1. It was found that smail diameter holes required larger stresses
to induce breakouts, Fig. 2.

The above test resuits indicate that size and shape effects are significant especially for structures
(specimens) of small size. The borehoie tests indicate that as the hole size increases (more than 9cm
for Alabamas limestone), the size edect becomes less prominent since the appiied stress for breakout
approaches a constant level. Similariy. the cylindrical specimen tests indicate that the peak stress
tends asymptodcaily to a certain level. However different stress leveis are reached depending on.
size or shape effects as shown in Fig. 1.
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The sscond is dus to damage progfwmon. and resuits mio globally umstable respocss of the
sructure. The hole oz a3 besn found expentmentaily w0 be tn mnportant peramersr m brexkout
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~ INTRODUCTION AND &EVTEW

BomeroLy instabilities and breakours are often caracrerzzed >v e siabbing mode that affects a
porton of the materiai ciose 1o the borehoie wall [n addinoun. it s clear that the borehoie size has
agnificant effect on the imitanon of breakout, Hammson ang Hernek{l]. In general, ‘small’ hoies
fail at higher external stresses than “large’ ones. Since laboratory sze borehoies are ssuaily smaller
than the ones in the feid, the mportance of hole s2¢ and s reisgon (o brezkouts is of 2 basic
and quantrative aature. Thus m order to aciueve i well-grounded statement about borshoie
stability that complies with laboratory and fieid observanons, (e dependency of borehoie stability
on its size (scale effect) must aiso be modeled.

Borehoie scale effects is an exampie of the facs that the deformanonal characterisucs of bricde
materials depend on the size as well 2s on the shape 5f e structure (specimen). In 2 specimen
subjected to uniaxial compressive siress, when the ranc of hergnt 10 wadth (diameter for cylindrical
specimens) of the sampie is increesed, the level of (macroscopic) stress at unstabie failure decreases,
Hudson er aL{2], Desai ef al(3]. In ref. [3] 2 aumber of umaxai compressive tests on cylindrical
specimens ars reported, ffom which the following conciusons are made. For the senes of tests of
coustant sampie diameter and increzsing height, the peak stress reduces significantly, and 2 concave
curve of peak streagth versus beigitt is observed, Fig. 1(a). On the other hand, for constant height
and incressing diameter the peak saength increases and 2 convex curve i3 observed, Fig. 1(b). The
above test resuits represent a1 part of the shape effects o bntte materials, The size effect calls for
different response of specimens of the same shape bur different size. For cytindrical speaimens, size
edfect 15 observed if the heignt over diameter (L, D' remains -onswant as the size - .2 sampie
increases, the peak strength reduces as shown s Fig. (¢

Hammson and Hernck{1] studied the betavior of sampies sth different cenu .. noie sizes
supjected o external stress. Square blocks of dry Alabama .mestone having different diameters
of central hoies, ranging from 2 to |2 cm were subjected 0 umaxia stress. All biocks had side length
10 borehole diameter rado of 5 . [t was found rat smail Lameter noies required larger stresses
o nduce breakouw, Fig. L

The above test resuits indicate that size and snape effeco are agmficant especially for structures
' specimens) of smail size. The borehoie tests indicate that s the 20ie uze increases (more than 9 cn
for Alabams limestone), the size edect becomes iess promunent since the appiied stress for breakout
ipproaches a consuant level. Simularly. the cylindneai specimen tests indicate that the peak stress
eads asympeoncally 0 3 certamn level. However sifferent stress evets are reached depending on
size or shape etfects as shown .n Fig |
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From the above discussion it is clear that size and shape effects in brittle material structures
are complicated, and at the same time important to be ignored. For many problems in brittle
material mechanics, i.e. borehole stability, analysis is based on simple elastic-perfectly plastic -
modelis that are calibrated on test data from conventional triaxial compression experiments. These
modeis lead to irregular stability of the borehole as compared to experimental observations.
Reviews, Maury{d], Guenot(5], demonstrate that classical design procedures lead to overestimation
of the drilling fluid density by a factor of 2~3. From the test resuits shown in Fig. 2 it can be seen
thubmkouofmﬂ&mholareqmabounhmem:hemmofhrgemsm

" observations hoid for tests on cylindrical specimens.

The bifurcation theory is used by Papanastasiou and Vardoulakis{6] to examine the effect of
borehole radius on borehole stabilicy. Material bebavior is described by the deformation theory
of plasticity, and internal length is introduced in the formulation through employment of Cosserat
theory. The numerical solutions show an increase of the bifurcaton stress with decreasing borehole
radius (sczle effect). As shown subsequently, the present study is different than the one in ref.[6]
in the sense that length is introduced through surface degradation effects in the whole structure
rather than in the constitutive equations. Furthermore, instabilities are based on global energy
criteria.

In the next section, the relevant theory for damage and surface degradaton growth is
described. Since this theory has been presented eisewhere{7-12], only the necsssary background for
completeness of the present paper is preseated. In Section 3, i order to demonstrate the scale
effects, a simplified solution for 2 borehole problem is presented first. Subsequendy, gumerical
soiutions of borehole problems are presented and discussed.

Z BACXGROUND

2.1. Damage growth considerations

A number of investigators have considered the effects of damage in their models directly or
indirectly. A review on this subject can be found in ref.{7], and the references cited thers. Here,
it is not intended to review the analytical modeis for the influence of microcrack initiation and
growth on the constitutive behavior of brittle materials. Only the material directly relevant to the
purpose of this study is presented.

The mods! inciuding damage proposed in refs{7-12] has been investigated successfuily with
respect to different materials such as concrete and compasites. The materiai constants have been
idendfied and the proposed theory has been validated through comparison with experimentai data.
Only minor modifications in the modei are necessary for the descripton of different materiais. Also,
propexties such a3 degradation, induced anisotropy, degradation of elastic properties are acributed
1o damage development. '

21.1. Forruiation. Let us consider a smail volume AV of the material. This volume
is subdivided into an intact (undamaged) part, AV, and into a ‘fractured’ (damaged) part, AV,
(Fig. 3). The first part or fraction represents topical behavior, and the material in it is intact in
the sense that no microcracks are induced. Due to inhomogeneity of the material behavior at the
micra-level, weak planes are deveioped leading to crack formation and subsequent propagation.
The laws that govern the above structurai changes are not fully undersiood. The edect of an
isolated or coupied fracture site is that an induence zone exists around it as shown schemadecalily
in Fig. 5. This induence zone has volume AV,. Under continued loading, induence zones increase
so that AV, increases, At every instant of tume, we define the ratio

%
rud | @1

AV
cailed the damage volume rato. The material point consists of the superposition of a material point
of the undamaged (raction. herein called the u-part. and of a materiai point of the damaged
fraction, herein cailed the d-part. This suggests the use of the theory of mixtures, or theory of
interaciing continua. Bowen(13]. As a consequence, the following reiation is appiicabie{8)

- 4 s V2
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wherer,, 4 denote the stress tznsors @ the u- and d-par 2! 3e matena element respectvely and
oy is the average (measured) stress iemsor. The geperas beory of mxrures{l3, 14] is simplified
considerably if diffusion is absent o the proposed theorv, there s ao diffusion between the
components thus the strains in the two matenal fractions are equai. Bowenf14].

We now consider 2 material eiement. Due to the saforcee deformagnon 1n the element, damage
influence zones have been crezted but failure has not occurred ver Such influence zones depret the
mechanical influence of a system of mucrocracks. The coestitunve =quanons for the 4-part can be
established 2s(8, 9]

Ty T (237
where overdot indicztes tme rate/increment, and C,, s« uncTon ! sarameters related to the
degradea properues of the material Since there are 2o micr™>Crack o e u-part, its consututve
reiacons can be identified as

7= Carie 2.4

If the undamaged fraction is linearty eiastic (e.g. for compomies. ., contains the usndi linear
elasuaty constants. [f plasucity effecs are included then a generauzec nerarchical elastic-plasac
mode! 1s employed, Desai er 2i[15).

The irreveruble nature of damage umplies that ‘ne maizra :Xperienang it obeys non-
hotonomic laws. Thus the probiem s formulated in rate ‘c™ > ne goverming equanons and the
consutunve refatons are dertved from egs (2224 as

T, gl rlO - - (.5

where

;-'- -”'C.'w“”,. (:-63
From eg. 1.5) it can de seeni8, 9] that aithouga » anc  a¢ w2asy . easor namedy, (o) -a,,.
is imtroguced in the formuiagon. This (ensor 13 responsigie “or lamage :nducsd anisolrapy.
obvious property of cracked matenals. Further. an evolunon aw ‘or - :s defined and it 13 direcuy
reigted to failure where » reaches a cnncai vaiue 7. A umore anc efecuve iaw can be wniten as

- ’.((.,,‘ [ A
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22, Swrface degradation

Surface demdanonzsmdmdbymmmml inhomogeneity and its growth s s
stable. It is important to mention that there is certain evidencs that this phenomenon act as -
trigger effect on the shear band 2ppearing in a specimen. The sudden growth of surface sdect:
results in the occurrence and development of shear bands penetmrating into the body{l§, . 7.

" The damage distribudion at the edge of a body where surface degradadion is of importance.
is expected to be significantly different from the damage distribution far from the edge (in the bocy
We consider that damage at the edge due to surface efects is additive to the damage accumuianor
calculated as if no surface effects were present. So, at the edges, 2 smazil volume AV, is subdivicee
into an intact part AV, and into a fractured part AV, We consider that the above subdivimior
hoids for a distance p from the edge, p being a positive real aumber dependent on the matena.
properties, the geometry, and load acting on the body. At every instant of Gme, the edge tamage

- copcentraton volume ratio is defined as{10-12]

N -
Here 7, is expected to be maximum at the edge and its value decresses condnuously tll a munmur
vaiue expected 10 be at 2 distancs p from the edge. Let us consider the foilowing volume average,
for unit area on the plane parailel to the edge

Te ™

r"-lJ. redd. (29
Pl
Also the following stress average can be introduced
é’-lJ. U’ d-A- (llo)
P ds

Similarly, average partial suesses ¢§, ¢§ and strains ¢, can be introduced. Since the consatuave
eqs (2.3) and (2.4) are linear or incrementally linear, we can write equations similar to (2.5) and
(2.6) for the average () quantides. At the effective surface degrzdauon volume the total damage
rago is dmed as

Pompr4ef. (211

R

In general
Fmg(e)r 212

where g(¢) is the surface degradation amplificarion functon. As shown in ref[12), g can be specifieq
from test resuits on different size specimens. Distance p is defined as

p-a(de:—l) (13

where ¥ is 2 weightng functon (the simplest case calls for W = unity and even this case has been
shown to provide satisfactory results), a is 2 material constant determinabie from test resuits on
different size specimens, / is the so<called surface degradaton materiai length, and ¢ i the patk
of maximum (sbsoiute) principal compressive stress. Material related constanc / defines 3 new
characteristc leagth. [t is defined as that specimen size so that the Whoie specimen is in the surfacs
degradation zone. The surface degradation constants have beea determined{12] (from tests on
different size specimens) for 2 materiai described subsequently.

As discussed in the introducuon. the deformauonal charactesistics of brittie materials depend
on the size and shaoe of 3 structure (specimen). [n refs(1 1, 12] the sfect of surrace degradanon on
tne scale (size) as weil on the snape of 1 structure i exarmuned, Mamiy wath respect 0 UTIAXIAl
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compression of cylindrical specimens. [t is shown that surface degradation can caprure important
pmmofmmmmhsm“mmmmdmmdmdanonmm
subsequent bursting insaabilities. .

23. Energy considerations

Comdeam(m)ocuymgmkudmhpaimmmoum

SRbethebomdaryofR.memethcmodymmwpomgthcmofthemmﬂmybe
characterized by its strain energy density, ¥, defined as

v =} oréy (Z14)

wherepxsmdeasry S'mcedmagecompmathcmonandpmpagznon of cracks and voids,

damage growth dissipates energy. In additon, there is dissipared energy due to plasuc defor--

mations. By differentiation of eg. (2.14)w1thr=pacuoumez,themmﬂenzydenmymmu
obmnedas

 Wmblogy tog) =agly—¢ @19

where ¢ is the rate of dissipated energy '
b =} (Oyéy = dyty)- (2.16)
By integration of eq. (2.16) we obtain the expression for the dmpated energy per umit voiume
J‘ Tpéyds —iagey @17

and ¢ denotes time.

Nowlanememgydmpamd&cmdamgegmwth.InmedngefomNmondambed
previously, if the topical (u-part) response is assumed linearly elastc, egs (2.3) and (2.4) can be
written as

o5 = Clarbiy
oy = Clrln. (2.18)
In this case, ¢ = D and from eqs (2.16) and (2.18) it follows thar
-fq(C'. Codbui 219

Region R of a bodyudeﬁnzdasR-R.+R,wha~eR,xsthemrfac=deg:dznon volume
bounded from the stress-free boundary surface and extended to a distance p from it. Thes, R, is
the rest of R such that Ry = R = R,. mwmmmmmmm
gowth is

fnar..J' QanJ’ $av 2.20)
2 8

where Q and S represent the energy density dissipated from damage growth, and from surface
degradation growth, respectively. Let D, be the rate of dissipated energy from plastic deformadon
such that @ = D + D, (2.18 does not hoid in this case). Considering quasi-statc loading, in the
abseace of body forees, rate of energy baiance requires

J- I',d,dS-j WdV+J’V Q¢ ‘+J‘ $dV:—f D, 22n
» 2 F Ay 2

where T, is the external load applied on SR, aod u denote displacements.
Depending on the external load level, the geometry of the structure and the material properties,
the foilowing instabilities may develop:
—Surface degradation instability resuiting in spalling of material from the surfacs.
—Damage progressicn instaniiity resuiting in overall faiiure by siear band formaton or 2ther
fatiure mode.

.
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Note that surface degradation msabﬂx:ycioesnot necessarily imply overail failure of the
mho&zwﬁs‘p@ﬂh{sp@bmﬂaﬂbﬂmﬁhwm
Thctoalpotmwenﬂuacprmd.u[&ﬂ .

IT-J‘ WdV-J‘ T u,dS. =2
2 A 'y

Fromthcaboverdadonsthecondiﬁomfarmdzmgemdsud'medegadaﬁoumwmgt
established as(3, 9]

3:17 33D 30 93s )
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In refs (10, 11], these inequalities have been discussed with respect to the instability of typical
probiems with emphasis on uniaxial load conditions. In the next section relations (2.23) and (2.24)
are examined for barehole type of problems, and the connection to scale effects is studied.

3. ANALYTICAL AND NUMERICAL SOLUTIONS

3.1. Simpie analysis of a borehola probient
Let us consider the following problem depicted in Fig. 4. The borehole structare of length and
width D contains a central circular hole of radius R. The ratio D/R is considered constant such
- that Df2R = §, Uniaxial compressive external sgess ¢ is appiied extermaily. If the material is
considered linear, isotropic and elastic, then the ., occurs at point A and, Roark and Young(18]

Oy = Tr kO : G.D
where -
, ¢D
R 2R 2R\?
k.—3.00-3.l3(p) 366<D) -1.53(3-). | (33)

In order to demonstrate the capability of the theory to capture the scale effects of this probiem
we make (for the time being) the following simplifying assumptons. We consider that the materiai
is linezr elastic and isotropic. This, of course represears 2 'stiffer’ matenial than actual rocks.
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R
/].“\
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\ A p g o
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Fig. 4. Geometry of 1 dorenoie prodiera structure usder wusxal compresuve external ioad.
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In addition we assume that for the external stress levels at areakout the material in the surface
degradation zone has zero stiffness. Thes at breakowt initiaticn this problem can be anaiysed by
using the solution presented in eqs (3.1)=(3.3) but now the radius of the hole is R +p. For this
problem eq. (2.13) reduces to

 p=a@xR ~) | (3-4)

and .. . J '
_ . oD

'—-km G9

and k is gven from eq. (3.3) where R +p is substituted instead of R. For the material discussed
later it was found that ¢ = 0.2] and / was considered to be one inch{12]. If we cousider that at
breakout, ¢, in (35) assumes a constant value we can obtain soludons for different R where
aiways D/2R = 5. The curve in Fig. § is obuained where the diameter (2R) is plotted on the
horizontal axis and the external stress at breskout is pioted on. the vertical one. Clearty, the shape
and trend of this curve is similar to the experimental one given in Fig. 2.

3.2, Nuwmerical solutions
In the above probiem, certain simpiifying assumptions were made to illustrate the potential
of the theory analyucally. However, if the two fractons are considered to be elastic plastc, it is

difficuit to obtain an analytical solution even for the umiaxial load case. Herein, the scale effects

and the instability inequalities are analyzed numericaily for typical borehole- probiems.

