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PREFACE

INSTABILITIES OF DAMAGE AND SURFACE DEGRADATION MECHANISMS

IN BRITTLE MATERIAL STRUCTURAL SYSTEMS

Cotract No. AFOSR-890460

RESEARCH OBJECTIVES

(i) Review the experimental and theoretical information on surface degradation and

related instabilities.

(ii) Study the physical significance of surface (skin) effects.

(iii) Study the relation between surface degradation and scale (size) as well as shape
effects.

(iv) Study surface damage growth instabilities and their relation to bursting observed in
brittle material structures.

(v) Study analytically and/or numerically typical problems and compare with available
experimental information.

(vi) Study the micromechanics of surface effects so that the introduced (surface related)
internal length can be estimated from experiments.

(vii) Use symbolic computations by computer to obtain solutions for near-surface
instability phenomena. Interpret the analytical solution with respect to internal
length estimation.

(viii) Perform non-destructive (ultrasonic) and mechanical experiments to obtain
quantitative measurements of the surface damage dissipated energy and its
relation to instabilities. Compare theoretical predictions and non destructive
measurements of dissipated energy.

(ix) Study the problem of transferring information from laboratory experiments to large
scale engineering problems.

RESEARCH RESULTS
The research results are shown in the following. Part of the results formed the basis of
F.F. Tang's Dissertation. Additional work appears in the appendix. The list of refereed
Journal papers, published under the support of the contract, is given next.
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I ABSTRACT

In this dissertation, first, the theoretical and experimental viewpoints of in-

stability and bifurcation in mechanics are reviewed and discussed. The onset of

instability of bifurcation depends on the constitutive assumptions, and is marked

by the loss of ellipticity, singularity of the stiffness matrix, and negative or com-

plex eigenvalues. Non-traditional regularization is necessary to obtain useful post-

instability solutions.

Based on dissipated energy and elastic potential, energy based instability

criterion is considered and developed. The global instability criterion is concerned

with global non-uniform deformation while the surface degradation instability crite-

rion deals with near surface non-uniformities. In addition, the connection between

surface degradation and size, shape effects for brittle materials is examined.

The energy based stability theory is applied for some typical problems

through analytical and numerical implementations. It is shown that the onset

of both surface instability and global degradation instability occurs in the strain

hardening stage, that is, before and close to the peak strength. The theoretical

results are compared with experimental observations.

Both strain gage tests and ultrasonic scanning tests are processed to s-

tudy the degradation mechanisms of a brittle material. The surface effects are

highlighted by the experiments. Ultrasonically dissipated energy shows a random

distribution and it follows, in general, the initial non-homogeneity pattern. The

relationship between the ultrasonically dissipated energy and mechanically dissi-

pated energy is dependent on deformation and can be approximated by a power

function of the factor of load level.

The theory for surface degradation consideration involves a few material

constants, and these constants are identified against experimental observations.

The degradation mechanism and damage growth patterning of simulated

rock under uniaxial load are modeled numerically by implementing the theory for

damage and surface degradation with initial state consideration. The theoretical

I
I
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results are compared with experimental observations obtained through ultrasonic

scanning tests.

To extend the study to post-instability modelling by using various consti-

tutive models, three alternative considerations are proposed to achieve so-called

regularization of the problem.



17

CHAPTER I

INTRODUCTION AND SCOPE

1.1 General

Brittle materials such as rock and concrete contain a multitude of defects

in the form of micro-voids and/or micro-cracks even before any external load is

applied. The term "structure" is associated with such defects. During a loading-

unloading process, these voids/cracks may undergo irreversible growth and new

ones may nucleate. The ultimate coalescence of such defects may result in macro-

crack initiation. The existence of structure and its evolution occurring under the

action of an external load affects the local mechanical properties of the material

as well as the global behaviour of the material system. It is widely accepted that

brittle materials fail by the transformation (nucleation and growth) of the structure.

Stress cycling tests have also shown that the structure-transformation manifests as

a decrease in the stress/strength and in the unloading stiffness. The structural

transformation in particular is the main reason for softening, that is, reduction

in strength at increasing straining. The degradation process of the material by

structural transformation is termed as damage evolution. The damage is treated

as a kinematic variable or tensor (usually second order), the evolution of which

results in the gradual degradation of the material. The transformation of structure

absorbs energy, named as damage energy, and is an irreversible process. That is,

the damage energy is irrecoverable. So it is reasonable to call the damage energy

as dissipated energy.

It is recognized that totA deformation (strain) in such brittle materials as

rock and concrete is attributed to elastic deformation, plastic deformation and to

formation of damage. The plastic flow (deformation) corresponds to the propa-

gation of plastic slip, which is also irreversible. So the energy corresponding to

plastic deformation, called as plastic energy, is not recoverable either. However,

the elastic energy is recoverable. The laws of plastic flow do not differ formally

from the kinetic equation for damage evolution in the sense that in both cases they
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reflect effects of strain history on the current response of the material. However,

they describe different physical processes each of which corresponds to different

scales of structure.

The dissipated energy from both damage and plastic flow is a mark of the

structural transformation which provides a description of the physical state of the

material system. With the increase in the dissipated energy, the apparent stress-

strain (force-displacement) curve shows the phenomenon of strain hardening and

strain softening, while local stress in the material system changes from homoge-

neous to inhomogeneous (e.g. uniaxial compression test) and the material system

undergoes stable and unstable responses. Some relationship exists between the

dissipated energy and the material state (e.g. stable or unstable). In ?his study,

the relationship between instability onset and energy dissipation (rate) is investi-

gated. The stability problem is a wide area and can be divided into mathematical

or numerical instability and physical instability. Sometimes they are related, while

in other cases they are not. This is concerned with the constitutive law assumed.

Loss of stability and bifurcation are common phenomena in non-linear con-

tinuum mechanics. In non-linear structural mechanics, for example, a large body

of literature exists mainly concerned with buckling of rods, plates and shells. In

non-linear elasticity, bifurcation appears even in seemingly simple problems involv-

ing fairly standard constitutive models, such as the classical problem of multiple

bifurcation in a cube of Neo-Hookean Mooney- Rivlin materials subjected to hy-

drostatic pressure [Marsden and Hughes 19831. Loss of stability also plays a central

role in non-linear inelastic constitutive theory. Classical examples include the d-

iffusion necking bifurcation from a homogeneous state which arises in the simple

tension test of an elastic-plastic material, and situations where loss of ellipticity

of the governing equations takes place leading to localization and the formation of

shear bands.

The localization implies a non-uniqueness in the incremental elasto-plastic

response of a homogeneous, homogeneously strained body fRice 19771, and also

implies a vanishing speed of acceleration waves (Thomas 1961; Hill 1962; Mandel

1966]. This non-uniqueness consists of the possibility of the occurrence of more than
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one strain pattern related to the equilibrated fundamental stress state. It is believed

that a constitutive equation can only be used when localization of deformation is

excluded, otherwise, the solution (if available) is not unique. So it is important to

find out the instability point when dealing with nonlinear continuum mechanics.

Mathematically, the instability usually arises at a critical point in the consti-

tutive behavior, particularly a bifurcation or limit point. The occurrence of such a

critical point in a numerical stress analysis is marked by singularity of the stiffness

matrix and negative or complex eigenvalues - conditions that traditionally produce

severe numerical instability sufficient to disrupt a conventional finite element pro-

gram. It appears that the subject of direct calculation of stability point has not

received adequate attention in the engineering literature. Most of the methods cur-

rently employed rely on the inspection of the determinant of the tangent stiffness

matrix, and employ simple bisection procedures [Wagner and Wriggers 19881 to
calculate the critical points.

In this study, the degradation instabilities include surface degradation and
global degradation ones. Surface degradation instability may be related to the

onset of surface spalling and/or bursting on stress free surfaces. Global degradation

instability refers to the incipient growth of inhomogerneities e.g. shear bands. It is

pointed out that the spalling or rock bursting occurs, in general, prior to the global

failure or structure collapse. The point where global degradation instability takes

place is a critical point from which, when further deformed, the material system

is no longer homogeneous and numerical problems may be met for boundary value

or initial value problems.

As pointed out previously, the onset of instability of brittle materials is

due to the damage accumulation or progressive structural transformation. The

term degradation is often associated with damage evolution. The investigation

of degradation mechanisms would be helpful to understand the physical process of

the onset of instability. The degradation process of brittle materials under external

mechanical load can be monitored experimentally, e.g. by using ultrasonic scanning

method, and therefore, the degradation patterning can be identified.
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1.2 Objective of Investigation

In general terms, the objective of this investigation is to study the relation

between instabilities and degradation mechanisms of brittle materials. The energy

dissipation due to damage and plastic flow is addressed. Both experimental and

theoretical viewpoints are considered, with emphasis on the theoretical studies and

interpretation of experimental results.

The objectives of the present work can be summarized as follows:

i) To review the existing theoretical and experimental literature. Mathemat-

ical or physical instability criteria for nonlinear inelastic material are ad-

dressed. Although post instability analysis is not addressed as part of the

theme of this dissertation, the relevant literature on this subject is reviewed.

and possible extensions of the present approach are discussed.

ii) To examine an instability criterion which is physically based on dissipated

energy and potential.

iii) To extend the instability criterion to consider the surface degradation insta-

bility.

iv) To determine the material constants associated with surface degradation for

a brittle material.

v) To implement the instability theory into a finite element model.

vi) To examine the instability theory for some typical problems, e.g. borehole

problem, analytically and numerically.

vii) To study the degradation mechanism and patterning of a brittle material

under external load as observed through experimental measurements.

viii) To identify the surface effects in a brittle material and to estimate the in-

ternal material length associated with surface degradation.

ix) To study the degradation patterning numerically with the consideration of

initial state and to compare the numerical results with the experimental

measurements.
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x) To propose possible approaches to overcome the mesh-dependent problem in

the post-instability equilibrium path for various models including plasticity

and damage effects.

The main contributions of this dissertation can be summarized as:

1) Investigation of the relation between instability onset and energy dissipation.

2) Numerical implementation and analytical examination of energy based in-

stability criteria (global and surface degradation) and solution of typical

problems.

3) Experimental investigation of surface effects and degradation inhomogeneity.

4) Determination of material constants and estimation of internal material

length associited with surface degradation.

5) Study of evolution of heterogeneity through numerical analysis and compar-

ison with experimental data.

6) Proposition of possible approaches to regularize the solutions for models

including plasticity and damage consideration.

1.3 Summaries of Chapters

Following the introduction and scope chapter, chapter 2 reviews the exist-

ing literature, in which, important theoretical and experimental viewpoints are

considered. First, the basic laws and definitions concerned with this study is re-

viewed. Then a large part of chapter 2 is devoted to the review of recent literature,

particularly stability-related issues.

Chapter 3 describes, in detail, the instability theory which includes global

instability criterion and surface degradation instability criterion. The definition for

surface degradation zone is discussed and the material constants concerned with

surface degradation are identified.

Chapter 4 presents the implementation of the instability theory for some

typical problems. For simple problems with linear elastic material behavior, an-

alytical solution is feasible. But for problems with non-linear, inelastic material

behavior, search for analytical solution becomes very difficult and numerical proce-

dure is necessary. It is shown that the onset of both surface degradation instability
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and global degradation instability occur in the strain hardening stage, that is, be-

fore and close to the peak strength. It is also identified that the onset of surface

degradation instability occurs before the onset of global degradation instability.

In chapter 5 relevant experimental results are presented. The physical ex-

periments include strain gage tests and ultrasonic scanning tests. The design and

setup for ultrasonic scanning tests is described in detail. Some typical experi-

mental observations and analysis are presented. It is found that the degradation

patterning follows, in general, the initially received ultrasonic energy distribution.

The surface degradation phenomena in brittle materials under external mechanical

load is identified and the material constant related to surface degradation zone is

obtained. The relationship between ultrasonically dissipated energy and mechani-

cally dissipated energy is approximated by a power function of the factor of load
level.
l l Brittle materials, e.g. rock and concrete, are initially (prior to load appli-

cation) inhomogeneous (in the macro sense). The initial heterogeneity influences

significantly the spatial variation of degradation in a brittle material structure sub-

jected to mechanical load. In chapter 6, the initial heterogeneity is considered by

* virtue of the concept of initial state and the degradation progress is simulated nu-

merically by using the theory for damage and surface degradation growth. The

numerical results are compared with experimental observations.

Chapter 7 proposes methods to overcome problems involved in post-

instability analysis. Based on microstructural theories, an internal length pa-

rameter can be incorporated into the nonlinear post-instability analysis. It is

expected that the introduction of internal length parameter can eliminate the

mesh-dependent problem which is met after the onset of instability when FEM

is used. The possibility of using the nonlocal damage concept to eliminate the

mesh-dependency problem is discussed. There is another possibility to overcome

the mesh-dependency problem for a specific damage model, e.g. by considering the

deformation inconsistency between the damaged part and intact part. This is also

discussed in this chapter.
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Finally, a summary of the current work, conclusions, recommendations forI extensions of the study are presented in Chapter 8.
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* CHAPTER 2

REVIEW AND DISCUSSION

As mentioned before, instability in mechanics is a broad and extensively

studied area. Mathematically, instability means that a small input may induce

large response. In mechanical field, there axe many definitions for instability each of

which may depict a different physical phenomenon. The whole review for instability

is not attempted here. However, only the literature related to this study will be

reviewed [Tang, Frantziskonis and Desai 1992b].

2.1 Basic Laws and Concepts

It would be helpful to present some basic laws and fundamental definitions

before we go through the general review. It is worth noting that the basic laws and

fundamental definitions can be found from the referenced books [Langhaar 1962;

Howerton 1962]

2.1.1 Law of Kinetic Energy

The work of all the forces (internal and external) that act on a mechanical

system equals the increase of kinetic energy of the system.

In symbols, the law of kinetic energy is expressed by the equation

W = AT (2.1)

where AT is the increment of kinetic energy that results from work W.

2.1.2 First Law of Thermodynamics

The work that is performed on a mechanical system by external forces plus

the heat that flows into the system from the outside equals the increase of kinetic

energy plus the increase of internal energy.

In symbols, the first law of thermodynamics is expressed by the equation

W, + Q = AT + AU (2.2)
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Here, We is the work performed on the system by external forces, Q is heat that

flows into the system, AT is the increase of kinetic energy, and AU is the increase

of internal energy. For adiabatic process, Q = 0, then eq. (2.2) becomes

W, - AU = AT (2.3)

2.1.3 Second Law of Thermodynamics

The total entropy S contained in the volume V of the medium consists of

two parts: the entropy Se which is exchanged with the environment by means of

heat through the surface A, and the entropy Si contained in the volume under

consideration. According to thermodynamics, this second part of the entropy mvtst

satisfy the Clausius-Duhem inequality [Derski 1989]:

S=SS _0 (2.4)

where overdot means increment. The second law of thermodynamics is necessarily
statistical, and its validity is limited by the laws of statistics [Howerton 1962].

2.1.4 Holonomic (Nonholonomic) System

A material system, between whose possible positions all conceivable continu-

ous motions are also possible motions, is called a holonomic system [H. Hertz 1899].

A system constituted by an elastic material is a holonomic system. A system con-

stituted by the material with plasticity or/and damage behavior is a nonholonomic

system.

2.1.5 Conservative (Unconservative) System

A mechanical system is said to be conservative if the virtual work in a virtual

displacement that carries the system around any closed path is zero. The internal

force of a material with the behavior of elasticity is conservative. The internal force

of a material with plasticity and/or damage behavior is unconservative.
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2.2 Mathematical Theory for Stability and Bifurcation

2.2.1 General Concepts

In its most general form bifurcation theory is a theory of equilibrium solu-

tions of nonlinear equations [Iooss and Joseph 1980]. By equilibrium solutions, it

is meant, for example, steady solutions, time-periodic solutions, and quasi-periodic
.solutions. It is not possible, yet necessary, to review here all the mathematical

theories for stability and bifurcation. However, some basic concepts are presented

to give insight in the investigation.

Consider evolution equations of the form

dUd-U-- = F(t, P, U) (2.5)

Where t > 0 is the time and p is a parameter which lies on the real line -oo <

IL < oo. The unknown in (2.5) is U(t). F(t,p,U) is a given nonlinear function or

operator. When F is independent of t, t is omitted and write F(IL, U). Equation

(2.5) governs the evolution of U(t) from its initial value U(0) = Uo. An equilibrium

solution is a solution to which U(t) evolves after the transient effects associated

with the initial values, have died away.

When F(p, U) is independent of t, the problem

I ~~dU(26S= F(p, U) (2.6)

is said to be autonomous. When F(t, p, U) is periodic in t with period T, the

problem
d- = F(t,p,U) = F(t + T,p,U) (2.7)I dt

is said to be nonautonomous, T-periodic.

Bifurcation solutions are equilibrium solutions which form intersection

branches in a suitable space of functions. For example, when U lies in RI the

bifurcating steady solutions form intersection branches of the curve F(p, U) = 0

in the p, U plane. When U lies in R2 the bifurcation solutions form connected

intersection surfaces or curves in the three dimensional (p, U1 , U2 ) space. One e-

quilibrium solution bifurcates from another at p = P0 if there are two distinct
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equilibrium solutions UM1 ) and U(2 ) of the evolution problem, continuous in 1j, and

such that U(1)(po ,t) = U(2)(MOt).

Not all equilibrium solutions arise from bifurcation. Isolated solutions and

disjoint branches of solutions are common in nonlinear problems (G.Iooss and

D.Joseph 1980).

Let us subject an equilibrium solution to a small initial perturbation to

obtain the linearized theory. If the perturbation grows the equilibrium solution

is unstable, and if it eventually decays the equilibrium solution is stable to small

disturbances. It may be unstable to larger disturbances, but if it is stable to small

disturbances then there is no other equilibrium solutions of the evolution problem

close to the given one. Since solutions which bifurcate from a given branch are off

that one in a continuous fashion, it is often true (but not always) that a necessary

condition for bifurcation is the instability of the equilibrium solution to indefinitely

small disturbances. The stability theory for indefinitely small disturbances is linear

because quadratic terms in the disturbance equations are negligible compared to

linear one.

2.2.2 Bifurcation and Stability of Steady Solutions of

Evolution Equations in One Dimension

Consider an evolution equation in R' of the form

dud = u) (2.8)

Where F(.,.) has two continuous derivatives with respect to J and u. Let equilib-

rium solutions of (2.8) satisfy u = e, independent of t and

F(p., e) = 0 (2.9)

The study of bifurcation of equilibrium solutions of the autonomous problem

(2.8) is equivalent to the study of singular points of curves (2.9) in the (1A, e) plane.

In the study of equilibrium solutions, the following classification of points is

introduced [Iooss and Joseph 1980].
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i) A regular point of F(M, e) = 0 is one for which the implicit function theorem

works:
aF aF

1--0 or -#0 (2.10)

if (2.10) holds, then a unique curve y = u(e) or e = e(y) through the point

can be found.

ii) A regular turning point is a point at which dp(e)/de changes sign and

D OF(p, e)1,9p# 0.

iii) A singular point of the curve F(y, e) = 0 is a point at which

aF _F

S= -- =0 (2.11)

iv) A double point of the curve F(Ip, e) = 0 is a singular point through which

pass two and only two branches of F(M, e) = 0 possessing distinct tangents.

It is assumed that all second derivatives of F do not simultaneously vanish

at a double point.

v) A singular turning (double) point of the curve F(M, e) = 0 is a double point

at which 9 changes sign on one branch.

vi) A cusp point of the curve F(/u, e) = 0 is a point of second order contact

between two branches of the curve. The two branches of the curve have the

same tangent at a cusp point.

vii) A conjugate point is an isolated singular point solution of F(pJ, e) = 0.

viii) A higher-order singular point of the curve f(1A, e) = 0 is a singular point at

which all three second derivatives of f(p, e) are null.

Some of the solutions which bifurcate are stable and some are unstable. To

study the stability of solution y = e people often study the linearized equation

dz OF(y,e) (2.12)
dt e Z

the general solution of which is (2.13)

where
a OF(,e) (2.14)
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Since all solutions of (2.11) are in the form (2.13). It is found that distur-

bances z or e grow when a > 0 and decay when a < 0. The linearized theory then

implies that (p(E), e) satisfying F(p, e) = 0 is stable when a < 0 and is unstable

when a > 0. This is the so called Conditional Stability Theorem.

2.2.3 Stability of Steady Solutions of Evolution Equations

in Two Dimensions and n Dimensions

The most complete results known in bifurcation theory are for problems

which can be reduced to one or two dimensions. Consider two-dimensional au-

tonomous problems
du
S= f(p•, u) (2.15)

I where

/a(p, u) = Aj(p,)uj + Bik(P)ujuk + Cjkl(/,)ujkUl + 0(11 U 11) (2.16)

The same equations (2.15) and (2.16) hold in R". In general, the subscripts range

over (1,2,...,n); in R2 , n=2.

To test the stability of the steady solution U(p) corresponding to the zero

solution u = 0 of (2.15), people examine the evolution of a disturbance v of u = 0

which, in the linearized approximation, satisfies

dvT= f(M,0,,) = A(ji).v (2.17)

or, in index notation,
dviSv Ai,(_)v (2.18)

The stability to small disturbances of the solution u =0 is controlled by the

eigenvalues of A(p). Set v = e•"x in (2.17), it is found that

A(,u)x = ax (2.19)

where

ao,) = ý() + i77Q(1) (2.20)
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is an eigenvalue of A(p) if x $ 0. u = 0 is stable by the criterion of the spectral

problem of ý(tz) < 0 for all eigenvalues a(IA), and is unstable if there is a value a

solving (2.19) with x # 0 for which ý(p) > 0.

2.3 Stability for Holonomic Conservative System

The stability for a conservative system can be described by the principle

of minimum potential energy. The principle of minimum potential energy dictates

that a conservative holonomic system is in a configuration of stable equilibrium

if, and only if, the value of potential energy is a relative minimum. From this

definition it is understood that:

1) For any mechanical system, it is a sufficient condition. The equilibrium is

unstable if there is a path away from the equilibrium position for which

virtual work is not negative.

2) A mechanical system is sometimes understood to be in a state of stable

equilibrium if positive work must be done on the system in any small dis-

placement away from the equilibrium configuration.

For systems with finite degrees of freedom, the mathematical implications

of the principle of minimum potential energy are comparatively simple. The poten-

tial energy is a single-valued function of the generalized coordinates xI, x 2 , ... x,,.

Also, the potential energy V depends on the external loads on the system. The

coordinates xi are considered as regular in a region R of configuration space that

includes the configuration of interest. (Coordinates xi are said to be regular if two

conditions are satisfied: (1) the x,'s are independent; (2) on incremental change

Axi ( Ax, = 0,j j i) in the i"h generalized coordinate, will produce a displacement

in configuration space (of magnitude) As' that is of the same order of magnitude

of Ax,.) For values of the x's in R, the function V and its partial derivatives to

the third order with respect to x's are postulated to be continuous functions of

the x's. Then the equilibrium configuration is said to be stable if the second order

deviation of the potential energy is positive [Langhaar 1962]. The condition turns

out that the stiffness matrix of the system is positive definite.
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For systems with infinite degrees of freedom, the mathematical implication
of the principle of minimum potential energy is relatively complicated, because the

analytical solution can not be obtained for general boundary value problems. The

solution is approached by numerical analysis. As computer science develops, the

finite element method is popularly used to solve boundary value problems. When

the finite element method is used, the infinite degrees of freedom of the system

are replaced by finite degrees of freedom [Desai 1972; R.D. Cook 1981]. Then the

stability of the system can be evaluated by the general stiffness matrix if proper

elements are used.

2.4 Instability of Unconservative System

Brittle materials, such as rock and concrete, when subjected to external

mechanical load exhibit the feature of plastic flow and damage accumulation and

constitutes an unconservative system, and when compressed at e.g. constant axial

strain rate under conditions of either uniaxial stress or triaxial compression exhibits

a phenomenon called 'strain softening'. Materials which exhibit such softening are

characterized by a constitutive response in which the stress rises monotonically with

strain (strain hardening) to a peak, and then decreases with further increases in

strain (Figure 2. 1). Under general states of small deformation, a material element is

said to undergo strain softening when its fourth order tangent stiffness tensor Ci.kt

is negative definite [Read and Hegemier 1984; Valanis 1984]. Experiments show

that even under very low stress, these brittle materials behave nonholonomically.

There are many definitions for stability for these brittle material system. In this

section, the related theories and concepts are reviewed.

2.4.1 Drucker's Stability Postulate

The stability postulate formulated by Drucker [1951,1956,19591 is basically

for solid metals which exhibit associated flow. According to this postulate, stability

requires that the second order increment of plastic work is positive or zero.

"" "X' > 0 (2.21)
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I Figure 2.1 Schematic of Stress-Strain Curve

I
in which 6%. is the increment of stress and i?, is the resulting increment in plastic

strain. For metals, positive values of the second increment of plastic work are

always associated with the stable, ascending part of the stress-strain relationship,

whereas negative values are associated with the unstable, descending part of the

stress-strain curve obtained after peak failure, Figure 2.2.

2.4.2 Hill's Stability Condition

* Figure 2.3 shows a schematic illustration of the region in which (2.21) is not

fulfilled for a material with nonassociated flow. The region is shaped as a wedgeI
I
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Figure 2.2 An Elastic-Plastic Material (Time- Independent): Rising

CUL'vt- -34 > 0 (after Drucker 1959)

between the current .yield surface f and the plastic potential surface g corresponding

to the current stress point. All stresses, including the stress difference a, - a3 are
decreasing within the wedge between f and g, whereas the effective stress ratio
ant/cr3t is increasing in this region.

According to Hill's condition (Hi11,1958), stability should be maintained as

*on a

l o n g a s , j i ý d V =6 i e( ! -, + & i j 4? i ) d V > 0 ( 2 .2 2 )

IVIj I



34
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.01. w3 . CONST.

APLASTIC POTENTIAL
SURFACE 9

YIELD SURFACE f

VI I3 - C"STo'.

AREA OF INTEREST

HYDROSTATIC AXIS

Figure 2.3 Wedge-Shaped Region of Stress Paths with Decreasing

Stresses in which Granular Materials with Nonassociated Flow May

Be Unstable during Hardening inside the Failure Surface (after Lade

1989)

in which ijj and ij are the total and elastic strain increments, respectively. Along

stress paths with decreasing stresses of the type shown in Figure 2.3, the elastic

second energy increment has opposite sign of the plastic second energy increment.

Hill's stability condition therefore guarantee stability a little beyond the condition

given by Drucker [Lade 1989).
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2.4.3 Mandel's Stability Threshold

For elastic-plastic solids we can assume that stress and strain rates are

related through a fourth order tensor D in general non-symmetric:

& = D : e (2.23)

Tensor D is different in loading and in unloading. Assuming that the elastic behav-

ior (unloading) at every point is characterized by a positive definite tensor, Hill's

condition is always fulfilled [Ranecki and Bruhns 1981]. If a much more restrictive

condition holds, requiring that at every point of the body that the second order

work V) is positive for every strain rate and corresponding stress rate (2.23):

1.
, a : > 0 (2.24)

Equation (2.24) is referred to as the local criterion for uniqueness [Bigoni and

Hueckel 1991]. The central property of the local criterion is the restriction that

imposes on the constitutive law (2.23). In fact, substituting (2.23) into (2.24), an

equivalent condition of positive definiteness of the constitutive rate tensor D is
obtained:

x : D : x > 0, Vx E Symr- {0} (2.25)

The above requirement restricts only the tensor D during elastoplastic loading.
A condition weaker with respect to the criterion (2.24), but sufficient to

exclude strain localization, may be obtained by specializing tensor x in (2.25) to

a particular rate deformation mode defined by a tensor product g ® n of a vector

n and a vector g. This yields the requirement of the positive definiteness of every

tensor n.D.n, i.e.:

g ,D n : D : n L,) g > 0, Vg $ 0,Vn : InI = 1 (2.26)

The requirement (2.26) is the condition of strong ellipticity of the system of dif-

ferential equations governing the local incremental equilibrium. If the constitutive

tensor D is symmetric, the condition (2.26) is equivalent to the requirement that

all eigenvalues of the tensor are real and strictly positive. The latter condition was

stated by Mandel [1966] as a threshold to material stability.
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2.4.4 Instability in Domain

The instability of a finite rather than an infinite body has been studied

by Kondaurov, Nikitin and Ryzhak [1989]. The instability criterion used can be

described as: the equilibrium state of the body is considered unstable if there exists

a small virtual displacement field Su for which the work done by the boundary

tractions is not compensated by the work done by the internal stresses. Consider

elasto-plastic material for which the constitutive law is a piecewise-linear relation

between the stress increments and virtual strains, i.e.

{L :6e, for6b: S <0;
6JT = LP be, for6e:S>_ (2.27)

where 6JT is the Jaumann increment of the Cauchy stress tensor, L' and LP are the

fourth rank tensors of elastic and elasto-plastic moduli, 6e is strain corresponding

to Su, and S is tensor prescribing the normal to the yield surface.

The integral criterion of instability reduces to the requirement of loss of the

positive definiteness of the piecewise-quadratic functional [Kondaurov, Nikitin and

Ryzhak 1989]

.({hfU} = IJ(be : L :be - 6JTb : be)dV <0 (2.28)

where Tb is an auxiliary stress tensor such that Tb.n = tb, A.Tb = 0, and tb are

the boundary tractions.

The preferable mode of instability is assumed to be that one which cor-

responds to the earliest moment of loading, i.e. to the greatest value of plastic

modults. Under these assumptions, the effect of constraint on the form of rhe-

ological instability manifestation was investigated. Two types of the constraint

were considered, namely kinematic and stiffness ones. It was shown that the ap-

pearance of a localized mode of instability is influenced by the stiffness constraint

[Kondaurov, Nikitin and Ryzhak 1989].

2.4.5 On Plastic Flow Localization

Plastic flow localization refers to circumstances where a macroscopically

homogeneous or smoothly varying pattern of plastic deformation develops at low
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strains and then at larger strains gives way, more or less abruptly, to a highly
localized deformation pattern [Needleman 19901. There are several plastic insta-

bility phenomena that can be regarded as localization in this sense. Shear band

localizations are observed in a variety of solids; for example, in geological materials,

Waversik and Brace [1971], Vardoulakis [1979], and Lade [1989]. Depending on cir-

cumstances, localization can arise either as a consequence of the plastic flow process

itself or as the result of progressive damage. Since shear bands have significance as

a precursor to fracture and as a mechanism of large strain plastic response, much

attention has been given to the mechanics of shear band localization phenomena,

Rice [1977], and Needleman and Rice [1978].

For quasi-static deformation histories and rate independent material re-
sponse, there is a framework that regards localization as a material instability.

Deformations in a localized band are permitted provided the velocity field remains
continuous and continuing equilibrium at the band interface is satisfied. Bifurcation

and imperfection analyses within this framework have proved useful in revealing the
influence of constitutive features and stress state on localization, Rudnicki and Rice

[1975], Rice [1977] and Needleman and Rice [1978]. In more general circumstances,

regions of localization propagate from strain concentrations and a full solution to

the relevant initial/boundary value problem is required.

The classical elastic-plastic solid with a smooth yield surface is quite resis-

tant to localization, Rudnicki and Rice [1975] and Rice [1977]. Deviations from

the classical constitutive description, in particular yield surface vertex effects and

plastic non-normality, significantly lower the strain required for the initiation of

localization. Localization can also emerge as a consequence of an explicit soften-

ing process, e.g. damage [Frantziskonis and Desai 1987b]. For structural metals

yield vertex effects are of general significance since, within the rate independent

idealization, the discreteness of slip systems implies a yield surface vertex at the

current loading point [Needleman 1990]. Although on quite general grounds the

flow potential surfaces for rate dependent solids are expected to be smooth [Rice

19701, the high curvature of flow potential surfaces at the current loading point

that comes from the discreteness of slip systems promotes localization when initial
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imperfection are accounted for. However, increasing material rate sensitivity can

act to delay the onset of localization [Needleman 1988].

The existence of stationary body wave disturbance signals the onset of bulk

localization [Hill 1962; Biot 1963; Mandel 1966; Rice 1977]. The effects of bound-

aries and interfaces on localization were investigated by considering conditions for

stationary waves where boundary condition do play a role [Needleman and Ortiz

19911. In particular, stationary Rayleigh waves along stress free boundaries and
stationary stoneley waves along interfaces were considered. The significance of s-

tationary waves stems from their role in signifying the transition from stability to

instability; when all possible wave speeds c are such that c2 < 0 for some waves,
there is divergence type growth [Rice 1977].

Analysis of Shear Band Localizations:

An element of a solid is considered subject to displacement boundary condi-

tions that in a homogeneous (and homogeneously deformed) solid would give rise

to a uniform gradient field. Conditions are sought under which bifurcation into

a localized band mode can occur. Current values of field quantities and material

properties inside and outside the band are presumed identical so that one possible

solution for the incremental quantities corresponds to the homogeneous one. At

the considered stage of the deformation history, suppose that within a thin planar

band of orientation n in the reference configuration incremental field quantities are

permitted to take on values differing from the uniform values outside the band. The

band is presumed sufficiently narrow to be regarded as homogeneously deformed.

Two requirements must be satisfied across the band interface. First, com-

patibility requires [Thomas 1961; Hill 1962; Mandel 1966; Rice 1977]

Fb = Ft + 4 0 n (2.29)

where ()6 and (), denote field quantities inside the band and outside the band,

respectively, and Q denotes the tensor product so that the component form of

! On is 4'nj, F is strain rate.
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For an incompressible solid, the strain rate jump across the band is a shear

strain rate jump and, hence, the band is a shear band.

Next, incremental equilibrium requires

n.(Sb - S§) = 0 (2.30)

where S is stress rate.

For classical, rate independent plasticity, and for a material element subject

to continued plastic loading, a localization bifurcation is possible when

H [n.Ktan..nj.4 = 0 (2.31)

I where the operator .. is defined so that the component form of (2.31) is

niK itan nkqI = 0 and Ktan corresponds to the plastic loading branch. A localization

bifurcation first becomes possible at the earliest stage in the deformation history

at which (2.31) has a nontrivial solution, i.e. when the determinant of coefficients

in (2.31) vanishes. The outcome of the bifurcation analysis is a critical orientation,

n, as well as a critical strain.

Localization is associated with a change in the character of the governing

equations. Under quasi-static loading conditions the equations governing incre-

mental equilibrium lose ellipticity, while under dynamic loading conditions wave

speeds become imaginary. As a consequence the width of the band of localized

deformation is arbitrarily narrow and numerical solutions to localization problems

for rate independent solids exhibit an inherent mesh dependence, as discussed in

Needleman [1988].

Localization analyses based on (2.31) have revealed the implications of var-

ious constitutive features, e.g. yield surface vertices and plastic non-normality,

and stress state for the onset of shear localization, Rice [1977], Needleman and

Rice [1978]. The Mises solid is quite resistant to localization, Rudnicki and Rice

[19751, Rice [1977]. Deviations from the Mises idealization permit a shear band

localization to occur with positive hardening. However, the greater susceptibility

to localization under plane strain loading conditions remains [Needleman 19901.
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is For the rate dependent elastic-viscoplastic solids, the counterpart to (2.31)

is

[n.Kelatic..n].4 = 0 (2.32)

As long as stress levels remain small compared to elastic stiffnesses, the only

solution to (2.32) is the trivial one and a localization bifurcation does not occur.

Hence, when material rate dependence is accounted for, there is no loss of ellipticity

in quasi-static problems and wave speeds remain real. Material rate dependence,

in effect, introduces a length scale into the boundary value problem, although the

constitutive description does not explicitly contain a material parameter with the

dimensions of length, Needleman [1988]. In quasi-static problems, the length scale

is one characterizing the imperfection or inhomogeneity. In dynamic problems,

it is a characteristic length of propagation of elastic waves. Accordingly, for the

viscoplastic constitutive relation, pathological mesh dependence does not occur in

numerical solutions for rate-dependent solids.

2.5 Griffth's Criterion

The renowned method of studying fracture in the continuum picture employs

energy rate considerations. Consider first the situation of an arbitrarily shaped

body, arbitrarily loaded, containing a single traction free propagating crack with

instantaneous surface area A(t). Balance of the global energy requires that at each

instant of propagation [Eftis and Liebowitz 1975]

W+Q=E+k+1r (2.33)

In (2.33), Wi is external work rate, Q is the energy related to the temperature

change in the system, E is the strain energy rate, k is the kinetical energy rate,

and t is the fracture energy rate. By Griffth,

t = yA(t) (2.34)

where - > 0 is a fracture surface energy density which represents the energy re-

quired to form a unit of new surface and which is assumed to be a constant for
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a given material. The usual practice assumes that the loading process is quasi-

static, which makes the kinetic energy negligible, and that an initially uniform

temperature distribution through the specimen will remain. Then (2.33) becomes

as

W -- t + (2.35)

By using the chain rule = "we get

I oW OE _r= M Or(2.36)
OA OA OA

That part of the work rate of the applied forces which is not taken up as change in

the elastic and plastic strain work is the energy available to promote crack growth.

Consider the situation where the separation is essentially brittle in nature

and the plastic enclave regions are small enough to be ignored. Then E is just

the elastic strain energy. Suppose that at some particular level of applied load

the existing crack experiences a small increment of growth AA. An incremental

balance oF energy requires that

-AP = AW - AE = Ar = ")AA (2.37)

where P = E - W is the elastic potential energy. Two limiting cases are frequently

discussed in the literature. The first assumes that for an arbitrarily small increment

of crack growth the outer boundary surface of the solid on which the load is applied

can be considered to remain stationary, "fixed grips". If, in addition, the body force

distribution is ignored then the work rate contribution of the applied force vanishes

and equation (2.36) becomes in the limit as Aa approaches zero

OP _ eE OrIp a =G a (2.38)T -A a - -A = T c-A (.

In this case the symbol G is appropriately referred to as the "elastic strain energy

release rate", since the energy rate required to promote crack growth is supplied

at the expense of the existing global elastic strain energy field. In the second

case during an arbitrarily small increment of crack growth the applied load is
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assumed to remain fixed, the "dead-load" situation. The applied surface traction

on the boundary surface does work as the crack extends. However by application

of Clapeyron's theorem of linear elasto-statics the work done by the unchanging

boundary loads (neglecting body force) is twice the increase of elastic strain energy

[Eftis and Liebowitz 19751. Thus 1-w-- = a.. and it follows from equation (2.36)

that at the onset of "dead-load" crack extension

oP OE = =1
OA5 A OA (2.39)

Here there is an increase of global elastic strain energy with "dead-load" crack

extension. When the increment of crack extension is sufficiently small, implying

correspondingly small load and small displacement changes, then the absolute val-

ues of the left sides of equations (2.38) and (2.39) are approximately the same.

Hence the magnitude of the elastic strain energy rate associated with such crack

extension is about the same in both cases, even though the global elastic strain

energy decreases under "fixed-grips" and increases under "dead-load".

Equation (2.38) and (2.39) are both equivalent to part of Griffth's criterion

for brittle crack extension, which states that the energy P + r = E - W + r of a

cracked body has a stationary-maxinmum value at the inception of crack expansion.
* i.e.,

-(P + F) = 0 (2.40)aA

In other words, for an existing crack to expand the quantity P + r cannot increase

with increase in the size of the crack. A sufficient condition for P + r to be

maximum is the added requirement

2(p+r)< 0 (2.41)

I A2  <

The two conditions (2.40) and (2.41), taken together, represent an analytical state-
ment of Griffth's criteria.
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2.6 Surface Instabilities and Interface Instabilities

2.6.1 general

About three decades ago Germer et al [19611 observed surface irregularities

in homogeneously strained metal solids. Based on electron diffraction measure-

ments it was concluded that displacements of a superficial layer toward the interior

of the metal solid is five times as large as that of the next layer.

The possibility that a plane, tractionless surface of a homogeneously strained

solid losses flatness and develops surface undulations, or waves was noted by Biot

[1963] in his study of the plane strain deformation of non-linearly elastic solids.

His bifurcation analysis of the static deformation of a semi-infinite half-space re-

veals that the onset of surface modes occurs at a critical stress, or strain, which

depends on the properties of the solid. Following Biot's philosophy, an explorato-

ry study was carried out of various aspects of the development of instabilities of

traction-free surfaces of statically strained, rate-independent elastic-plastic solid-

s, Hutchinson and Tvergaard [1980]. It is addressed that the surface instability

phenomena are closely related to yield vertex effects. In other words, existence

of surface instabilities is strongly dependent on the type of constitutive law as-

sumed. Then, localized shear band formation developing from a stress-free surface

in a highly strained elastic-plastic material under plane strain was studied by K-

itagawa and Matsushita [1987], in which, both geometrical and material factors

were considered. Rock bursting as a surface instability phenomenon was investi-

gated by Vardoulakis [1984]. The instability criterion is formulated both in terms

of the ratio of the strengths of the material in uniaxial extension and compression,

and in terms of an appropriate hardening parameter. Based on Mindlin's theory

[Mindlin 1964] for material micro-structure, a single perturbation parameter was

introduced to the study of surface effects and related instabilities by Frantziskonis

and Vardoulakis [1992].

Thompson [1969] and Benallal et al [1989] have noted that the failure of

the complementing condition at the boundary is equivalent to the existence of sta-

tionary Rayleigh surface waves. An analogous condition for an ill-posed problem
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that arises in cases where interfaces are present is the existence of stationary s-

toneley waves. Similar to the localization condition, the stationary Rayleigh and

stoneley wave conditions determine the condition of shear bands intersecting free

surfaces and interfaces, respectively. The stationary wave analyses [Needleman and

Ortiz 1991] are related to the surface instabilities investigated by Biot [1965] and

Hutchinson and Tvergaard (1980] to the short wavelength limit of the bifurcation

solution obtained by Hill and Hutchinson [1975] for plane strain, by Triantafylidis

[1980] in pure bending for solids obeying normality and by Needleman [1979] for

plane strain and for solids where the symmetry Kikl = Kki, is lacking, and to

the interface instabilities analyzed by Biot [1963c]. While these stationary-wave

solutions generally correspond to the onset of instability, their shear-band interpre-

tation is restricted to the immediate vicinity of the surface or interface when they

precede bulk localization.

In order to understand these studies, it is helpful to review Biot's theory.

2.6.2 Biot's Surface Instability Theory

A solid half-space is subject to a uniform compressive stress P parallel with

the surface. Consider an incompressible elastic medium of orthotropic incremental

properties. The x axis coincides with the surface, and the y axis is directed pos-

itively outward (Figure 2.4). They are also axes of symmetry for the mechanical

properties of the medium. The incremental deformation analyzed is a state of plane

strain where all variables are functions of x and y. The two-dimensional equations

of equilibrium for the stress field are (Biot 1965)

88il+ 112 _W
s! .__ _p_ =0 (2.42a)3 012 S+ Ow

-"+ 2-"H - & = 0 (2.42b)

The rotation w is defined by

1 Ov Ou (2.43)

2Ix 9
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Figure 2.4 Half Space and Coordinate System (after Biot 1963)

where u and v are the displacement components. The stress components si , S22,

S12 are the incremental stresses referred to rectangular axes rotated locally through

the angle w. The strains are related to the incremental stress by the relations [Biot

19631

si -. s = 2Nea (2.44a)

S22 - s = 2NeY (2.44b)

S12 = 2Qez, (2.44c)
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These relations introduce two elastic coefficients N and Q and represent a
material of orthotropic symmetry. It reduces to the familiar isotropic stress-strain

relation for an incompressible material if

N=Q (2.45)

To consider the medium being incompressible, add the condition:

exx + evy = 0 (2.46)

The condition (2.46) of incompressibility is satisfied by putting

u =- '-_ 0"- (2.47)
Oy ax

The field equations (2.42) then reduce to two equations with two unknowns:

Os 0 04 1 154as -([(2N-Q+ - P Q + (2.48a)

Os a 1 !24 + 1 524,
y+ _ -[(2N - Q - -P)- -P)- ]=O (2.48b)

Soluion- of these equations are of the form

1412 = f(1y) sin(lx) (2.49)

s = F(ly) cos(lx) (2.50)

3 Then Biot [1963] derived:

(Q + P)f 2(2N -Q + (Q - P)f =0 (2.51)

F(ly) = (2N - Q + P)f' - (Q + 1P)f" (2.52)

I The primes denote differentiation with respect to the argument ly. The function

of f is the general solution of equation (2.51), i.e.

f = c,eo'd (2.53)
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where repeat incident means summation and 3i are any of the four roots of the

equation

1 4 - 2mn'2 +.k2 =0 (2.54)

It was enforced that:

I M+ 2(N/Q)- 1 (2.55)

Exclude all cases where one of the roots is pure imaginary and assume that

M > 0 with k2 > 0 (2.56a)

M < 0 with m 2 - k2 < 0 (2.56b)

Under these conditions the roots i of equation (2.54) are either real or complex

conjugate. Their real part is different from zero, and it is always possible to choose

two of them such that their real parts are positive, i.e.

