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Dynamic Terrain

Final Report

Absb-act

This Report is a summary of work in 1990 and 1991 by the staff of the IST
Visual Systems Laboratory on the subject of the realtime visualization of
dynamic terrain. Most existing visual training simulators have a static
terrain database. Real warfare involves extensive modification to the
terrain, as vehicles move about, leave tread marks and destroy ground
cover. Defensive emplacements and anti-tank obstacles are constructed;
drainage ditches are prepared. Water crossings require the reduction of
streambanks.

This Project is based upon the hypothesis that it is possible to construct
networked realtime simulators which incorporate useful simulations of
these phenomena, without markedly increasing the cost of the associated
computing equipment.

The work of this Project has consisted of examining the inherent
computational requirements of various phases of this simulation work,
looking for opportunities to simplify models without sacrificing plausible
behavior, and examining the implications of the new computational tasks
on the underlying architecture of the networked simulators.

1. Overview

The Dynamic Terrain Project grew from a previous IST study, funded in
1989 by PM-TRADE, to investigate the feasibility of increasing the realism of
graphical simulations. That study (Moshell 89) explored basic issues in the
underlying technology and served to chart the course of the following
research. In 1990, a specific group of features were selected for study.
These included

* earthworks (berms, ditches, craters)
* complex motions of rigid objects (trees, logs, rocks)
* vehicle track marks
* flowing water

These features were used as test cases to drive the investigation of
underlying graphical technology in four areas:

* visualization (generation of realistic polygon-based images)
" dynamics (making soil and water behave realistically)
" databases (representing a changing world in networked simulators)
" networking (communicating about changes to the database)

This report is organized in four major sections to cover the four technology
areas listed above. We have tried to keep this repnrt relatively brief, and tc
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provide extensive backup documentation in the form of appendices. Most of
these consist of internal reports that were written in the course of the
research, and published papers.

2. V'sualization

2.1 Goals.

There are a number of issues involved in visualizing terrain while it is
undergoing changes. Three salient issues are

* terrain profile generation during excavation
* polygon budget management
* animation versus simulation

The following sections address each of these issues and describe the
associated research.

2.2. Terrain Profile Generation

The following four software modules are all described in more detail in
Appendix C.

The Terrain Editor. The first need was for a convenient source of realistic
artificial terrain, so that subsequent experiments would not take place on a
simple flat grid. An interactive editor was built, which used the Silicon
Graphics Iris workstation and mouse. A 50 x 50 meter terrain patch was
rendered as a wireframe, and a red moving cursor indicates the mouse's
position. The left mouse button raised the terrain, the right lowered it.

Adjacent posts are raised by a spline extrapolation technique so as to
maintain continuity.

Car Animation (Surface Travel). As an intermediate step in building the
following (bulldozer) simulation, a simulated automobile was built to drive
over the terrain. Its motion is controlled by the mouse. This software
extracts the appropriate vehicle orientation and position from adjacent
elevation posts.

The Uniform.Mesh Bulldozer. The bulldozer is a combination of techniques
from the terrain editor and the moving car. The dozer blade serves as a
local forcing function to set the heights of the terrain. Excess terrain
volume which is "scraped off" by the moving blade is added to the moving
berm in front of the blade, which is then smoothed by the bidirectional
spline algorithm originally developed for the terrain editor.

Thc dozer simulation is purely kinematic. That is, no forces are computed.
The dozer's treads do not slip, and the soil does not slump when the dozer
leaves. Nevertheless the demonstration is surprisingly realistic.
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* The SIMNET-Terrain Bulldozer. The first dozer used only a uniform
rectangular terrain mesh. The SIMNET system uses a technique called
microterrain, whereby a large polygon is dissected into small triangular
patches when detailed relief is needed. In this demo, the initial terrain is
loaded from actual SIMNET terrain data. As the dozer moves into a terrain
quadrangle, the quad is dissected into small triangles which are
immediately edited by the moving blade.

2.3. Visualization Studies

An analytical study was performed to determine how many polygons would
be needed for the rendering of typical dynamic terrain scenes. Using the
MultiGen CAD tool, typical scenarios were constructed and examined. The
broad conclusion of the study was that dynamic terrain at a level of fidelity
appropriate for the CCTT (follow-on to SIMNET) system would require
approximately twice the polygon capacity of the basic CCIT terrain
requirement.

The study, with photographs, is provided in two papers which are attached

as Appendix D.

2.4 The ANIM Animation System

To support the convenient visualization of moving objects, the ANIM
software system was developed using the Silicon Graphics Iris. ANIM can
accept an ASCII file containing a script which describes the motions of any
number of polyhedral bodies, and produce a smooth animation. ANIM can
also accept certain physical descriptions of objects and cause them to move
according to the resulting constraints and forces.

This software has proven particularly useful in studies of physical
simulation (described in the next section) and also in a collateral PM-
TRADE sponsored project concerning visual databases. ANIM is described
by the document in Appendix E.

& Dynamics

3.1 Goals. A major component of the Dynamic Terrain project concerned
the acquisition of state-of-the-art knowledge in realtime physical modeling,
and its extension for specific problems. Within the last four years, a
substantial body of literature has developed on this subject. The goals for the
physical modeling component of this project were

" to explore the complexities of interactive physical modeling;
" to write software which implements some of the most promising

techniques, so they could be evaluated for use in realtime simulation;
" to develop new techniques and advance the state of the art when

deficiencies are discovered.
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* 3.2 Constraints. The intellectual kernel of most physical modeling work is
based on the concept of constraints. A constraint is a relationship between
two variables which must remain true. For instance, a tank is constrained
to remain on the ground by gravity. This fact could be represented by a
constraint of the form

z(tank) = z(terrain(x(tank), y(tank)))

which says that the tank's z coordinate (height) equals the z coordinate of
the terrain at the (x,y) location of the tank. This is an example of a one-way
constraint, because it is not logical to require that the terrain's height
change to match that of the tank. If some large force lifted the tank, the
terrain would not necessarily follow.

A two-way constraint would be exemplified by the relationship between a
tank and a tank recovery vehicle. Each exerts forces on the other, and the
proper depiction of motion would require that the equations of motion be
solved so that the acceleration of each object is determined by the sum of
forces on it.

A constraint resolution system is a software system which solves such
problems. It differs from a simple numerical integration of the differential
equations (DEs) in that the problem may not actually be expressed in DEs;
the constraint system may have to logically construct the DEs, depending
on the relationships between objects.

As part of the DT project in 1990, a comprehensive survey of constraint
mechanisms was prepared. We also reviewed the significant papers in the
literature on physical modeling for graphics. Summary papers from these
reviews are provided as Appendix F.

3.3. The PM Physical Modeling System. In conjunction with ANIM, a
practical constraint system was implemented which uses the concept of
restoring forces to model joints. For instance, a chain of links is modeled as
a set of rigid bodies coupled by springs. PM then integrates the equations of
motion and emits commands in the ANIM animation script language.

PM can deal with a variety of DT related simulations in a realistic fashion;
for instance, it would have no trouble with the motion of a towed object such
as a trailer or disabled vehicle. However, PM does not achieve realtime
performance with any computing platforms available at UCF in 1991. In
addition, the restoring forces model generates sets of DEs which are "stiff,
requiring large numbers of small integration steps. More sophisticated
mechanisms will be required before we can produce an acceptable realtime
simulation of, say, the falling elements of a simple bridge after demolition.

PM is described in Appendix G.
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3.4. Realtime Hydrology. In the summer of 1990, a paper by Mifler and Kass. appeared in the SigGRAPH Conference Proceedings which described a
technique for the realistic realtime animation of flowing water. This paper
inspired the production of a simulation on IST's Silicon Graphics
workstations. Several phenomena were modeled, including

" conservation of volume during downhill flow
* accumulation of lakes and pools during rainfall
" Archimedean flotation and wave generation
" transport of floating objects on flowing water

The data gathered in these experiments was useful in testing various
hypotheses about networked dynamic terrain simulations, as described in
the following sections. The details of the realtime hydrology project may be
found in Appendix H.

3.5 Soil Dynamics and Kinematics. The bulldozer described in section 2.2
above used only a crude model of the soil/blade interaction. Dr. John Farr of
the Army Engineers Waterways Experiment Station in Vicksburg, MI
provided a paper (Balovnev 63) with explicit models of dozer blade action.
These nonlinear differential equations have not yet been incorporated into
the dozer model, because of the need to solve database and networking
problems prior to finely detailed physical modeling.

However, a simpler model for soil dynamics has been prototyped. This
model assumes that a certain amount of soil slumping occurs in each time
period, and redistributes soil via a relaxation algorithm. This helps to
eliminate vertical edges of ditches and other artifacts which would not long
survive the passage of a dozer. The algorithm is describe in Appendix I.

Also, a conceptual study was done which proposed to deal with detached
bodies of soil such as those moved in a dump truck, or pushed by a dozer, as
discrete objects, and to organize them on the basis of a grammatical, or
syntax-structured paradigm. It was generally concluded that the resulting
data structures would be needlessly complex for the benefit gained, and
difficulties would arise in subsequently treating the ground as a
homogenous whole. This study is provided as Appendix J.

4. Database Issues

4.1 Goals

In order to support dynamic terrain on distributed simulators, basic
decisions must be made concerning the organization of the distributed
database. Solutions could range from simple "ad-hoc" techniques which are
really just patches to today's technology, to comprehensive reconsiderations
of how visual databases are stored.

0
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Because the present project was intended to develop basic technology, we
avoided the most obvious short term solutions, which would involve the

* transmission of microterrain patches to image generators of today's
architecture. This requires little more than engineering, and can probably
be made to work for training tasks in which the dynamic terrain's ultimate
configuration is all that matters.

For intimately interactive work such as the realtime construction of
earthworks (with multiple bulldozers working in teams) or for most
projected Virtual Environment applications (such as urban conflict, with
munitions blowing holes in walls, etc.) a higher order of realtime control
over the shared database is required.

In the previous phase of this project (1989), research was conducted into
Object Oriented Databases as a possible support environment for Dynamic
Terrain. Because we have continued to accumulate information about
object technology during the 1990-91 project, we report here on the overall
state of knowledge.

Section 4.3 then describes theoretical and experimental work on strategies

for distributing shared data across multiple simulators.

4.2. Object Oriented Databases (OODB)

The 1989 forerunner Project acquired the Gemstone OODB in order to
design a prototypical object oriented terrain database. However, Gemstone
proved a disappointment in that its typical response time to geographical
queries exceeded 30 seconds. Even in a lab setting this was too slow to use
for experimentation.

Using lessons learned in the construction of the Gemstone OODB, a second
terrain database was constructed in Srnalltalk. While still not a "realtime"
system, this database was successful in serving as a testbed to build class
hierarchies for terrain, develop editing concepts for regions and subclasses,
and learn enough to include OODB concepts in future terrain database
work.

In 1991 there has been a veritable explosion of progress in realtime object
oriented software. Industrial users of 00 languages are reporting that it is
now possible to achieve excellent performance for certain time-critical tasks
with specialized versions of Smalltalk. This will serve as a starting point for
future VSL work on Dynamic Terrain.

The current state of the art in 00 databases for Dynamic Terrain is
reported in Appendix K.
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4.A Distributed Terrain Databases. One of the critical qvestions that must be answered for distributed
simulation is how to handle redundant data. In SIMNET, all terrain data
is redundant. That is, each simulator has a complete and identical copy of
all the terrain data. However, such a strategy must be reexamined for use
with dynamic terrain. The correct solution will vary tremendously,
depending on the requirements.

Consider a single bulldozer, rearranging the soil. Its effects must be
transmitted to all other simulators, even though most of them may never
visit this location in their databases. If a sufficiently low update rate is
acceptable, this can be done as a "background task". Latencies of up to
several minutes may occur before the dozer simulator has produced a
sufficiently simplified polygonal model of the disturbed terrain to send it as
a microterrain packet to the other simulators.

If, however, two dozers are supposed to be working together in the classic
"T maneuver", whereby one digs a ditch and the other crosses the T to
remove the excess soil, both machines (and possibly several pairs of dozers)
must have realtime views of the shared changing terrain. It makes more
sense to move the soil and vehicle dynamics simulations to a common
platform and to send the results to the various visualization sites. This
could be done in several different ways.

One could use a single central soil processor, with sufficient power to
handle the entire disburbed region and all dozers. One could use several
processors, one per 'dozer, with each "owning" a patch of terrain centered
on the vehicle. Or one could cut the terrain into patches with various
degrees of gr-nularity, assigning a processor to each patch.

Theoretical studies were conducted of various options along this spectrum,
with predictions that the notion of granular dissection of the terrain
database would prove most efficient, in the sense of minimizing the number
of bytes per second which must cross the network.

The realtime experiments which were conducted were limited by the
number of workstations available. At the level of 4 computing platforms, the
overhead cost exceed the gains from parallelism, and so the hypothesis was
not confirmed. It will be necessary to simulate or build a larger network of
computing platforms before we can confirm the hypothesis for large 'n'.

Results of the analysis and experiments are provided in Appendix L.
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5. Networking Issues

. 5.1 Goals

Experiences with the SIMNET system inspired the Distributed Interactive
Simulation standards process (DIS 91), carried out by IST with Army
sponsorship and industry-wide participation. A great deal of thought and
effort was devoted to cleaning up and documenting the assumptions and
conventions of packet format for future distributed interactive simulations.

Two components were missing, with respect to dynamic terrain:

* no standards were created for terrain database formats or behaviors, and
* no account was made of object oriented concepts such as class
hierarchies, frameworks and protocols (in the data abstraction sense).

5.2 The Virtual Environment Realtime Network

In order to experiment with networkpd dynamic terrain simulation, the
Project developed a family of interna, prototypes of a communications
architecture. This system used DIS concepts but couched them in an object
oriented framework, and implemented the experiment on Unix
workstations. The principal DIS concept used was dead reckoning.

Three major versions of the VERN (Virtual Environment Realtime
* Network) were produced:

* An architectural prototype in Smalltalk,
* A synchronous deterministic system, in C++,
" An asynchronous, high performance nondeterministic system in C++.

By "deterministic", we mean that all the simulation frameworks on all
linked platforms were running in a common timing structure. Thus, from
the same starting conditions, two simulations would always come out the
same way. The synchronous version was built first in the expectation that it
could serve as an analytical testbed for experiments in distributed physics.

In the asynchronous nondeterministic version, each local simulation ran
as fast as possible, using system (realtime) clocks to control the integration
process in the models. Consequently, because of the nature of Ethernet's
collision mechanism and Unix timing, two runs will in general produce
slightly different results. This is also the case with SIMNET.

With man-in-the-loop simulation, realtime responsiveness is essential, and
small errors in integration are of less important. A tank driver doesn't
know or care that his model would ideally have had him 100m further
North than he is after an hour's drive; he will correct his course as a
natural part of driving. Thus the asynchronous version of VERN is more
likely to be used in future training simulation experiments.
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* The details of VERN's versions and history are provided in Appendix M.

6. Summary

6.1 Accomplishments

The Dynamic Terrain Project has explored the essential technologies for
simulating and visualizing realtime dynamic terrain operations. These
included

" visualization
* physical modeling

- rigid bodies
- soil manipulation
- hydrology

" database organization
" communications protocols

In each of these areas, existing literature and software solutions were
investigated; hypotheses were put forward; prototypes were constructed,
and results were analyzed. We can now describe with some confidence the
components of a working dynamic terrain simulation at some specified
level of fidelity, and project the computing power required.

We did not construct an integrated set of demonstrations which
incorporated all these components into a single system. The limitations of
Unix workstations "playing the role or realtime simulators proved to be too
severe to make such a demonstration of practical value. However, the
individual demonstrations of dynamic terrain components have proven
very valuable for concept formation and for demonstrating feasibility.

A substantial amount of technology transfer into the new world of Virtual
Environments has occurred, and will benefit the entire simulation industry
in future years. Specific examples of this include the VERN system and the
constraint-based physical modeling studies, which have led to two Ph.D
dissertations and numerous Masters' theses and publications.

6.2 Recommendations for Future Work

Two diverging streams of work suggest themselves:

e further work on basic technologies for Dynamic Terrain, particularly the
problems of database organization. Our simulation studies on novel
partitioning strategies were inconclusive due to the small number of
workstations employed.

* construction of a testbed leading to a deployable DT simulation. using a
* "strap-on" system which provides high fidelity realtime terrain viewing
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only to the crews who need it, and slower updates to the remaining DIS. players.

Both of these avenues have been proposed to PM-TRADE as continuation
work in 1992-94. A preponderance of the effort in the proposal is directed
toward the testbed, as a component in the BDS-D Advanced Technology
Transition Demonstration.
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Terrain Editor

Program description

The program demonstrates the idea of using Cardinal splines to represent terrain. A
piece of terrain is stored in a two dimensional array in the program, and displayed in the
three dimensional space on the screen. Using different combinations of mouse buttons, a

new piece of terrain can be created, modified by adding hills and valleys on it. or saved
in a disk file. The program also provides a three dimensional view of terrain. The image
can be zoomed, shaded and rotated.

To run the program:

1) type "terrain < imagefile name>" to run the demo. If the file does not exist, a new
terrain file is created.

2) Mouse buttons:
left button -- show the red crosshair cursor;

0 middle button -- rotate the terrain image*;

right button -- shade the terrain image;
left & middle buttons -- pull up a hill where the red crosshair is;
left & right buttons -- push down a valley where the red crosshair is;

middle & right buttons -- rotate the shaded terrain image*;

* The direction of rotation is controlled by the mouse position in the window.

3) Keys:
"z" key -- amplify the terrain image;
"x" key -- shrink the terrain image;
"w" key -- save the terrain image;

ESC key -- quit;

Source Code iles

Project #: VSL91.6
Directory: /sgl/files/home/student/lix/demos/bulldozer

source file: data.h terrain.c mkterrain.c shading.c sub.c



Car Animation

Program description

The program simulates a vehicle driving on a piece of terrain. A piece of terrain is
stored in a two dimensional array in the program, and displayed in the three dimensional
space on the screen. By different mouse buttons, the vehicle can be turned right or left,

driven forwards, backwards, or stopped. The velocity of the vehicle can also be changed
by pressing keys. Simple physical properties of moving vehicles (i.e. the gravity, the
friction and the air resistance) are also modelled in the program. The acceleration is
gained by hitting "a". The friction is proportional to the velocity of the vehicle, and the

air resistance is proportional to the square of the velocity.

To run the program:

1) type "motion < imagefile name>" to run the demo. If the file does not exist, a flat

terrain is used.

2) Mouse buttons:

left button -- turn the vehicle left;

right button -- turn the vehicle right;

middle button -- drive, reverse or stop the vehicle;

3) Keys:

"a" key -- increase the speed;
"s" key -- decrease the speed;

ESC key -- quit;

Source Code files

Project #: VSL91.5
Directory: /sgl/files/home/student/lix/demos/car

source file: data.h func.h main.c vehicle.c car.c mkterrain.c shading.c sub.c



Bulldozer

Program description

The program combines the ideas of the terrain editor and the car animation to
simulate a bulldozer driving on and modifying a piece of terrain. By different mouse
buttons, the bulldozer can be turned right or left, driven forwards, backwards, or stopped.
Its blade can be raised and lowered by pressing keys. When the bulldozer is driving
forwards with its blade down, it digs a trench and piles dirt to the front and sides of the
blade. The model is kinematic, so the treads will not slip, dirt will not spill back down
into the trench, and the bulldozer is not limited in the amount of earth it can move. The
volume of soil is not conserved, although it looks like it is.

To run the program:

1) type "motion < imagefile name>" to run the demo. If the file does not exist, a new
terrain file is created.

2) Mouse buttons:
left button -- turn the vehicle left;

right button -- turn the vehicle right;
middle button -- drive, reverse or stop the vehicle;

3) Keys:

"a" key -- increase the speed;
"s" key decrease the speed;

"u" key -- raise up the blade;
"d" key -- lower down the blade;
"r" key -- set the blade to the normal position;
"w" key -- save the terrain image;

ESC key -- quit;

Source Code files

Project #: VSL91.6
Directory: /sgl/files/home/student/Iix/demos/bulldozer
source file: data.h func.h motion.c vehicle.c bulldozer.c mkterrain.c shading.c sub.c



SIMNET Bulldozer

Program Description

The program combines the ideas of the bulldozer simulation with realistic
SIMNET terrain. The 125 meter basic terrain square polygons are broken into two
triangles. When the dozer enters one of these triangles, it is cut into 5 meter
triangles, forming microterrain. No terrain relaxation is performed, and so this
algorithm would be impractical in a real simulator, but using only wireframe
rendering its speed is acceptable for demos. Depending on the workstation the
simulation runs at 1 to 5 frames/second, until a substantial number of 125 m
polygons have been broken up.

To run the program:

1) type "motion < imagefile name>" to run the demo. If the image file does not
exist, a flat terrain is used.

2) Mouse buttons:

left button -- turn the vehicle left
right button -- turn the vehicle right
middle button -- drive, reverse or stop the vehicle

3) Keys:

"a" key - increase the speed (actually the step size)
"s" key -- decrease the speed
"u" key -- raise the blade
"d" key -- lower the blade
"r" key -- set the blade to neutral position
"w" key -- save the terrain image

Source Code Files:

<Micheline or Henry to provide>
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Abac

Realtime networked graphical simulators such as SIMNET [Johnson 87]
are of intense current interest, both for military training and for the larger
market of commercial, entertainment and educational applications
currently being called "Virtual Reality" [Furness 881. However, no existing
realtime simulation supports a truly interactive world. In particular, the
terrain (soil, water and vegetation) is nearly or completely immutable in
today's simulators. In a word, the terrain is not dynamic

This paper contains an analysis of the cost of visually displaying dynamic
terrain at a level of fidelity adequate for many military training purposes,
and for Virtual Reality as it is likely to evolve in the 1990's. The display of
dynamic terrain seems to be generally within the capabilities of moderate-
cost visual systems that can be built by the mid-90's. Exceptions are noted as

* they arise in the text.

This paper addresses only two of the problems raised by dynamic terrain:
the polygon and texture requirements for visualization. Other papers from
this project will address the issues of realtime physical simulation (e. g. of
hydrology), database representation and network protocols for dynamic
terrain.

This work was sponsored by the U. S. Army's Project Manager for Training
Devices (PM-TRADE). However, all opinions are solely those of the authors.

Introduction

Dynamic Terrain (DT) denotes the capability, within a realtime graphical
simulation, of rearranging the terrain surface. DT essentially involves
allowing the simulation's user to dig holes in the terrain database at any
freely chosen location, with the expectation that the simulated world will
behave appropriately in response. Other broadly distributed unplanned
modifiable features such as vehicle track marks, vegetation damage and
hydrology are often included in discussions of DT, since they require
similar data structures and are often the consequence of realtime digging.