The principle of virmal work leads to the following incremental equations where matrix

notation is adopted{19]

J.B’dﬂ dV =dQ @8

where B is the strain-displacement mamix, d(.) denotes increment, dQ is the increment of the
external force, superscript T denotes transpose magix, and ¥ is the volume. The constitutive
relations (2.5) and (2.8) are written as

de =Lde—-drT. 3.7
From egs (3.6) and (3.7) and the incremental strain-displacement relations, it follows that
k dq = dQ +dQ* Gy
whezre
k-‘[ BTLBdV - . 3.9
4
230.00 <+
' 1
200.00
§zsa.oo :
fzon.ao 3
i
130.00 1
i
100.00 i

000 108 200 00 4CO 330 .00
Qiometer/1 incnes)

Fig. 2. Scaie efect predicted througn the amptified anaiysis.
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is the incremental sufness matrix for the u-part, and

dQ‘-J B 4 TdV (G.10) )

istmnedn:he‘damgefom’..
In order to evaiuate the second partai dertvadves appearing-in the instability inequalities
(2.23), (224) cumerically, the thres-poin; method is empioyed, thus for exampie -

)-() |
9D -M L G.1D

2 VAN EAN
where subscrips I, 2. 3 denote values ar three- consecutive incements of load.

3.21. Constiturive relations for the elastic—piastic undamaged fraczion. The following brief

description of the plasticicy modei used for the u-{racton is adopted from ref{15]. As mentioned
aiready, the material behavior is decomposed i two parts, namely the « and the d-part. The
undamaged part is assumed to obey an elastic-plastic constitutive law. Since the damaged part
Mollows’ the deformatons of the u-part (2.3) and since it has no. shear resistance, the damage
copsttutive relatons (2.4) may be termed as rigid perfectly plastic with zero yield soreagth. The
dwofdmamlmnmmmlmmwdamudmmﬁnnm
dmo—phsacmmnverdmonsformcu-pm(u)mwnmu

y = Cou by (¢.12)

for loading, and as
Gy = Cly by ' (3.13)

* for unicading.

Amwmmmmmmmm-pmw
for isotropic and anisocropic hardening, nonassociatve responses and applications for soils, rocks
and concrete are described in ref[15] and the references cited there. This approach is used here to
describe the u-part with basic isotropic hardening and associatve behavior. The yield function is
given by(15]

F -fu-{-%f’,'é-ﬂ?} (1=ps)- (.14)
where J, = J, ~ b, and b is a materiai copstant representing the distance from the stress origin to
the intersection of the surface with the tessile hydrostatic axis /, m o4, is the first invariant of 4
stress, S, = (J3)"R/(T5)'2 is a stress ratio, JY, (V) is the third (the second) invariant of the
deviatoric part of o3, B, 7, 2 are assumed © be material constants reiated to the shape of the yieid
function. a,, 2, are material cons@ats related to hardening and df = (def de’)'®, superscript p
indicating piastc. [n order to derive the CT, tensor, the usual refations of elzsdc-plastic theory
are used.

In general. eq. (2.7) hoids. In the present numencal procedure the following evolution function
for r is exployed(7, 3]

rar, —r &p(—xis) (.19

where 7,, k, R are damage related mateial constants. A procsdure for determining the efasucity,
plasticity, and damage constants is givex in ref.(7]. The values of the constants used for the present
analysis are aiso given io ref.[7)], These constants were determined from test results for concret={22],
where cubical specmens of 100 mm size were tested under muitiaxial load

A natural question is how to determine the ampiification funcdion g shown in eq. (2.12). An
effecive procedure is by uslizing the stress—strain curves of different size specimens(12]. Damage
constants < 2nd R appearing ig eq. (3.15) are expeczed to be differsat in the surface degradadon
zones than in the damage zones. From the t2st r=suits on different size specmens reponted in ref )
the following vaiues of < and R were J6taized 3nd are used in (e present anaiysis: <, = 1.75 ¢ iC.

PN Wit
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x; = 668, R, = 2305, R, = 1502, where subscripts |, ) w.i: ¢ values for the 1iriace degradation

zone and damage zone respectively.
322. Ezampis probloms. The finite clement metrioc has been usec, long ago, for the

_stress-deformation and stabifity anaiysis of borehoie probier . Initial works =1 this area, Desai and

Reese(20], considered noniinear elsstic matesial response anc the Mohr envelope was used as the
criterion for development of plastic zZones. It was found that plastic zones agvance ciose to the
barehole at a certain distance depended on the geostatic loading The extemt of piastc zone may
be relared to the surface degradation zone discussed in tns study. Fowever, snce the surface
dep:&nnnmsmdmddm&emyof&e«mmnnhammmuﬂbem
on fixed radius of the borehole.

Theprobiem shown in Fig. 4 was investigated numernrcal: - for six different vaiues of the central
hoie radius. For ail problems the ratio of D over R was coustant such that D/ZR = 5. The fmice
clement mesh used is shown in Fig. 6. Eight node quadrilareral elements were used. For the six
problems studied the hole radii were 0.5, 1, 2.5, 5, 7.5 and O am For each problem the surface
degradaton distance ¢ was caicuiated (eq. 3.4). The elements aext to the centrai hoie extend for

" a distance p as shown in Fig. 6. The material properties asmgned for these eiements are the surface

degradation ones. The purpose of this analysis is to study the surface degradadon instabilities close
to the hole. Thus 5o surface degradation was considered ciose o the laterai surfaces of length D,
since the surface degradation growth at these points is mucs siower than the growth ciose to the
hole. : :

3 3

d
1

slement 2) st peck load (MPe)
2 8

§

1 2 8§ 4 & 8§ T 8 9 10
Reshm R (em)

Fig 7. Pradicad scale effect througi exanunanon of the 0fmai stress 4., 1 siement
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The calcuisted load-deformation curve for these problems monotonicaily incresses until a
peak load is reached. Beyond the pesk !cad, softening response was caicuiated. In Fig. 7 radins
R is plotted on the horizoutal axis and the normal stress a,, at the peak load for the lower left
Gauss point of element 2 is plottad on the vertical axis. Here o, represents the so cailed tangential
stress at the end of the surface degradation z0ne A simple criterion for spailling of the surface
degradation zone calls for ¢, reaching 2 critical value. [n this case, Fig. 7 shows the capability
of the theory. to represent the scale effect. THe shape of this carve is similar.to the one shown in
Fig. 2. Since the material constants for Alsbema Imestone are not available, no quantitative
enmplmonmbemdgl"zgmhsamﬂartn H;.'/' but the maximur (peak) stress.is piotted
on the vertical axis.

At every increment of load the instability inequalities (2.23) and (2.24) were examined. Surface
degradation growth showed the following interesting characteristics, for these problems. Surface
degradation showed an initial unstabie region from the beginming of the external load appiication.
Subsequentty the responss became stable until 3 second instability was initiated. This trend is
similar to the crack propagation probiem studied.by Sammis and Ashby(21]. In that ref.(21] the
crack propagation probiem of 2 notched specimen with 2 central hole is studied theoreticzily and
e:pa:mn.ﬂy Thmydhmbhnumﬂl:mmmshmm.ﬁg4mm

"0 23 s 73 100 12 'S0 173 200
Jemeges Verarw V4 (em J)

Fig. 9. Damagee voiume ¥, vs energy ¢ for the boredoie prodiem of R = (Ocm, D w i00em.
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propagation of initial surface cracks parallel to the externai com gessive losd is sudied. Coac:
propagation was found (theoreticaily and experimentally) to. b+ ininally unstabie (fom B:
beginming of. the load application) then stable and then unstable again. Here wr note thac B
mﬁﬁqmﬁm@ﬁ)ﬂ@l‘)mm&mzm -ondition ‘or instabilit -
imnation. Let

e=T+D,+Q +S. (3..¢

In Fig. 9, cnphndwﬂmmhmmumlumV ‘orthe case R w 10z
and D = 100 ez Similar curves were cbtained for the other five cases considered. When this curv.
is convex, surface degradation instability is possible. The curve shown in Fig. 9 is imically conve
implying possible unstable growth, up w paint A. After point A (1e surface degradagon growu

is smbie up to point B. mmnwmummbmmmmaﬁaf
increases rapidly. Point C on this curve is at peak load. This anai vsis is smilar, in tend, o the
crack propagation problem studied in ref.(20]. It impiies that the material is suscepubie to surfac
degradation instability from the beginning of the load application. After 2 cartain zmouant o
surface damage has been achieved, the damage growth response is stabie for 2 rather smail range
of external lcad. Then surface damage instability is expected to ocowr. after point B. he scaie effec
shown in Fig. 10 corresponds to instability initiation a2 point B, whers radius R is piotted on the
borizontal axis and the externaily sppiied stress at surface instxbility is pioted on the vertical axs

4 CONCLUSIONS

Surface degradation growth is shown to piay an impartaat ro« for Jnenomerna observed
bareboie problems such as scale effects and surface damage ipstabil des. Apaiytical and aumenca.
resuits show the capability of the theory to predict such phenomens At thus ume, only qualicative
comparison of observed and predicted responses is possible. Further expenmental work related tc
growth of damage and resuiting instabilicy close to borehoie walls is needed.

Acknewisdpement—A pagt of the ressarch bareis wes supportsd by Geamt No. AFCSR 190460 from the Aur Form Offics
of Scmtfic Ressarch, Soiling AFB.
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On the micro-structure of surface effects and related instabilities

G. FRANTZISKONIS * and I. VARDOULAKIS **

ABSTRACT. — Based on Mindlin’s theory for material micro-structure interesting surface effects under
conditions of equilibrium are studied in this paper. The governing field equations for uniaxial plane deformations
are established; surface instability analysis shows non uniform deformations for a layer of specified distance
from the surface. Experimental as well as fracture mechanics based considerations show that this surface-layer
is extremely thin for metals while for brittle materials its magnitude is of the order of [ cm. Material micro-
structure introduces a singular perturbation to the original Hill and Hutchinson problem; here we introduce a
single perturbation parameter and we obtain a “dispersion™ law for the surface buckling load. It is found that
surface degradation and skin effects can be attributed to localized surface buckling instabilities. Experimental
information on skin effects can provide an estimation of the internal material length.

1. Introduction

About three decades ago Germer et al. {1961] observed surface irregularities in homo-
geneously strained metal solids. Based on electron diffraction measurements it was
concluded that displacements of a superficial layer toward the interior of the metal solid
is five times as large as that of the next layer. Based on exponential decay considerations
Mindlin [1965] concluded that such an effect is confined to an extremely thin surface-
layer in metallic materials. Recently, Kitagawa & Matsushita [1987] reviewed the exper-
imental and theoretical information on such surface effects herein termed as surface
degradation effects. Further in [K & M, 1987] it is shown how unevenness of the surface
grows and localization develops from an initial random inhomogeneous deformation
field. As concluded in (K & M, 1987] and in the references cited there surface roughness
is induced by micro-structural inhomogeneity and its growth is initially stable. Micro-
scopically the heterogeneous structure of the material produces an inhomogeneous
deformation field from the very early straining stage. However, irregularity of deformation
in the body is not uniform, but there is a part in which the irregularity is greater than in
other ones, that is near the boundary surface.
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85721 US.A.
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US.A. and Department of Engineering Science, National Technical University of Athens. 5 Hivoes of
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The above observations are also evidenced from extensive experiments on brittle
materials. The following have been identified: as loading increases, e.g. in a uniaxial
compression test, the density of microcracks rapidly proliferates leading to vertically
aligned microcracks which result in gross slabbing of material from the specimens lateral
surfaces [Hudson er al., 1971]; [Fairhurst & Cook, 1966]). In general, the axial cracks
are concentrated in the central portion of the specimens length because lateral restraint
at the specimen ends, due to friction, inhibits their growth near the specimen-platen
interface.

Theoretically, it has been predicted that a homogeneously strained body with traction-
less surfaces develops surface undulations or waves. This phenomenon is known as
surface instability ([Biot, 1965]; [Hill & Hutchinson, 1975}, [Vardoulakis, 1984]). In a
more general formulation, conditions for the so-called complementary condition, [Benallal
et al., 1989}, for governing instabilities at the boundary of a solid have been established.
Since there are not physical length quantities in the continuum formulation of the
probiem, the wavelength of the surface instability mode remains arbitrarily short or long.
The exponential decay beneath the surface is also arbitrary since it depends on the
surface wavelength variation.

Buckling under plane strain conditions due to horizontal compression of an elastic,
anisotropic half-space containing co-planar cracks at arbitrary locations has been analy-
zed recently by Vardoulakis & Papamichos (1991]. It is demonstrated that the critical
buckling stress decreases dramatically as the distance between the free surface and the
cracks diminishes. Further the influence of cracks far from the surface has very little or
no influence on the buckling stress. From these results it can be seen that a surface layer
exists for which the presence of cracks influences the buckling stress significantly. In a
grosso modo sense this layer is the nonhomogeneous, bursting part of the material. In a
recent paper, [Papamichos er al,, 1990] have demonstrated, using a newly developed
apparatus and a micromechanical model of surface parallel cracks, that surface instabilit-
ies lead to exfoliation in Indiana limestone.

The formulation introduced in ([Frantziskonis, 1989]; [Frantziskonis & Desai, 1987;
1990; 1991]) accounts for homogeneous damage development in a2 homogeneously strained
brittle material structure and inhomogeneous surface degradation development close to
the tractionless surface(s). Based on energy dissipation considerations it is shown that
surface degradation instability (spailing) will occur before the final global one (e. g. shear
band formation). Also it is shown that surface degradation mechanisms can explain the
well known size and shape effects on the constitutive and strength behavior of brittle
materials. This is in continuation of previous vork on damage and surface effects (for
composites), and the related energy based instability problems, e. g. {F. 1989).

In the following, Mindlin’s theory for microstructure is employed as a tool to explain
important surface related phenomena. In this context. a restricted coatinuum formulation
is achieved. First, the theory is formulated and the governing equations for uniaxial
plane deformations are solved. The solution is compared to classical instability analysis.
Finally, a parameter analysis is performed and the properties that influence surface
instability are discussed.
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MICRO-STRUCTURE OF SURFACE EFFECTS AND INSTABILITIES 23
2. Micro-structure considerations

In [M, 1964] Mindlin formulated a general and extremely powerful theory for micro-
structure in linear elasticity. Although the theory is very general, the number of constants
involved in the general theory is very large (903 independent constants are involved in
the simplest general case) and their physical interpretation is rather impossible. However,
if one is interested in surface effects under conditions of equilibrium, specific higher
order terms of the general theory can be identified. Then a simplified theory results
which gives light to important surface related phenomena. For completeness some of the
definitions introduced by Mindlin are repeated herein. However, for compactness only
the definitions relevant to this paper appear in the following. The physical interpretation
of the higher order kinematic and static variables is given in [M, 1964].

Kinematic variables

Consider a material volume V, with boundary surface S, with x;, i=1, 2, 3 the
rectangular components of the material position vector. The displacement of a material
particle is u,, Embedded in each material particle there is assumed to be a micro-volume
V’ with micro-displacement ;. The displacement gradient of the micro-medium is

(1) Vy=u ;

where a comma denotes spatial derivative. The macro-strain is defined as usual
1
2 &y= 5(“:. jtu.)

and also a relative deformation is

3) Y=t~V

. and a micro-deformation gradient is

4) K=V i

Typical components of &, v,; and x, are illustrated in Figure 1.

Static variables and field equations

Utilizing the principle of virtual work, dynamic quantities dual to the above kinematic
ones are defined

(S) 8w=t‘j8€u+ 0’,]87.]+Fluh SKU*

(6) szw-f f,-8u,dV+j o‘,,sw,.,dv+J':isu,.ds+fr,.,aw,.,.ds
v v v S S

where 7, is the Cauchy stress g, is the relative stress and g, is double stress. The first
index of u,;, designates the normal to the plane across which the component jk acts. For
example W,,, is a double force per unit area (tensile or compressive) acting on a unit
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area on the plane transverse to axis 1. Typical components of y,, are shown in Figure 2.
The variational equation of motion is established as [M, 1964)

)] f (tu',+0‘u',+j})5u,dv+-" (Mip. (FOpt+ D)W, dV
v v

+J;[t,—n,/(tu+cu)]8u,aS+J;(rﬁ—n‘u,,)8\llﬁdS=0.
The twelve general equilibrium equations, follow from (7) and in the absence of body
forces and body double forces can be written, in rate form
® T+ 6y, =0
)] Rejp, i+ G4 =0.
Then the relative stress can be eliminated from the rate-equilibrium equations
(10) O = =iy, ir
We define the equilibrium stress as
(1) @-Q+@-Q-M“.
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The twelve traction boundary conditions are
(12) L=n (’:'u“'&u)
(13) Tjg =n llut

where 7, is the outward normal to the boundary surface, ¢; is the external force on the
boundary and T, is the boundary couple force. It is interesting to note that the Cosserat
continuum [Scheefer, 1962] can be obtained by imposing certain restrictions on the static
and kinematic variables described above.