ý31 = V/{m + ,V/(m 2 - k2 )} (2.57a)

S2 = \/f - V(Mr2 - k2 )} (2.57b)

The solution adopted is then

f = ceoly + C2e0 (2.58)

It vanishes at y = -cc.

2.7 Other Subjects

The stability of the flow of saturated inelastic porous media has been inves-

tigated in idealized initial and boundary value problems in both quasi-static [Rice

1975; Rudnicki 19S3, 1984] and dynamic contents [Vardoulakis 1986]. Emphasis is

laid there on the fluid-solid coulpling that occurs due to the inelastic volume change

taking place in the solid phase. Typically, the point is to analyse the growth of

small prescribed inhomogeneities. The qualitative and quantitative results depend
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crucially on the assumed initial inhomogeneities. The analysis given by Loret and

Harireche [1991] aims at defining the acceleration wave-speeds in inelastic rate-

independent porous materials and is centered around the two modes in which the

dynamic equilibrium equations lose their hyperbolic character. These modes are

referred to as stationary discontinuity (one wave speed is zero) and flutter insta-

bility (the squares of two wave speeds are complex conjugate). It is shown that in

some circumstances, some wave-speeds cease to be real in the very early stages of

the inelastic deformation process due to the incipience of a flutter instability.

Petukhov and Linkov [1979] associate the instability with transformation of

the difference between the external forces work increment and the intrinsic energy-

to-kinetic energy transition increment accompanied by acquisition of a certain ve-

locity by elements of the medium, and define the lose of stability as the external

forces work increment excess (or, at least, non-decrease) over the intrinsic energy

increment under constant external conditions. The difference is denoted by AK.

The state of equilibrium is unstable if a possible field of increment of displacements

exist which make AK > 0. It is pointed out by this theory that the material system

may not lose stability in the strain softening stage. The stability termed there is

for engineering practice, such as for calculation of pressure acting on support.

The instability in atomic level is referred to the existence of an unstable-

symmetric point of bifurcation which precipates the development of an unexpect-

ed shearing strain violating the basic symmetry of the system, Thompson and

Shorrock [1975]. This kind of instability is highly relevant to crack nucleation

and development, since an unstable bifurcation in the tensile zone at the tip of a

crack could be a mechanism for destroying the symmetry of a plane propagating

crack. Macmillan and Kelly [1972] have confirmed on the basis of a linear eigenval-

ue analysis that a mechanically stressed perfect crystal can exhibit a bifurcational

instability at stresses ranging to 20 per cent below that of the limiting maximum

of the primary stress-strain curve. This means that the bifurcational instability in

atomic level is met before the peak point is reached.
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2.8 Calculation of Bifurcation Points

In the finite element literature, mostly the so called arc-length or path-

following procedures are applied to trace stability points, Riks [1972, 1979], Ramm

[1981). Within this approach several algorithms have been introduced to detect

bifurcation or limit points [de Borst 1989]. Simple methods for this purpose are

given by inspection of the determinant of the tangent stiffness matrix or the cal-

culation of the current stiffness parameter. These methods may not provide a tool

to calculate stability points accurately since the basis of path-following is an incre-

mental procedure [Stein, Lammering and Wagner 19891. A Newton-type method

for the direct calculation of stability points has been presented in [Wriggers, Wag-

ner and Miehe 1988] and [Wriggers and Simo 1990] which leads to an extension

of the nonlinear set of equation by constraint conditions. By using the linearized

eigenproblem at a single bifurcation point as the constraint condition, one obtains

the bifurcation mode as part of the solution process [Wriggers and Simo 19901. The

standard iterative solution of extended systems employes a modification of the clas-

sical bordering algorithm. From a computational standpoint, two main issues arise

in the implementation of this procedure. First, Newton's method often experiences

a severe degradation of the asymptotic rate of quadratic convergence near a mul-

tiple bifurcation p oint. Second, the implementation of Newton's method involves

the directional derivatives of the tangent stiffness which can only be computed in

closed form for a very limited class of problems. In the study given by Wriggers and

Simo [1990], the first issue is dealt with by a penalty regularization of the extend-

ed system which improves the condition number of the Hessian near a bifurcation

point as well as the rate of convergence of Newton's method. In addition, these

derivatives are formulated in an alternative form suitable for an approximation by

a difference quotient. In the following the general method for bifurcation analysis

3in geomechanics is presented.
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Bifurcation Analysis in Geomechanics

Incremental equilibrium of a structure requires that a stress rate distribu-

tion, say 6A, satisfies

6eT&AdV = baF 
(2.59)

for all kinematically admissible virtual strain vectors be. Here F is the rate at

which- the external forces vary and ba is the virtual displacement vector. At a

bifurcation point there must exist yet another stress rate distribution, say 5B, that

satisfies incremental equilibrium. Consequently, &B must also satisfy (2.59) and

subtraction of both equilibrium equations results in

J 6ETAbdV = 0 (2.60)

with A& as difference between both stress rate distributions.

Define B as the strain-nodal displacement matrix that relates the strain rate

vector ý to the nodal velocities A, i.e.

=Bfi (2.61)

and suppose that both stress rate distributions are related to strain rate i by the

same tangential ralation D:

5= De (2.62)

Using (2.61) and (2.62), (2.60) can be written as

I. 6aTKAf = 0 (2.63)

with

K = fV BTDBdV (2.64)

where Aia is the difference between both velocity distributions, and K is the tan-

gential stiffness matrix. Since (2.63) must hold for any virtual displacement, the

following set of equations is to be valid at bifurcation point [de Borst 1989]:

KAa = 0 (2.65)
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Write Aii as a linear combination of the n right eigenvectors vi and the n left

eigenvectors wi of the matrix K:

UEa = f(wTA'6)v, (2.66)

Then (2.65) can be recast in the form

E(wTAi) = 0 (2.67)

Since Kvi = Aivi (no summation implied). Assuming that K is not singular, the

right eigenvectors vi and the left eigenvectors wi each constitute a set of n linearly

independent eigenvectors. Consequently, (wTALŽi)A, must vanish for each i. Since

A3 a can not be orthogonal to each left eigenvector wi, this means that at least one

eigenvalue, say A,, must vanish at a bifurcation point.

In practical numerical analysis, a point where the tangential stiffness has

exactly one or more vanishing eigenvalues will never be encountered. Instead it is

assumed that a bifurcation point has been passed when at least one (slight) negative

eigenvalue is extracted on a monotonically rising part of the load-deflection curve

or when two or more negative eigenvalues have been calculated on a descending

branch of this curve [de Borst 1989].

2.9 Theory for Post-Bifurcation Analysis

Classical theories of plasticity are not suited for addressing problems of s-

train localization and deformation patterning. In particular, they break down in

the post-bifurcation regime where ellipticity is lost. This is evidenced by the in-

ability of the classical theories to provide any information on shear band thickness

and spacings, or any estimate on preferred wavelength in surface instability and

liquefaction phenomena [Vardoulakis and Aifantis 1991]. Moreover, the loss of ellip-

ticity manifests itself dramatically in the numerical analysis of large scale problems

where one often encounters a critical dependence of the solution on the mesh-size,

accompanied by stability and convergence problems.

In classical plasticity analysis, frequent recomputation of the stiffness ma-

trix improves convergence. Yet paradoxically it is a common experience for a
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satisfactory program to encounter numerical difficulties when tangent stiffness ma-
tries replace a constant elastic matrix in the iterations. Typically, the increments

converge with fewer iterations, but the program becomes temperamental about

incremental size and eventually reaches a point where no reasonable choice of size

will permit convergence [Willam, Pramono and Sture 1986, Crisfield and Wills

1988]. Stable iterations merely indicate convergence to the solution of the finite

element model. They do not show whether the discretization in the model is good

or whether the physics underlying it is adequate. Thus shear band programs u-

tilizing the strategies mentioned above may converge to a solution, but the shear

band width will shrink indefinitely as the mesh is refined instead of stopping at a

realistic value. Furthermore, the energy dissipated will be wrongly predicted to be

zero [Warburton 1991].

A few approaches have been proposed for removing the aforementioned

mathematical difficulties of classical theory. These approaches are gradient theory.

Cosserat continuum model, non-local theory, and rate dependent consideration.

Brief reviews of these theories are presented in the following.

2.9.1 Gradient Theory
It was shown that inclusion of the second order gradients into the strain en-

ergy function of hyperelastic solids prevents loss of ellipticity to occur in the govern-

ing equilibrium equations and allows for the description of localized deformations

beyond the bifurcation point when the material is well into the softening regime.

Triantaphyllidis and Aifantis [1986], Aifantis [1987], Zbib and Aifantis [1988]. Sim-

ilarly, inclusion of the gradient of equivalent plastic strain into the yield condition

has led to the prediction of stationary shear-band widths in rigidly plastic metals

and the spacing of travelling Portevin-Le Chatelier bands in viscoplastic metals

[Zbib and Aifantis 1988]. The origin of higher order strain gradients in relation

to the underlying inhomogeneously evolving microstructures has been discussed by

Aifantis [19881. Another approach for incorporating higher gradients through a

"complete balance law" for the inelastic strain containing both a rate and a flux

term was proposed by Muhlhaus and Aifantis [1991].
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A modified theory of soil plasticity for frictional/dilatant materials was pro-
posed by incorporating second order strain gradients into the dilatancy condition

with the remaining structure of both deformation and flow theory being left un-

altered [Vardoulakis and Aifantis 1989]. The assumption of a gradient-dependent

dilatancy condition was dictated by the experimental observation that localization

phenomena in granular media are characterized by strong spatial density varia-

tions. These gradients provide a physically sound internal length scale into the

problem allowing for the determination of the shear band thickness and the s-

pacing of liquefying strips. The problem of extra boundary conditions required

as a result of the presence of higher order strain gradients has been recently ad-

dressed in connection with the proposed gradienm modification of both flow rule

and yield condition with the aid of a variational formulation of the problem [Var-

doulakis and Aifantis 1991J. A variational principle and the associated problem of

boundary conditions has also been addressed recently by Muhlhaus and Aifantis

[1991] in connection with a gradient modification of metal plasticity incorporating

gradients of the equivalent plastic strain up to the fourth order into the yield con-

dition. It is noted that Mindlin [1964] was among the first to deal with mechanical

theories incorporating higher order strain gradients in the context of linear elas-

ticity, without reference to instability and patterning. However, the underlying

continuum model given by Vardoulakis and Frantziskonis [1991] is formally relat-

ed to Mindlin's elasticity theory with micro-structure. A gradient regularization

of the classical kinematic-hardening plasticity was presented in Vardoulakis and

Frantziskonis [1991], in which, the flow rule of classical plasticity wa., modified by

incorporating the Laplacian of the plastic multiplier.

2.9.2 Cosserat Continuum Model
Unlike the gradient approach, in the Cosserat model [Cosserat, E. & F.

1909; Muhlhaus 1985, 1986] both the continuum and the constitutive description

are altered as compared to the classical description. In the pre-bifurcation regime

of the classical description, the assumption is made that mean particle rotations

coincide with the average spin of the representative grain assembly [Vardoulakis
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1989]. Beyond the bifurcation point this assumption must be relaxed. This can

be done by employing the concept of a Cosserat continuum that allows for both

particle displacements and particle rotations. In plane-strain problems, this means

that at any material point of the continuum both a velocity v = viei (i=1, 2) and

a spin vector wc = wee 3 are assigned, Figure 2.5(a). In this case the objective

strain-rate measures 3ij = Tii + 'i - , i = W(2.68)
83 ~~3,i ( .8

are introduced [Muhlhaus and Vardoulakis 1987] where lii = (vi,, + vj,i)/2 and

Wij = (vi,j - vji)/2 are the classical strain rate and spin tensors, '{ý- = -eij3w• is

the Cosserat spin tensor and Vi the curvature-rate vector. Furthermore, strain-rate

and curvature-rate tensors are decomposed into an elastic and a plastic part:

I = ~i, + x + (2.69)

3At any material point of the Cosserat continuum a non-symmetric stress tensor a,,

and a couple stress tensor mi are defined, Figure 2.5(b). Intergranular tractions

ti are defined through an equivalent stress tensor which in turn is related to the

Cauchy stress and the couple stress

t, = rjn,, r 3i = aij + ei,3mknk/R (2.70)

For vanishing couple stresses, the equivalent stress coincides with Cauchy stress.

Notice that the above defined intergranular tractions are dual in energy to the

Cosserat kinematic field.

2.9.3 Non-local Theory

The concept of non-local continuum, introduced on the basis of statistical

analysis of heterogeneous materials by Kroner [1967] and Krumhanzl [1968], and

widely applied by Eringen and Edelen [1972] and others, was proposed for ap-

plication to strain-softening models in Bazant [1984] and Bazant, Belytschko and

Chang [1984]. Then, numerous particular forms of non-local formulations were

developed. For example, in Pijaudier-Cabot and Bazant [1987], only the softening
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Figure 2.5 (a) Particle Velocity and Spin in a Cosserat Continuum;

(b) Stresses and Couple Stresses Acting on the Faces of A Material

Element in A Cosserat Continuum

damage was treated as non-local while the elastic behaviour was treated as local;

in Bazant and Pijaudier-Cabot (1987], the model for strain-softening subjected to

non-local description those variables which cause strain softening and retained a

local definition of strain, that is, the material model is characterized as a non-local

continuum with local strain; in Bazant and Lin [1988], some of the variables in the

constitutive equations (e.g. plastic strain) were defined by spatial averaging.
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CHAPTER 3

ENERGY BASED INSTABILITY THEORY

In this chapter, energy based instability theory is presented. A surface

degradation zone is defined to consider the surface effects of brittle materials under

external loid. The material constants concerned with surface degradation are

identified against experimental observations.

3.1 General

In the field of mechanics, instability can be classified, generally, as materi-

al instability and geometrical instability. Neglecting the geometrical non-linearity

and considering the inelastic material behavior, then the relevant instabilities be-

long to the category of material instability. For brittle materials such as rock and

concrete, for the displacement gradient, jui,jl << 1 stands. For example, the max-

imum strain corresponding to the peak strength for uniaxial compressive test on

rock and concrete is less than 3%. So it is reasonable to assume small deforma-

tion and consider geometrical linearity. However, as pointed out previously, the

mechanical system composed of these brittle materials is a nonholonomic one, and

the total deformation is attributed to elastic deformation, plastic deformation and

to formulation of damage. Then, the instability criteria established in this study

is restricted to material instability. However, the basic idea might be extended to

geometrical instability study.

As for material instability, quite a few criteria have been proposed, as re-

viewed in chapter two. Drucker's stability postulate, Hill's stability condition and

Mandel's stability threshold are for elastic-plastic materials. Griffth's criteria de-

scribes the stability of macro-crack development. When the kinematic damage evo-

lution is included in an elasto-plastic model, a new instability criterion is needed to

predict the onset of unstable damage growth. In this chapter, the proposed insta-

bility criteria are described in detail. These instability criteria are, in some sense,

similar to the well-known Griffth's criterion. However, essential difference exists
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between the two instability criteria. The Griffth's criterion deals with the macro-

crack, while the proposed instability criteria deal with the degradation process.

The onset of unstable damage growth may manifest inhomogeneous deformation,

e.g. shear bands.

The proposed instability criteria are implemented with the two-component

damage model originated by Frantziskonis and Desai [1987]. So, for complete-

ness, discussion and basic formulation of the two-component damage model will

be presented first. It should be noted that these instability criteria are, in gener-

al, applicable to every model accounting (in some form) for material degradation

and relevant dissipated energy. Here, however a specific model is employed, as de-

scribed below. Another important part of this chapter is devoted to the description

of surface degradation instability which depicts the common phenomenon for brit-

tle materials under external load such as surface spalling and/or borehole collapse.

The formulation of surface degradation instability criterion is the extension of the

concept of general damage instability description. However, as can be seen later,

the surface degradation instability criterion can capture some important aspects

such as shape and scale effects.

3.2 Damage Model

A number of investigators have considered the effects of damage on the me-

chanical behavior of brittle materials directly or indirectly [Yamaguchi and Chen

1991]. Within the so-called phenomenological framework, the nonlinear inelastic

response of brittle materials is attributed to the combination of micro-crack growth

and frictional slip. The goal of the phenomenological theory is to evaluate the ef-

fective properties of the material, through consideration of a representative volume

element. This element is a subregion of the heterogeneous material that represents

itself over the entire body. A microcrack or microcrack network contributes to the

properties of the region around it. Thus the region can be regarded as a composite

material having two distinct phases: damaged material characterizing the nucle-

ation and evolution of the microcracks; and undamaged or "normal" accommodat-

ing such microcracks that will develop. This region may appear homogeneous at a
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large scale with certain effective properties that describe the medium in an average

sense. With this in mind appropriate average static and kinematic variables can be

introduced. In order to determine the effective material properties, the assumption

of absence of diffusion has been employed in [Frantziskonis and Desai 1987] which

leads to equal strains with the two phases. This can be considered equivalent to

the so-called Voigt assumption for composites [Yamaguchi and Chen 1991].

In terms of the decomposition and description of softening, the damage

model proposed by Frantziskonis and Desai [1987] is similar to that proposed by

Kachanov [1958], Desai [1974]. It is noted that the formulation presented in the

following is referred to Frantziskonis and Desai [1987], and Frantziskonis [1989].

Consider a small volume AV of the material. This volume is subdivided

into an intact (undamaged) part, AV., and into a "fractured" (damaged) part,

AVd, (Figure 3.1). The first part or fraction represents topical (continuum) behav-

ior, and the material in it is intact in the sense that no microcracks are induced.

Due to inhomogeneity of the material behavior at the microlevel, weak planes are

developed leading to crack formulation and subsequent propagation. The effect of

an isolated or coupled fracture site is that an influenced zone exists around it as

shown schematically in Figure 3.1. This influence zone has volume AVd. Under

continued loading, influence zones increase so that AVd increases. At every instant

of time, the ratio

AVd_ = d (3.1)

is called damage volume ratio. The material point consists of the superposition of a

material point of the undamaged fraction (called the u-part) and of a material point

of the damaged fraction (called the d-part). This suggests the use of the theory

of interacting continua, Bowen [1975]. As a consequence, the following relation is

applicable

= (1 - r)uo, + ra4. (3.2)

where a!, od denote the stress tensors in the u and d -part of the material element

respectively and aij is the average stress tensor. The general theory of mixture

[Bowen 1969, 1975] is simplified considerably if diffusion is absent. In the proposed

Iy ...... ... ...... ................... ... .... .... .. ................ ..
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and Desai 1987)
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theory, the assumption of no diffusion is employed and as mentioned previously
this is equivalent to the Voigt assumption serving as a bound to the Voigt-Reuss

one [Yamaguchi and Chen 1991; Tang, Desai and Frantziskonis 1991]. Then the

strains in the two material phases are considered equal [Bowen 19751.

Now, a material element is considered. Due to the enforced deformation

in the element, damage influence zones have been created but failure has not oc-

curred yet. Such influence zones depict the mechanical influence of a system of

I microcracks. The constitutive equations for the d-part can be established as
I &0=.C k= 4 (3.3)

and C4.,l is a function of parameters related to the degraded properties of the

material. Since there are no microcracks in the u-part, its constitutive relations

can be identified as

= I.A141 (3.4)

and if the undamaged fraction is linearly elastic (e.g. for composites), C!k. con-

tains the usual linear elasticity constants. If plasticity effects are included then a

generalized hierarchical elastic-plastic model is employed [Desai et al 19861.

The irreversible nature of damage implies that the material experiencing

it obeys nonholonomic laws. Thus the problem is formulated in rate form of the

governing equations and the constitutive relations are derived from (3.2)-(3.4) as

6,i = LijklikL - ÷(ai'. - of,) (3.5)

where

Lj= (1 - r)C,!, + rC'Jk (3.6)

From (3.5) it can be seen that although r, ÷ are scalers, a tensor namely, , -- ).
is introduced in the formulation. This tensor is responsible for damage induced

anisotropy, an obvious property of cracked materials. Further, an evolution law for

r is defined and it is directly related to failure where r reaches a critical value rcr.
A general law can be written as

•~ ÷ - (eij, iij) (3.7)
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Specifically, the following is used:

r = r. - ruexP(- R) (3.8)

where I (% i)1 (3.9)

and eii denotes the deviator tensor of eij. r. is the ultimate value of r and ic, R

are damage related material constants.

3.3 Stability of Damage Growth

In the previous section a structural transformation theory was introduced

for the description of the process of damage growth. When a structural system

is subjected to increasing external load, depending on the state of the material

an instability may occur resulting to sudden and often localized deformation. The

purpose of this section is to establish an instability criterion to examine the stability

of damage growth, Frantziskonis and Desai [1987], Frantziskonis, Tang and Desai

From the thermodynamic point of view, the state of the material can be

characterized by its strain energy density 0 defined as

pO = 1oiieij (3.10)

where p is mass density. The dissipated energy density (due to plastic slip and

damage growth) is expressed as

I = jIidt - 2iij (3.11)

where 4' is the total dissipated energy density over real time t and superscript e

indicates elastic (recoverable). From (3.10) and (3.11) the internal elastic energy

density rate is obtained as

1 "
W = ( + b1.e.) = - (3.12)
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The total dissipated energy density rate is decomposed into plastic energy density

rate and damage energy density rate, as

+ (3.13)

with

1(.i + *Pje?) (3.14)

d (= i i - 4i e) (3.15)

Let V be the volume of a structure and S its boundary. The rate of work of external
forces T, (neglecting body force) is

k = iTitlidS (3.16)

with ui being the displacements. Let

fv = jdV (3.17)

f = • (atji~ + bij)dv (3.18)

f - J . + Oi iee)dV (3.19)

b = j(O'ijii - &ijei,)dV (3.20)

Considering adiabatic process, then from (3.12-3.20) and from the equation of

balance of rate of energy

S= 6r = P +, +.t (3.21)



63

The potential energy II is expressed as

-I = H - E (3.22)

and since during the deformation process the total volume Vd changes

O01 OD OP (3.23)
OVd -- d "(Vd

G being the strain energy transformation (from u to d-phase) rate. The stability

of the transformation law is then governed by

221>0 (3.24)
O(Vd) 2  O(Vd)2 O(Vd) 2

If the above inequality is satisfied at any time during the loading process, unstable

deformation is possible. Such an unstable deformation could, depending on the

problem, localize into a small portion of the structure or could lead to periodic

localizations. It is noted that the above relation represents an analytical criterion

similar to the one proposed according to Griffth's theory [Eftis and Liebowitz 19751.

The physical interpretation of (3.24) may be expressed as: a brittle material system

may undergo unstable damage growth if the rate of the increment of external work

per unit damaged volume is higher than that of internal energy per unit damaged

volume.

3.4 Surface Degradation

3.4.1 General Concepts

Review on surface degradation is presented here. Further details can be

found in Frantziskonis [19891, Frantziskonis and Desai [1991], Frantziskonis, Tang

and Desai [1991].

It has been observed that in many engineering materials surface uneven-

ness (roughness) grows with increase in strain [Kitagawa and Matsushita 1987].

Surface roughness is induced by microstructural inhomogeneity and its growth is

initially stable. It is necessary to mention that there is certain evidence that this

phenomenon acts as a trigger effect on shear bands appearing in the specimen.
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The sudden growth of surface roughness results in the occurrence and development

of shear band penetrating into the body [Kitagawa and Matsushita 1987; Yuku-

take 1989], Microscopically a heterogeneous structure of the material produces

an inhomogeneous deformation field from a very early straining stage. However,

irregularity of deformation in the body is not uniform, but there is a part in which

the irregularity is greater than that in other ones, that is, near the surface. These

observations are also evident in existing extensive experiments on brittle materi-

als [Hudson, Brown and Fairhurst 1971; Fairhurst and Cook 1966]. Because the

constraints to crack development are smaller near the surface than far from the

surface and the near surface microcracks have a greater tendency toward propaga-

tion (for the reason that the stress intensity factor for such a crack is higher than

for a same size or even bigger crack in the interior), development of microcracks is

more pronounced near the free surface. Then damage distribution at the edge of a

specimen where surface degradation is of importance is expected to be significantly

different from the damage distribution fax from the edge.

Consider that damage at the edge due to surface effects is additive to the

damage accumulation due to deformation without surface effects. So at the edges a

small volume (the total elementary volume) AV, is subdivided into an intact part

AV., and into a damaged part AVsd, and further, AVid includes AVidl (damaged

volume without surface effects consideration) and AVsd 2 (damaged volume due to

surface effects only). It is considered that the above subdivision holds for a distance

p from the edge (Figure 3.2), where p is a positive real number dependent on the

material properties, the geometry, and the load on the structure. At an instant of

time the edge damage parameter is defined as

rt A=Vd AVdl + AVd2 (3.25a)
v-, -A v, A v,

or
or= r + re (3.25b)

with

r - A V(3.25c)

Iv
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Damage Progress-ion Zone

Sur~ace Degradation Zone

Figure 3.2 Schematic of Surface Degradation Zones

r.=AVd2 (3.25d)
Ae AV,

Here r, is expected to be maximum at the edge and its value decreases continuously

till a minimum value expected to be at a distance p from the edge. Let us consider

the following volume average, per unit area in the plane parallel to the stress-free

surface:
I I rds (3.26)p
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Also the following average stress can be introduced

! ij = o-• ai ds (3.27)

Based on physical reasoning, it is possible to establish a connection between the

average values of damage and stress as defined above and the dimension related

parameter p. At the effective surface degradation volume total damage ratio is

considered as

S= r + i÷ (3.28)

Note that ft can be greater than rc, since 0 < r < rcr. Here r,., is the ultimate

value of damage variable r. But in general

0 < ft •5 1 (3.29)

The parameter r as a function of ýD is well defined [in section 2 at this

chapter, Frantziskonis and Desai 1987]. It is possible to express parameter re as

another function of ýD and space. But it may be more convenient to consider

the damage parameter rt along the surface degradation zone(s) be depicted by

the damage parameter without surface degradation consideration multiplied by an

amplification function. Consider the problem as shown in Figure 3.2, we can write

rt = r{exp[A(x - D/2 + p)]}, D/2 - p • x <_ D/2 (3.30)

where

A = A(÷) (3.31)

and x is the distance from the center of the sample to free surface, and D is the

diameter (or width) of the sample. Then, we have

r. = r{exp[A(x - D/2 + p)] - 1}, D/2 - p : x < D/2 (3.32)
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It is noted that the exponential assumption considered here agrees with the surface

bifurcation studies originated by Biot [1963, 19651. Considering the weighting

integration (3.26), we obtain

r(epA 1 ), D/2-p5x< D/2 (3.33)

For a sample with height=5", width (diameter) D=4", and p = 1" (to

be discussed in the following chapters) under uniaxial compression, if we take

A = constant = 2 (a simplified case and to be discussed later), the distribution of

damage parameter r, and weighted damage parameter ýt can be obtained as shown

in Figure 3.3 and Figure 3.4, respectively. Here, it is noted that, in an average sense.

the damage parameter in the internal zone is amplified by 3.19 times in the surface

degradation zone.

3.4.2 Surface Degradation With Size and Shape Effects

It is well known that the deformational characteristics of brittle materials

depend on the size and shape of a structure. In a specimen subjected to uniaxial

stress, when the ratio of height to width (diameter for cylindrical specimens) of the

sample is increased the level of (macroscopic) stress at unstable failure decreases.

as shown by experiments [Hudson, Brown and Fairhurst 1971; Desai, Kundu and

Wang 1990].

Let us introduce the concept of effective surface degradation volum.e. For

high ratios of height to width this volume occupies a large percentage of the sample

volume. On the other hand, for low ratio of height to width the effective surface

degradation volume is small as compared to the whole volume of the specimen.

It is expected that as height to width ratio increases surface degradation becomes
the predominant damage mode resulting to an instability at a low stress level. As

the height to width ratio decreases, the effect of surface degradation decreases and

pure damage growth becomes the predominant instability mode.

From the above discussion it seems that the degradation instability theory

is capable of capturing the essential features of the scale effects. This will be shown

further in the next chapter. The 'characteristic length, p, acts as the bridge and is
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defined as that specimen size (critical radius for cylindrical sample) such that foi,

that length the entire specimen would experience surface degradation. The length

p is defined as [Frantziskonis and Desai 1991; Frantziskonis, Tang and Desai 1991]

P = a Wds - ], p < d/2 (3.34)

where W is a weighting function, a is a material constant, 1 is the so-called surface

degradation material length and c is the path of maximum (absolute) principal

compressive stress. Putting W = unity, Frantziskonis and Desai [1991] used this

formula to a simple case where a cylindrical specimen is subjected to an uniaxial

compressive load and got satisfactory results. Next, we will find the material3 constants from experimental measurements.

3.4.3 Material Constants Concerned with Surface Degradation

A series of uniaxial tests on different size cylindrical specimens of a simulated

rock were performed [Desai, Kundu and Wang 1990]. The simulated rock used

consisted of sand, cement, plaster of paris and water at proportions 15:2:3:4. A wide

range of different cylindrical specimens were tested under displacement controlled

uniaxial compression. An MTS testing machine with appropriate data acquisition

system was used. Both axial and lateral displacements were measured in addition

to the axial force. Figure 3.5 shows typical results reported in [Desai, Kundu and

Wang 1990]. Depending on the specimen size the peak strength and the post peak

response vary. The samples tested had different combinations of length L and

diameter D. Table 3.1 shows the dimensions of the samples used as well as the

peak strength values.

In order to find out the material constant a, let us consider a cylindrical

specimen of length L and diameter D subjected to compressive load P, Figure 3.2.

The load acts parallel to length L and the cylindrical surface is load free. Let a,

be the uniform stress in the core of the sample and a, the average stress in the

surface degradation zone. Then

P=-( -2p) 1+ jD2 - (D - 2p)2 &il (3.35)

4 4
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We consider the simplest possible constitutive equations for the u and d-parts ex-

pressed in (3.3) and (3.4). Thus we consider C!Lkt and C441 to be elastic constitutive

tensors. Then, considering the strains in the core and in the surface degradation

zone to be equal

an = (1 - r)Euell + rEdeli (3.36)

&11 = (1 - ý)Elell + iEEdel1  (3.37)

where Eu, Ed are Young's moduli for the u-part and d-part, respectively and j is

defined in (3.26). From (3.35-3.37) we have

P = alD2 + a2p 2 - a2 pD (3.38)

where

a, = -•EU - r(E' - Ed)]qll (3.39)

a 2 = nr[Eu - ý(E- - Ed)]el1 (3.40)

For the uniaxial case, with W = 1

p =a(L-l) < D/2 (3.41)

From (3.35) and (3.41) we obtain

(L - ) 2  (L -) (342
a = C1+ C2 D 2  DC3 (3.42)

where

cl = 4al/Tr, c2 = 4a 2 a 2/ir, and c3 - 4a 2a/ir (3.43)

and a is the average or measured stress.

Assuming that a,, a2 are constant at the peak strength, from the series

of tests shown in Table 3.1, the values of cl, c2 and c3 at peak strength can be

determined. By using the least square fit method, The Values of c, = 2197, C2 =

343, c3 = 1622 were obtained. From (3.43)

C2  (3.44)
C3
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Then we find the material constant a of the artificial rock is approximately 0.21.
Assuming the damage parameter rt in the surface degradation zone follows

the relation as given in (3.8). The material constants associated with damage in

surface degradation zone are r. and R'. They are different from the constants

ted and Rd in the internal pure damage zone. It is expected that the damage

amplification along the surface degradation zone can be considered through the

introduction of ic and R8. For cylindrical sample, the parameters were obtained

for various D and L, as shown in Table 3.2. Now, let us find the constants x" and
R8.

For a cylindrical specimen as shown in Figure 3.2, the pure surface degra-

dation occurs with the size of D = 1" and L = 3.38", and the pure damage occurs

with the size of D = 1" and L = 1" (the assumption I = 1" is used). The results

shown in Table 3.2 can be plotted as.shown in Figure 3.6 and 3.7 [Desai, Kun-

du and Wang 1990], with L 2 /D as the horizontal axis. From these two figures,

the damage constants for the pure damage zone are obtained as nd = 200.34 and

Rd = 1.92, and the damage constants for the surface degradation zone are obtained

as =i = 362217.45 and R" = 2.95.

These two parameters are used for back-predictions of the weighted damage

parameter distribution as shown in Figure 3.8 and Figure 3.9. In Figure 3.8, the

damage parameter (0.05) in the internal zone is amplified, in an average sense, by

5.38 times along the surface degradation zone. In Figure 3.9, the damage parameter

(0.1) in the internal zone is amplified, in an average sense, by 3.4 times (very close

to the number predicted through eq. (3.33)) along the surface degradation zone.

Through comparison of the two amplification numbers, we understand that it is

appropriate and necessary to consider the damage amplification parameter along

the surface degradation zone is a function of damage evolution rate. Further,

the function should be inversely proportional to the damage evolution rate. This

consideration is connected to the development of surface effects observed through

strain gage tests discussed in chapter 5.
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3.5 Degradation Instabilities and Surface Degradation Instabilities

Let us define the region R of a body as R = R1 + R2 where R2 is the

surface degradation volume bounded from the stress-free surface and extended to

a distance p from it. Then, R1 is the rest of R such that R 1 = R - R2 . The

dissipated energy from internal damage and surface degradation growth is

m b-Q+s (3.45)

with

1 = (aijRij - (3.46)

and

- fOic i,4 - 6,ir eij)dV (3.47)
2JR

where Q and S represent the energy density dissipated from internal damage growth

and from surface degradation growth, respectively. Let P be the rate of dissipated

energy from plastic deformation such that

=P + +S (3.48)

* where
Je =R ýdY 

(3.49)

m P~ =j(aicrii + &ij ei)dV (3.50)

4, is the dissipated energy per unit volume in the period of time t as defined in

(3.11). Considering quasi-static loading, in the absence of body force, rate of

energy balance requires

Ja T~iiidS = JR dV +Q0+ S+P1 (3.51)

where Ti is the external load applied on boundary OR, u, denote displacement, and

W is the internal energy density rate which is given as (3.12).

I



72

Depending on the external load level, the geometry of the structure and the

material properties, the following instabilities may develop:

I surface- Surface degradation instability resulting in spaLling of material from the

- Damage progression instability resulting in overall failure by shear band

or other failure mode.

Note that the surface degradation instability does not necessarily imply

overall failure of the structure. In other words, "post-spalling" is possible until a

global instability develops. The total potential energy is expressed as

Hl = j WdV- fRTiuidS (3.52)

From (3.24), (3.45-52) the conditions for unstable global damage and surface degra-

dation growth are established as

a211 02 p a2 Q a2S
2(Vd)- + a(Vd)2 + T(Vd)- + a(Vd) 2 <0 (3.53)

8211 I 2 p + 2 Q a2S
a(V.). + a(V.)2 + 5(V,)2 + O(V,)- <0 (3.54)

where Vd is the internal damaged volume, and V8 is the surface degradation volume.

In the following chapter, these two instability criteria will be implemented

and applied for some typical problems. It will be shown that the instability theory

is powerful and easy to implement. From this theory, it is understood that the

onset of instability is influenced by the material behavior (constitutive law and/or

flow rule), structural geometry, and the external load.

3.6 Conclusion

In this chapter, energy based degradation instability theory has been con-

sidered and developed. The degradation instability criteria are comparable with

that of Griffith's and can capture information relevant to damage growth. In order

to consider the surface effects of brittle materials, a surface degradation zone was

defined. The material constants concerned with surface degradation were identified

II
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against experimental observations. The surface degradation instability criterion is
expected to predict the shape and scale effects of brittle materials under external

load. The implementation and verification of the proposed theory will be presented

in the following chapter.
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Table 3.1 Measured Peak Stress for Artificial Rock with Various

Dimensions (after Desai, Kundu and Wang 1990)

DiameternD) Leugth(L) Stress at Peak

(inches) (inches) (psi)
32 1333

3 3 3303"3 4 1228

-- 3 5 976

- 3 6 952

1 3 324

1.5 3 65O

2 3 918

2.5 3 1130
3 3 1303

Table 3.2 Material Constants K and R (after Desai, Kundu and Wang 1990)

Length of Sample Diameter of Sample R
(inches) (inches)

2 3 131.736 1.847
3 1615.616 2.178
4 17321.240 2.537

5 49199.268 2.725
6 721019.129 2.988
3 1 99242.230 2.583

1.5 13922.442 2.370
2 4139.004 2.221

2.5 284".494 2.205
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Figure 3.3 Measured Stress-Strain Curve (after Desai, Kundu and
Wang 1990)
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CHAPTER 4

IMPLEMENTATION OF THE INSTABILITY CRITERIA

In this chapter, applications of the degradation instability theory will be p-

resented through both analytical and numerical solutions. For analytical solution-

s, we consider (for simplicity) the undamaged fraction as linear elastic material.

However, for numerical solutions, the elastic-plastic behavior of the undamaged

fraction is considered. First, the elastic-plastic constitutive relations and the nu-

merical procedure will be presented, and then, some solutions concerned with both

global degradation instability and surface degradation instability will be given.

4.1 Constitutive Relations for the Elastic-Plastic Undamaged Fraction

The following brief description of the plasticity model used for the u-fraction

is adopted from Desai, Somasundaram and Frantziskonis [1986].'As mentioned in

3.2, the material behavior is decomposed into two parts, namely the u-part and

d-part. The undamaged part is assumed to obey an elastic-plastic constitutive law.

Since the damaged part "follows" the deformation of the u-part and since it has no

shear resistance, the damage constitutive relations may be termed as rigid perfectly

plastic with zero yield strength [Frantziskonis and Desai 1987]. The elastic-plastic

constitutive relations for the u-part are written as

arj = Ceklek1 (4.1)

for loading, and asI i= C~kti(4.2)

for unloading. Here, uii is stress tensor, Cki is strain tensor, CP 1 is the elastic-

plastic tangential stiffness matrix, and Cý- is the unloading stiffness matrix. (.)

denotes increment.

A general hierarchical procedure for developing elastic-plastic models for

isotropic and anisotropic, nonassociative responses and applications for soils, rocks

and concrete are described in Desai [1980], Desai and Siriwardane [1983], Desai and
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Faruque [19841, Desai, Somasundaram and Frantziskonis (1986], and others. This

approach is used here to describe the u-part with basic isotropic hardening and

associative model bo, here 6o denotes zero deviation from normality. It is assumed

that the associative behavior holds for the u-part, and the yield function is given

[Desai, Samasundaram and Frantziskonis 19861

F = - j _.fj](1- I -- rF1 1 2  (4.3)

where J1 - - b, and b is a material constant representing the distance from

the stress origin to the intersection of the surface with the tensile hydrostatic axis.

.11 = Ukk is the first invariant of a! stress, Sr = (Jd)1/ 3 /(J~d)1/ 2 is the stress ratio,

J33 d (J~d) is the third (the second) invariant of the deviatoric part of a, 3, -t, n are

assumed to be material constants related to the shape of the yield function, al, 217

are material constants related to hardening and d= - 1 superscript p

indicating plastic. In order to derive the C(P tensor, the usual relations of elastic-

plastic theory are used [Chen and Han 1988]. Finally, the C'P1 tensor is written
as (appendix A)

C O. a ,a , Ce
ce =(Cm jnau,n acuv. uvkl (4.4)Iik= CIkl-- aF C 8F _ aF(:F aF 1/2a Peqst'5 t o9f 5.,., a,,)/,(44

4.2 Numerical (Finite Element) Procedures

As mentioned before, if the two fractions of the mixture are considered to be

elastic-plastic, it is difficult to obtain an analytical solution even for the simplest

uniaxial load case. Hence numerical procedure, here, the finite element method are

used. Let

Iu=Nq (4.5)

3 e=Bq (4.6)
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where u is the displacement vector, e is the strain vector, N is the shape function

matrix, and B is strain-displacement matrix. The principle of virtual work leads

to the following incremental equations [Desai and Abel 1972]:

R BTdodV = dQ (4.7)

where d(.) denotes increment, dQ is the increment of the external force, superscript

T denotes transpose matrix, and V is the volume. The constitutive relations (3.5),

(3.6) are written as

do = Lde - drS (4.8)

From (4.6), (4.7) and (4.8), it follows that

Kdq = dQ + dqd (4.9)

where

K=JBTLBdV (4.10)

is the incremental stiffness matrix for the u-part, and

dQ d = R BT drSdV (4.11)

is termed as the "damage force".

In order to evaluate the second partial derivatives appearing in the insta-

bility inequalities (3.53) and (3.54) numerically, the central difference method is
employed, thus for example

( V) 3 - (V (4.12a)0(--•d) I(" (d3 V%

where
O ( 2  (4.12b)

O~d 2 - (Qd1 (4.12c)
o~dd • (Vd)2 - (vdT,

I0V
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and subscripts 1, 2, 3 denote values at three consecutive increments of load. • is

I located somewhere between (Vd)1 and (Vd) 3 .

The programme including strain softening and dynamic analysis (Woo and

Desai 1991; Desai and Woo 1992] was modified for our purposes. In Woo and Desai

(19911, a few alternatives to implement the damage model [Frantziskonis and Desai

I 1987] into FEM code were discussed, and the mesh dependency of the damage

model was investigated against a footing problem. It is shown that at local level,

mesh dependency is significant at post-peak stage. However, it is also shown that

the mesh dependency can be constrained to a certain level through the introduction

of a simple weighting procedure. Although post-instability investigation is not the

theme of this dissertation, some considerations will be presented in chapter 7.I
4.3 On Global Degradation Instabilities

The analytical solution of a simple problem will be presented first, and then

some numerical solutions will be followed.

4.3.1 Analytical Solution of A Simple Problem

If we consider the two fractions in a stressed brittle material to be linear and

elastic, it is feasible to examine the stability inequalities analytically. Then, the

two constitutive tensors C!,kl and C4§k. are functions of the two Lame's constants,

namely pM, A. and Pd, Ad respectively. For uniaxial load, from (3.3) and (3.4)

aF.t) = C,,kl}ki (4.13)

=) ijkl~kl (4.14)

and since a22 = a33 = 0 we obtain that the apparent Poisson ratio v is expressed
* as A u - r(A . - Ad)

v = 2(p, + Au) - 2r(p,,- Pd + A,. - Ad) (4.15)

Since v is a function of r, and r continuously increases with the damage progression,

the apparent Poisson ratio is not constant. An increase in v is expected, and this

reflects the change in volume due to crack expansion. Figure 4.1 shows the variation
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of v with respect to r (4.15), where an initial Poisson ratio of 0.2 has been assumed.