This paper contains an analysis of the cost of visually displaying dynamic
terrain at a level of fidelity adequate for combined arms tactical training
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and combat development. We treat only briefly the related issues of how the
changes to terrain might be shared among networked simulators, and will

* refer to other papers addressing these problems.

The broad conclusions of our study are:

a. An acceptable display for engineer, infantry, armor and artillary
purposes is achievable by the mid-90's on simulators having
approximately twice the graphical performance of current SIMNET
units; but their visual systems will be substantially different from
those in SIMNET.

b. Aircraft simulators of SIMNET/AirNet quality, already regarded
as unacceptably crude by much of the aviation community, will be
unable to render dynamic terrain in other than a token fashion.
Training utility of such a system will have to be assessed.

c. The minimal DT display system for a ground-based viewpoint will
require an image generator capable of displaying 2000 to 4000
polygons at 15 frames/second per channel, equipped with appropriate
database access and control algorithms in the front-end geometry
processor. The number of required channels is determined by the
vehicle being simulated.

CONTENTS

. 1. Goals of the Study
2. Aggregated Features and Achievable Densities
3. Micro-Terrain
4. Realtime Terrain Relaxation
5. Networking and Distributed Databases
6. Virtual Reality and Dynamic Terrain
7. Conclusions

1. Goals of the Study

No clear and comprehensive statement of the technical requirements for
Dynamic Terrain (DT) in distributed interactive simulation (DIS) are
known to the authors. Our working informal list of desirable features is
described below.

NOTE: Not all these features are achievable with today's technology. The

limiting factors are described in the subsequent text.

1. SOIL.

a. At every location on the terrain database, attributes describing the
vegetation cover, soil type, condition and moisture content should be
recoverable. These attributes should be modifiable by simulated
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events (e.g. traffic, precipitation) during a simulation, when
appropriate. A specific example is that tread marks of passing
vehicles should appear if soil conditions would permit.

b. The visual appearance of the terrain (its surface texture) should
change to reflect the current values of the attributes described above.
For instance, wet soil should usually appear darker than dry soil of
the same type.

c. The terrain elevation profile should be modifiable to represent the
effects of earthworks construction and breaching, explosions and
weathering. The modified elevation profile becomes "ground truth"
for all simulation elements, and can be used as concealment,
protective structures, roadways etc.

d. Soil should slump to its angle of repose, according to its specific
characteristics (sand, gravel, mud, stone, etc).

2. WATER.

a. Water flowing across the terrain or standing in low places should
be represented in a visually realistic fashion.

b. Bodies of water should behave realistically; seeking the lowest
level, being absorbed into soils of certain types, evaporating, carrying

* floating objects along.

c. Precipitation should be supported, and should result in the
development of drainage patterns as required by the topography.

3. OBJECTS.

Discrete rigid objects such as boulders, logs and reinforced concrete
bridge elements should be representable in a physically realistic
fashion; i. e.

a. Objects should obey Newtonian physics. When unsupported, they
should fall.

b. Objects should be capable of being pushed by a simulated bulldozer
or other prime mover, if not too massive, and leave drag-marks on
the ground. A pushed object should also be able to push other objects
it encounters.

c. Objects should break into pieces when attacked with appropriate
explosives or ordnance. The resulting pieces should obey a) and b)
above.
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2. Aggregated Features and Achievable Densities

* The display of soil, water and objects in a visual simulator is primarily
limited by the number of polygons that can be rendered per channel, per
frame. As a starting point, we will evaluate the polygon budget of one
channel of a hypothetical image generator named MARK 1 vis-a-vis some
simple DT features.

The MARK l's overall capabilities closely mirror those of the basic SIMNET
MIA1 tank simulator system, while not exactly matching any of the several
SIMNET versions in existence. We will then explore the consequences of
doubling or quadrupling the MARK l's capacity to produce MARK 2.

DT Features. Let us start with the desired results, and work backward to
the means of achieving them. A short list of interesting and desirable local
features would include craters, emplacements (short ditches, with or
without berms) and track marks. Other obstacles such as tank ditches can
be considered once some basic ideas are established.

By "aggregated features" we mean features constructed from the
smallest number of polygons, rather than more realistic micro-
terrain (typically 1 sq m patches) produced by the DT bulldozer. The
following section discusses the relationship between microterrain
and aggregated features.

The following sketches show that "cheap" and "nice" (irregular) versions of
emplacements and craters can be built with between 10 and 50 polygons per
feature. These features will of necessity be somewhat cartoon-like. Their
purpose in DIS is to obstruct and conceal, not to edify.

0
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Perspective View Plan View

,/125 m terrain quad

Simple depression without berm
9 polygons /

8 sided irregular crater - 25 polygons.

Figure 1: Simple Polygonal Depressions and Craters

Tread marks will be considered in two forms: straight line travel, and
maneuvering. Straight (or essentially straight) travel results in relatively
long segments that can be represented by a single pair of textured polygons.
Maneuver obviously requires more polygons, as the tank changes course.
Polygon counting will require some understanding of MARK 1
architecture.

Load Modules and Terrain. MARK 1 channels provide 1000 polygons per
frame, at 15 frames/sec. In fact, some spare capacity is afforded by the fact
that MARK l's channels are paired, and that one of the channels (the
"primary") can display in excess of 1000 polygons, with the consequence
that other channel's scene is correspondingly degraded. This capability is
best used as a margin for error, in case many movable models crowd
together or some complex static features are inadvertantly sited close
together during database construction.

The basic strategy for MARK 1 database construction is to use 300 of these
polygons for terrain, 400 for static models ("culture") and 400 for moving
models. Thus, the database cannot be so densely built that more than 300
terrain polygons are visible from any accessible viewpoint and viewing
direction, or (when culture and moving models are present' the channel's
capacity will be exceeded.
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A standard view window is a 20 degree wide by 7.5 degree high field of view,
and looks out onto a Local Area of nominal radius 3.5 km. The visible
terrain (resident in the Local Area Memory of the IG) consists of an array
of 16 x 16 Load Modules of 0.5 sq km each.

One Load Module (LM) normally consists of a 4 x 4 regular array of
polygons, which may be occupied by squares or triangles (depending on the
irregularity of the surface). There are at most 32 of these 125 m polygons in
a LM. Coplanar polygons may be combined in a process called terrain
relaxation, and so there may be as few as 1 polygon in a LM.

125 m

Local Area = 16 x 16 LM One LM -0.5 km 2

<= 32 polygons

Figure 2: Load Modules

Since the viewpoint is always in the approximate center of the Local Area,
the cone of vision subtends an area approximately equivalent to 9 Load
Modules or at most 288 terrain polygons. This fits, barely, within the 300
polygon limit.

The Next Generation. Let us imagine an improved image generator, in
which 600, rather than 300 polygons were available for terrain. We now
have 300 additional polygons available for dynamic terrain features. How
densely would this allow us to populate the terrain with tread marks,
craters, and emplacements?

In a MARK 1 viewing channel there are 128 distinct horizontal lines of
imagery. This low vertical resolution is justfied by the fact *hat the viewing
blocks (periscopes) of the MiAl tank are rather thin horizontal slits.
At a range of 1 kin, a 2 m high berm or crater wall subtends 0.11 degrees,
and is two pixels high; essentially indistinguishable.

We might agree to not display dynamic terrain features at ranges
greater than 1 km. However, if a greater vertical resolution were
used, we might instead have to use level-of-detail control, and cause
remote objects to transition to simpler polygonal models. This subject
will be discussed in Section 4 below.
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Note: Vehicles can still get "hull down" in a DT emplacement or obstacle, at
whatever range from the viewer. The vehicle will sense the emplacement's
bottom and get its elevation from it. From a range of>1 km, the vehicle will
seem to be sinking into the larger terrain polygon (because the DT feature
will be invisible). If the hole is deep enough the vehicle will disappear, as it
would in a fully rendered hole.

Figure 3: Tank in Defilade

Under this 1 km range limiting assumption, the 20 degree viewing cone
now contains only 0.18 square KM of dynamic terrain.The available 300
polygons thus corresponds to a DT polygon density of 300*(1/.18) = 1667
polygons per square km.

Tread Marks. We assume that the MARK 1 IG is capable of prioritizing
polygons, so that coplanar polygons do not confuse the depth buffer. Tread
marks will be represented by a sequence of rectangular textured polygons,
representing the disturbed surface of the soil.

Traveling in straight lines, a tank would cross between 1 and 8 terrain. polygons in the "best case" (parallel to the grid and within one 125 m strip of
polygons), generating 2 to 16 track-mark polygons. The worst case ("against
the grain", diagonally across a LM) would generate 28 track-mark polygons
per load module.

Best Case: 2-16 p01ys Worst Case.- 28 polys

Figure 4: Tracks across load modules.

If the tank maneuvers once per five tank-lengths (40 m), or (say) 12
maneuvers per half kilometer (one Load Module), and if half of the 40-meter
travel segments crossed between two of the 125-m quads, then we would
generate on the average 12"(1.5)'2 = 36 polygons per load module.

Thus, the practicat range of polygon production is perhaps 12 to 36 polygons
O per load module, or 24 to 72 polygons per km of linear travel. If tank tracks
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were the only DT feature imposed on terrain, between 23 and 69 tanks couid
cross through a 1 sq km area before the available polygon count per km. (1667) was exceeded.

When this occurs (or when polygons are needed for other DT features) a
garbage collection procedure will be necessary to reclaim the oldest tread
mark polygons.

Craters and Emplacements. Craters and emplacements need both a berm
or spoil bank above the grade, and a bottom below grade. Minimal
triangular craters can be drawn with eleven polygons in place of the
original quadrilateral; more realistically irregular craters would require 15
to 50 polygons. A simple square emplacement without a berm consumes
nine polygons. (See Figure 1 above).

The permissible density of craters and emplacements, again with 1667
polygons/sq km, is now between 33 and 128 per sq km. This value is almost
independent of the actual size of the craters or emplacements, as long as
the features are substantially smaller than the 125 m terrain polygons.

Anti-Tank Ditches. A ditch with berm(s) can be considered as a series of
emplacements, for polygon counting purposes. Each straight segment of
ditch of length less than 125 meters counts as one emplacement. Thus, an
anti-tank ditch which zig-zags every 30 m from left to right across the field
of view at a range of 0.5 km would be equivalent to six emplacements or 78. polygons.

Significance. Now it may be remarked that 33 to 128 craters per sq km is a
very sparse population. Indeed, they must remain somewhat dispersed
because we have only assumed 300 new DT polygons, and so at most six 50-
polygon craters could fall within the field of view without overloading the

Two responses suggest themselves.

* First, that's six more DT features than we have now in SIMNET.

* Second, we can actually expect not an increase of 300, but 1000 or
more new polygons per channel. Computer graphics capabilities
have continued to double for a given price every two to three years
since SIMNET was produced.

* Third, we have not yet proposed multiple levels of detail. If we allow
high fidelity (50-polygon) craters to be replaced by crude (20-polygon)
craters at 0.5 km range, another doubling in capacity is possible.
Tread marks are likely to become invisible at much less than 0.5 km
becaiic. they lack vertical relief.
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Thus, we can have six complex craters AND 20 emplacements AND the
tread marks of around 60 tanks in the field of view at once. Or we can spend
our entire budget on anti-tank ditches, and have five or more zigzag ditches
between the viewpoint and the 1 km "complexity horizon". Numerous
scenarios suggest themselves.

Some Samples. The following three pictures show some typical polygon
densities. A more comprehensive set of pictures is found in a separate
report [Moshell 91]. First, we show a simple terrain scene, rendered at
what we might call MARK 2 resolution - that is, a 9 by 40 degree field of
view in 250 x 930 pixels. This yields an average angular pixel density of 2.25
arc-minutes per pixel, which according to [Bess 90] is an appropriate
density for a tank commander's unmagnified viewing block. The scene
contains about 330 terrain polygons and four tanks, of 226 polygons each.
Only the nearest tank needs to be rendered at high level of detail.

01

Figure 5: Background Terrain, 330 polygons.

Now let us add some craters, berms and tread marks. Specifically, we add
the following features to form Figure 6:
Feature Count Polysifeature Total Polys
Berm 6 12 72
Crater 6 12 72
Track 2 56 112
Total Dyn. Terrain 256

The resulting scene is shown in Figure 6. The count of polygons in the
tracks includes "generated" polygons which were necessary when the
tracks crossed from one terrain poly to another, but invisible in the scene.
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The six craters are difficult to locate since their range from the viewe,-
varies from a few tens of meters to 1/2 km.

A triangular tree, 25m tall, was placed in the upper central portion of the
scene at a range of 1 km to aid the viewer in locating the most remote
feature cluster, which is a tank parked behind a berm. The yellow dot (left
and down from the tree) is a muzzle flash from the tank. Even though Oi-
scene has over twice the vertical resolution of the MARK 1 system, it seems
clear that a non-moving tank is nearly undetectible and definitely unidenti-
fiable at that range.

Figure 6: Cheap Dynamic Terrain, 256 DT Polygons

To explore a higher-fidelity solution in Figure 7, we now quadruple the
polygon count to approximately 1000 polygons for dynamic terrain feature -.
as summerized in the following table.
Feature Count Polys/feature Total Polys
Berm 10 56 560
Crater 6 48 288
Track 2 101 202
Total Dyn. Terrain 1050

In this scene, we see that the tread marks of the nearest tank bend more
often than in Figure 6 and that the berms no longer have an angular
appearance. The difference in the appearance of the craters is almost
unnoticeable.
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The on-screen display of these images, on the Silicon Graphics computer, is
somewhat crisper than these photographs. In Figure 7 as seen on screen, a
smaller berm is visible to the left of the remote (1 kin) berm concealing a
tank. According to Johnson's Criteria [Biberman 73), the remote tank lies
between the maximum feasible detection range (3300m) for this pixel
resolution and the reliable recognition range (710m).

Figure 7: Better Dynamic Terrain, 1050 DT Polygons

The Problem of Aviation. Aircraft can see far more than 0.18 square km of
terrain, of course. Let us examine the polygon load on a SIMNET viewpoint
in an elevated location. In order to conservatively generate a lower bound on
the polygon count, we will continue to assume only a 7.5 by 20 degree field of
view. Any reasonable aircraft simulator would need a much larger FOV
per channel.

0
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Figure 8: Different Lookdown Angles and Ground Coverage

At I km altitude, a 7.5 x 20 degree field of view sees the following area of

level terrain, at various look-down angles as computed using the
perspective projection:

View Angle Area of Terrain

09, straight down .05 sq km
20 -2 from vertical .06 sq km
40 -0 from vertical .12 sq km
5i' from vertical .22 sq km

60-0 from vertical .55 sq km
65 -2 from vertical 1.03 sq km; far edge at 2.9 km range
70 -0 frorm vertical 2.34 sq km; range is 2.7 to 4.5 km
75 from vertical 7.85 sq km; range is 3.7 to 7.2 km

It is apparent that as the view direction approaches the 3.5 km "horizon", or
range of the load module, the viewing area exceeds I sq km. Viewing over 1

sq km of terrain at once is a five-fold increase in polygon count over our
previous ground-based and range-limited assumptions. In addition, the
basic terrain skin itself now requires a five-fold increase in polygons.

Our assumption allowing DT features to become invisible at I km range is
also suspect now, because we're looking down on them. The vertical angle
subtended is proportional to the front-to-back depth of the feature, not just to
its height.

The saving grace is that we are at a minimum of 1 km range from any
static or moving models and can use coarser levels of detail to recover
polygons from them. Users of aviation simulators also favor rapid update
rates (e. g. 30 hz and up) rather than (or in addition to) high polygon
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density, and so the entire design process tends to diverge from that for
ground based simualators.

Our tentative conclusion is that the provision of DT for aviation simulators
will require subterfuge, and will be less visually convincing than for
ground applications. A single "footprint" semi-transparent polygon
containing a texture map appropriate to disturbed terrain, for example,
might be substituted for a 50-polygon emplacement.

This would provide some degree of cover and concealment if the underlying
elevation profile allowed a tank to bury itself in the textured polygon, and yet
would allow the tank to be partially visible when the aircraft passed
overhead. This cover-up solution would be less acceptable for partially
defiladed vehicles; their profiles would be totally exposed to aviation.

In terms of damage assessment after air strikes, a texture map of damage
on a runway surface is probably an adequate cue.

Clearly some experimentation will be required to make the best of a
strained situation. The authors do not assert that fully satisfactory aviation-
viewed DT can be provided within the cost domain of current simulation
projects such as the Close Combat Tactical Trainer (CCTT), a SIMNET
follow-on for the mid-90's.

Back on the Ground. Even when limited to grounded viewpoints, there are
other demands for increased polygon count. One obvious need is for broader
fields of view. For instance a six-monitor simulation of tank vision blocks
would require at least 40 degrees of width in the FOV's, and possibly as
much as 60 degrees. This implies a doubling or tripling of polygon count,
compared to SIMNET.

Let us now consider one major competitor for polygons within the dynamic
terrain arena: micro-terrain - the immediate output of the bulldozer.

3. Micro-Terrain

Consider the cost of the profligate use of micro-terrain. Again using a 20
degree wide ground-based field of view as a conservative estimation tool, we
discover that if terrain is dissected into 1 meter quadrangles, that within a
range of 42 meters, the viewing cone already contains over 300 polygons.
Looking all the way to the edge of the current 125 m grid sector can include
as many as 2845 square meters.

The only possible conclusion is that the use of micro-terrain must be
severely limited. In a special purpose simulator such as a bulldozer, one
can imagine the use of one or a few visual channels with 3000 polygons,
almost entirely devoted to terrain; but clearly this cannot be done for all of
the networked simulators. Other priorities (such as the rendering of
moving enemy vehicles) must also be met.
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It will be necessary to develop techniques which use micro-terrain only at
the precise points and times where soil is actively changing shape; and to
combine this terrain into aggregated features as quickly as possible. The
following section describes algorithms that may prove useful to perform
this task.

Finally, it should be remarked that most viewing platforms do not need to
see micro-terrain at all. Only the simulators actually used by engineers, or
perhaps some of the combat elements watching engineers working under
fire, need to follow the second-by-second development of the shape of a ditch
or berm.

For the USERS of dynamic terrain (e. g. the combat elements which will
follow the engineers through a breach) it suffices to see and interact with
the resulting aggregated features. Let us now consider how these might be
produced on the basis of primary microterrain.

4. Realtime Terrain Relaxation

How can micro-terrain be transformed into aggregated terrain in a
realtime fashion, without producing unacceptable visual anomalies? We
regard the instantaneous substitution of a simple, smooth crater wall for a
lumpy piece of micro-terrain as unsatisfactory. Let us look for some
techniques that might help.

Continuous Levels of Terrain Detail. In most image generators, the polygon
burden of moving and static models is managed by maintaining multiple
data structures for the same object, called "levels of detail (LOD)". At a
given viewing range, transparency fading is used to replace a complex
model by a simpler one, thus conserving polygons.

LOD for terrain could be handled similarly, but some problems arise. A
transition between two terrain LOD's can modify the apparent elevation of a
ridge line, for instance, revealing an object behind the ridge. Several
studies (Chen 87, Ferguson 90, Scarlatos 90) have explored methods which
minimize the changes to significant features (ridge lines and ,'alleys) and
which match edges and vertices between LODs.

If a "raw" terrain database can be processed, either beforehand or at
runtime, to produce two or more LODs with these properties, then a
realtime transition is possible. At a certain range, the image generator
simply begins to draw polygons from the less dense LOD database.

If the elevation information is interpolated for polygons on the fringe of the
transition area, the displayed polygons seem to rise or fall slightly as the
viewpoint approaches; but the transition is usually done at such a range
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that the movement is invisible. Both General Electric and Evans and
Sutherland now offer products incorporating these concepts.

Because all LODs are designed in a coherent edge-matched fashion, the
transition does not produce gaps in the viewed image. The production of a
hierarchical database appropriate for continuous LOD display is usually
considered as an off-line operation. However, Evans and Sutherland assert
that their ESIG-4000 can perform this task at runtime.

Terrain Relaxation. This term normally refers to the process of seeking, in
a large polygonal terrain database, polygons of sufficiently similar slope
and elevation that they may be merged into a single polygon. However, we
may generalize the term to refer to the general problem of re-polygonizing
terrain to preserve its essential shape while lowering the poly count.

The problem of transforming microterrain into aggregated features is
clearly similar to the problem of producing coarse LODS from fine detail
without seriously modifying the significant attributes, such as ridgelines.
Would it be possible to design a realtime algorithm which transforms
micro-terrain into efficient aggregated features? We believe so, for the
following reasons:

* We know which polygons were recently disturbed. Only they and
their adjacent polygons need to be considered, not the entire database.

9 Only those polygons at or beyond the transition range (40 m in the
above analysis) and still visible in the viewing direction, are urgently
in need of relaxation. Disturbed polygons left behind by the dozer can
be dealt with opportunistically, at a lower priority.

* CCTT and subsequent systems will use textured polygons for all
terrain. Texture obscures fine detail, and thus the relaxation of the
terrain in front of the immediate ridgeline/horizon is likely to either
be unobtrusive, or to resemble normal slumping of the soil.

Experiments in this direction will be carried out during the next phase of
research into Dynamic Terrain at the Institute for Simulation and
Training. We are confident that micro-terrain can be smoothly combined
with aggregated features in realtime DT displays.

5. Networking and Distributed Databases

Separate papers will address the basic problems raised by dynamic terrain
databases for the networking of simulators, and will describe theoretical
and experimental studies which we have conducted. Here we wish to touch
briefly on an interesting question: just how intrinisically difficult will it be
to propagate the results of a dynamic terrain operation across a DIS
system? We will consider both soil and water.

0
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Soil. As a first data point, we have measured the performance of our
Virtual Bulldozer operating on one-meter polygonal terrain. The bulldozer
modifies terrain elevation values in two fashions:

* by "clipping" a post when the blade crosses it, and

* by spillover, when the earth's volume is redistributed.

The dozer blade clips two to five elevation posts per simulation frame. The
amount of spillover is dependent on the terrain algorithm used; our present
spline-based algorithm (approximately volume-conserving) results in an
average of 21 elevation value changes per frame (including the clipping),
when the bulldozer is run through 1000 frames of typical earthmoving
activity.

Now if remote simulators were maintaining micro-terrain, only the dozer's
position actually need be transmitted through the net; the local computers
could recompute the micro-terrain profile by repeating the original spline
computation.

However, if increased realism (soil moisture and classification, physical
blade models) were used, special computing power is more likely to be
needed for the dozer simulator. Under these circumstances it makes more
sense to transmit the terrain profile, than to re-compute the physical model
at all sites.