Restricted continuum

A particular case of Mindlin’s continuum is the so-called restricted continuum; i.e. a
micro-homogeneous material for which the macroscopic strain coincides with the micro-
deformation. This leads to a vanishing relative deformation rate, and, accordingly to a
rate of micro-deformation gradient that coincides with the strain-rate gradient.

The weak formulation of the balance law of linear momentum together with the
appropriate set of boundary conditions is achieved through the principle of virtual work.
In accordance with (M, 1964] we first define the virtual work of internal forces 3W),
ie.

(14) SW®O = 7 5e,;+ 1,5 8K .

This work equation postulates that the Cauchy stress is dual in energy to the macroscopic
strain and that the double stress is dual in energy to the gradient of the strain. Since
there is no relative deformation rate, the relative stress is workless. The virtual strain
and its gradients are computed straight forward from a virtual displacement fieid.

With expression (14) for the local variation of the virtual internal work done by the
stress, we can compute the corresponding variation for a material volume V from the
relation

15) AW“’aj. W gV,

v

The surface S of the considered volume V is divided into two complementary parts S,
and S, such that on S, kinematic data whereas on S, static data are prescribed. In
classical continua these are constraints on displacements and tractions, respectively. Since
second-grade models introduce second strain gradients into the constitutive description,
additional kinematic data must be prescribed on S,. With the displacement already given
in S,, only its normal derivative with respect to that boundary is unrestricted. This means
that on S, the normal derivative of the displacement should also be given: ..

(16) u=w, and Dzg,=r, on §,

where D=n, , is the derivative in the direction normal to the (smooth) boundary with
local unit normal #,.

For the computation of the virtual work of external forces AW'® we have to consider
not only the surface tractions but also the work of the double forces. Following these
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cénsideraﬁons, the virtual work of external forces becomes

(17 AW'"-J'(I,Su,+R,D8u,)dS
s

where #, and R, are surface tractions and double forces, respectively. From (14), (15),
and (17) the virtual work equation AW" = AW'® becomes

(18) f (T 8+ Hyp ki) AV = 'f (t,8u+ R, D8u) a5
A\ S

From this virtual work equation we finally derive field equations

and the corresponding boundary conditions

(21) nn; = R,

where D;=(8; —n;n) ;. Constraint (20) comes in place of the classical boundary condition
for surface tractions. Constraint (22) means that on some part of the boundary S the
flux of the plastic shear strain might be given, i.e. on S,.

In order to solve the boundary value problem defined above, additional equations
relating the stresses and double stresses to the strain, relative deformation and to the
micro-deformation gradient must be included. These are specific to the material and are
the constitutive equations. .

3. Sarface instabilities

In this paper, only plane-strain surface instabilities under initial stress will be discussed.
It should be noted, however, that three-dimensional surface instabilities in the sense of
Hutchinson & Tvergaard (1980] are also possible. These surface instabilities will not be
discussed here. Consider the problem depicted in Figure 3. Starting from a stress-free
state C,, the structure is stressed uniaxially, under plain strain conditions. Let C be the
resultant configuration. In order to study the stability of continued equilibrium in C. the
existence of non-homogeneous infinitesimal transition, C — C’, is investigated, with C
being the reference configuration. The equilibrium in C is unstable if an unbounded.
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Fig. 3. = Hall Space Under Compressive Load.

non-periodic solution exists. Further discussion on the types of instabilities can be found
in the papers by Needleman [1979] and Vardoulakis [1984]). The equilibrium stress tensor,
#,; can be written as a function of co-rotational stress 1}

(22) "‘u = 7‘:1 + ‘bu T~ Tix d’u

where @, is the rate of rotation tensor
o1 .
23) ;= 5(“:. i~

For the plain-strain problem of Figure 3 we assume incrementally linear constitutive
equations for the Cauchy stress-rate

T, =2p¢,, +(1-sing)p

249 T32=2% €5, +(1 +sin@)p
%12"2 l‘éxz
where -
. 1 .
(25) €= E(”l. ;o0 o=y

and p is the hydrostatic stress. The quantity 4p* is the instantaneous tangent modulus
and p is the instantaenous shear modulus for shearing parallel to the coordinate axes,
and ¢ is the mobilized friction angle. Material parameters u, u* and @ are, in general,
dependent on the histories of deformation. For the purposes of this paper the particular
dependence is specified later. However, the range of these parameters is important for
specifying the solution regime for the surface instability problem.

The constitutive equation for the double stress rate is written as
(26) f‘ul’ulzén.x-
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28 G. FRANTZISKONIS AND I. VARDOULAKIS

A dimensional analysis shows that / has dimension of length and as shown subsequently

this quantity is important for the surface instability problem.
Equilibrium can be expressed in terms of the equilibrium stress rate

T, 11t Ry T30, ;=0

Rz1,1 ¥ 33,2 T2 0z, =0

@n {

and t,,=0, o being the external applied stress, Figure 3. From (22) and (24) and
considering u,,, to be, in general, non zero and all other components of p,; being zero
for this specific problem, it follows that

(28) { Ry =Ty =Py, =200 €y (1 =sin@) p—pi2éy,
R22 ™ T3z, My ™Ry =712 T2y,

Then, the two equilibrium Equations (27) are expressed as
. . 2 . o c
—(1-sin@)p,=—pl vy 11y, +2p% 0y, H{ B+ 2 ?,22H{ 1t 5 )Pz
(29)
. . . c Lo}
( =(l+sin@)p,=2p vz,zz+(u+ 5)”1.21"“(#‘ ‘2‘)”2.11’

Introducing a stream function ¥ such that

(30) n= ‘.”.z: n=-%,
we satisfy material incompressibility constraint, and eliminating p from (29) gives
31 : ‘Lz‘*’.zzuu"‘w.uu+b\P.nzz+cq’.zzzz=o
where
h=[A*+1)(1-&)~A*—1)E,JNE, +&2)
c=M\? (§2 =&/, +Ep)

) A=tan(n/4+@/2)

(32) -_ "
. &, 4—&? (122<0), &2 ﬁ;
Li= ____§z 3,
E &,

Differential Equation (31) is a singular perturbation of the original (resulting without
micro-structure considerations) as discussed by Hill and Hutchinson [1975] and others.
This is discussed further subsequently. Following [B, 1965], plane strain surface instabilit-
ies can be analyzed by setting

W= —}i u(x)siny
(33) mn

x x
x= L y=m1‘t—ﬁz. m=1.2,..

H
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Here, 2t H represents wavelength. From the above and (30) it follows that

v, =u(x)cosy

G9 vym = —— i (R)siny
mn .

where (.)'=d/dx. Substituting ¥ from (33) into (31) yields the governing equation for
the stability problem

(35) {1+ (mm)? (L/HY? } & ~(m)? b + (m)* ci=0.
The solution of (35) is

4
(36) i(x)= Y c;exp(mna,x)

J=1

where c; are integration constants and a; satisfy the characteristic equation

) of - T%.“-Hﬁso

where

(38) n=(mn)*(L[H?, na=mn)?(H)?, 0<n<l for /<H.
Introducing

(39) D= b _ 4

(1+n)?* 1+n

the possibilities for solving the above equation are classified as follows, depending on
whether there are 4, 2, or 0 real values of a.

(H) hyperbolic regime: 4 real solutions a

b/(1+m>0, c/Q+m>0, D>0
or
(40) b/(1+n)>0, c/(1+nm)=0
or
b/(1+n)>0, D=0

(P) parabolic regime: 2 real solutions a
(41) c/(1+n)<0, or bi(1+m) <0, ci(l+n)=0
(EC) clliptic-complex regime: 4 complex solutions a

(42) D<0
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(EI) elliptic-imaginary regime: 4 imaginary solutions a
(43) b(1+n)>0, ¢c/(1+n)>0, D>0.
The notion of surface instability means that the deformation is confined close to the

surface; i. e. the displacement field is fading exponentially with x, being zero at infinite
x, thus

(44) lim #=0 or Re{q}<0.

X = ®

In the hyperbolic regime, the solution is of the form u=exp(imrax) where z is real.
This solution can not satisfy the boundness condition (44), thus surface instabilities in

(H) are not possible.
The solution in the various subregimes of (E) are
(EC)-subregime
@5) { 4' =exp(—mnAx)cos(mnBx)
ii*=exp (—mn A x)sin(m= B x)
where

(46) A=\/C/c/(l +n)+56/2(1+n))/2, B=J(Jc/(l+n)—b/2(l+n))/2

(EI)-subregime
@ =exp(—mna, x)
@7 { 2= exp(~ !
p(—mna, x)
where

) a,= JCHRTFNT /OB, a= BT )= /L.
C Introducing the representation

(49) p=p(x)cosy

from (29), (33) and (34) it follows that

N SN WL B A [
(50) P [ ( Z)H(mx)zu +H(2u M 2)u]/(l+sm¢p).

Using constitutive equations (24), (26) and the above relation (47) the boundary condition
m,, =0 for x=0 yields

(51) p= M 148, -8,

£, +&;

Boundary condition r,, =0 at x=0 yields, from (24), (28), (30), and (31)

{(l+n)12"’—(m1t)2P:i'=0

(52) a'+(mn)ia=0.
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The boundary condition for the double stresses (13) is discussed in the following.
Introducing &' from (45) or (47) into the boundary conditions (51) and (52) the following
homogeneous equations are obtained

(53) { @+Pa))c, +(a3+Pay)c,=0
@+ 1)c, +(@+1)c,=0
for the (EI) sub-regime, and
(54) { (A?-B?+1)¢,—2ABc, =0 _
[(1+n)(3AB*—A%)+PA]c, +[(1+n)(3A?B—B*)—PB}c,=0

for the (EC) sub regime. For non trivial solution [c;#0 in (36)] the eigenvalue equation
resulting from (53) can be solved in terms of the critical stress 6. As can be seen clearly,
the final instability condition is a perturbation of the originali Hill and Hutchinson
problem. We introduced a single pertrubation parameter, denoted by n, and we expect
to obtain a “dispersion™ law for the surface buckling load.

In order to solve the eigenvalue Eq. (53) the expressions for u and u* must be specified.
In order to perform a relatively simple parametric study, we will discuss here only a one
parameter family of stress-strain curves of the power law type. It is assumed that the
stress-strain curve from a plain strain uniaxial compression is given by

N
(55) L. ( l)
To Yo
where N is a constant between zero and one, t, and y, are arbitrary reference values of
7 and ¥y respectively, y is the second is the second invariant of the deviator tensor of ¢,

and t is the second invariant of the deviator tensor of o,;. For this kind of hardening
function the shear moduli g and p* are expressed as

T
(56) u=;, n*=Np.

The mobilized friction angle @ is expressed as [V, 1984]

M )"
1+M@yA)"
where subscript ¢ denotes value at failure and M is a constant related to the strength
ratio (uniaxial strength in tension over uniaxial strength in compression).

For n=0 the analysis coincides with the one presented in [V, 1984). Let y, be the
strain at surface instability for =0 and v, the one for n#0. Let

(58) R= I (E)""_

Ys T,

(57 ' sing=

Obviously for n=0 we obtain R=1. For the solution of the eigenvalue problem (53)
four different values of N, namely 0.2, 0.4, 0.6 and 0.8, were considered. The value of n
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Fig. 4. — Perturbation parameter # versus R=, v,

R was varied between 0 and 1. Figure 4 shows the influence of 7 on the surface instability
T analysis. As can be seen such influence is practically insensitive to the value of material
! R constant N. Since 7=0 corresponds to the long wave limit it also corresponds to the

first buckling load. Also, since higher values of n indicate surface effects to a grater

. _ depth, it seems appropriate that the surface instability stress increases with increasing 7.
!, S On the other hand n=1 corresponds to the lowest physically meaningful wavelength
N limit which depicts the so-called skin-effect that is localized surface buckling strain.
S Figure S shows the eigenstrain field for N=0.2, n=1 and M =0 (non-frictional material).
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Fig. 5. = Normalized Depth X,./ versus cigenstrain.
N=02, n=1, M=0. (a) X,/I vs g,,. (8) X/l v8 &, ,,.

EUROPEAN JOLRNAL OF MECHANICS. A SOLIDS. voL. I1. n¢ 1, 1992

te -




SO T e A el it o -8 2

MICRO-STRUCTURE OF SURFACE EFFECTS AND INSTABILITIES 33
3 0.50 4
3 -
_ 1 ] I
. ! 3 -
! - . ~ 0.00
.g 0.70 1 < N~
= =]
- @ £
3 S .20 3 2
o o 0.20 3
F 3 N\ &
i ° — i =0.50 4
i & 030 3 ks
' S 3
! § £ b
= Z -0.80 v S UN— ’ e [ RRR R A—— . r .
0.00 .00 1000 1500 2000  25.00 z 0.00 500 1000 1500 2000  25.00
Normalized Coordinate X1 Normulized Coordinate X1/I

(@ »

Fig. 6. — Normalized Depth X,,/ versus cigenstrain.
N=0.2, A=1, M=043. (a) X,/I vs £,,, (0) X /I v$ £y,

Figure 6 shows the eigenstrain field for N=0.2, n=1 and M =0.43 (frictional material).
According to Eqs. (45) or (47) the attenuation of the various cigenfields is governed by
the coefficients a,, a, or A, B respectively. Note that the slope of the curve in Figures
5b and 6b is proportional to R, appearing in Eq. (21). For the example of Figure 5 we
recognize that a significant % of attenuation is obtained at a depth of 5/ From
experiments ([G et al., 1961]; [M, 1965]; (K & M, .1987]) for metals, [Yukutake, 1989]
for brittle frictional materials) in various materials the depth of the surface degradation
zone can be obtained which then provides /. Such a calibration of the internal material
length ! is paramount if one wishes to solve problems with eigenstresses in laminated
materials by using constitutive equations of the present type. Notice that these equations
constitute the simplest possible generalization of elastoplastic relations for such media.

Conclusions

The present analysis shows that micro-structure considerations highlight surface (skin)
effects. Such effects can be attributed to localized surface buckling instabilities. The single
introduced new parameter is the internal length /. We have provided in principle a
method for estimating /. Here we used the simplest possible generalization of elastoplastic
constitutive relations, applicable for monotonous loading cases. However, other types of
constitutive equations can be employed to include for example fatigue. and its effects on
surface degradation and buckling. Potential applications for problems prone to surface
buckling, i.e. borehole wall stability, have been demonstrated through the presented
analytical solution. Numerical solutions for such problems will be presented elsewhere.
Such solutions together with experimental observations and parametric analysis for the
estimation of / are expected to provide a tool for the analysis of structures prone to
surface buckling.
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Micro-structure in kinematic-hardening plasticity

1. VARDOULAKIS * and G. FRANTZISKONIS **

ABSTRACT. — A gradient regularization of the classical kinemstic-hardening plasticity is presented. The
underlying continuum mode! is formally related to Mindlin’s elasucity theory with micro-structure. The
evoiution law for the back stress is identical 10 Mindlin's higher order equilibrium equation. For consistency
reasons the flow rule of classical plasticity is modificd by incorporating the Laplacian of the plastic multiplier.
The variauonal formulation of the problem with appropriate boundary conditions is given and an expression
for the dissipated energy is established. Shear-band analysis shows that the theory provides the band thickness,
and regularizes the governing equations. Micro-structuse introduces @ snguisr perturbetion to the classical
surface instability analysis. and the internal length | is the perturbation parameter. In addition, micro-structure
effects lend 10 reduce the wavelength st onset of surface instability.

1. Introduction

Vardoulakis & Aifantis [1991] developed a second grade isotropic hardening (I-H)
plasticity theory, and demonstrated that in this case the constitutive equations are singular
perturbations of the ariginal ones and that the introduced internal length is the single
perturbation parameter. The motivation for this type of work was the fact that classical
theories of plasticity are inadequate for addressing problems such as strain localization
and deformation patterning (shear band thickness and spacings), estimate of wavelength
in surface instability probiems, and mesh-size-independent numerical sclution of large
scale probiems. It is known that resorting to non standard continuum models such
mathematical and physical difficulties can be overcome. The term *“regularization” of
the original mathematical problem is associated with such procedures. Non standard
continuum formulations include non-local, Cosserat. and strain-gradient dependent con-
sttutive theories. An extensive review on this subject is given in [V & A, 1991] and is
nol repeated herein.