In figure 4.1, F is the ratio of Young's modulus between the d-part and u-part. As

shown in the following, the Poisson effect is important for the stability analysis.
If we assume homogeneous deformation under uniaxial load (surface degradation

effects are not considered for the time being), and neglect the volume change in

the process, then the instability inequality (3.24) reduces to

1-• 1 a2= I r a22 0 (4.16)

where (3.1) has been used. From (3.48), (4.13) and (4.14), for uniaxial load in

direction 1, the potential energy II is expressed as
-v21 12M + A. + r(2p. - 2 Pad + A. - Ad)

2 + r(2 2 2 + vA. - rv(A. - Ad)] (4.17)

where V is the total volume of the structure (specimen). From (3.20), (4.13) and

(4.14), for uniaxial load in direction 1 we obtain

[D 2 2y. - 2 /ld + A. --Ad
=re11 i . - Yud +A d) 2 + 2v(A. - A)

(4.18)
From (4.17) and (4.18) the derivatives 02 II/Or 2 and a 2 D/0r 2 can be calculated,

noting that e11 and v are functions of r. Although the final expression for the left

side of (4.16) is lengthy, at the peak aOau /Or = 0 and this simplifies the calculations

significantly. Relation (4.16) after algebraic manipulations finally reduces to

3,(+2v 2 )a-3A.1 - 2v-1 a+ - V3 <0 (4.19)

where

a ( - v)E 3 + rEd (4.20)

and Eu, Ed is the the Young's modulus for the u-part and d-part, respectively. From

the above relation (4.19) by setting the left hand side equal to zero (the implicit

function of r with respect to v is obtained), the curves of Figure 4.2 are obtained,

where the initial Poisson ratio is assumed to be 0.2. In this figure F = Ed/Es.
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Inequality (4.19) is satisfied for all combinations of Vd and r that are below the

curves shown in Figure 4.2. For example, if F = 0.05 is assumed (a reasonable

value if one considers the the physical interpretation of damage) and vj = 0.3 then

for stable behavior at peak r must be greater than 0.9 (approximately). Such a

high value of r may only be possible for the post peak range. Even in the case

where such high r values are physically acceptable, it is reached at high strain

values far after peak where the material reaches a residual strength. In addition,

for the material parameters determined for materials like concrete [Frantziskonis

and Desai 1987], the value of r at peak is between 0.1 and 0.3.

In the above analysis, the two material fractions were considered linear

and elastic. Thus no plastic deformation is present. However, for uniaxial load,

the plastic energy versus strain or r curve is convex around the peak stress level.

Convexity implies O2DP/Ir 2 < 0. Then from (4.16) plastic deformation promotes

instability. Thus the present analytical solution suggests that a homogeneous post

peak state is impossible since basic energy based stability conditions are violated.

In the above analytical solution, surface degradation effects were not con-

sidered. If surface degradation effects are included in the instability analysis, it is

expected that a surface degradation instability will occur first. The onset of such

an instability may indicate spalling type of failure. The remaining part of the body

may still be stable until (3.53) is satisfied. This will be shown later.

4.3.2 Numerical Solutions
For illustration purposes of the occurrence of instability, the following prob-

lems are considered. Figure 4.3 shows the problems considered as well as the finite

element meshes. Two cases were considered. Case A is uniaxial plane strain, sim-

ulating a plane strain test such that there is no friction between load platen and

specimen. Case B imposes non-uniform deformation since horizontal displacements

at the top and bottom were restrained; this represents a full friction condition be-

tween load platen and specimen. For both cases A and B increments of vertical

displacements were applied along the top and bottom interfaces. For each incre-

ment the instability inequalities were checked. The purpose of the present analysis
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is to examine the global degradation instability. Thus (3.24) is used for both cases

A andB.

Figure 4.4 shows the force-displacement curve from the finite element anal-
ysis using one element. The onset of damage growth instability is indicated by a

circle. In case A uniaxial plane strain is simulated. For this case instability implies
the onset of non-uniform deformation that may result to a shear band formation

or other types of non-uniformity. Similar observations hold for case B. Figure 4.5
shows the force-displacement response from the analysis with 4 elements. Figure

4.6 represents the results from the analysis with 16 elements. Table 4.1 shows the

percentage of load with respect to peak load, at the onset of instability. As can be

concluded from this table the finite element analysis converges to the solution of

about 86% of peak load for instability onset for case A and about 85% for case B.

4.3.3 Discussion

Analytical and numerical results on degradation instabilities clearly indicate

that the global damage growth instability is to occur before and close to the peak

strength. This prediction is supported by the experimental results of a series of

triaxial compression tests on quartzite [Hallbauer, Wagner and Cook 1973; Read

and Hegemier 1984]. The tests were done on cylindrical specimens which were

jacketed in thin copper tubes so that their lateral expansion would be resisted

by the increasing confinement. The rate of axial straining was kept constant at

1.675 x 10- 5 /sec during the tests. The purpose of these tests was to determine the

microstructural changes that progressively take place in the rock as it is compressed

to failure. Particular emphasis was given to the structural changes that occur in

the vicinity of the peak of the stress-strain curve. To accomplish this, the tests

were stopped at various predetermined points along the strain path; the specimens

were unloaded and removed for sectioning and microscopic examination. Figure

4.7 shows the nominal stress-strain curve obtained from the tests, and photographs

of specimen sections at the various points along this curve. It was reported that

as the stress is increased from 80 to 90 percent of ultimate, a rapid proliferation of

microcracks occurs, with the number of microcracks increasing about seven-fold.
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4.4 On Surface Degradation Instabilities

Borehole instabilities and breakouts are often characterized by the slabbing

mode that affects a portion of the material close to the borehole wall [Kemeny

and Tang 19901. In addition, it is clear that the borehole size has significant effect

on the initiation of breakout. Haimson and Herrick [1989] studied the behavior

of samples with different central hole sizes subjected to external stress. Square

blocks of dry Alabama limestone having different diameters of central holes, ranging

from 2 to 12 cm were subjected to uniaxial stress. All blocks had side length to

borehole diameter ratio of 5:1. Is was found that small diameter holes required

larger stresses to induce breakouts, Figure 4.8. Since laboratory size boreholes

are usually smaller than the ones in the field, the importance of hole size and its

relation to breakouts is of basic and quantitative nature. Thus in order to achieve

a well-grounded statement about borehole stability that complies with laboratory

and field observations, the dependency of borehole stability on its size (scale effect)

must also be modeled.

Borehole scale effects is an example of the fact that the deformational charac-

teristics of brittle materials depend on the size as well on the shape of the structure

I (specimen) [Frantziskonis, Tang and Desai 1991]. As pointed out before, the theory

for surface degradation instability can capture the information of scale effects. In

I the theory, the surface effect region is described by a distance p which is given by

(3.34). The material constants a, KS, R8, red and Rd associated with the theory

I have been found from experiments in section 5 at chapter 3. Now, we will present

a simplified solution for a borehole problem, and show some numerical solutions of

borehole problems [Frantziskonis, Tang and Desai 1991].

4.4.1 Simple Analysis of A Borehole Problem

Let us consider the problem depicted in Figure 4.9. The borehole structure

of length and width D contains a central circular hole of radius R. The ratio D/R is

considered constant such that D/2R 5. Uniaxial compressive stress a is appliedI
I
I
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externally. If the material is considered linear, isotropic and elastic, the 0 mar

I occurs at point A [Roark and Young, 1989]:

• ,,az -" aA = kr,:non (4.21)

where

Onom - D (4.22)

k = 3.00- 3.13(•) + 3 .6 6 (2R) 2 R1.53(-2R)3 (4.23)

I In order to demonstrate analytically the capability of the theory to capture the

scale effects in this problem, we make the following simplified assumptions. We

consider that the material is linear elastic and isotropic. This, of course, represents

a "stiffer" material than actual rocks. In addition, we assume that for the external

stress levels at breakout the material in the surface degradation zone has zero

stiffness. Thrs at breakout initiation this problem can be analyzed by using the

solution presented in equations (4.21)-(4.23), but now the radius of the hole is

R + p. For this problem equation (3.34) reduces to

I p = a(21rR - 1) (4.24)

Smax = k aD 
(4.25)D -2(R +p)

and k is given from (4.23) where R+p is substituted instead of R. For the simulated

rock [Desai, Kundu and Wang 1990] it was found that a = 0.21 and I was assumed

I to be one inch (for the time being, further discussion in presented in chapter 5).

If we consider that at breakout, amax in (4.25) assumes a constant value we can

I obtain solutions for different R where always D/2R = 5. The curve in Figure

(4.10) is obtained where the diameter (2R) is plotted on the horizontal axis and

the external stress at breakout is plotted on the vertical one. Clearly, the shape

and trend of this curve is similar to the experimental one given in Figure 4.8.

I•,.,m,,,.•m.•., m mmi m m |m
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4.4.2 Numerical Solutions

The finite element method has been used, long ago, for the stress-

deformation and stability analysis of borehole problems. Initial work in this area,

Desai and Reese [1970], considered nonlinear elastic material response and the Mohr

criterion was used as the criterion for development of plastic zones. It was found

that plastic zones advance close to the borehole at a certain distance depended on

the geostatic loading. The extent of plastic zone may be related to the surface

degradation zone discussed in this study. However, since the surface degradation

zones are dependent on the geometry of the structure, such a relation would be

based on fixed radius of the borehole.

The problem shown in Figure 4.9 is investigated numerically for six different

values of the central hole radius. For all problems, the ratio of D over R is constant

such that D/2R = 5. The finite element mesh used is shown in Figure 4.11. Eight-

noded quadrilateral elements are used. For the six problems studied the hole radii

are 0.5, 1, 2.5, 5, 7.5, and 10 cm. For each problem the surface degradation distance

is calculated. The elements next to the central hole extend to a distance p. The

material properties assigned for these elements are the surface degradation ones.

I The purpose of this analysis is to study the surface degradation instabilities close

to the hole. Thus no surface degradation is considered close to the lateral surfaces

I of length D, since the surface degradation growth at these points is much slower

than the growth close to the hole.

I The calculated load-deformation curve for these problems is monotonically

increasing until a peak load is reached. Beyond the peak load, softening response

is calculated. In Figure 4.12 radius R is plotted on che horizontal axis and the

normal stress a., at the peak load for the lower left Gauss point of element 2 is

plotted on the vertical axis. Here a., represents the so called tangential stress at
the end of surface degradation zone. A simple criterion for spalling of the surface

degradation zone calls for a., reaching a critical value. In this case, Figure 4.12

shows the capability of the theory to represent the scale effect. The shape of this

I curve is similar to the one shown in Figure 4.8 [Haimson and Herrick 1989]. Since
the material constants for Alabama limestone are not available, no quantitative

I
I
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comparison can be made. Figure 4.13 is similar to Figure 4.12, but the maximum

(peak) stress is plotted on the vertical axis.

At every increment of load, the instabilities (3.53) and (3.54) are examined.

I Surface degradation growth (Figure 4.14) showed the following interesting charac-

teristics for these problems. Surface degradation showed an initial unstable region

1 from the beginning of the external load application. Subsequently the response

became stable until a second instability was initiated. This trend is similar to the

1 crack propagation problem studied by Sammis and Ashby [1986]. In that reference

the crack propagation problem of a notched specimen'with a central hole has been

I studied theoretically and experimentally. The geometry of the problem is simi-

lar to the one shown in Figure 4.9 and the propagation of initial surface cracks

parallel to the external compressive load is studied. Crack propagation was found

(theoretically and experimentally) to be initially unstable (from the beginning of

the load application) then stable and then unstable again. Here we note that the

instability inequalities (3.53) and (3.54) are necessary but not sufficient conditions

for instability initiation. Let

e = I + Dp + Q + S (4.26)

In Figure (4.14), e is plotted with respect to the surface degradation volume Vd,

for the case R = 10cm and D = 100cm. Similar curves were obtained for the other

five cases considered. When the curve is convex, surface degradation instability

is possible. The curve shown in Figure 4.14 is initially convex implying possible

unstable growth, up to point A. After point A the surface degradation growth

1 is stable up to point B. After point B the curve is convex again. Note that the

convexity after B increases rapidly. Point C on this curve is at peak load.

I This analysis is similar, in trend, to the problem studied by Desai and Reese

[1970]. It implies that the material is susceptible to surface degradation instability

I from the beginning of the load application. After a certain amount of surface

damage has been achieved, the damage growth response is stable for a rather small

range of external load. Then surface damage instability is expected to occur, after

I
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point B. The, scale effect shown in Figure 4.15 corresponds to instability initiation

at point B, where radius R is plotted on the horizontal axis and the externally

applied stress at surface instability is plotted on the vertical axis [Frantziskonis,

Tang and Desai 1991].

4.4.3 Comments

Surface degradation growth is shown to play an important role for phenom-

ena observed in borehole problems such as scale effects and surface degradation

instabilities. Analytical and numerical results show the capability of the theory to

predict such phenomena.

For many problems in brittle material mechanics, analysis is based on simple

elastic-perfectly plastic models that are calibrated on test data from conventional

triaxial compression experiments. These models lead to irregular stability of the

borehole as compared to experimental observations. Maury [1987] and Guenot

[1987] demonstrated that classical design procedures lead to overestimation of the

drilling fluid density by a factor of 2-8.

Papanastasiou and Vardoulakis [1991] used the bifurcation theory to ex-

amine the effect of borehole radius on borehole stability. Material behavior was

described by the deformation theory of plasticity, and internal length was intro-

duced in the formulation through employment of Cosserat theory. The numerical

solutions showed an increase of the bifurcation stress with decreasing borehole ra-

dius. It would be interest to note that the present study is different from the one

given by Papanastaiou and Vardoulakis [1991], in the sense that length is intro-

I duced through surface degradation consideration rather than in the constitutive

equations. Furthermore, instabilities are based on global energy consideration.

1 4.5 Conclusion

I Through application to some typical problems analytically and numerically,
it is our understanding that the global degradation instability theory predicts the

I instabilities concerned with non-uniform deformation and the surface degradation

I
I
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instabilities concerned with spalling and size, shape effects for brittle materials like

I rock and concrete.

I
I
I
I

I
I
I
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Table 4.1 Summary of Numerical Results

n P. P CMe Pi f/PNxIOG N%I Nx1ONxO'(%

1 103 76.9 A 74.7I1 123 95.2 B 77.4

4 102 3.4 A 86.3

4 117 94.5 B 10.6

16 102 33.0 A W6.3

16 111 94.3 B 94.9

r: number of elemens
P.I peak load
P= load at deg-daion inMbiitY

I
I
I

I
I
I
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CHAPTER 5

PHYSICAL EXPERIMENTS

In this chapter, relevant non-destructive tests including strain gage tests

and ultrasonic scanning tests are presented and discussed. For a brittle material

under external load, degradation mechanism and patterning are studied, and the

surface effects are identified. The material internal length associated with surface

degradation (defined in chapter 3) is estimated against the ultrasonically dissipated

energy distribution. The relationship between ultrasonically dissipated energy and

mechanically dissipated energy is dependent on deformation and can be approxi-

mated by a power function of load level.

5.1 General

In the previous two chapters, the proposed instability criteria and appli-

cations to some typical problems have been presented. It is understood that the

instability criteria are based on the energy consideration, that is, on the dissipated

energy and elastic potential. Because energy dissipation corresponds to degrada-

tion, the instability criteria are called degradation instability criteria. It is also

pointed out that the onset of the instability may manifest the onset of inhomoge-

neous deformation. In this chapter, relevant experiments are presented.

Surface effects have been reported theoretically and experimentally, especial-

ly for metal materials. For example, a few tests have been made in the laboratory

to observe surface roughness that develops on aluminum bars by Hutchinson and

Tvergaard [1980]. In these tests, it is clear that a large grain size gives more rough-

ness and that the roughness increases with increasing strain. It is seen that the

large strains at the very bottom of the wave troughs lead to shear fracture that

propagates deep into the bar [Hutchinson and Tvergaard 1980]. Surface effects for

brittle materials are not, as discussed previously, analogous to surface roughness

in metals. Experimental evidence on such materials that identify the surface ef-

fects are available in Yukutake [1989] for example, or in other relevant references

discussed previously.
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The surface degradation instability involves the material constants associat-

ed with the surface degradation zone. To identify the internal material 1 associated

with the surface degradation is another purpose of this chapter. Also, we are going

to study the degradation patterning and see if some relationship exists between the

degradation patterning and the final failure modes. Then through the investigation

of degradation mechanism, we may better understand the physical inclusion of the

degradation instability criteria.

Numerous methods ranging from the X-radiograph, to neutron radiography

and diffraction have been developed as non-destructive techniques (NDT), to assess

the integrity of structures, machines and other systems involving engineering ma-

terials. However, several non-radiation methods, such as ultrasonic/acoustic, light

and electron microscopy, thermographic and optic, offer very attractive alternatives

to radiation. Each NDT has its own advantages and limitations. A major problems

of many techniques is that the information they provide is qualitative. However,

people, especially engineers, are more interested in quantitative information. In

the experiments described herein, the ultrasonic tests have been chosen.

In addition to the ultrasonic scanning tests, the strain gage tests are preced-

ed, to study the local strain changes with average sjtress at some typical locations

along the specimen. This may provide information about surface effects for brittle

materials.

The performed experiments involved a lot of work and team effort. Mr.

David Daniewicz contributed significantly in sample preparation, computer pro-

gramming, execution, and data acquisition during the period the experiments were

performed. His involvement is acknowledged.

5.2 Ultrasonic Experiments

5.2.1 Fundamental Terms

Ultrasonic testing of materials makes use of mechanical waves in contrast,

for instance, to X-ray techniques which use electromagnetic waves. Any mechanical

wave is composed of oscillations of discrete particles of material. The frequency

of a wave is the number of oscillations of a given particle per second. Within a
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given wave it is the same for all particles and it is identical with the frequency

of the generator which can be chosen arbitrarily. The wave length is the distance

between two planes in which the particles are in the same state of motion. It is

inversely proportional to the frequency: high frequencies corresponding to short

wave lengths, and vice versa. The speed of sound is the velocity of propagation

of an acoustic wave. This velocity is a characteristic of the material concerned

and in general is constant for a given material for any frequency and any wave

length. The velocities of the various kinds of sound waves can be calculated from

the elastic constants of the material concerned, namely, the modulus of elasticity

E and Poisson's ratio v.

For longitudinal waves:

I/E 1-v

C1 = (1+) 2v) (5.1)

for transverse 
waves:

C =+ (5.2)

where p is the density of material, and G is the shear modulus of material.

For us the most important quantity in a given sound field is the sound

pressure. At points of higher particle density the pressure is likewise higher than

the normal pressure, while in the dilated zones it is lower. A very small and

inertialess pressure gauge placed in the path of the sound wave would indicate

alternately high pressure and low pressure in sinusoidal sequence. This alternating

pressure is the sound pressure. It occurs not only in gases, but also in liquid and

solid bodies. The mrximum deviation from the normal pressure (without sound

wave) is called the amplitude of the sound pressure which is closely connected to

the amplitude of movements, i.e. the maximum deflection of the particles from

their position of rest.

In the case of plane and spherical waves sound pressure and particle ampli-

tude are connected to each other by the relation [Krautkramer, J. and Krautkramer,

H. 1983]

p = pcwý = Zwý (5.3)
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where p is the sound pressure, p is the density of the material, c is the velocity

of sound, w is the angular frequency, and ý is the particle displacement. Z = pc

is called acoustic impedance (specific acoustic impedance). Materials with high

acoustic impedance are called "sonically hard", in contrast to "sonically soft" ma-

terials.

In the case of plane and spherical waves, the intensity of a wave (J) is

related to the sound pressure or the amplitude as follows [Krautkramer, J. and

Krautkramer, H. 1983]:

• -= -9 ZWT (5.4)

The intensity is thus proportional to the square of the amplitude of the sound

pressure.

5.2.2 Absorption and Scattering

In ideal materials, the sound pressure is attenuated only by virtue of the

spreading of the wave. A plane wave would thus show no attenuation whatever the

value of the sound pressure along its path, and a spherical wave, or the sound beam

of a probe in the far field, would merely decrease inversely with the distance from

the source. Natural materials, however, all produce a more or less pronounced

effect which further weakens the sound. This results from two causes, that is.

scattering and (true) absorption which can both be combined by the concept of

attenuation (sometimes also called extinction).

The scattering results from the fact that the material is not strictly homo-

geneous. It contains boundaries on which the acoustic impedance changes abruptly

because two materials of different density or sound velocity meet at these inter-

faces. Such inhomogeneities may either be inclusions, e.g., granular materials or

pores in concrete. They may be genuine flaws of the material concerned, or also

natural or intentional flaws such as porosity in sintered materials. They may also

be material which by their nature are inhomogeneous, e.g. cast iron, in which an

agglomeration of elastically completely different ferrite and graphite grains occurs.

There are, however, also materials which experience anisotropy under deformation.
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In a material with very coarse grain compared with the wave length the

scatter can be visualized geometrically: on an oblique boundary the wave is split

into various reflected and transmitted wave types. This process repeats itself for

each wave at the next grain boundary. Thus, the original sound beam is constantly

divided into partial waves which along their long and complex paths are gradually

converted into heat because of the always present true absorption.

In the frequency range used in testing materials the grain size is usually

smaller than the wave length. Under these conditions scatter occurs instead of

geometric division.

The second cause of the attenuation, absorption, is a direct conversion of

sound energy into heat, for which several processes can be responsible [Mason 1958].

Absorption can roughly be visualized as a sort of braking effect of the oscillations

of the particles, which also makes it clear why a rapid oscillation loses more energy3 than a slow oscillation; the absorption usually increases with increasing frequency

[Krautkramer, J. and Krautkramer, H. 1983].

3 5.2.3 Intensity Methods for the Ultrasonic Testing of Materials

Methods for the ultrasonic testing of materials can be divided into three

categories: intensity methods, pulse-echo method and transit-time method. The

intensity methods have been chosen for our study. As discussed in the sequence the

transit time method did not provide consistent and/or useful information. Then

the following brief description is restricted to intensity methods.

The intensity method in which the intensity of the ultra-sound is measured

after it has passed through the test piece, is the oldest application of the ultrasonic

waves for non-destructive testing. It dates back to 1930 and was originated by

Sokolov and Muhlhauser [Krautkramer, J. and Krautkramer, H. 1983]. The princi-

ple is shown in Figure 5.1 in which the intensity method is portrayed schematically

by passing sound through a test plate, at a flawless and alternately at a defective

I point.

The voltage produced by a high-frequency generator excites the transmit-

I ting probe to ultrasonic oscillations which are propagated in the coupled test piece.

I
I



116

A second probe positioned coaxially on the opposite side receives a portion of the

radiated wave and transmits to the input of an amplifier a high-frequency voltage

which is proportional to the sound pressure at the contact point of the receiver.

The amplified voltage is read on an indicating instrument. At the flawed point the

propagation of the ultrasonic wave is impeded by the discontinuity in the mate-

rial, resulting in reduced sound pressure at the receiver and thus a lower reading

on the measuring instrument. Strictly speaking, this measures not the intensi-

ty but primarily the amplitude of the sound pressure if a piezoelectric receiver is

used. Provided the characteristics of both the amplifier and the instruments are

linear, the indication in this case is therefore proportional to the square root of the

intensitv.

5.2.4 Review of the Existing Literature

Various researchers have attempted to establish correlations between me-

chanical properties of brittle materials and ultrasonic measurements. As concrete

is concerned, ultrasonic pulse measurement has been applied to assess the compres-

sive strength [Jones 19521, compaction deficiencies, and maturity of young concrete.

The relation between compressive strength and pulse velocity in concrete have been

studied [Sturrup et al 1984; Ben-Zeitun 1986], but the scatter is found to be consid-

erable. Mindess [1982] loaded specimens in compression monotonically to failure

and measured the pulse velocity at the same time. He found that the velocity

remains constant until significant internal cracking occurs, i.e. between 1/3 and

2/3 of the strength. Spooner and Dougill [1975], however, experienced in their

experiments that pulse velocity decreased only near the peak stress. Al-Kubaisy

and Young [1975] showed that transit time increases in a specimen when the tensile

loading is increased and that strain discontinuities also cause transit time disconti-

nuities. Reinhardt and Hordijk [1988] used ultrasonic pulse measurements for the

assessment of damage in high strained zones such as that between two saw cuts. It

was concluded that close correlation between ultrasonic pulse measurements and

strength, and the size of the damage zone within a specimen can be established.

U
U
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Shah and Chandra [1970] studied the velocity and attenuation changes of

ultrasonic pulses transmitted across concrete and paste specimens subjected to

monotonically increasing, cyclic, and sustained loading. The measurements were

3 used in contrasting mechanisms of fracture. It was observed that:

1) There is no pulse velocity change for hardened paste specimens;

3 2) For mortar specimens, the velocity decreases prior to failure;

3) The same observation is true for concrete specimens as for mortar. Howev-

Ser, the velocity decrease is more pronounced for concrete than for mortar

specimens. It was also observed that for concrete specimens attenuation s-

3 tarts to continuously increase at 48.5 percent of the ultimate and for mortar

specimens at 89.5 percent of ultimate, while there was very little change in

3 amplitude until failure in paste specimens. It is noted that Robinson [1965]

also found that, the greater the quantity of aggregates, the lower the relative

3 values of stress at which the pulse velocity begins to decrease.

The effects of frequency of crystals were also investigated by Shah and Chan-

3 dra [19701. The following observations were made from those tests:

1) The initial no-load velocity of the ultrasonic pulse increases with an increas-

3 ing frequency of the crystal. The average initial velocity for the 25-kHZ

crystals was 13,300 ft/s, while that for the 2250-kHZ crystals was 83.200

* ft/s.

2) Initial amplitudes or intensities of the pulse decreased with increasing fre-

3 quencies.

3) The higher the frequency of the crystal for a given amount of cracking, the

3 greater the changes in the ultrasonic measurements.

A geological material when subjected to a sequence of loading, unloading and

reloading, exhibits anisotropic response. This is usually attributed to reorientation

of particles and to the formation of micro-cracks and damage within the material.

To characterize the induced anisotropy in geological materials and to compare, to

quantify, and to correlate such response with the anisotropic response, Jagannath,

Desai and Kundu [1991] developed an ultrasonic testing procedure. The ultrasonic

response was presented in the form of wave signatures, velocities and attenuations.

I
U
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In Jagannath, Desai and Kundu [1991], the mechanical anisotropy is com-

puted based on the available constitutive laws [Desai et al 1986]. Let ei be the

strain increment in three main directions, and E be the average incremental strain

in the material. Then, the ratio •i/f gives a measure of anisotropy in the ith direc-

tion. An over-all measure of mechanical anisotropy at any given state is defined as

3- [Jagannath, Desai and Kundu 1991]:

3 Mana = V/ i(1 - ,/•)2 (5.5)

The ultrasonic anisotropy is a physical measure of the anisotropy and can be quan-

tified based on the experimentally available velocities and attenuations. Let V and

A be the average velocity and attenuation in the material, respectively. Then, the

I ratio Vi/V and Ai/A gives a measure of ultrasonic anisotropy in the ith direction

at any given state of the material. An over-all measure of ultrasonic anisotropy at

I any given state was defined as [Jagannath, Desai and Kundu 1991]:

3 Van,. = ([ L 1 ( - v,/V) 2 1 (5.6)

t.i = V =,(1 - A,/)21 (5.7)

Based on experimental results, correlation functions between mechanical anisotropy3 Iand ultrasonic anisotropies have been established [Jagannath, Desai and Kundu

1991]. It is found that the mechanical anisotropy can be expressed as a second

3 order polynomial of ultrasonic anisotropies.

3 5.3 Objectives of the Experiments

For decades, laboratory tests on brittle materials sought to achieve a ho-3 mogeneous state of stress and deformation on samples subjected to uniaxial load.

However, even -under ideal testing conditions, the heterogeneous micro-structure3 of the material yields an inhomogeneous deformation field from the early straining

stage, Fairhurst and Cook [1966], Hudson et al [1971], Read and Hegemier [1984],

3 Yukutake [1989]. In the uniaxial compression test the density of microcracks rapid-

ly proliferates, leading to vertically aligned microcracks resulting in gross slabbing

I
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of material from the tractionless surfaces. It is difficult to observe and/or simulate

the spatial pattern of material heterogeneity on the microscale. Undoubtedly, im-

portant information can be extracted from models simulating the microstructure

and spatial randomness of heterogeneity, Bazant et al [1990].

The proposed experiments include pure strain gage tests, ultrasonic scan-

ning tests, and combined strain gage and ultrasonic scanning tests. The uniaxial

external mechanical load is exerted through a servo-controlled MTS system as de-

scribed in detail later. The purposes of the experiment studies may be generalized

as:

1) to identify the initial (without external load exerted) material state.

2) to study the spatial variation of degradation mechanisms in a brittle material

subjected to mechanical load.

3) to study the local deformation development and damage evolution and pro-

vide information to identify the surface effects for a brittle material.

4) to estimate the internal material length I associated with surface degradation

for a brittle material.

5) to investigate the relationship between mechanically dissipated energy and3 ultrasonically dissipated energy and see if the relationship is scale or size

dependent.3 6) to generate data to verify the theory for damage and surface degradation.

A scanning device was developed for these purposes and existing ultrasonic

3 equipment was used.

5.4 Equipment and Testing Material

5.4.1 Ultrasonic Apparatus3 The ultrasonic test device described below was acquired, and its use for

modeling and testing of geomaterials experiencing induced anisotropy due to plas-3 tic straining, damage and microcracking was conceived and developed by C.S. Desai

under a grant No. CES-8711764 from the National Science Foundation, Washing-3 ton, D.C. Mr. S.V. Jagannath participated in this research project for his doctoral

work, and the results of the study are available in Jagannath et al [1990, 19911. A

U
I
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Model 5055PR Pulser-Receiver, Panametrics, in combination with a digital oscil-

loscope, Hewlett-Packard 54501A was used.

For the purpose of this research, modifications and additions described be-

low were made to develop computer controlled device for the movement of the

transducers on the surfaces of the test specimen [Frantziskonis, Desai, Tang and

Daniewicz 1991].

Figure 5.2 shows the schematic of the test system for ultrasonic measure-

ments on specimens subjected to external mechanical load. The ultrasonic trans-

ducers used (D, E in Figure 5.2) were the P/N Z-10016-3, Zevex Inc., Salt Lake

City, Utah, resonant frequency of 50 Khz. The diameter of each transducer is 1.5

inches (1 inch=2.54 cm). With these characteristics, the waves produced are ap-

propriate for transmission through brittle attenuating materials like the one tested.

In order to take ultrasonic measurements at several locations in a sample subject-

ed to mechanical load, it was necessary to develop a scanning system that would

provide the following:

(i) continuous alignment of the ultrasonic pulser and receiver through a frame,

for the transmission of the wave through the sample,

(ii) arrangement for the movement of the frame in horizontal and vertical direc-

tions so that different points of the sample can be located accurately,

(iii) easy and quick alignment of the pulser and receiver,

(iv) constant and consistent contact pressure between the transducers faces and

the sample while measurements are taken,

(v) movement of the transducers away from the sample when they progress from

one measurement location to another.

For this purpose an appropriate system schematic shown in Figure 5.3, was

developed. Horizontal (x) motion of the transducers is accomplished through two

identical stepper motors (B in Figure 5.3) and so is the vertical (y) motion (C in

Figure 5.3). In order to take measurements at a certain location of the sample, air

pressure of 7 psi (1 ps;= 6 .89 KPs) is applied to the transducers in the Z-direction.

After measurements are taken the air pressure is released, negative air pressure is

applied so the the transducers move away from the sample, and the transducers

3
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move to the next measurement location. All four stepper motors (K33505, Air-

pax, Cheshire, Connecticut) and the air pressure regulators are controlled through

prototype controllers from a micro-computer, Motorola M68KVOVER/09. Ap-

propriate computer programs were developed for the automated horizontal and/or

vertical movement of the transducers, and application of air pressure. Data were

extracted from the oscilloscope and the pulser-receiver.

The contributions of Mr. Pete Boyle towards the development of the scan-

ning device, and of Mr. Todd Booth and Mr. Tom Cram towards the electronics

are gracefully acknowledged.

5.4.2 Mlechanical Load And Material Tested

The system for the movement of the transducers described above was mount-

ed on an MTS testing machine, Figures 5.2 and 5.4. This allowed acquisition of

ultrasonic measurements while the sample was subjected to external compressive

mechanical load from the MTS frame. Three series of prismatic samples were -est-

ed for ultrasonic scanning tests. For all samples the hight (H) was 5 inches (12.7

cm) and the depth (D) was 1.3 inches (3.302 cm), Figure 5.5a. For the three series,

width (W) of the sa~nples was 3.0, 3.5 and 4.0 inches (7.62, 8.89 and 10.16 cm).

respectively. The ultrasonic pulse was transmitted through the depth (D) at dif-

ferent locations of the sample, Figure 5.5a. Compressive load was applied parallel

to the height (H). Because eccentricity of loading will cause a lot of problems (e.g.

consistent results can not be achieved), the placement of load platen was carefully

processed.

In order to reduce friction between the sample and loading end platens, the

following procedure was followed. The end platens and the faces of the sample

subjected to compressive load were lubricated by a thin layer of silicon grease.

In addition, a thin layer of teflon lubricated on both sides was placed between

end platen and sample. All sides of each specimen were machined in order to

obtain smooth surfaces for uniform load application, uniform coupling between

transducers and specimen, and for mounting strain gages.

I
I
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The material specimens were made of simulated rock and were cast in a-

luminum molds with casting direction parallel to the height. This material was

developed by Desai et al [1990] through a parametric variation of various compo-

nents such as sand, cement and plaster of Paris, and air entraining agent. The

three main criteria used for the development of such a material were: (i) consistent

material response, (ii) low compressive strength so that accuracy of measurements

with available measuring devices is enhanced, (iii) to achieve as initial homogeneity

as possible. In Desai et al [19901 it was concluded that the following combina-

tion showed the most consistent results from the view point of the above criteria:

sand:cement: plaster of Paris:water= 15:2:3:4, by volume.

5.4.3 Strain Gages

The bonded electrical resistance strain gaire is widely recognized as the most

practical technology for measurement of st.ains in loading-bearing parts, members,

and structures. Because both excellent accuracy and repeatability can be achieved,

strain gages are also becormiing increasingly important as primary sensing elements

in load cells as well as in pressure, force, torque, displacement, and others. To

make strain measurements of acceptable quality, several parameters. should be con-

sidered: quality of strain gage itself; environmental protection, and other strain

ga(ge accessories; proper circuit design, proper installation of the strain gage; and

quality of the strain gage instrumentation. Specifically, the strain gage labeled

CEA-06-500UW-120 manufactured by Measurements Group, Inc. Raleigh, North

Carolina, USA was chosen for our tests. CEA gage is a general-purpose family

of constant strain gages widely used in experimental stress analysis. The gages

are supplied with a fully encapsulated grid and exposed copper-coated integral sol-

der tabs. The temperature range is -100 to +400°F for continuous use in static

measurements. The fatigue life is about 105 cycles.

5.5 Ultrasonic Measurements

Consider a structure (specimen) subjected to external mechanical load, Fig-

ure 5.5a. As load increases, the sample experiences degradation or microcracking.
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Within the volume V of the structure an elementary volume dV, with cross-sectional

area dA2 perpendicular to the direction of the ultrasonic wave transmission is iden-

tified. For piezoelectric ultrasonic transducers of diameter d, dAi = 7raf/4. Let Q,

be the dissipated energy due to degradation progression in dV¾. we can assume, in

general

Q, = -tR (5.8)

where Ri is a measure of degradation within dVl, and -y is the dissipated energy

per unit of 3i.

Let an ultrasonic pulse be transmitted through dVi. Let zero (0) denote

the state of the sample where no external load is applied. Let the energy of the

received (after transmission through dVi) ultrasonic wave at zero state be E0o. Let

the energy of the received wave at a deformed state be Ei. Due to the degradation

progression in dVi, the attenuation of the transmitted wave increases. It can be

written, in general

3Ej = Eoi - Ej = cRi (5.9)

where c is the transformation coefficient relating degradation Ri to ultrasonic wave

attenuation SE,. It. measures the intensity of influence of the structure transfor-

mation to the ultrasonic wave attenuation. From (5.8) and (5.9) we have

AE, = r-Qj = aQi (5.10)

Equation (5.10) indicates that the local ultrasonic attenuation is proportional to
the local degradation dissipated energy; here local pertains to the fact that the

ultrasonic wave passes through the volume dV1 . The question is whether a is a

constant or not; its possible dependence on deformation or load level is considered

later. For the specimens tested, volume dV, is of cylindrical shape of diameter

d = 1.5 inches (3.81 cm) and depth D = 1.3 inches (3.302 cm). It should be

noted that when a pulse is transmitted from the ultrasonic transducer through the

sample, the wave energy is not uniform on the transducer's face. The energy is

maximum at the center of the circular face and reduced smoothly to a minimum
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at the periphery. In addition, as discussed later, the transmitted wave experiences

the so-called near field effects, in which the wave characteristics are different from

the ones far from the pulser transducer's face [Krautkramer, J. and Krautkramer,

H. 1983]. In this study, we assume that the wave energy is uniform on the area of

the transducer's face. As shown subsequently, the near field is rather short so the

received wave was not close to it.

The velocity of an ultrasonic P-wave in an elastic material can be related

to the Young's modulus E and Poisson's ratio v as shown in (5.1). The material

examined in this study shows inelastic response from the early straining stages. For

strains up to the peak the Young's modulus (from the unloading/ reloading slope)

was found from the present study and Desai et al [1988, 1990] to be approximately

1S0,000psi (1240 MPa) and v = 0.3. The initial density of all samples tested was

0.066 lbm/in3 (1.825 g/cm 3 ). For these values, if for the time being we assume that

(5.1) is valid, we obtain cl = 37,664 in/s (957 m/s), thus for a sample depth of

1.3 inches (3.302 cm) the transit time is 33.8 Ms. The transit time measured in the

experiments was 34 ps with 0.5 ps accuracy of the time measurement. The pulse

velocity remained constant while the sample was loaded and changed only when the

external load was close to the peak. This is consistent with the results obtained for

hardened paste and mortar specimens [Shah and Chandra 19701, and for concrete

specimens [Spooner and Dougill 1975]. However, as discussed subsequently, the

attenuation of the pulse showed significant changes from the early straining stages.

Achenbach et al [19911 found increase in pulse velocity of surface waves while the

attenuation increased. However, such effects may be peculiar to surface and not

to P-waves. Through the measurement of the transient time, the constant pulse

velocity for load levels in the load range between zero and close to peak was found

to be cl = 38. 230 in/s (971 rn/s). Reduction in pulse velocity close to peak was not

insensitive or very consistent in the performed tests. Thus the only conclusion is

that pulse velocity remained constant and was reduced rapidly and inconsistently

close to the peak load.

For the resonance frequency of the transducers of f = 50,000 cycles/s, the

wave length A of the transmitted pulse can be calculated, A = cl If = 1.94 cm. For
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the ultrasonic transducers of circular cross section of diameter d, the length of the

near field N can be evaluated as [Krautkramer, J. and Krautkramer, H. 1983]

N d 
(5.11)U 4A

For the transducers used d = 1.5 inches (3.81 cm), and (5.11) yields N = 1.38 cm

which is much smaller than the thickness of the samples used, which is 1.3 inches

(3.302 cm). Thus the received wave was always far from the near field.

The average energy, Ei, of a received ultrasonic wave is proportional to the

square of its maximum amplitude. Mathematically, we can write [Krautkramer, J.

and Krautkramer, H. 1983]
Ei = OA? (5.12a)

Eoi = OA0 (5.12b)

where A is the maximum absolute voltage of the received wave while the sam-

ple is under external load, A0i is the maximum absolute voltage of the received

wave before any external load is applied, and #? is a constant relevant to the elec-

tromechanical characteristics of the receiving transducer. From (5.9) and (5.12), it

3 follows that

AE, =O(A02, - A) = /3G (5.13)

I So G = Aoi - Aý can be used to monitor the structural transformation or degrada-

tion progress. From (5.10) and (5.13) we conclude that the mechanically dissipated

energy is proportional to G. This connects the ultrasonic measurements with me-

chanical measurements and makes the quantitative assessment for the degradation

of brittle materials subjected to external load be possible. For this reason, in all

measurements presented in the following, by the term dissipated energy we imply

the difference G = A02 - .A. However this term could be replaced by "ultrasonic

pulse attenuation", or "intensity reduction".

I
I
I
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5.6 Test Results

5.6.1 Strain Gage Test Results

Eight specimens were processed with strain gages attached. Strain gages

were mounted at specific locations along the specimen, as shown in Figure 5.6.

Further, 3 tests (S4s, M4s, L4s) included strain gages and ultrasonic testing, Fig-

ure 5.7. Loading for all specimens was displacement controlled with the rate of s-

train increment about 10- 6 /second. All specimens for strain gage tests were loaded

monotonically up to peak and experienced with post-peak to residual stage. Figure

5.8 shows a typical (average) stress-strain curve including post-peak response. For

each load step, in addition that the four strain gage readings were checked, the

displacement of the top surface of the specimen was measured through the NITS

system, to make the calculations of the average strain. Among the eight specimens,

four specimens are relatively smaller, with the dimensions of 5 x 3 x 1.3 (in3 ), and

I are labeled with PS; another two specimens are medium, with the dimensions of

5 x 4 x 1.25 (in3 ), and are labeied with PM; the other two specimens are relatively

I bigger, with the dimensions of 5 x 5 x 1.25 (in3 ), and are labeled with PL. It was

observed that the strains from strain gages are considerable smaller than the av-

I erage strain obtained. On three specimens (S4s, M4s, L4s), four strain gages were

mounted on the free surfaces as shown in Figure 5.7. Figure 5.9a shows the overall

I readings from the MTS load cell and the attached LVDT's of the MTS frame and

Figure 5.9b shows the strain gage readings. One possible explanation of the consid-

erable difference between the local strain on surface and the average strain is that

unloading takes place in the outer surface layers of the specimen, and the carrying

capacity of the fractured specimen is mainly due to the "intact" specimen core.

Experiments on concrete justify this [Vanmier 1984]. Further discussion will be p-

resented later. However, here we are interested in the local strain distributions and

the relative changes of local strains with external load along characteristic points.3 Figure 5.10-5.14 are typical results with strain gage readings versus applied stress.

It is obvious that the local deformation is not uniform, and the non-uniformity

for different samples is different. It is also seen that the increasing rate of strains

I
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from different locations are different. In order to analyze these data and to identify

the information of surface effects, let us process the following procedure [Tang,

Frantziskonis and Desai 1992a].

Pick up the local strains at different external mechanical load levels, say at

P/Ppak =0.5, 0.85, and 1.0, as shown in Table 5.1, 5.2, and 5.3, respectively. For

each sample at each external load level, find the smallest local strain-and regard it

as reference. If we assign a weight of 100 to the smallest local strain, the weights

of other local strains can be obtained by calculation ei/e, x 100, where eC is the

smallest local strain, and ei are the local strains of the other gages. The weight

distribution for PIPpek =0.5, 0.85, and 1.0 are shown in Table 5.4, 5.5, and 5.6,

respectively. The results for Test-1 are not shown in these tables, because one

of the strain gages was broken by accident. We add together the weights of the

same gage number for all the samples listed, and compare the results as shown in

Table 5.7. It is interesting to see that, at the early straining stage, the deformation

is concentrated at gage 4 which is located at top (or bottom) of the right (left)

surface (perpendicular to the width) as shown in Figure 5.6, then with increase of

external load, the strain concentration transfers to gage 1 which is located at the

middle of the front surface (perpendicular to the depth), at or close to the peak,

the maximum local deformation occurs at gage 1. It is noted that this conclusion

is based on the statistical sense. Because of the randomness of the initial (without

external load exerted) material inhomogeneity, some measurements do not agree

with this conclusion.