Most combat elements don't need to know about micro-terrain. However, a
pair of dozers working together would need to share the fine structure of the
terrain and would thus have to exchange information at about the rate
indicated here. If we assume an acceptable worst case of 30 changed
elevation posts per frame and transmit only elevation changes (e.g. in cm),
a DIS packet with around 30 data bytes would suffice to express 30 changes
of up to ± 1.28 m per frame. This is the same order of magnitude as the
traffic in vehicle appearance packets generated by a SIMNET tank.

Water. Soil has one desirable property: it doesn't move much unless you
push it. Water, however, may be changing its height at every elevation post
in an entire database, at every simulation fr.me. This is a taxing situation,
both for the physical simulation and for the networking.

IST's realtime hydrology is based on the simplified hydrodynamics of [Kass
90]. The simulation CPU must examine every elevation post, alternating
scans in a N-S and E-W direction through the body of water. We have
demonstrated that this is possible for a local region (e.g. a 50 m diameter
lake or a 100 m segment of a stream) using graphics workstations such as
the Silicon Graphics 4D/240, achieving frame rates in excess of 5/second.
With optimizations and the rapid decrease in the cost of powerful RISC
CPU's, 15 hz operation is probably possible in our price range.
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However, what about water that is currently not being viewed? If a dam is
broken and the simulator (with viewing system) then moves elsewhere,
when you return five minutes later, where is the water? On flat, featureless
terrain the water would be everywhere.

Our working assumption, in order to produce useful hydrology within our
time frame, is that water will be confined to finite channels whose total
surface area does not exceed some manageable limit (e.g. 20,000 sq m).
Several cheap and fast simulation CPUs can then share the task of
maintaining this elevation profile.

Dozers and explosives will be able to breach dams, etc. but the water which
runs out will not flow forever. Furthermore, the degree of aggregation (cell
size) of the water in varous regions may require manual tailoring, in view
of the training or simulation scenario to be exercised. Distant water doesn't
need one-meter cells of elevation profiling.

With these limiting assumptions, how can water be propagated within DIS?
One possiblity is to follow the bulldozer paradigm. Only a principal hydro
simulator (perhaps not even a visually equipped one) manages actual
hydrology, cell by cell. If, for instance, a float bridge is traversing a stream,
the detailed hydro model with Archimedes principle would be executed by
the simulator managing the bridge.

Other simulators will simply display fairly large flat polygons of the
appropriate color to report the water surface's height, with the bridge
elements imbedded in them like raisins in toast. The dynamic system will
inform all simulators of the appropriate height of these "macro water
skins", based on physical events such as a tank's crossing the bridge
(which might displace water and raise the waterline along the stream and
along the bridge elements).

These aggregated water skin polys are a hydro equivalent to the aggregated
land features, except that instead of being left behind as the microterrain
process goes elsewhere, these are repeatedly adjusted as the fine-grained
model of the water dictates, to represent sloshing, damming, etc. Because
the count of macro polygons is much less than the number of microsurface
water cells, broadcast network traffic will again be tolerable.

6. Dynamic Terrain in Virtual Reality

Substantial interest in DT has been expressed to the authors by some
commercial developers of realtime moving-viewpoint "flyover" viewing
systems for landscape architecture, building construction and surface
mining/reclamation. These might be characterized as "outdoor virtual
reality" applications, and they are being built in 1991 at several sites. They
differ from realtime simulation military simulation in several important
ways:
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* realism requirements.

- Combat simulation cares little about the visual fidelity of
buildings, trees etc-, a schematic representation is sufficient.

- Commercial visualization needs a lighting model; often
environment-mapping is used to emulate the luster and
reflectivity of ray traced imagery. An extensive surface texture
map library is required.

* interactivity requirements.

- Military training which incorporates combat engineer
functionality will require that the dynamic terrain activity
occur simultaneously with combat simulation. There is no
difference between the creative, editing phase (e. g. building
the emplacements with a team of combat engineer vehicles)
and the wargaming phase.

- For commercial customers, dynamic terrain construction
could be performed in modes as simple as wireframe, as long
as a subsequent free-play flyover of a high quality version of the
resulting terrain is possible. The essence is that the users need
to be able to interactively sculpt the landscape; e. g. to locate
and configure the lakes and sand traps of a golf course.

* *the size of the terrain database.

- Distributed combat simulation must often provide several
thousand square kilometers of play area. This quantity of
information strongly drives the design of the database
management system for an image generator.

- Architectural and landscaping applications seldom exceed 4
square km. It is feasible to retain this database in the RAM
memory of the imaging system.

In general, the dynamic terrain requirements for commercial virtual
reality are within the scope of today's graphical workstations' capabilities.
Because of the smaller scope of the requirements, special purpose image
generators probably are not needed. Indeed, some of workstation prototypes
built at IST to explore ideas for military DT will probably be further
developed for these commercial purposes.
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7. Conclusions

This paper has addressed two of the problems raised by dynamic terrain:
the polygon and texture requirements for visualization. The broadconclusions of our study are:

a. An acceptable display for engineer, infantry, armor and artillary
purposes is achievable by the mid-90's on simulators having
approximately twice the graphical performance of current SIMNET
units; but their visual systems will be substantially different from
those in SIMNET.

b. Aircraft simulators of SIMNET/AirNet quality, already regarded
as unacceptably crude by much of the aviation community, will be
unable to render dynamic terrain in an acceptable fashion. Air/Land
Battle simulation with dynamic terrain visible from the air will
require aircraft simulators of a different order of fidelity than
ground-based simulators, because of the extended visual range of
aircraft. Such fidelity may not be required for some training
applications.

c. The minimal DT display system for military training requires an
image generator capable of displaying 2000 to 4000 polygons at 15
frames/second per channel, equipped with appropriate database
access and control algorithms in the front-end geometry processor.

d. For commercial dynamic terrain applications, it is likely that
equipment equivalent to today's mid-performance graphical
workstations will suffice. Some of their realtime visualization needs
will be met running different software or hardware than the
dynamic terrain systems which were used to sculpt the landscapes.
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Simulated Dynamic Terrain:
A Photographic Study

J. Michael Moshell
Curtis R. Lisle
Robert Bucldey

Institute for Simulation and Training
University of Central Florida

December 1991
VSL Document 91.38

This report is a part of the IST Dynamic Terrain Project, sponsored by the
Army's Project Manager for Training Devices (PM-TRADE). For a broader
picture of issues and approaches concerning the visualization of Dynamic
Terrain, please see [Moshell 91].

The attached photos represent the results of varying three parameters:

* Pixel resolution (two values:)
Level a: approximately 4.2 arc mins/pixel
Level b: appxoximately 2.3 arc mins/pixel

* Lighting Model used (two values:)

Flat Shaded
Multigen Lighting Model (modified Gouraud) shaded

* Polygon Expenditure for Dynamic Terrain (three levels):
No Dynamic Terrain
256 Polygons for DT
1050 Polygons for DT

These photographs were shot using a tripod mounted 35mm single lens
reflex camera using Kodak Ektar 125 ASA 100 film, from the screen of a
Silicon Graphics (SGI) 4D/240 workstation running the MultiGen database
development system. Since the brightness of the monitor is a function of
both its age and recent manual adjustments, the most reliable approach to
determining good exposures is to "bracket" the timing. The best negative is
then selected for printing.

MultiGen allows the user to set the ar-',ilar field of view, and to stretch the
screen window to achieve any desirec tysical size within t[ - limits of the
19" CRT monitor. In order to establish a certain simulated viewing block
aspect ratio and pixel density, a black cardboard mask was cut and
attached to the screen.
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The SGI's screen displays approximately 93 pixels per inch. In order to
produce the desired Level a and Level b pixel densities, the camera is moved
closer or farther from the CRT screen until the photographic image is the
same size for either case. The pixel densities and scene setups were
provided by a different project, and were opportunistically used for Dynamic
Terrain visualization.

The reader should be warned that such simple photographic methods will
inevitably lead to some loss of visual quality. Indeed, the on-screen images
appear somewhat sharper than the photographs. However, the visibility
assertions and tests referred to in the experimental paper cited above were
based on the CRT images, not on the photographs.

It is interesting to compare the angular resolution of these images to that of
the SIMNET system. The following table compares "Mark 1" (the low
resolution simulation), SIMNET and "Mark 2" (the high resolution
simulation).

Pixels FOV (Deg.) Pixels/Deg. ArcMin/Px.
MARK 1
Vertical 130 9 14.47 4.15
Horizontal 560 40 13.95 4.30

SIMNET
Vertical 128 7.5 17.07 3.52. Horizontal 320 20 16.00 3.75

MARK 2
Vertical 250 9 27.90 2.15
Horizontal 930 40 23.25 2.58

As can be seen, the MARK 1 system is about 25% coarser than SIMNET,
and the MARK 2 is about 40% finer. MARK 2 approximates the resolution
that will be used for wide fields of view in the CCTT system currently being
bid by vendors to PM-TRADE.

All scenes used the same background, consisting of approximately 330
polygons. For the Low DT Density photos shown as Figure 1, the dynamic
terrain features were built as follows:

Feature Count Polys/feature Total Polygons
Berm 6 12 72
Crater 6 12 72
Track 2 56 112
Total Dyn. Terrain 256

For the High DT Density photos shown as Figure 2, the dynamic terrain
features were built as follows:
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Feature Count Polys/feature Total Polygons
Berm 10 56 560
Crater 6 48 288
Track 2 101 202
Total Dyn. Terrain 1050

From this series of photos, we have selected two for enlargement to
illustrate the relative merits of 256 and 1050 polygons. These are the flat
shaded MARK 2 photos, which are good approximations to what Dynamic
Terrain in the BDS-D/ATTD system and the CCTT system can look like.

These appear as Figure 3 and Figure 4.

Flat shading is selected because its use is common in visual simulation,
based on the widespread experience that the vertices enhance users' ability
to orient themselves compared to Gouraud and other smooth shadings.
Apparently the visible polygon edges in flat shaded images provide the
human visual system with geometric cues which partially compensate for
the artificial nature of the scene.

These images are not textured because our Laboratory workstation (Silicol
Graphics 4D/240 GTX) does not presently support texture.
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Abstract: ANIM is a general-purpose rendering package. It is designed to
isolate the user from needing to understand both the area of three
dimensional graphics transformations and the IRIS Graphics Library in
order to get a graphical view from the IRIS workstation.
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.Overview of ANIM

The Silicon Graphics Iris family of computers has considerable power for
graphics-based applications since each system contains a graphics
accelerator. Since the inception of IST/VSL, animation has been an area of
research interest at the lab, but no general-purpose software had been
developed to support this research.

To conduct research In animation, Including emergent behavior of
animated objects, behavioral simulations must be written and the final
displays must be visually rendered. Before any behavioral simulations were
developed, the problem of creating a general-purpose rendering environment
was addressed.

The ANIM system on the Iris at IST/VSL is a result of this effort. ANIM
supports an animation language which allows multiple objects in an
environment along with a camera to view the objects. The positions,
velocities, and orientations of any objects (including the camera) can be
affected through the animation language interface. The commands in the
language are designed to provide the user with tools to use when designing
behavioral simulations.

A "User's Manual" for ANIM is included in this document. As of this
writing, the ANIM system has been exercised in several applications
including a terrain flyover, a battlefield simulation, and physical modeling
of objects. Several of these applications are described in this document to
serve as examples for any future work.

In the Design Issues section, the data formats used by ANIM are presented
as well as more detailed issues about the structure of animated objects.

3



. 11. A User's Manual for ANIM

ANIM is a general-purpose rendering package. It is designed to isolate the
user from needing to understand both the area of three dimensional
graphics transformations and the IRIS Graphics Library in order to get a
graphical view from the IRIS workstation.

As mentioned in the overview, ANIM's capability frees the user to
concentrate on mathematical or behavioral models of their problem. When
a graphical output is desired, simple commands can be used to position and
render objects according to output from a user's simulation program. This
can be supported as either a post-process rendering of an output file, or as a
real-time rendering of commands from a user's program. Examples of these
alternatives will be given later.

ANIM provides an environment where a number of polygonal objects
(referred to as AnimObjects) can be initialized and then animated within a
three-dimensional, Cartesian space. The shape, size, and behavior given to
the objects is left to each user to define for his or her particular application.

A special need was identified during the development of ANIM to represent
photorealistic terrain In addition to polygonal objects. To support the need,
an object type called a MeshObject was created. These objects are kept in a. separate list by ANIM, so multiple Meshes can be read in at any time.

The following paragraphs describe how to use ANIM. This package runs on
the Silicon Graphics Iris 4D series of workstations.

Anim provides a set of commands which can be entered interactively, read
from script files, or generated by external programs and piped into ANIM.
The commands affect how all objects are displayed, or affect the state of a
particular object being manipulated by the command. Example terminal
sessions of ANIM are shown in the following sections to illustrate each type
of interaction supported by ANIM.

ANIM provides a command line interface for the user. Commands from the
command list can be typed one at a time as shown below:

% anim
anim: readp diam.dat
anim: circle right 10
anim: draw
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The available commands are covered in a later section of this document.

One of the commands provided by ANIM is he script command which
provides enough power to merit its description here. Script allows a series of
commands (referred to as a script) to be read from an external file. This
method is often used for standard, repeatable demos. The filename used for
the script Is completely up to the user. However, the naming convention
where all script files have the extension ".ani" is encouraged. For example,
"pooldemo.ani" and "RunADemo.ani" are filenames which conform to the
standard. Below is an example of how the script command can be used:

% anim
anim: script RunADemo.ani
anim: exit

When using the script command, keep in mind that ANIM actually
executes every command as if you typed them in at that point in time. This
is an area where caution is suggested. If the exit command is included in
the script, than ANIM will terminate, losing any objects which were read in
and positioned. If the readp command, which reads an object into the
ANIM data structure, is included in a script, then each time the script is. run, ANIM will read a datafile - this will cause multiple copies of the same
object with the same name In ANIM!

The multiple object problem can be easily solved by using separate
Initialization and animation scripts. The initialization Is performed once
and the animation can be replayed as many times as desired:

% anim
anim: script poolsetup.ani
anim: script runpool.ani
anim: script runpool.ani
anim: script runpool.ani

Since ANIM has a command-line interface, It can be executed directly from
a Unix shell by redirecting input from an ANIM script file. Execution will
return Immediately to the shell when the script is completed because the
end of the script file will signal ANIM with an EOF (end of file code) from
Unix. This Is useful for canned demos and is shown below:

% anim • file_of_commands.ani
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Below is a list of the commands supported by ANIM with a short description
of what each performs and how it is used.

anlincam: Enable animation of the camera (viewpoint). When this option
Is enabled, the camera can be positioned like it was an object named "cam".
Below Is a sequence of commands which places the camera over a scene,
and starts it moving:

readp terrain.dat
animcam on
pos cam 100 100 50
rot cam -60 0 0
vel cam -0.5 -0.5 -0.5
play 100
animcam off

axis: Display a coordinate axis at the global origin. This is helpful for
orientation of the camera and objects:

ex: axis on
draw

circle: Move the viewpoint up,down,left,right around the origin. The value
is expressed in degreees of rotation around the origin. This allows camera
motion when the animcam mode is not active. The argument given is
expected in degrees of rotation.

ex: circle up 20 (orbit up around object 20 degrees)
circle down 150
circle left 15.2

delay: Set the redrawing speed of animation. A delay value specifies a
waiting period between frames. If delay is never specified, it defaults to 1.
This is useful if animation occurs too quickly. The values are relative and
are not calibrated to an absolute clock. For example, a delay of 200 is slower
than 100, but this is not an exact 200 milliseconds/frame. It is just slower.

ex. delay 200
delay 4000
delay I

display: Toggle whether a particular object is visible. Objects are identified
by name. This is useful when a number of instances of a base object are
made. The Individual instances can be turned on or off. This was developed
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for a battlefield simulation where tanks disappear from the display when
they are destroyed.

ex. display diam off
display diam on

draw: Draw all the objects in the database without advancing time
(moving any objects).

ex. draw

echo: Display a message on the interactive window. This is usually used
inside command language scripts. Only one word is allowed as an
argument, so multi-word messages are connected by underlines by
convention.

ex. echo ***nextsimulationstep***

exit: Exit ANIM and return to UNIX.

go: Move closer or farther from the origin. Values are expressed in "anim
units" (floating values which do not directly correspond to inches, meters,
etc.). This, like the circle command, is used when ANIM is not in the
animcam mode.

ex. go in 200
go out 100.4

Instance: Make another object and have it use the polygon list from an
existing object. This is useful for multiple objects with the same shape, for
example, 15 pool balls on a table. The command is executed by giving the
name of the existing object and the new object to create. New instances are
created at the origin. After instancing, the new object can receive its own
commands.

ex. instance ball ball2
instance ball ball3
pos ba.l2 10.5 -0.5 3

play: Play frames of animation. All displayable objects (see display
command) are drawn and the object's positions are updated whether they
are displayable or not. The process is repeated until all requested frames
have been displayed. ANIM keeps track of frame numbers since the
beginning of each session. Therefore, a play 100 command plays 100
additional frames and adds 100 to the ongoing frame count since the ANIM
session was begun.

ex. piay 5
play 300
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pos: Set the position of an object in absolute x,y,z coordinates. Each
coordinate value is given in "anim units" and objects are referred to by
name. This is an absolute position, so successive invocations replace each
other (they are not additive). The position can be supplied using either
integer or floating point units.

ex. pos diam 10.5 10.3 -4.6

prompt: Turn the "anim: " prompt at the user's window on or off as desired.
Disabling the prompt increases the animation speed substantially. The
state of the prompt is maintained until a new command is issued. The
default is "prompt on". If the prompt is off, it may be hard to determine
when a script or sequence has completed since ANIM does not issue a new
prompt at the user window.

ex. prompt off
prompt on

readh: Create a hierarchical object in ANIM. Read a a polygonal object from
a datafile and create a new object which is below an existing object in the
hierarchy. See the section on hierarchical objects for more detail about this
process. In the example shown, a hierarchical arm is created by using the
readh command. The syntax for the readh command is "readh <datafile>
<object to attach to>".

ex. readp shoulder.dat (normal read of top object)
readh armIdat shoulder (attach arml below shoulder)
readh arm2.dat arml (attach arm2 below arml)
pos arml 5 0 0 ( pos with respect to shoulder)
pos arm2 5 0 0 (pos with respect to arml)

readm: Read a mesh (2D array of elevations) into ANIM as a mesh object.
The command's arguments are the mesh dimensions, the black & white
image file, and the elevation file. The image file is warped to match the
elevation at each point. As of the date of this paper, ANIM did not support
motion for mesh objects, they can only be read in and displayed. Changes
are necessary to the mesh displaying subroutines to support motion.

ex. readm meshname XSize YSize ImFile ElevFile
readm m 100 100 mesh.l mesh.e

readp: Read in a polygonal object. The object file format is described in
another section of this paper. The object is added to ANIM's object list and
can then be manipulated by name. The datafile name is the only
argument. As can be seen from the data format description, a file can
contain single or multiple objects.

ex. readp sph.dat
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rot: Rotate an object with respect to its local origin. This is an absolute
rotation, so successive Invocations replace each other (they are not
additive). The rotation for an object is specified by giving its rotation In the
x, y, and z axes In degrees (positive or negative).

ex. rot ball 10.5 0 4.3

script: Read commands from a script file. The file is read until the end of
file is reached, control is then returned to the interactive window. The only
parameter needed is the script filename. A convention exists that script
files end with the (.ani) extension, but ANIM supports reading from any
Unix filename. Pathnames can be used, but the Unix tilde (-) is not
supported.

ex. script poolballs.ani

spin: Apply a relative rotation (around its local origin) on an object for every
frame of animation played. After each frame, the rotation of the object
around Its local origin is updated by adding the parameters on the spin
command to become the new rotation. For example, the command below
increases the objects rotation by 2 degrees around X and 20.2 degrees around
Z every frametime.

ex. spin ball 1 0 20.2

* ve: Assign a velocity to an object by name. Once given a velocity, ANIM
will update the position of an object every frametime. The object will
maintain its velocity until it is reassigned (to zero).

ex. vel diam 0 0 0.5 (increase z each time)

where: Return the position and orientation of a named object. At the time
of this writing, the display viewpoint has two sets of transformations
applied to It: labeled cam and camera. The camera transformation is in
polar coordinates and the cam transformation Is In spherical coordinates
relative to the polar position. See the Camera Animation section for a
complete description.

ex. where ball
where cam (returns x.y.z of cam xform)
where camera (returns dis,azi,elev,tw)
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* To fully use the capabilities provided by ANIM, it is necessary to understand
how ANIM represents objects internally and what its external file formats
are. in the following sections, some of this detail is provided.

Since ANIM is designed as a flexible animation system, attempts have been
made to allow it to operate with as few or as many objects as the particular
application demands. To support this design goal, objects are joined
together with a linked-list as shown in Figure 11.1. This allows the number
of objects to be restricted only by the virtual memory size on the host
computer.

ObLAW (&Ual pointer to ahj-Ut)

Ahomin ink' Arl|.,101tJ AnimftJ

Inomto ikInformtlon d k Ifor l ton

Structure A I 'lid | Structurel fid , Itructure

AnlmOb] structure:
Cmtais state

Informatton about

thtl particular

Figure 11.1 - Anim objects in a linked list

Each object in ANIM (referred to as an AnimObject) is composed of a
structure containing state information and lists for the object's polygons.
The fields of the structure are shown here along with a description of each
field:

struct AnlmObj I
int obJnum;
char name[15];
struct AnlmObJ *SubOblUst;
Int NumFaces;

Int display-,
struct face *faces;
struct pos.Inlo trans;
struct rotJnfo rot;
struct flyInfo fly;
struct AnlmObJ "link;
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1;

Sbinum - This field is not currently used by ANIM. Objects were
initially going to be indexed. This could be used in the future to allow
an index of pointers to speed access to AnimObjects.

name - A character string used to identify the AnimObject. All the
commands use this field to retrieve the object pointer before affecting
the object's state.

5QbijhL - This is a list of other AnimObject types which are below
the current object in the object hierarchy. See the Hierarchical object
section for more details.

N- This field is not currently used by ANIM. It is always set
to the number of polygons in the face list, but the rendering routines
do not currently refer to this value.

display - A flag indicating whether this object is currently visible or
invisible. When set to TRUE, the object is displayed whenever a draw
or play is executed. This flag keeps its state until it is explicitly
changed again.

a=es - This is a pointer to the first polygon in a linked list of polygons.
Each AnimObject can have an associated list of faces, which could be
empty. The length of the polygon list is limited only by the memory
capacity on the platform.

trans - structure which contains absolute position and velocity
information for the AnimObject. This contains six subfields
(x,y,z,dx,dy,dz).

rot - Similar to the trans structure, this structure contains fields
specifying the absolute rotation and the rotational velocity of the
AnimObject.