In this paper we address the problem of constitutive rcgulitizalion for the partcular
case of kinematic-hardening (K-H) plasticity theory. Most applications of the K-H model
refer to cyclic plasticity of ductile metals and cohesive soils, which can not be addressed
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USA, and Department of Engineening Science National Technical University of Athens 5 Heroes of Polvtech-
nion Avenue Zographou. Athens, Greece, GR-15773.
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2 | VARDOULAKIS AND © FRANTZISKONIS

properly by the I-H theory. In thus paper. however, the emphasis does not lie on cyclic
plasticity but rather on modeling bnttle, pressure sensitve matenials which undergo
cohesion hardening and softening. This type of behavior is typical for ultra high strength
concretes and high strength rocks. It is demonstrated here that Prager's formalism of
K-H plasticity applies for modeling brittie solids. The term “‘kinematic-hardening™ is
kept here for easy reference purposes but could be replaced by the term “cohesion-
hardening™.

Micro-structure based formulation does not only regularize the classical K-H theory
but it also provides physical insight inio the back siress evolution law. Mindlin [M, 1964}
was among the first 10 introduce higher order gradients in the context of linear elasticity.
It turns out that there i< a connection between the modified K-H theory and the micro-
structure theory of Mindlin since a “complete baiance law™ for the back-stress is given
here in connection to Mindlin's structure. Namely, it turns out that the evolution law
for the back-stress is idenucal to the higher order equilibrium equation of Mindlin. The
classical part of the back-stress evolution law (without higher order gradients) is interpre-
ted as a doubie body force. This is exactly what has been suggested by Aifantis [A, 1978;
A, 1985] for media with micro-structures where the back stress is identified as an internal
stress associated with the evolving micro-structures. In addition, the divergence of the
back stress is identified here as a configurational, higher order, self equilibrating stress,
which is required to equilibrate the back stress.

The paper is organized as follows: in Section 2 the constitutive equations of the
classical K-H plasticity model in relation to cohesion-hardening, pressure-sensitive mate-
nal modeling are briefly outlined. Section 3 is devoted to microstructural considerations in
elastoplastcity, the variational formulation and the complete set of equilibrium equations.
Section4 dcals with the gradient modification of the K-H plasticity. The flow rule is
modified by including the Laplacian of the plastic multiplier A and the Laplacian of the
plastic strain rate tensor €/,. Prager’s consistency condition is discussed and the incremen-
tal form of the constitutive equations ts derived. The resultant stress-strain relations are
singular perturbations of the ones of classical K-H theory. The single perturbation
parameter /. is called the internal length of the matenal. In order 1o give an insight to
the physical meaning and possible experimental deternunation of /, shear-band and surface
instability analysis are presented in Sections 5 and 6. The issues of shear band thickness
and surface skin effect are also discussed.

2. Classical K-H plasticity

For easy reference purposes and clanty in notation we present here the basic
assumptions and constitutive equations of K-H plasticity, described in detail in many
textbooks on plasticity. We start with the decomposition of the strain rate &, into an.
elastic and a plastic part, i.e.

2.1 ;=€ ~€
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MICRO-STRUCTURE IN KINEMATIC-HARDENING PLASTICITY 3

The yield function is expressed in terms of the stress o , and the back stress a,
2.2) F(tuA)=0  wher
2.3 =0, g,

is called hereafter the Cauchy stress tensor; see Section3 in connection to [M, 1964).
Prager's consistency condition dictates that, for loading F =0 or, due to0 (2.2) and (2.3)

éF . . &F
2 4 —_—(G, - +_1-)
9 61,,( =% aA

For demonstration purposes. we shall restrict ourselves 1n this section to associate flow-
rule, which is written as

., 4 OF
Q.9 =i
)

The cxpression for the rate parameter & can be derived from the consistency condition
(2.4), the flow rule (2.5), and the elasticity relation

(2.6) 6, =Clutl,  where
-2 J

1s the elastic consututive tensor, G is the shear modulus and v is the Poisson’s ratio.

In order that the formulation of the constitutive model is complete, an evolution law
for the back stress must be specified. Commonly used such laws are the Prager

(2.8) a,=Cef,
and the Ziegler
2.9 &u"i(au‘%)
and ¢, ¢ are matenial related parameters.
From the consistency condition (2.4), the elasucity relatuon (2.6), the flow rule 2.95)
and the back-stress evolution law e. g. (2.8) we obtain
1 .
(2.10 A= — (B, &,
) T n Enl

where we have set

(2“) AusiF_-iF_

atu acu
2.1 Bu'AuC:Ju'AuC:m
(2.13) H=B,Ay+cA, A, —(CF/éx)
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and from (2.6), (2.5) and (2. 10) we obtain the consutuuve equatons of K-H plastcity
in terms of stress and strain-rates

(2.14) o, =Cllieu  where
@.15) Cihi=Cla - Cla

"\
(2.16) Cluy= <——’BU B,

H

] f F=0 x>0

2.1 )= }
@1 =t T

As an example we mention the Drucker-Prager K-H plasuaty for which

(2.18) F=t-u(¢g—p)=0

where p is the friction coefficient and ¢ is a parameter related to the cohesion of the
material. In particular, we will restrict ourselves here 1o the special case where both p
and g=g, are constant; see Figure!l. In (2.18) p=(1/3)1y and 1= _/(1/2)1,1; are the
first and second invariant, respectively, of the Cauchy stress tensor t, =1+ p3, In

T

s arctany
~
~
~
o]

} Qg

Fig. 1. = Plot of the yieid surface n p =t space
and schematic representavon of cohesion hardenung.

particular, for the yield function (2. 18) we have

!
2.19 Ay=d+2y8
( ') 2 3"l Y

Similarly, we deﬁqe the first and second invariant of the plastic strain-rate £’ =¢f, and
Y= /2¢} ¢l and ¢l is the deviator tensor of €l then, the flow rule (2.5) and Eq. (2.19)
yield e?=pA and y*=4. For illustration purposes we consider triaxial axisvmmetric

EUROPEAN JOURNAL OF MECHANICS. ASOLIDS. voL. 1. N 2, 1992
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extensions,
5y, O 0
(2.20) (tu)- 0 Ty, 0
0 0 1y

and t,, =1,, <T,,. For this state, equation (2. 18) yields

2.21) —t—-p where
'

1
=9+ ;(?. +Hp)

1 ]
= ﬁ(cn' Ok T, ™ —6‘(“33'%1)

v

2.22)

T=t-1,
1 ]
= 3(2 G, +G33); P ™ 5(2 2y 4 q33)
P=p-p,
Eq. (2.21) indicates that the Drucker-Prager K-H plasticity model is in fact a cohesion

hardening/softening model, whenever we set u=const., g=const. and since g,=gq, (gf)).
figure . From (2.8) and (2.22) we obtain

. ¢ .
L™ '2':',

(2.23) P)’§M'

R VA .
| - o 3 C’
4. u(Z 3I‘) Y

thus the back stress evolution parameter ¢ is expressed as, from (2.23),

(2.24) - B 4.
(1/2)+(1,3)u® dy?

For the special case of uniaxial tension (0;; = o0, 0,, =2,,=0) we obtain

2 -+
(2.25 c-_‘:ﬁ_ﬁ do

1+02 &y

and y*=2(e4, —¢},). Thus ¢ is proportional to the slope of the @ (y”)-curve. observed in
uniaxial tension tests.
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(Y]

756
158
68

233

235
236

6 ARODC, Las ==L FRANTZISKONIS

If, for simplicity, we adopt a 2-D representanon of the state of stress so that

R |
(g,)=1 = ”:l
%y O3

the yield function F in (2.18) is expressed as

Gy, —C 2y, —a,, -}
2 26) (_!32 | . 33, L ’(0‘3_:‘3)2-R1 where
Repg-pi 207% _ Sty
N 2

Eq. (2.26) represents a circle in the deviator plane as shown in Figure 2. This representa-
tion reveals that the considered model has the character of a kinematic/isotropic harden-
ing model. It is purely kinematic when p,=0 which implies that a,, =0 or £”=0. This
means that the purely kinematic case is valid only when we deal with the special case of
non-associativeness with plastic volume incompressibility.

a,
}

KR

!

l

]

|

Wt/z'c» !
\ ]

FiL=0)

Fig. 2. - Plot of initial and subsequent yield surfaces
n (9,,~0,,)/2vs 0, space.

3. Micro-structure in elastoplasticity

In M, 1964] Mindlin formulated a general and powerful theory for micro-structure in
linear elasticity. As shown in this section Mindlin's continuum formalism can be success-
fully applied in the formulation of the gradient-dependent K-H plasticity theory. This

EUROPEAN JOURNAL OF MECHANICS. A'SOLIDS. vor 1.~ 2. 1992



e B vy e e e o g

37
138

40
4]
242
43
244
245

246
247

248
249

250
252

253

254

255

2
212

13

¢
~1
F N

MICRO-STRUCTURE IN KINEMATIC-HARDENING PLASTICITY 7

procedure provides a new interpretation for the back stress evol.tion law and for the
dissipated energy.

In deviation from Mindlir’s original paper, we introduce here a different micro-
structure, which is more suitable for describing elastoplasticity as will be shown below.
In order to motivate our choice of appropriate kinematic variables we start from mass
balance considerations in a two-phase medium consisting of solids and voids. Let t;(x,, 1)
be the velocity of the solid phase, where x, (i=1,2,3) are Cartesian coordinates of space
and 1 denotes time With p, being the density of the solid phase and n(x. 1) the porosity
of the medium, conservation of mass requires that

G0 v=— Lo+ ——2an
1=-n

where 9,=§/dx, denotes spatial derivative and 4,=43/d1 denotes time derivative. We

-identify the macroscopic volumetric strain-rate as

(3.2 Ey=0,T,

and the microscopic volumetric strain-rate as

]
(3.3 V= ——0,n
1-n
The quantity
. |
3.9 Y=~ —¢&,p,

]

is then the relative volumetric strain-rate.

If we consider that porosity in brittle solids (rocks, concretes) changes are practically
inelastic, we identify the plastic volume changes as the microscopic volumetnc strain
rate,

(3.5 L= Vy

If we additionally consider the classical strain-rate decomposition of elastoplasucity.
i.e

(3.6) £,=€f+€l
then we identify the elastic volume changes as the relative volumetnc strain-rate
3.7 3:. =Va

The above scheme is generalized as follows: the symmetric part of the macro-velocity
gradient is defined as the macroscopic strain-rate

3.8) é-»-%(é,:; +d )

EUROPEAN IOURNAL OF MECHANICS ASOLIDS 1oL 11 ~ 20 1992
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7 The microscopic strain-rate is set equal to the plastuc strain-rate
78 (3.9 V=€

78 Eq. (3.9) implicates vanishing anti-symmetric part of micro-deformation. Consequently,
79 micro-rotation is not taken into account here, meaning that Cosserat effects are suppresed.
80 The relative strain-rate coincides then with the elastc strain rate

82 (3.10) iu’éu"i’uséfj
283 Finally, the micro-deformation gradient is given by the gradient of the plastic strain-rate
B8 (3.10) K=l Va=d el

186 The above definitions illustrate the fundamentai difference between micro-structure in
87 elasticity [M, 1964] and elastoplasticity. In elasticity micro-deformation derives from a
188 potential field, namely the velocity field in the micro-medium. However, in elastoplasticity.
89 where (3.9) holds, such a potential fi=ld for the plastic strain-rates does not exist. Similar

90 observations apply also for the micro-deformation gradient. On the basis of these
91 kinematic quantities we introduce the following dynamic ones: a) The Cauchy stress-rate
92 :5, ; which is dual in energy to £, b) the relative stress-rate 3,; which is dual in energy to
93 ¥;; and ¢) the double stress-rate i, which is dual in energy to t'cm. The total stress-rate

294 is defined by

86 (3.12) o, =T,+a,

297 Following the above definitions, the second order virtual work of internal forces is
98 (3.13) SWi=1, 8¢+, &V, + 1, 0K 0 = G, B¢, — 2, 8EL, + py €, 5ED,

300 From (3.13) it is clear that the dissipated second order work of internal forces is
301 expressed as

303 (3.14) dWr=(o, —a,)€’ -, &€

304 If the plastic strain rates are constant in space (or if the plastic strain rate gradients are

305 negligible) we obtain that
308 (3.15) dWr=(o, ~a,)¢

308 If we identify the relatve stress with the back-siress. (3.15) is exactly the expression for
309 dissipated second order energy of classical K-H plasticity, that has to be always positive
310 [Eisenberg, 1970]. ,

34 With the expression (3.13) for the local vanation of the virtual internal work done by

312 the stress rates. we can compute the corresponding variation for a body of volume V
313 from

314 (3.16) AW'= | W' 4V

1S Jv

} : EUROPEAN JOURNAL OF MECHANICS, 4 SOLIDS. vOoL |1, ne 2. 1992
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316 in the expression for the virtual work of external forces AW* we have 10 include not
317 only the rate of surface tractions and double forces but also the work of the body forces

318 [M, 1964]. Then

319 3.17) AW'-Ji‘BviaS+J Ti,8$UaS+Jf‘8ridV+j tb,jS&,.,dV
320 s s v v
321 where /, is the rate of body force per unit volume. r, the rate of surface traction per unit

32 surface, ®,; the rate of body double-force per unit volume, and T, the rate of surface
323 double-traction per unit area. Notice that it is not possible to have a direct geometric
324 visualization of &, and T,,. From (3.13), (3.16) and (3.17) the virtual work equation
325 AW = AW becomes

26  (3.18) J(éi,séi,-&,,s¢‘,+;1,,,a‘aq},)dv

327 v

328 -jiiér,dS+JT,.,.SJ;UaS+J’f',5r,dV+J ¢, 8%,V or
329 s s v ‘

330 (3.19) j(&,,&é,,,.—f;sr,)dv+'f (115 0 8 — 2, 8, — &, 8, ) V

v v
32 =J’i,.avids+J-T,,s¢,.,.ds
33 s s

334 We consider that 8z; and S\i/,-,- are independent vanations and that the boundary S of the
335 volume V is subdivided as follows: a) into two compiementary parts S, and S, such that
336 z, is prescribed on S, thus 8z,=0 on §,. and b) into two complementary parts S, and
337 S,. such that ¥, is prescribed on S,, thus 8Y,;=0 on §,. Accordingly, equation (3.19)
338 splits into two independent integral equations

.
339 3.20 (9,8~ f,dc)dV=| 18t,dS
I [ovsis-tamyav= o

. . - . ¢ .
341 (3.21) J‘(;1,,-,6,-6%,-:iiSWij—d),-j&\b,,-)dV-—-*J T, 8¢,dS
342 v s

343 The above two equations constitute the basis of any week formulation of the rate
344 boundary value problem. Moreover. from (3.20) we obtain

5 (3.22) J [6,(6,»,513)—8‘6,181-,-[',8\?)]4\/-j 1, dv; dS
v S
347 Applying the divergence theorem, the above equation becomes
r ) ) -
(3.23 J‘é,lérjnlds-j (€, 0,+f)or,dv="118c.dS
s v .5

i EUROPEAN IOURNAL OF MECHANICS. A SOLIDS. VOL. {1 w2 1992




‘adlad
aln
[- XV.3

357

358
359

360
361
362
363
364
365

368

368
369
370
37N
mn
373
374
375
376

mn

380

10 | VARDOULAKIS AND G. FRANTZISKONIS
which in turn yields

(3.24) { 40y7/;=0 m V
o;n=t, on S,

On the other hand from (3.21) we obtain, by applying the divergence theorem

(3.25) J. (@, 0, 8,0 = &, B, — 3, B8, — &, 80, dV
A J

-J‘g,,w,,n,ds-J <a.m,.+a,.+d>,>5~i:,.>dv-J'r‘,a\i:.»,-as
s \ S

which yields

(3.26) {a".“';"'“'**“’f*’“ vV
p,,,n‘—'r,, on §,
Eq. (3.24), is the classical equilibrium equation; we identify o;; defined by (3.12) as the
equilibrium stress tensor. Equation (3.26), is higher order equilibrium equation which
relates the back stress to double volume forces and to the divergence of double stresses.
In the classical continuum (3.26), is encountered in the form of an evolution law for
the back stress, e.g. Prager’s rule (2.8). From this point of view Prager’s rule is
reinterpreted as a constitutive equation for the double force

(3.27) b= -cv,

Thus plastic strain-rates introduce self-equilibrating double body forces.