The observations discussed above can be explained by the so-called surface

spalling (slabbing) mechanism. The surface slabbing is depicted as shown in Figure

5.15. For the specimens tested, because the width is about three times as large

as the depth, the surface spalling effects are more pronounced along the surface

with normal perpendicular to depth (left or right surface). At the early straining

stages, the damage is concentrated in the volume close to these surfaces. Along

these two surfaces, the top and bottom part are more severly influenced by other

boundaries, and the microcracks start to proliferate in these parts, so the strain

gage readings there are expected to be relatively large. After some load steps, say

I
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at 0.5 < P/Ppak < 0.8, the macrocrack for surface spalling is formed, and inner

part (other than the slabbed material) becomes the main load-supporting material.

This may be the reason why fast increase in the rate of strain at gage 1 was observed

at subsequent straining stages. As the stress is increased exceeding 80 to 90 percent

of the peak strength, the non-uniform local deformations are greatly pronounced

(comparing the changes of strain gage readings). This may be responsible for the

physical explanation of the degradation instability theory discussed in the last two

* chapters.

5.6.2 Ultrasonic Test Results

In the following we first summarize the outcomes from the ultrasonic test

results. Subsequently, various test results from the twelve specimens tested are

presented in detail as discussed in [Frantziskonis, Desai, Tang and Daniewicz 1991].

Summary of the Observations:

" Scanning the samples at zero external load showed that all samples were

not initially homogeneous with respect to the energy of the received wave.

Note that the initial density of each sample was consistent and equal to

about 0.066 ibm/in3 (1.825 g/cm3 ). In addition, in order to avoid non-

homogeneous material (through depth D) due to casting, the casting surface

was transverse to the direction of the transmitted wave. We consider that

even before any external load is applied on the samples, the material contains

flaws in the form of voids and microcracks. Thus since the energy of the

transmitted pulse is constant, the energy of the received wave decreases with

increasing initial density of flaws.

"* The initial non-homogeneity was rather random for all samples. The pattern

of inhomogeneity was different for each sample.

"" For all load steps up to the peak, dissipated energy shows a random distri-

bution and it follows, in general, the initial non-homogeneity pattern. The

dissipated energy pattern showed no symmetry.

U
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* Dissipated energy was, in general, concentrated on one of the two load-free

surfaces.

* In those cases where the initial non-uniformity showed higher concentration5 of received pulse energy in the center of the specimen (far from the free-

edges), the dissipated energy pattern under load did not follow the initial

3 non-uniformity pattern.

* Surface concentration of dissipated energy is shown to extend over an iden-3 tifiable distance p from the free surface, Figures 5.18, 5.19, and 5.22. This is

used in connection with the proposed theoretical considerations on surface

degradation mechanisms, as a tool to identify the internal material length 1.

* Under unloading the dissipated energy essentially remains constant or de-

creases slightly.

* Although the dissipated energy pattern is random, more energy is dissipated

close to the load-free surfaces. All twelve specimens tested experienced

formation of a macro-crack network, in a brittle fashion, at peak or slightly

before peak. Since each sample showed formation of different macrocrack

pattern it seems appropriate to conclude that such a pattern is random.

This is consistent with recent theoretical studies [Bazant et al 1990].

* For monotonically increasing load, a large percentage of the total dissi-

pated energy occurred at relatively low load levels. Some measurements

showed decrease in dissipated energy under increasing external load. This

may imply unloading of partially formed cracks and is consistent theoretical

considerations (Bazant et al 19901.

Figure 5.5b shows the location of the centers of the transducers that provided

ultrasonic measurements. Since the diameter of the transducers is 1.5 inches only

12 point measurements were considered for the small and medium samples while

16 points were considered for the large samples. (A denser array of measurement

locations would result in significant overlapping between measurement locations).

Loading for all specimens was displacement controlled, and all samples were

broken finally to obtain the peak stress. Some specimens were loaded monotonically

I
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up to peak and measurements were taken at different load levels. In order to study

the effect of unloading and reloading on the energy dissipation distribution, some

specimens were unloaded, and ultrasonic measurements were taken in the unloaded

3 state. Then the specimens were reloaded for further measurements. It is noted that

all the samples were loaded to peak to identify the peak strength. At the peak or

3slightly before the peak, formation of a macrocrack network occurred. After this

crack formation it is rather impossible to take reliable ultrasonic measurements

Ssince the presence of macrocracks do not allow a consistent output signal. Thus

the purpose of the experiments was to examine the behavior for loads up to or

close to the peak load. Typical failure modes discussed later are shown in Figures

5.161 and 5.1611.

In the displacement controlled testing, the actuator fluctuates the load in

a saw tooth way so that the prescribed displacement can not be controlled in a

3 smooth manner. For this reason, very close to the peak it is difficult to "freeze"

the load. even for short period of time. Ultrasonic measurements were taken for

3 loads close to the peak, up to 95% of the peak stress.

3: Test Results:

We first present typical results from each series of tests. Four samples from

3 each series were tested. S1, S2. S3 and S4s designate the four small samples tested

and the lower case s indicates that strain gage measurements were taken in addition

3 to the ultrasonic ones. Similarly, the medium series samples are designated as ML.

M2, M3, and M4s, and the large ones as L1, L2, L3, and L4s. Figures 5.17a,b,c

show the dissipated energy distribution (G C A 2, - A?) versus the external load

for different locations (Figure 5.5b) within the sample for M2. The external load

was increased monotonically until about 92% of the peak load and then unloaded

to about 8% of the peak. As can be seen from this figure, significant energy is

dissipated in the early loading stages. Up to about 20% of the peak, the energy

dissipates rapidly. Subsequently, the dissipated energy increases at a much slower

3 rate. For some locations, the dissipated energy decreases with increasing load, and

I
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as discussed before this may indicate unloading of partially formed microcrack-

s. After the specimen is unloaded, the dissipated energy decreased for locations

1,2,3,4,10,11,12 by small amounts, while greater decrease was observed for locations

U 5,6,7,S,9.

Figure 5.18a shows the spatial variation of the initial energy of the received3 wave. Clearly the sample is initially not uniform and shows a lower concentration

of initial flaws along the middle column of the sample. However, this initial pattern3 is not followed when the sample is subjected to external load. This is depicted in

Figure 5.18b where the dissipated energy distribution at 20% of the peak shows3 concentration near the right free surface. If we observe the failure mode of this

sample (M2), Figure 5.161(a), we see spalling near the top right corner indicating3 higher damage in that area. The dissipated energy pattern, Figure 5.18b shows

such characteristics. A similar pattern was followed for subsequent loading; Figure3 5.18c shows the distribution of G at 68% of peak. At the unloaded state, Figure

5.18d, the pattern changes slightly and dissipated energy shows concentration on

3 both free surfaces.

Figure 5.19a, from test S3, shows that the initial energy E0 (at zero load)3 of the received wave shows concentration at the upper end of the free surfaces.

A similar pattern was observed when the sample was subjected to monotonically3 increasing load, Figure 5.19b,c, which show the dissipated energy pattern at 36%,

92% of peak. respectively. Failure of this sample occurred by severe damage con-3 centration on the right top side and on the left side in the middle. Those two

damage zones finally resulted in the macrocrack along the width, Figure 5.1611.3 We consider that higher received energy at the initial zero load state indicates a

smaller level of initial flaws. Then, as implied from the test results, we observe3 higher rate of damage increase at places of low initial flaw concentration.

Figure 5.20a shows results from test L1, where the initial energy, E0 , of the3 received wave was concentrated on one surface with greater concentration near the

right top. Figure 5.20b shows the dissipated energy distribution at 93% of peak.3 Figure 5.20 shows that the dissipated energy pattern remained similar to the initial

U
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one. This sample failed by damage concentration ne.r the right top corner and

macrocrack initiation from the region, Figure 5.161(c).

In the above typical results from a small, medium and large sample were

presented. In order to demonstrate the concentration of dissipated energy close to

the load free surfaces and to provide the ground for the estimation of the internal

length, we present typical patterns observed from other samples. Figures 5.21a,b

show the energy dissipation pattern for test M4s recorded at zero, 92% of the

peak load, respectively. Failure of this sample occurred by macrocrack formation

initiating near the top at the middle, (point 5), Figure 5.5b. This sample was

loaded to 92% of peak then unloaded to 9% and then reloaded to failure. Figure

5.21c shows the dissipated energy distribution in the unloaded state.

Figures 5.22 and 5.23 show results obtained from test S4s. This specimen

was loaded monotonically to 81% of peak, then unloaded to 8%, and then reloaded

to peak. Figures 5.22a,b,c,d show the dissipated energy pattern for test S4s, at

zero, 81%, unloaded state, reloaded state to 93% of the peak load, respectively.

It can be seen that the energy dissipation pattern remained remarkably similar

in shape from the very beginning of the load application. Figure 5.23a shows

the distribution of G along columns 1, 2 and 3, for the loading steps. Energy

dissipation is concentrated at the left side of the sample and the core experiences

the least dissipation. Figure 5.23b shows the local strains along the left and right

free surfaces versus external stress for specimen S4s. Figures 5.24a,b show the

initially received energy distribution and local strains for specimen L4s. Sample

M3 was loaded to 91% of peak, then unloaded to 7%. Figures 5.25a,b,c show

the distribution of initially received energy and G for test M3 at zero, 23%, 91%,
respectively. Again, for this sample, the G pattern shows concentration on the left

side. Failure occurred by macrocrack formation on the left side.

Now, let us compare the initial states and local strain readings for specimens

314s, S4s, and L4s, Figure 5.19a, Figure 5.21b, Figure 5.22a, Figure 5.23b, Figure

5.24a and Figure 5.24b. For specimen S4s, the material around the right top is

relatively more disintegrated, and the local deformation is relatively smaller there

at early straining stages; the local strain reading is relatively larger for gage-3,
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the damage development is concentrated along the left side, and after the load

reaches about 70 percent of the peak, unloading occurs for the left top part. It is

noted that, after the first load step (23 percent of the peak), there is only very small

dissipated energy increase (Figure 5.23a). For specimens M4s and L4s, the right top

is relatively more disintegrated as compared with the left top, readings from gage-1U are smaller than those from gage-3, but the local deformation is less diverted as

compared with specimen S4s. It is important to know that the initial inhomogeneity

I is more pronounced for specimen S4s than for specimens M4s and L4s. For example.

the initially received maximum and minimum energy for specimen S4s are 77.73 Joule and 12.5 Joule, while for specimen M4s, they are 86.1 Joule and 34.1 .Joule,

here, 3 = unit is assumed for (5-12b).

5.7 Analytical Considerations

3 IIn chapter 3 and chapter 4 [Frantziskonis, Tang and Desai 1991; Frantzisko-

nis and Desai 1991] a mechanics based theory and verification for surface degrada-3 tion in brittle material systems was introduced. The basic idea behind the theory

is that close to free surfaces degradation progression is different from the one oc-3 curring far from the surface. It is shown that surface degradation consideration

can capture important properties of brittle materials such as scale (size) and shape3 effects, surface damage growth and subsequent bursting instabilities. Although the

theory does not consider any type of statistical material inhomogeneity distribu-3 tion, it describes the surface degradation process in an average sense. Damage

distribution at the edge of a body where surface degradation is important is con-

Ssidered to be different from the damnage distribution far from the edges (in the

body). A so-called surface degradation zone is defined in (3.34). Consider a is

Sindependent of I and its value was estimated from a series of uniaxial compression

tests reported in [Desai. Kundu and Wang 1990] for the same material described

Sherein on different size cylindrical specimens. The value of a = 0.21 was estimated

(in section 4 at chapter 3). For the specimens tested, (3.34) reduces to

U p = ck(H - 1) (5.14)

I
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where H is the specimen height. From the test results reported herein, distance

1 p can be estimated from the dissipated energy distribution within the samples

tested. From the test results it seems that the concentration of G close to the free

surfaces is distinguishable and can be approximated to about one inch, Figures

5.18, 5.19, and 5.22. Then from (5.14) 1 = 0.24 inches. In Frantziskonis and3 Vardoulakis [1991], material micro-structure is examined with respect to surface

effects. Surface instability analysis shows nonuniform deformation for a layer of

I specified distance from the surface. It was identified that a significant percentage

of the uniform deformation is obtained at a depth of 51. Then if we consider that3 the nonuniform deformation, in an average nonstatistical sense, is about one inch.

the internal length I is estimated to be 0.2 inches [Frantziskonis, Desai, Tang and

3 Daniewicz 1991].

From the average stress-strain response of the tested specimens, the dissi-3 pated energy in the whole sample can be estimated by subtraction of the elastic

strain energy from the total one. In Figure 5.26, this dissipated energy is plotted

I with respect to the ratio P/Ppak, for tests M2, M3, and M4s. Note that the di-

mensions of these samples are the same. The curves in Figure 5.26a are similar3 in shape to the ones observed for concrete in [Spooner and Dougill 1975]. The

ultrasonic dissipated energy G for the whole sample can be calculated from the3 local measurements on it. This results in the curves of Figure 5.26b for samples

M2, M3 and M4s. If we compare Figures 5.26a and 5.26b we conclude the follow-

3 ing. A significant percentage of the average ultrasonic attenuation occurs at low

stress levels. This implies that relatively low energy is required to produce damage3 occurring at the prepeak load levels. The randomness of this damage distribution

occurring at low levels could serve as an explanation of the fact that brittle ma-

terials show a wide scattering with respect to the peak load for specimens of the

same size and shape. Also Figures 5.26a,b show that parameter a in (5.10) is not3 constant. Its value as can be determined from the curves in these figures shows a

high value for low load levels and its value decreases continuously to a minimum

3 close to peak load. The exact variation of a and its possible dependence can be

examined through the following considerations.

I
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Because /3 (5.13) is a constant for a specific ultrasonic system, we can as-

sume 0 = 100 (arbitrarily). It is noted another value of 0 does not change the

analysis procedure. Then, G/100 is regard as the ultrasonically dissipated energy.

Considering Test-M2, Test-M3, and Test-M4s, we obtain the distribution of the

values of a for different load levels as shown in Figure 5.27. Assume a is power

function of load level c = P/Ppak, That is,

3a = BicB2 (5.15)

where B1 and B 2 are constants. The two constants B, and B 2 are identified to be

1.7162 and -1.6 through best-fit analysis against Test-M2, Test-M3, and Test-M4s.

The best-fit curve is shown in Figure 5.27.

The power function of (5.15) is used to process back-prediction of a for Test-

S1 and Test-S2. The predictions are compared with the values obtained directly

from experiments as shown in Figure 5.28 and Figure 5.29. It is seen that the

power function (5.15) works well. But the experimental vulues are over-predicted.

This may be due to the shape effects and different overlapping areas for ultrasonic

measurements.

It is interesting to evaluate the change rate of a with respect to the load level

C = PIPpeak. a changes very fast at low load levels and claim very small change at3 high load levels (say over 80% of the peak load). High change rate of a corresponds

to faster microcrack development and slower plastic flow, relatively. However, low3 change rate of a corresponds to slower microcrack development and faster plastic

flow, relatively. It is widely accepted that for brittle materials (such as rock and3 concrete) under uniaxial compression microcrack development is predominant at

low load levels while shear band processes at load levels higher than about 85%3 of the peak stress [Hallbauer, Wagner and Cook 1973]. The discussions presented

here support the theoretical considerations proposed in chapter 3.5 In chapter 3, the onset of degradation instability corresponds mathemati-

cally to the change of the second derivative of energy with respect to the damaged3 volume. This has been implemented and examined against experimental observa-

tions [chapter 4, Frantziskonis, Tang and Desai 1991]. Here, we process the energy

I
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analysis based on experimental measurements. From the average stress-strain re-

sponse of the tested specimens, the elastic strain energy stored in the sample at

each load level can be calculated. The external work can be calculated from the

load and displacement readings. Then, the potential energy can be obtained at

each load level. Figure 5.30 and Figure 5.31 show the chages of energy with load

level. In Figure 5.30, the energy is given as the potential (Hl) added by mechani-

cally dissipated energy (Dn). In Figure 5.31, the energy is given as the potential

(II) added by ultrasonically dissipated energy (D.). From these two curves, it is

clear that the second derivative of the curve changes with respect to load level.

Because the damaged volume or its connection with load level is not available by

the time being, the instability point can not be identified, and the comparison

between the experimental results and the numerical and analytical predictions p-

resented in chapter 4 [Frantziskonis, Tang and Desai 1991] can not be achieved.

Further, an appropriate evaluation of the changes of the second derivative requires

smaller load steps. To identify the instability point experimentally and to compare

it with numerical and analytical predictions and other experimental observations,

and to identify the possible dependence of a on scale and shape effects, further

experimental and theoretical investigation seems to be necessary.

5.8 Conclusion

The experimental program presented in this chapter was designed mainly

to provide an insight into the problem of initial (under no external load) and sub-

sequent (under load) inhomogeneity and damage distribution of brittle materials.

Both the ultrasonic attenuation pattern and the failure mode were different for the

specimens tested. The results from both strain gage tests and ultrasonic scanning

tests highlight the surface degradation (skin) effects, the randomness of damage

evolution, and their consequence on the phenomenological behavior of brittle ma-

terials. Relatively low external energy is required to produce degradation occurring

before the peak load. This implies that from low load levels the specimen may be

susceptible to instability, and this may explain the large range of peak load values
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observed for specimen§ of the same shape and size. The relationship between me-

chanically dissipated energy and ultrasonically dissipated energy is dependent on

deformation and can be approximated by a power function of load level. Further

verification of the energy based instability theory requires further theoretical and

experimental investigation.

i
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I Table 5.1 Strain Gage Readings at PiPpeak = 0.5

Gage-1 Gage-2 Gage-3 Gage-4
Test-2 0.041 0.045 0.055 0.017
Test-3 U43 0.046 L045 0U74
Test-4 0.041 0.033 0.041 0.071

3 Test-5 0.0575 0.041 0.033 0.164
Test-6 0.02 0.028 0.025 0.082
Test-7 0.05 0.0445 0.03 0.048
Test-8 0.028 0.034 0.0305 0.066

I Table 5.2 Strain Gage Readings at PIPpeak = 0.85

- Gage- Gae-2 Gage-3 Gage-4
Test-2 0.09 0.093 0.111 0.043
Test-3 0.05 0.052 0.052 0.081
Test-4 0.075 0.0675 0.071 0.0955
Test-5 0.1085 0.07 0.064 0.195
Test-6 0.098 0.08 0.0625 0.18
Test-7 0.099 0.0865 0.0615 0.0753 Test-8 0.0875 0.083 0.067 0.0775

I
3 Table 5.3 Strain Gage Readings at P/Ppe.. = 1.0

Gage-1 a G Gage-4
Test-2 0.1245 0.117 0.145 0.061
Test-3 0.116 0.091 0.099 0.115

STest-4 0.0985 0.093 0.09 0.103
Test-5 0.141 0.087 0.085 0.216
Test-6 0.13 0.1 0.075 0.2
Test-7 0.127 0.109 0.078 U079

Test-8 0.108 0.098 0.077 0.0735I
I
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3 Table 5.4 Relative Numbers for Strain Gage Readings at PIPpeak = 0.5

G2 Gage-3 Gg-4
Test-2 241 265 324 100
Test-3 100 107 105 172
Test-4 124 100 121 215
Test-5 174 124 100 497
Test-6 100 140 125 4103 Test-7 167 148 100 160
Test-8 100 121 109 2363 Sum. 1006 1005 984 1790

Table 5.5 Relative Numbers for Strain Gage Readings at PIPpe..k = 0.85

Ga3-1 Gage- Gage-3 Ga,4
Test-2 209 216 258 100
Test-3 100 104 104 162
Test-4 111 100 105 141
Test-5 174 109 100 305
Test-6 157 128 100 288
Test-7 161 141 100 122
Test-8 131 124 100 116 1
Sum. 1039 922 867 1234

I
Table 5.6 Relative Numbers for Strain Gage Readings at PIPpek 1.0

" 12Gage-I Gage-2 Gae3 Ga-4
Test-2 204 192 238 100

STest-3 127 100 109 126

Test-4 109 103 100 114
Test-5 166 102 100 254
Test-6 173 133 100 267
Test-7 163 140 100 101
Test-8 147 133 105 100
Sum. 1089 903 852 1062I

U
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I
3 Table 5.7 Statistical Distribution of Strain Gage Readings

Gage-1 Gage-2 Gage-3 Gage-4
_________. 1006 1005 984 1790

P/Ppeak=0.85 1039 922 867 1234
P/Ppeqk= 1.0 1089 903 852 1062

3
I
i
I
I
I
I
I
3
I
I
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U Figure 5.3 System Designed for the Movement of the Transmit-
ting and Receiving Transducer; A: Transducer Housing, B: Step-
per Motors for X-Movement (Horizontal), C: Stepper Motors for
Y-Movement (Vertical), D: Vertical Motion Screws, E: Horizontal
Motion Screws, F: Air Pressure Connections, G: MTS FrameI
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Figure 5.5 (a) Prismatic Sample W x H x D Showing Direction of
External Load and of Ultrasonic Wave, (b) Location of Center of

Transducers where Measurements Were Taken for the Three Series
of Specimens
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Figure 5.9 Data from Test-M4s, (a) Average Stress-Strain Response;
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CHAPTER 6

INITIAL HETEROGENEITY AND DEGRADATION

In this chapter, the concept of state of degradation is employed in order

to consider the initial material (structure) inhomogeneity. Then, degradation and

its patterning in simulated rock specimens subjected to external load are mod-

eled numerically by implementing the theory for damage and surface degradation

"with incorporation of the initial state. The theoretical results are compared with

experimental observations obtained through ultrasonic scanning tests [Tang et al

19911.

6.1 General

Structures composed of brittle materials, e.g. rock and concrete, experience
damage due to microcracking and fracturing when loaded. The term degradation

is often associated with damage evolution. Depending on the external load on

a structure, the degradation process may become unstable. Physically, when the

inflow of energy from the external loading system on a structure exceeds the energy

absorbed in the process of degradation and plastic deformations, an instability can

ensue, Salamon [1970], Petukhov and Linkov [1979], Zubelewicz and Mroz [1983],

Frantziskonis, Tang and Desai [1991].

For decades, laboratory tests on brittle materials sought to achieve a ho-

mogeneous state of stress and deformation on samples subjected to, for example,

uniaxial load. However, even under ideal testing conditions, the heterogeneous

micro-structure of the material yields an inhomogeneous deformation field from

the early straining stage, Fairhurst and Cook [1966], Hudson et al [1971], ReadIand Hegemier [1984], Yukutake [1989], Frantziskonis et al [1991], Chapter 5. The

initial heterogeneity significantly influences the spatial variation of degradation in

I a brittle material structure subjected to mechanical load. This spatial variation

may provide an explanation why the experimentally observed failure (or instabil-

ity) modes are rather random, and why the peak strengths from same size and

I
I
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shape samples of the same material are diversely distributed, Bazant et al [1990].

The onset of an instability depends on the accumulation of damage. The initial

heterogeneity influences the spatial variation of damage or microcracking. Also,3 1icrocrack propagation is dependent on the geometric configuration, i.e., different

relative locations of aggregates are expected to cause different microcrack propa-

gation patterns even if the external loading conditions are identical.

The influence of initial material heterogeneity on microcrack propagation3 has been studied recently by Yamaguchi and Chen [1991], in which, the represen-

tative volume element of concrete is modeled as a two-phase composite, consisting

of a mortar matrix and aggregate inclusions, and two distinct types of microcracks

(mortar crack and bond crack) are considered. It is assumed that there are no

initial flaws, but the material properties of the inclusions are different from those

of the matrix. It is then found that the location of neighboring aggregates do not

influence the propagation of bond cracks significantly. However, the relative loca-

tions of neighboring aggregates exert a considerable influence on the development

3 of mortar cracks.

In chapter 5, an experimental study of degradation mechanisms and pat-3 terning in simulated rock has been performed. The results from both the strain

gage tests and ultrasonic scanning tests highlight the surface effects and the influ-3 ence of initial state on the local deformation and damage evolution. It was found

that the ultrasonically dissipated energy from load application follows, in general,3 the initial non-homogeneity pattern. In this chapter, the initial heterogeneity is

considered by virtue of the concept of initial state and the degradation progress3 is simulated numerically by using the theory for damage and surface degradation

growth. The numerical results are compared with the experimental measurements.3 It is understood that the initial heterogeneity implementation is not random [Yuan

et al 1991], but rather inspired and "extracted" from relevant ultrasonic experi-3 ments. In Yuan [1991] and Yuan et al [1992], the implications of random initial

material inhomogeneity on degradation evolution and material response were stud-
* ied. It is also noted that the initial heterogeneity considered here is based on the

experimental observations and the way to deal with the initial heterogeneity herein

I
3
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is different from that studied by Yamaguchi and Chen [1991], in the sense that

inhomogeneity is considered in the whole structure (specimen) rather than in the

representative volume element.

The theory used for the purposes of this chapter, namely, damage and sur-

face degradation growth, has been presented in chapter 3. It is noted that the

damage model and the concept of surface degradation consideration were originat-

ed by Frantziskonis and Desai [1987,1991], Frantziskonis [1989], Frantziskonis, Tang

and Desai [1991]. The used constitutive law for the undamaged part and numerical

procedure is referred to appendix-A and chapter 4, separately. In the following sec-

tion, the considerations for initial damage implementation are discussed. Then, the

numerical solutions of demonstration problems and comparison with experimental

* measurements are presented.

6.2 Implementation of Initial Damage

As presented in the previous chapter, three series (S, M, L) of samples were

tested through ultrasonic scanning. For S and M series we have 12 representa-

tive measurement points, and for L series we have 16 representative measurement

points, Figure 5.5b. For each test, about six load steps were applied up to the peak,

and the ultrasonic measurements were obtained at each load step. For each sam-

pie tested, the initial ultrasonic measurements (without external load exerted) have

been taken as the reference to assess the structural changes of the sample. Shown in

Figure 6.1 and 6.2 are some typical initial measurements of received ultrasonic en-

ergy. The contour lines are obtained through transforming the maximum absolute

voltage of the received wave to ultrasonic energy with the unit of Joule (equation

5.9b). It can be seen that the distribution of the received ultrasonic energy along

the sample is not uniform. Because the wave transmitted along all monitoring area

has the same intensity, we conclude that the micro-structure of the sample is not

initially uniform. In the following, we will discuss how the initial heterogeneity is

considered so that the degradation process can be modeled numerically.

The experiments described in chapter 5 showed that the dissipated energy

distribution follows, in general, the initial heterogeneity pattern [Frantziskonis et alI
I
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1991, Tang et al 1991]. It seems that degradation is more likely to occur within the

I volume of high material integrity than of low material integrity. This agrees with

the theoretical studies of Yamaguchi and Chen [1991] and the random studies of

I Yuan et al [1992]. Equation (3.8) is plotted in Figure 6.3, for Kc = 50, R = 0.5. The

present analysis showed no sensitivity (qualitatively) on the values of R and K. It

I can be seen that the rate of damage evolution changes with deformation. As noted

previously, damage is a relative concept. If we assume that the material points

I along the sample correspond to different points along the r-ýD curve, the initial

heterogeneity can be considered, and more accurate simulation of the degradation

* progress can be achieved.

As shown in Figures 6.1 and 6.2, the initial received ultrasonic energy dis-

tribution along the sample shows two extreme numbers, the highest and the lowest

ones. Let us consider the point with the highest initial received ultrasonic energy as

reference state. Then other material points can be considered as initially damaged

with respect to the reference state. The point with the lowest initial (received)

ultrasonic energy is most seriously "damaged" initially, and has the maximum ini-

tial damage parameter, say r'a . The initial damage parameter at other points

can be obtained by (linear) interpolation. So we have, generally, 0 < r0 _< r'az,

0 < r < r.. Here, ro is the initial damage parameter corresponding to different

points along the sample; r,, is the ultimate value of damage parameter r. Follow-

ing this procedure and considering, in a qualitative sense as described previously,

Sro' = 0.2 (this is discussed further in the following), we get the initial damage

distribution for test samples S4 and M2 as shown in Figure 6.4 and Figure 6.5, re-

spectively. This initial damage distribution will be taken as input for the numerical

(FEM) simulation in the next section.

U 6.3 Numerical Solutions

For illustration purposes we consider samples S4 and M2. Consider the problem

to be solved as two-dimensional one (idealized as plane strain). The end platens

and the faces of the sample subjected to compressive load were lubricated by a

thin layer of silicon grease, and additionally, a thin layer of teflon lubricated onI
I
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both sides was placed between end platens and sample. So it is reasonable to

I assume friction free along boundaries of the sample for the FEM computations.

It is assumed that the central line along the depth of the bottom surface of the

I sample is fixed, to avoid singularity for FEM solution.

From the results presented in section 5 at chapter 3, we have rK/]Kd = 2621

and RS/Rd = 1.53, where Pe and R are material constants associated with damage

evolution, the physical meaning of which is defined in equation (3.8); superscript

s, d indicates value for the surface degradation zone and pure damage zone respec-

tively. Specifically, the following values are used herein: tv' = 131050, R" = 0.765,

,cld = 50, Rd = 0.5, ru = 0.8.

6.3.1 Damage Growth Consideration

Initially, we neglect the surface effects and consider the damage growth

only. Figures 6.6 and 6.7 are the FEM meshes for samples S4 and M2, respectively.

Eight-node quadrilateral elements and four-point Gaussian integration method are

employed. Although coarse meshes were used, as shown subsequently even such

meshes can capture the inhomogeneity patterns of such problems. The initial3 damage parameter r0 for each integration point is given as input. The external

displacement is taken as known in the process of calculation. In order to assess the

structural changes and to compare the numerical results with experimental output,

the damage growth Ar = r - r0 is used in the following plots. For sample S4, the

damage growth pattern obtained at P/Ppeak = 0.46 along the force-displacement

curve is shown in Figure 6.8a, and, for comparison, the ultrasonically dissipated

energy pattern at PiPpeak = 0.45 is shown in Figure 6.8b; Similarly, the damage

growth pattern at PiPpek = C.92 is shown in Figure 6.9a, and the ultrasonically

dissipated energy pattern at PIPpeak = 0.93 is shown in Figure 6.9b. For sample

M2, the damage growth pattern at PIPpek = 0.18 is shown in Figure 6.10a, and

the ultrasonically dissipated energy pattern at P/Pp,.k = 0.20 is shown in Figure

6.10b. Similarly, the modelling results (experimental observations) for sample M2

at PIPpek = 0.70 (PIPp,.k = 0.68) are shown in Figure 6.11a (6.11b).

I
I
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As noted previously, the comparison between the numerical results and ex-

perimental observations is qualitative. Since the FEM calculation is processed by

displacement control, specific values of P/Ppeak are approximately achieved for

comparison purposes.

An important outcome here is that the initially high intensity regions seem

to dissipate energy at a (much) higher rate than the low intensity ones. Both

experiment and theory clearly depict this behavior. It is noted that higher rate of

energy dissipation corresponds to increased change in microstructure or damage.

Then we conclude that the microcrack development is more pronounced in and

around the initially high intensity regions. This agrees with the theoretical study by

Yamaguchi and Chen [1991] and experimental investigation by Hsu et al [1963]. The

experimental results of Hsu et al [1963] have shown that bond cracks begin to grow

at 30% of the compressive strength, and that mortar cracks start propagating at

the critical stress. The theoretical study by Yamaguchi and Chen [1991] concluded

that the propagation of bond cracks is not greatly influenced by the stress state

and that the development of mortar cracks and the formation of continuous crack

patterns are significantly influenced by the stress state.

6.3.2 Damage Growth and Surface Degradation Consideration

Let us take sample M2 as illustration problem for both damage gfowth and

surface degradation consideration. For this problem, equation (3.30) reduces to

p = a(H - 1) (6.1)

where H = 5in is the specimen height, a and I are two material constants. In

chapter 5, the surface degradation zone was estimated from the ultrasonic data

and from surface instability analysis of Frantziskonis and Vardoulakis [1992] and

shear band analysis of Vardoulakis and Frantziskonis [1991]. It was found that

for the 5 inches (12.7 cm) height specimens p = 1 inch (2.54 cm). With this

value and from the test results on different size specimens the values a = 0.21 and

1 = 0.24 inches (0.71 cm) were approximated from the ultrasonic measurements

(chapter 5) and instability analysis [Frantziskonis and Vardoulakis 1992]. From

I
I
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shear band analysis the I was found to be approximately 10 times the thickness of

the shear band [Vardoulakis and Frantziskonis 1991]. The FEM mesh (Figure 6.7) is

changed as shown in Figure 6.12 to consider the surface degradation. The elements

along the two free edges are in the surface degradation zone, and the appropriate

material parameters are assigned to them as discussed previously. Following the

same procedure as in section 6.3.1, the damage growth, Ar = r - r0 , at the stage

P/PP,.Ak = 0.2 along the force-displacement curve is obtained as shown in Figure

6. loc.

6.3.3 Discussion

As explained in chapter 5, G can be used to monitor the degradation progress

of brittle materials subjected to external mechanical load. In order to show how the

theory for damage and surface degradation with initial state consideration describe

the degradation process of brittle materials subjected to external mechanical load,

we presented some experimental results for samples S4 and M2 as shown in Figures

6.8b-6.9b and Figures 6.10b-6.1 lb, respectively. Comparing Figure 6.8a (6.9a) with

Figure 6.8b (6.9b), it can be seen that the degradation mechanism of sample S4,

the initial non-uniformity of which showed higher concentration of received pulse

energy along the edge(s), as subjected to external load, is modeled satisfactorily.

As for sample M2, where the initial non-uniformity showed higher concentration

of received pulse energy in the center of the specimen, the degradation mechanis-

m is not well modeled by considering only the damage growth (compare Figure

6.10a (6.11a) with Figure 6.10b (6.11b)). If both the damage growth and surface

degradation are considered in the FEM model, the degradation of sample M2 as

subjected to external load can be modeled better (compare Figure 6.10b and Figure

6.10c). But the surface effects is over-predicted by the material parameters used.

It seems that more accurate material parameters need to be achieved by further
study.
s y In this study we examine the effects of initial inhomogeneity on the material

response to mechanical load. Such inhomogeneity is implemented in the theory viaI the experimental observations described previously. It was found that the relative

I
I



180

spatial distribution of the inhomogeneity variables is of paramount importance. For

_ the quantitative comparison of theory and experiment a parametric study, e.g. an

experimentally obtained value of r"", together with introduction of random vari-I ables would be necessary. This would require further experimental and theoretical

studies.

6.4 Conclusions

I The material heterogeneity is considered by virtue of the concept of state of

degradation. The degradation mechanism and damage growth patterning of simu-I lated rock under uniaxial external load are modeled numerically by implementing

the theory for damage and surface degradation with initial state consideration.

I Comparing the theoretical outputs and experimental measurements, in a quali-

tative sense, it is found that the damage growth patterning can be satisfactorily

modeled if the initial non-uniformity showed higher concentration of received pulse

energy along the edge(s) of the sample. Much better results will be achieved by

considering the surface degradation, in addition to the theory for damage and initial

damage implementation, if the initial non-uniformity showed higher concentration

of received pulse energy in the center of the sample. Overall, it may be concluded

that the theory for damage and surface degradation, as combined with the con-

cept of initial state, is capable of describing the degradation patterning for brittle

materials. The present comparison of theory and experiments is qualitative. The3 relative spatial distribution of the inhomogeneity variables, rather than their actual

value, is of paramount importance. Parametric studies through extensive experi-

1 mental results and introduction of random variables are needed for the quantitative

implementation of the theory.I
I
I
I
I



I

S 181

I

I SAMPLE S4

30.00 0.40 0.80 1.20 1.60 2.00 40 2. 80
I I I I I I I • I !I I

4.80 - 4.80

14.40 4.40

4.00 4.00

3.60 3.60

33.20 3.20

2.80 2.80

2.40 2.40

2.00 2.00

1.60 J21.60

1.20 1.20

0.80 -0.80

568

0.40 0.4

0.00 0.00
0.00 0.40 0.0 1.20 1.60 2.00 2.40 2.LO
Contour of Initially Received Energy

I
U

I Figure 6.1 Contour of Initially Received Energy for Sample S4

I
I
I



I
3 182

3 SAMPLE M2

g 0.00 0.38 0.75 1.13 1.50 1.A6 2.25 63 3.00 3.38

4.88 4..18

4.50 4.50

4.13 "I 4.13

33.75 3175

3.38 3-38

3.00 3.00

2.63 2.63

2.25 2.25

3 1.88 1.13

0.01.50

0.75 0.75

0.00 o.-1 0.75 1.13 1.30 I.M 2.25 2.63 3.00
Contour of Initially Received Energy

I
I

I Figure 6.2 Contour of Initially Received Energy for Sample M2

i
I
I



3 183

I
I

U 0.80

3I 0.60

V

Q:0.40

II °
E

"- 0.20

I
0.00 .......,......... ,......... ,...... . , . . . . . . . ... 0 2 . 0 o s 0 8 . 0m2

0.d 0... 0.206 0.40 0.60 0.80 1.00 1.20
trajectory of deviatoric plastic strain (E-3)

F
I

I

I
I



1 184

II

If
lwo

SAMPLE S4 P,,p..i ,

Figure 6.4 Initial Damage Distribution for Sample S4



i
3 185

I
I
I.
U

Ii ,',.

I,

i SAP•- M2 PPp..& -0

U
I
II
I
3 Figure 6.5 Initial Damage Distribution for Sample M2

I
I
I



3 186

I
I
I
U

I

I I 5.0 inches

I

1 - 3.0 inches

F
I
3 Figure 6.6 Finite Element Mesh for Sample S4

I
I
I



I

3 187

I
I
I
I
I II I I l

5.0 inchesI
I,

1 K3.5 inches~

I
I
3 Figure 6.7 Finite Element Mesh for Sample M2

I
3
I



* 188

i

n Hi n•rime~nt

II

SAMPLE S4 P/Ppoee .=0.4

I Figure 6.8 Comparison of Theoretical and Experimental Results for Sample S4

I
I
I



1

1 189

moori

I I

I SAMPLE S4 P/Pp..k=0.93

1 ii

I
I

N SNh1•E S4 P/Ppoeh =O. 9 2

3 Figure 6.9 Comparison of Theoretical and Experimental Results for Sample S4

I
U
I



3 190

SAMPLE-r%2 P/Pp..t -e.1 ist M2~ P/Pp..t .6.2

(a) (b)

I ~(c)-
S~rN-E- M2 P/Ppeek -0..2

Figure 6.10 Comparison of Theoretical and Experimental Result-

3 s for Sample M2, (a) Theoretical Results without Surface Degrada-

tion Consideration, (b) Experimental Results, (c) Theoretical Results3 with Surface Degradation Consideration



I
3 191

4 Th'aeory,

U4 I.O

I

~ ~.P

3SAMIPLE- M2 P/Pp.. e .0. 70

S~~SAMPLIE rM2 P/Ppoet =0.68

I Figure 6.11 Comparison of Theoretical and Experimental Results for Sample M2

I
I

I



3 192

5.Ince

3.Ince

Fiue61IoiidFnt leetMs oCnie ufc
DerdtoIo apeM



193

CHAPTER 7

EXTENSION TO POST-INSTABILITY STUDY

7.1 General

The instability criteria proposed in this study has been verified through the

applications to some typical problems. It is understood that identification of the

instability point along the force-displacement curve is by checking the dissipated

energy (rate) and elastic potential step by step rather than by checking the stiffness

matrix step by step. So, the proposed instability theory is physical model rather

than mathematical model such as bifurcation instability theory and localization or

shear band analysis. However, we believe that some relationship exists between the

physical and mathematical considerations. The establishment of such a relationship

will be examined in future effort.

As discussed in Chapter 2, even though the classical continuum theories

may describe satisfactorily the onset of instability, they break down in the post-

bifurcation regime leading to mathematical problems which are either ill-posed or

of changing type. It is clear that classical computations are severely imperfection

sensitive. In the damage formulation presented in Chapter 3, the wave-number

of the corresponding eigen-mode still depends on mesh size due to the absence

of internal length in the flow or constitutive theory. The mesh dependency of

the damage model [Frantziskonis and Desai 1987] was investigated by Woo and

Desai [1991]. In this chapter, some considerations to eliminate the mesh-dependent

problem of various models will be proposed and discussed. The detail solutions will

be achieved by future effort.

7.2 Gradient Consideration

7.2.1 Gradient Regularization for A Plasticity Model

For removing the mathematical difficulties of classical constitutive theories,

higher order strain gradients have been considered by many researchers. General
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review of this topic has been presented in chapter 2. However, for completeness,

some basic equations will be presented.

As for the hydrostatic part of the flow-rule or dilatancy condition, Var-

doulakis and Aifantis [1991] assume that the volumetric plastic strain-rate EP at

a point xi depends linearly on the average rate of slip 9ý, among the grains con-

tained in a small but finite material volume V surrounding the point xi and is

also a (non-linear) function of the cumulative average slip ;yp during the considered

deformation process at this point. The non-local hypothesis is expressed formally

by the relations [Vardoulakis and Aifantis 1991]:

?= 3(ýP)-9, 9P = J4dt(71

* and

9/ = (1/V) J '(Xi + ,)dV (7.2)

Assume the region V being a circle of radius R and use the Taylor's expan-

sion of function, then
P= IP + P2 ip + 04) (7.3)

where 12 = R'/8. The numerical factor in (7.3) depends on the dimensionality of

the problem; e.g. 1/8 is replaced by 1/10 if the calculation is carried on in three

dimensions. By assuming for example that 1 is constant, it follows from (7.1) and

(7.3) that the cumulative plastic shear strain is given by a similar expression as ýP,
* i.e.

9p = 7 p + 12 7
2 

7 p + 0(14) (7.4)

Accordingly, the gradient dependent hydrostatic part of the flow-rule is expressed

by the following condition [Vardoulakis and Aifantis 1991]:

iP 1 13(ýP)(jyP + 12 V2 "P) (7.5)

To show how to modify yield condition, take Coulomb yield condition as

example. The Coulomb yield condition is modified as:

F = i/p -. ý(7P, V7 2YP) = 0 (7.6a)
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-(-yP) - c(O", V21P) 172 7f (7.6b)

For reasons to be apparent later the following "initial" condition for the

growth of the gradient coefficient c is assumed.

c=0 for V72 7P=0 (7.7)

To find a more specific form of the function c, the so-called Prager consis-

tency condition is utilized. From (7.6a) we have

÷ - pPf - Pit = 0 (7.8)

An expression for MI can directly be obtained from (7.6b) as

S=AjP + BiP (7.9)

where 6P = -7
2 yP is set for convenience and the coefficients A and B are defined

by the relations

A = -p - 9 p (7.10a)0p f 0P

B = - c (7.10b)

An expression for i can be determined from the elasticity of the material

and the dilatancy condition (7.5) as follows

3 = -K% = -'K(i - P) = -K[i -. (iP + 91 2 P) (7.11)

with K denoting the bulk modulus and ((i, i) the elastic and total volumetric strain

rates respectively. In view of (7.9) and (7.11), (7.8) can be written as

U" + KIie - (Kji/3 + Ap)ýp - (KjA0l 2 + Bp)*P = 0 (7.12)

To dispense with difficulties in the loading-unloading criteria arising from

the explicit presence of 6P -7
2 yP in the consistency condition (7.12), a special
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non-linear model by requiring that the coefficient of 6P is identically equal to zero

is assumed [Vardoulakis and Aifantis 1991], i.e.