U - This is not currently used by ANIM. This structure allows the
Euler angles for yaw, pitch, and roll to be applied to an AnimObject.
The ANIM system does not yet fully support this ability.

link - A link field to the next AnimObject maintained by ANIM in a
global object list. The linking of objects is handled automatically by
ANIM.

A diagram showing the data structure of a sample AnimObject is given in
Figure 11.2. This particular object has two polygons, each of which have
three vertices. Each AnimObject will include a linked list of polygons (the
faces list). In turn, each polygon record included in the faces list has a
linked list of vertices hanging from it (the verts list comprising the vertices
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in that polygon). With this structure, an AnimObject can theoretically have
an unlimited number of polygons and each polygon could have an unlimited
number of vertices.

Figure 11.2 - Polygon data in an AnimObect

Each MeshObject in ANIM is composed of a structure containing state
information and pointers to image and elevation data for the MeshObject.
The fields of the structure are shown here along with a description of each
field:

O /* single mesh object: ']
struct MeshObj

char nameVena;

tnt numr, numc;unsigned char 1im,de;
struct posinfo trans;
struct rotenfo rot;
struct MeshObj link;

};

Ll~Aflc- a name field like that of an AnimObject. This could be used to find a
pointer to a particular MeshObject, but is not currently supported by ANiM

yet.

u - The number of rows and number of columns in the image and
elevation files for the MeshObject.

1=1 - Pointers to the Image and elevation arrays. These are initialized
when the MeshObject is read in by ANIM. See the description for the readm
command.

trans=t - Analagous structures to those of an AnimObject. These are not
currently supported by ANIM. At the time of this writing, MeshObjects were

0
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stationary and are positioned parallel to the XY plane with their elevation
values mapping to positions along the Z axis.

. ik - A pointer to the next MeshObject

ANIM uses several external file formats to provide its facility of loading
objects and terrain. In the following sections, each of these file formats is
presented. Any software projects developed can interface to ANIM by
creating output data in the described formats.

ANIM objects are composed of any number of convex polygons with a
separate color associated to each polygon. The objects can be read from one
or more files using the readp and readh commands. The format of an ANIM
object file is as follows:

integer: f always=0
integer: number of ANIM objects in this file
(for each object in the file)

character string: name of objct
integer: number of polygons in this object
(for each polygon in this object)

3 integers: RGB alue for this polygon
integer: number of vertices in this polygon
(for each vertex)

float: Xyalue float: Yvalue float: Zvalue

A notated example file is shown below to further illustrate the format. The
parsing is somewhat forgiving since blank lines can be embedded anywhere.
Single tabs can be used as separators Instead of spaces, however, at the time
of this writing, ANIM could not support multiple tabs between fields. The
explanatory comments are just to help illuminate the meaning of the data
fields. Only the data (no comments) should be entered in actual datafiles.

0 (no debug option)
1 (one object in this file)
plane (name to attach to the object)
3 (the plane has three polygons)
2005050 (RGB values of the first (mostly red) poly)
3 (3 vertices, first poly is a triangle)
5.0 0.0 0.0 (first vertex location)
0 -2 0 (second vertex location - float or integer ok}
0 2 0 (third vertex location)
200 200 200 (RGB of second poly)
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3 (second poly is a triangle)
0 0 0
0 0 1 {vertex locations)0 500
200 200 200 (RGB of third poly)
3 (third poly is a triangle]
0 0 0
5 0 0 (vertex locations)
0 0 1

A mesh is composed of two raw datafiles: the image file and the elevation
file. Each one is composed of an array of bytes (characters in the C
language) with a fixed-length header in the beginning of the file. A portion
of the MeshObject read routine is shown to aid the creation of new
MeshObject datafiles:

I
ElevationFile = fopen(efname,"r");
ImageFile = fopen(ifname,"r");

/* get memory space for the image files */
MeshObj->el = (unsigned char *) malloc(numrows*numcols);
MeshObj->im = (unsigned char *) malloc(numrows*numcols);

/* read past the file header */
fread(temp,1,12,ElevationFile);
fread(temp,1,1 2,ImageFile);

/* read file into MeshObject data structure */
fread(MeshObj->el,l,numrows*numcols,ElevationFile);
fread(MeshObj->im, l,numrows*numcols,lmageFile);

As mentioned briefly earlier in this document, ANIM supports hierarchical
objects. The diagrams up to this point have shown that each AnimObject is
composed of a list of polygons and a set of state variables. The examples
given so far are actually all flat objects which is a subset of the possible
types of objects supported by ANIM. In this context, flat means there are no
hierarchical levels within the AnimObject.

To Illustrate a hierarchical object, consider a car which wheels and a
camera mounted to the roof on a swivel base. See Figure 11.3. The car is
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composed of a body (which is one rigid piece), four wheels (which need to
spin as the car rolls), and a camera (which can turn to the right or left
around a center pivot). This can be represented as one object by making the
wheels and the camera subobjects of the car itself.

Car Top View
Car Side View

-2,2,)l Wheel2
-. 20 (2.2.0)

Camera-(0.0.5) **.

W I I WheeI4Wheel3 (.2.2,0)
(-2.-2.0)

Figure 11.3 - A Hierarchical Car

Whatever translation and rotation the car takes on will also happen to all
Its subobjects. Additionally, the translation and rotation given to subobjects
acts with respect to the position of the car body - consider state values of
subobjects to be offsets from the state of their parent object. For example,
the needed translations for each wheel and the camera are given in

* parenthesis In Figure 11.3 - they are specified as offsets from the center of
the car (the parent object). Rotations given to the subobjects act around the
their local centers, but their local coordinate axes are positioned with
respect to the parent.

The car could be constructed several ways In ANIM. One way is shown by
the set of following commands:

readp car.dat (create object "Car")
readh wheell.dat Car (create object "Wheell" under car)
readh wheel2.dat Car (create object "Wheel2" under car)
readh wheel3.dat Car
readh camera.dat Car
pos Wheell -2.0 2.0 0.0 (position wheell with respect to car)
pos Wheel2 2.0 2.0 0.0
pos Wheel3 -2.0 -2.0 0.0
pos Wheel4 2.0 -2.0 0.0
pos Camera 0.0 0.0 5.0

The way shown above will result in the structure in Figure 11.4 where the
Car is the top level AnimObject and each subobject is placed in Car's
SubObjLlst so they all take on the transforms placed on the Car in addition
to their own.
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Car
Lst of plygons in

SubObJLIst faces car body here.

List of polygons in a List of polygons In
List of polygons In a single tire here the camera here.
single tire here

Figure 11.4 - ANIM Structure for the Car

During the design of ANIM, the attempt was made to have all feautures
implemented by using AnimObjects. This means, for examples, the camera
is an AnimObject and the lights are AnimObjects.

Since lights are AnimObjects, the ANIM commands like pos and vel can be
applied to a light. Lights can be placed anywhere in the scene and (if
desired) given velocities to achieve desired lighting effects.

This area of ANIM is under development at the time of this writing.
Therefore, no detail about this capability is included here. This section will
be rewritten when the lighting model implementation has stabilized.

Since the camera is implemented as an AnimObject with an orientation
and a position, then applying the reverse of the camera's translation and
rotation to all polygonal objects gives the effect of camera motion.
Rephrased, when the camera In ANIM Is moved, what ANIM actually does is
move every object in the scene by the opposite transform so that it looks like
the camera moved.

This area of ANIM needs to be improved. Several features were planned here,
but have never been Implemented as of this writing. The remainder of this
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section describes the process which is necessary for the current version of
ANIM to support camera animation.

The Dual Camera Problem: The camera exists as an AnimObject with the
name cam. The camera object is added automatically by ANIM during
system startup. Whatever crteslin transformations are applied to the cam
object will have an affect on the view seen if the mode of ANIM is set to
allow camera motion.

There Is, however, a second camera object name called camera which has a
position given in spherical coordinates (azimuth, Incidence, distance from
origin, twist). Camera is not actually an AnimObject, but the spherical
transformations on camera are applied to all objects so the camera appears
to be in this position.

A command entitled animcam was added to the commands and sets the
status of a global flag. When set on, the translate and rotate commands
applied to cam are performed before any objects are drawn. However, the
spherical transformations applied to "camera" are always in effect. For this
approach to work, the camera viewpoint must not be away from the origin or
rotated - like what is applied by the circle and go commands when a
transformation is applied to cam. If both cameras (cam and camera) are
given transformations, the results can be unpredictable.

The example shown for the animcam command earlier involves the camera
flying over a piece of terrain placed in the XY plane. For this example to
work with ANIM in its present form, the camera transformation should be
removed. The following commands provide a terrain flyover:

readp terrain.dat
where camera (find and remove the spherical transform)
go in 40
circle left 100 (values dependent on the xform applied)
circle up 70
animcam on
pos cam 100 100 50 (set cartesian position over terrain)
rot cam -45 0 0 (look down to see terrain)
vel cam -0.5 -0.5 -0.5 (set velocity of cam object)
play 100
animcam off
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To: M. Moshell, C. Hughes

* From: Julie Carrington

Date: February 4, 1991

Re: Physical modeling papers

Report number: 91.11, relating to project VSL91.2 - Constrained
Dynamics

I have chosen eight papers to summarize in six summaries. In
two cases papers were sufficiently similar to others by the same
authors that I combined them in the same summary. See [3] and [5]
in the summary list.

Several papers which I have not summarized are worth
mentioning. I have listed four of these under "other relevant papers"
in the summaries list. A complete survey on physical modeling in
general probably would have to mention collision detection and
response. Moore and Wilhelms' paper [71 appears to be something
of a classic and is very commonly referenced. Another important
topic in physical modeiing is that of the physical properties of
materials. Terzopoulos and Fleischer [8] discuss viscoelasticity,
plasticity, and fracture. Because [71 and [81 are somewhat off of the
direct track of constrained dynamics, I have not included them in my
summaries but both are clearly important papers.

Witkin, Fleischer, and Barr's paper [9] appeared at the same time
as that by Isaac and Cohen [2]. Like Isaac and Cohen's paper, [9) has
been widely referenced. I chose not to summarize [9] basically
because I had already chosen three others by Witkin and two by
Barr, all more recent than this one.

I had originally planned to include [101 which uses constraints to
prevent movement of joints beyond their realistic limits. This is
very similar to what is done in Isaac and Cohen's paper [2] which is
much more readable. Zhao and Badler have what they call a real
time system but by that they do not mean that they can, for
example, make a figure walk in real time. It means only that they
can manipulate a single joint over a small distance with a mouse.



With some exceptions, I have a clear enough understanding of the
particulars of each system to implement simple examples. Before I
can pursue this further, I need some deeper understanding of the
principles of dynamics and mechanics which underlie these systems.
There is a "big picture" here that I do not see. For example, both [5]
and [4] contain a formulation of constraints which they call the
Lagrange multiplier method. In both cases, a multiplier, X is used to
form a set of equations of motion with the proper number of
equations and unknowns. Beyond that however, the two systems
look and behave differently. In [5],(1) Witkin tells us that his system
is related to [1]. I would like to better understand how all of these
systems relate to each other; how they are different; where two
systems can used together; and how they could be modified to suit
particular applications.

In general I have used the same names for variables in my
summaries as are used in the paper being summarized although I
have tried to consistently use bold to denote vectors and capital
letters for matrices. Upon printing, I discovered that while Greek
letters show up bold on the screen, they do not print bold so I do
have an accidental inconsistency where vectors are named with

* Greek letters.
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Julie R. Carrington

. February 4, 1991
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[1] Barzel, A.; Barr, A. "A Modeling System Based on Dynamic
Constraints", A. Comp. Gr., Vol. 22, #4, 8/88, pp 179-188.

Rigid body primitives such as rods, spheres, etc. move in a
realistic way under gravity or other applied forces to meet
constraints. Constraints can force bodies to attach themselves to each
other or to points in space; to move along a user-defined path; or to
align themselves by rotation.

For each body we have Fe and Te, vectors representing the
external forces and torques. Using the deviation vector, D (i.e. the
function which represents how far away from meeting the constraint
the body is) we calculate Fc. Fc is multiplied by a matrix G to
produce the constraint force and by a matrix H to produce the
constraint torque. G and H are 3 x f matrices where f is the number
of degrees of freedom in the constraint force and they are intended
to specify where on the body Fc is to be applied in order to produce
the constraint force and torque. In the simple examples discussed in
the paper, G is either the identity or the zero matrix and H is a
matrix form ("dual", see appendix B) of the radial vector or the zero
matrix. The net force and torque on body i are:

Fi=( X.Gij Fcj) + FiE

(1)

Ti=( Hij Fcj) + TiE where the sums are over the

constraints.

Because the deviation vector, D, measures the distance from the
constraint, where the constraint is met, D = 0. D is a d dimensional
vector with f degrees of freedom. For example, suppose we want to
line up a unit vector b representing the radial vector fixed in a body
with N, a unit vector fixed in space. Then D = b . N - 1. Here f= 3
for the x, y, z components of b and d = 1 since the result is a scalar.

We describe the behavior of the constraint deviation with a linear
combination of D and the first and second derivatives of D:

D( 2 ) + 2/,t D(1) + I/T2D =0, t_2 to (2)



t is a user defined time constant which determines how quickly the
* constraint will be met. The solution to this differential eouation is of

the form D = cie-t/T + c2te-t/ and so approaches 0 at an exponential
rate.

We differentiate the deviation vector twice in order to substitute
into (2). When we find D( 2), the "acceleration" of the deviation,
Barzel and Barr say that we should find a component (called F F) to
create the appropriate force, one (called AT) to give us the proper
torque and one independent of force and torque. This last (called 13)
consists of terms expressing rotational velocity and momentum and
is due to the change from body to world coordinates. In other words,
the forces and torques create rotation around the origin in body
coordinates which is also the center of mass of the body. The
movement of the body, however, also creates some rotation around
the world coordinate system origin. This result is:

( FiF + AiTi )+ + 2/t D(1 ) + 1/,t2 D = 0 (3)
bodies i

where D( 2) = I ( FiF i + AiT i )+ P . Here F is generally the inverse

mass matrix or 0, A is generally the radial vector times the inverse
intertial tensor or 0, and P3 consists of leftover terms involving
iotational velocity and momentum.

Next we substitute what we know about net force and torque
from (1) into (3) to get:

I { r-i [ ( I Gij Fj ) + FE I + Ai[ ( Hij Fcj ) + T'E } + +
bodies i constr j constr j

2/t DO) + /T2 D = 0

and rearrange for:

IX ' (i Gij+Ai Hij)Fcj+ (Ii PFiE+AiTIE) 4 +

constr j bodies i bodies i

2/t D() + 1/,t2 D = 0 (4)

Notice that we have one of these equations for each constraint and
each equation requires a sum over all constraints. This is because



the force needed to enforce one constraint depends on the forces

needed due to all of the other constraints.

Then our final system of equations is:

MFc +B =0 (4)

where M kj = ( FikGij + AikHij )
constr j

Fcj= Fcj ;

and Bk=X ( FiF'E+AiTiE) + + 2/tD() + /t2D
bodies i

Thus each element of M is a matrix with dimension d of
constraint k by f of constraint j and is non-zero only if some body is
affected by both constraints k and j. Each element of Fc and B is a
vector. Barzel and Barr suggest using singular-value decomposition
(SVD) to solve the above equation because M can be singular (in an
over or under constrained system) or non-square. Actually, Al itself
is square but its elements may be non-square matrices.

0 We look now at an example which illustrates how this system
should work as well as questions which have arisen. The derivatiOns
associated with this example are long and look difficult but in part
that is because I chose to follow every step and so make it easy to
reproduce if not to follow initially.

We have a thin rod initially with its center of mass at the origin of
the world coordinate system lying along the x-axis. We want to have
point Xp attach itself to point X0. Note that this is example I on page
183 of the paper.

0 x0 14.1421,14.142 1,0)

xp = (20,0,0)

0



The deviation vector, D, then is: D = Xc.nter of mass + b - X0. For
I U the following derivations of D( 1 ) and D( 2), we detail some notation

and relationships most from Figure 16 on page 185 of the paper.

m = mass of the body. In our case m = 2.
R = Rotation matrix. Takes body coordinates to world

coordinates. Initially the identity matrix.
I Inertial tensor. In our case Ibody is the diagonal matrix

with 10.0667, 267.332, 267.332] as diagonal elements. I is
the result of RlbodyR T .

X = Position of the center of mass. Initially (0, 0, 0)
b = Radial vector.in world coordinates

Initially the same as bbody (20,0,0)
p = Momentum of the body. Initially (0, 0, 0)
L = Angular momentum of the body. Initially (0, 0, 0)
v = Velocity of the center of mass. Initially (0, 0, 0)
CO -Angular velocity. (0, 0, 0)

v = li/mp = dX/dt
wo = H-L

(o*R = dR/dt (note: co* is the dual of (o, see Appendix B

page 186 of the paper)
F = dp/dt
T = dL/dt

We now do a detailed derivation of D(1) and D( 2 ) following the
derivations in Appendix B.2, page 186 of Barzzl and Barr's paper.
Recall that D(2) should be of the form ( FF + AT + 3 ) as in (3).

D =X +b-Xo

() dX db

dt dt

= v + d(Rbbod-) from the above relations.dt

= v + Co*Rbbody above relations.

= v + (o x b above relations and appendix B.A, page 186
of Barzel & Barr.



lieD d2X d2bD(2) =t2 + dt-

F I d(oxb) because D() = v + o x b
dt

dow db
1/mF + d-x b + CO x'd" using the chain rule.

d o
= I/mF + d- x b + CO x (co x b) from the derivation of D( 1)

d(I-1 L)
I/mF + d t x b + (o x (co x b) from the above list of relations.

dl-1  dL
= I/mF + dt L + 1-1"-L) x b + co x (o x b) chain rule.

dl- I

= /mF + (---L + PIT) x b + co x (w x b) above relations.

/mF+d(RIlbdyRT)L+ I+T)xb +wox(wxb) from the

derivation of DO)

dR dRT I]b+ ()b

= I/mF + [(-R_1bodyRT+ RI-lbody-q')L + IIT] x b + ) x (w x b)

chain rule

= 1/mF + [(o*Rl' 1bodyRT + RIl-bodyRTco*T)L + IIT] x b + co x (o x b)
above relations.

= I/mF + [(o*I -l + I-lO)*T)L + I-'T] x b + co x (o x b)

definition of I-

= 1/mF + [ W*o + I-1o*TL + I-IT] x b + co x (co x b) above relations.

= 1/mF + I 1-1 O*TL + T)) x b + o x (o xb), o*w = 0, appendix B.1
page 186, Barzel & Barr



=/mF+ [I 1 (Lxo+T)]xb +cox(coxb) appendix B.1.

= 1/mF + (b*Tl-t)T + b*TI l(L x o) + w x (o x b) appendix B.I.

We now have D( 2) in the form ( F + AT ) + 3 where
= l/m

A = (b*Tl-l)

P b*Tl-H(Lx w) +cx(w xb)

Since F = F, + FE, G = I and since T = b x F, + TE, H = b*. Notice that
this derivation agrees precisely with the definitions of all of these
variables given for this example in Example 1, page 183 of the paper.

We use r = .2 and get on the first iteration F, = [-292.895,
177.107, 0]. This produ es a torque in the right direction but there
are several problems. For one thing, this F, increases with every
iteration which means that the rod spins and never comes to rest. In
addition, Fc is to be multi ,lied by b for the torque but appplied to
the body as force. Clearly, applying this force to the center of mass
sends the rod off quickly to the left. Notice that if gravity is included
in the model, the Fc is simply [-292.895, 186.907, 0], i.e., 9.8 more in
the y direction and so exactly the same net force. In general these
amounts for Fc seem excessive even on the first iteration and
certainly they should not increase on successive iterations. Finally. I
question their applying an arbitrary force initially in each of their
examples. Why should this be necessary and what, exactly,
constitutes an arbitrary force? Does gravity to the job? Several
times, they refer to this arbitrary force as Fc.

Note that everything works beautifully when we want to attach a
sphere to a point in space, i.e., when there is no torque involved. It
works well even though where the sphere has the same mass its the
rod, the calculated Fc is nearly the same. This makes me wonder it
in the rod the magnitude of the constraint force is correct but instead
of applying it both as torque at the end of the rod and as force at the
center of mass, it should be distributed through the rod. Possible
explanations for the fact that F, increases rather than decreases in
the rod are a sign error or a coordinate system error.

This paper is hard to understand without a mechanics background
but is worth the time and effort. The authors are well known, this
paper is frequently cited, and even the example (the chain attaching0



itself to the trap door) is famous. The advantage of this system over
Witkin's [5] is that the constraints need not be initially fulfilled. The
body moves to meet them allowing, for example, a space stationl to
assemble itself. One disadvantage is that it is not interactive
although constraints can be made active at a specified time during
the simulation. A more severe limitation is that it deals only with
rigid bodies and any kind of realistic simulation must include
realistic (therefore flexible) materials. Witkin's system does allov
flexible bodies although his example is an extremely simple two
dimensional model probably because of the computational
complexity of flexible body dynamics [5].



Julie R. Carrington. February 4, 1991

[2] Isaacs,P; Cohen,M, "Controlling Dynamic Simulation with
Kinematic Constraints, Behavior Functions, and Inverse Dynamics",
Comp.Gr., Vol.21, #4, 7/87

The DYNAmic MOtion (or DYNAMO) system described by lsaacs
and Cohen appears to be one of the original inspirations for many of
the physical modelling systems described in these summaries. The
DYNAMO system tries to incorporate the realism that stems from
using physics with the level of control from traditional animation
techniques.

DYNAMO performs dynamic simulation on linked figures. A link
is a rigid body with size shape and mass. Links are connected to
each other by joints in a tree structure. For example, the human
body can be considered a linkage where the hips are the root link to
which are connected three main branches: the upper body, the right
leg and the left leg. Each link has between one and six translational
and rotational degrees of freedom and the joint may have limits
which prevent movement of some degree of freedom beyond a
certain point. The lower arm, for example, is considered to have a
single degree of freedom relative to the elbow but that joint pre\env
movement beyond a certain arc. Joints also have associated spring\
and dampers and the linkage responds to external forces and
torques.

The three control mechanisms contained in the DYNAMO system
are: 1. "kinematic constraints" allow some motion to be explicitly
specified while other portions of the linkage respond in a natural
way to the forces induced by the specified motion; 2. "'behavior
functions" to force the body to react to its surroundings; 3. "inverse
dynamics" to calculate the forces which induce the specified motion.