§t should be noted that derivauon of (3.26), can be seen as a ngorous approach 1o
what is usually termed in the literature as “complete balance law for the back stress” in
references [A.1978: A.1985). Further. we note that the present formulation reduces to
the gradient flow theory of isotropic plasticity discussed in [V & A. 1991] if we set
®,=0. and ¥,; =&l ;.

Finally, we remark that Eq. (3.24), expresses the boundary condition for the surface
tractions, while (3.26), expresses the boundary condition for the double force per unit
area.

4. Gradient modification of K-H plasticity
The classical flow-rule for non-associative plasticity reads
@.1n e=AJ%L  where

AP
4.2) A= ;—f - SBO"

-4
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MICRO-STRUCTURE IN KINEMATIC-HARDENING PLASTICITY il

and the plastic potential Q is expressed as, for Drucker-Prager K-H plasticity
@.3) Q=t=B(¢-p)

I‘n the above equations ¢; is the deviator tensor of 1,, § is the dilatancy coefficient and
g is an appropriate constant necessary 1o shift the plastic potential surface to the stress
point in consideration.

Utilizing a non-local argument [Bazant, 1984; V & A, 1991] we generalize the flow
rule (4. 1) as

4.9 %-AS(X'#I’VZX)

It should be noticed that in references [Shreyer & Chen, 1986; Shreyer, 1990] instead
of the Laplacian, non-linear gradient effects are introduced for modeling one dimensional
softening and localization; the analytical solutions obtained in [S, 1990] give ar insight
to non-linear, non-local plasticity. We restrict ourselves here, however, to linear noo-
local models.

In order o gencralize Prager's rule we modify the constitutive Eq. (3.27) for the
double force and introduce a simple constitutive equation for the double stresses, which
is motivaied from the work presented in [V & A, 1991],

4.5) ¢U"'C(‘bu+’2v1'i’u)
4.6) o™ My Ky

or following (3.9) and (3. 11) we obtain

(4.5a) ¢, = —c(ef+12 Ve
4.6a} Flru'MuuaréfJ

Similar simple constitutive equations for the double stress are used in [V & A, 1991:
Frantziskonis & Vardouiakis, 1991].

We summarize the set of constitutive assumptions made so far

~ Stress-rate decomposition  (3.12) o,=1,+g,

- Strain-rate decomposition (2.1) =g+l

~ Flow rule 4.5 £ =A(A+ 2 VL)
- Consistency condition (2.9 Adt,=0

- Balance law for a,, (3.26), 2, =8 pu—b,

- Constitutive Eq. for 5, (2.6) 0= Cla €l

- Constitutive Eq. for &, (4.5a) O, = —c(ef;+11 Vel
~ Constitutive Eq. for ;5 {(4.6a) Moy =M 8, €

Further differences between micro-structure in elasticity and elastoplasticity follow
from the above constitutive equations: in elastoplasticity the total stress-rates are determi-
ned from the elastic (relative) strain-rates, whereas in elasticity both back (relative) stress
and Cauchy stress derive from corresponding potentials. Double stresses and body forces
in elastoplasticity derive from plastic (micro-) strain rates. whereas in elasticity the
corresponding potentials are independent of micro-strain

EUROPEAN JOURNAL OF MECHANICS. A'SOLIDS voL 11 N* 2. 1992
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A simple dimensional analysis reveals that 1, appearing in the above expressions (4.4)
and (4.5) has the dimension of length and is called “internal length™. As mentioned in
[V & A, 1991), prior to localization the coordinates x; must be non-dimensionalized by
some global dimension L of the structure under consideration. Since (2/L?) <1 we say
that g, varies slowly in space and that gradient effects are insignificant. However, when
the deformation is localized in a narrow zone of intense shear then the spatial coordinates
are non-dimensionalized by say the thickness d of the shear band, which is found to be
a small multiple of / [V & A, 1991). V3¢, is multiplied by a number (//d)* =O(1). and
accordingly gradient effects are not necessarily negligible.

It should be noticed that, as demonstrated by Muhlhaus and Aifantis (Muhlhaus &
Aifantis, 1991]. the consistency condition of gradient plasticity is in general a differential
equation and not an algebraic one as in classical plasticity; cf. Eq.(2.10). However, as
shown in [V & A, 1991}, one can choose the constitutive tensor M,,, for the double
stresses in such a way that the consistency condition assumes an algebraic form. If we
choose

4.7 M =12 Cly

from (2.6) and (3.6), the consistency condition (2.4) is written as

4.8) Byéu—(Bu+cA)AS-1PVIADA+I*A, (B +cAYV4i=0
where we have set

4.9 BY= % Cla

Thus the consistency condition becomes a fourth order differential equation for the
plastic multiplier L. If, for consistency with (4.5), we neglect the fourth order terms in
(4.9) we obtain

(4.10) 1=%B.,é,,,+0(1‘)

where by keeping O (/2)-terms we have set
4.11) H=(B,+cA)(AS-1?V3AD
This means that the consistency condition is a O(/*) algebraic equation for the plastic

multiplier. Thus from (3.26),, (4.54a) and (4.7) the following “‘evolution’ law for the
back stress is derived

4.12) ay=cel)— (Clau+cdu 8y 12 Ve,
From (4.10) we derive the expression for V34

151 2. 4yp2f Bu);
(4.13) Vi EB“V £y + V- H &y and

EUROPEAN JOURNAL OF MECHANICS, A SOLIDS. voL. I1. N 2, 1992
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B | 1
(4.14) v*(-#): ﬁ(vzn,,,- EB.,V‘H)

where we have neglected nonlinear terms. From (2.6), (4.4). (4.10), (4.11), (4.13) and
(4. 14) we finally obtain

(4. 15) &U-Lu“é“-lz Nuuvz éu thre
: 4 4
4.17) Niu= %233 By

Neglecting O (/*)-terms in the stiffness tensor we finally obtain

(4.18) G,;=Chitu—1*ClyV?e,  where
(4.19) Chu=Clm=Cl

1
(4.20) P <—H28.%B..

Thus the present theory is a second grade rate constitutive theory, i. e. a theory for which
the stress-rate depends on the strain-rate and on its Laplacian. Egs. (4.18) can be seen
as a singular perturbation of the classical ones, with 1 being the perturbation parameter.
More importantly, besides the internal length 1 no new material parameter is introduced
here.

5. Shear band snalysis

Here we consider the Drucker-Prager K-H. then the expression for the vield surface is
given in (2. 18). For this specific function.

6F ¢F 1 1 - -
5.1 — ==yl + —1
( ) 5‘!,, aau 3" “ 2t by

For simplicity and for the sake of illustration we consider a 2-D problem and write the
constitutive Eqs. (4.18) in the coordinate system of the principal axes of t,;, under
loading conditions. Let x=K/G, K being the bulk modulus and G the shear modulus.
For simplicity in notation stiffness tensors non-dimensionalized by G keep the same
symbol, ¢. g.

‘52) sz’(x"1)5,‘,5.,4'5,.8},"’5,,8,&

EUROPEAN JOURNAL OF MECHANICS. A'SOLIDS. vOL. 11. N* 2. 1992
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Then (4. 18) are written as
. 3y, =G(CPhy, 81, +Chaa€22— 1], V28, ~ 13, V2Ey,)
(5.3) 6’11"G(C§5n é11+C;5zzézz—1§x vzéu'lgzvzézz)

6,,=0G;,=2Gg¢,;  where

Co, = (x+1)- g'(““* D(Px+1)

Clay=(x+1)- ‘G'(l“" 1) (ux~1)
(5.4) H
Clhpa= (= 1)- gmwmax-u

CH=(x—1)— -g(;uc-l)(ﬂx+l) and
2 2 G -
ny=rC,,,= ﬁ(l‘""l)(aﬁ'*l)

I§3-12C§3u-139(m¢— D(Bx-1)

H

5.9 G
=l Cuzz"lz‘ﬁ(ﬂ“* D(Bx-1)

1§,-12C5,"-11§(ux— D(x+1)
(5.6) H=Guxp+2)+c(up/2+2)

The above expressions are introduced in the ethbnum Egs. (3.24),, which in the
absence of body forces read

(5.7 8,0,,+6,0,,=0
(5.8) 0,0,3+8,5;,=0

We consider that a shear band is forming and is inclined with respect to the x,
axis at an angle 0 (Fig.3). By introducing a new coordinate system
(x.y)=(ny x, +n, X3, —n, x,+n,x,;) with axes parallel and normal to the shear band,
(n,.n,)=(—sin9.cosB), Eqs. (5.7) and (5. 8) reduce to the following system of ordinary
differentia] equations [V & A, 1991]

(5.9 =l niet+a, oY =13 v +a,, 77 =0
(5.10) =13, n nytt+ay, vy — 13 A3 v} +ay, 07 =0

where ¢, are the components of the velocity. (.)’ =é/0x and

(5.11) [a__],[C§’mni+n§(c:',,,+l)n,n,]
P LCRaa+ Dy ny b} +Clyy 13
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« -

Fig. 3. — Shear band orientation within a specimen.

By seeking periodic solutions of the type z;=c¢; cos(gy), we obtain

(5.2 (83{c;}={0} where
-8, nig*-a,, ¢’ -Bimnyqt~a, g
(5.13 b [ 1 ] and
) (bl = B3in nyq ‘-ay g ‘@z"gq"”zz‘f

(5.14) {c,}-{Z:}

¢; being constants. For non-trivial solution, the matrix Eq. (5.12) yields the following
condition

Q(ny,n,)
(5.15 ()= - =—2-2  where
) q R(n,,n;)
(5.16) Q=det(a,)
(5.17) R=g,,8,,n3+8,, 81,03 — (8,283, + 81, a,2) 1y nyi 2= (/1)

and g is related to the shear band thickness dy, dy=n/g. The condition Q=0 coincides
with the classical bifurcation condition

- - 2.2
(5.18) CPy,nt+(CHh1, €22 - CT122Cana Cila2 C'ﬁu)”x":"'c'zu”z

Before the occurrence of classical bifurcation and for any (n,, n,), Q(n,.n;)>0. For any
state past the classical bifurcation Q<0. However. R (n;.n,) is a quadratic form of the
orientation cosines. It turns out that always R>0 which means that the system of
governing differential equations is always elliptic, as opposed to the classical system of

EUROPEAN !OURNAL OF MECHANICS. A'SOLIDS. VOL. 11. N* 2, 1992
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governing equations which is of changing type, from elliptic to hyperbolic at the point
of classical bifurcation. As can be seen from (5. 15) prior to classical bifurcation there is
no real solution for the shear band thickness. At the classical bifurcation point dy is
infinite as compared to the internal length 1, rapidly decreasing in the post-bifurcation
regime. This well established qualitative result is discussed in [V & A, 1991].

ESTIMATION OF THE INTERNAL LENGTH. THROUGH SHEAR-BAND ANALYSIS

Since for a 2-D model x=K/G = 1/(1 -2v), if we assume that Poisson ratio is v=0.1,
then x=1.25. For a geologic material (rock, concrete) if we consider that the yield stress
in uniaxial compression is ten times the yield strength in uniaxia! tension, then for the
2D case p=0.818. For the associative plasticity case B=pu and for the limit case that
plastic incompressibility is assumed f=0. Material parameter ¢ is considered as a variable;
however, for the purpose of this estimation the evolution law for ¢ need not be specified:
Let ¢’ =¢/G. Then the classical bifurcation condition (5. 18) yields, at bifurcation onset,
for the associative case ¢'= —0.429, §=73.2° and for the plastic incompressible case
¢'=-=0.389, 9=57.2°. Thus differences in the flow-rule affect mainly the shear-band
orientation angle. For the associative case and for the corresponding value of 6 the
dimensionless shear-band thickness dy/! is plotted against —¢’ in Figure4. According to
this figure the shear band thickness decreases rapidly after the onset of bifurcation.
assuming a stationary value of (dy/l),=3. Obviously, the solution for (dy/l), depends on

0.00 Frrrrrrrre L —
0.00 0.40 0.80 .20
c=prime

Fig: 4. — Shear band thickness dy// versus c’.

the values of constants such as v, y, B. For the specific values chosen herein, the value
of ¢’ at classical bifurcation is negative which implies that it occurs in the post peak
regime. Note that the Prager evolution for the back stress was used herein. However,
any other type of evolution law can be used. For example if the Ziegler evolution law is
used then classical bifurcation occurs in the pre-peak regime [Tvergaard. 1978; Hutchinson
& Tvergaard. 1981).
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30 6. Surface instability analysis

521 The problem considered in this section is plane strain surface instabilities under initial
522 stress, FigureS. Analysis of these types of instabilities can be found in the papers by

—

LU
[TTTTTT

770
m Fig. 5. = Problem considered for surface instability analysis.

523 Needleman [Needleman, 1979] and [Vardoulakis, 1984). In ref'erenee [F & V, 1991] the
624 effects of micro-structure on the so-called skin or surface degradation effects are studied.

625 Substituting the constitutive Egs. (4. 18) into the equilibrium Egs. (3.22), we obtain,
626 for the problem depicted in Figure S ‘
627 (6.1) =13, V3 (8}, 20) 13, V2 (93, v2) + 14,4, 0% vy + 8320, +(CR 22 + 1) 03 v, =0
628 =151 V3 (@1, 01) =13, V2 (63, 02) + C322 032 72 + 03, 7, +(Ca1y + 1D 650, =0

629 For surface buckling modes, the velocity field is expressed in terms of two unknown
630 amplitude functions

632 (6.2) 7, = U (x)sin(gy); t, =V (x)cos(gy)
633 6.3 i im V
g2 ¢ Jm U lim V()

635 and x=x,/L, v=x,/L, L is a reference length associated with the wavelength W of the
636 deformation and ¢ is again a dimensionless wavenumber. The wavelength W is inversely
637 proportional to g such that W=2gx L/q. Substituting the velocity field (6.2) in (6.1) and

638 assuming that the two functions in (6.2) have the exponential form

639  (6.4) { vo=Aet

640 V(y)=Be™ we obtain

641 6.5) { AlZ-CHy = Clyy O -zz)]+B[—:(1+C{',33)_791C{,322(1—2z)]-0
642 Alz(14CP21,)+¢2 Chay 2(— )]+ B[2(CHa + 1) + 42 Chazy 22 (127 =0

643 where we have set

644 (6.6) 2=
645 q
i EUROPEAN JOURNAL OF MECHANICS. A'SOLIDS. VOL. 11, N 2, 1992




47

48
49
50
52

155
156
58
59

61
62
63

67
68
69
¥70
171

172
¥73

74
¥715

376
78

379

81
382

)83

18 I. VARDOULAKIS AND G. FRANTZISKONIS

For non-trivial solution in terms of A, B, the determinant of the system (6.5) must
vanish. This leads to

ey 52
6.7 q9°=(ql/L) I® where
(6.8) S(2)=(22 - C1111)(CPR2a 22— DN+ 2 (1 +C1) 1+ CHyy)

(6.9) T()=Cyy, (1-2)(CHay 22— 1)—=Chapp 22 (1 =) (2 ~C,y))
—2(1-2%)[C82,; (1 +C{Y22) +CF 122 (1 + Cy,))
For the case where gradients effects are negligible or /=0, equation (6.7) reduces to the
classical biquadratic equation for z. For /%0 Eq. (6.7) is written as
(6.10) Pz5+Q:*+Rz2+S=0 - where
P=¢2C%,,; .
Q=9 (—C%;11 CH222—C8222— C222: C%11 + Chia;
+C§zu +C{122 C'z'zu +C‘z’zu C‘x'xzz) ‘C'z'zzz
6.11) R=‘?(Cfxu C22:+Chi2 Cl1~Cli22—CR21, + €111 — Ci22 C210
=C2211 C122) + C1111 €222~ C122 €351 — C22: — C31a
S=¢%(-C1)+Cn
Eq. (6.10) has six roots £z;, +z,, +z,. The notion of surface instabilities means that
the deformation is-confined close to the surface (6. 3), i.e. the displacement field is fading
exponentially with x, being zero at infinite x, thus Re{z} <0. Thus if there is a real
negative solution for the reduced cubic Eq. (6.10) there is no solution to the surface
instability problem. Let z,. z,. and =, correspond to solutions whose real part is positive.
The velocity field then becomes
0, =(A e 1 + A, e 2" + A, e %¥)sin(qy)
v;=(K A, e™ 1"+ K, A,e %" +K; Aye" ") cos(g)) where
q.IC‘,’,” (1"'-'12)4'(212‘(:‘1"111

6.13) K,= i=1,273
L P Chnn( -2 +(1+CPL0) 2

6.12)

The boundary condition &,,=0 at x=0 yields
(6.14) Ay(Ky+2)+A (K +25)+ Ay (K +23)=0
The boundary condition ;, =0 at x=0 yields

(6.15) (A +A;+A)CH~ (K, 2,A,+K; 25A,
+K323A3)Ch22 =13, (A - A, - A,
+A, 22+ A3+ A DML -1, (K 2 A +Ka 2 AL+ K 25 A,
-K, A 23~K;A, 23 =K ;A 2) %L =0
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Finally, the boundary condition for the double traction T,, =0 at x=0 yields
(6.16) A K, 3+A;K,;s3+AK,23=0

Eqgs. (6.14)-(6.16) form a homogeneous system of equations in terms of the constants
A,, A, and A;. To arrive at non-trivial solutions, the determinant of the system must
vanish. This provides the surface instability condition.