KA1312 + Bp = 0 (7.13)

By substituting in (7.13) the definition (7.6b) for A, and the definition
(7.10b) for B, we obtain a first order linear differential equation for c = c(P),

of the form

Oc
- + f(6P' )c = g(6') (7.14)

where

f(6p) = 116p + (k2, g(6p) = at12lbp (7.15)

with

I-- (K/p)/3 (7.16)

The solution of this differential equation is

c = e-F[c(0) + g(.,)eFdXl, F = j f(x)dx (7.17)

On recalling (7.7) and carrying out the integration in (7.17), An explicit expression

for c of the following form is obtained [Vardoulakis and Aifantis 1991]:

c = 6P [1 - exp(-a12 6p)] (7.18)

This, in turn, in conjunction with (7.6b) gives the following exponential expression

for the gradient dependent mobilized friction coefficient jt

S= !L(.Y)exp(-(VI 2 v 2 -,,) = Z(y')(1 _ a 2 V 2 9p) (7.19)

On returning to the consistency condition (7.12) we obtain, in view of (7.13),

the relation
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I " + K4" (Kh•jI + Ap)jP (7.20)

From this equation and with definition (7.10a) for A, the desired expression for

the rate of the equivalent plastic strain rate -1P can be derived [Vardoulakis and

Aifantis 1991].

ip= */G + XPE (7.21)
h-hT

with

h = (p/G)ht (7.22a)

ht = htexp( _ad2 72 7P) ; ht(1 - a12 72 •yp) (7.22b)

ht = dj1 /dP (7.22c)

hT = -X0i• (7.23a)

=,3 - (dOl/dTP)l 2 7 2 Yp (7.23b)

where y = K/G is the ratio of the elastic moduli with G being the elastic shear

modulus of the material.

Following the standard decomposition of stress tensor a,j and strain tensor

e,, into a spherical part and a deviatoric part, and assuming that deviatoric plastic

strain-rates are coaxial with the stress deviator and proportional to the plastic

hardening parameter 7P, the rate-dependent constitutive equation can be derived

as [Vardoulakis and Aifantis 1991]:

6"i. = G(Lijkliki - N 3kt 7'2 41k) (7.24)

where

Lijk, = Lijkl - LF).kP (7.25)

L'jkl is a tensor concerned with the elastic constants of the material; LfJk1 and

Iijkl are tensors concerned with the plastic behavior of the material.
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It is seen that the theory is essentially a second-grade flow theory of plas-

ticity; i.e. a plasticity theory for which the stress-rate depends on the strain-rate

as well as on its Laplacian.

Based on Mindlin's elasticity theory with micro-structure, Vardoulakis and

Frantziskonis (1991] have recently achieved a gradient regularization of the clas-

sical kinematic-hardening plasticity. The outcome is that their Laplacian were

'introduced into the flow rule, constitutive equation for double force, and incremen-

tal stress-incremental strain constitutive equation. Shear-band analysis shows that

the theory provides the band thickness, and regularizes the governing equations.

7.2.2 Gradient Regularization for A Specific Model

The model described in section 1 at Chapter 4 [Desai et al 1986] is a con-

stitutive model which is relevant to various yield functions used in the context of

plasticity. For reading convenience, let us write down the yield functions as:

F = 2 D - (-caJ.l' + YJ2)(1 _ I S,-)m = 0 (7.26)

with
a (7.27)

where .12d is the second invariant of the deviatoric stress tensor, Si, a,, n1 , n, -y, 2,
and m are treated as material constants, J1 is the first invariant of stress tensor,

I I

a,'. S,. is the stress ratio such as I,',D/j•D and Lode angle, J 3D is the third invariant

of S,), and ý is plastic strain trajectory defined as

N (ded,)1)2 (7.28)

To consider the gradient effect, the yield function (7-26) is modified as

1F' = . _2 - (-_'J' + J)(1 - 3S,)m =0 (7.29)

with

a' = a(-, 72 ) a - c(ý, V2C) 72  (7.30)

In
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The coefficient c can be derived by considering Prager's consistency condi-

tion, AF' = 0. For simplicity, c may be taken as a constant. However, c can be

redefined as a function of damage parameter, r, such that

c = (r,i) (7.31)

with the principle that c is proportional to ÷, and that c reaches its maximum as

r approaches its ultimate value r.. In (7.31), f means function.

Let us decompose the strain rate •ii into elastic if and plastic J_ The

standard flow rule requires that

"- kA DQ(7.32)

with

= 1 f 0, otherwise af > 0 (7.33)

The expression of A can be achieved by following the standard plasticity theory

(see Appendix A). Now, the flow rule (7.32) is modified as

i = k aQ (A +12 7 2 A) (7.34)

i with I being the 'internal length'. As discussed in (Vardoulakis and Aifantis 1991),

prior to localization the coordinates xi must be non-dimensionalized by some global

dimension L of the structure under consideration. Before localization (12 /L 2) < 1.

However, when the deformation is localized in a narrow zone of intense shear then

the spatial coordinates are non-dimensionalized by say the thickness d of the shear

band. Accordingly, the gradient effects are not necessarily negligible.

By using the yield function (7.29) and flow rule (7.34), and following the

standard plasticity procedure, the following incremental stress-incremental strain

relation is expected if associated flow is assumed.

I = -Ce p 2? kl (7.35)I

I
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with
Cep Ce cP

-ijkl i j kI (7.36)

where Cjk is a tensor concerned with elasticity, and CP.kl is a tensor concerned

with plasticity.

It is noted that the above modification is processed for undamaged (intact)

part of the material if bo+,- model is concerned. For the damaged part, the assump-

tion of perfect rigid plastic behavior with zero shear strength is kept unchanged.

7.3 Non-Local Damage Consideration for A Specific Model

The concept of non-local continuum [Kroner 1967; Krumhanzl 1968; Erin-

gen and Edelen 1972] was formalized [Bazant 1984; Bazant, Belytschko and Chang

1984; Bazant and Pijaudier-Cabot 1988] to overcome the macroscopic strain-

softening problem in brittle materials which causes localization instabilities, spu-

rious mesh sensitivity and incorrect convergence. One very effective version of the

non-local concept is the nonlocal continuum with local strain [Pijaudier-Cabot and

Bazant 19S7]. The key idea is to prevent localization of damage to regions of zero

volume by a non-local formulation of the stress-strain relation in which only the

damage, i.e. strain-softening response is non-local while the elastic response is

local. Being stimulated by this idea, we now propose an alternative to eliminate

the post-instability mesh-dependent problem for specific damage model. Here, we

keep the constitutive descriptions for the two parts (intact part and damaged past)

unchanged. and consider the damage parameter r (which measures the structural

transformation of the system under external mechanical load) non-local modifica-

tion. It is noted that the damage description and its function are different from

the damage theory utilized by Pijaudier-Cabot and Bazant [1987]. Then, the pro-

posed non-local damage consideration is expected to be different from that used

by Bazant and Pijaudier-Cabot [1988].

The damage model was originated by Frantziskonis and Desai [1987]. Dis-

cussion about this model has been presented in Chapter 3. The evolution law of

I
I
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damage parameter r is described by equation (3.8) and (3.9). The damage param-

eter is used to calculate the average stress and to modify the constitutive tensor.

As can be seen from equation (3.4), along localization zone or shear band, the

incremental shear stress approaches zero or a very small value (dependent on the

material) as r reaches its ultimate value r,. This may be responsible for the ze-

ro energy dissipation along shear band. If the neighboring effects are considered

and therefore the local damage parameter is regularized, then the problem of zero

energy dissipation may be eliminated.

Let us regularize the local damage parameter as follows. The spatial average

of the magnitude of deviatoric plastic trajectory at location x may be defined as

S(X) 1 a(s - X)D(s)dV = a'(x, S)ýD(s)dV (7.37)Vx IVx =

in which Vr(x) = jV a(s - x)dV 
(7.38)

a'(x - s) = a(s - x)/V,(x) (7.39)

The above bar denotes the averaging operator, V=volume of the body and a(x) =

weighting function which defines the averaging; s is the general co-ordinate vector.

The averaging may be specified by a uniform function, a = 1, which is non-zero

only within a representative volume such as a circle in two dimensions or a sphere

in three dimensions. However, the normal distribution function is recommended

[Bazant and Lin 1988]:

a(x) = e-(kIxI/1) 2  (7.40)

in which, for one, two and three dimensions:

S1D: Ix12 = x 2 , k ---- =• 1.772 (7.41)

2D: Ix12 = .r2 + y2, k = 2 (7.42)

3D: 1x12 = x2 +y 2 + Z 2, k = (6V/'i)1/ 3 = 2.149 (7.43)

I
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1 is the characteristic length, a material property which defines the diameter of

the representative volume. From experiments, Bazant and Pijaudier-Cabot (1988)

found that I = 2.7 times the maximum aggregate size for concrete.

Now, we can use the averaged ýD to get the regularized damage parameter

as 5= r. - r,.exp(-r'G) (7.44)

As defined in chapter 3, r,, K, and R are material constants, and they have

been identified for a brittle material [Desai, Kundu and Wang 1990]. Then the

constitutive tensor L (3.6) can be modified as

Ljk= (1 - r)C:k + k (7.45)

It is important to note that these modification are processed in load step.

If we implement these modification along iteration step, convergency problem may

be involved.

7.4 Physical Modification through Diffusion Assumption

The damage model [Frantziskonis and Desai 19871 assumes that there is no

diffusion, as in the mixture theory, between the damaged and intact parts of the

deforming materials. As a result, the strains in the damaged part and intact part

and the observed strains, df4,, de:, and dW., respectively, are assumed to be the

same. In order to eliminate the mesh-dependent problem in post-instability stage,

Desai [1991] proposed a procedure and algorithm to allow the relative motions

between the damaged and intact parts of deforming materials. It is suggested that

this approach that introduces a physically consistent constraining condition can

lead to results similar to those in the foregoing procedures. The Finite-Element

implementation and examination of this algorithm is being currently pursued.



203

CHAPTER 8

SUMMARY AND CONCLUSIONS

In this study, first, the theoretical and experimental view points concerned

with instability and bifurcation were reviewed and discussed. In its most general

form, bifurcation theory is theory of equilibrium solutions of an nonlinear equa-

tion. For brittle materials such as rock and concrete, the non-linearity of the

(incremental) equilibrium equation comes from the constitutive description which

reflects the unconservative (plastic and/or damage) behavior of the deforming ma-

terial system. Then, the onset of bifurcation or localization is relevant to the yield

function and plastic potential assumed. The occurrence of a bifurcation or limit

point in a numerical stress analysis is marked by singularity of the stiffness matrix

and negative or complex eigenvalues-conditions that traditionally produce severe

numerical instability sufficient to disrupt a conventional finite elemcnt program.

Classical theories of plasticity, in particular, break down in the post-bifurcation

regime where ellipticity is lost. In order to eliminate this mathematical prob-

lem, a few non-traditional considerations have been proposed. They are gradient

regularization, Cosserat continuum model, non-local theory, and rate-dependent

consideration.

Based on energy consideration, an alternative instability criterion has been

developed and examined. According to this criterion, a brittle material system

may experience unstable damage growth if the rate of decrease of elastic potential

per unit damaged volume is higher than that of increase of dissipated energy per

unit damaged volume.

The definition of surface degradation zone was discussed and the material

constants concerned with surface degradation were identified against experiment

results. The damage growth instability criterion was extended to consider the

surface degradation instability resulting spalling of material from the stress-free

surface(s). The onset of surface degradation instability is influenced by the material

behavior, structural geometry, and the external load.
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The proposed pure damage growth instability criterion and surface degra-

dation instability criterion are, in some sense, similar to the well-known Griffth's

criterion.

The energy-based stability theory was implemented analytically and nu-

merically. It was shown that the onset of both surface degradation instability and

global degradation instability occur in the strain hardening stage, that is, before

and close to the peak strength. It was also identified that the onset of surface

degradation instability occurs before the onset of global degradation instability.

The comparison of theoretical prediction and experimental results highlights that

the degradation instability theory predicts the global instabilities concerned with

non-uniform deformation and the surface degradation instabilities concerned with

spalling and size, shape effects for brittle materials like rock and concrete.

Relevant physical experiments were performed to study the degradation

mechanism of a brittle material. Ultrasonic energy analysis reported that dissi-

pated energy shows a random distribution and it follows, in general, the initial

non-homogeneity pattern. The surface effects of simulated rock under uniaxial ex-

ternal compression were highlighted by both pure strain gage tests and ultrasonic

scanning tests. The material internal length associated with surface degradation

was estimated. Relatively low external energy is required to produce degradation

occurring before the peak load. This implies that from low load levels the specimen

may be susceptible to instability, and this may explain the large range of peak load

values for specimens of the same shape and size. The relationship between the ul-

trasonically dissipated energy and mechanically dissipated energy is dependent on

deformation and can be approximated by a power function of load level coefficient.
Experiments showed that the simulated rock is initially heterogeneous. The

material heterogeneity was considered by virtue of the concept of state of degra-

dation. The degradation mechanism and damage growth patterning of simulated

rock under uniaxial external load were modeled numerically by implementing the

theory for damage and surface degradation with initial state consideration. It was

found that the damage growth patterning can be satisfactorily modeled if the ini-

tial non-uniformity showed higher concentration of received pulse energy along the
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edge of the sample. Much better results would be achieved by considering the

surface degradation, in addition to the theory for damage and initial damage im-

plementation, if the initial non-uniformity showed higher concentration of received

pulse energy in the center of the sample. The presented comparison of theory

and experiments was qualitative. It is felt that parametric studies through exten-

sive experimental results and introduction of random variables are needed for the

quantitative implementation of the theory.

Although it is believed that damage concepts can provide a general and

simplified approach for characterizing behavior of (geologic) materials undergoing

microcracking and fracture leading to loss of strength and strength softening, the

post-instability mesh-dependent problem is involved as far as the Finite Element

solution is concerned. Three alternatives were proposed to eliminate the post-

instability mesh-dependent problem. They are constitutive gradient regularization,

non-local damage consideration, and diffusion assumption. The internal length

introduction is crucial and physically meaningful herein.

I
I!
I
I
I
I
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APPENDIX A

ELASTOPLASTIC CONSTITUTIVE RELATIONS

In this appendix, the details of the derivation of the elastic-plastic relation

for the topical part are given. The yield function involved were described in section

1 at Chapter 4. In general, we can write the incremental (rate) constitutive relation

for the topical part as
e-- = Cep

I i jk1l~(A1

In the above relation, C"jki is termed as the elastoplastic constitutive tensor. In

order to derive the expression for this tensor, the relations of elastic-plastic theory

are used [Hill 1950; Chen and Han 1988]

i = i.+ i.(A4.2)

that is, strain rate (increment) are decomposed into elastic if and plastic J,.. Also

kA ~~OQ (3
i j =k IC (A.3)

known as the flow rule such that

ik F1{ i = =0 and "&> 0;(0 otherwiseIt(A4

For a hardening material (topical part) A > 0 and in the present theory the topical

behavior is hardening (non-softening); thus, always A > 0. The elastic strain

increments (rates) are related to stress rates

ir i&k'ij (A.5)

where Cýk is the elasticity constitutive tensor. In the present case, elasticity is

assumed linear and isotropic; thus,

Cjk=2G 2G(2G + 3K) 6kL'5 (A.6)
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where G, K denote the initial elastic shear and bulk moduli, respectively. From

(A.2) and (A.5), we have
d"!. = C - (A.7)

From the definition of the plastic strain trajectory C, we have

I = iPI )1/2 (A.8)

It follows from the flow rule, (A.3) and (A.8), that

=A (QOQ) (A.9)

The consistency condition for the yield function F is expressed as
aF & t 8F

S+ (A10)

Substituting (A.7) and (A.9) into (A.10), we have

-(9 FQ (a-F Q Q "1 /2  (A.1
L Jk 57't' -,. kl (at 5atOt'J

The above equatidns can be solved for A so that (A.3), (A.7) and (A.11) yield

SKce •8F 1'
iFpq 8aU, - 'mnkl 2 (A.12)

L a. 1L r ae'P In

•rj - ,ekl - .9F -I _Q. OFt (A..-12) /

The above relation is the final elastoplastic relation for the topical part. In this

study, associative flow (Q = F) is assumed.
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I Introduction

I Experimental and theoretical information on degradation mechanisms of brittle material struc-
tures is reviewed first It is concluded that although a considemble amount of research on the sub-
ject of damage and, to a much less extent, on surface degradation has been performed in recent
years. the related stability problems have not been studied adequately.'Me analytical solution of the energy based stab~iit problem shows that surface degradation

instability and/or damage progression instability occurs before the peak strength is reached. Thus a
homogeneous post-peak state is impossible, since basic energy relations are violated.

Damage and surface degradation are closely related to the well known size and shape effects
of brittle materials It is shown that surface degradation is important for both size and shape dep-
endent properties of such materiaL The theoretical developments are compared to the observed
behavior of an artificial rock.

j 1. Background and Review

In constitutive modeling research the material is commonly thought of as a continuum without

any cracks or disconinuities. However, in recent years it is realized that a slightly damaged mater-

ial does not necessarily mean the end of its life, and it is important to understand the behavior of

materials containing acceptable levels of damage in it in order to predict its remaining strength. In

the light of the information known on the subject of damage growth, a Griffith crack characteri-

zation of damage is far from reality. The need for a realistic description of damage guides to the

development of a theory that contains the essential features of the known damage mechanisms.

Such analytical models have only recently been developed. A great majority of the literature con-

siders uniaxial stress conditions. Damage is so defined that the effect of a developed microcrack

network is taken into a=coufL A number of investigators have considered the effects of damage in

their models directly or indirectly, a review on this subject can be found in [1,2]
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It is interesting to note that the model includmg damage proposed in [1-81 has been invesa-

gated successfuily with respect to different materials such as concrete and composites. The material

constants have been identified and the proposed theory has been validated througl compaison

with experimental data. Only slight modi•ications in the model, while transferring from one mater-

ial to another, are necessary for the rational description of rte above materials. The fact that the

constitutive equations can be usd, with minor modifIcations, for appasrdy different looking mat-

eriual is being examined towar unification of material modeling for engineering application.

This damage based approach is a branch of a general hierarchical approach to constitutive model-

ing of engineering materials introduced in [8]. Also, as far as decomposition of material behavior is

I concerned, we note the model proposec in [9].

2. Damage Development

Let us consider a small volume AV of the material This volume is subdivided into an intact

(undamaged) pat AVO and into a fracturod (damaged) par AVd. The first par or fraction

represents topical (continuum) behavior and the material in it is intact in the sense that no micro-

cracks exist. Due to the inhomogeneicy of rhe material behavior at the microlevel, weak planes can

develop leading to formation and subsequent propaption of micro-cracks. The laws that govern

the above structural changes are not fully understood. The effect of an isolated or coupled fracture

site is that an influence wnoe exists around it. This influence zone is of volume 4Vd. Under coa-

tinued loading, influence zones increase so that AVd increases. At every instant of time we

define the ratio
Ir a &V (2-1)

AV
called t volume damage ratio. The materni point of the two fractions material consists of the

nmsuperpidon of a material point of the undamaged fraction, herein called the u-part, and of a

material point of the damaged fraction, herein called the d-part.

The above suggests the use of the theory of mixtures, or theory of interacting continua. As a

consequemce the following relation is applicable (1-41

au - (I - roel - rOU (.2
where ct, 4 denote the strell teqnrs in the u and d-part of the material element respectively and

oj is the average stm tensor. The general theory of mixtures, [I10, 111 is simplified considerably if

diffusion is absent In the proposed theory there is no diffusion between the components thus the

srams in the two material fractions are considered equal [I I.

We now consider a material element. Due to the enforced deformation in the element, damage

influence zones have been created but failure has not occurred yet. Such influence zones depict the

mechanical influence of a system of miccracks. The constitutive equations for the d-part can be

established as [4, 61

I
I
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I4 Clu emt~ (2.3)
and -& is a function of parameters related to the degrading properties of the materiaL Since there

are no microcracks in the u-part, its constitutive relations can be identified as
e - C;Mld(2.4)

if the undamaged fraction is linearly elastic (iLe for composites) C; contains the usual linear Was-

tIcity constants. Nf plstcty effects we included then a generalizd elastic-plastic model can emp-

loyed and the above relations are written in rate form.

The irreversible nature of damage implies that the material experiencing it obeys non-hoio-

nomic laws. Thus the problem is formulated in rate form of the governing equations and the con-

stitutive relations are established as

where

-L = (I - r) C_ + rC& (2.6)

I Further an evolution law for t is defined and it is directly related to failure. A simple and general
law can be written as

t = f(- ) (2.7)

Based on the physical interpretation of damage and failure criteria the function f can be specified

(1,2,4,6].

NOT. The damage formulation briefy descbed above has been examined with respect to its

basis on principles of mechanics and physics as well as with respect to its capability to predict the

experimentally observed response. Properties such as degradation, induced anisotropy, elastic pro-

perties degradation are attributed to damage development. The damage related constants have been

identified for different brittle materials such as a concrete. Also, the constants have been evaluated

for different composite materials such as graphite-epoxy and boron-epoxy. Test data have been

back-predicted (simple ones analytically and more complicated ones numerically). The predictive

capability of the theory has proven to be surprisingly good, especially for the material behavior

I i highly deviating from the linear elastic one. Such comparisons can be found in references [1-a].

I ~ ~Surf'ace lid n

It has been observed that in many engineering materials (metals, brittle materials, geomaterials,

I i etc.) surface unevenness (roughness) grows with increase in strain, e.g. [12]. Surface roughness is

induced by microstructural inhomogeneity and its growth is initially stable. It is important to men-

tion that there is certain evidence that this phenomenon acts as a trigger effect on shear bands

appearing in a specimen. The sudden growth of surface roughness results in the occurrence and

development of shear band penetrating into the body (12]. Microscopically a heterogeneous struc-

ture of the material produces an inhomogeneous deformation field from a very early straining

stage. However, irregularity of deformation in the body is not uniform, but there is a part in

II/ ll 'ml l
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Jwhich the ireulrty3, igreater than t inother owns that at. near the surface.

The above observations are also evident i ex==& extenive exwmn on brittda materialswhere the following have been identified a l inrease. in a tsinxisd comprOSion test,

the density of microcrack3 rapidly .ouferates, leading to verticly aligned which
result in gross sbbimg of nm- from te spm ens (h-eraL) surfaces (13,41. In genral the

axial cracks am conentrated in the centma Dorto of dt spemn egth became lateral reg•amt

calmed by friction at the specimen ends ianhits ro rowth am the s ecimen-plate interface.

Damage dtibution at the edge of a odv (specmen) where surface degradation is of impor-

a ce, and is expected to be significanuy lifferent from the damage disuibution far from the

edge. Here we consider that damage at the edge due to surface effects is additive to the damage

Saccumulation due to deformations far from the surface. So at the edges a small volume, 4V, is

subdivided into an intact part av, ana mnt a fractured part Vr. We consider that the above

subdivision holds for adistance ; from the edgeý where p is a positive real number dependent

on the mater'al properties, the geometr. and the Ioad on the sutruce At an instant of am the

edge damage concentration volumae -aic .s iermed as

xV1

Here r, is expected to be mx.miuzn ai :-e ecge and ts value decreases continuously till a mini-

mum value expected to be at a distance p -rom the edge. When r. a I holds then complete sur-

face degradation is observed in the sense that material has no strength. Let us consider the follow-

ing volume average, per unit area in the Diane Darallel to the stress-free surface.

rdA (2.9)

Also the following average strs --an oe ncroduced

- 7i dA (2.10)

Based on physical reasoning, it is possible to establish a connection between the average values of

damage and stress as defined above and dte dimension related parameter p. As mentioned in [151

equilibrium transverse to the surface as weil as moment equilibrium are to be used in establishing

the relation between anj adn ? A' '-ie effec-:ve surface degradation volume toml damage ratio is

defined as

r, - r ? (2.11)

Note that r, :an be grater than since H Here r, is the value of damage variable r at fai-

lure. So, in general

0 S r, _ r, I (2+1 )

NOTE It has been predicted theoreacaily trat n a body with stress free surfaces, an inhomogene-

ous deformation with reiatvelý snor. waveiengW is possible near the surfaces at (high) strained

I
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I stts which i known as the surface instability phenomeon, [16. Surface umvennusa and depa-
dation as described in this paper may be related to surface instability at its initiation. However, the

approach herein is different than surface instability in the sonse that progressive degradation is also

accounted for.

3. instability Conditions

Consider a body occupying region R. The rate of work of the external forc acting on a mat-

erial element of volume AV, denoted by 4 is

Part of this work will be stored as elastic energy in the u-part and part as elastic energy in the d-

p - t" + Q+ S 
(3.2)

where

IiRl-f €,idV +f GJ&,dV (3.3)

and Q, S are the dissipated energy due wo damage growth and surface degradation growth respec-
tively. Conditions for unstable damage, surface degradation growth are established as (7]In •m _ M- a(s V 0 (3.4)q(V,)2a (V,,)Z a(Vd)3 q(Vd)3

M P D a m o . _ s M • 1 0 ( 3 -5 )
iN-V1) - R(Vr)1 - (V d)a a(V d)

where 1I is the total potential energy and D is the dissipated energy due to plastic deformations.

When (3.4) is satisfied frit unstable damage growth occurs resulting to the catastrophic failure of

the structure. When (3.5) is satisfied surface degradation instability takes place. The physical in-
terpretation of such an instability is that bursting growth close to the surface becomes unstable

resulting in spalling of material elements.

4. Analytical Solution of a Simple Problem

For simple problems it is possible to examine the above instability conditions analytically. Irre-

Wspdctive of which of Eqws. (3.4) or (3.5) will be satisfied firs the following conclusions can be

made. Brittle materials subjected to uniaxial load show a decrease in strength after a peak load has

been reached. It is interesting to examine under what conditions stability at the peak strength is

possible. First we examine the case where the two material fractions are assumed lineas and elastic.

: Then the condition for stable behavior at the peak is derived as

I• I
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UM,• (I+2' )a - ( zi. 1. (4.1)

Where

.-A r Ed
Pa, , A, (Ed, Ad, A,) are de Youn modu, a a Lam comunu for the u-part (for the d-part)

and v is the apparent Poisson rua for the rw material fractions. Anlysis of the above equation

shows that in order o have stability at to Peak. the value of r at that point must be close to unity

which is physically unacceptable. Even if such a vluue of r was acceptable, it would be reached at

high value of satr where the mamnal reaches a residual sume of saess far beyond the peak.

Although this stability analysis a bed on the condition that no plastic deformations are present.,

note that at the pak the pWi energy dissipation curve is convex thus a) < 0. Th'en a c

be seen from relations (3.4) and (3J) plastic dformation pronotes instability. Thus a homogeneous

post peak state is anposible since Nic energy -ased stability conditions are violated, If surface

degradation instability occurs tint, thf s may not necessarily imply the overall failure of the str'c-

ture. However, initiation of such an insubiiiry dictates the onset of non-uniform deformation close

to the surface.

5. Connection to Scale (Size) and Shape Effecm

It is well known that the deformational charActermsics of brittle materials depend on the size

as well as on the shape of a structure (specimenj in a specimen subjected to utiaxial stress, when

the ratio of height to width (diameter for cylindrcal specimens) of the sample is increased the

level of (macroscopic) stress at unstabie faure decreases [11,15]. Also for consirni width

(diameter) and in-cremg height, peak strength decreases, while for constait height and icr'easing

width, peak strength increases In the proposed theory the so-called effective surface degradation

volume is introduced. For high ratno of height to width this volume occupies a large percmtnge of

the ample volume. On the otor hand, for low rmao of height to width the effective surface deg-

radation volume is small a compared to the whole volume of the specimen. As expected when

height to width rat increases, surface degradation become$ the predominant dama mode reault-

ing to an instability at a low stres level As height to width ratio decreases, tie effect of surface

degradation decreases and damage growth oecomes i-e predominant instability mode. Distance p

introduced previously is now defined as

where W is a weighting functin (Wounirv prvides stifactory rests), I is the so--l surface

degradation length. c. is the path of ium Pinci compresive sum &ad a is a cn~Lt.

I
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Note that I is a new definition o( the material chasracteristic 1mpth; it is derined as that seie
sizn so that the whole structure is in the surface degradation mwne For a cylindrical specimen of
length L and diameter D subjected to uniauyil compresaion wet have

p - a(L -1)(.2
whome a is constant The se.at Peak is given as

C1 (s-fl 5 ) 80c,1(L-l)j u-C1 . 0C D(5)
Constants C,, C. and *have been determined from a series of ams on artificial rock [181 and it is
verified that the theory (expressed through Ecim 5.3 for the uniaxial load case) is capable in pred-

icting the sine as weil as the shape effect of brittle material mpecmens satisfactorily.

Apart of the research herein was supported by Granm No. AFOSRL 890460 from the Air Force
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Absract. A mechanics based theory for surface degradation in brittle material systems is introduced. Surface
degradation is directly related to damage progression. For this reason the mechanics of damage evolution is
presented lfrse. Subsequently, relations governing surface degradation mechanisms are derived and discussed in
detail. It is shown that surface degradation can capture important properties of brittle materials such as scale (san)
and shape effects, surface damage growth and subsequent bursting instabilines. Finally, the problem of transferring
information from Laboratory experiments to large scale problems is discussed; the need for further experimental
and theoretical research is Pointed ouL

1.0. Inhuduction

In many engineering problems such as underground openings, rock strata tend to move
suddenly into the opening. Catastrophic events of this kind are called rock bursts and are
the result of rock fracturing by spalling. Much of the research in brittle material (i.e., rock.
concrete) mechanics has been concerned with the progressive failure of laboratory specimens
under external loads. It is theorized that such failure is analogous to large scale problems
such as the stability of wall rock in underground openings. The problem is to carefully
simulate and observe the deformation, fracture, and unstable collapse of larger scale (as
compared to laboratory specimen size) problems. For such problems related to fracturing
and stability close to boundaries, much information can be collected from laboratory
experiments i.e. uniaxial compression tests.

For decades, laboratory tests on brittle materials (rock, concrete) sought to achieve a
homogeneous state of stress and deformation on a sample subjected to uniaxial load.
However, even under ideal testing conditions, the heterogeneous micro-structure of the
material produces an inhomogeneous deformation field from the early straining stage,
Fairhurst and Cook [11, Hudson et al. [21, Read and Hegemier [3]. In a uniaxial compression
test, the density of microcracks rapidly proliferates leading to vertically aligned microcracks
resulting in gross slabbing of material from the tractionless surfaces. However. irregularity
of deformation in the specimen is not uniform. but there is a part in which the irregularity
is greater than in other ones. that is near the tractionless surface. In general. the axial cracks
are concentrated in the central portions of the specimen's length because lateral restraint due
to friction at the specimen ends inhibits their growth near the specimen-platen interface.

Based on Griffith type crack analysis, buckling failure of an elastic, anisotropic half-space
containing co-planar cracks at arbitrary locations and subjected to horizontal compression
has been studied recently. Vardoulakis and Papamichos (4]. From this study. the following
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important conclusions are made: (a) the critical buckling stress decreases drma y a th
distance between the free surface and the cracks diminishes; (b) the influence of cracks far
from the surface has very little or no influence on the buckling stress. This analysis suggests
that a surface layer exists for which the presence of cracks has significant influence on the
buckling stress. In a gross sense, this layer is the spalling part of the specimen as observedI in uniaxial compression tests of brittle materials.

It has been predicted theoretically that in a body with stress free surfaces, an inhomogeneous
deformation with relatively short wavelength is possible near the surfaces at (high) strainedI .. states, which is known as the surface instability phenomenon, Biot [5], Hill and Hutchinson
[6], Vardoulakis [7]. Surface finevenness and degradation as described in this paper may
be related to surface instability at its initiation. However, the approach herein is differ-

.-. ! ent than surface instability since progressive degradation is accounted for in this paper.
Kitagawa and Matsushita [8] reviewed the experimental and theoretical information on
such surface effects, herein termed surface degradation. It is concluded that surface rough-

7 ness is induced by material inhomogeneity at the micro-level and its growth is initially
stable. As surface unevenness grows localization develops and it is initiated from the
free-surface.

In the following, a theory that accounts for surface degradation mechanisms is pre-
sented. The close relation between damage development and surface degradation necessi-
tates a brief description of the damage theory presented in [9-12]. Subsequently, the
relation between surface degradation and the well known size and shape effects of brittle
materials is emphasized and discussed. Furthermore, the relation between laboratory
experiments and catastrophic events of larger scale problems is discussed: the need forI " ~further experimental and theoretical research is pointed out. Finally, energy based stab-

ility criteria relevant to surface bursting and overall failure of a body are developed and
discussed.

2.0. Damage and surface degradation

1 .2.1. Damage development

Analytical models for the influence of microcrack initiation and growth on the constitutive
* behavior of brittle materials have only recently been studied. A great majority of the

literature considers uniaxial stress conditions. Damage is so defined that the effect of the
induced microcrack network is taken into account. A number of investigators have con-

" -" sidered the effects of damage in their models directly or indirectly, a review on this subject
can be found in [91, and the references cited there. Note that the model including damage
proposed in [9-12] has been investigated successfully with respect to different materials such
as concrete and composites. The material constants have been identified and the proposed
theory has been validated through comparison with experimental data. Only minor modifi-
cations in the model are necessary for the rational description of different materials. The fact
that the constitutive equations can be used, with minor modifications, for apparently
different looking materials is now being examined towards unification of material modeling
for engineering applications. Also, properties such as degradation, induced anisotropy.

Selastic properties degradation are attributed to damage development.

Ieatcatiue
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2.1.1. Formulation
Let us consider a small volume AV of the material. This volume is subdivided into an Intact
(undamaged) part AV. and into a "fractured" (damaged) part AVt (Fig. 1). The first part or
fraction represents topical (continuum) behavior, and the material in it is intact in the sense
that no microcracks are contained. Due to inhomogeneity of the material behavior at the
microlevel, weak planes are developed leading to crack formation and subsequent propa-
gation. The laws that govern the above structural changes are not fully understood. The
effect of an isolated or coupled fracture site is that an influence zone exists around it as shown
schematically in Fig. 1. This influence zone has volume AV,. Under continued loading,
influence zones increase so that AV, increases. At every instant of time, we define the ratio

r = V ( I
AV,

called the volume damage ratio. The material point consists of the superposition of a
material point of the undamaged fraction, herein called the u-part, and of a material point
of the damaged fraction, herein called the d-part. This suggests the use of the theory of
mixtures, or theory of interacting continua, Bowen [13]. As a consequence. the following
relation is applicable:

= (1 -r)',, + ra-,, (2)

where am,, o denote the stress tensors in the u and d-part of the material element respectively
and cru is the average (measured) stress tensor. The general theory of mixtures, [13. 141 is
simplified considerably if diffusion is absent. In the proposed theory, there is no diffusion
between the components thus the strains in the two material fractions are considered equal [1 4]

We now consider a material element. Due to the enforced deformation in the element.
damage influence zones have been created but failure has not yet occurred. Such influence
zones depict the mechanical influence of a system of microcracks. The constitutive equations
for the d-part can be estabilshed as [10, 121

0 = (3)
A: I'mwial Ciaik EoF* Simse
9: UW"ihet Zwv #W Critk bXOWO

A .A-

A

.fts Ac•i e ,•o

hie•. I. kchematc of damage influence zones
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and C1 k, is a function of parameters related to the degraded properties of the material. Since
. .there are no microcracks in the u-part, its constitutive relations can be identified as

" " - " " • -- C iuj ia c . ( 4 )

I. If the undamaged fraction is linearly elastic (e.g., for composites), Cj7 k, contains the usual
" .-- -linear elasticity constants. If plasticity effects are included then a generalized elastic-plasticId model is employed, Desai et al. [15], and (3) and (4) are expressed in rate form.

The irreversible nature of damage implies that the material experiencing it obeys non-
. .holonomic laws. Thus the problem is formulated in rate form of the governing equations and

I :the constitutive relations are established as

i=j Ljkli" - i(.c:j - .. :-), (5)

where

-Lij= (I r)C,,, + rC'jkI. (6)

From (5) it can be seen [12] that although r, i are scalars, a tensor namely, i(oej - c), is
introduced in the formulation. This tensor is responsible for damage induced anisotropy, an
obvious property of cracked materials. Further, an evolution law for i is defined and it is
directly related to failure where r reaches a critical value r,. A simple law can be written as

r . = f (7)

Based on the physical interpretation of damage and failure criteria the function f can be
if specified [9-12]. However for the purposes of this paper specific expression forf need not be

specified.

1 .2.2. Surface degradation

As mentioned in the introduction, surface degradation is induced by microstructural
inhomogeneity and its growth is initially stable. It is important to mention that there is
certain evidence that this phenomenon acts as a trigger effect on the shear band appearing
in a specimen. The sudden growth of surface degradation results in the occurrence and

* * developement of shear bands penetrating into the body [8].

"The damage distribution, at the edge of a body where surface degradation is of importance,
is expected to be significantly different from the damage distribution far from the edge
(in the body). Here we consider that damage at the edge due to surface effects is additive to
the damage accumulation calculated as if no surface effects were present. So at the edges. a
small volume A V is subdivided into an intact part A K.., and into a fractured part A k.". We
consider that the above subdivision holds for a distance p from the edge, p being a positive
real number dependent on the material properties. the geometry. and load acting on the

body. At every instant of time, the edge damage concentration volume ratio is defined as

1 .. : . r, A = . 8)
: IA
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Here r, is expected to be maximum at the edge and its value decreases continuously till a
minimumn value expected to be at a critical distance p from the edge. Let us consider the
following volume average, for unit area on the plane parallel to the edge:

= rf dA. (9)

Also the following stress average can be introduced:

ail "= - f ,adA. (10)
pi

Similarly, average partial stresses a, &i and strains Z, can be introduced. Since the constitutive
equations (3, 4) are linear or incrementally linear, we can write equations similar to (5) and
(6) for the average (,) quantities. At the effective surface degradation volume the total
damage ratio is defined as

r, = r + i. (11)

Note that r, can be greater than r,, since 0 _< r < r,. So. in general

0 <r,<•r, + 1. (12)

In general

, = g(&)r, (13)

where g(e) is the surface degradation amplification function. For the purposes of this paper
g need not be specified.

2.2.1. Surface degradation, size and shape effects
It is well known that the deformational characteristics of brittle materials depend on the size
of a structure (specimen). In a specimen subjected to uniaxial stress. when the ratio of height
to width (diameter for cylindrical specimens) of the sample is increased, the level of (macro-
scopic) stress at unstable failure decreases, Hudson et al. [21, Desai et al. [16].

In the proposed theory the so-called effective surface degradation volume is introduced.
For high ratios of height to width this volume occupies a large percentage of the sample
volume. On the other hand, for low ratio of height to width, the effective surface degradation
volume is small as compared to the whole volume of the specimen. It is expected that as
height to width ratio increases surface degradation becomes the predominant damage mode
resulting in an instability at a low stress level. As the height to width ratio decreases. the effect
of surface degradation decreases and damage growth becomes the predominant instability
mode.

In order to study the effect of stress path on the scale effect the thick wall cylinder tests
seem appropriate. Haimson and Herick [17] studied the behaviour of samples with different
central hole sizes subjected to external stress (Fig. 2). It was found that small diameter holes
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I.Ito

2 S

• . . **"Fig. 2. Relation between hole diameter and hole-wall tangential stress required for breakout initiation in hollow
• , cylinder tests. After [17).

• " required larger stresses to induce breakouts, as depicted in Fig. 9 in that paper. In the
• .. proposed theory, similarly to the problem of diff'erent height/width ratio specimens. for small
S.....;..diameter holes the overall effective surface degradation volume is a small percentage of the

"- .'. total volume. Then the effect of surface degradation is reduced for such a case. As the hole
size increases surface degradation becomes important. From the above discussion it seems

•.: "..:.that the proposed theory is capable of capturing the essential features of the scale (size)
: effects.

,..•.Distance p introduced previously is defined as

where W is a weighing function, 2 is a material constant, 1 is the so-called surface degra-
dation material length and c is the path of maximum (absolute) principal compressive
stress. Material related constant I defines a new characteristic length. It is defined as
that specimen size so that the whole specimen is in the surface degradation zone. The
simplest case calls for W = unity and as shown subsequently even this provides satisfactory
results.

Consider a cylindrical specimen of length L and diameter D subjected to compressive load
! P, Fig. 3. The load acts parallel to length L and the cylindrical surface is load free. Let a,,.

S"::-be the uniform stress in the core of the sample and Er,, the average stress (Eqn. 10) in the

I ...
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Surface Dep-jaiano Zone

OwmpProsrewO ZAGG

Fig. 3. A uniaxialy loaded cylindrical specimen and surface degradation zones.

surface degradation zone. Then

P (D - 2p)'o,, + 4 [D - (D - 2p)21&,,. (15)

We consider the simplest possible constitutive equations for the u and d-parts expressed in
(3) and (4). Thus we consider C, and C;%, to be elastic constitutive tensors. Then, consider-
ing the strains in the core and in the surface degradation zone to be equal

aOl = (1 - r)E"&,, + rE dE,, (16)

(1 -- i)E'&,, + iEdSu, (17)

where EP, E" are Young's moduli for the u-part and for the d-part, respectively. From
(15-17) we obtain

P = aD 2 + ap - apD, (18)

where

7r

a, = [EP - r(EO - E`)]j,,, (19)

a2 = rt(; - r)(Em - Ed)z,1. (20)

For the uniaxial case, with W = I

p = a(L - 1) < D12. (21)

From (15) and (21) we obtain

(L - I)- L -1
(" = cD + (D22
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Fig. 4. Experimental results for uniaxial compression of cylindrical specimens of different length L. After [16]S"•(Diameter of samples, D - 3 inches).

where

I "> . c, - 4a,1/n, c 2 = 4a2a'/1, and c3 = 4aa/m. (23)

Before we study relation (22) further we discuss results of [ 16] on experimental studies onI scale and shape effects.
"2.2.2. Verification
A series of uniaxial tests on different size cylindrical specimens of a simulated rock were

. .performed [16]. The simulated rock used consisted of sand. cement, plaster of paris and water
in proportions 15:2:3:4 by weight. A wide range of different cylindrical specimens were
tested under displacement controlled uniaxial compression. An MTS testing machine with

• "appropriate data acquisition system was used. Both axial and lateral displacements were
measured in addition to the axial force. Figure 4 shows typical results reported in [161.
Depending on the specimen size the peak strength and the post peak response vary. Up to

i peak, the response is rather linear with the elastic modulus being approximately 180 000 psi
(1241 MPa). The strain at peak strength varied between 0.01 and 0.02 for different size
specimens. The samples tested had different combinations of length L and diameter D. Table
I shows the dimensions of the samples used as well as the peak strength values.

Table I. Experimental results for uniaxial compression of different size
specimens of artificial rock. (After [16D)IDiameter (D) Length (L) Stress at peak
(inches) (inches) (psi)

3 2 1333
3 3 1303
3 4 1228

3 5 976

I 3 324
1.5 3 650
2 3 918
2.5 3 1130

.• :3 3 1303

.-I
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Fig. S. Comparison of experiment and theory for peak strength of different specimens. Constants c, c2, c,

determined from first three tests of Table I.

Assuming that a,, a2 are constant at the peak strength, from the series of tests shown in
Table 1, the values of c,, c, and c3 at peak strengths can be determined. A minimum of three
tests is required for this purpose. Two different procedures were used for determining c,, c.
and c3. For the first procedure. the first three tests shown in Table I were used. while for the
second procedure all tests were used and a least square jit was employed. Values of , =
1408, c, = - 162. c, = 165 were obtained from the second procedure. The analysis is rather
insensitive to variations of c. c-. c,. Figures 5. 6 show comparisons between experiment and
theoretical predictions from the first and the second procedure respectively. In these figures.
the dimensionless ratio DIt or L/I is plotted on the horizontal axis. The average stresses at
the peak of different specimens is plotted on the vertical axis. As can be seen for the test series
of constant sample diameter and increasing height the peak strength reduces significantly
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Fig. 6. Comparison Of experiment and theory for peak strength of different specimens. Constants t, C. C

determined from all tests of Table 1. by least square procedure.

and a concave curve of peak strength versus height is observed. On the other hand for
constant height and increasing diameter peak strength, a convex curve is observed, Figs. 5.
6. As can be seen the theory is able to capture such responses satisfactorily. The above series
of tests and back-predictions are part of the shape effects of brittle materials. The so-called
size effect is for different responses of specimens of the same shape but different size. For the
size effect of cylindrical specimens the height over diameter remains constant. If d = LID
is constant, then for increasing L or D the peak strength decreases. Fig. 7. Bazant. [IS. 19].From the available test results shown in Figs. 5, 6, two different tests of d = 1/2 can be
back-predicted. In addition, Fig. 7 shows predictions for different lengths L that are not

available in test results. However, the shape of this prediction curve is similar to the one
.. - . .