The equations of motion are expressed either as forward
dynamics:

q" = A- 1 B (
or as inverse dynamics:

B = Aq" (2)

0



where B is the force vector, [A] is the generalized mass matrix, and q
is the acceleration vector. Internal forces are spring and damper
forces of the joints:

Fspring = kspring * offset from center position
Fdamper kdamper * velocity of degree of freedom.

Because we allow both forward and inverse dynamics, we have a
situation where in some cases the acceleration is given and the force
is unknown and in others, the acceleration is unknown and the force
is given as follows:El A 1~2 A13 A14 -i ql"

A2 1 A22 A 2 3 A 2 4 IX, B2 (X's are unknowns)
A31 A32 A3 3A341 q3" X
A4 1 A4 2 A4 3 A4 4 -1  B4

1

In this case, we first solve for tile unknown qi"'s by moving all term,
involving known qi"'s to the right side of the equation, remoCig

those rows and columns from [A], and solving the reduced system.
This procedure is outlined in an understandable way on page 219 of
the paper. Once all of the accelerations are known, we can sol\e for.
the unknown forces by substituting into the original equation.

The derivation of the equations of motion in contained in the
appendix. We will follow along here. The general equation is based
on D'Alembert's principle of virtual work which says basically that
the sum of the work of applied and internal forces and torques will
be equal and opposite to the work of changes in momentum. Thus.
for a system of n links:

n
, [dri(Fi - miri") + d8i(M - Li') + d W i = () (3

i=0

Suppose link i is an entirely unconstrained particle. Then there are
no internal forces; the applied force, Fi, equals the mass times the
linear acceleration; and (Fi - miri") = 0. Similarly, the applied torque.
Mi equals the change in angular momentum, Li'; and (M -Li') .
Of course, dWi (work done by internal forces) will also be 0. Note
here that dri refers to the change in linear displacement and do,
refers to the change in angular displacement.



Notice that in these n equations we have 6n unknowns: r-. r,.
and r,'" for the linear acceleration and Ox-, 0",, and 0z" for the
angular acceleration in each equation. In addition, we need
constraint equations specifying disallowed directions. Recall that
each joint has limited degrees of freedom. We can reduce the
number of unknowns and eliminate these constraint equations if we
express the equations of motion in terms of the degrees of freedom
of the links. To do this, we use four generalized coordinate vectors.
each of which has one entry for each degree of freedom.

q : A vector of positions (either linear or angular)
q' A vector of velocities.
q" :A vector of accelerations (unknowns).
dq A vector of virtual displacements.

By "virtual displacement" I understand that we assume that a
particle moves slightly in a direction which is disallowed b\ the
constraints in order to calculate an internal force to counter th t
supposed movement.

Now we derive matrix equations for each of the vector quantitiC,.
dO, dr, 0", r" and dW, in terms of our generalized coordinates in
order to substitute back into equations (3).

dO ='F T pT dq (4
T is a connectivity matrix.

p is a matrix of unit axes of rotation of rotational degrcc,
of freedom (or 0 for linear degrees uf freedom).

dr= p x T(C + Z) T- kT]Tdq (5)
C is a matrix of distances from joints to the centers of mais,

of the links which they connect.
Z is a matrix of current displacement vectors along
translational degrees of freedom (or 0 for rotational degree,

of freedom).

T" = TI (pTq" + f) + 00" (6)
f is a matrix expressing the effect of the angular velocit\
of one degree of freedom on the angular acceleration of

another.
00" is a vector of coordinates expressing the angular



acceleration of the inertial frame of reference.

r"= [pxT(C+Z) T-kT]T q"+U (7)
U is an array in which each entry corresponds to the
relationship of one link to known quantities in the system.

dW= -dqT (k -X + p Y) (8)
X is a vector of internal applied forces.
Y is a vector of internal applied torques.

For more details, we are referred to pages 147-163 of this paper's
reference [15]. Although that book is not in our library, we surelN
would need more details in order to fully understand the above list
of formulas. The definition for U, for example, tells us nothing about
its derivation or its use.

An interesting thing that falls out of this derivation is that if we
substitute equations (4) through (8) into equation (3) then isolate the
terms involving q", we get:

dqT (-A q" + B =0 (9)

where A = [pxT(C +Z) T-kT]. m[ pxT(C+Z) T - kTIT +

(pT) J. (pT)T. J is the moment of inertia tensor.

and B =[pxT(C+Z) T-kT].(F- mU)
-pT . [M + J . (Trf - O0") - 0' x J - 0' ] (1()

-k.X -p.Y.

Isaacs and Cohen tell us that because the motion of the generalized
coordinates is independent, we can drop the term dqT out of
equation (9). (1 would have thought that where each acted
independently, the virtual displacement would be 0 and so dq \tlud

be 0. If dq can be dropped, it must be non-zero. Clearly, I need a
better understanding of virtual work.) We are left with force equal,
mass times acceleration or -Aq" + B = 0. This is the only paper \ hich
gives an explicit formula for a generalized mass matrix although I am
still not sure what each of the terms is.

It is worth noting that this is not (and is not intended to be) a re l
time animation system. We are told that the computation time is
inversely proportional to the time step and exponentially dependict
on the number of degrees of freedom. Thus, for example, a humn



figure with 39 degrees of freedom executing a kick took 30 minulc

of CPU time to produce one second of simulation time.
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1. Pentland, Alex, "Computational Complexity versus Simulated
Environments", Comp. Gr. Vol.24 #2, 3/90

2. Pentland, Alex, "Good Vibrations: Modal Dynamics for Graphics
and Animation", Comp. Gr. Vol.23 #3, 7/89

The ideas that Pentland presents here are exciting. His system.
ThingWorld, allows use of flexible models and constraints which
may or may not be initially met. Despite all of the complexity
inherent in modeling flexible materials, he achieves his simulations
in real time.

Pentland tells us that rigid body dynamics can never realistically
allow us to model interaction such as friction or collision between
bodies. The usual alternative is the finite element meihod. The
problem with finite element is its cost. Pentland says that the
computation time is 0(n3 ) where n is the number of nodes in the
object. Notice that the simple bar shown on page 190 of (1) has
approximately 100 nodes. An additional problem with finite element
is that many small, frequent displacements are produced. These
must be tracked using a small time step and averaged to produce an
image more or less free of aliasing artifacts.

Physically based constraint systems such as that suggested by
Barzel and Barr [1] are another problem. Pentland tells us that the
complexity of these systems is O(Ik 2) where k is the number of
constrained parameters and I is the number of constraints. Again,
this is prohibitively expensive for a real time system which
purports to model more than a simple toy world.

The solution to these problems is the technique of moda! analysis
instead of finite element analysis. The basic idea is that the
deformation of an object under force can be described in terms of
different orders of modes. Figure 1 on page 216 of (2) shows in the
first picture a cylinder. The next two pictures show first order or
linear deformations in which there is no bending or twisting. The
first picture on the bottom row illustrates a second order
deformation (bending) and the last two show combinations of first
and second order modes.
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Pentland's description of the finite element method (page 216 of
(2)) is concise and easy to understand. An object is considered to be
made of a three dimensional grid of nodes which under forces are
displaced from the center of mass of the object. The basic equation
is:

Mu" + Du' + Ku = f
where u is a vector of size 3n describing the displacements of the n
nodal points in the x, y, and z directions. M is a mass matrix, D is a
damping matrix, and K describes the material stiffness between
points. The 3n element vector f describes the forces acting on the
nodes.

Modal analysis is similar except that by diagonalizing the three
matrices, M, D, and K, we are able to transform the above equation
into 3n independent differential equations each of which describes
the time course of one "vibration mode". I understand a single
vibration mode to be the way a single node moves in a single
direction (i.e., x, y, or z) away from its equilibrium point. In most of
Pentland's explanations of how the modes are used, this
interpretation makes sense. I am not clear, however, on the
connection between this concept and the idea of different orders of
modes as expressed by Figure 1.

Although the modal method is simpler and faster than finite
element, its real adv.ntage lies in the fact that because we are
working with small independent equations, we have more control
over the computation.

High frequency vibration modes have little impact on the shape of
the object and so can be oiscarded, greatly reducing the amount of
computation which must be done. If my understanding of vib'ato'
modes is correct, it is easy to see that the high-frequency modes
would be those with low amplitude and thus little impact.

Not only does eliminating the high frequency modes reduce tme
number of equations to be solved but it allows us to use larger time
steps. This is because tht; time step must be inversely proportiona
to the highest frequency. It makes sense that the time step must be
small enough to capture the movement of the highest frequency
mode.

In finite element the matrices M, D, and K must be periodically
recomputed. How often depends on the highest frequency modes
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Thus, more savings are realized in the modal method by less
* frequent recalculation of these matrices.

As mentioned above, temporal aliasing is also a result of the hih
frequency modes in finite element. Because we can ignore these
modes, a side effect of using modal analysis is that this problem is
eliminated along with the time that would otherwise be needed to
track and average these small displacements.

Assuming that our goal in modelling a flexible object is to give
it a realistic appearance, we can even avoid computing the
simplified equations obtained by diagonalizing the matrices M, D,
and K. This is because we can precompute deformation modes of
some regular shape such as a rectangular solid with approximately
the same moments of inertia as the object. As illustrated by Figure
3 in (2), page 218 there is virtually no difference in the appearance
of the deformations calculated by the actual deformation modes of
the object and those precalculated using a rectangular solid.

To explain why I chose this paper to summarize, I would like to
quote Alan Barr from SlGraph '89, the Panel Proceedings called
"Physically-Based Modeling: Past, Present, and Future". In

0 reference to Pentland's work on modal analysis, Barr said, "Now
that's good stuff." (pg. 209)
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[41 Platt,J; Barr,A.,"Constraint Methods for Flexible Models", Comp. Gr.
Vol 22, #4, 8/88

Platt and Barr describe models made of flexible materials such as
putty or clay and some of the kinds of constraint systems
appropriate for such materials. Flexible models should both move
and deform in a realistic and interesting way. For example. a
collision should cause a body to squash while retaining its volume
and a large deformation should cause the material to not return to its
rest shape.

Flexible bodies are discretized into mass points via the finite
element method. (An easy to understand explanation of the basic
finite element method is contained in [3]. ) Because many mas,
points imply many state variables, constraint methods such as the
"dynamic constraints" outlined in [11 are hard to use. This paper
discusses simpler methods appropriate for flexible models.

The three constraint methods used by Platt and Barr are the
penalty method, reaction constraints and augmented Lagrangian
constraints. The penalty method and augmented Lagrangian
constraints are both examples of optimization techniques. A \'er\
clear description of optimization in general and the penalty method
specifically is contained in J. Burg's "Constraint-Based Programming:
A Survey", pages 83 - 93.

A reaction constraint operates on a single mass point and
calculates a final output force based on the net force resulting from
other constraint methods and external forces. Therefore the reaction
constraint is the last one calculated in a time interval so only one can
be applied at a time to any given mass point. The reaction constraint
calculates an unconstrained force by projecting out all component- ot
the net force which would tend to violate the constraint. Next a
constrained force is calculated and added to the unconstrained force
to get the desired output force.

The constrained force, Fc, is calculated from D, the deviatinon
vector, i.e., the vector which points from the mass to where it should
be. Then to set D to zero, we have:



Fc = kD + C~d- (1)

where k expresses how strongly we want to enforce the constraint
and c is the damping constant. Where c = 4-k, the constraint is
fulfilled with critically damped motion.

We will follow the example in appendix B which forces a mass
point to lie on a plane. The normalized plane equation is:

P(x(t)) = Ax(t) + By(t) + Cz(t) + D = 0.

Thus the normal vector, n = (A B C)T and since we want the distance
from the position of the mass point, X, to the plane to be 0, we have
a deviation vector:

1) = - n P(X) = - n (AXx + BXy + CXz + D)

and where v is the velocity of the mass point:
dD dPdt - n p =- n ( Av x + BVy + Cv).

To produce the unconstrained force, we want to cancel any portion of
the input force which is acting in the same direction as the normal to
the plane.

Funconstrained = Finput- ( Finput •n ) n.

Fconstrained= (kD + c 4D ) = d(k P(X) + c n.

Finally, the sum of Funconstrained and Fconstrained gives us the output
force to be applied to the mass point.

Next we look at the Lagrangian constraint method which, again, is
a constrained optimization technique similar to the penalty method.
Notice that as far as I can determine, this Lagrangian method has
little in common with that proposed by Witkin in [51.

A constrained optimization procedure must locally minimize som1e
function f(x) subject to constraint g(x) = 0. We want to find a



function which we can minimize without constraints which will give

is us the needed point on f(x). A critical point of the energy function:

ELagrange(X) = f(X) + Xg(X) (2)

gives us a solution to f(X) subject to g(X) = 0. The extra variable, k.
gives us an extra degree of freedom as illustrated by Platt and Barr
in a simple example. Suppose we need a point as close as possible to
the origin with the constraint that the point lie on the line x + y =1.

-Lagrange(X) = x2 + y2 + )(x + y - 1)

Taking the partial derivatives with respect to each variable, we get
three equations in three unknowns.

H-Lagrange

= 2x + X =

8CLagrange

8y = 2y + =0

5ELagrange
-X x+y-l=0

Applying gradient descent to equation (2) produces the
differential equations:

8C Lagrange f g . -- (3)!"i=8xi 8 Xi 8xi

8E Lagrange
-" - 6X. = -g(X). (4 )

lowever, we find that we must make a sign change in (4) in order to
have a system which behaves in a stable manner. Thus,

8=Lagrange =g(X
* 6 =g() 5



gives us our change in X.

To continue with the preceding example, suppose we have a mass
point initially at the position (1, 1) and again we want to move it to
the point on the line x + y = I which is closest to the origin. Then in
each iteration, i:

ki' , xi-I + Yi-1 1
.i Xi-I + Xi' dt
Vx= -2 Xj-I - Xi
Vy = -2 Yi-1 -i

xi = xi-I + vx dt
Yi = Yi-1 + Vy dt

We did 100 iterations with dt = .1. The following shows the vd:lucs
for x and y every tenth iteration:

Time x V
1.0 0.109746 0.109746
2.0 0.307133 0.307133
3.0 0.473119 0.473119

0 4.0 0.511122 0.511122
5.0 0.506853 0.506853
6.0 0.50125 0.50125
7.0 0.49971 0.49971
8.0 0.499762 0.499762
9.0 0.499946 0.499946

10.0 0.500006 0.500006

An obvious extension is to allow more than one constraint per

mass point. In that case, the energy function becomes:

Emultiple(X) = f(X) + Za Xagcx(X) (6)

Another extension, called augmented Lagrangian constraints (or
ALCs) is formed by adding a penalty term to the basic differential
equation (3). The penalty term corresponds to the energy:

0



Epenalty = c/2(g(X)) 2

Thus, equation (3) becomes:

V /= f -X g Sg 6
xi Xi xi xi

Note that the value of the constant c need not be as large as for the
penalty method alone.

Platt and Barr offer two alternative formulations of inequality
constraints. One uses an extra slack variable, so if we want a
constraint of the form h(x) _ 0:

g(X) = h(X) - z2  (7)

The other formvlation uses a conditional:

{ (h(X ))2 if h <_ 0
g(X) = 0 otherwise (8

We tried to use equation (8) in "Bouncer", our implementation of
Witkin, Gleicher, and Welch's [5] constraint system, in order to
prevent the baton from penetrating the floor. Here, h(X) = \. This
certainly prevented the baton from penetrating the floor, but
because of the discontinuous nature of the constraint and the need
for the constraint to be initially fulfilled in the Witkin system, the
baton shot up with a velocity on the order of 1016.

In general, the constraints outlined here are all fairly simple
formulations. That is because there are so many variables invol\cd
in the finite element method that the constraints must be simple to
make the entire problem tractable.
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[51
1. Witkin,A.; Gleicher,M.; Welch,W.; "Interactive Dynamics",Comp.Gr.

Vol.24, #2, 3/90, ppl- 2 2 .

2. Witkin,A.; Welch,W.; "Fast Animation and Control of Nonrigid
Structures", Comp.Gr. Vol.24, #4, 8/90, pp243-250.

The most important ideas from the first paper have alread\ been
detailed in J. Burg's "Constraint-Based Programming: A Survey". A
few additional issues should be addressed such as advantages and
disadvantages of this system and we will say a few words about our
implementation, especially "Bouncer".

The second paper discusses in more detail the handling of non-
rigid bodies. Witkin also reviews his system of constrained dynamics
and discusses motion control in animation. I will just touch on a fek
points from (2).

'Bouncer' is a baton made of two spheres connected bN a
constraint keeping the distance between them constant. Visuall\ the
constraint is represented by a bar. The constraint ensures that no
matter what forces are applied to one or both spheres. the bar gets,
no shorter or longer. For example, giving a 'kick' to one sphere
creates both torque and linear acceleration in the system. In
'Bouncer', we include a floor in the model and drop the baton o,:o
the floor under gravity. The problem is not that the constraints do
not work but rather how to determine the amount of force we would
expect the impact to give to the baton.

Initially, our hope was that we could treat the colliding ball in
isolation and allow the constraints to provide the appropriate force to
the other ball. The problem is that the amount of the impact force
depends on the velocity and position of the second ball. We tried
giving the colliding ball the amount of force needed so that if it were
unencumbered by the second ball, it would continue with the same
velocity in the x direction but opposite in the y direction. In the casC
where the baton was falling vertically, that was the right force tr,

precisely cancel the downward velocity of the second ball and the
system halted.

0



All other combinations of applying force to one ball or both b:tll
depending on the position and velocity of one ball or both balls result
in either a gain or loss of energy over time.

One possible problem that we noted was because the force due to
the constraints is calculated after the force due to collision is
calculated. Since there is nothing in the constraint system specifying
that the baton cannot penetrate the floor, after the force is
calculated, the constraints can still push a ball through the floor.

For this reason, we tried to make the constraint system aware of
the floor by using either one of the inequality constraints or the
reaction constraints from [4]. The reaction constraints could prevent
the baton from penetrating the floor but the problem of how much
force to apply to force the baton to bounce without energy gain or
loss remained. The inequality constraints (see equation (8) in the
summary of [4]) were of no use because of the need for the
constraints to be initially met in Witkin's system.

There are at least three possible explanations for the remaining
problem that the system either gains or loses energy. One is that v~e

simply haven't hit upon the right formula which takes all of the
variables into account. That is the simplest but least likely
explanation. Another possibility, suggested by [3] (1) on pac-e 18(6. 1\,
that rigid body mechanics cannot adequately model this situation
because the amount of force applied to the ball by the floor depend,
on the time that the ball is in contact with the floor which in turn
depends on how long it takes the impact to propagate through the
baton. The last possibility, suggested by Clay Johnson, is that the
situation can be modelled by rigid body mechanics but the time step
needs to be variable enough to catch the exact moment of imp.atl iII
order that the ball never be allowed to penetrate.

The unique characteristic of this system is the it can be madde
interactive. Constraints can be dynamically added and deleted troin
the system as long as at the moment the (e.g.) attachment constraint
is added, the constrained bodies are in fact attached. The most
important disadvantage of this system is the fact that constraints
must be initially fulfilled. As we saw, this was a problem when ve
wanted force the 'floor' constraint to become active only when the
baton penetrated the floor. I believe the system is computationall,,
expensive especially for flexible models. He uses only the simplest



two dimensional flexible body as an example. Both of these
problems are addressed in (2).

The second paper (2) reviews this same constraint system but
adds a new twist. Here Witkin and Welch address the problem of
computational complexity and suggest that by a very different
method which works well in conjunction with their constraint system
they can get similar results to those of Pentland [3].

In the finite element method, a body is modeled by a mesh of
mass points. When the body is deformed, the forces on each miss
point must be calculated with respect to all the other mass points. In
Witkin's formulation, we still have the mass points but we consider
them to be sitting in some region of space. We parameterize this
region of space and deform the entire region. Then the motion of
each mass point need only be calculated with respect to the global
deformation rather than to each of the other mass points. This IS :l,
if we had a two dimensional figure lying on a bicubic patch.
Changing the shape of the patch would change the shape of the
figure.

The paper also addresses the problem of constraints havire to bc
initially fulfulled. Having to have the position and velocity of the
body match the constraint normally prohibits starting up a ne\\
constraint in the middle of an animation. He suggests that we can
dynamically compute a spline curve segment to smoothly brin- the
body into the required initial state.

This appears to be true in the context of controlled motion, where
the trajectory is defined and forces are calculated to move the body
along that trajectory. This is the inverse dynamics approach. In ihi,
context also Witkin discusses impulses. Our hope initially was th
this section on impulses would be of some help in 'Bouncer'.
'Bouncer' is modeled with a forward dynamics approach in which the
forces are applied and new velocities and positions are determined
by the system. Determining the trajectory the baton would be
expected to follow after impact would surely be no easier than
determining the forces which result from the impact.
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[6] Witkin,A.;Kass, M., "Spacetime Constraints", Comp.Gr. Vol. 22, #4.
8/88.

Witkin and Kass suggest that a serious problem in using physical
modeling methods for animation is that while motion can be made
more realistic, the animator loses some control. While the animator
is interested in the end result of the motion and the trajectory
followed to achieve that end, simulation methods solve initial VAltC
problems. In other words, the motion is determined by the initial
state of the system and by forces applied along the way.

The problem is illustrated by Pixar's Luxo, Jr., (film, 1986).
Originally, this was done using traditional keyframing where the
computer interpolated between frames. Using a dynamic simulatnt0
approach, there are two possibilities. First, the animator could
specify the motion of the way the lamp squats and pushes off to
achieve a leap into the air and the system could calculate the motionA
which results from that force. That would be a long process of triAl
and error to get the proper amount of force for the desired
trajectory. Second, we could specify where we want the lamp to
jump and the desired trajectory as constraints and the laimp % otnt
follow that trajectory. Since the trajectory is produced by a
constraint force, we still would have to manually determine a1
realistic squat and push off. What we need is a third method Nk hich
would help us with the central problem of determining what the
trajectory should be and how the character achieves that tra.jector\.

The most important difference between Witkin and Kas,>
constraint method and other dynamic simulation approaches is thal
the motion and forces are determined over the entire time interxiil
rather than being determined sequentially at each time increment.
For this reason, the name spacetime constraints was chosen.