ESTIMATION OF INTERNAL LENGTH THROUGH SURFACE INSTABILITY ANALYSIS

The critical value of ¢’ is the lowest one that satisfies the above bifurcation condition.
Tt is interesting to note that the critical ¢’ is a function of the internal length 1 and the
wave number ¢ or the wavelength W. Thus different critical values of ¢’ are obtained
for different values of the dimensionless wave number g>. Obviously, g% =0 corresponds to
long wave length and g* =1 corresponds to the shortest physically meaningful wavelength.
Figure6 shows values of critical ¢’ as a function of ¢* for the associative K-H case.
Since surface instabilities are only possible prior to shear-banding the results of Figures

1.20
0.80
~
-
A
g
0.40
0.00
0.00 0.20 0.40 0.60 0.80 1.00 1.20
1 c—prime

Fig. 6. — Influence of micro-structure on surface instability.

5 and 6 are then only physically meaningful if the post-peak stress-strain curve is concave.
as is typical for brittle materials like concrete [Willam eral., 1985]). Accordingly the
internal length / can be determined if one considers the eigen-strain field ¢,, for g=1 as
shown in Figure7 [F & V, 1991]. From this figure it follows that a significant % of
attenuation is obtained at a depth of approximately 51. From experiments, the depth of
the surface degradation zone can be determined. ¢. g. spallmg dcp(h for brittle matenials,
which then provides/.

Conclusion

The gradient modification of the K-H plasticity presented herein regularizes the classical
one and this could be used for post-failure computations in brittle material structures.
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0.40

Normalized Eigenstrain 1-1

0.00 3.00 10.00 15.00 20.00 25.00
Normalized Coordinate X1/!

Fig. 7. = Normalized depth X,// versus eigenstrain ¢,,, g=|.

The single introduced new parameter is the internal length/. We have provided here in
principle two independent methods for estimating /. Thus the present theory is amendable
to a callibration/verification procedure. This could be done by Non Destructive techniques
as explained in [Frantziskonis, 1991].
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The concept of state of degradation is empioyed as a tool to study the effect of initial material
(structure) inhomogeneity and the implications of surface (skin) effects on brittie material
response. The initial heterogepeity partern and its growth under external load is studied
experimentally via ultrasonic scanning measurements on prismatic simulated rock samples
subjected to mechanical load. Numerical solutions are compared with the experimental resuits.
The skin effects are aiso studied experimentally through the spatial variation of dissipated
energy within the ssmpies tested. In addition, microstructure considerations highlight the siin
effect and its implications. The material length for the simulated rock is estimated (for load
levels up to peak load) through the experimental observations which vielded i=0.24 inches
{0.61 cm). The analytical solution of 2 simple problem including microstructure considerations
for the same material yielded 1~0.2] inches (0.53 cm). This paper integrates and extends the

recent work of the author and co-workers.

INTRODUCTION

Structures composed of brittle materials such as
rock and concrete are observed w0 damage when
loaded towards failure. The term degradation is
often associated with damage evoiution. The effect
of degradation on material response has recendy
received intensive attention. Ultrasonic measure-
ments have been used successfully as indicators of
such internal degradation. Unfortunately, it is very
difficult to detect and characterize individual
microcracks using non-destructive techniques.
However, it is feasible to measure the effect of dis-
tributed microcracks, since microcracks affect the
attenuation of ultrasonic pulses and the veiocity of
the transmitted wave. In the light of appropriate
modeling, attenuation measurements can provide an
average quantitative measure of degradation. Here,
average is considered with respect to the materiai
volume that the ultrasonic wave passes through.

For decades, laboratory tests on brittle materials
sought to achieve a homogeneous state of stress and
deformation on sampies subjected to uniaxial load.
However, even under ideal testing conditions, the
heterogenecus micro-structure of the marerial
yields an inhomogeneous detformation field from
the early straining stage, Fairhurst and Cook [l],
Hudson et al (2], Read and Hegemier (3], Yukutake
{4]. In a uniaxial compression test the density of
microcracks rapidly proliferates, leading to verti-

cally aligned microcracks resulting in gross slabbing
of material from the tractionless surfaces. The dev-
eilopment of microcracks is more pronounced near
the free surface, because the constraints t0 crack
development are smaller than those in the interior.
In addition, near surface microcracks have a greater
tendency towards crack propagation, for the simple
reason that the stress intensity factor for such a
crack is higher than for a2 same size or even bigger
crack in the interior.

It is difficult to observe and/or simuiate the spa-
tiai pattern of material heterogeneity at the micros-
cale. Undoubtedly, important. information can be
extracted from models simuigting the material
microsgucture and spatial randomness of hetero-
geneity. In a recent such study, Bazant et al 5],
micromechanics based conclusions are relevant t©
the findings in this study.

ULTRASONIC MEASUREMENTS

The purposeoftheultrmomcm[ﬂmms**'
the spaual variation of degradation mechanisms __
brittle material subjected to mechanical load. 7:
this purpose ultrasonic measurements were mkea a:
several locations of each sampie in the direction
transverse to the applied compressive load. Thus
spatal variation of intermal microcracking ac
studied.

Figure | shows the schematic of the test s>




for ultrasonic measurements on specimens subjected
to external mechanical load. The ultrasonic mea-
surement procedure is described first. The puiser
section of the instrument generates short, high-
amplitude repetitive voltage puises of controlled
energy. The pulse is applied to an ultrasonic trans-
ducer, which by virtue of its piezoelectricity vib-
rates mechanically at its resonant frequency. The
transmitted pulses are received either by the
transmitting transducer after partial or total reflec-
tion (pulse-echo method), or by a separate receiv-
ing transducer (through-transmission method). The
voltage signals produced by the receiving trams-
ducer are amplified by the receiver section. The
amplified signal is available, on the oscilloscope, as
an output for direct measurements.

- .
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l FIG 1. Schematic of the Test System for Ultrascnic Mea-

) surements while Samples are Subjected to Mechanical Loed;
A: External Load Appiied Through MTS Prame, B: Devics for

l Movement of Transducers, C. Strain Gages, D: Transmitting
Transducar, E: Receiving Transducer.

The uitrasonic transducers used (D, E in Fig. 1)
were the P/N Z-10016-3, Zevex Inc., Sait Lake
City, Utah, resonant frequency of 50 Khz. The
diameter of each transducer is 1.5 inches (1 inch =
2.54 cm). With these characteristics, the waves pro-
duced are appropriate for transmission through
brittle attenuating materials like the one tested. In

.order to take uitrasonic measurements at several
locations in 2 sample subjected to mechanical load,
it was necessary to develop an automated scanning
system. Appropriate computer controiled devices
were developed for the automated movement of the
transducers. Data at various locations of the samples
were extracted from the oscilloscope and the

. pulser-receiver.

The system for the movement of the transducers
described above was mounted on an MTS testing
machine, figure I. This allowed acquisition of
uitrasonic measurements while the sample was sub-
jected to external mechanical load from the MTS
frame. Three series of prismatic samples were
tested. For all samples the hight (H) was 35 inches

(12.7 cm) and the depth (D) was 1.3 inches (3.302
cm). For the three series, the width (W) of the
samples was 3.0, 3.5 and 4.0 inches (7.62, 8.89 and
10.16 cm), respectively. The ultrasonic puise was
transmitted through the depth (D) at different loca-
tions of the sample. Load was applied parallel to
the height (H). The material specimens were made
of simulated rock and were cast in aluminum moids
with casting direction parallel to the height. This
material was developed (7] through a parametric
variation of various components such as sand,
cement and plaster of Paris, and air entraining
agent. The following combination was used:
sand:cementcplaster of Pariswater = 15:2:3:4, by
volume.

Energy Considerations

Consider a structure (specimen) subjected to exter-
nal mechanical load, figure 2. As load increases, the
sample experiences degradation. Within the volume
V of the structure we identify an elementary
volume dV; with cross-sectional area dF; perpen-
dicular to the direction of the ultrasomc wave
transmission. For piezoelectric uitrasonic transduc-
ers of diameter d, dF; = xd3/4. Let Q; be the dissi-
pated energy due to degradation progression in dV;.
We can write, in general

Q=1R M
where R; is 2 measure of degradation within dV;

and 7 is the dissipated energy per unmit of R;. As an
initial estimation, for simplicity, we consider n=l.

HEIGAT (W)
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FIG 2. Prismatic Samples WxHxD Showinz “irection o
osernal Load and of Ultrasonic Wave,

Let an ultrasonic puise be transmi:




dV;. Let zero (0) denote the state of the sample
where no external load is applied. Let the energy of
the received (after transmission through dV,) uitra-
sonic wave at zero state be Eq. Let the energy of
the received wave at a deformed state be E;. Due to
the degradation progression in dV; the attenuation
of the transmitted wave changes. We can write, in
general

AEi'Eﬂ-El-CRi (2)
where c.is the transformation coefficient relating

degradation R; to uitrasonic wave attenuation AE,.
From (1) and (2) we obtain
AE = fQ=2Q 3

Equation (3) indicates that the local (within dV;)
ultrasonic attenuation is proportional to the local
degradation dissipated energy; here local pertains to
the fact that the uitrasonic wave passes through
volume dV;. For the specimens tested, volume dV;
is of cylindrical shape of diameter d=1.5 inches
(3.31 cm) and depth D=1.3 inches (3.302 cm).

The speed of an uitrasonic P-wave in an elastic
material can be related to the Young’s modulus E
and Poisson’s ratio v as

E 1-v
“= |} i @

where ¢, is the ultrasonic wave speed and p is the
material density. The material examined in [6]
shows inelastic response from the early straining
stages. For strains up 0 the peak the Young’ mod-
ulus (from the unioading/reloading slope) was
found [6,7] to be approximately 180,000 psi (1240
MPa) and v=0.3. The initial density of all samples
tested was 0.066 Ibm/in® (1.825 g/cm3). For thess
values, if for the time being we assume that Eq. (4)
is valid, we obtain ¢, = 37,664 in/s (957 m/s), thus
for a sample depth of 1.3 inches (3.302 cm) the
transit time is 33.8 us. The transit time measured in
the experiments was initially 34 us with 0.5 us
accuracy of the time measurement. The puise velo-
city remained constant while the sample was loaded
and changed only when the external load was close
to the peak. This is consistent with results obtained
for hardened paste and mortar specimens (8], and
for concrete specimens [9]. However, as discussed
subsequently, the attenuation of the puise showed
significant changes from the early straining stages.

The average energy, E;, of a received ultrasonic
wave is proportional to the square of its maxxmum
amplitude. Mathematically, we can write

E =8 A (5)

Eq =8 Ay ©®

where A is the maximum absolute voitage of the
received wave while the sample is under external
load, Ay is the maximum absolute voltage of the
received wave before any external load is applied,
and £ is a constant relevant to the electromechani-
cal characteristics of the receiving transducer. From
Eqgs. (2) and (6), it follows that

AE =8 (A5 - A)=8G . o)

From equations (3) and (7) we conclude that the
dmpawdenerng,mpropomomltodmdxffer-
ence G = A} - A2, For this reason, in ail measure-

ments presented in the following, from [6,10], by
thatemdmpawden«gywemplyﬂndxffem
G = A} - A}. However this term could be repiaced
by “ultrasonic puise attenuation,” or “intensity
reduction.”
Befomwepmenttypicalrunltsfmmtheuma-
sonic experiments we present the theory for
damage and surface degradation growth; the goal is
to compare the experimental resuits with theoretical
ones based on material degradation considerations.
Since this theory has been presented eisewhere,
Frantziskonis and Desai [11-13], only the necessary
background for completeness of this paper is pre-
sented.

DAMAGE AND SURFACE DEGRADATION

Adopting the notation used in [11-13] the constitu-
tive equations are written, in incrementai form as

& = Ly & - #0§ - o) )
where
Ly = (1 - 1) Cljy + rCiy

r i3 a scalar representing the ratio of damaged to

intact volume, Ciy,, C‘i‘m is the constitutive tensor

for the intact (topical) and for the damaged part
respectively. Further, an evolution law for t is def-
ined and it is directly related to failure where r
reaches a critical value r_. A simpie and effective
law can be written as

t = f(e;)4; 2

Based on the physical interpretation of damage anc
failure criteria the function f can be specified. For
the numerical resuits presented a specific form -.{
has been used, and it is given subsequently.

Surface degradation is induced by microstucs..




inhomogeneity and its growth is initiaily saable. It is
important to mention that there is certain evidence
that this phenomenon acts as a trigger effect on the
shear band appearing in a specimen. The sudden
growth of surface degradation results in the occur-
rencs and development of shear bands penetrating
into the body. In the remaining of this section a
brief description of the theory for surface degrada-
tion is given. Details of this theory have been pre-
sented in [11-13], so here we only provide the
background necessary for the numerical resuits.
Damage distribution at the edge of a body where
surface degradation is of importance, is expected to
be significantly different from the damage distri-
bution far from the edge (in the body). Here we
consider that damage at the edge due to surface
effects is additive to the damage accumuiation cal-
culated as if no surface effects were present. So at
the edges, a small volume AV, is subdivided into
an intact part AV, and into a fractured part
AV . We consider that the above subdivision holds

for a distance p from the edge, p being a positive

real number dependent on the material properties,
the geometry, and load acting on the body. Dis-
tance p is defined as

pan.st-l (10)
[

where W is a weighting function (the simpiest case
calls for W=unity and even this case has been
shown to provide satisfactory resuits), a is a mater-
ial constant determinable from test resuits on dif-
ferent size specimens, | is the so-called material
length, and ¢ is the path of maximum (absolute)
principal compressive stress. Material related par-
ameter p defines a new characteristic length. It is
defined as that specimen size so that the whole spe-
cimen is in the surface degradation zone.

MICRO-STRUCTURE OF
EFFECTS

SURFACE

In this section, as described in details in [14], based
on Mindlin’s theory for material micro-structure
interesting surface effects under conditions of
equilibrium are studied. The governing field equa-
tons for uniaxial plane deformations are consi-
dered. Then, surface instability analysis shows non
uniform deformations for a layer of specified dis-
tance from the surface. Material micro-structure
introduces a singuiar perturbation to the original
Hill and Hutchinson problem; here we introduce a
single perturbation parameter and we obtain 2
"dispersion” law for the surface buckling load. It is
found that surface degradation and skin effects can
be attributed to localized surtace buckling instabili-

ties. Experimental information on skin effects can
provide an estimation of the internal material
length,

Theoretically, it has been predicted that a homo-
geneously strained body with tractionless surfaces
develops surface undulations or waves. This pheno-
menon is known as surface instability Biot {15], Hill
& Hutchinson [16], Vardoulakis [17]. In a more
general formulation, conditions for the so-called
complementary condition, Benallal et al, (18], for
governing instabilities at the boundary of a solid
have been established. Since there are not physical
length quantities in the continuum formulation of
the problem, the wavelength of the surface insta-
bility mode remains arbitrarily short or long. The
exponential decay beneath the surface is also arbi-
trary since it depends on the surface wavelength
variation.

Buckling under plane strain conditions due to
horizontal compression of an elastic, anisotropic
half -space containing co-planar cracks at arbitrary
locations has been analyzed recently by Vardoulakis
and Papamichos {19} It is demonstrated that the
critical buckling stress decreases dramatically as the
distance between the free surface and the cracks
diminishes. Further the influence of cracks far
from the surface has very little or no influence on
the buckling stress. From these resuits it can be
seen that a surface layer exists for which the pres-
ence of cracks influences the buckling stress signi-
ficantly. In a sense this layer is the nonhomogene-
ous, bursting part of the material In a recent
paper, Papamichos et al [20] have demonstrated,
using a newly developed apparatus and a microme-
chanical model of surface parallel cracks, that sur-
face instabilities lead to exfoliation in Indiana lime-
stone.