I : . ,
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Fig. 7. Size effect predictions (d = LID).

2.2.3. Stress paths and effect of confining pressure
As mentioned previously, it is not easy to simulate and observe the deformation, fracture,
and unstable collapse of larger scale (as compared to laboratory specimen size) problems.
Towards the solution of this problem, we mention the experimental work of Ewy et al. [20]
on thick-walled cylinders on rock with the incorporation of several important features such
as the ability to impose several stress paths, "freezing" of the fracture geometry under load,
and measurement of the extent of failure and study of its connection to the observed
instability modes. From these test results, it is observed that the presence of a surface
(boundary) makes the stress conditions in the rock similar to those leading to splitting failure
under uniaxial stress. Thus it appears that surface degradation and its connection to unstable
collapse is important. Capturing the essential features of a brittle material specimen under
uniaxial force is of vital importance. However, the information from the thick walled
cylinder tests provides further information such as the effect of stress path on the extent of
damage zones and instability modes. For low or zero confinement surface degradation is
important; such instabilities lead to splitting close to the opening wall. For high confinement
however, damage progresses within the whole specimen leading to a damage progression
instability mode. In other words, for low (or zero) confinement surface degragation is
predominant resulting in spalling types of instabilities while for high confinement damage
progression is predominant leading to a global instability.

In the theory proposed herein, surface degradation is active in the region from the surface
up to a distance p from it. Such degradation is quantitatively related to stress. so that for
high confinement, the rate of surface degradation growth is reduced. It is expected that for
low and zero confinement surface degradation instabilities are predominant. as confinement
increases surface effects become less effective and damage progression, in a wide range of the
structure (specimen) becomes predominant. The different stress paths. as reported in [20] can
be simulated numerically and the different instability modes can be analyzed. It is important
to note that such an analysis will provide further information on parameter p as related to
the final unstable instability mode, and it will be presented elsewhere.
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-.. 2.2.4. Comments on related research
Consider a structure (specimen) occupying region R and subjected to external tractions.
Depending on the external load level, the geometry of the structure and the material properties,
"the following instabilities may develop:

"I - Surface degradation instability resulting in spalling of material from the surface.
- Damage progression instability resulting in overall failure by shear band formation or

I. other non-homogeneous failure mode.

Note that the surface degradation instability does not necessarily imply overall failure of the
structure. In other words "post-spalling" is. possible until a global instability develops.

The rate of work of the external forces acting on a material element of volume A V, denoted
by t, is

Pt=R + + aj"f i, dV + + , (24)

S:"where Q, S denote the dissipated energy due to damage progression and due to surface
degradation, respectively. Balance of global energy of the body R requires that

d
T. = L udS + OfA d 4 , V d + p½fRp- i,,idV, (25)

"where the last integral on the right hand side is the rate of kinetic energy, • denotes density,
and fk are the body forces acting on R. By setting

-. 0 = JtR dV (26)

it follows from (24)-(26) that

+ + = + , (271

where () and g are defined in volume V.
The total potential energy is now expressed as

rl= U -H. (28)

The strain energy tranformation rate G(G*) being the energy required to transform u-volume
to d-volume (the energy required so that surface degradation proceeds) is

erUl _ Q CS
V,=• + ýj = G. (29)

eIn _ CQ (S
.- G = *-, (30)

I-'
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As damage progression is assumed quasi-static

8K _ K
-TV =0, (31)•v, av,

where K is the total kinetic energy. If damage and surface degradation occur, the kinetic
energy is increased so that

- K > 0, (32)

'K > 0. (33)

Here, if only damage occurs then (32) is valid, if only surface degradation occurs then (33)
is valid, and if both damage and surface degradation grow then (32) and (33) are valid. From
the above relations the conditions for unstable damage and surface degradation growth are
established as [121

8o1n a2D> 0, (34)

8211 aD> 0. (35)
,(1')' -((V,)' 8(K)' 8(V,)'

In [211, these inequalities have been examined analytically for the uniaxial compression test.
i. :. concluded that surface degradation instability precedes the damage growth one. In
ad,.Ation, it is shown that such instabilities occur before the peak strength is reached. This
implies that a post peak homogeneous state is impossible. Although the analytical solution
for the uniaxial test provides important information, further analytical and numerical
studies are needed. Numerical results are currently being studied.
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L nWMRODUCTON AND REVIEW

BIR UO nwabilites and brmkoum are often charactertd by the slabbing mode that afects a
po.no of the material dose to the borehole wall. In addition. it is ciea that the borehole siz has
sinifiant efect on the ininaton of breakoutý Haiimson and Herrck[l]. In genea*l,.=mal" holes
fail at higher exmal -suII than laWe ones. Sinc laboratory size boreholes ane usually smallr
than the ones in the fied, the importance of hole scz and its reiato to breakouts 1s of a badc
and quantatie nature. Thus in orler to achieve a wedl-pounded stawmen: about borehole
stability that complies with laboratouy and fiel observations, the dependency of borehole stabilityI on its sine (scale afect) must also be modeled.

Borehole scale effects is an =ample of the fact that the deformatonal characteristics of brittle
materials depend on the size as well as on the shape of the structure (spetmen). In a
subjectd to uninaiu compressive sues, when the ratio of height to widh (diamete for cylindrical
speom.) of the sample is hicreased, the level of (maoscopic) s@-- ati mitable failure derese
Hudson d. M12], Desai as af.3. In re£ [31 a number of aiiaial compressive tests on cylindrical
•sp-e ,., are reported, from which the following concusions are made. For the series of tests of

om:sample diamawe and incaissng height, the peak smme reduce apiicantly, and a concave
cult of peak strength vam height is observed, A&. I(a).On the odher huad, for constat height
and ineau diame the peak suench increases and a conve= €wm is observed. Fig. I(b). The
above test results represent a par of the shape effects m batte materials. The size effect calls for
diffrent reponse of sp -e s of th same shape but different size. For cylindrica speomensm sie
effe• Ls observed ifthe height over diameter (LID) remains consan: as the sie .. 4• sample

th peak strength reduces as shown in Fig. 1(c).
Haimson and Herrick(l] studied the behavior of samples with different cen-.. hole si=es

subjected to external stress. Square blocks of dry Alabama limesone having different diameters
of central holes, raning from 2 to 12 cm were subjected to uniarial stre. All blocks had 5ide length
to borehole diameter ratio of 5: 1. It was found that small diameter hole required are stresses
to induce breakouts, Fig. 2.

"The above test results indicate that size and shape effects are sigpificant espeially for suwu
(specimens) of small s3iz, The borehole tests indicate that as the hole size increases (more than 9 cm
for Alabama limestone), the sie effect becomes lea prominent since the applied stress for breakout
approaches a constant level. Si•ilarly. the cylindncal specimen tests indicate that the peak stress
tends asymptotically to a certain level. However different stress levels are reached depending on.
sie or shape effects as shown in Fig. 1.
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Bcami instabilitie and. bmaxum are often =arz:m 7v zae slabbing mode that affiet a
portion of the material close to the boredole wal,. In anddnou. a Ls dbear that the borehole size ha.s
sipifcarn eff on the initation of breakout Hazmuson and Hemckf 1]. In gnewal. 'smai' holes
fail at. higher extnal se than large' ones Since ijabrarsor borehoica are ~u~ay smaller
than the ones in. the fie4d the importance of bole =ie andl it rdamon to breakouts is of a basic
and. quandunve nanire. Thus in order' to actneve a weil-gounded stawmern about borehole
stabiliry that compLies with laborzwr and fic observatoom ze dependency of borehole stabilicy
on itt size (scale efect) m=s also be modeled.

Borehole scale efrem is an example of the fc :hat :he 1exorma nonal characteristics of britte
mauerals depenad on the site as well as on the snane of ::e strticue (spemnen). In a specimen
suoyec~e to uniwdsia compressmve stress. when the ratio of hagat to width (diamte for cylindrical

sem ) of the sazzple is 4 uethlvel of(acroscoi)qr s a isaailu m dseams.

spectmez r reported, from wmich the following conclusions art made. For the sof tests of
consan sampl diameter and ammr~m height. t&e pesk resredv agipesnfiy, and a couve
=-Ve Of Peak strengthveb height is observed, Fig. I (a)- On mhe otber hand. for c o antu height

and iwýs dia;e the peak svcngh inaensest and a convez czrw a observed, Fig. I(b). The
above tast results represent a part of the shape dects xn britte :zzaterials. The size efec cafls for
diffierent response of specimens of the same shape but different siz. For cylindrical spmens.& S=z
effect is observed id the hant over diameter (L, D I sin= zorisanrt as the u=e sample
inceaens.5 the peak soegth reduces as shown LFig.(c

3i acetiral holes. r=npng from _2 to f1 were siubyecr :o 11-6-21 stress. All blocks had ýide length
co oorehiole diameter raico of 5 ,It was found =&t smmi 3amlunw tioles required large strsses
:c induce breakouts. Fig. I

The above test results indica tehat$s=e=m snapce efemt ame uificant especally for suctireus
specimens) of small size The borehole tests indicate =tla as Lhe nuow size iiceses (more than 9 cm

ror Ala bama limestone), the s=z edfect becmes imspoinn uc the aoptied surms for breakout
aoproaches a constan level. Simiralay, the cylindrica spm~en tests indicate that the Peak $a~

=eds asvm tupocally to a Certain level. HoweVer liferemt stress eveis are renched depending on
sieor shape cff=c as shown .n Fig. 1.
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From the above discussioa it is clear that size and shape effects in brittle material structures
are comnplicated, and at the same tine importaut to be ignored. For many problems in brittle

matria, echnis i. breolestbi~yanalysi isbsed on simple elastic-perfectly plastic

Reviews, Maury(4J Quenot(S], deinonsmwr that classical, design procedures lead to overestimation
of the drilling fluid density by a factor of 2-8. From the test results shown in Fig. 2 it can be seen
that breakout of small diameter holes require about three times the isu of iarg ones. Simnilar
observations hold for tesm on cylindrical seimes

The bifurcation theory is used by ftpanastasiou and Vardoulakis61 to examine the affect of
borehole radius on borehole stability. Material, behavior is described by the deformation theoryI ~of plasticity, and internal length is introduced in the formulation through employment of Cosserat
theory. The numerical solutions show an increase of the bifurcation stres-s with decreasing borehole
radius (scale effect). As shown subsequently, the present study is different, than the one in ref.[61
in the sense that length is introduced through surface degradation effec~ts in the whole structrure
rather than in the constiutive equmtions. Furthermore instabilties are based on global energy

In the next section, the relevant theory for damage and surface degradation growth is
described.Shincethis theorylhasbeen preseteddesewhere(7-12], only the necessary background for
completeness of the present papar is presented. In Section 3, in order to demonistrate the scale
effects, a simplified solution for a borehole problem is presented. first. Subsequently, numerical

solutions of borehole problems are presented and discussed.

24. D~n7- BACKGROUND

A number of invescgawrs have considered the effect of damage in their models directly orI ~indirectly. A review on this subject: can be found in reEM7, and the references ctred there Here,
it is not intended to review the analytical. models for the influence of microcrack initiation and
growth on the constitutive behavior of brittle materials. Only the material directly relevant to the
purpose of this study is presented.

The model including damsg proposed in refsj-12J has been investigated successfully with
respect to different materials such as concrete and comiposites. Thec material constants have been
identified and the proposed theory has been validated through comparison with experimenital data.
Only imnor modifications in the model are necessary for the description of different materials. Also.
properties such as degradation, induced anisotropy, degradation of elastic properties are attributed
to damag development.

2-1.1. FomwlaritioLz Let us consider a small volume AV of the material. This volume
is subdivided into an intact (undamaged) part, AV., and into a Tractured.' (damaged) Pamt A 4
(Fig. 3). The firs part or fraction represents topical. behavior, and the material in it is intact in
the sense that no microcracks are induced. Due to inhoinogeneity of the material behavior at Elie
mircro-level, weak planes are developed leading to crack formation and subsequent propagation.
The laws that govern the above structural changes are not fully understood. The effect. of an
isolated or coupled fracture site is that an influence zone exists around it as shown schematically
in Fig. 3. This influence zone has volume 4YV,. Under continued loading, influence zones increase
so that 4Y,, increases. At every instant of time, we define the ratio

A * :- (2.1)

called the damage volume ratio. The material point consists of the superosition of a material point
of the unda2maged fraction, herein called the u-part. and of a material point of the damnaged
fraction, herein called the d-part. This suggests the use of the theory of mixtures, or theory oi
interacting continua. Bowenf 13). As a consequence. the following retation is aopapicable(81
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inhuec zmnes have been cmred but failure hus not oamrrea yet. Such =nfuence zones dep=~ the
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hoionomic laws. Thus the problemn is Formulated in rate c!- ne governing equanonz and the
constuwnve relations are derived from eqs (=)-ý2.4' as

where

From m, Z.5) it can be smen8. 91 that aithoug~n ,amc 4:v ic~ ensor iameiy, rf(r, - (
is mnrtoauced in the (ormutation. This tensor is reonsmi ogezr amage ýnducad antsotroipy. an
obvious property of cracked matierias. Fuirther. an evoluton aw 'or - s defined and ic is directly
reltaedi to Failure where r reaches a crinciia vjue r_. -k ý.nvie a~nc evTecive law can be Writte as



Bamhae sa, er= a&ad rdaW 3abM
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2..Salk= degvvadwd.
Surface degadatiou is induced by mi-rstrucmt inhomogencty and it, grwth is , iuaa,

stable. It is imponant to mention that theb is certain evidence that this phtmom=eon acz iz,
triger effect on the shear baud appering in a speamen The sudden rowth of surfac= *:
results in the occuvenc and deveiopmen: of shear bands penevuing into the body 16, , .. The damage distribution at the edge of a body where surface degradaton is of import=c
is e;-ecrP4 to be signficanly diffaet from th•damage distributon far from the edge (in the oocNý;
We cotadert-La damage at the edge due to surface effects is additive to the damage acurauoto
calculated as if no surface ffec= were present So. at the edges, a smai volume 4 Y, is ubiviciec
into an intact part nY and into a fraccm.-d par nV. We consider that the above subdivmor
holds for a distance p from the edge, p beng a positive real number dependent on the marena.
propertdes, the eometry, and load acting on the body. At every instant of time, the edge tamagt
concmntraion volume ratio is defned as(IO-12]

Here r, is ctpeted to be m=mum at the edge and its value demuses continuously tll a minmum
value eapcted to be at a distance p from the edge. Let us consider the following volume zvengr.
for unit arm on the plane parallel to the edge

rt,- P. dA.P f,

Also the following strs average can be i,,roduced

Uf M - al~ dA.
p j,

Simiariy, average partial stresses , &I and st-ams can be inotoduced. Since the conscruave
eqs (2.•3) and (2.4) are lina or inemenailly liner, we can write equations similar to (2.5) and
(2.6) for the average () quanties. At the effective surface degradation volume the total damag
rMao is edzmd as

mr,-r . (2.11)

In general
F -t(•)r (212

where g(c) is the surface degradztion ampiihcadon function. As shown in refj.121, Z can be spec
from test results on different size specmens. Distance p is defined as

p a(f, Wd d-1) (2.)

where W is a weghtng functon (the simplest case calls for W - uniy and even this case has be=
shown to pvide satisfactory results), a is a matrial constanE determinable from tot results on
different size specmens. I is the so-called surface degradation materai length, and c ;s ac path
of mat mum (absolute) princal compressive strms. Material related constant I dentes a new
characteristic length. It is deined as that specamen sme so dth the whoic specmen is in the surfa
degradation zone. The surface degradation constants have been detcrmixed(12] (from tests on
diiferemt sme speamezis) for a maitenal descrd subsequently.

As discussed in the introduc=oio the deformauonal c'ahc-er.sucs of brittle matenals deend
on the size and shave afst rutcrzare (sveomeni. In rr'e(l 1. IZ1 the zffec: of surface dead~acon on

ncte scale (s=z) as well on ,he snane of1 ;atnzciu-re is ex:mined., .naiy wtlh •asec: t:o uniamai



I..
38 G..FLkNTZQ14SXN et *L

compression of cyhindnic&L specimens. It is shown that surface degradation can capmre important
propres of bdale materals such as scale and shape effecs, surface dev-adazion growth andI ~suheeqmet bustn instebiitis.

Z.3. Lwrgy =Anidradba

Consider L sU=MaM (sPOS ) 0 o pyig te= it and subje=dL to e ral traeons. Let
$AR be the boundary of ,. From the tbermod7nmic viewpoint, the stem of the matedal may be
Charwed by its strai energy density, ,#,ddued as

I4 (7-14)
where A is mass density. Since damage comprises the creaton and propagation of rancks d voids,
damage growth dissipates ener=D. In additon, there is dissipat enerd y due to plastic defor-Imaions. By differenntaon of eq. (2.14) with respe= to te :, the internaI enerV density razz is
obtained as

where $ is the rate of dissipated energy

(Q# (kotv-ae) (2.16)

By integration of eq. (2.16) we obtain the expression for the dissipated enery per unit volume

l and denotes =,d-.

Now Let D be the energ dissipated from damage growth In the damage formulation described
previously, if the topical (u-prt) respomn is emmd linearly elastic, eqs (2.3) and (7.4) can be
written as

l <- C,,.,. (2.18)

In this -se,. h - D and from eqs (2.16) and (2.18) it foilows that

I) 4(' :di (2.19)
Regon A of a body is defted as A P, +1~At where R2 is the surface degradation volume

bounded from the str-free boundary surfac and extended to a distance p from iL Thm, RA. s
the rst of A such thatR - A - A. The dihipated eierl from dama and surface degradation
growth is -

Ii fd rfJ4 . f'dv(22
where Q and S represent the enerr density dissipated from damage growth, and from surface
degradation growth, rpecively. Let 0, be the ram of disspated eucrU from plastic deiormanon
such Cha ý -,0 +, , (2.18 does not hold in this rse). Considering quasi-srtaic loading, in the
absence of body forces, rae of energy balance requires

I s , - WdY. AQ "+S-dy 2), (2.21)

where T, is the wernal load applied on M, and u, denote disclaceuents.
Depeading on the eternal load level, the geometry of the structre and the material propet es,

the following instabilities my develop-

-Surface degadation instability resulting in spailing of matrial from the surface.
-Danage progression instaifity --esultug in ovemal failure by shear band formaiton or •..•.hr

fariure mode.

I
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Note that suzfae deputaton instability doe not necessarily imply overall failuc of t.c
structue In- odher words 'post-spallinW is poSble until a &obai instability devdops.

m "t' otal potendtal emu is. expres as(L 9]

From the above relatons the conditio- for ustIl damaqe and surface deradaon growth are
* a.•tablib.d Ls48 91

8117 8D, 89Q S'S

-(V-•- 8- - 9(--7 - 8--V.

-. 17 SID, 92Q 9SS-(V---I- (- Y (-V--.- (2.24)

In refs [to.111IL these ineq=Hlia have been dimmd with respect, to the instzbil~ity of typ&I1
problems with emphasis an uniamal. load conditons. In the a•t secton relatons (2.,M) and (2.24)
are ,amined for borehole rt:e of problemxs and the connecton to sale effectS is =died-

3. ANALYTICAL AND NUMERICAL SOLUTIONS

3.1. Simqpie malysist of a borehsole probluw
t us consider he fonlowing problem depicted in Fig. 4. The borehole stucture of length and

width D contams a cental crdw hole of radius L The ra•io DIR is considered cstant sich
tha DtZR = T~. Uniaxial compressive .emai 4~s P,-4 is applied CMMMQay. If the MAteria is
conaidaed linear, isotroi and elastic then the am ocms at point A and. Roark and Youn(il8]

whMe
47D

/k.- 3.00o- 3.13 (1!) + 3.6 1•-3 W2 • '.(.)

In orde to demonmstra the pbiity of the theory to captrer the sale effects of tins probica
we make (for the time being) the following simp•lf yi umpniou. We cousider t= the rn=-al
is linea elastic and isotropic. This, of course r sent a 'sti'er'aterial than acal rock

Fig. 4. Gimetry of a ooreuoie proelm Suuz a m. U tasmLI com eV9 CezuMaj ;oa&&
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In addition w auume that for the ¢wuan sans levels at olrkou the -armiai in the surfzac
ed srdaion zone has m'o sd&=L Thrs at breakout inimman this problem can be analysed by

using the sodton prented in eqs (3..)-p.3) but now the radius of the hole is R + p. For ths
problem eq. (2.13) redoces to

I _.p =( R-I 0(3.4)

e mk f (3-5)
D -2(,R+p)

and k is pven from eq. (3.3) where R + p is substiuted insma of X. For the material discused
lat it was found that c - 0.21 and Iwas considered to be one inch(l If we conider that at
breakout, •,., in (3.5) assumes a cocs=nt value we can obtain solutons for dier•ut A wherealways D/=.R - S. The cerve in Fig. 5 is obtained wher the diameer (2ZR) is ploted on the
horizontal axis and the cwaal aue- at breakout is plotted on-the verdcal, one Cltariy, the shape

I and te of thi curve is -'ia to the cqimmnL one Vuin• F, 2.-

3.2. Nwa•,wi •ohuioiu
In the above probl,.ceatain nsmplifying asumpnons were made to Mustrate the potenial

of the thoy analytically. Howev., if the two factions am considered to be ela plastic, it isI diffiult to obtain an analytical solution eae for the uzziaxial load case. HRatio. the =cLie deff
and the instabdity inequalide are analy-nd aumenca'ly for typical borehole- probiems.

The prinple of virtal work leads to the following in-cental equations whee matrx
notation is adopted(I91

,B'dirdV-wdQ (3.6)

where B is the straiv- O=!Mt mauix, d(.) denotes increment, dQ is the incremcnt of the
extrnmal force, suer tip r denomt tanspose ma&Q, and 7' is the volume.. The consitunve
relations (2.5) and (2.6) are wnttm as

d• - L da-dr T. (3.7)

Fron eqs (3.6) and (3.7) and the WI M -ai s in-splacement relations, it follows that

kI dq - dQ + d(Q (3.8)
Iwhere

kItfVBLB di (3.9)

I II :~20001

100.00.
0.00 1.00 .00 U o 0 CO 5.00 S.00

S S. ScM da pwmbiw thmugp ate stmotift znaymi
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is the Wir~maI StffUM -tri for the u-par, and

dQam{EirTdV (.0

is termed as the 'damap force'.
In Order to evahace the seconel pardal derivadves appeamg-in the isbilkty laequali~a

(-),(2.4) aumcn=Uy, the tn -out; method 1s employed, thus for campio.

(3D 2f3D'ý
VD 0YD I Ak -3vyi

whene subscripts 1, Z. 3 denote valu= u three-Consecave inc~remn of toad.
32.. CMeunmWu 'rid== for *tiuac=-?jawi MdMarqed froednea Tat following btief

dcs~rPaon Of the Plastiiy modd wsed for the u-hraiou is adopted from ref4lS. As mnentioned
aleasdy, the -,==Ia behavior is decomposed in two parts. wady thetu and, th d-pui. Twe
undmalgmed Part is -owned to obey an elastic-plasuc constittiv law. Slnc the dainage purt
.1ol1ows' the' deformanons of the ia-part (2.3) and since it has no. uher renstnce, the damage

conrnuvereaiaouts (2.4) may be termed as ng~d perfocdy plaswi with =o, yield suugth. The
cff= of damae evolution on the valumearic respotse- of a stuctte is dis~smd in rcQ.l2J r=e
elastc-pIasRc =nsdve relations for the ia-part (2.3) ame written as

for loading, and as

-k CI,'W4 3.3
for unloading.

A gmzaL biearb= s=*ac =xmodeimgproceftx for devreloping clastc-plastm modeis
for isotropi and anisocropi hazderrng, nonassociatve responses and applications for soids. xok
and ===~ ame desraed in rcf151 and the rierc= cited theme This approach is used here to
do=-be the u-parr With basi isoutopic hardenig and assocgaxvu behavior. The yield ftmcdon is
tmven by(l51

F + A.S) -(3.14)

where .T I - b, and b is a. mariai constnt-r s rereeng the distac froma the st 1 onun* to
the km3GCUn of the stufae wtth the t~ess hydr=smne ams Ij - eais thes ft in'auan of er
strCS. S.. = (AV)Wf()4 is a strm P-3ati, 110, (Jww) is the third (the -scod) in'atiant Of the
deyimzac Part of et;, 0, T.,i am autted to be mauenal constmnts related to th. sbape of the yield
IIMCdo. zi, xt, axe mar&ie ConUni related to hardcuing and U~ - (dx; del. In supwlsipe p
indficeing piastic. In order to dcrive the C; =~or, the =:a1 relazons of elasoic-plastie theory
are used

In Patm'L eq. (2.7) holds. In the pmt murnenci procedure the following evolution f'metnon
for r is =pioyed(7, a]

- F. (3.1 C4:

wher ,,.x, aree d-aae Meated =atrWa constants. A proceure for determining the ciasticry,
plasu~ry, and damage consantrs is ptve in ref.7]. The values of the consmats used for the present
analysis ame also pve in reL47. These couuun were determined from test results for concrete=21
where cubicai specmeas of 100 mm = w.r tented =nder muinada load-

A natural queruon is how to detemine the ainv0=oido functon g shown in ea. (2.12). An
ed'eerve Procedure is by -11ling the stresu-strzxn c=me of different size svecnens(i21ý Damage
constants ic and A &apeatng in eq. (3.1.") ame unec,-d to be differ-ent in the surta= depadation
zones d than the damage mter. FrOM the test -eWts On cifferMnI sium sDpeMIts reporrea in rei.z!
the (oflowing vulues ofk and A were ~ota~rccA =nae 2m.sco in tnt 2resen anayss: .c, - 1. 75 x ý

WVd
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xz68, -230,A mI0 , whmsbcit 1,,'z"xybc ýIortn" erdto

I; /=

S011; ..... ..

Fi.6. P'.. lruimm mii (wt .4 u ain my• ,:. w,, pae •m •W Fs I.•

zone and d*mqe zom eszpectid.
3.2.2. Ex.,,•d pobmLa 7m T ,nit men m: moc has been =, iog ago, for tde

.sus.ddborzmnon and stbi•y analyss ofborehole probt=-,ý. IaiW works m thi 2r= De and
Re(201, consdered nouhinar -ins~ -- I. response wxt me Mohr enveiape was tmd as the
=trenon for dayciopnm of plasi zon= m It was touo a"r plestic wmoe amancr co to the
borehole at a cetin e pended on the posmauc Ioaiing. The 1 1 1 :"fr piasm zone m=y
be mrated to the sarface derudaton zone discussed W Us muy. Rowe,. su , the str'
degradawion zoes are depended on the gzomemy of the mx- u-, such a rma-on wouid be bmsed
onf d=d " of the borehole.

Theproblem shown in ftg 4wvu in gated nume:=L ,' for=x dzffert valuses of the Central
hole raditm For all problks the rto of D over A was coustant such thau D R - 5. The finite
dclemesth used is shown in Fig. 6. Eiht node quadnmaL esimm Weesnw uSUL FCC the sa
probl• • studied the bole radii wee OS, 1, L, 5, 7.5 and 0 cm. For each problem the surface
degradiondistae p was caiclau•ed (eq. 3.4). The Aents a= to the c i bole tend for
a distance p as shown in Fig. 6. The mzxadi propermes asm.ed for these uemcnm &m the surface
degrndation ones. The purpon oftis anabis is to sudy thse rae degradaion iznstablidu s cos
to the hole. Thus no surface de•.arion was ousiddcrd dose to the lateral surfaces of lengh DA
sinc the surface degradaton grwth at thee poms s ius siowe- than the gowth close to the
ho•

)7S-

*1370-

1"

.46
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* The ml Wa~ d-dc~brmdo cw~ for tba Problem monotoniily ioacaes umal a
peak load is raced Daeaod the pink load, softcmuig respoomunse vuauh In. FWg 7 radus
A ts *lomd 0nd theo~umiud a= cd thrnormal 4 at the peak load- for die lower Wt
Go-. point of ulezkot 2ispiotted on the iwdck s. Hat e,, represum the so aBEW =Mtm

saat thaend of the depadadon a&A simpd =waiuon for spaIhg of the snzF
depadawou zone aWI* for e,, renchmn a. cnail vikne. In this cut, FWg 7 shows the MPabsWty

* of thc theory. to im the scce& ' sbqe of this =,f is ti 1az. to fth ow showin
* Fr.2- Sin= the mucgia cumn for Alabima ricoue aw =Kt. avalabie, no quumanve-

=mnpazzsou can be me. FtgueS issiiar = Fg3,bu h am pik spo
on the vcrmi& a M.

At evey icreminx of load the iuubffity ineqtufitm =2 and (=.4) were --- Sudfaor
- degpudarion powr showed the followM.intezrernro charaactumsa, for dieue problems Surfsm
* cepudanon showed an ainta unsmble repon from da beginnig of the external load aq*i==on

SWzbsucn* the , upoam- becme sWbl =Q a seod iumbhiiz was initiated This mind is
simnia to the =c propapdzon problem studied-byt S== and Ashby(11.. In that rof421 ther
cack propapdon ptabiam of a notched ; s - wich a ommira bole is studie theorecll and

p g.iary of the problem is =dur to the one shown ms. Fig. 4 and du

s0.40 

.
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On the micro-structure of surface effects and related instabilities
G. FRANTZISKONIS and L VARDOULAKIS **

AasrL~cr. B aned on Mindlin's theory for mateinal micro-structure inteetn sracefctwdr

conditions of equilibrium am studied in this paper. The governing fiekl equations for uniaxial plane deformations
*~are established; surface instability analysis shows non uniform deformations for a layer of specfied distance

from the surface. Experimental as wel as fracture mehac baned considerations show that thi surfacs--ta.r
u;exreey hi ormeas hiefor brtl ate alssmgtuenothe odro m.Matenal nuro-

structure introduces a singular perturbation to the oriinal Hill and Hutchinson problum here we introduce aI . .
•snl perturbation praniter and we obtain "dispersion" law for the surface buckling load. It is found that
surface degradation and skin efcts can be attributed to localized surface buckling instabilities. Experimental1 ~information on skin effects can provide an estimation of the internal material length.

1. Ialvducdm

About three decades ago Germer et al. [1961] observed surface irregularities in homo-
geneously strained metal solids. Based on electron diffraction measurements it wasI..-.. concluded that displacements of a superficial layer toward the interior of the metal solid
is five times as large as that of the next layer. Based on exponential decay considerations
Mindlin (1965] concluded that such an effect is confined to an extremely thin surface-S..layer in metallic materials. Recently, Kitagawa & Matsushita [1987] reviewed the exper-
imental and theoretical information on such surface effects herein termed as surface
degradation effects. Further in (K & M, 1987] it is shown how unevenness of the surface

i "grows and localization develops from an initial random inhomogeneous deformation
- .field. As concluded in (K & M, 1987] and in the references cited there surface roughness

is induced by micro-structural inhomogeneity and its growth is initially stable. Micro-
Scopicaily the heterogeneous structure of the material produces an inhomogeneous,
deformation field from the very early straining stage. However, irregularity of deformation
in the body is not uniform, but there is a part in which the irregularity is greater than in
other ones, that is near the boundary surface.
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22 G. FRANTZISKONiS AND 1. VARDOULAK[S

The above observations are also evidenced from extensive experiments on brittle
materials. The following have been identified: as loading increases, e.g. in a uniaxial
compression test, the density of microcracks rapidly proliferates leading to vertically
aligned microcracks which result in gross slabbing of material from the specimens lateral
"surfaces [Hudson et al., 1971]; (Fairhurst & Cook, 1966]). In general, the axial cracks
are concentrated in the central portion of the specimens length because lateral restraint
at the specimen ends, due to friction, inhibits their growth near the specimen-platen
interface.

Theoretically, it has been predicted that a -homogeneously strained body with traction-
less surfaces develops surface undulations or waves. This phenomenon is known as
surface instability ([Biot, 1965]; [Hill & Hutchinson, 1975]; [Vardoulakis, 1984]). In a
more general formulation, conditions for the so-called complementary condition, [Benallal
et al., 1989], for governing instabilities at the boundary of a solid have been established.
Since there are not physical length quantities in the continuum formulation of the
problem, the wavelength of the surface instability mode remains arbitrarily short or long.

* The exponential decay beneath the surface is also arbitrary since it depends on the
* .surface wavelength variation.

Buckling under plane strain conditions due to horizontal compression of an elastic,
* :anisotropic half-space containing co-planar cracks at arbitrary locations has been analy-

zed recently by Vardoulakis & Papamichos (1991]. It is demonstrated that the critical
buckling stress decreases dramatically as the distance between the free surface and the
cracks diminishes. Further the influence of cracks far from the surface has very little or

"[ :no influence on the buckling stress. From these results it can be seen that a surface layer
exists for which the presence of cracks influences the buckling stress significantly. In a
grosso modo sense this layer is the nonhomogeneous, bursting part of the material. In a
recent paper, [Papamichos et al., 19901 have demonstrated, using a newly developed
apparatus and a micromechanical model of surface parallel cracks, that surface instabilit-
ies lead to exfoliation in Indiana limestone.

The formulation introduced in ([Frantziskonis, 1989]; [Frantziskonis & Desai, 1987;
1990; 199 1]) accounts for homogeneous damage development in a homogeneously strained
brittle material structure and inhomogeneous surface degradation development close to
the tractionless surface(s). Based on energy dissipation considerations it is shown that
surface degradation instability (spalling) will occur before the final global one (e. g. shear

ban fomaton) Alo i isshon tat urfcedegradation mechanisms cant explain the
well known size and shape effects on the copstitutive and strength behavior of brittle
materials. This is in continuation of previous york on damage and surface effects (for
composites), and the related energy based instability problems. e. g. [F. 1989].

In the following, Mindlin's theory for microstructure is employed as a tool to explain
important surface related phenomena. In this context, a restricted continuum formulation
is achieved. First, the theory is formulated and the governing equations for uniaxial

plane deformations are solved. The solution is compared to classical instability analysis.
Finally, a parameter analysis is performed and the properties that influence surface
instability are discussed.
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MICRO-STRUCTURE OF SURFACE EFFECTS AND INSTABILITIES 23

I I 2. Mico-utructur consideratiom'

In [M, 19641 Mindlin formulated a general and extremely powerful theory for micro-
structure in linear elasticity. Although the theory is very general, the number of constants
involved in the general theory is very large (903 independent constants are involved in
the simplest general case) and their physical interpretation is rather impossible. However,
if one is interested in surface effects under conditions of equilibrium, specific higher
order terms of the general theory can be identified. Then a simplified theory results
which gives light to important surface related phenomena. For completeness some of the
definitions introduced by Mindlin are repeated herein. However, for compactness only
the definitions relevant to this paper appear in the following. The physical interpretation
of the higher order kinematic and static variables is given in [M, 1964].

Kinematic variables

Consider a material volume V, with boundary surface S, with x,, i= 1, 2, 3 the
rectangular components of the material position vector. The displacement of a material
particle is uj. Embedded in each material particle there is assumed to be a micro-volume
V' with micro-displacement ua. The displacement gradient of the micro-medium is

(0) *= u•.

where a comma denotes spatial derivative. The macro-strain is defined as usual

(2)= (u. + Uj. J)(22

and also a relative deformation is

(3) Yi, = Uj., - *,j

and a micro-deformation gradient is

(4) ,j, I *jk. ,.

Typical components of %, yy and icj are illustrated in Figure 1.

Static variables and field equations

Utilizing the principle of virtual work, dynamic quantities dual to the above kinematic
ones are defined

(5) SW = "tj 8•ij + (Tij 8 Syij + ijk 8+ijk

(6) fV 8W dV nf f1 Sul dV + fV (bi 54,, dV + I ,8ul dS + IfTjj S&4 d

where T, is the Cauchy stress yj is the relative stress and g,, is double stress. The first
index of p,,, designates the normal to the plane across which the component jk acts. For
example gj , is a double force per unit area (tensile or compressive) acting on a unit
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.~Kill *ILIi-

Fig. 2. - Double Stress p, ad Gradient of Micro-Deformation K,

area on the plane transverse to axis 1. Typical components of p,. are shown in Figure 2.
The variational equation of motion is established as [Mv, 1964]

*.(7) f (ij j+ cji+fj) 8ujdV +f(;4jk. i+hyk+ (JkJ B*AdV

+ f (ij - fl1 (r11j + ad~)] 8u1 4s + f(Tik - ni pyk £*j -0.

The twelve general equilibrium equations, follow from (7) and ini the absence of body
forces and body double forces can be written, in rate form

(8) ir. j+ 6r j- =0

(9) 41A. 8+ &J. =0.

Then the relative stress can be eliminated from the rate-equilibrium equations

We define the equilibrium stress as

(11) ;i1+ 1 7&IJ=;JI) 9ki. k
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The twelve traction boundary conditions are

(12) i, = n, (ifj + &,J)

(13) =

where n, is the outward normal to the boundary surface, tj is the external force on the
boundary and Tj is the boundary couple force. It is interesting to note that the Cosserat
continuum [Scheefer, 1962] can be obtained by imposing certain restrictions on the static
and kinematic variables described above.

Restricted continuum

A particular case of Mindlin's continuum is the so-called restricted continuum; i. e. a
micro-homogeneous material for which the macroscopic strain coincides with the micro-
deformation. This leads to a vanishing relative deformation rate, and, accordingly to a
rate of micro-deformation gradient that coincides with the strain-rate gradient.

The weak formulation of the balance law of linear momentum together with the
appropriate set of boundary conditions is achieved through the principle of virtual work.
In accordance with NM, 1964] we first define the virtual work of internal forces &W"),
i.e.

(14) SWV' - TI 8%l + gif 8'Ct-

This work equation postulates that the Cauchy stress is dual in energy to the macroscopic
strain and that the double stress is dual in energy to the gradient of the strain. Since
there is no relative deformation rate, the relative stress is workless. The virtual strain
and its gradients are computed straight forward from a virtual displacement field.

With expression (14) for the local variation'of the virtual internal work done by the
stress, we can compute the corresponding variation for a material volume V from the
relation

(15) AWl" - fvsWI' dV.

The surface S of the considered volume V is divided into two complementary parts S.
and S, such that on S. kinematic data whereas on S, static data are prescribed. In
classical continua these are constraints on displacements and tractions, respectively. Since
second-grade models introduce second strain gradients into the constitutive description,
additional kinematic data must be prescribed on S.. With the displacement already given
in S., only its normal derivative with respect to that boundary is unrestricted. This means
that on S. the normal derivative of the displacement should also be given: i. e.

(16) u, - "w and Dvj - ri on S.

where D nk; is the derivative in the direction normal to the (smooth) boundary with
local unit normal nj.

For the computation of the virtual work of external forces AWl' we have to consider
not only the surface tractions but also the work of the double forces. Following these
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,. '- considerations, the virtual work of external forces becomes

"(17) Awe) (t 8% + 1 D Su 6S

where t, and It are surface tractions and double forces, respectively. From (14), (15),
"and (17) the virtual work equation AWt)=AW•°) becomes

(18) (cu 86ij + PI .*fa~i) dV hhtf (8u,+ R1 D&uj)dS

-" .From this virtual work equation we finally derive field equations

K: (19) • j-- I =0

and the corresponding boundary conditions

(20) njc x- n, nj DA- (ni Dj + nJ D I) + p (n, nj D, n, - Dj n) fij 4

"(21) n, nj =jf Rg

where D = (8j -n jn,),,. Constraint (20) comes in place of the classical boundary condition
- for surface tractions. Constraint (22) means that on some part of the boundary S the

flux of the plastic shear strain might be given, i.e. on So.

[- >. In order to solve the boundary value problem defined above, additional equations
relating the stresses and double stresses to the strain, relative deformation and to the

I micro-deformation gradient must be included. These are specific to the material and are
I the constitutive equations.

3. Surface hutabilitiu,

In this paper, only plane-strain surface instabilities under initial stress will be discussed.
It should be noted, however, that three-dimensional surface instabilities in the sense of
Hutchinson & Tvergaard (19801 are also possible. These surface instabilities will not be
discussed here. Consider the problem depicted in Figure 3. Starting from a stress-free
state Co, the structure is stressed uniaxially, under plain strain conditions. Let C be the
resultant configuration. In order to study the stability of continued equilibrium in C. the
existence of non-homogeneous infinitesimal transition, C - C'. is investigated, with C1..i "being the reference configuration. The equilibrium in C is unstable if an unbounded.
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1 Fig. 3. - Half Space Under Comprc.sivc Load.

non-periodic solution exists. Further discussion on the types of instabilities can be found

in the papers by Needleman [19791 and Vardoulakis [1984]. The equilibrium stress tensor,
ii can be written as a function of co-rotational stressS(22) iii = e• + im X,• - Ri (ib•

where 61j is the rate of rotation tensor

(23) 61= -(u1i j- Uj.

I For the plain-strain problem of Figure 3 we assume incrementally linear constitutive
equations for the Cauchy stress-rate

ill - 2it"* ilx +(I -sinq))p

(24) ' 22 2 t* ' 22 + ( + sin (p)/P
"I t2,2PIt12

where

(25) iii - (V I, i+ Vi. ), V, - u*,1 (25)

and p is the hydrostatic stress. The quantity 4 I* is the instantaneous tangent modulus
and pI is the instantaenous shear modulus for shearing parallel to the coordinate axes,
and (p is the mobilized friction angle. Material parameters p, t* and qp are, in general,
dependent on the histories of deformation. For the purposes of this paper the particular
dependence is specified later. However, the range of these parameters is important for
specifying the solution regime for the surface instability problem.

The constitutive equation for the double stress rate is written as

I (26) 4111 l $ 11 .I
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A dimensional analysis shows that I has dimension of length and as shown subsequently
this quantity is important for the surface instability problem.

Equilibrium can be expressed in terms of the equilibrium stress; rate

(27) {Kllx 2 2 ? 2 ~~:

and C22 -a, a being the external applied stress, Figure 3. From (22) and (24) and
considering jull 1 to be, in general, non zero and all other components of g,,, being zero
for this specific problem, it follows that

(28) {z 1 1 1 1 2c 1 l)j 1 1
i2iný22, ' 1 2 "n 2 1 " 1 2inr 2 1 ,

Then, the two equilibrium Equations (27) are expressed as

(30)2 VýYz + V2.12

2) 21

DIffrntrouinga steq muaction (3)IsF sinulcr peturainohheoiaatrsutn ihu

(33) L V1 H.2 V2  1
(31) 2 T.221111+ TI I1 +b-, m122+Ct.2 2..2.

whereJURA PMCHNC.AOLD.VLII .19
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Here, 2 x H represents wavelength. From the above and (30) it follows that
( v 1 =(x) cos y

(34)1

)V2 - 1_ (x)siny

where (.)'-d/dx. Substituting 'P from (33) into (31) yields the governing equation for
the stability problem

(35) { 1 + (m x) 2 (LIE~2 }P iv --(m i) 2 bW" + (mit)" c = 0.

The solution of (35) is

(36) aw2(x)u = cjexp(mrntjx)
i-t

where c1 are integration constants and aj satisfy the characteristic equation
b 2 C(37) ,+ - .

1+n l+n

where

(38) n=(m I) 2 (L/H)2 , Wfi(m -) 2(I/H)2, 0<n<l for 14H.

Introducing
b2 4 c

(39) D b- -- 4
(I +n)2 1 +n

the possibilities for solving the above equation are classified as follows, depending on
whether there are 4, 2, or 0 real values of a.