We will follow the same simple example used in the paper to
illustrate the method. In this example, we have a particle propelled
by a jet engine which we want to move from point a to point b in a
fixed amount of time using as little fuel as possible. We let the
position of the particle be represented as a function of time, X(t). and
the jet force be f(t). The mass of the particle is a constant m and g i,
the acceleration due to gravity. The equation of motion is:0



mX"- f- mg =0 ()

In addition, we need constraints:

co =Xo -a =0 (2)
Cn =Xn - b = 0

and, assuming that our rate of fuel consumption is a simple function
of the jet force such as I f 12, we want to minimize:

tl

R= J If 2 dt (3)
to

Thus, we want to find a force over the interval (to, ti ) such that
the boundary constraints are satisfied and R is minimized. So far this
looks very like other methods we have studied and we would expect
to proceed across the interval, solving the initial value problem at
each iteration. Instead, we are going to look at each of the functions,.
X(t) and f(t) independently where the equation of motion acts as a
constraint relating the two functions. In addition, because we want
to look at the entire interval, we must discretize the functions Xkt)
and f(t) by representing them as a sequence of values X, and F.
0<i<n with a step value of h between samples. The first and second
derivatives of X(t) are approximated by:

= X i -X i-1

Xi+ I- 2Xi + X1- 1X i" -h2 5

Next we can substitute our approximation of X'" into the equation
of motion (1) to get:

Xi+1 - 2Xi + Xi-i

pi =f t h2  -i -alsg=0 0 _(< iand n (6)

TIhe objective function R must also be discretized and so becomes:



R=hy lfil2 , 0<i<n (7)
i

Suppose that we want our particle to move from point a to point
b in five iterations. Suppose in addition that we working in only two
dimensions, x and y. Then we have a collection of independent
variables, Sj = (xj, yj, fxj, fyj], 0 _< j _ 5. Thus in our case, we have a
vector with 24 independent variables, IxO, YO, fx0 , fYO, x], ... , fy1. We
also have a set of constraint functions Ci(Sj), 1 : i m, consisting of
both the given constraints and the p's. In our case then we have:

CO =Xo -a =0

X 0 - 2X 1 + X 2

Cl = mII h 2  -f1 -mg =0

X 1 -2X 2 + X 3
C2 =  I h2 -f2 - mg = 0

X2 - 2X3 + X 4C 3  f h2f3 -mg = 0

X 3 - 2X4 + X 5 f - Mg = 0C4 =M m h 2

C 5  X5 - b = 0

The basic idea of the solution method is to solve two linear
systems in sequence. In the first solution, we get an approximation
to the Sj which minimizes R without regard to the constraint

A A
equations, Ci. This approximation is called Sj. Next we project Si
onto the null space of the Jacobian matrix of the constraint equations
at the same time as driving them to zero. This results in another

A

approximation called !9j. Finally, ASj = Sj + Sj. We iterate until Ci
0 and we can no longer decrease R without violating tme constraints.

The first linear system we solve is:



5R 52 R A

jj

arid the second is:

E7 SCi A-ci= 8 ( sj + s-j.).
j

Values for each of these variables are given in the paper for our
example but I believe they are incorrect. We are told that the
Jacobian matrix should contain:

-- = 2m/h 2, i =j
8Xj

m r/h 2, i +
= 0 otherwise.

8C irj =1, j

= 0 otherwise.

It seems that all of these signs of reversed. In addition. the value> o
the Jacobian and Hessian matrices are given as:

fiR8f = 2f, and

52 R
-=2 i=j

8SiSSj
= 0 otherwise.

They should be:
8R8R = 2hfi andSf1

8SS~SJ =2h, i=j

- 0 otherwise.
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The choice of linear system solvers is critical. The matrices are
large but sparse and often (as in this example) not square. Thev
suggest using a pseudo-inverse in connection with a sparse conjugate
gradient algorithm. We are referred to [14] in their references for
details on this algorithm but we are told that it is 0(n2 ) for typical
problems. I assume that n is the number of independent variables:
in our case 24.

The balance of the paper describes the particular example of Luxo
using spacetime constraints. The lamp is assumed to be made of
rigid bodies connected by joint equipped with spring-like muscle.".
Constraints are used to specify initial and final poses and to speif)
that Luxo be on the floor at the beginning and end of the jump. Just
as in our example, the other constraints are the physics constraints.
pi. The objective function specifies that we want to minimize power
to the muscles. As figure 3 on page 166 of the paper shows, after
several iterations, Luxo executes a realistic jump including the
needed squash-and-stretch to get off of the ground and follow-
through.

The goal in this system is not merely to force an object to follow :i
predefined path by the use of constraints but to help the animator iM
defining a realistic path to follow. The goal seems to be met to a
miraculous extent. For example, figure 7 on page 167 shows Luxo
doing a ski jump in what looks like perfect form.

0



O To: M. Moshell

From: Julie Carrington

Date: November 25, 1991

Re: Project number VSL91.2, Constrained Dynamics

Excerpted from "Constraint-Based Programming: A Survey" by

Jennifer Burg, Charles Hughes, J. Michael Moshell, Sheau-Dong Lang

Physically-based modeling, a growing area of graphics re, earch.

.interprets constraints as the basis for forces or energies that can be

used to move objects in a physically-realistic manner. Using

techniques borrowed from optimization theory and classical

mechanics, a physically-based modeling system converts constraiit

equations into constraint forces or represents constraints as energp

fields which effectively pull the object in the desired direction. Thu,

physically-based modeling places constraints in a world governed b\

Newtonian mechanics.

Physically-based modeling begins with the building of an object

from primitive parts. Geometric constraints effectively snap the

parts together. For example, a constraint can form a joint between

two parts of a body (similar to ThingLab's merge. which joins IRko

points). Joint limits can also be expressed through constraints. Once

the object has been pieced together, constraints can be used to

position or animate it. For example, a constraint can anchor a point
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to a location in space, or it can require a point to follow a predefined

path [Barzel and Barr 1988].

The two most commonly-reported constraint methods for

physically-based modeling are reviewed in the next two section-.

These methods have been adapted and augmented by a number ol

researchers, as discussed in Section 3.

1. Penalty Method

The penalty method is a technique borrowed from optimization

theory. The basic optimization problem is to find a vector T-w hich

locally optimizes (minimizes or maximizes) a function f(-.). The b'Ihc

constraii-J optimization procedure optimizes the function subject to

a given constraint. For example, we may wish to

minimize f(xj, x2) = 2xi 2 + 3x22

subject to g(x],x2) = x1 + 3x2 - 10 = 0,

where f(xlX2) is the objective function and g(xj I') x)ihc

constraint.

The penalty method looks for an approximate solution to this,

problem by first defining a new objective function h(-) x hich

includes a penalty for violating the constraint. Since we want the

penalty to indicate how far we are from satisfying the constraint. it 1,

reasonable that the penalty should be of the form kfg(T-) 2 . Nowk the

problem is to minimize

h (-) = f(-) + klg(-i-) 2.

The non-negative constant k is a weighting factor \Ohi~l'

indicates how strongly we insist on the constraint. When k =. the0



constraint is ignored. As k - co, the constraint is complctcl\

0 satisfied. Figure 1 illustrates how h(--) approaches the cowtraincd

minimum for increasing values of k.

The penalty formulation of a minimization problem can be ucd

to model the constrained motion of an object. Here, the ob.jecti e

function U(-) represents the potential energy of the uncon.stralined

physical system, while the penalty function klg(--)] 2 acts like a

spring with its own potential eneigy, attempting to pull the object i

the direction of the constraint:

E(--) = U(-) + kfg(-)] 2  I

The penalty method is also easily generalized to nuitIpl,'

constraints since the constraint terms can be summed. The problem

minimize U(--), subject to ga(-) = 0; a = 1, .

0 becomes

n

minimize E(--) = U(T) + Ikalga(x-)1 2  i-

a=l

Since the object will minimize its potential energy over time. we

can now solve the constrained motion problem as a minimization

problem. The simplest optimization algorithm is a numeri:al

procedure called gradient ascent/descent. (We will put aside our

energy function for the moment and illustrate the gradient ;IcCtII

(hillclimbing) procedure with a two-dimensional function ,ince thi, ,

easier to depict graphically. We will then return to solve the ener,-

function for our physical model.)
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" - h (x) when k=1O

h(x) when k--O

(0,3.3,0) X2

minimum point
(1.4,2.8,0)

xi + 3x2 - 10 =0

(10,0,0)
xi

Figure 1. Penalty method approaches constrained minimum

Consider the graph in Figure 2 representing a function

y = f(xi,x2)



which we wish to maximize. The problem is to start at some initial

position (Xl,X2) and to find a path S which will lead to a local

maximum for y. However, we don't want to take a circuitous path,

we want to go straight up the hill. The hillclimbing method is based

on the observation that the rate of steepest ascent will be along the

gradient of f(Xl,x 2 ). (Analogously, the rate of steepest descent will be

opposite the gradient. See [Gottfried and Weisman 1973] for the

derivation.)

Y

XX

Figure 2. Hill climbing to maximum

We can understand intuitively why the hillclimbing method Aorks it0



we picture the contour lines of the objective function projected down

to the X1, X2 plane (Figure 3). (The contour lines represent the

contours of the function when y is set to different constants.) Saying

that we want to move in the direction of the gradient of the function

is equivalent to saying that we want our path S always to run

perpendicular to these contour lines. This will take us directly up

the "hill" as the values of xI and x2 vary. Thus, we have:
dxi dfdi d x fori = 1,2.

(For steepest descent, the variables move in the opposite direction of

the gradient: dxi tx

We can now use Euler's method to solve the dillcic:itijI

equations. Let Xik denote the value of independent variable xi at

time t k. To get the value of the independent variables at time tk+ 1,

we use:

df
Xik+I = Xjk + h x ,

dx i

where h is the step size. We continue to step up the hill in thi,

manner until the gradient becomes sufficiently small to indicate that

we have arrived at a maximum.



X2

0S

XI

Figure 3. Projection of contour lines onto xi-x2 plane

As noted above, the penalty method can be used to minimize the

potential energy of a physical object which we wish to place in

motion. The objective function to be minimized is given b\ eqIuation

[1. Applying the gradient descent method, we move the

independent variables in T in a direction opposite to the gradient of

the function. This yields:

F(---) - -) dg
0,Mii dt =



where Mij is the generalized mass matrix and F(-.x) is the general~ized

force on the system [IPlatt 1989].

A simple example (Figure 4) will illustrate this method. Let

(XlIx2), (x3,X4) denote the positions of two unit mass balls in 2-d

space. Their initial positions are (0.4,0) and (0.5,0), respectively,

The balls are constrained by "springs" to the (0,1) and (1,1) positions,

respectively, and they are also attached to each other by a sping

(0,1)(1)

(0.4,0) (0.5,0)

Figure 4. Penalty method simulating balls on springs

This gives the following constraints:

g(T-)= x 2 + (X2 1J) 2

920T) = '(x3-1) 2 + (x4-1~)2 ;and

93(T) = V(xj X3) 2 + (x2 -X4)
2
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The balls are also constrained not to go below the ground. To

achieve this effect, we activate a penalty force only when a ball

moves to a negative y position, as follows:

g4(-") = U)X2 where ul I when x2 < 0; else ul = 0;

95(X") = U2X4 where U2 = I when X4 < 0; else U2 = 0.

Giving each constraint ga(-T) a weight of ka, we get a penalty
n

term .ka[9g,("-)j2 as follows:
a=]

kjfxj2 + (x2-J)21 + k2[(x3-1)2 + (x4-1)21 + k3[(Xl-X3)2 + (x2-x4) 2 ] +

k4uIx 2
2 + k5u2x4 2

To apply the gradient descent method, we use equation [31.

Since the balls are unit mass particles, the mass matrix is the identity

and falls out of the equation. The external force F(--)consists only of

gravity, and thus the force vector is F(-x) = [0,-9.8,0,-9.81. Thus.

equation 13] yields:

n /dg1

= F(--, -i = 1,2,3,4
cx=J

where
n

2k, =a 2kjx +2k3(x1-x 3);

a=1

1_2kaga(-xa)x2- 2k1(x2-1) + 2k3(x2-x4) + 2k4u1x2;

a=]
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2kaga( g a = 2k2(x3-J) - 2k3(x]-x 3 ); and

n

2kga(-Y-- = 2k2(X4-1) - 2k3(x 2 -x 4 ) + 2k5u2x4.

a=]

Integrating these with a time step of 0.01 and then sampling every

tenth point results in motion of the balls characterized by the time

and positions in Table 1.

Time xl x2 X3 x4

0.0 0.40 0.00 0.50 0.00
0.1 0.20 0.66 0.37 0.58
0.2 0.16 0.37 0.31 0.16
0.3 0.15 0.28 0.30 0.02

0.4 0.15 0.26 0.29 -0.01
0.5 0.14 0.28 0.29 0.02

0.6 0.14 0.29 0.29 0.05
0.7 0.14 0.31 0.29 0.10
0.8 0.14 0.26 0.29 0.00
0.9 0.14 0.26 0.29 0.00
1.0 0.14 0.28 0.29 0.03

Table 1. Positions of balls in penalty method

While the penalty method is fairly simple to use, it does not

satisfy constraints exactly. This is an advantage in that a

compromise among constraints is sometimes desirable, but a

disadvantage in that an object held together by multiple "springs"

may look too loosely connected. Another disadvantage is that as the

constraint weights increase, the differential equations become stiff
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due to the widely separated time constants. Most numerical methods

require time steps on the order of the fastest time constant.

However, such large time steps may cause the "springs" to bounce

unrealistically.

Application of the penalty method in physically-based modeling

is discussed in [Witkin, Fleischer, and Barr 1987), [Platt and Barr

19881, and IPlatt 1989].

2. Inverse Dynamics

In some applications, it is necessary that constraints be fulfilled

exactly. This can be accomplished by a process of inverse dynamics.

The forward dynamics problem entails computing an object's

behavior given the forces which act on it. The inverse dynamics

problem is just the opposite: Given the constraint equations which

define an object's structure, location, and behavior, we compute

constraint forces which cause the object to move in an appropriate

manner. A constraint force works like an invisible hand which

guides an object in the correct direction or prevents it from moving

beyond its limits no matter what other external forces are exerted on

the object.

Witkin, Gleicher, and Welch [1989] present a derivation of the

physical equation which yields the appropriate constraint force.

Given in the problem are a set of constraint functions ci(q, t) and a

vector q of the object's independent variables, and a time t. Each

constraint function ci depends on the state of the independent

variables and possibly also on time. We say that the constraint is

satisfied when ci(q, t) = 0.
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The goal is to find a constraining force C which, when added to

the known external force Q, will result in motion which is consistent

with the constraints. The object will be moved in accordance with

Newton's second law of motion, which in generalized form is:

M ijqj = Cj + Qj. [1]

M is the generalized mass matrix of the object being moved. 1 C is the

vector of unknown constraint forces, and Q is the vector of known

external forces with respect to each independent variable. The

constraint force effectively cancels any component of Q which would

cause the object to violate its constraints. Once C is known, it can be

added to Q. Then q, the second time derivative of the independent

variables, can be determined. It is then possible to integrate the

differential equation over time and move the object.

This equation cannot be solved directly since both C and 4 are

unknown. We need more information. Since we want the constraints

always to be satisfied, we know that each constraint ci must be 0 at

initial time to, the rate of change of ci must be 0, and that rate of

change must not change from 0. Thus we have Ci = 0, 1 .5 i .5 n

(where n is the number of constraints).

Finding 'i and substituting into qj = Wjk (Ck + Qk), we get

dCi de, ' d2c[2
Wjk (Ck + Qk) + qJ + = 0 [2

where W is the inverse of matrix M.

I According to the summation convention, the appearance of an index twice in
a term implies summation. Thus Mijqj is equivalent to EjMijqj, i.e., row i of
matrix M times vector q.
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Rearranging, we get:

aci j C i di d2cl 3
W  =  Wjk Qk + j +d [3]

which is a matrix representation of a system of linear equations with
the force vector C unknown. Noting that i is an n x m matrix and

dqj

W is an m x m matrix (where n is the number of constraint equations

and m is the number of independent variables), we can see that

equation [3] represents n equations and m unknowns. Since in

general n < m, we have fewer equations than unknowns. We still

need more information.

The fact that there are fewer equations than unknowns indicates

that the system is underconstrained, which is as it should be. If the

system were completely constrained, nothing could move. In an

10 underconstrained system such as this, there exist many values for

the constraint force C which would satisfy the equation. However,

we want to add only enough force to cancel out any component of Q

which would cause the object to deviate from the constraints.

To satisfy the constraints, the object can move only along the

tangent planes to the surfaces ci = 0. Thus, a constraint force that

lies along the gradient to the constraints c will cancel any illegal force

while not adding or deleting energy from the system. This

observation yields:

dqj =4]

where A is vector of scalars. The components of A are known as

Lagrange multipliers, and this technique of inverse dynamics is
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sometimes referred to as the Lagrange multiplier method. (See

[Witkin, Gleischer, and Welch 1989] for a discussion of the principle

of virtual work.)

We now have:
dci , dk Cr dC = d i d2c [51

--- Wjk -J Ar = -jk Qk+- i + dt2

dci
Note - is the Jacobian matrix for the constraint equations. (That is,

dqj

each row i in the matrix represents that gradient vector for
dCr

constraint cj.) Wjk is the inverse of the mass matrix, and - is the
dqk

transpose of the Jacobian matrix. This gives us, on the left-hand side

of equation [51, an n x m matrix multiplied by an m x m multiplied

by an m x n, yielding an n x n matrix. Ar is an n x 1 vector of

unknowns. On the right-hand side, we get an n x I vector of known

values. We can now solve this system of linear equations for Ar.

Once A r is known, we can get C from equation [4], and we can finally

solve for q.

Theoretically, the above solution should supply a constraint force

sufficient to ensure that the objects always maintain their

constraints. However, due to errors introduced in discretizing the

integration, it becomes necessary to include a "feedback" term which

inhibits drift. Thus the total force becomes:

Qj + Cj + ac" + 3 cidC qj dqj'

where a and P3 are constants.

Application of this method can be illustrated with a simple

example. We will create a "midpointline" like the one constructed in
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ThingLab, with another fixed-length line attached at an endpoint.

We will apply an initial force to the unattached endpoint of the

midpointline and watch it move in response to the force.

Let q = [ql q2 q3 q4 q5 q6 q7 q81 be the vector of independent

variables with initial values [0 0 10 0 20 0 20 10]. That is, we have

four points (ql,q2), (q3,q4), (qs,q6), (q7,q8) at initial positions (0,0),

(10,0), (20,0), and (20,10), respectively. The first two constraints

make the first three points collinear and equidistant. The third

constraint fixes the length of the line between (qs,q6) and (q7,q8) at

10 units.

c1: 2q3 - q! - q5 = 0

c2: 2q4-q2 - q6 = 0
c3: 100 - (q5-q7)2 - (q6 - q8) 2 = 0

The points are particles of unit mass. Thus the mass matrix is the

identity matrix and can be dropped out of the equation. We will

exert an initial force of 10 units in both the x and y directions on

point (ql,q2), which gives an initial force Q = [10 10 0 0 0 0 0 0].

The constraint Jacobian matrix is

1 0 2 0 1 0 0 0
0 -1 0 2 0 -1 0 0
0 0 0 0 -2(q5-q7) -2(q6-q8) 2(q5-q7) 2(q6-q8)

At the initial moment to, the second term on the right-hand side

of equation [5], - j, will be 0 since the initial velocity is 0. For

time t>to, we have dei d d = d dcitim t tO wehav ~y- --(-:;-(ci(qr(t)))) 4 _S-' r) 4ly.
dqj dt 4i qj oq r

The third term on the right-hand side, dt2  will always be 0 in this

example since the constraint functions do not depend on time.
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Using a time increment of 0.1, we see the following motion of the

object. (Time t = 1 occurs after 10 time slices.)

t ql q2 q3 q4 q5 q6 q7 q8

0 0.00 0.00 10.00 0.00 20.00 0.00 20.00 10.00

1 83.00 82.00 10.33 36.00 19.83 -0.09 20.00 9.91

2 1.67 1.64 10.67 73.00 19.67 -0.18 20.00 9.82

3 2.50 2.45 11.00 1.09 19.50 -0.27 20.00 9.72

4 3.33 3.27 11.33 1.46 19.33 -0.35 20.00 9.X3

5 4.17 4.09 11.67 1.82 19.17 -0.44 20.00 9.53

6 5.00 4.91 12.00 2.19 19.00 -0.52 20.00 9.42

7 5.83 5.72 12.33 2.55 18.83 -0.60 20.00 9.33

8 6.67 6.54 12.67 2.92 18.67 -0.69 20.00 9.23

9 7.50 7.36 13.00 3.29 18.50 -0.77 20.00 9.12

10 8.33 8.17 13.33 3.66 18.34 -0.84 20.00 9.02

Table 2. Positions of midpointline in Lagrangian method

Figure 5 shows the initial and final positions of this midpoint

example. The force on the first point has caused it to move in a 450

angle, upward and to the right. This is consistent with the fact that

the force was equal and positive in the x and y directions. This force,

and the constraint that the second line maintain a fixed length, has

caused the midpoint line to compress from a length of 20 to a length

that is slightly less than 14, whereas the fixed length line retains its

length of 10.
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fixed length line 20

midpointline •7 " & 1
v mipon

0,0 10,0 20,0

Figure 5. Lagrangian approach to midpoint
with attached fixed length line. Solid
lines are at t=O, dotted are at t=1O.

3. More Physically-Based Constraints

Isaacs and Cohen [1987] combine behavior functions, kinematic

constraints, and inverse dynamics to control the motion of jointed

figures. Behavior functions determine higher level goals of motion,

like a hand reaching for an object or a car stopping to avoid a cliff.

Kinematic constraints specify exactly where a part of an object is to

go. Inverse dynamics techniques then determine the forces which

would result in the goal of motion.

Barzel and Barr [1988] also use inverse dynamics on rigid bodies.

They divide the modeling problem into two parts: moving the parts

of an object so that the object satisfies an initially unmet constraint

(causing the object to "self-assemble"); and maintaining the

constraint as the object moves and interacts with other objects. A

catalog of useful constraints and an explicit algorithm for computing

the constraint forces are given.
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Platt and Barr [19881 apply reaction constraints and augmented

Lagrangian constraints to flexible models, that is, putty-like objects.

Reaction constraints are used to model the collision of a flexible

model with a polygonal model. Augmented Lagrangian constraints

combine the penalty method and the Lagrange multiplier method.

Platt [1989] applies the constraint methods to neural networks.

The neural networks are actually differential equations that can be

solved using standard techniques from optimization theory and

numerical analysis, or implemented directly as circuits. Platt also

reviews the constraint methods applied to physically-based

modeling.

0
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Introduction

Physical modeling can be defined as a modeling technique in which various physical
parameters are incorporated into an animated model; allowing the behavior of the
model to be simulated according to known natural laws |Barzel 89]. With this
technique, all animated objects are simply forced to obey several physical laws instead
of requiring the animator to specify every detail of the motion.

This project involves applying the concepts of Object Oriented Programming to the area
of physical modeling. In the PM system, physical objects are modeled by objects in
Smalltalk. The interaction between the objects is carried out by the exchange of
Smaltalk messages.