Mindlin’s theory for microstructure is empioyed
as a tool to expiain important surface related phe-
nomena. In this context, a restricted continuum
formulation is achieved. The theory is formulated
and the governing equations for uniaxial plane
deformations are solved. The solution is compared
to classical surface instability analysis. Finally, a
parameter analysis is performed and the properties
that influence surface instability are discussed.

In [21] Mindlin formulated a general and
extremely powerful theory for micro-structure in
linear elasticity. If one is interested in surface
effects under conditions of equilibrium, specific
higher order terms of the general theory can be
identified. Then a simpiified theory resuits which
gives light to important surface reiated phenomenz.

Consider 2 material volume V, with bounds.~-
surface S, with x;, i=1,2,3 the rectanguiar compc-
nents of the material position vector. The displace-
ment of 3 material particle is u;. Embedded in 22~
material particle there is assumed to be a mic: - -
volume V’ with micro-displacement u. The “_.-




' placement gradient of the micro-medium is

*u'“;.j (11)
where a2 comma dmtes. spatial derivative. The
macro-strain is defined as usual

B oo-lageu (12)
and also a relative deformation is

Ty = Uy - Wy (13)

landamicm-defomationgradientis

Kigk ™ Yix i (14)

' Utilizing the principie of virtual work, dynamic
quantities dual to the above kinematic ones are
ldeﬁnad

W = 1y Sey + 0y 1y + by S as)

whzmrﬁisd:eCauchymessc“istherelaﬁve
stress and is double stress. The first index of
My designates the normal to the piane across which
the component jk acts. For example u,,;, is a
double force per unit area (tensile or compressive)
acting on a unit area on the plane transverse to axis
1. The variational equation of motion is established
[21] and the twelve general equilibrium equations
follow from it and can be written, in rate form

l fij,i + &ﬁ.i =0 (16)

.‘I‘hentherelauvemmbeehmmamdfromthe
rate-equilibrium equations

. o = -ingy, a18) -
We define the equilibrium stress as
' Ty =+ Oy =y - g (19)

'The twelve traction boundary conditions are
§ = 0y (% + &) (20)
' T = 0y ing (21

where n; is the outward normal to the boundary
surface, t is external force on the boundary and T
is the boundary coupie force.
A particular case of Mindlin’s continuum is the
so-called restricted continuum; i.e. a micro-homo-
'geneous material for which the macroscopic strain

coincides with the micro-deformation. This leads to
a vanishing relative deformation rate, and, accord-
ingly to a rate of micro-deformation gradient that
coincides with the strain-rate gradient.

The weak formulation of the balance law of
linear momentum together with the appropriate set
of boundary conditions is achieved through the
principle of virtual work. In accordance with [21]
J}ﬂ;(‘t)'irstdet"metlmvirtualworkot'intemalt‘orcel

, L€

W) = 1y by + g, Sy @

This work equation postulates that the Cauchy
stress is dual in energy to the macroscopic strain
and that the double stress is dual in energy to the
gradient of the strain. Since there is no relative
deformation rate, the relative stress is workless. The
virtual strain and its gradients are computed stra-
ight forward from a virtual dispiacement fieid.

With expression (22) for the local variation of the
virtual internal work done by the stress, we can
compute the corresponding variation for 2 material
volume V from the relation

AW = I swl) dv 23)
\4

The surface S of the considered volume V is
divided into two complementary parts S, and S,
such that on S, kinematic data whereas on S, static
data are prescribed. In classical continua these are
constraints on displacements and tractions, respec-
tively. Since second-grade models introduce second

strain  gradients into the constitutive description,

additionalkinematicdatammtbepmcn’bedons,,.
With the displacement aiready given in S, only its
normal derivative with respect to that boundary is
unmmcted.‘l'hnmamthaxons.,thnnormlda-
ivative of the displacement should aiso be given;
Le.

u =w;and Dv; =, 0n § (24)

where Dwn, , is the derivative in the direction
normal to the (smooth) boundary with local unit
normal n,.

For the computation of the virtual work of
external forces AW(®) we have to consider not only
the surface tractions but also the work of *he
double forces. Following these considerations, -.:
virtual work of external forces becomes

AW(‘)-J. (4 6y + R; D éu )dS
S




where t and R; are surface tractions and double
l forces, respectively. From the virtual work equation
AW() = AW(®) we finally derive field equations

. T~ Py =0 (26)

and the corresponding boundary conditions

In order to solve the boundary value problem
defined above, additional equations relating the
stresses and double stresses to the strain, relative
deformation and to the micro-deformation gradient
maust be inciuded. These are specific to the material
and are the constitutive equations.

Surface Instabilities
Consider the problem depicted in figure 3 [14].

[ Xa
Xy

[

FIG 3. Half Spece Under Compremsive Load.

TS

Starting from a stress-free state C,, the structure is
stressed uniaxially, under plain strain conditions.
Let C be the resuitant configuration. In order to
study the stability of continued equilibrium in C,
the existence of non-homogeneous infinitesimal

written as a function of co-romtional stress :,’}

' i‘j’%"%fkj“ﬁ% (27)
where d; is the rate of rotation tensor
1, .
any = 5 (G - ) (28)
For the plain-strain problem of figure 3 we assume
incrementally linear constitutive equations for the
Cauchy stress-rate

' 11 = 28" &y + (1-sing)p
' fag m 24" &g + (1+sing)p (29)

hy =2y,
where

Y=y vy (30)

and p is the hydrostatic stress. The quantity 4u° is
the instantaneous tangent modulus and 4 is the in-
stantaneous shear modulus for shearing parailel to
the coordinate axes, and ¢ is the mobilized friction
angle. Material parameters u, 4° and ¢ are, in gen-
erai, dependent on the histories of deformation.
The particular dependence is specified later. How-
ever, the range of these parameters is important for
specifying the solution regime for the surface insta-
bility problem [14].

The constitutive equation for the double stress
rate is written as

iy = pldey, 31
A dimensional analysis shows that / has dimension

of length and as shown subsequently this quantity is
important for the surface instability problem.

Equilibrium can be expressed in terms of the
equilibrium stress rate

iy + Tz g - Tag Gy g =0
(32)

Mgy 1+ Mpg 3 =~ Tog Wpy ;=0

aat r,, = o, o being the external applied stress,
figure 3. From the two equilibrium equations (32)
by introducing a stream function ¥ such that

vy = w'z Vg = -\P'l (33)
we obtain
‘L’w.mu + w.lm + b\”m + C"m =(Q (34)

where the expressions for b, ¢, L2 are given in [14].
Differential equation (34) is a singuiar perturbation
of the original (resulting without micro-structure
considerations) as discussed by Hill and Hutchinson
(16] and others. Following Biot [15], plane strain
surface instabilities can be analyzed [14]. From the
solution of (34) it is concluded that the integration
constants must satisfy the corresponding charac-
teristic equation, which together with the boundarv
conditions provides solution to the eigenvalue pro-.-
lem. For such a solution the expressions for g anc .
must be specified. A one parameter family
stress-strain curves of the power law type is
assumed, thus the stress-strain curve from a =iz
strain uniaxial compression is given by




)4 lN
;:-[70 33
where N is a constant between 2ero and one, 7, and
%o are arbitrary reference values of r and v respec-
tively, 4 is the second is the second invariant of the
deviator tensor of ¢;, and r is the second invariant
of the deviator tensor of oy. For this kind of
hardening function the shear moduli s and } are
expressed as

p=l  DIe=Np (36)

7
The mobilized friction angle ¢ is expressed as [17]

N
M(Z)
Sing = ——— i a7

(2]

where subscript ¢ denotes value at failure and M is
a constant related to the strength ratio (uniaxial
strength - in tension over uniaxial strength in
compression). Figure 4 shows the eigenstrain fieid
for N=0.2, n=1 and M=0 (non-frictional material).
Similar eigenstrain field was obtined for N=0.2, n-
=] and M=0.43 (frictional material). For the exam-
ple of figure 4 we recognizs that a significant % of
attenuation is obtained at a depth of 5I.
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From experiments in various materials the depth of
the surface degradation zone can be obtained which
then provides /. Such a calibration of the internal
material length [/ is paramount if one wishes to
solve problems with eigenstresses in laminated mat-
erials by using constitutive equations of the present

type. Notice that these equations constitute the sim-
plest possible generalization of elastoplastic relations
for such media.

MATERIAL LENGTH ESTIMATION AND
INITIAL HETEROGENEITY

From references [12,13] the value of o=021 was
estimated. For the specimens tested [6], equation
(10) reduces to

pma(H-D (38)

where H is the specimen height. From the test res-
uits reported in [6], distance p can be estimated
from the dissipated energy distribution within the
samples tested. From the test results it seems that
the concentration of G close to the free surfaces is
distinguishable and can be approximated to about
one inch. Then, from Eq. (9) [=~0.24 inches.

Surface instability analysis shows nonuniform
deformation for a layer of specified distance from
the surface. It was identified that a significant per-
centage of the nonuniform deformation is obtained
at a depth of 5I. Then if we consider that the non-
uniform deformation, in an average nonstatistical
sense is about one inch, the internal length [ is esti-
mated to be 0.21 inches.

Initial heterogeneity is considered herein via the

. concept of state of degradation. In order to show

how theoretical resuits can be compeared to the
experimental ones from ultrasonic scanning we
consider the foilowing. Figure 5 shows the contour
of initially (without any external load) received
uitrasonic energy for sampie S4.

RECEIVED ENERGY
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FIG S. Contour of Initially Recsived Ultrasomic “auryy
(Joules) for Sampile S4.




the damage variabie r. Then the finite element
method is used to model the response of the speci-
men under external load. For sample S4, the
damage growth pettern obtained at load P such that
P/‘P,_,,-O.wiuhovninf‘um&.nd.form-
parison, the ultrasonically dissipsted energy at
P/P gy = 0.45 is shown in figure 6b.
8]
LY
533
g!
<
g3 |
N N ,_\\\/\
\‘\ E)
A
“s NN \\
WA

G

Y3 A4 227 23.80 43 82 £3. 84 4. @4
wassadssssadosansdagaasdosnsrdassa

Figure 6: (a}Daunage Growth Distribution for Sample 34 s
P/Pp.k = 0.48, (b) Disribution of G for Sample $4
PIPM:O'“~

An important outcome here is that the initially high
intensity regions seem to dissipate energy at a
(much) higher rate than the low intensity ones.
Both experiment and theory clearly depict this
behavior. Similar results were obtained for the rest
of the specimens tested and typical results are pre-
sented in [10].
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HETEROGENEITY, MICROSTRUCTURAL SURFACE EFFECTS
AND INTERNAL LENGTH ESTIMATION

G. Frantziskonis
Department of Civil Engineering and Engineering Mechanics
University of Arizona
Tucson, Arizona 85721

ABSTRACT

Recently, the concept of state of degradation has been employed by the author in order
to study the effect of initial material (structure) inhomogeneity and the implications of surface
(skin) effects on brittle material response. The analysis has revealed the importance of the
internal material length, e.g. for assigning the initial random variables according to a material
dependent fluctuation scale. Different possibilities for its estimation and/or evolution have been
suggested. Here, symbolic computations by computer that resuited in the analytical soluton of
an instability problem are presented. Such analytical solution without computer had not been
obtained in the past because the analytical work is tedious and error prone making it very
difficult to pursue. The analytical solution, made possible through symbolic computations,
provides significant insight into the problem of skin effects in brittie materials and internal length
estimation. This paper summarizes the previous work of the author and co-workers, presents the
results of symbolic computations of an instability problem, and interprets the results with respect
to material length estimation.

INTRODUCTION

The effect of degradation on brittle material response has received intensive attendon.
Non-destructive techniques have been (and are being) used as indicators of such internal
degradation. Unfortunately, it is very difficult to detect and characterize individual microcracks
using non-destructive techniques. However, it is feasible to measure the effect of distributed
microcracks through wave techniques such as ultrasonic since microcracks affect the anenuadon
of ultrasonic pulses and the velocity of the transmitted wave. In the light of appropriate modeling,
attenuation measurements can provide an average quantitative measure of degradaton. Here,
average is considered with respect to the material volume that the ulrasonic wave passes through.

It is difficult to observe and/or simulate the spatal pattern of material heterogeneity at the
microscale. Undoubtedly, .important informaton can be extracted from models simulating the
material microstructure and spatial randomness of heterogeneity. In a recent such study, [Bazant




et al, 1990], micromechanics based conclusions are important with respect to the problem of
material heterogeneity and degradation patterning. In a different approach, the inidal
heterogeneity and its evolution are stucied through random degradation variables and/or
heterogeneity data as observed from ultrasonic scanning tests [Yuan 1991, Frantziskonis 1991,
Frantziskonis et al 1991]. In [Frantziskonis et al, 1991] the purpose of the ultrasonic tests was
to study the spatial variation of degradation mechanisms in a brittle material subjected to
mechanical load. For this purpose ultrasonic measurements were taken at several locations of
each sample in the direction transverse to the applied compressive load. Thus the spatial variation
of internal degradation was studied.

Initial heterogeneity was considered in the dissertation of F.F. Tang [Tang, 1991, Tang
and Frantziskonis, 1991, Tang et al 1991], via the concept of state of degradation. In order to
show how theoretical resuits can be compared to the experimental ones from ultrasonic scanning
we show (figure 1) the contour of initially (without any external load) assigned state mapped

INITIAL OAIAGE (r&0
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FIG 1: Contour of Initially Assigned State (from Ultrasonic Data) for Sample S4.

from the received ultrasonic energy for a specific sample.
A similar pattern is assigned for the initial value of a damage variable r. Then the finite
element method is used to model the response of the specimen under external load. For this

sample (S4), the damage growth pattern obtained at load P such that P/P, ,=0.46 is shown in

figure 2a, and, for comparison, the ultrasonically dissipated energy at P/P eat = 0-45 is shown in
figure 2b.

An important outcome of the ultrasonic tests and the FEM solution is that the initially
high intensity regions seem to dissipate energy at a (much) higher rate than the low intensity
ones. Both experiment and theory clearly depict this behavior. Similar results were obtained for
the rest of the specimens tested and further results are presented in [Tang, 1991].

These results, briefly discussed above, have clearly depicted the importance of the internal
material length. This is especially true if random variables are used for the description of the
inigal heterogeneous state of the material. Unfortunately, it ia difficuit to idendfy the inidal state
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of a brittle material structural system. Experimental evidence shows that the initial state of
specimens is heterogeneous [Frantziskonis et al, 1991]. Obviously, the heterogeneity fluctuation
is scale dependent. The heterogeneity fluctuation length is important and must be identified. It
may be appropriate to define the internal material length as the scale fluctuation of material
heterogeneity. Then, if "correct” random initial state variables are to be assigned, the scale of
fluctuation (material length) must be identified. Since, as shown in [Frantziskonis and
Vardoulakis, 1991] surface effects and internal length are closely related, analytical solution of
a relevant free-surface problem is presented in the following. Although the homogeneous case
is examined (no spatial random variables in the instability problem) the analytical solution
nrovides significant insight into the problem of material length estimation.

SURFACE INSTABILITY ANALYSIS - ANALYTICAL SOLUTION THROUGH
SYMBOLIC COMPUTATIONS BY COMPUTER

Surface instability analysis examines the problem of development of surface undulations
in a homogeneously strained body with tractionless surfaces [Biot, 1965, Hill and Hutchinson,
1975, Vardoulakis, 1984]. In a more general formulation [Benallal et al, 1989], conditions for the
so-called complementary instability at the boundary of a solid have been established. Since there
are not physical length quantities in the continuum formulation of the problem, the wavelength
of the surface instability mode remains arbitrarily short or long. The exponendal decay beneath
the surface is also arbitrary since it depends on the surface wavelength variation. Analytical
solutions for surface instability are difficult to obtain. Usually, semi-analytical procedures are
used. The analytical procedure is brought up to a point beyond which the solution is sought
through numerical techniques. In [Vardoulakis, 1984] the instability criterion is formulated in
terms of the ratio of the strengths of the material in uniaxial extension and compression, and in
terms of an appropriate hardening parameter. Despite the significance of the relevant material
properties, the semi-analytical solution does not allow one to study the influence of material
properties on surface instability. In addition, the problem of material parameter evaluation
through surface instability analysis becomes difficult. However, as demonstrated herein, symbolic
computations by computer made the analytical solution of the problem possible. This together
with the graphics capabilities of the software used provide significant insight into the surface
inswability problem, its implications, and the influence and significance of the miaterial parameters.