(H) hyperbolic regime: 4 real solutions a

b/(l +n)>0, c/U +n)>0, D>O
or

(40) b/(1 +n)>0, c/(l +n) -0
or

b/(l +n)>0, D130

(P) parabolic regime: 2 real solutions m

(41) c/(l +n)<0, or b/(l +n)<0, ci(l +n)f0

(EC) elliptic-complex regime: 4 complex solutions m

(42) D<0
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30 G. FRANTZISKONIS AND 1. VARDOULAKIS

(El) eiliptic-imaoinary regime- 4 imaginary solutions a

(43) b/(I +n) >0, c/(l +n)>O0, D>0.

The notion of surface instability means that the deformation is confined close to the
surface; i. e. the displacement field is fading exponentially with x, being zero at infinite
x, thus

(44) lrn fif m or Re{aj}< 0.

In the hyperbolic regime, the solution is of the form u-=exp (im i~x) where at is real.
This solution can not satisfy the boundness condition (44), thus surface instabilities in
(H) are not possible.

The solution in the various subregimes of (E) are

(EC)-subregime

(45) cpnia )
g' aexp (m7 Ax)sna( 7 Bx)

where

(46) A~ f /(/((I + n)+ b2 / +n)/12, B2Vb( +)V)2

* Introducing the representation

* (49) iP(x) cos y

* from (29), (33) and (34) it follows that

* ~(50) P[(- ~)()a' (2pi*-p- )a/(I + sinqp).

Using constitutive equations (24), (26) and the above relation (47) the boundary condition
ill -0 for x-O yields

(I+ n) ii"' - (mn x)2 P 6'- 0

(51) P 2+I 1-4

Boundary condition 12 at x - yields, from (24). (28), (30), and (3 1)

* (52)

EUROPEA14 JOURNAL OF MECI4ANIS. A/SOUDS. VOL 11. V 1. 1992



MICRO-STRUCTURE OF SURFACE EFFECTS AND INSTABILTES 31

The boundary condition for the double stresses (13) is discussed in the following.
Introducing W from (45) or (47) into the boundary conditions (51) and (52) the following
homogeneous equations are obtained

(53) {(a + Pa,)c, +1 (a + Pa 2)c 2 -0

(a2 l)C1+(a2+l)C2=0

for the (El) sub-regime, and

[54) (A2- B2 + I)cs-2ABc 2 -0

[(I + n) (3 AB2 - A3) + PA] c1 + [(1 + n) (3 A2 B -B 3)- PB] C2 =0

for the (EC) sub regime. For non trivial solution [cj.#0 in (36)] the eigenvalue equation
resulting from (53) can be solved in terms of the critical stress a. As can be seen clearly,
the final instability condition is a perturbation of the original Hill and Hutchinson
problem. We introduced a single pertrubation parameter, denoted by n, and we expect
to obtain a "dispersion" law for the surface buckling load.

In order to solve the eigenvalue Eq. (53) the expressions for I. and p* must be specified.
In order to perform a relatively simple parametric study, we will discuss here only a one
parameter family of stress-strain curves of the power law type. It is assumed that the
stress-strain curve from a plain strain uniaxial compression is given by

(55) --

where N is a constant between zero and one, To and yo are arbitrary reference values of
T and y respectively, -7 is the second is the second invariant of the deviator tensor of c,j,
and I is the second invariant of the deviator tensor of aj. For this kind of hardening
function the shear moduli p and tt* are expressed as

(56) N =
7

The mobilized friction angle (p is expressed as [V, 1984]

(57) sinp - M (7/17)N
1 + M (y/ 7 JN

where subscript c denotes value at failure and M is a constant related to the strength
ratio (uniaxial strength in tension over uniaxial strength in compression).

For n=O the analysis coincides with the one presented in [V, 1984]. Let y, be the
strain at surface instability for n = 0 and -t, the one for n #0. Let

(58) R= Y-- (T)

Obviously for W- 0 we obtain R= I. For the solution of the eigenvalue problem (53)
four different values of N, namely 0.2, 0.4, 0.6 and 0.8, were considered. The value of n
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was varied between 0 and 1. Figure 4 shows the influence of W on the surface instability
analysis. As can be seen such influence is practically insensitive to the value of material

constant N. Since W-0 corresponds to the long wave limit it also corresponds to the
first buckling load. Also, since higher values of - indicate surface effects to a grater

depth, it seems appropriate that the surface instability stress increases with increasing n.
.2. On the other hand W- 1 corresponds to the lowest physically meaningful wavelength

limit which depicts the so-called skin-effect that is localized surface buckling strain.
Figure 5 shows the eigenstrain field for N =0.2, n I and M =0 (non-frictional material).
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Figure 6 shows the eigenstrain field for N=0.2, n= 1 and M = 0.43 (frictional material).
According to Eqs. (45) or (47) the attenuation of the various eigenfields is governed by
the coefficients a,, a2 or A, B respectively. Note that the slope of the curve in Figures
5b and 6b is proportional to R, appearing in Eq. (21). For the example of Figure 5 we
recognize that a significant % of attenuation is obtained at a depth of 5/. From
experiments ([G et al., 19611; CM, 1965]; [K & M, 1987]) for metals, [Yukutake, 1989]
for brittle frictional materials) in various materials the depth of the surface degradation
zone can be obtained which then provides L Such a calibration of the internal material
length I is paramount if one wishes to solve problems with eigenstresses in laminated
materials by using constitutive equations of the present type. Notice that these equations
constitute the simplest possible generalization of elastoplastic relations for such media.

Conclusions

The present analysis shows that micro-structure considerations highlight surface (skin)
effects. Such effects can be attributed to localized surface buckling instabilities. The single
introduced new parameter is the internal length 1. We have provided in principle a
method for estimating L Here we used the simplest possible generalization of elastoplastic
constitutive relations, applicable for monotonous loading cases. However. other types of
constitutive equations can be employed to include for example fatigue. and its effects on
surface degradation and buckling. Potential applications for problems prone to surface
buckling, i. e. borehole wall stability, have been demonstrated through the presented
analytical solution. Numerical solutions for such problems will be presented elsewhere.
Such solutions together with experimental observations and parametric analysis for the
estimation of I are expected to provide a tool for the analysis of structures prone to
surface buckling.
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3 MNicro-structure in kinematic-hardening plasticity

14 1. VARDOULAKIS * sad G. FRANTZISKONIS

55 As-Ac-. - A gradient reguiaiftiom o( the claica kinerau-hardetang plasticity is pesemted. The
,6 underlying continuum model is formally related to Mindlimn's eastcity theory with mcro-tructe. The
17 evolution law for the bw* strs s uadetical to Mindlin's higher order equililb, tn eqmutioa. For consstemcy
A rcasons the flow rube of classical plasticity is modified by incorporatng the Laplacian of the plastic multiplier.
19 The variauonal formulanon of the probiem with appropriate boundary conditions iven and aa ezrem
"0 for the dissipated enene, is established. Sheas.band analysis shows that the theory provides the bead thcidness
71 and regularizes the governing equations. Microi-rucwue introduces a anglar perturbation to the classic
"- surface instability analysts, and the internal length I is the perturbaton parameter. In addition, mia'o-structure
'9 effects tend to reduce the wvelength at onset of surface instability.

I. Introduction

81 Vardoulakis & Aifantis [19911 developed a second grade isotropic hardening (I-H)
32 plasticity theory, and demonstrated that in this case the constitutive equations are singular
33 perturbations of the original ones and that the introduced internal length is the single
94 perturbation parameter. The motivation for this type of work was the fact that classical
85 theories of plasticity are inadequate for addressing problems such as strain localization
36 and deformation patterning (shear band thickness and spacings), estimate of wavelength
37 in surface instability problems, and mesh-size-independent numerical solution of large
38 scale problems. It is known that resorting to non standard continuum models such
89 mathematical and physical difficulties can be overcome. The term "regularization" of
90 the original mathematical problem is associated with such procedures. Non standard
91 continuum formulations include non-local, Cosserat. and strain-gradient dependent con-
92 stitutive theories. An extensive review on this subject is given in [V & A, 1991] and is
93 not repeated herein.
94 In this paper we address the problem of constitutive regularization for the particular
95 case of kinematic-hardening (K-H-) plasticity theory. Most applications of the K-H model
96 rcfer to cyclic plasticity of ductile metals and cohesive soils, which can not be addressed

2
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properly by the I-H theory. In this paper. however, the emphasis does not lie on cyclic
)8 plasticity but rather on modeling brittle, pressure sensitive materials which undergo
)9 cohesion hardening and softening. This type of behavior is typical for ultra high strength
100 concretes and high strength rocks. It is demonstrated here that Prager's formalism of
101 K-H plasticity applies for modeling brittle solids The term "kinematic-hardening" is
102 kept here for easy reference purposes but could be replaced by the term "cohesion-
103 hardening".

I4 Micro-siructure based formulauon does not onl) regularize the classical K-H theory
105 but it also provides physical insight into the back stress evolution law. Mindlin [M, 1964]
106 was among the first to introduce higher order gradients in the context of linear elasticity.
107 It turns out that there k a connection between the modified K-H theory and the micro-
108 structure theory of Mindlin since a "complete balance law" for the back-stress is given

109 here in connection to Mindlin's structure. Namely, it turns out that the evolution law
10 for the back-stress is identical to the higher order equilibrium equation of Mindlin. The

III classica] part of the back-stress evolution law (without higher order gradients) is interpre-
112 ted as a double body force. This is exactly what has been suggested by Aifantis [A, 1978;

13 A, 1985q for media with micro-structures where the back stress is identified as an internal
114 stress associated with the evolving micro-structures. In addition, the divergence of the

15 back stress is identified here as a configurational, higher order, self equilibrating stress,
16 which is required to equilibrate the back stress.

117 The paper is organized as follows: in Section 2 the constitutive equations of the
S18 classical K-H plasticity model in relation to cohesion-hardening, pressure-sensitive mate-

119 rial modeling are briefly outlined. Section 3 is devoted to microstructural considerations in
120 elastoplasticity, the variational formulation and the complete set of equilibrium equations.
121 Section4 deals with the gradient modification of the K-H plasticity. The flow rule is
122 modified by including the Laplacian of the plastic multiplier I and the Laplacian of the
123 plastic strain rate tensor e. Prager's consistency condition is discussed and the incremen-
124 tal form of the constitutive equations is derived. The resultant stress-strain relations are
125 singular perturbations of the ones of classical K-H theory. The single perturbation
126 parameter!, is called the internal length of the material. In order to give an insight to

127 the physical meaning and possible experimental determination of), shear-band and surface
128 instability analysis are presented in Sections 5 and 6. The issues of shear band thickness
129 and surface skin effect are also discussed.

130 2. Classical K-H plasticity

131 For easy reference purposes and clarity in notation we present here the basic
132 assumptions and constitutive equations of K-H plasticity, described in detail in many
133 textbooks on plasticity. We start with the decomposition of the strain rate E,, into an.
134 elastic and a plastic part, i.e.

136 (2.1) i~j
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137 The yield fction is expressed in terms of the stress and the back stressw1 ,

133 (2.2) F(cu.;X)-0 whert

14 (2,3)

142 is called hereafter the Cauchy stress tensor, see Section 3 in connection to [M, 1964].
143 Prager's consistency condition dictates that, for loading P - 0 or, due to (2.2) and (2.3)

144 (2 4)-( - ) )
145

146 For demonstration purposes. we shall restrict ourselves in this section to associate flow-
147 rule, which is written as

148 (2.5)
149

150 The cxpression for the rate parameter . can be derived from the consistency condition
151 (2.4), the flow rule (2.5), and the elasticity relation

153 (2.6) &j',- C7, i where

154 (2 7) C'V-G8 6 ,& + -81&
155 I-V

156 is the elastic constitutive tensor, G is the shear modulus and v is the Poisson's ratio.
157 In order that the formulation of the constitutive model is complete, an evolution law
158 for the back stress must be specified. Commonly used such laws are the Prager

160 (2."'8) cz.C it

161 and the Ziegler

163 (2.9) (Gq- )

164 and c, 4 are material related parameters.
165 From the consistency condition (2.4), the elasticity relation (2. 6), the flow rule (2. 5)
166 and the back-stress evolution law e.g. (2.8) we obtain

167 (2.10) . M (B'. '
168 H EM

169 where we have set

BF dF
170 (2 .11) A i M -171 Ki5'
173 (2 12) Bfj-A C,,j-AC*,

174 (2.13) H-B, A,+cAA.-(eFFi/.)

EUROPEAN JOURNAL OF MECHANICS. ASODLIDS. VOL 11. N 2. 1992



4 1 'ARDOULAKIS AND ., FR,,•-ZS5KU1sIS

-' and from (2.6), (2.5) and (2. 10) we obtain the consttutive equations of K-H plasticity

77 in terms of stress and strain-rates

79 (2.14) C .l -wberE

a (2.15) C11 = CT - C.,

12 (2.16) Cr ~ 1 BLJ ,

84 (2.17) <I> I if F-o, &>O0
85( 0 else

86 As an example we mention the Drucker-Prager K-H plastiry for which

88 (2.18) F-i- p (q-p-')-O

89 where g is the friction coefficient and q is a parameter related to the cohesion of the

90 material. In particular, we will restrict ourselves here to the special case where both p
91 and q - qo are constant; see Figure 1. In (2.18) - (11/3) t, and T ./(12) ti I, are the
92 first and second invariant, respectively, of the Cauchy stress tensor ;T,,+p

8 S1 . In

'50

Fig. 1. - Plo of the yield surface p - T space
5and schematic repteanuon or coheumm hardening.

93 particular, for the yield function (2. 18) we have

94 (2.19) A= .L' - 48)
95 2 i 3 '

% Similarly, we define the first and second invariant of the plastic strain-rate iP'= E* and

97 -•,' ,ý/2ee and e, is the deviator tensor of &-s then, the flow rule (2.5) and Eq. (2.19)
98 yield e"- i and ?" -k. For illustration purposes we consider triaxial axisymmetric
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2W (2.20) (;,,. 0 V22 0
201 0 0 133

202 and "IIT2 <"33- For this state, equation (2.18) yields

203 (2.21) T -p where
204 q,-p

q8,q 0 + - ,+ Lp)

(CF3 - r I.({L3 Oil1)

205 (2.22)

p" (2 y, I + a33); P." (2 2.1, + M3)

3 3

206 RP _Plp

207 Eq. (2.21) indicates that the Drucker-Prager K-H plasticity mode] is in fact a cohesion
208 hardening/softening model, whenever we set jI const., q= const. and since q, q, (c).
209 figure 1. From (2.8) and (2.22) we obtain

C.

210 (2.23) P- = -w,'

211 q ;

212 thus the back stress evolution parameter c is expressed as, from (2.23).

213 (2.24) cM
214• (1/2)-,- (1,3) ga' dy'y

215 For the special case of uniaxial tension (033 =a70. 01 -a2 O0) we obtain

216 (2.25) CM
217

218 and T"F-2(C 3-e, ). Thus c is proportional to the slope of the c (y')-curve. observed in
219 uniaxial tension tests.
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If, for simpicity, we adopt a :-D representation of the state of stress so that

221 OJ
S033

223 the yield function F in (2.18) is expresse as

24 ,2 26) 33- 1 - 2
24 (-0 1 3 -2 1 3-) 2 R2 where-:5\ 22

177 2

228 Eq. (2.26) represents a circle in the devuator plane as shown in Figure 2. This representa-
229 tion reveals that the considered model has the character of a kinematic/isotropic harden-
230 ing model. It is purely kinematic when p. -0 which implies that Mu -0 or ' - 0. This
231 means that the purely kinematic case is valid only when we deal with the special case of
232 non-associativeness with plastic volume incompressibility.

/ / i.(q-p \ \

ALP

"756
751 igl. 2. - Piot of iniual and subsequent yield surfa•s
"760 m (c•-e,,)i2vs oa, space.

233 3. Mlro4-trctu in elastoplasticity

234 In [M, 1964] Mindlin formulated a general and powerful theory for micro-structure in
235 linear elasticity. As shown in this section MindLin's continuum formalism can be success-
236 fully applied in the formulation of the gradient-dependent K-H plasticity theory. This

EUROPEAN JOURNAL OF MECHANICS. A.SOUDS, VOL I |. N 2 1992



%GMICO4TRucTuRaE IN KIt MAiAC4iARPD.&N Pi.•mcIn" 7

!.37 procedure provides a new interpretation for the back stress evol ition law and for the
.3 dissipated energy.

339 In deviation from Mindlir's original paper, we introduce here a different micro-
240 structure. which is more suixAble for describing elastoplasticity as will be shown below.
241 In order to motivate our choice of appropriate kinematic variables we start from mass
242 balance considerations in a two-phase medium consisting of solids and voids. Let Vi (x,. t)
243 be the velocity of the solid phase, where x, (i= 1, 2,3) are Cartesian coordinates of space
244 and t denote- time With p, being the density of the solid phase and n (.x. t) the porosity
245 of the medium, conservation of mass requires that

246 (3.1) afr,- -_ I ,P,+ I a, n
247 ps 7-n

248 where 8=a/ax, denotes spatial derivative and ,- a/ar denotes time derivative. We
249 identify the macroscopic volumetric strain-rate as

250 (3.2) E, - a r,

252 and the microscopic volumetric strain-rate as

253 (3.3) "
254In

255 The quantity

256 (3.4) .7" -_a1, P.
257 p,

258 is then the relative volumetric strain-rate.

259 If we consider that porosity in brittle solids (rocks, concretes) changes are practically
260 inelastic, we identify the plastic volume changes as the microscopic volumetric strain
261 rate,

262 (3.5) E"'

264 If we additionally consider the classical strain-rate decomposition of elastoplasticity.
265 i. e

26A (3.6) % - 4 + i

268 then we identify the elastic volume changes as thc relative volumetric strain-rate

250 (3.7)

271 The above scheme is generalized as follows: the symmetric part of the macro-velocity
272 gradient is defined as the macroscopic strain-rate

273 (3.8) i = :()
2A74 2 9
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75 The microscopic strain-rate is set equal to the plastic strain-rate

'75 (3 .9) ,41iJ =

.78 Eq. (3.9) implicates vanishing anti-symmetric part of micro-deformation. Consequently,

.79 micro-rotation is not taken into account here, meaning that Cosserat effects are suppresed.

.80 The relative strain-rate coincides then with the elastic strain rate

'81 (3.10) i, =tj- *'j'
183 Finally, the micro-deformation gradient is given by the gradient of the plastic strain-rate

)84 (3.11) i&Me j A

!86 The above definitions illustrate the fundamental difference between micro-structure in
!87 elasticity [M, 1964] and elastoplasticity. In elasticity micro-deformation derives from a
!88 potential field, namely the velocity rield in the micro-medium. However, in elastoplasticity.
!89 where (3.9) holds, such a potential field for the plastic strain-rates does not exist. Similar
190 observations apply also for the micro-deformation gradient. On the basis of these
-91 kinematic quantities we introduce the following dynamic ones: a) The Cauchy stress-rate
!92 ijj which is dual in energy to s". b) the relative stress-rate 7,, which is dual in energy to
.93 j,, and c) the double stress-rate j1I, which is dual in energy to K*,,. The total stress-rate
!94 is defined by

-"96 (3.12) is 't j

297 Following the above definitions, the second order virtual work of internal forces is

_99 (3.13) w ij6iU •sj, - j, 0 iy-k CSC

300 From (3. 13) it is clear that the dissipated second order work of internal forces is
301 expressed as

103 (3.14) 8W'--(, - a,,) - " - 4L,si e, c,

304 If the plastic strain rates are constant in space or if the plastic strain rate gradients are
305 negligible) we obtain that

306 (3.15) 6WP . (a, - 2,J CPU

308 If we identify the relative stress with the back-stress. (3. 15) is exactly the expression for
309 dissipated second order energy of classical K-H plasticity, that has to be always positive
310 [Eisenberg, 1970].

311 With the expression (3.13) for the local variation of the virtual internal work done by
312 the stress rates, we can compute the corresponding variation for a body of volume V
313 from

314 (3. 16) AW= 8Wk dV
315 V
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316 In the expression for the virtual work of external forces AW" we have to include not
317 only the rate of surface tractions and double forces but also the work of the body forces
318 [M, 1964]. Then

319 (3. 17) Aw'- i8jS ikd+ Ird+ 4~ J 4&iijdV320 1i ,J

321 where 1 is the rate of body force per unit volume. i, the rate of surface traction per unit
322 surface, bu the rate of body double-force per unit volume, and T. the rate of surface
323 double-traction per unit area. Notice that it is not possible to have a direct geometric
324 visualization of b,, and T,. From (3.13), (3.16) and (3. 17) the virtual work equation
325 AW - AWX becomes

326 (3.18) (CuJ8i•- ai•40+ go a, dV
327 f,

3218 ijrd+ -~~jS !S~V bj4jd or
329 Js s f f

330 (3.19) v (C8ii•u•q -•) dV + f(4O al 4 - •.411- *uS*,) dV33)1vJ

332 - {s i, &, S + {tr,., ,S

334 We consider that S&, and 8ýjs are independent variations and that the boundary S of the
335 volume V is subdivided as follows- a) into two complementary parts S, and S. such that
336 r, is prescribed on S,, thus 8r- 0 on S, and b) into two complementary parts S, and
337 Sp, such that •, is prescribed on S,, thus 6•/,j=0 on S,. Accordingly, equation (3.19)
338 splits into two independent integral equations

3. i

340 s

341 (3.21) (•l r8j ••,-*j8o ' , 8ý,/ads342 s

343 The above two equations constitute the basis of any week formulation of the rate
344 boundary value problem. Moreover. from (3.20) we obtain

3445 (3.22) aS

347 Applying the divergence theorem, the above equation becomes
fs ., (c I- J+

348 (3.236 f r nl +f) .. dV) i t[ 8v' dS
349 1 J
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i•0 which in turn yields

351 (3.24) { 8 1-1`1=-0 in V
352[ 1 cjn,ýi, on S.

353 On the other hand from (3.21) we obtain, by applying the divergence theorem

154 (3.25) (, (e. ,,,5,,, -e.*,j, •,-j ,, ,,,- 4,l, 8,J dv

356 f( + J + dV-{f

357 which yields

358 8,~4~oin V
358 (3.26) nwT1  on359. lA,,, , = T , on S 4

360 Eq. (3.24), is the classical equilibrium equation; we identify a, defined by (3.12) as the
361 equilibrium stress tensor. Equation (3.26), is higher order equilibrium equation which
362 relates the back stress to double volume forces and to the divergence of double stresses.
363 In the classical continuum (3.26), is encountered in the form of an evolution law for
364 the back stress, e. g. Prager's rule (2.8). From this point of view Prager's rule is
365 reinterpreted as a constitutive equation for the double force

368 (3.27) $bji -C i*

368 Thus plastic strain-rates introduce self-equilibrating double body forces.
369 It should be noted that derivation of (3.26), can be seen as a rigorous approach to
370 what is usually termed in the literature as -complete balance law for the back stress" in
371 references [A. 1978, A. 1985]. Further, we note that the present formulation reduces to
372 the gradient flow theory of isotropic plasticity discussed in [V & A. 1991] if we set
373 4j -O. and j -CrS, Si.
374 Finally, we remark that Eq. (3. 24)z expresses the boundary condition for the surface
375 tractions, while (3.26)2 expresses the boundary condition for the double force per unit
376 area.

377 4. Gradient modification of K-H plasticity

378 The classical flow-rule for non-associative plasticity reads

380 (4.1) c=- AQ where

381 (4.2) 2:j 6i
382 3
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183 and the plastic potential Q is expressed as, for Drucker-Prager K-H plasticity

M8 (4.3)

186 In the above equations ti is the deviator tensor of t,, 0 is the dilatancy coefficient and
387 q is an appropriate constant necessary to shift the plastic potential surface to the stress
388 point in consideration.
189 Utilizing a non-local argument [Bazant, 1984; V & A. 1991] we generalize the flow
W9 rule (4. 1) as

392 (4.4) -A, (. + • V2 )

393 It should be noticed that in references [Shreyer & Chen, 1986; Shreyer, 1990] instead
394 of the Laplacian, non-linear gradient effects are introduced for modeling one dimensional
395 softening and localization; the analytical solutions obtained in [S, 1990] give an insight
396 to non-linear, non-local plasticity. We restrict ourselves here, however, to linear non-
397 local models.

398 In order to generalize Prager's rule we modify the constitutive Eq. (3.27) for the
399 double force and introduce a simple constitutive equation for the double stresses, which
400 is motivated from the work presented in [V & A, 19911.

402 (4.5) ¢,j =- ,j + 12 V, ý,p

40N (4.6) ýj-M'uir

405 or following (3.9) and (3. II) we obtain

406 (4.5a) 4iij - (i+ 11 V,

409 (4.6 a) its M MX e,

410 Similar simple constitutive equations for the double stress are used in [V & A, 1991"
411 Frantziskonis & Vardoulakis, 1991].

413 We summarize the set of constitutive assumptions made so far
419 - Stress-rate decomposition (3,12) au •rs+ M,
425 - Strain-rate decomposition (2.1) e, + ep
431 - Flow rule (4.5) E'P AQ (I +12 V.

437 - Consistency condition (2.4) Ai it = 0

443 - Balance law for ;j (3.26), &,=a, 4-4
449 - Constitutive Eq. for &, (2.6) -7j CT',k 41

455 - Constitutive Eq. for 4 ,s (4.5 a) , - c (k + I•V ,)
461 - Constitutive Eq. for P-• (4.6a) -M a, it

462 Further differences between micro-structure in elasticity and elastoplasticity follow
463 from the above constitutivt. equations: in elastoplasticity the total stress-rates are determi-
464 ned from the elastic (relative) strain-rates, whereas in elasticity both back (relative) stress
465 and Cauchy stress derive from corresponding potentials. Double stresses and body forces
466 in elastoplasticity derive from plastic (micro-) strain rates, whereas in elasticity the
467 corresponding potentials are independent of micro-strain
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61 A simple dimensional analysis reveals that 1, appearing in the above expressions (4.4)
169 and (4.5) has the dimension of length and is called "internal length". As mentioned in
470 [V & A, 1991], prior to localization the coordinates xi must be non-dimensionalized by
471 some global dimension L of the structure under consideration. Since (/2 /L 2)4 1 we say

M72 that &j varies slowly in space and that gradient effects are insignificant. However, when
173 the deformation is localized in a narrow zone of intense shear then the spatial coordinates
174 are non-dimensionalized by say the thickness d of the shear band, which is found to be
175 a small multiple of I (V & A. 1991]. V2 ii is multiplied by a number (l!d)2 - 0(1). and
476 accordingly gradient effects are not necessarily negligible.

477 It should be noticed that, as demonstrated by Muhlhaus and Aifantis (Muhlhaus &
478 Aifantis, 1991). the consistency condition of gradient plasticity is in general a differential
479 equation and not an algebraic one as in classical plasticity; cf. Eq. (2. 10). However, as
480 shown in [V & A, 1991], one can choose the constitutive tensor M,,5 for the double
481 stresses in such a way that the consistency condition assumes an algebraic form. If we
482 choose

484 (4.7) MM M 12 v

485 from (2.6) and (3.6), the consistency condition (2.4) is written as

488 (4.8) Bhx,,- (Bu,+cAu) (AO-i2V2Aa)I+I"At,(BQ+ c A)V.0

488 where we have set

489 (4.9) B IQ C-.,
490 oarj

491 Thus the consistency condition becomes a fourth order differential equation for the
492 plastic multiplier JL If, for consistency with (4.5), we neglect the fourth order terms in
493 (4.9) we obtain

494 (4.10) ._Bu it, + 0 (I')
495 H

496 where by keeping 0 (12 )-terms we have set

498 (4.11) H-(B1 a+cAAu)(AQ-1 2 V2 AQ)

499 This means that the consistency condition is a 0(r) algebraic equation for the plastic
500 multiplier. Thus from (3.26)1, (4.5a) and (4.7) the following "evolution" law for the
101 back stress is derived

503 (4.12) ,

504 From (4. 10) we derive the expression for V" i.

505 (4.13) V h.iB,,Vzc,,+Vi-E/ i and
506 H (H)
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.A? (4.14) V2(ljjV . LBuVzH)

109 where we have neglected nonlinear terms. From (2.6), (4.4). (4. I 0), (4. 11). (4. 13) and
,10 (4.14) we finally obtain

;12 (4.15) &j- Lt• -u - 12 NwX V2 jd Where

A1413 (4.16) Lip, - Ž-Iw- < B1 Bi.d- 1B(V2 Bu.- • B V2Y
;14 1L P)jj

515 (4.17) Nq- M-
;16 p

;17 Neglecting O(1)-terms in the stiffness tensor we finally obtain

,A (4.18S) where

i20 (4.19) C3 ,, - crj,

522 (4.20) cm = 0B9B
523 H

i24 Thus the present theory is a second grade rate constitutive theory, i. e. a theory for which
i25 the stress-rate depends on the strain-rate and on its Laplacian. Eqs. (4.18) can be seen
526 as a singular perturbation of the classical ones, with I being the perturbation parameter.
i27 More importantly, besides the internal length I no new material parameter is introduced
3.28 here.

i29 5. Shear band analysis

530 Here we consider the Drucker-Prager K-H. then the expression for the yield surface is
531 given in (2. 18). For this specific function.

532 (5.1) aF aF I +533 2-'i ""j S+ t

534 For simplicity and for the sake of illustration we consider a 2-D problem and write the
535 constitutive Eqs. (4.18) in the coordinate system of the principal axes of r,;, under
536 loading conditions. Let ic-K/G, K being the bulk modulus and G the shear modulus.
537 For simplicity in notation stiffness tensors non-dimensionalized by G keep the same
i38 symbol, e. g.

;49 (5.2) CHUNICS A SOI)S.V I)8 +•,.• +, A+
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41 Then (4.18) are written as

54 (5.3) 2 2 G ( 211•, 1 + C22 2 2 • 22 1-21 VZc -/2 V2 ' 2 2 )

549 ' 12 -i 21 -2G• 1j2  where
•,,-(,2 (Pic Gp+ 1) (Pic+ 1)

GH

G
Cqj 2 2 -(,+ 1)- -.(ju-l)(jc-1)o

548 (5.4) C'' 1)

C11322'(- 1)H- i(PIC+ 1)(PIC -

SC2
1  i (K- 1)- (Pc - l)(Pic+ ) and549H

H1,21 ý 12 CP]1

H

550 (5.5)
12 Gi•2'12ell=1g (ILK+ I!) (Pic - 1)

H

551 H ]•=1 •, • (.• )(••+

553 (5.6) H - G (pi• + 2) + c (pp/2 + 2)
554 The above expressions are introduced in the equilibrium Eqs. (3.24),, which in the

555 absence of body forces read

555 (5.7) 'Y II +02 '21 0

559 (5.8) I a+a2622 0

560 We consider that a shear band is forming and is inclined with respect to the x,
561 axis at an angle 0 (Fig.3). By introducing a new coordinate system
562 (x.y)-(n~x1 +nx 2. -nx,+n2x,) with axes parallel and normal to the shear band,
563 (n 1 .n2) - ( - sin 0. cos 0). Eqs. (5.7) and (5.8) reduce to the following system of ordinary
564 differential equations IV & A. 1991]

566 (5.9) + Ir22

568 (5.10) 2I1 "1 n2 el+ a2 , "-1 '2 n2 e2+ a2 2 V; -O0

569 where vi are the components of the velocity, (.)'- b/x and

[C IIn 2 n2 , 2+ l)n nn 2]570 (5.11) [aj 1  1  [2n 2 +( C p571 ",: l
5 EL(C U A2 + 1)nO ,n2 b O + A AS .O9
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x 
2

NIN

762
• Fig. 3. - Shear band odiation withia a speime.

572 By seeking periodic solutions of the type vi-c, cos (qy), we obtain

574 (5.2) b, I Ca - {{0} where

1-i 14- all q - 1.n2 nn 2 q4-a,2 q] and756 (5.13) [b,.• 12 , n2q.a• _e2•_n 4
76 2 n1n 2 q'- 2 3 q2  _122n 2 4 222

577 (5.14) { c 2 }-- c578

579 c, being constants. For non-trivial solution, the matrix Eq. (5.12) yields the following

580 condition

581 (5.15) (qi) - Q(n",n 2) where

582 R(n1 ,n 2)

58U (5. 16) Q- det (a1 j)
586 (5.17) Rmg 22 aI, 1n2+g Ia 22 n•-( 12 a2 +ga 1 a)n n2;gi"(1 /l)2

587 and q is related to the shear band thickness ds, d5 -/q. The condition Q = 0 coincides
588 with the classical bifurcation condition

560 (5.18) C0,1 1 n n +(CO 1  2 2 C P,2 2 C_2P211  2 2 -C.z,)n
2

591 Before the occurrence of classical bifurcation and for any (n,. n2), Q (nj. n.) > 0. For any

592 state past the classical bifurcation Q<0. However. R(nl.n 2) is a quadratic form of the
593 orientation cosines. It turns out that always R>0 wb;lch means that the system of

594 governing differential equations is always elliptic, as opposed to the classical system of
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95 governing equations which is of changing type, from elliptic to hyperbolic at the point
596 of classical bifurcation. As can be seen from (5.15) prior to classical bifurcation there is
597 no real solution for the shear band thickness. At the classical bifurcation point da is
598 infinite as compared to the internal length 1, rapidly decreasing in the post-bifurcation
599 regime. m1rs well established qualitative result is discussed in [V & A, 1991].

100 ESTIMATION OF THE INTERNAL LENt.TH. THROUGH SHEAR-BAND ANALYSIS

S01 Since for a 2-D model ic-K/G-1/(l-2v), if we assume that Poisson ratio is v-0.1,
i02 then i - 1.25. For a geologic material (rock, concrete) if we consider that the yield stress
i03 in uniaxial compression is ten times the yield strength in uniaxial tension, then for the
504 2D case p -0.818. For the associative plasticity case 0-p and for the limit case that
i05 plastic incompressibility is assumed A -0. Material parameter c is considered as a variable;
A06 however, for the purpose of this estimation the evolution law for c need not be specified;
W07 Let c' - cG. Then the classical bifurcation condition (5. 18) yields, at bifurcation onset,
i08 for the associative case c'--0.429, 0-73.2' and for the plastic incompressible case
i09 c'- - 0.389, 0- 57.2". Thus differences in the flow-rule affect mainly the shear-band
510 orientation angle. For the associative case and for the corresponding value of 0 the
ill dimensionless shear-band thickness dell is plotted against -c' in Figure 4. According to
A12 this figure the shear band thickness decreases rapidly after the onset of bifurcation.
513 assuming a stationary value of (da/l),-=3. Obviously, the solution for (da/l), depends on

30.00

-20.00

10.00

0.00 W
0.00 0.40 0.80 1.20

766
",6 Fig: 4. - Shear band thickness d91I versus c'.

44I the values of constants such as v, i, A. For the specific values chosen herein, the value
S15 of c' at classical bifurcation is negative which implies that it occurs in the post peak
516 regime. Note that the Prager evolution for the back stress was used herein. However,
•17 any other type of evolution law can be used. For example if the Ziegler evolution law is
i18 used then classical bifurcation occurs in the pre-peak regime (Tvergaard. 1978; Hutchinson
f19 & Tvergaard. 198 i.
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20 6. Surface Instability analysis

521 The problem considered in this section is plane strain surface instabilities under initial
s2 stress. Figure 5. Analysis of these types of instabilities can be found in the papers by

O' 0

770
"772 Fi. 5. - Problem comsdered for surfac instability analysis.

s23 Needleman (Needleman, 1979] and [Vardoulakis, 19841. In reference [F & V. 1991] the
624 effects of micro-structure on the so-called skin or surface degradation effects are studied.

625 Substituting the constitutive Eqs. (4. 18) into the equilibrium Eqs. (3.22), we obtain,
626 for the problem depicted in Figure 5

627 (6.1) " 1 2 r2 + " "
628 _l2 V2(a22Vj)-i22V2

629 For surface buckling modes, the velocity field is expressed in terms of two unknown
630 amplitude functions

632 (6.2) rl = U (x) sin (qy); V2 - V (x)cos (qy)

633 (6.3) lint U(x) lim V(x)
634 X. , - 40

635 and x-xviL, V-x 2 /L, L is a reference length associated with the wavelength W of the
636 deformation and q is again a dimensionless wavenumber. The wavelength W is inversely
637 proportional to q such that W-- 2 x L/q. Substituting the velocity field (6.2) in (6. 1) and
638 assuming that the two functions in (6.2) have the exponential form

639 (6.4) U (y) - A EZ
63 6 V(y) -Bey' we obtain

641 (6.5) { A[i-C'1 1 -q2 C '1 1 1 1(l-z 2 )]+Bt-[(l++q¶ -)-7q2 CP12 z(lZ-2)1=0
642 1 A[z(I + 2,, )+ q2CP2 z(l-z )]+B[z(C2"222 1)+q 2 C•22 2 z•(l -9)]-0

643 where we have set

644 (6.6) f
645 q
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18I VARDOULIkKIS AND G. FRANTZISKONIS

46 For non-trivial solution in terms of A, B, the determinant of the system (6.5) must
47 vanish. This leads to

48 (6.7) = (qI/L) 2 - S (-) where49 T(z)

S* (6.8) S (z) - (z2 - CPI 1 ) (C0?2 22z- )2 + Z2 (I + C' 2 2) (1 + C 1 ,1 )

52 (6.9) T(z)-C',,,(1-z 2)(Ce 2 2 -1)-CI2,2 2 C,311)

,55 For the case where gradients effects are negligible or 1-0, equation (6.7) reduces to the
66 classical biquadratic equation for z. For 1#0 Eq. (6.7) is written as

1sg (6.10) Pz:+Q:'+R.2+S=O - where
659 P =FCPa222

60 Q- (-Cpt1 1 , Ct 22 -Ca 222 -Ch2122 C'It'j 1 +CP1 2

i61 +Cht2 +C, 122 2 +CP221 CZ22)- •,,

W62 (6.11) R q2 (CIt ttC?222+CS222 C"Ilt t Ct12-CS211 + Cpllll- Ctz2 •t t
6 3 - C 1 2 . ,1 ,'' 2 ) + q ' I 't 2 22, - C '1'1 2 C ? 2 1 - 'C 'P ,2 - C "2 1
6S 2 s- •(-'Cr1 1 )+C1

i66 Eq. (6. 10) has six roots *I ,z. *-Z*. The notion of surface instabilities means that
i67 the deformation is confined close to the surface (6.3), i.e. the displacement field is fading
i68 exponentially with x, being zero at infinite x, thus Re { zi} <0. Thus if there is a real
i69 negative solution for the reduced cubic Eq. (6.10) there is no solution to the surface
M70 instability problem. Let z,. z2. and :3 correspond to solutions whose real part is positive.

i71 The velocity field then becomes

M (6.12) v,-(A, e•-9,1+A 2 e-42" + A3 e '-V3) sin (qy)
73 v2 - (K, A, e-4"" + K2 A2 e-42Z+ K 3 A3 e-431) cos (qy) where

F ' CPt I I (1- -) + (Z2 - Cop •t i , ,N74 (6.13) Ki= 11•lC] (l-4)+(1I'l) i+- 1.2,3

i76 The boundary condition 1&12 =0 at x-0 yields

P7S (6.14) AI(KI+z )+A 2 (K 2+: 2)+A 3 (K 3 +Z 3 )-0

i79 The boundary condition i12 2 -0 at x-0 yields -'

i80 (6.15) (A,+A 2 +A 3)C2,,-(KtzA,+K 2 z2 A.

A I + K3 Z3 A 3)6 2 22 -121 (-AI-A 2 -A 3

i82 +Az2+A:"• +A 3 z2)b 2 /L 2 
- j 2 (K,:,A1 +K,: 2 A,+K 3 z3 A3

,84 -K 1 A, 3•-K 2 A2 :Z -K 3 A3 :3) b2iL2 2=0
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85 Finally, the boundary condition for the double traction "I., - 0 at x- 0 yields

585 (6.16) A 1Kt'-+A 2 K2 :i+A 3 K z2_0

S88 Eqs. (6.14)-(6.16) form a homogeneous system of equations in terms of the constants
589 A1 , A2 and A3 . To arrive at non-trivial solutions, the determinant of the system must
590 vanish. This provides the surface instability condition.

591 ESTIMATION OF INTERNAL LENGTH THROUGH SURFACE INSTABILITY ANALYSIS

692 The critical value of c' is the lowest one that satisfies the above bifurcation condition.
693 It is interesting to note that the critical c' is a function of the internal length I and the
694 wave number q or the wavelength W. Thus different critical values of c' are obtained
695 for different values of the dimensionless wave number?. Obviously, j2 - 0 corresponds to
696 long wave length and F - I corresponds to the shortest physically meaningful wavelength.
697 Figure 6 shows values of critical c' as a function of j for the associative K-H case.
698 Since surface instabilities are only possible prior to shear-banding the results of Figures

1.20

0.80

0.40

0.00 . ....... .
0.00 0.20 0.40 0.60 0.80 1.00 1.20

774 c-prime

776 Fig. 6. - Influence of micro-structure on surface instability.

699 5 and 6 are then only physically meaningful if the post-peak stress-strain curve is concave.
700 as is typical for brittle materials like concrete [Willam etal.. 1985]. Accordingly the
701 internal length I can be determined if one considers the eigen-strain field £22 for q= I as
702 shown in Figure7 [F & V, 19911. From this figure it follows that a significant % of
703 attenuation is obtained at a depth of approximately 51. From experiments, the depth of
704 the surface degradation zone can be determined. e.g. spalling depth for brittle materials,
705 which then provides 1.

706 Conlchuion

707 The gradient modification of the K-H plasticity presented herein regularizes the classical
708 one and this could be used for post-failure computations in brittle material structures.
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' Fig. 7. - Normlized depth X,/l vem eigesain C,,. =- I .

'09 The single introduced new parameter is the internal length I. We have provided here in
710 principle two independent methods for estimating!L Thus the present theory is amendable
711 to a callibration/verification procedure. This could be done by Non Destructive techniques
712 as explained in [Frantziskonis, 1991].
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The concept of staue of degradation is employed as a tool to study the effect of initial materialI (structure) inhomogeneiy and the implications of surface (skin) effeca on brittle riel
respanme. The initial heterogeneity pattern and its growth uer external loud is studied
experimenmy via ultrasonic scanning measurements on prismatic simulaed rock samples
subjected to mechanical load. Numerical solutions are compared with the experimental result.
The skin effects are also studied experimentally through the spaial variation of dissipated
energy within the samples tested. In addition, m--t considerations highliht the skin
effect and its implications. The material length for the simulated rock is estimated (for load
levels up to peak lo:d) through the experimental observations which yielded L..24 inches
(0.61 cm). The analytical solution of a simple problem including microstr•c-tue conMderations
for the same material yielded --0.21 inches (0.53 cm). This paper integras and extends theI recent work of the author and co-workers.