Section One: Previous Work

There are several physical modeling efforts currently in progress by different research
groups in both universities and industry. This chapter briefly surveys some of the more
important work done by these groups.. 1.1 Penalty Method

The penalty method approach to physical modeling has been pioneered primarily by
Alan Barr and his associates at Cal-Tech, see [Barr 891, [Barzel 89], and [Platt 89]. This
approach considers a simulation as a group of objects each acting independently.
'Penalties" are inflicted on the objects if their behavior does not conform to the desired
behavior. Objects are, in effect, forced to behave appropriately.

Penalties are inflicted on objects primarily by exerting forces. The farther an object is
away from the desired behavior, the stronger the penalty force exerted on it. Figure 1.1
shows a case where a penalty force is correcting the incorrect interpenetration of two
objects. The ball should have bounced instead of penetrating the table, so the farther the
interpenetration, the bigger the penalty force. A math model can be applied here:
considering the penalty force as a spring which pulls harder the farther it is stretched.
This has the desired effect of correcting the incorrect situation, however, it is
computationally expensive in practice.

no penalty force small penalty large penalty

Figure 1.1 - Penalty correcting interpenetration
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Springs exert conservative forces on objects causing no loss of energy. This is
physically correct, but leads to perceptible oscillation unless damping is applied. Since
the penalty force will act on an object in a discontinuous manner, the damping values
and the best time interval at which to computer the simulation are difficult to
determine. This can cause a need to "tweak" each simulation until it looks right

A positive feature of the penalty method is that a wide variety of constraints can be
represented using penalty forces. Consider the mechanical situation of a ball connected
to the end of a stick with a short, strong string. The spring, which exerts a penalty
force, models the condition that the objects are fastened together. This idea can be
extended: building complex machines using penalty forces to hold objects in position.
This type of "rubber band machine" is, however, susceptible to the same oscillation
problems described above. In its complete implementation the following process is
performed:

1. All constraints built into a scenario exert initially unknown penalty forces.

2. An energy equation is constructed for each object representing the object's state
and the penalties exerted on it.

3. An energy minimization approach is applied to find the new state values of
the object.

1.2 DYNAMO

In [Isaacs 87], the authors describe DYNAMO, a system for computing dynamic motion of
linked bodies. This system performs inverse dynamics to calculate the positions and
orientations of each body in a linked system. Inverse dynamics takes the current state
and finds the forces necessary to perform a desired behavior.

The DYNAMO system contains an equation solver to perform the inverse dynamics
calculations and integrators to derive the new state from the previous state. An adaptive
time interval is used to maximize the simulation throughput while limiting the
maximum error allowed into the calculations. After every time cycle, the object states
are examined for accrued error and, if necessary, the time slice is adjusted.

Constraints and damping terms are applied directly on each object's DOFs (degrees of
freedom) to make the motion look more realistic. For example, the motion of an elbow
joint is constrained below a maximum angle of bending. DYNAMO also supports
behavior functions like "follow a path" or "reach for an object" which exert
themselves on the objects with forces.

1.3 Modeling Object Collisions

The approaches described in [Moore 88] and [Baraff 891 are both notable efforts in the
area of detecting and resolving collisions between objects. Each of them have created
an analytical method for finding points of collision of arbitrary shaped objects at any
position and orientation.

The goal of the method in [Moore 88] is to prevent interpenetration of bodies by finding
the collision point and exerting a calculated force vector at the collision point. The
Cyrus-Beck clipping approach IRogers 85] is extended to produce an inside-outside test
for a vertex and polygon. Given a point in space, the test will determine which side of a
polygon the point lies on. If a point lies on the 'inside" of every polygon of an object,
then it interpenetrates the object For collision detection, the test is applied between
every vertex of one object and every polygon in the other object. This is an O(m 2n2 )
algorithm (with m vertices in the first object and n faces in the second object).
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Two methods of collision resolution are presented in [Moore 88). The first involvesO applying a spring force on interpenetrating vertices; essentially the same as the penalty
method. The second approach is analytical, creating a set of fifteen equations and
fifteen unknowns which completely specify the motion of both objects after a collision
[MacMillan 36]. The analytical approach has the advantage that it only needs to be
applied once for every collision. The spring approach often must be calculated
repeatedly over a large number of small time intervals. Finally, [Moore 88] extends
the analytical approach to hierarchical articulated figures (multi-joint structures).

The work outlined in [Baraff 891 draws a distinction between colliding contact and
resting contact. Colliding contact is impulsive in nature, varying discontinuously over
time. Resting contact, like a normal force holding an object on a table, is continuous
over time. The author finds a set of contact points where forces can be exerted to
maintain correct resting contact. A linear programming approach is developed to solve
for resting forces using a heuristic, and this is extended to cases where multiple-objects
are in resting contact with each other.

In [Baraff 89]. the resting forces are calculated by satisfying constraints placed on the
objects in contact; interpenetration and friction are handled in this manner. This
analytical approach is compared with propogational approaches which handle only
two-object-at-a-time collisions.

1.4 Lagrangian Approach

The physical modeling team at Carnegie Mellon, lead by Andrew Witkin [Witkin 89 1]
lWitkin 89 12] [Witkin 90], have taken a conservation of energy approach where
constraints and forces all contribute to the energy levels in objects. In [Witkin 89 42], a
catalog of useful constraints is presented which are expressed in terms of the energy
contribution to the object. The sum of constraints applied to an object must do virtual. work: it must change the object's motion, but not violate the laws of conservation of
energy by giving or taking energy away from the object.

According to [Witkin 89 #11]. physical modeling becomes a problem of constrained
optimization. Several physically accurate solutions to motion may exist, but one way
will most accurately satisfy all the constraints placed on an object. Animation-like
motion where objects stretch, lean, and squash has resulted from expressing these
motions in constraints and allowing the system to calculate all the motion.

A Lagrangian-based solution is developed and presented in IWitkin 90] which does not
suffer from the oscillation and small time slice problems found with the penalty
method.

Section Two: The Object Oriented Approach

Object oriented programming (OOP) is an approach to programming which has gained
acceptance quickly in both the academic and industrial communities. Using OOP
methods generally results in a shorter design cycle and a more extendable, more
flexible final software product.

In OOP, the data structures and routines which use these data structures are bound
together into an abstract data type (ADT) [Meyer 88]. Once the ADT is finished, the only
access to the data structure is through the interface provided by the routines (called
methods) bound in the ADT. This is referred to as encapsulation and is an important
feature of OOP. Software written using this approach is constructed by designing the
relevant ADT's, called classes in object oriented terminology, creating instances (or
specific copies of the AD'I s) for use in the program, and letting these instances (called
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objects) communicate with each other by sending messages to each other -. accomplishing the goal of the system as their end result.

Object Oriented Design in the PM System

The uniqueness of this project is due primarily to the application of the object oriented
methodology to the design and creation of a physical modeling system. This is in
contrast to the previous systems described which use a more classical software design
approach.

As this paper will describe, the PM system must perform the same types of
mathematical calculations done by other systems. However, the way this is
accomplished through the interaction of objects makes this system unique.

The PM system is written in Smalltalk-80 and resides on Sun SparcStations under
version 2.5, the Sun 386i under version 2.4, and the Apple Mac-lIx under version 2.4. It
has been interfaced to two different animation packages to render the output of the
physical simulations.

2.1 The Controller, Objects, Rnd Constraints

Since the simulation is represented entirely through the interaction of a number of
objects, a number of different classes of objects were created. The following sections
briefly describe the three classes of objects necessary to carry on a physical simulation
in the PM system.

2.1.1 The Simulation Controller. An instance of the simulation controller class (referred to as "the controller" from now
on) manages all the other object instances involved in the simulation. The controller
instance is invoked directly by the user, receives some setup messages, and then
executes the simulation a step at a time.

Othier simulation objects are maintained in lists by the controller - segregated by object
type. During each time step, the controller sends messages, as appropriate, to each object
in the lists - causing them to interact with each other and cause the simulation.

The five lists managed by the controller are the objList (of physical objects), the
preConstList (of preconstraint objects), the postConstList (of postconstraint objects), the
connectorList (of connector objects), and the monitorList (of monitor objects). A
diagram of this is shown in Figure 2.1. The connections on the diagram underneath
the lists represent simulation messages. These messages are sent between senario
objects during the simulation.
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PMController

objList preConstList postConstList connectorList monitorList

physical connectors monitor objects
Objects constraintconstraint on objects

objects object [:

object-constraint
messages connector-constraint messages

Figure 2.1 - Structure of a PM System Simulation

2.1.2 The Physical Objects

Each physical object in a scenario (ball, table, box, etc) is represented by a software. object instance placed in the ObjList.

During each time cycle, the controller asks the objects if they have collided with each
other. An assumption the PM system was designed around can be stated as follows:
Since physical objects know their state more completely than any other object in the
simulation, they should make the decision whether they have collided with another
object by communicating directly with that object.

The same assumption was made about handling collision resolution (exchanging
momentum) between objects. This is accomplished by direct communication between
the objects involved instead of by going through the controller or allowing the controller
to decide what happens when a collision occurs.

Accurately maintaining internal state requires that an object correctly respond to
external influences (constraints, collisions). Each object must, therefore, be able to
receive forces and exert forces on other objects in the scenario in a manner analogous to
what occurs in the physical world.

2.1.3 The Constraint Objects

These objects perform the role of influencing the motion of one or more physical objects
by "pushing or pulling" on them. Several different classes of constraints exist in the
PM system, and a constraint of a particular type is applied by instantiating an object of
this class and attaching it to a physical object

Constraints usually implement a rule such as "stay on a wire between two points" or
"pull with a force proportional to the position of the object". They can also be viewed as
math models for devices in the physical world such as pins or springs. InterestingO motion is usually accomplished by allowing several constraints to act on a physical
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object simultaneously or in succession. The exact types of constraints available in the

PM system will be covered in Chapter Six.

O 2.1.4 The Monitor Objects

Any object maintained by the controller which just passively watches the scenario is
considered a monitor. It may generate a graphical window showing the positions of
objects; it may write out the scenario results in a manner which can replayed at a
later time; or it may perform any other function which can be performed based on
information available in the object lists maintained by the controller.

The first two functions described have already been implemented as monitors. This
feature of the controller can be considered as an opening for future expansion and
interfacing of the PM system to other systems. One example of an additional monitor
application useful in a distributed simulation could send messages to shadow objects
existing on a machine different than the controller. Through this, the controller could
send state updates to the shadow objects.

2.2 Class Hierarchy in the PM System

Tile PM system was the first major object oriented (00) design effort undertaken by the
author. Several notable results were obtained from the 00 approach. Some of these are
outlined in the following sections of this chapter.

2.2.1 Features Provided by the Hierarchy

Usually, as an important software engineering project is undertaken, any modules
which successfully work are saved, copied, and then modified to avoid the danger of
"breaking" something which worked before the modifications. This form of versioning
is successful, but tends to produce a collection of different instances of the same module. which all perform slightly different functions - a dangcrous situation.

During the development of the PM system, the rule "Don't adapt, descend" from [Ezzel
90] has been loosely followed. The PM system consists of a number of classes each of
which have more ability than the parents from which they inherited. Descendents are
usually more capable than their parent classes; for example, the class hierarchy Object
-> PMObject -> PAMSphere -> PMSphereWithForces -> PMSphere WithAngular. This is a
cleaner situation than having a collection of "similar" methods. The ability to descend
into subclasses helped manage the software development process considerably.

In general, the divisions of classes in the hierarchy represent divisions in the type of
object (different object typess are located in different branches of the hierarchy). See the
chart in Appendix A for a complete class hierarchy. The class hierarchy is a good
record of the directions taken during the PM system development.

2.2.2 Division of Labor

Another design goal followed during the PM system development was to maintain a
division of labor between the objects in a simulation. As much as possible, each object
would have a clearly defined purpose and subclasses of each other would have similar
purposes. For example, objects from any constraint classes will act to constrain the
behavior of a physical object(s), and physical object classes will never perform this type
of function (no classes like PMCubeOnASpring).

Design decisions were made to support the division of labor goal. Some of these are
listed below:

1. Physical objects will detect collisions
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2. Physical objects will resolve collisions
3. The controller will manage time, but not generate displays
4. Monitors will create displays, reports, etc.
5. Constraints will be isolated from geometry when possible

2.3 Class Interaction

The problem of "Who should handle ......... ?" is closely related to the division of labor
problem. Any problems which exist in physically modeling a simple environment
must be solved by one of the object instances. Which object should handle a given
problem?

Whether the objects or the controller detect collisions and whether the constraints or
connectors (see Chapter Six) handle the geometry are both examples of this problem.

Section Three: Time Slicing in the PM System

When the motion of a particular physical system is studied, a set of equations are
usually developed which describe the position of the objects for this particular system.
The simple pendulum, along with the usual approximate equations for the angular
velocity and period, is a good example. Figure 3.1 shows this case as described in
1Ohanian 89], which holds true for small values of e:

1ength=1

0 mass=rn period 2n/w 2n1f/g

Figure 3.1 - Math model of a simple pendulum

Some physical modeling systems calculate the position and orientation of the objects
modeled by solving the equations in the math model of each object. This type of system
is limited because it requires a math model for every type of object interaction included
in the simulation.

Instead of solving a set of explicit math models, the PM system uses forces to represent
interaction. For the simple pendulum example, a constraint force is placed on a ball by
a constraint object The continuous force causes circular motion.

3.1 Time Slice Sub-cycles

In order to model the behavior of multiple objects simultaneously reacting to external
forces, each unit of simulation time (a time slice) is divided into two sub-cycles. The
definition of the sub-cycles is as follows:

for e..echng: (1st sub-cycle) During this sub-cycle, all objects which are
interacting in any fashion because of a collision or an applied constraint will
exert forces on each other. All objects sum the forces they receive, but do not
react

obec racio: (2nd sub-cycle) All objects use the sum of forces and moments
about their center of masses to update their velocities, positions, and orientations.
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The separate sub-cycles were designed to eliminate any problems which may occur due. to the order in which the objects are handled by the controller. Additional sub-cycles
may be necessary to resolve collisions between multiple objects - objects must divide
their momentum between incident colliders if more than one collider is present. This
will be discussed later in Section Six.

3.2 Response time problem

The two sub-cycle approach is not without its problems. Take the case of the famous
momentum toy shown in figure 3.2. Assume that ball BI strikes ball B2 during time tI.
Momentum conservation is done along the axis of intersection yielding forces on both
ball B] and B2 (during the force exchange sub-cycle of ti). Since B2 had no velocity
previous to the collision, it will not exert any force on B3 during ti's force exchange
period even though they are in contact This means that after tI's object reaction sub-
cycle, B2 has a velocity while B3 still does not. Therefore, during t2, ball 12 will move
into B3. The ball B2 in the real toy would have, instead, transferred all its momentum
to B3 which then passes it to B4, which passes it to B5.

Normal collision: BI&B2

Resting collisions:
B2&B3, B3&B4, B4&B5

BI B2 B3 B4 B5

Figure 3.2 - Momentum toy

This problem can be summarized as follows: The PM system transfers momentum
incrementally between multiple objects in collision (one per time slice) whereas
physical objects can transfer momentum almost instantly. This is an artifact of
imposing a simulation clock on events. The amount of error detected is related to the
size of the time slice used. The actual physical toy can be considered as working with
an infinitely small time slice.

3.4 Areas for Improvement

Accurate collision detection requires a very small time slice with the current approach.
Unless a better collision detection algorithm is used by the objects in the simulation,
collisions can be completely missed if the time slice is not sufficiently small.

If a collision detection algorithm can be developed which will predict possible
collisions the time step before they occur (or before they are missed), a recursive
simulation approach could be implemented as an extension to the current PM system.

Once an impending collision is detected, the objects which might collide could be
instantiated into a separate simulation (like a recursive sub-simulation) and be
allowed to interact with a smaller time interval. The sub-simulation would run to
completion, return the accurate positions and velocities of the objects involved, and the
top-level simulation could continue.

Section Four: Collisions
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for an) physical modeling system, collisions between objects are an important, if not -
primary, problem. Two groups in particular. [Baraff 891 and [Moore 881, have developed
fairly complete solutions for this problem. Although this was not the primary focus of
this project, it was an area which required substantial effort. In the PM system, objects
are responsible for deciding if they have collided with each other (see Section 2.3).

During each simulation step, the simulation controller queries each object to determine
whether it has collided with any other of the objects - taking O(n 2 ) time to determine
all inter-object collisions. No effort to improve the efficiency of this algorithm was
performed since time complexity was not a main issue of this projecL

4.1 Detecting a Collision

Since the controller queries each physical object in the simulation about whether it has
collided with every other physical object, each object must make a decision about
whether a collision has occurred or not. Each object, which is either a block or sphere
type. detects collisions through their collidedWith: aPMObject method. The algorithm is
based on the distance between object centers and the size of the two objects.

4.1.1 size representation

To correctly detect collisions between objects, all objects must represent their individual
size and know how to communicate this to other objects when requested. Size is
communicated by giving every object a method which returns its size. This method is
called by other objects whenever the size is needed.

If an object is a sphere, it returns its radius (from the obiSize instance variable) when
queried. However, the separate x, y. and z sizes of a block are represented by an
additional instance variable in the PMCube class called 'size' the value of which is of
type PM Vector. Individual components of the size are retrieved by sending a message to
the vector instance.

This raises a contradiction between the way that instances of the classes PhICube and
PMSphere respond to the size message. Blocks will return a vector type while spheres
return a scalar. This has been handled by providing a separate method for instances of
PMCube called sizeVec which always returns a vector. The size method of a PMCube
always returns a scalar value of zero. This will prevent any spheres from believing
they have collided with a block when, in reality, they have only collided with the
block's bounding sphere. Instead, the block will detect the collision because the sphere
answers its size message correctly. This results in blocks always 'discovering' they
have collided with spheres at the right instant because only the block knows its actual
size.

4.2 Collision Resolution:

Collisions are resolved in the PM system by calculating the transfer of momentum
which occurs in every collision. If momentum transfer is always calculated correctly
and the transfer is done by exerting forces, all physical objects will maintain the
correct level of kinetic and potential energy as well momentum [Beer 88]. Energy
conservation was not specifically considered except for the handleCollision With:
method in the class PMSphere which was an early collision model derived from
[Blinn 871. All later collision resolution methods dealt strictly with momentum
transfer.

4.3 Areas for Improvement

Most of the object classes in the PM system currently detect and resolve collisions in the
global (or world) coordinate system. It makes much more intuitive sense for each
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object to perform calculations and make its decisions with respect to its own lcal
coordinate system. The rewriting of the algorithms to local coordinates which was. done for the class PMCubegWithLocal should be done for all objects.

Collision detection decisions are currently based on object position only. This is too
dependent on the size of the time cycle since object positions are calculated only at
discrete points in time. A predictive detectng algorithm was described from the
perspective of the time slice at the end of Chapter Four.

The algorithmic approach used in [Baraff 891 or [asdfsdf] would be a more robust
approach to collision detection. An algorithm could be implemented in a Smalltalk
object and referenced by the controller or by physical objects. This would probably best
be done during the controller's findAllCollisions method where it tells objects to handle
their own collisions. The new approach in Smalltalk would look like:

Isolverl
((objl collidedWith: obj2) or: [(obj2 collidedWith: objl)])

iflTrue: [
solver = CollisionResolver new.
solver resolveCollisionBctween: obji and: obj2].

This would not require any changes to the physical object classes.

Section Five: Constraints in the PM System

To simulate any 'interesting' motion, for example, motion where objects follow a path,. don't cross a border, or stay a fixed distance from each other, a physical modeling
system must provide a mechanism to externally affect the behavior of any or all objects
in a simulation. This has been accomplished through the use of constraints placed on
an object or on its motion IBarzel 891. As discussed earlier, the PM system implements
constraints by having constraint objects exert external forces on physical objects -
causing the objects to react in a desired manner. This is consistent with the method of
applying constraints used in [Barzel 89], [Witkin 90] where all constraints are
calculated and then expressed as external forces on the objects.

A design goal of the PM system was to have constraints interact with objects in a
manner as consistent as possible with object-to-object interaction. As implemented in
the PM system, constraint objects can be considered as specific math models contained
in Smalltalk objects. The design, invocation, and interaction of these models is
described in the following sections.

5.1 Constraints as Objects

Since each physical object in a simulation is represented by a PMObject subclass
instance, it is consistent with this paradigm to represent any constraints as instances
of similar subclasses of PMConstObj. These constraint objects are also maintained by
the controller in a manner similar to the physical objects.

When instantiated, a constraint object is attached to one or more physical objects upon
which it will act during the course of the simulation. During each time slice, the
controller activates the constraint: instructing it to apply itself to the physical objects it
is connected to through a force the constraint object calculates. The constraint object
will then execute its own method describing how the force is calculated. An example is
shown in Figure 6.1 where an instance of the PMConsObj subclass PMAnchoredSpring
is attached between a fixed point in space and the object - an instance of
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PhISphere WithForces. During instantiation, the spring is given the location of its base
point (the anchor) and a pointer to the object its free end is connected to. When the
spring is invoked by the controller, it queries the object in order to calculate the force it
will apply. Depending on the type of constraint, the needed information will vary, but
as a rule: Constraint objects find the information they need to apply themselves by
querying the objects they are attached to. In the case of the spring, it asks for the
sphere's position so it can use the equation F k(freeEndPosition-basePointPosition) to
calculate its applied force.

5.2 Including Constraints in the PM System

Several methods were considered before deciding on a constraint approach for the PM
system. The primary problem was ensuring that constraints and physical objects
interacted together correctly. Since the controller manages all of the object interaction,
it must be able to handle the constraint objects along with the physical objects in the
simulation. Several approaches for the controller were considered:

1. separate constraint list - All constraint objects would be inserted in a list
analogous to the objList, but designed for constraint objects only. A method
similar to the findAllCollisions would traverse the constraint list and apply the
constraints. Here constraints are treated as an additional paradigm for the
objects, separate from collisions.

2. constraint objects in obiLLst - The list of objects in a scenario would include
both physical objects and constraint objects. A problem arises since the
constraint could 'collide' with an object it is connected to (or even an object it is
not connected to) and be a slave in the collision. This could be solved by sorting
the object list (so constraints come first), or by affecting the way a constraint
object responds to a collided With: message. With either method, constraints
must always be collision masters if the possibility of colliding with a physical
object exists.

Since the constraint objects are not instances from a PMObject subclass and have
different purposes, it was decided that the first option using separate lists was a cleaner
and more intuitive approach. This approach was impiemented in the PM system.