Before presenting the results from the symbolic computations we present a formulation for
material micro-soucture and the accompanied instbility analysis. As shown below,
microstructure introduces a singular perturbation to the original surface instability problem, and
the single perturbaton parameter is the internal length /. By setting [ = 0 the analysis reduces
to classical surface instability analysis [Vardoulakis, 1984]. Thus quantitative information about
skin effects can be obtained from such analysis, as compared to the "classical” surface instability
one.

-

MICRO-STRUCTURE CONSIDERATIONS - ANALYTICAL SOLUTION THROUGH
SYMBOLIC COMPUTATIONS BY COMPUTER

As described in details in [Frantziskonis and Vardoulakis, 1991] based on Mindlin’s
theory for material micro-structure interesting surface effects under conditions of equilibrium can
be studied. The goveming field equations for uniaxial plane deformations are considered. Then,
surface instability analysis shows non uniform deformations for a layer of specified distance from
the surface. Material micro-structure introduces a singular perturbation to the original Hill and
Hutchinson problem; here a single perturbation parameter is introduced and a "dispersion” law
for the surface buckling load is obtained. It is found that surface degradation and skin effects can
be attributed to localized surface buckling instabilities. Experimental information on skin effects
can provide an estimation of the internal material length L.

Mindlin’s theory for microstructure is employed as a tool to explain important surface
related phenomena. In this context, a restricted continuum formulation is achieved. The theory
*~ formulated and the governing equations for uniaxial plane deformations are solved. The
solution is compared to classical surface instability analysis. It turns out that when /=0 the
analysis reduces to the “classical" surface instability one. Finally, a parameter analysis is
performed and the properties that influence surface instability are discussed.

Mindlin, 1964, formulated a general and extremely powerful theory for micro-structure
in linear elasticity. If one is interested in surface effects under conditions of equilibrium, specific
higher order terms of the general theory can be identified. Then a simplified theory results which
gives light to important surface related phenomena.

Consider a material volume V, with boundary surface S, with x,i=1,2,3 the rectangular

components of the material position vector. The displacement of a material particle is u;.
Embedded in each material particle there is assumed to be a micro-volume V' with

micro-displacement u;. The displacement gradient of the micro-medium is

v, = uj (¢))
where a comma denotes spatial derivative. The macro-strain is defined as usual

€ = _(u *u) 2

and also a relative deformation is
Y, ® %~V €)

and a micro-deformation gradient is




Ky = Vi . “

Utilizing the principle of virtual work, dynamic quantities dual to the above kinematic
ones are defined

W = 1.8¢,+0. Y, +n,.0x, - &)

U y

where T, is the Cauchy stress, g, is the relative stress and p, is double stress. The first index

of p,, designates the normal to the plane across which the component jk acts. For examplep,,,
is a double force per unit area (tensile or compressive) acting on a unit area on the plane
transverse to axis /. The variational equation of motion is established [Frantziskonis and
Verdoulakis, 1991] and the twelve general equilibrium equations follow from it and can be
written, in rate form

t.+8. =0 : ©

igd O ipd

Pg;*G; = 0 )]

Then the relative stress can be eliminated from the rate-equilibrium equations

Gp = ~Py; - ®
We define the equilibrium stress as
* = 50y = Py 2

The twelve traction boundary conditions are

i, = n(t;+6) (10)

Tjk =np, | (11

where n, is the outward normal to the boundary surface, ¢; is external force on the boundary and T,
is the boundary couple force.

A particular case of Mindlin’s continuum is the so-called restricted continuum; i.e. a
micro-homogeneous material for which the macroscopic strain coincides with the
micro-deformation. This leads to a vanishing relative deformation rate, and, accordingly to a rate
of micro-deformation gradient that coincides with the strain-rate gradient.

The weak formulation of the balance law of linear momentum together with the
appropriate set of boundary conditions is achieved through the principle of virmal work. In

accordance with [Mindlin, 1964] the virtual work of internal forces SW® is defined, i.c.




SWO = 15e, +p.,5x (12)

i ik

This work equation postulates that the Cauchy stress is dual in energy to the macroscopic strain
and that the double stress is dual in energy to the gradient of the strain. Since there is no relative
deformation rate, the relative stress is workless. The virtual strain and its grad.ients are computed
straight forward from a virtual displacement field.

With expression (12) for the local variation of the virtual internal work done by the stress,
we can compute the corresponding variation for a material volume V from the relation

AW = fv SWOQV (13)

The surface S of the considered volume V is divided into two complementary parts S, andS,
such that on S, kinematic data whereas on S, static data are prescribed. In classical continua
these are constraints on displacements and tractions, respectively. Since second-grade models
introduce second strain gradients into the constitutive description, additional kinematic data must
be prescribed on S,. With the displacement already given in S, only its normal derivative with
respect to that boundary is unrestricted. This means that on S, the normal derivative of the
displacement may also be given; ie.

,=w, and Dv, =r,0n S, 14)

where D=n,, is the derivative in the direction normal to the (smooth) boundary with local unit
normal n,.

For the computation of the virtual work of external forces AW we have to consider not
only the surface tractions but also the work of the double forces. Following these considerations,
the virtual work of external forces becomes

AW = { (¢5u,+R,D 5u)ds (15)

where f, and R, are surface tractions and double forces, respectively. From the virtual work
equation AW? =AW we finally derive field equations

Ty Py * 0 (16)

and the corresponding boundary conditions [Frantziskonis and Vardoulakis, 1991].

In order to solve the boundary value problem defined above, additional equations relating
the stresses and double stresses to the strain, relative deformation and to the micro-deformation
gradient must be included. These are specific to the material and are the constitutive equations.

Surface Instabilities
Consider the problem depicted in figure 3. Starting from a swess-free state C,, the

structure is stressed uniaxially, under plain strain conditions. Let C be the resultant configuration.
In order to study the stability of continued equilibrium in C, the existence of non-homogeneous
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infinitesimal transition, C — C’, is investigated, with C being the reference configuration. The
equilibrium in C is unstable if an unbounded, non-periodic solution exists. The equilibrium stress
tensor, % can be written as a function of co-rotational stress %}

t, = g‘;‘»mnu,,.-nﬁmﬁ . an
where (i),.i is the rate of rotation tensor

1
o, = 5(:'4,‘. -&) : (1_8)
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FIG 3: Half Space Under Compressive Load

For the plain-strain problem of figure 3 we assume incrementally linear constitutive equations
for the Cauchy stress-rate

tn - 2)1'&" +(1 'M)p

Ty = 2u°8, +(1 +sing)% (19)
Ty = 20¢,

where
& = S0, V). v =i, (20)




and p is the hydrostatic stress. The quantity 4p° is the instantaneous tangent modulus and p is
the instantaneous shear modulus for shearing parallel to the coordinate axes, and ¢ is the

mobilized friction angle. Material parameters p,p°* and ¢ are, in general, dependent on the
histories of deformation. The particular dependence is specified in the sequence. However, the
range of these parameters is important for specifying the solution for the surface instability
problem. -

The constitutive equation for the double stress rate is written as

My = B, - @1)

A dimensional analysis shows that / has dimension of leagth and as shown subsequently this

quantity is important for the surface instability problem.
Equilibrium can be expressed in terms of the equilibrium stress rate

Tya * Ry =Ty @y, = 0
22)
K thpy =@y, =0

and t, =0, G being the external applied stress, figure 3. From the two equilibrium equations (22)
by introducing a stream function ¥ such that '

v, = ‘F;, v, =%, o 23)

LY o ""I"un. +b¥, v ¥y = 0 24)
where

b={(A*+1)(1-5)-A*-1EVE,+5)

c=AHE,-EME, +E)

A=tan(n/4+¢/2), & =-c/d4p’, &, =p/dp
L*=E 1Y +E), n=(mr(L/H), n=(mr)*(UH)

Differential equation (24) is a singular perturbation of the original (resulting without
micro-structure considerations) one. Following (Biot, 1965] plane strain surface instabilities can
be analyzed. The problem finally reduces to the solution of differential equation (25)

(1+n)a" -(mn)* 2" +(mx)*ct = 0 (25)




subject to the boundary conditions

(1 +n)8" - (mn)*Pi’ = 0

2" +(mx)*q = 0 : -

For solution of the above problem the expressions for p and p* must be specified. A one
parameter family of stress-strain curves of the power law type is assumed, thus the stress-strain
curve from a plain strain uniaxial compression is given by

Z .y | @
% % |

-

whexeNiéaconstantbctwecnwoandone,t,andy,marbimyreferencevalmofr andyY
respectively, ¥ is the second invariant of the deviator tensor of &, and < is tiic second invariant
of the deviator tensor of 6. For this kind of hardening function the shear moduli p and p* are
expressed as

p=_= p® = Np - (28)
Y .
The mobilized friction angle ¢ is expressed as

MLy

sing = — Y 29)

1+M (l)”
Y

where subscript ¢ denotes value at failure and M is a constant related to the strength ratio
(uniaxial strength in tension over uniaxial strength in compression). The above problem is solved
through computer symbolic computations. The program <<Mathematica>> [Wolfram Res., 1991]
was used and the whole solution procedure is shown in the appendix. In the appendix the total
mathematica session has been condensed for compactness. All the input data are given, however.
The print out of the uncondensed session is 20 pages long! The length and complication of the
procedure as observed from the computer showed clearly why no solution had been obtained
before (without computer).

The final solution for the instability problem us obtained from mathematica is as shown
in the appendix

Y8 +n)My"+8(1 +n)-n?]+¥[8(1 +n)MY' +4n+16N+8nN]-
Y(16N(1-N) +4n+n?]-n*-8nN-16N? =0 (30)



and for the case where the internal length /[=0—n=0 the formulation yields the final solution
for the classical surface instability analysis

PLMY)+FQN+M')-2YN~2N?)-2N*=0 GD
For the special case of non—ﬁic;'tional material (M =0) equation (31) reduces to

P +2NP-2N(1-Nyy=2N =0 (32)

With the above final form of the surface instability analysis (31)-(32) an overall view of the
problem can be obtained.

M=043

FIG 4a: Influence of N on Instability (f=0)

Figure 4a shows the influence of N on classical instability (/=n=0) for a fixed value of M=0.43.
Here f denotes the left hand side of equation (31). We see clearly that as N increases the strainy
(gamma) at instability increases. The linear case (N=1I) predicts very high strain at instability
(y=0.81). The limit case of N=0 corresponds to rigid-plastic behavior and instability occurs as
soon as the plastic regime is reached. Figure 4b shows an animation of the previous figure where
the value of M changes. As can be seen from this figure and equatdon (31) parameter M
influences the strain at instability in a linear fashion. Note that in order to obtain figure 4b
(resoludon is 80x80 in each figure) by semi-analytical means [Frantziskonis and Vardoulakis,
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FIG 4b: Animation of Figure 4a

1991] one would need to solve the problem 9x80x80=57,600 times (semi-analytically) or perform
57,600 finite element simulations of the problem!

For the surface instability analysis with micro-structure considerations the problem is more
difficult since the value of / is not known appriori. However the final form of the solution
(equation (30)) allows us to investigate the influence of all the variables. Figure 5a shows the
influence of exponent N on instability, for a specific value of n (n-bar). Here, g designates the
left hand side of equation (31). Figure 5b shows an animation of figure 5a where the value of
n changes.

In order to study the effect of [ on instability, we can look at the decay of the strain field,
as shown in figure 6. Figure 6b is an animation of figure 6a where the value of # changes. We
see that if we consider that splitting parallel to the surface will occur at the first peak of the
strain field from the free surface, then the distance to the crack varies between ! and 3/. If
splitting is considered to occur at that distance from the free surface that significant percent of
attenuation occurs, then splitting occurs at about 4/ to 5/. The wavelength of the instability
problem is difficult to specify, unless detailed experimental data on different size specimens are
available. In a series of tests, for example, of varying height of specimen A, it is well known that
the stress/strain at instability decreases as k increases. Then, according to figure 5b, the value of n’




n=1,M=043

FIG 5a: Influence of N on Instability (f=0) for n-bar=1I

decreases as h increases. Then, if we assume that very short specimens will develop a splitting
crack at distance / from the free surface, and very long ones at 3/, by interpolation the value of
H for given specimen height & can be specified.

CONCLUSIONS

Symbolic computations by computer have made the analytical solution of an instability
problem feasible. The solution, together with the graphics capabilities of the software used
provide significant insight into the problem of instability, surface (skin) effects and material
length estimaton.
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APPENDIX

thematica 2.0 for MS-DOS 386/7
opyright 1988-91 Wolfram Research, Inc.
(1):= DSolve[(1 + n)u’’’’[x] - mpi“2 b u'’(x] +
i' mpi*4 c u(x] == 0, u(x), x)] //Short
Cr1]
out{l]//Short= {{u{x] =-> + <<3>>}}
2
(mpi SQrt(b - Sqrt(b + <<2>>]] x)/(<<2>>)
E

[(2]:
(31:

(4]
(5]
(6]:

In{7]:= tll = Coefficient([Collect({eqnl,C{1])],C({1]];
(8):= t12 = Coefficient({Collect(eqnl,C(3]],C(3]]);
(9):= €21 = Coefficient(Collect{egn2,C(1]],C[1)];

In(10]:= £22 = Coefficient(Collect([eqn2,C(3]]},C[3]]

'(11]:- tll €22 - t12 t21 //Short

2

solution = u(x]/.%[(1]);

solutionl = C(1] Coefficient(sclution,C[1l]] +

C(3] Coefficient({solution,C(3]];

eqnl = D{solutionl, {x,2}] + mpi~2 soclutionl

egqn2 = (1 + n) D(solutioni,{x,3}] = mpi*2 p D(solutionl,x];
X=0;

’

2



2 mpi (b + Sqrt b = <<2>>])

tut[ll}//Short= -((mpl + =—==—————————— e ———— e ——— ) <<1>>) + <<1>>

|

n(l2):= Simplify(%] //Short

ut{12]//Short= <<1>>
in[n]:- temp = Coefficient(Collect(%$,mpi“5),mpi~S];

n(l4]:= templ = temp((1]]; -
In(15]:= temp2 = temp{([2]];
'n[lé]:- templ~2 - temp2“2 //Short

2 2

(b -Sqrt(b =4 c - 4 ¢c n]) <<1I>> (b + <<1>> - 2 p)

ruttlsj//Short- + <<1>>
3
32 (1 + n)
'.1:1[17]:- ExpandAll[%]//Short
2 2
=32 b Sqrt{b ~ 4 c¢c - 4 c nj
Out(17]//Short= + <<23>>
: 2 3
32 +96n+9 n + 32 n
In(18):= Simplify(%]//Short
2 2 2
l“ Sgrt[b -4 c -4 cn] (b +¢c + <<13>> - np)
t(18)//Short=

2
lL (1 + n)
n{l9):= finall=$;
In(20]:= final2 = finali[(3]];
n{21]j:= p = (lambda~2 + 1 + xil - xi2)/(xil +xi2);
gn[n]:- b = ((lambda~2 + 1) (1 - xi2) - (lambda*2 - 1) xi1)/(xi1 + xi2);
ni23]:= ¢ = lambda~2 (xi2 - xil)/(xil + xi2);
n{24):= final2//Short
‘n[251:= Simplify[%]//Short
n(26]:= final3 = ¥; s =m gamma“nn/(l1 + m gamma*nn); lambda =Sgrt((1+s)/(1-s)!;
In{27]:= xi2 = 1/(2nn (1-s)); xil = gamma xi2;
[n[zs]:- final3//Short
n{29]:= Simplify(%]//Short
In(30]:= temp3=%; tempd4 = temp3{({3]];
n(31l]:= finalsolution = Simplify([temp4),//Short
I ey :
t(31]//Short= -8 gamma - 8 gamma m + <<15>> - 16 gamma nn
n(32]:= Collect(%,gamna]//Short
‘n[33] := finalsolution
n(34j:= Collect(%,gamma]
2 3 nn nn 2
'ut[34]=n + gamma (-8 - 8 gamma m - 8 n - 8 gamma mn-n)+38nnn+

2 2 nn nn 2
l 16 nn + gamma (-8 gamma m - 4n - B gamma mn-n =16 nn -
2 2

g8 nnn) +gamma (4 n+n + 16 nn - 16 nn )

in[35]:- n=0;
n{36]:= %%
3 nn 2 nn . 2
.ut[zsja gamma (-8 -~ 83 gamma m) + gamma (-8 gamma m - 16 nn) + 16 nn +
2

l gamma (16 nn - 16 nn )