- INTRODUCTION caily aligned microcracks resulting in gross slabbing
of material from the tractionlen surfaces. The dev-

Structures composed of brittle materials such as elopment of microcracks is more pronounced near
rock and concrete are observed to damage when the free surface, because the constraints to crackU loaded towards failure. The term degradation is development are smaller than those in the interior.
often associated with damage evolution. The effect In addition, near surface microcracks have a greater
of degradation on material response has recently tendency towards crack propagation, for the simple

* received intensive attention. Ultrasonic measure- reason that the str intensity factor for such a
ments have been used successfully as indicators of crack is higher than for a same s1 or even bigge

such internal degradation. Unfortunatly, it is very crack in the interior.
difficult to detect and characterize individal It is difficult to observe and/or simulate the spa-
microcracks using non-destructive techniques. tial pattern of materiel heterogeneity at the micros-
However, it is feasible to measure the effect of dis- cale. Undoubtedly, important information can be
tributed mcrccks, sic mirocracks affect the extracted from mode simulating the matrialSattenuation of ulrasonic pulses and the velocity of m %crostrucmre and spatial randomness of hetero-
the transmitted wave. In the light of apprpia geneity. In a recent such study, Bazant et al [],
modeling, attenuation measurements can provide an micromechanica based conclusions are relevant tor average quantitative measure of degradation. Here, the findings in this study.
average is considered with respect to the material
volume that the ultrasonic wave passes through. ULTRASONIC MEASUREMENTS

For decades, laboratory tests on brittle materials
sought to achieve a homogeneous state of stress and The purpose of the ultrasonic tests [6] was to
deformation on samples subjected to uniaxial load, the spatial variation of degradation mechanisms
However, even under ideal testing conditions, the brittle materi subjected to mechanical load. -_.I heterogeneous micro-structure of the material this purpose ultrasonic measurements were taken a:
yields an inhomogeneous deformation field from several locations of each sample in the direction
the early straining stage, Fairhurst and Cook [1], transverse to the applied compressive load. ThusI Hudson et al (2], Read and Hegemier [3], Yukuwke spatial variation of internal microcracking :a:
(4]. In a uniaxial compression test the density of studied.
microcracks rapidly proliferates, leading to veru- Figure 1 shows the schematic of the test s-y*--



E for ultrasonic measurements on specimens subjected (12.7 cm) and the depth (D) was 1.3 inches (3.302
to external mechanzcal load. The ultrasonic mea- cm). For the three series, the width (W) of the
u Pet procedure is described first. The pul•sr sampe was 3.0, 3.5 and 4.0 inches (7.62, 8.89 and

section of the instrument generates short, high- 10.16 cm), respectively. The ultrasonic pulse wasU amplitude repetitive voltage pulses of controlled transmitted through the depth (D) at different cxa-
energy. The pulse is applied to an ultrasonic trans- tions of the sample. LIoad was applied parailel to
ducer, which by virtue of its piezoelectricity vib- the height (H). The material specimens were made
ratm meclanically at its resonant frequency. The of simulated rock and were cast in aluminum molds
transmitted pulses are received either by the with casting direction parallel to the height. Th
transmitting transducer after partial or total reflec- material was developed [71 through a parametric
don (pulse-echo method), or by a separate receiv- variation of various components such as sand,
ing tanucer (through-tansmission method). The cement and plaster of Paris, and air entrainins
voltage signals produced by the receiving trans- agent. The following combination was used:
ducer are amplified by the receiver section. The sandtcementplaster of Paricwater - 15.:Z3:4, by

I amplifoid signal is available, on the oscilloscope, as volume.
an output for direct measurements.

Energy Considerations

HI 40Consider a structure (specimen) subjected to exter-
frmI0clmWN nal mechanical load, rigur 2. As load increasesI the

z sample experiences degradation. Within the volume
- - ,-m. U,, % ,-.,V of the structure we identify an elementary

C mamocin (IIOMvolume dV1 With cross-sectional area dF, perpen-
dicular to the direction of the ultrasonic wave

I transmi-ion. For piezoelectric ultrasonic transduc-
u ers of diameter d, dFi -"xd/4. Let Q be the disi-

--- aw pated energy due to degradation progression in dV1.
"I� I L : We can write, in general

...... inw

F where RI is a measure of degradation within dVi
* FIG 1. m al the T.., S m fr m • •and -1 is the dissipated energy per unit of R1. As an
m while q-ap awe S bjected to Meical Loed; initial estimation, for simplicity, we consider n-1.

A. Eumnai Load Applied Through MTS Frame. B: Device for
dt of Tramduwu, C. Strain Gage, D: Trumming -

Tnaedum, E. Rasiving Tranaduw.

Th w ltlrmnic transducers used (D E in Fig. 1) 1 LOAD

were the P/N Z-10016-3, Zevex Inc., Salt Lake
City, Utah, resonant frequency of 50 Khz. TheIdiameter of each transducer is I1. inches (1 inch -

2.54 cm). With these c, the waves pro- m cm)

duced are appropriate for transmission through
brittle attenuating materials like the one tested. InI order to take ultrasonic measurements at several
locations in a sample subjected to mechanical load, I _____-, ____

it was necessary to develop an automated scanning ,- ___ __I system. Appropriate computer controlled devices 2--- --- -
were developed for the automated movement of the /
transducers. Data at various locations of the samples /
were extracted from the oscilloscope and the 7
pulser- receiver. ,

The system for the movement of the transducers
described above was mounted on an MTS testingU machine. figure 1. This allowed acquisition of FIG 2. P S WzffzD Showin' "frection W
ultrasonic measurements while the sample was sub- ewuai EAe and at Ultras.nic Wave..
jected to external mechanical load from the M
frame. Three series of prismatic samples were Let an ultrasonic pulse be transmi z
tested. For all samples the hight (H) was 5 inches



- dV1 . Let zero (0) denote the state of the sample
* where no external load is applied. Let the energy of E0-1 A& (6)

the received (after transmission through dV1) ultra-
sonic wave at zero ste be E1. Let the energy of where A is the maximum absolute voltage of thei the received wave at a deformed state be . Due to received wave while the sample is under external
the degradation progresion in dV1 the attenuation load, Am is the maximum absolute voltage of the
of the transmitted wave changes. We can write, in received wave before any external load is applied,
general and o is a constant rlevant to th electromechani-cal characteristics of the receiving transducer. From

AE-•F -• - AE - c R (2) Eqs. (2) and (6), it follows that

where t is t -he sformation coefficient relating - (&. A2) -,p G (7)
g eIaitin R1 to ultrasonic wave attenuation A.

From (1) and (2) we obtain From equations (3) and (7) we conclude that the

dissipated energy Q4 is proportional to the differ-
AA-E •CAQ -maQ1 (3) ence G , A& - q. For this reason, in a measure-

*y ments presented in the fonlowing, from [6,10], by
Equation (3) indicate that the local (within dV1) the term dissipated energy we imply the difference
ultrasonic attenuation is proportional to the local G - A& - A- . However this te could be replaced
degradation dissipated energ, here local pertaims to by 'ultrasonic pulse attenuation,' or *intensity
the fact that the ultrasonic wave p through reduction.'
volume dVi. For the specimens tested, volume dV1  Before we present typical results from the ultra-
is of cylindrical shape of diameter d-1.5 inches sonic experiments we present the theory for
(3.31 cm) and depth D-1.3 inches (3.302 cm). damage and surface degradation growth; the goal is

The speed of an ultrasonic P-wave in an elastic to compare the exprimental results with theoretical
material can be related to the Young's modulus E ones based on materinl degradation cosiderationL
and Poisson's ratio v as Since this theory has been presented elsewhere,

Frantziskonis and Desai [11- 131, only the necessary
SE l-P background for completeness of this paper is pre-

p (l+VXl-2U) (4) sented.

DAMAGE AND SURFACE DEGRADATION
where c, is the ultrasonic wave speed and p is the

* material density. The material examined in [6] Adopting the notation used in (11-13] the constitu-
shows inelastic response from the early straining tive equations are written, in incremental form as
stages. For strains up to the peak the Young' mod-
ulus (fromn the unloading/reloading slope) was 0i-]ml jj- i(e -o (8)

i found [6,71 to be approximately 180,000 psi (1240

MPa) and v,-0.3. The initial density of all samples where
tested was 0.066 lbm/ins (1.825 g/cm3 ). For theseU values, if for the time being we assume that Eq. (4) - (I r) + lC&
is valid, we obtain cl - 37,664 in/s (957 m/s), thus Lt1 "1  - r) ti r
for a sample depth of 1.3 inches (3.302 cm) the
transit time is 33.8 i. The transit time m in r is a scalar representing the ratio of damaged to
the experiments was initially 34 is with 0.5 ps intact volume, Ci.w Cjd is the constitutive tensor
accuracy of the time measurement. The pulse velo- for the intact (topical) and for the damaged pirt
city remained constant while the sample was loaded respectively. Further, an evolution law for t is def-
and changed only when the external load was close ined and it is directly related to failure where r
to the peak. This is consistent with results obtained reaches a critical value r,. A simple and effective
for hardened paste and mortar specimens (81, and law can be written asI for concrete specimens (9]. However, as discussed
subsequently, the attenuation of the pulse showed -
significant changes from the early straining stages.U The average energy, E1, of a received ultrasonic Based on the physical interpretation of damage ALL
wave is proportional to the square of its maximum failure criteria the function f can be specified. FRr
amplitude. Mathematically, we can write the numerical results presented a specific form -A"

has been used, and it is given subsequently.3 =,6 Ai (5) Surface degradation is induced by microsc.:.



I inhomogeneity and its growth is initially stable. It is ties. Experimental information on skin effects can
important to mention that there is certain evidence provide an estimation of the internal material
that this phenomenon act as a rigger effect on the length.
shear band appearing in a specimen. The sudden Theoretically, it has been predicted that a homo-I growth of surface degradation results in the occur- geneously smained body with traonless surfaces
rence and development of shear bands penetating develops surface undulations or waves. This pheno-
into the body. In the remaining of this section a menon is known as surface instability Biot [15L Hill
brief description of the theory for surface degrada- & Hutchinson [16], Vardoulakis [(17. In a more
tion is given. Details of this theory have been pre- general formulation, conditions for the so-called
sented in (11-131, so here we only provide the complementary condition, Benallal et al, (181, for
background necessary for the numerical results. governing instabilities at the boundary of a solid
Dmage distribution at the edge of a body where have been established. Since there are not physical
surface degradat is of importance, is expected to length quantities in the continuum formulation of
be significantly different from the damage distri- the problem, the wavelength of the surface insta-E bution far from the edge (in the body). Her we bility mode remains arbitrarily short or long. The
consider that damage at the edge due to surface exponential decay beneath the surface is also arbi-
effects is additive to the damage accumulation cal- trary since it depends on the surface wavelength
culatd as if no surface effects were present. So at variation.
the edges, a small volume AV, is subdivided into Buckling under plane strain conditions due to
an tact part AV. and into a fractured part horizontal compression of an elastic, anisotropic
AVW. We consider that the above subdivision holds half-space containing co-planar cracks at arbitrary
for a distance p from the edge, p being a positive locations has been analyzed recently by Vardoulakis
real number dependent on the material properties, and Papamichos [191 It is demonstrated that the
the geometry, and load acting on the body. Dis- critical buckling stress decreases drtically as the
Stancep is defined as distance between the free surface and the cracks

diminkhes Further the influence of cracks far
- from the surface has very little or no influence on

the buckling stress. From these results it can be
S -I(10) seen that a surface layer exists for which the pres-

ence of cracks influences the buckling stess signi-
ficantly. In a sense this layer is the nonhomogene-

where W is a weighting function (the simplest case ous, bursting part of the materiaL In a recent

calls for W-unity and even this case has been paper, Papamichos et al [20] have demonstaed,

shown to provide satisfactory results), a is a mater- using a newly developed apparatus and a microme-

ial constant determinable from test results on dif- chanical model of surface parallel cracks, that sur-

* ferent size specimens, I is the so-called m face instabilities lead to exfoliation in Indiana lime-

length, and c is the path of maximum (absolute) stone.

principal compressive sq-ess. Material related par- asaindlin theory for imosruta urfe is employed
ameter p defines a new characteristic length. It is nomena. In this context, a restricted continuum
defined as that specimen size so that the whole se- formulation is achieved. The theory is formulated
cimen is in the surface degradation zone. and the governing equations for uniauial plane

ICRO-STU E OF SURFACE deformations are solved. The solution is compared
- EFFECTSto classical surface instability analysis. Fnmally, apar mete anaysis is perf'ormed and the poete

3 In this section, as decribed in details in [14], based that influence surface instability are discussd.

on Mindlin's theory for material micro-structure In (21] Mindlin formulated a general and
interesting surface effects under conditions of extremely powerful theory for micro-structure ineuineresing alinear elasticity. If one is interested in surface3equilibrium are studied. The governing field eqa effects under conditions of equilibrium, specific

tions for uniaxial plane deformations are consi- eiger order t irm s of e general th ecinib
dered. Then, surface instability analysis shows non higher order terms of the general theory can be

uniform deformations for a layer of specified dis- identified. Then a simplified theory results whic
tance from the surface. Material micro-structure gives light to important surface related phenomenw

introduces a singular perturbation to the original Consider a material volume V, with bound2-."
Hill and Hutchinson problem; here we introduce a surface S. with xt, i-192"3 the rectangular compo-
single perturbation parameter and we obtain a nents of the material position vector. The displace-
"dispersion" law for the surface buckling load. It is ment of a material particle is uj. Embedded in e. -_
found that surface degradation and skin effects can material particle there is assumed to bp a mir;

be attributed to localized surface buckling instabili- volume VT with micro-displacement u1. The



placement gradient of the micro-medium is coincides with the micro-deformation. This leads to
a vanishing relative deformation rate, and, accord-

-uU (11) ingly to a rate of micro-deformation gradient that
coincides with the strain-rate gradient.

-- where a comma denotes sp l derivative. The The weak formulation of the balance law of- emacro-sain is defnoed susa linear momentum together with the appropriate setof boundary conditions is achieved through the
principle of vfitual work. In accordance with [21]1 = (IJ + u~j) (12) we fIIst define the virtual work of internal forces2 so), La.e

and also a relative deformation is 6(0) - r * 6% +• F,4* (22)

"7U - um - (13) This work equation postulates that the Cauchy

and a micm-deformation gradient is s'es is dual in energy to the macrscopic train
and that the double stress is dual in energy to the

- (14) radient of the strain. Since there is no relative
deformation raw, the relative stress is workless. The

Utilizing the principle of virtual work, dynamic virtual strmn and its gradients are computed sta-
quanties dual to the above kinematic ones are ight forward from a virtual displacement field.
Sdefmad With expression (22) for the local variation of the

virtual internal work done by the stress, we can

6W Ti % 0ý67i +(* S)j compute the crrzespondfing variation for a materielvolume V from, the relation,

U wher rij is the Cauchy gtess is the relative
-stres and ft is double sters. The ru• index of
ft designates the normal to the plane across which AWO) SW() dV (23)
the component jk acts. For example om is a f

double force per unit area (tensile or compressive)
acting on a unit area on the plane Uaverse to axis The surface S of the considered volume V is
1. The variational equation of motion is established divided into two complementary part S. and S.
--[211 and the twelve general equilibrium equations such that on S. kinematic data whereas on S, static
--follow from it and can be written, in rate form data are prescribed. In classical continua these are

(1.) constraints on displacements and tractions, respec-fi~ + li 0(16) tively. Since second-Srade models introduce second

+ = 0(17) strain gradients into the constitutive description,
i +jk additional ematic dam must be prescribed on Sý.

Then the relative stre can be eliminated from the With the displacement already given in S., only its
-Ten elat ions normal derivative with respect to that boundary isra-equibrium equtions resico. This means that on S. the normal der-

*i & - -A,, (18) ivative of the displacement should also be given;
* iLe.

We define the equilibrium stress as ui - w, and Dvi - ri on S. (24)

i rU - "|j +Pi- t"j"-Akij.k (19) where D=-,k is the derivative in the direction

The twelve traction boundary conditions anormal to the (smooth) boundary with local unit
normal nk.

+(20) For the computation of the virtual work of
external forces AW(e) we have to consider not only

S-l(2the surface tractions but also the work of ,-Tjk = n•jk (21) double forces. Following these considerations,

where nr is the outward normal to the boundary virtual work of external forces becomesI-surface, t is external force on the boundary and Tij
is the boundary couple force.

A particular case of Mindlin's continuum is the AW(@) (i Sui + Ri D Au )dS
so-called restricted continuum; i.e. a micro-homo-
geneous material for which the macroscopic strain



where q and N are surface tractions and double
forces, respectively. From the virtual work equation t- 2, = ,4
AWO) - AW() we finally derive field equations

where

rjk .- 1,i "0 (26)

and the corresponding boundary conditions 4 -(v•+.,)•)V. v,- (30)

In order to solve the boundary value problem
-dermed above, additional equations relating the and p is the hydrostatic sess. The quantity 4 is
stressm and double stresses to the strain, relative the instantaneous tangent modulus and p is the in-
deformation and to the micro-deformatio gradient sununeous shear modulus for shearing parallel to
must be included. Thee are specific to the matrial the coonae axes, and # is the mobilized friction-- pand € are, in gen-and are the cosittv equadom, ansle. Materdal parameter p. ;ead0 ringn

eral, dependent on the histories of deformation.
Surface sbTsabilities 1he partcul dependence is specified later. How-

ever, the range of these parameters i important for
Consider the problem depicted in figure 3 [14]. specifying the solution regime for the surface insta-

bility problem [14].
o" O"___ -The constitutive equation for the double stress

rate is writte as

_-" AM M " iMp., (31)

A dimensional analysis shows that I has dimension
of length and as shown subsequently this quantity is

" importan for the surface instability problem.

Equilibrium can be expressed in ms of the
equilibrium s4tess rate

il1+ 'n2- r=2 (;21,2 - 0
(32)

FnG . Nw spm- undwr Cm i, Load 1l2,1 + 'r22,2 - r22 a1,1 - 0

Starting from a stress-free state C., the structure is ant r2 - a, 1 being the external applied stress,
stressed uniaxiaily, under plain stain conditions. figure 3. From the two equilibrium equations (32)
Let C be the resultant configuration. In order to by introducing a stream function 'I such that
study the stability of continued equilibrium in C,
the existence of non-homogeneous infinitesimal v,- M. v2 "- .2 (33)

mtransition, C-sC', is investigated, with C being the
reference configuration. The equilibrium in C is we obtain
unstable if an unbounded, non-periodic solutionI-exists. The equilb-ium stess tensor, rU can be -LV9n~u + + bt,,,, + ct,,= - 0 (34)

written as a function of co-ro•ional strys where the expressions for b, c, L2 are given in [14].
•Differential equation (34) is a singular perturbation

j" -? + wý Tj - 6, (27) of the original (resulting without micro-sructure
considerations) as discussed by Hill and Hutchinson

where cj is the rate of rotation tensor [16] and others. Following Biot (IS], plane strain

surface instabilities can be analyzed [14]. From the

2( ,(28) solution of (34) it is concluded that the integration
: g constants must satisfy the co charac-

teristic equation, which together with the boundar,,
--For the Plain-strain problem of figure 3 we assume conditions provides solution to the eigenvalue pror,.
--incrementally linear constitutive equations for the lem. For such a solution the expressions for is anc .
_Cauchy str'ss-rate must be specified. A one parameter family

+ (-sin) sue-sa Curves of the power law type is

-assumed, thus the stress-strain curve from a
strain uniaxial compression is given by



i
type. Notice that these equations constitute the sim-

-p (lest possible generaliation of elastoplastic relations

-* (IN for such media.

_where N is a comunt between zero and one, ?. a MATERIAL LENGTH E91IMATION AND
ass arbitrary reference values of r and 7 respec- V HETErOGENEITY

tively, 7 is the second is the second invariant of the
deviator tensor of , and r is the second invarunt From references [12,131 the value of a-0.21 was
of the devimar tensor of o'j. For this kind of etmad. For the specimens tested [6, equation
hardening function the shear moduli is and A are (10) reduces to
expresmed as

pm= a(H-l -) (38)
IS A.-NI (36)

where H is the specimen height. From the test res-
ult rportd in (6], distance p cn be estimated

Tw mobilized friction angle • is expressed as [17] from the dissipated energy distribution within the
samples tested. From the test results it seem that

N ~~~the cnetaonof G close to the free surfaces isdistinguishoble and can be approimmased to about
M ~ ej.. one inch Then, from Eq. (9) 1---.24 inches.sine (37) Surface insuability analysis shows nonuniform

deformation for a layer of specified distance from
I+M the surface. It was identified that a significant per-

Sentage of the nonuniform deformation is obtained
at a depth of 51. Then if we consider that the non-

where subscript c denotes value at failure and M is uniform deformation, in an average nonstatistical

a constant related to the strength ratio (uniaxial sense is about one inch, the internal length I is esti-
gength, in tension over uniaxial strength in mated to be 0.21 inches.

mmresion). Figure 4 shows the eigenusain field Initial h geiy is considered herein via the
for N-0.2, n-I and M-0 (non-frictional material). concept of state of degradation. In order to show
Smila eigenstrain field was obtained for N-0.2, n- bow theoretical results can be compared to the
-1 and M-0.43 (frictional material). For the exam- mental ones from ultrasonic scanning we
pie of figure 4 we recognize that a significant % of conider the following. Figure 5 shows the contour
attenuation is obtained at a depth of 5. of initially (without any external load) received

Sultrasonic energy for sample S4.

1.50

C
0.00 •*

,~0.50

E
z - 1.0o ..........0.0 5.00 1.0 11.00.i"200"aNomalized Coordinate Xl/I

I FIG 4. Neuinbd D49* X21/ wý *gmeai. N=U
Aw Mm& (a) X111 v ed, (b) x111 ve e(i dt 40

I From experiments in various materials the depth of
the surface degradation zone can be obtained which
then provides 1. Such a calibration of the internal FIG S. Cmww of nieiaf Rs d Ulkrs.m Zaa-
material length I is paramount if one wishes to (p.aw) for son" S4.I solve problems with eigenstresses in laminated mat-
erials by using constitutive equations of the present A similar pattern is assigned Cor the initial vs;;,-.
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the damage variable r. Then the finite element Grant No, AFOSR-890460 from the Air Force
methodis used to model the re, se of the spei- Offie of Scientific Resarch Boiling AFB. and
mm under external loed. For sample S4, the Grant NO. M$-9157237 from the National Scienc
damap growth pattem obuisad at load P such that Founxdtn. Te help and disumion of Mr. F.F.I PPe, - 0.46 is shwn in figure fst and. for com- Tang and Dr. CS. D i is gratefully acknowi-
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P/Ppnk - 0.45 is shown in figure 6b.
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HETEROGENEITY, MICROSTRUCTURAL SURFACE EFFECTS
AND INTERNAL LENGTH ESTIMATION
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I ABSTRACT

Recently, the concept of stat of degradation has been employed by the author in order
to study the effect of initial material (structre) inhomogencity and the implications of surface
(skin) effects on brittle material response. The analysis has revealed the importance of theI internal material length, e.g. for assigning the initial random variables according to a material
dependent fluctuation scale. Different possibilities for its estimation and/or evolution have been
suggested. Here, symbolic computations by computer that resulted in the analytical solution of
an instability problem are presented. Such analytical solution without computer had not been
obtained in the past because the analytical work is tedious and error prone making it very
difficult to pursue. The analytical solution, made possible through symbolic computations,
provides significant insight into the problem of skin effects in brittle materials and internal length
estimation. This paper summarizes the previous work of the author and co-worker presents the

I results of symbolic computations of an instability problem, and interprie the results with respect
to material length estimation.

I INTRODUCTION

The effect of degradation on brittle material response has received intensive attention.
Non-destructive techniques have been (and are being) used as indicators of such internal
degradation. Unfortunately, it is very difficult to detect and characterize individual microcracks

I using non-destructive techniques. However, it is feasible to measure the effect of distributed
microcracks through wave techniques such as ultrasonic since microcracks affect the attenuation
of ultrasonic pulses and the velocity of the transmitted wave. In the light of appropriate modeling,
attenuation measurements can provide an average quantitative measure of degradation. Here,
average is considered with respect to the material volume that the ultrasonic wave passes through.

It is difficult to observe and/or simulate the spatial pattern of material heterogeneity at the
Imicroscale. Undoubtedly, .important information can be extracted from models simulating the
material microstructure and spatial randomness of heterogeneity. In a recent such study, [Bazant



et al, 1990], micromechanics based conclusions are important with respect to the problem of
material heterogeneity and degradation patterning. In a different approach, the initial
heterogeneity and its evolution are studied through random degradation variables and/or
heterogeneity data as observed from ultrasonic scanning tests [Yuan 1991, Frantziskonis 1991,
Frantziskonis et al 1991]. In [Frantziskonis et al, 1991] the purpose of the ultrasonic tests was
to study the spatial variation of degradation mechanisms in a brittle material subjected to
mechanical load. For this purpose ultrasonic mts were taken at several locations of
each sample in the direction transverse to the applied compressive load. Thus the spatial variation
of internal degradation was studied.

Initial heterogeneity was considered in the dissertation of F.F. Tang [Tang, 1991, Tang
and Frantziskonis, 1991, Tang et al 1991], via the concept of state of degradation. In order to
show how thertcal results can be compared to the imental ones from ultrasonic scanning
we show (figure 1) the contour of initially (without any external load) assigned state mapped

*V
I

'44

FIG 1: Contour of Initally Assigne~d State (from Ultraonic Data) for Samnple S4.

from the received ultrasonic energy for a specific sample.
A similar pattern is assigned for the initial value of a damage variable r. 'Men the finite

element method is used to model the response of the specimen under external load. For this
sample (S4), the damage growth pattern obtained at load P such that P/Pp,,,--O.46 is shown in
figure 2a, and, for comparison, the ultrasonically dissipated energy at P/PP, = 0.45 is shown in
figure 2b.

An important outcome of the ultrasonic tests and the FEM solution is that the initially
high intensity regions seem to dissipate energy at a (much) higher rate than the low intensity
ones. Both experiment and theory clearly depict this behavior. Similar results were obtained for
the rest of the specimens tested and further results are presented in (Tang, 1991].

These results, briefly discussed above, have clearly depicted the importance of the internal
material length. T'his is especially true if random variables are used for the description of the
initial heterogeneous state of the material. Unfortunately, it ia difficult to identify the initial state



FIG 2: (a) Damage tirowth Duibus•on for Sample S4 at PIP,.* = 0.46. (b) DiMsbution of
Dissipated Energy for Sample S4 at PIPp,,a = 0.45.

of a brittle material sttuctural system. Expezriental evidence shows that the initial state of
specimens is heterogeneous [Frantziskonis et al, 1991]. Obviously, the heterogeneity fluctuation
is scale dependent. The heterogeneity fluctuation length is important and must be identified. It
may be appropriate to define the internal material length as the scale fluctuation of material
heterogeneity. Then, if "correct" random initial state variables are to be assigned, the scale of
fluctuation (naterial length) must be identified. Since, as shown in [Frantziskonis and
Vanloulakis, 1991] surface effects and internal length are closely related, analytical solution of
a relevant free-surface problem is presented in the following. Although the homogeneous case
is examined (no spatial random variables in the instability problem) the analytical solution
providcs significant insight into the problem of material length estimation.

SURFACE INSTABILITY ANALYSIS - ANALYTICAL SOLUTION THROUGH
SYMBOLIC COMPUTATIONS BY COMPUTER

Surface instability analysis examines the problem of development of surface undulations
in a homogeneously strained body with tractionless surfaces [Biot, 1965, Hill and Hutchinson,
1975, Vardoulakis, 1984]. In a more general formulation [Benallal et al, 1989], conditions for the
so-called complementary instability at the boundary of a solid have been established. Since there
are not physical length quantities in the continuum formulation of the problem, the wavelength
of the surface instability mode remains arbitrarily short or long. The exponential decay beneath
the surface is also arbitrary since it depends on the surface wavelength variation. Analytical
solutions for surface instability are difficult to obtain. Usually, semi-analytical procedures are
used. The analytical procedure is brought up to a point beyond which the solution is sought
through numerical techniques. In (Vardoulakis, 1984] the instability criterion is formulated in
terms of the ratio of the strengths of the material in uniaxial extension and compression, and in
terms of an appropriate hardening parameter. Despite the significance of the relevant material
properties, the semi-analytical solution does not allow one to study the influence of material
properties on surface instability. In addition, the problem of material parameter evaluation
through surface instability analysis becomes difficult. However, as demonstrated herein, symbolic
computations by computer made the analytical solution of the problem possible. This together
with the graphics capabilities of the software used provide significant insight into the surface
instability problem, its implications, and the influence and significance of the miaterial parameters.



Before presenting the results from the symbolic computations we. present a formulation for
material micro-structure and the accompanied instability analysis. As shown below,E microstructure introduces a singular perturbation to the original surface instability problem, and
the single pe~rturbacibn paramecter is the internal length L. By setting 1 = 0 the analysis reduces
to classical surface instability analysis (Vardoulakids 1984]. Thus quantitative information aboutI skin effects can be obtained from such analysis, as compared to the "classical" surface instability
one.

I MICRO-STRUCTURE CONSIDERATIONS - ANALYTICAL SOLUTION THROUGH
SYM[BOLIC COMPUTATIONS BY COMPUTER

I As described in details in (Frantziskonis and Varioulakis, 1991] based on Mindlin's
theory for material micro-structure interesting surface effects under conditions of equilibrium canI be studied. T1he governing field equations for uniaxial plane deformations are considered. Then,
surface instability analysis shows non uniform deformattions; for a layer of specified distance from
the surface. Material micro-structure introduces a singular perturbation to the original Hill andI Hutchinson problem; here a single perturbation parameter is introduced and a "dispersion" haw
for the surface buckling load is obtained. It is found that surface degradation and skin effects can
be attributed to localized surface buckling instabilities. Experimental information on skin effects
can provide an estimation of the internal material length 1.

Mindlin's theory for microstructure is employed as a tool to explain important surfaceI related phenomena. In this context, a restricted continuum formulation is achieved. The theory
*1-formulated and the governing equations for uniaxial plane deformations are solved. The

solution is compared to classical surface instability analysis. It turns out that when 1=0 theI ~analysis reduces to the "classical" surface instability one Finally, a parameter analysis is
performed and the proper=tie hat influence surface instabiity are discussed.

Minidlin, 1964, formulated a general and extremely powerful theory for micro-structutreD~~in linear elasticity. If one is interested in surface effects unde conditions of equilibrium, specific
higher order terms of the general theory can be identified. Then a simplified theory results which
gives light to important surface related phenomena.

Consider a material volume V, with boundary surface S, with x~ i=1,2,3 the rectangularI components of the material position vector. The displacement of a material particle is u,.E Embedded in each material particle there is assumed to be a micro-volume V with

microi-displacement u!. The displacement gradient of the micro-medium is

Uý (1)

where a comma. denotes spatial derivative. T1he macro-strain is defined as usual

I U..1) (2)

I and also a relative deformation is

X) , U;4 -Vij (3)

3 and a micro-deformation gradient is



3 1Ci~I~,k~(4)

Utilizing the principle of virtual work, dynamic quantities dual to the above kinematic
ones are defined

where d, is the Cauchy stress, a. is the relative stress and pis double stress. The first index

of p,, designates the normal to the plane across which the component jk acts. For example P
is a double force per unit area (tensile or compressive) acting on a unit area on the plane
transverse to axis 1. The variational equation of motion is established (Frantziskonis and
Verdoulakis, 1991] and the twelve general equilibrium equations follow from it and can be
writm, in rate form

+3 (6)

Then the relative stress can be eliminated from the rate-equilibrium equations

31- 0i (8)

We define the equilibrium stress as

= = t.-j~(9)

The twelve traction boundary conditions are

- ~ (10)

j-k nipi,, Ga1)

where n, is the outward normal to the boundary surface, t is external force on the boundary andT.

is the boundary couple force.
A particular case of Mindlin's continuum is the so-called restricted continuum; i.e. a

micro-homogeneous material for which the macroscopic swain coincides with the
micro-deformation. This leads to a vanishing relative deformation rate, and, accordingly to a rate
of micro-deformation gradient that coincides with the strain-rate gradient.

The weak formulation of the balance law of linear momentum together with the
appropriate set of boundary conditions is achieved through the principle of virtual work. In

accordance with (Mindlin, 1964] the virtual work of internal forces SW') is defined, i.e.



tSk. +i.a (12)

This work equation postulates that the Cauchy stress is dual in energy to the macroscopic strain
and that the double stress is dual in energy to the gradient of the strain. Since there is no relative
deformation rate, the relative stress is workiess. The virtual strain and its gradients are computed
straight forward from a virtual displacement field.

With expression (12) for the local variation of the virtual internal work done by the stress,
we can compute the corresponding variation for a material volume V from the relation

3 - f/ v fWodV (13)

The surface S of the considered volume V is divided into two complementary parts S. andS.

such that on S. kinematic data whereas on S. static data are prescribed. In classical continua
these are constraints on displacements and tractions, respectively. Since second-grade models
introduce second strain gradients into the constitutive description, additional kinematic data must

be prescribed on S.. With the displacement already given in S., only its normal derivative with

respect to that boundary is unrestricted. This means that on S. the normal derivative of the

displacement may also be given; i.e.

S- w and Dvy-r on S. (14)

I where D=nM is the derivative in the direction normal to the (smooth) boundary with local unit

normal n.k

_ For the computation of the virtual work of external forces AW/) we have to consider not
only the surface tractions but also the work of the double forces. Following these considerations,
the virtual work of external forces becomes

AW *') f, (t1Sui 4RjD 3u). d (15)

where • and R8 are surface tractions and double forces, respectively. From the virtual work

equation AW'I =A-We we finally derive field equations

I0 (16)

and the corresponding boundary conditions (Frantziskonis and Vardoulalis, 1991].
In order to solve the boundary value problem defined above, additional equations relating

the stresses and double stresses to the strain, relative deformation and to the micro-deformation
gradient must be included. These are specific to the material and are the constitutive equations.

Surface Instabilities
Consider the problem depicted in figure 3. Starting from a stress-free state Co, the

structure is stressed uniaxially, under plain strain conditions. Let C be the resultant configuration.

In order to study the stability of continued equilibrium in C, the existence of non-homogeneous

•u, m m- 0ml a -~m M imlmlltum



infi mal transidon, C -+ C', is invesgated, with C being the refeence cpnfiguration. The
equilibrium in C is unsbl if an unbound o non-periodic solution oxsts. The equilibrium3tens or, can be wrium as a fnction of co-rotational sess 14

IV at, ye 1X 9 (17)

where 0 is the raze of rotation tens

3 b._ 1 A- ta.-) (18)

* -II

x L

3 FIG 3: Half Space Under Compremwie Load

For the plain-strain problem of figure 3 we assume incrementally linear constitutive equations
for the Cauchy stress-rate

Iil - 2p' el (1-sin#)p

t = 2p*t•+(1 +sin*)* (19)

where

1
ýj w - (Vi+V..v),v• - (20)

2U20



and p is the hydrostatic stress. The quantity 4 p" is the instantaneous tangent modulus and p is

the instantaneous shear modulus for shearing parallel to the coordinate axes, and * is the
mobilized friction angle. Material parameters p, p" and * are, in general, dependent on the
histories of deformation. The particular dependence is specified in the sequence. However, the
range of these parameters is important for specifying the solution for the surface instability
problem.

The constitutive equation for the double stress rate is written as

ll pjeg.. (21)

A dimensional analysis shows that I has dimension of length and as shown subsequently this
quantity is important for the surface instability problem.

Equilibrium can be expressed in terms of the equihibium stress rate

*2 +*, -ýn - 0

and %, -a, a being the external applied stresa, figure 3. From the two equilibrium equations (22)

by introducing a stream function TP such that

V WV2 -'Fn (23)

E we obtain

=L' 9,=mi P,1 , 1 +b ',1= C•, C - 0 (24)

where

b I (A + 1(1-e- fn)- E4Y k en)

X.-an(x/4+ý/), e4,--/4p*, Inlp/4p

IrL I/(•,+), n lQMc)(,IJH)2, '-(M,)2n)(UH)2

I Differential equation (24) is a singular pemtrbation of the original (resulting without
micro-structure considerations) one. Following (Biot, 1965] plane strain surface instabilities can

I be analyzed. The problem finally reduces to the solution of differential equation (25)

(1 n)a ='(nm) 2 1"÷(nmr)'c2 - 0 (25)



subject to the boundary conditions

(1 +n)a'-(mx)Pi2' = 0

U - '0

For solution of the above problem the expressions for p and p" must be specified. A one
parameter family of sawes-strain curves of die power law type is a•wnd thus the stress-strain

curve from a plain strain uniaxial cn is given by

3- (27)
; T.

where N is a constant between zero and one, . and To are arbitrary reference values of T andl

respectively, y is the second invariant of the devisor tensor of e-,, and % is th- second invariant

of the deviator tensor of er. For this kind of hardening function the shear moduli p and p" are
expresed as

P _ P - p (28)

The mobilized friction angle ý is expressed as

sin# - . (29)
1 +M(_I4,

where subscript c denotes value at failure and M is a constant related to the stength ratio
(uniaxial strength in tension over uniaxial strength in compression). The above problem is solved
through computer symbolic computations. The program <<Mathemadca>> [Wolfram Res., 1991]U was used and the whole solution procedure is shown in the appendix. In the appendix the total
mathematica session has been condensed for compactness. All the input data are given, however.
The print out of the uncondensed session is 20 pages long! The length and complication of theEI procedure as observed from the computer showed clearly why no solution had been obtained
before (without computer).

The final solution for the instability problem us obtained from mathemanca is as shown
3in the appendix

3 f-[8(1 .n)Myv .8(l +n) -n2] .+7[8(1 +n)M71 .4n .l6•N.8nN -

yf16N(1 -N) +4n nl -n2 -8nN-16NV -0 (30)I



and for the case where the internal length I =0-+n = 0 the formulation yields the final solution

for the classical surface instability analysis

y(1 ÷M,) (2V÷,wM -2'y" (-2. ") -2N2-o (31)

For the special case of non-frictional material (M -0) equation (31) reduces to

I +.2N9-WN(1-N)7-2N-0 (32)

With the above final form of the surface insmbt analysis (31)-(32) an oveall view of the
problem can be obtained.
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FIG 4a: Influence of N on Instability (f=O)

Figure 4a shows the influence of N on classical instability (/=n=0) for a fixed value of M=0.43.
I Here f denotes the left hand side of equation (31). We see clearly that as N increases the stain y

(garmma) at instability increases. The linear case (N=I) predicts very high srain at instability

(y-O.81). The limit case of N=O corresponds to rigid-plastic behavior and instability occurs as
soon as the plastic regime is reached. Figure 4b shows an animation of the previous figure where
the value of M changes. As can be seen from this figure and equation (31) parameter M
influences the stain at instability in a linear fashion. Note that in order to obtain figure 4b
(resolution is 80x80 in each figure) by semi-analytical means (Frantziskonis and Vardoulakis,
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FIG 4b: Animation of Fig=r 4a

_m ~1991] one would need to solve the problem 9WWOS=57,600 times (semi-analytic&Uy) or perform
57,600 finite element simulations of the problem!

•.For the surface insability analysis with microstruec= co sideraod the problem as rmom
_mdiffcult since: the value of I is not known appriori. However the final form of the solution

(equation (30)) allows us to investigate the influence of all the varables. Figure 5a shows the
I ~influence of exponent N on instability, for a specific value of W" (n-bar). Here, g designates the
w left hand side of equation (31). Figure 5b shows an animation of figure 5a where the value of

n changes.
I In order to study the effect of I on instability, we can look at the decay of fth strain field,

as shown in figure 6. Figure 6bo is an animaton of figure 6a where the value of n" changes. We
see that if we consider that splitting parallel to the surface will occur at the first peak of the
strain field from the five sufae then the distance to the: crack varies between I and 31. If

splittig is considered to occ-ur at that distance from the free surface that significant percen t of
S attenuation occurs, then splitting occurs at about 41 to 51. The wavelength of the instability

problem is difficult to specify, unless demidled experimnental data on different size specimens are
available. In a series of tests, for example, of varying height of specimen/h, it is well known that

I the stress/strain at instability decreases ash increases. Then, according to figure 5b, the value of"

Ia
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FIG 5a: Influence of N on Instability (f=O) for n-bar-I

decreases as h increases. Then, if we assume that very short specimens will develop a splitting
crack at distance I from the free surface, and very long ones at 31, by interpolation the value of
H for given specimen height h can be specified.

CONCLUSIONS

I Symbolic computations by computer have made the analytical solution of an instability
problem feasible. The solution, together with the graphics capabilities of the software used
provide significant insight into the problem of instability, surface (skin) effects and material
length estimation.

I
I
I
I
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ALPPENDIX

I thematica 2.0 for MS-DOS 386/7opyrght1988-91 Wolfram Research, Inc.

~1 (1):- DSolve((l + n)u''''(x] - mpi^2 b u''Ex) +
mpi-4 c u(x] -0, u(x], x] //Short C1

zOuti£2j//Short- {{u(x] ----------------------------------------------------------- ---+ >>

(mpi Sqrtfb - Sqrtfb + <<2>>]] x)/(<<2>>)
E'[2):- solution - u~x]/.%[Cll];

[3]:- solutioni - Cf2.3 Coefficient[solution,C[13] +
C,3, Coefficientfsolution,C[J) ;

S[4]:- eqnl - Dfsolutionl,{x,21} + mpi 2 solutionl
(5]:= eqn2 - (1 + n) D[solutionl,{x,3y) - mpiý2 p D~solutionl,x];
£6):- X-0;
ln(]:-til -Coefticient[Collect~eqnl,Cftljj,C(1yj;
3(8]:- t12 -CoefficientfCollect~eqnl,C(3)j,Cf3]];

1[9 ]: t21 - Coefficient(Collect~eqrn2,C11]),C[l)];
ln[1]:-t22 - CoefficientfCollectfeqn2,Cr3)),Cf3Jj;
[11]:- til t22 - t12 t21 //Short

2 2



2 mpi (b + Sqrtlb -<2>]
~ut(11j1//Short- -((mpi - --------------- «1»>) + <<I>:

In[12):- Simplify[%] //Short

u t[12]//Short- «1»>
Sn(13):- temp -Coefficient[Collect[%,mpi'5),mpiA5];
un[14]:- tempi tempCrI]);

In(15):- temp2 -temp((2]J;
3n[16]:= templ^2 - temp2ý2 //Short

*2 2
(b -Sqrt[b - 4 c-4 cr1]) «<I» (b +«<<>>- 2p)

ut(16]//Short --------------------------------- -«<1»

1u 32 (1 + n)3

jn[17]:- ExpandAllE[%]//Short

1-32 b Sqrt~b -4 c - 4 c nil
Out[17il//Short----------------------------- + «<23>>

I32 +96 n+ 96n 32 n
Inrl8J :- Simplify[%]//Short

*2 2 2
K Sqrt~b - 4 c - 4 c nil (-b + c + «<13»>> n p)

L [t181//Short- ----------- - ------ - -

2

In(19]:- finall-%;
In[20]:- final2 - tinall(C3il);'n[21]:- p - (lambda-2 + 1 + xil - x~iZ)/(xil +xi2);
n(22]:- b - ((lambda-2 + 1) (1 - x~i2) - (lambda-2 - 1) xii) /(xil + xi2);
ýn(23]:= c - lam~bda'2 (x12 - xi1)/(xii + xi2);
,Tn(24J:= final2//Short
n(251:- Simplify[%]//Short
ln(261:= final3 - %; s -m gamna-nn/(i + m gamma~nn); lambda -Sqrt((1+s)/(1-s)Dl
In(27]:- xi2 - 1/(2nn (1-s)); xii - gamma xi2;

n(28:- inal3//Short
ln(2]:-Simplify[%J//Short

In(3O]:- tezp3-%; temp4 - temp3[C3]1;
(n311l:- finalsolution - SiMplifytteMP4: i,/Short

Cutf31]//Short- -8 gamma 3- 8 gamma 2 an + «<15>> - 16 gamma nn2

.I n32]:- Collsct(%,gxamiu//Short
n[33] :- final~solution
ln(34]:- Collect(%,gamma)

2 3 nn nnl 2Iut[134]- n + gamma (-8 - 8 gamma m - 8 n - 8 gamma m n -n ) + 8 ni nnf +

2 2 nnl n~i 2I 16 nn + gamma (-8 gamma M - 4 n - 8 gamma m n -n -16 nnl -

2 2
8 n rnf) + gamma (4 n +n + 16 nn- 16nfl

In(35]l:- n - 0;
In(36):- %%

3 nn 2 nnl 2Eu tr36il- gamma (-8 - 8 gamma m) +gamma (-8 gamma m 16 nnl) + 16 nnl +

2rn gamma (16 nnl - 16 inn