5.3 PMControllerWithConstraints

The design of the controller is affected by the addition of constraint objects to
simulations. Therefore, a subclass of PMController called
PMController With Constraints was created. PMController Wit hConstraints maintains
the constraint objects in a list separate from the physical objects in a scenario. In
addition to calling the advance Time methods for each physical object every time slice,
the controller calls the apply methods for every constraint in its constraint list This
necessitates a uniform constraint-to-controller interface consisting of the same methods
to interact with the controller even if the purpose of the constraint is different.

It will be seen in the next sections that two different classes of constraints exist. The
controller in the PM system maintains a separate list for each of these constraint
classes (so it has three lists: one for objects, two for constraints). These two constraint
classes are referred to as preconstraints and postconstraints.

5.4 Preconstraints

The first of the two major classes of constraints is called preconstraints. A
preconstraint is defined as a constraint whose force calculation is not dependent on. other forces already incident on the object. The spring is a good preconstraint example
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since it does not need to know what forces have been applied on the obiert already. To
be an accurate spring model, it will pull with a force proportional to the amount it isO stretched. Therefore, it is dependent solely on the object's position. A list of example
preconstraints is given in Figure 5.1.

Since no incident force information is needed, the preconstraints can be evaluated and
applied by the controller at the beginning of the time cycle before any inter-object
collisions are resolved.

Preconstraint Type Force Dependent on

spring object position
damped spring object position, velocity
boundary penalty object position
air friction translational & angular velocity

Figure 5.1 - Table of Preconstraints

5.5 Postconstraints

In contrast to the preconstraints, postconstraints react to or oppose forces incident on an
objcct from other external sources. These constraints must be evaluated after collisions
between objects have been considered. Other physical objects or constraints may have
exerted forces which should be opposed by a postconstraint. If left unopposed, the
external force will cause a constrained object to move in a way inconsistent with its
constraint.. The first example developed in the PM system was the rigid bar constraint mentioned
previously in Chapter Four. A table of example postconstraints is shown in Figure 5.2.

Postconstraint Type Force Dependent on

rigid bar velocity, time slice, forces
normal force previous forces
friction previous forces, relative velocity
pin or anchor post previous forces

Figure 5.2 - Table of Postconstraints

5.6 Connecting Constraints

The approaches described above can be demonstrated effectively using the PM system,
but has the drawback that the constraint objects must, in some cases, perform a
considerable amount of geometry to decide where their connection points are before
beginning to actually apply the constraint rule embedded in the instance methods.
Implemented in the way described, a constraint would have to query each object for
its position, size, and orientation. Then the constraint instance would need to perform
vector math to find the location of the endpoints before calculating its force. In order to
allow constraints to be more 'pure" and isolated from physical details, connectors
were developed. Proposed in [Witkin 901, this idea has been used by the PM system as
well.

12



5.7 Connection Points. The preconstraint class PMAnchoredSpringWithOffset can directly perform all
necessary math to connect from a point in space to an object where the object connection
point is not directly at the object's center of mass. This requires a complex apply
method and still cannot handle the case between two movable objects.

To abstract the geometric details from the constraints, the class PMPoint and its
subclasses including PMConnectionPoint were developed. Instead of attaching itself
directly to an object, a constraint will attach itself to instances of one of these classes.
The points are examples of connectors which isolate the constraints from geometry and
facilitate the development of a more general library of constraints.

Instances of PMPoint can be given a position and velocity of their own in the
simulation; they will continue to move according to their initialization during the
simulation and will not be involved in any collisions with physical objects. Instances
of PMConnectionPoint can be attached to an object with any offset vector from the
object's center (see Figure 5.3). During the simulation, the points automatically update
their positions according to the object's motion. They are analogous to 'markers' or
*hooks' on a certain place on their object

Connection
0 Point

Center of Mass Offset Vector

Figure 5.3 - A ConnectionPoint on an object

It follows from this that constraints can be developed which connect only to points. The
preconstraint PMSpringBetweenPoints is an example of this type of constraint Using
positions derived by querying the points, it has a much simpler apply method which
involves only the calculation of the constraint force.

5.8 Activating Constraints

The issues of time complexity and divi n of labor arise when considering if the
controller should always apply the constraints at every time slice, or if the constraints
should know when to apply themselves. Consider a normal force constraint existing
between two objects. This normal will only apply force when the objects are in contact-
If the controller calls the normal force constraint every time slice, the normal force
object must know, from information requested from its constrained objects, that it
should not actually exert forces unless the constrained objects are in contact This

0
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requires an additional collision test by the constraint every invocation which is time
consuming.

O The alternative method involves adapting the controller to keep a list of all collisions
that have ocurred this time frame and choosing one of the two following approaches:

1. Activating only the constraints which are involved with the colliding objects.
Constraint objects must be cross-referenced with the physical objects they
constrain for the controller to know which constraints are active. This requires
more extensive intialization of the controller when the scenario is constructed,
but is time effective during actual simulation (where efficiency is really
needed).

2. Having the controller keep only a list of which physical objects have collided
during this time cycle. It can pass this list to all constraints that need to decide
whether they will apply themselves or not It is then the constraint object's
responsibility to make the decision. This is more time consuming than
approach 11, but still does not require the redundant collision testing needed if
the controller applies every constraint every time slice.

Connectors, as described in section 5.6, may offer a solution to this problem. Further

research is needed here before a decision can be made on the best approach.

Section Seven: Extending the PM System

During the earlier chapters of this report over specific portions of the PM system, some
areas for improvement have been noted. In this chapter, possible extensions and
applications for the PM system will be discussed.

7.1 Multi-Object Collisions. In Chapter Four. it was mentioned that 'he PM system could not accurately handle
multi-object collisions. The PM system classifies as a propagation system according to
[Baraff 89], meaning that simultaneous collisions are simulated by a sequence of two-
objects-at-a-time collisions (refer to the discussion of the momentum toy in Chapter
Four). This approach can sometimes result in incorrect final results.

7.1.1 Simple Extensions for Multi-Object Collisions

Two extensions could be added to the basic PM system which will make it more
suitable for haIdling multiple-object collisions. Each of these could be implemented
directly as subclasses to the existing PMController and physical object classes. Both
approaches will use Figure 7.1 as an example of how they are applied.t force from object I force from object 2

, ,*'b* *.*~%% % _-..*..,-,_- ,

*gravity
Figure 7.1 - Multiple-object Collision
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The Rpproaches are summarized as follows:

1) Extra time sub-cycle: The existing two sub-cycle approach could be extended to
include a third sub-cycle which would occur previous to the other two already
described. In the new sub-cycle, dubbed the collision detect sub-cycle, all the
collisions between objects would be discovered. Then, during the force exchange
sub-cycle, each object would know how many objects it is interacting with and
can adjust or scale the forces it exerts appropriately. For the case in Figure 7.1,
Object3 would find that it is involved in simultaneous collisions along the same
axis with Objecti and Object2. Object3 would then divide the magnitude of the
force by the number of objects and exert half as much force on each supporting
object

2) Obiects remember collisions: Each physical object could keep a record of
objects it has resolved a collision with during the current time slice. If a
collision which occurs later would change the result already determined for a
previous collision, the object could fix the first collision. It would calculate the
needed change and send an additional (cancelling and fixing) force to the object
involved in the first (incorrectly calculated collision). For the Figure 7.1 case
here, a normal collision is resolved, assume Objecti- Object3, then when the
Object2 - Object3 collision occurs, Object3 will also send a cancellation force to
Objecti. The same final result is achieved.

Problems exist in both of these cases since the objects will need to decide which
collisions affect each other and which collisions don't. For example, for Figure 7.2, the
two collisions on Objecti can both be handled correctly if treated separately. Some
geometrical tests must be devised to determine when to use a multiple-equation method
like 1) or 2) and when to use the ordinary two-at-a-time collisions. Any such test would. be subject to many special cases and may not be rigorous enough.

S velocity of ball

velocity of ball

Figure 7.2 - Independent collisions

7.1.2 Including an Equation Resolver

The solutions presented in the previous section, while they may work for some
collision cases, are not the most promising direction in which to extend the PM system.
In lBarzel 881, constraint forces for the simulation are calculated by a simultaneous
equation solving method. This approach will be more rigorous since, once the system is
expressed in a system of equations, all the forces can be evaluated without testing
special cases of object position and orientation (as might be necessary in the previous
section's approaches).

0
15



Also, the methods in [Baraff 891 for determining normal forces for objects in constant
contact are based on simultaneous equation solving. IWitkin 88] also uses a linear. system solver to resolve energy and constraint equations. To include some of these
features in the PM system, an equation solving system must be added.

The concept is not difficult to implement in the PM system, since subclasses of the
physical object classes could be made which send their state to the equation solver
instead of resolving the collision themselves. The solver could be integrated into the PM
system environment as an object in Smalltalk, possibly usable by different objects in
the system for different purposes.

7.2 A Look at Networked Simulation

The PM system was designed with a goal of fitting into a networked simulation
involving a large number of physical objects maintained across a number of different
workstations. If this type of simulation is to be accomplished, the two areas in the
following sections must be considered.

7.2.1 Distributed Objects

If multiple workstations are active in a single simulation, then simulation objects,
which need to communicate with each other, may exist on physically separate
workstations. It is helpful in this case to provide one additional object type, a shadow
object which will receive a message and echo it to its corresponding real object on a
different workstation. See Figure 7.3 for a pictorial view of this. With this scheme,
each object thinks it is communicating with a local object, and the shadow objects are
serving as gateways between the workstations.

Workstationl Workstation2

Object I ,- ",
Objectl

- Shadow:

I

'Obect2 J

*s °

"""" Obj ect2

Figure 7.3 - Shadow objects

This type of simulation may affect the way which physical objects need to interact:
what type of messages they should send, should acknowledgements be received, etc.

The monitor objects mentioned in Chapter 2 can be extended for use in this scenario. A
monitor object could be tasked by the controller to update the state variables of any
shadow objects on other workstations when necessary. When extended, monitors may
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be a powerful method of interfacing the PM system with other software systems in a

large-scale simulation.

. 7.2.2 Inter-Object Messages

If objects exist on separate workstations, any messages between them must travel
across the network between the workstations. This is a disadvantage since both the
transfer speed and the bandwidth of today's networks are relatively low. Low
bandwidth means it is easy to saturate or flood the network with messages, causing
further delays.

The Smalltalk methods in the PM system create many temporary objects (mostly
vectors) and perform a substantial amount of inter-object communication. A design
decision to limit the number of messages between physical objects was made. This
should ease the extension of the PM system to a networked simulation. For example,
consider the following Smalltalk commands. This code assumes that physical objects
have a pos method which returns a vector type, and when a vector type receives an x or
y message, it returns the corresponding component

I distSquared relativePos I
distSquared = (((aPMObject pos x)-(self pos x))*((aPMObjec1 pos x)-(sef pos x))) +

(((aPMObject pos y)-(self pos y))*((aPMObject pos y)-(seft pos y))).
relativePos = (aPMObject pos) - (self pos).

if aPfObject represents another physical object, then five inter-object messages are
needed to execute just these two lines of code. If, however, the same function is written
this way:

IdistSquared relativePos theirPos I
theirPos = aPMObject pos.
distSquared = ((theirPos x - self pos x)*(theirPos x - self pos x)) +

((theirPos y - self pos y)*(theirPos y - self pos y)).
relativePos = theirPos - self pos.

Only one inter-object message Is needed to accomplish the same calculations with this
approach.

Conclusion

The PM system can be considered an implementation of the Penalty method of physical
modeling. The strength (ease of modeling) and weakness (small time steps) exhibited
by the PM system are consistent with the penalty method results described in the
previous work reviewed (see Chapter One).

The PM system shares the approach taken by [Witkin 881 in developing a library of
useful constraints. These constraints serve as tools with which to model different
physical systems. The project proved experimentally that the way a physical system is
modeled (how it is assembled from objects and constraints) was as important as the
method used to carry out the simulation.

The object oriented design approach to physical modeling, used only by the PM system,
greatly decreased the development time necessary and provided early results. When
first developed, the parent classes in the PM system were instantiated in simulations.
This provided necessary feedback early in the design cycle and allowed the system to
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evolve quickly. Subclasses inherited features from the parent classes and included
additional features of their own.

The future for the PM system looks good. Because of its object oriented nature, it is
easily expandable. Some improvements in collision detection and collision resolution
mentioned in the paper have already begun. These can be implemented as new
subclasses of physical objects - extending the concept of the PM system.

Appendix A: Smalltalk Class Descriptions

The class hierarchy shown below represents the top-level Smalltalk classes currently
existing in the PM System. Simulations are composed of instances of these classes (or
their subclasses) interacting. Each of the classes are described later.

Object

PMController
PMMonitor

PMObject PMConnector PMConstObject

A.1 PMController

O An instance of this class controls a physically modeled scenario consisting of any
number of interacting objects. The instance maintains a list of the objects, and uses
this list to look for collisions between objects. If collisions occur, the controller
instructs the objects to resolve the collision ( by whatever means provided in the
objects). A single view of the scene, which is a parallel projection looking at the XY
plane is displayed for the user.

Methods are provided to add objects, play a scenario, add gravity, advance the time
clock, and find collisions between objects. The subclasses of PMController, shown
below, have additional features outlined in the following sections.

A.2 PMObject

All physical (non-constraint) objects in the simulation are instances of this class or one
of its subclasses. In one sense, the class PMObject can be considered to be a deferred
class since many common features are inherited from PMWObject by its subclasses
(Meyer 881. However, on the other hand, instances of class PMObject are given enough
ability to behave in simple simulations. This idea is contrary to the rule that instances
cannot be made of a deferred class.

A.3 PMConnector

This defered class provides a way to isolate the geometric calculations from the
constraint instances. Constraint objects are attached to instances of PMConnector
which are, in turn. attached to a physical object The connector provides a conceptual
isolation between objects and constraints working on them.

. A.4 PMConstObject
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This is a deferred class which serves as the parent class for all constraint objects. No. instances can be made of this class. A class hierarchy of constraint subclasses which
inherit from PMConstObject includes several types of both preconstraints and
postconstraints including springs, normal forces, air friction, and boundary
conditions.

A.5 PMMonitor

The PMMonitor class currently has two subclasses, both designed to interpret
information about the simulation from the object lists passed to them by the
PMController. The class PMMonitor itself is an abstract class containing only methods
which are common to its subclasses. The first subclass, PMSconarioRecorder, creates a
textual output file which allows the calculated animation to be played back at higher
speed using an animation package developed by the author [Lisle 90]. The second
subclass, PMScenario Window, is part of the interface of the PM system and draws
several orthogonal projections of the animated scene during calculation.
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Abstract

* This paper describes the methods used to provide a realtime
simulation of fluid flow to the IST/UCF dynamic terrain project.
Several methods for fluid animation were researched, and one was
chosen for use in this project.

While the fluid model was implemented as part of this project,

the main focus was extending the model to accept floating bodies.
This involved fluid displacement and the creation of ripples to
simulate disturbances in the water caused by floating objects.

To demonstrate the usefulness of a water model to the dynamic
terrain project, a simulation of an army ribbon bridge was
constructed. The bridge is made up of individual sections which
interact to create a realistic effect as a vehicle crosses the river.

,;ome thoughts on the incorporation of the water model into a
distributed database management system are discussed. And finally,
some insight is given into extensions and applications for the water
model.
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Chapter 1
Introduction

1.1 Dynamic Terrain

Existing ground combat training simulators have dealt mainly
with vehicle and weapon dynamics. As advancements in hardware
became available, simulations began to focus on more sophisticated
topics, such as intelligent behavior, learning systems, and networked
simulations. One area currently being researched for the next
generation of simulators is dynamic terrain.

Traditional terrain databases are static and cannot be modified
during a simulation. Thus, bombing a bridge has no effect on the
database, and pushing over trees is impossible. Some simulators
allow a limited form of altering the database, such as the ability to
blow up a bridge, but the behavior is always the same and only
applies to those objects which are specifically programmed to behave
a certain way in a given simulation.

To increase the effectiveness of simulator training, the
simulation needs to more accurately reflect real world conditions. In
a traditional ground-based warfare simulation, many aspects of
actual battlefield tactics are ignored because of the lack of simulator
ability. Important activities such as digging anti-tank trenches and
gap-crossing are neglected, decreasing the realism of the simulation.

Dynamic terrain deals with the ability to modify terrain
attributes during a simulation. Modifications are not only performed
by vehicle actions, such as cannon fire, but can also be due to
weathering effects, such as rain and snow. Substantial research has
been performed in the area of dynamic terrain at IST [Moshell 92,
Hua 91, Moshell 90], although most of the work has involved changes
due to vehicle actions.

This project deals with the incorporation of a realtime,
computationally tractible flu~d model into the IST/UCF dynamic
terrain project. The goal is to lay the groundwork for increasing
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simulation realism through numerous applications involving fluids.
By using a versatile fluid model, the work described in this document
should be easily extendable to a number of fluid related topics not
covered within the scope of this project. In a larger context, this
probject is part of an extended effort at UCF to contribute to the state
of the art in physically-based computer graphics.

The introduction of fluids raised a number of interesting
computational problems for distributed simulation with multiple
databases. This topic is also addressed by this project.

1.2 Background

Gaps have always provided a major obstacle for mobile
ground-base armies. Traditional simulators provide means for gap
crossing in the way of bridges. However, in a dynamic terrain
simulation, bridges can be destroyed. Therefore, a realistic
simulation should provide a means for crossing gaps without the
means of static structures. Because this project involves the addition
of a fluid model to simulations, gap crossing maneuvers will focus on
rivers and streams, which is a very complex military operation
[FM5-101].

With the absence of static structures with which to cross a
body of water, alternate methods must be explored. Fording the
river is the most obvious approach to a river crossing, but is not
always possible. An armored vehicle launched bridge (AVLB) is
another expedient method of gap crossing, but has a strict limitation
on the size of the gap it is able to span (63 feet). Also, the AVLB can
only be placed at locations where the slope of the river bank and the
soil composition provide an adequate foundation.

This leads to the idea of floating vehicles and troops across the
river. Heavy rafts are quick to assemble and can be launched from
multiple sites. However, rafting is not suitable for crossing a large
volume of traffic in a short amount of time.

To rapidly cross large volumes of traffic, a bridge is needed.
But bridges are very time consuming to build and require a great

0 deal of iminpower and materials. Suppose, however, some of the
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heavy rafts could be linked together to form a floating bridge. This
is the idea behind the ribbon bridge.

The ribbon bridge is the primary assault bridge because it is
quick to assemble [FM90-131. It is composed of modular sections
made of aluminum alloy and can be constructed under all conditions
of visibility [FM5-101], and provides a solution to the problem of
getting an army across a body of water quickly.

1.3 Project Description

This project involves the incorporation of a fluid model into the
dynamic terrain project. The fluid model must be versatile enough
to handle a variety of applications in order to create a realistic
simulation.

To demonstrate the benefits of a fluid model to a simulation,
this project focuses upon the simulation of a ribbon bridge, with
vehicles of varying weights driving across. This involves such
subtopics as water displacement, floating bodies, and constraint-
based modeling.

Also, an investigation of the incorporation of the fluid model
into a distributed database management system (DDBMS) is
presented.
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Chapter 2
* The Water Model

This chapter presents a brief overview of some of the previous
attempts at fluid modeling, then goes on to explain in detail how the
fluid model of Kass and Miller [Kass 90] works and why it is
appropriate for this project.

2.1 Overview of Fluid Simulation

The topic of fluid flow and water modeling has drawn a lot of
attention in recent years. The goal is to produce a model which is
faithful to the laws of hydrodynamics, yet simple enough to provide
a realistic animation in real time. This is not an easy task given the
complexity of the equations governing even simple fluid flow.

One of the first attempts at water wave animation was created
by Nelson Max [Max 81] in 1981. He represents the ocean as a
parametric surface using conflicting sine waves in his film "Carla's
Island". While the overall effect is pleasing, the model has little to do
with hydrodynamics.

In 1986, Fournier and Reeves [Fournier 861 presented a
method which more realistically follows the laws of hydrodynamics.
Their model uses the concept of orbitals. Water particles travel in a
circular motion, which becomes more elliptical as the waves move
toward the shore and the water becomes more shallow. This
produces breaking waves. Particle systems have also been used to
add foam and spray to the system [Sorensen 91]. This model
produces beautiful still pictures, yet the amount of computation for
each iteration makes a real time simulation beyond the reach of
current computer hardware.

Also in 1986, Darwyn Peachy (Peachy 861 introduced an ocean
model to produce realistic images of waves on a beach. He uses a
phase function to model wave refraction and the change of the speed
and wavelength in shallow water in conjunction with a wave profile
which is a collection of vertical displacements of the ocean's surface
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from the rest position and changes due to the shape of the wave and
the depth of the water. Again, this model produces stunning images,
but is not practical at this time for a real time simulation.

Other methods of modeling fluid flow include finite elements
[Steven 78], penalty solution [De Bremaecker 871, and particles
simulation [Choquin 89]. Yet none of these methods are appropriate
for the task at hand.

Finally, in 1990 Kass and Miller [Kass 90] presented a method

for animating fluids based upon an approximation to shallow water
equations. Their method handles wave refractions, wave reflections.
and the net transport of water. Thus it provides the versatility
needed for incorporation into the dynamic terrain model. Most
importantly, the simplified equations can be solved quickly enough
for real time animation.

The remainder of this chapter describes our implementation ol

Kass and Miller's model. Our extensions to the water model are
introduced in Chapter 3.

2.2 The Water Model

The model introduced by Kass and Miller treats the water

surface as a height field over a uniform grid. Each grid point
contains a known volume of water. At each iteration, gravity
attempts to pull down the higher columns. The direction and
velocity of each column of water is known, so the volume of the
water can be conserved by transporting it to neighboring columns at

the proper speed and heading.
This is all accomplished by solving a set of partial differential

equations derived from a simplified set of shallow water equations.
A discrete representation of these equations is constructed using the
finite-difference technique. The resulting differential equation is
further simplified to make it linear. The system of linear equations
to be solved is tridiagonal, so the amount of computation per
iteration is proportional to the number of grid points. Each of these
steps are explained more fully below.
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Obviously the many simplifications introduced reduce the
accuracy of the simulation. However, these simplifications must be
performed in order to produce a sufficient frame rate to achieve a
real time animation. The resulting animatio., is realistic to the eye as
long as the limitations of the model are not exceeded.

2.3 Shallow Water Equations

The shallow water equations used in the water model are not
new, and can often be found in texts on water waves [Stoker 57,
Whitham 74]. They are derived from the full Navier-Stokes
equations for fluid flow. Three approximations bring about their
simplified form. First, the water surface is treated as a height field.
This approximation makes it impossible for the model to produce
breaking waves because they would require multiple height values.
The second approximation assumes the vertical velocity of a particle
of water can be ignored. This assumption causes the accuracy of the
water model to degrade if the waves become very steep. Finally,
they treat the horizontal velocity of a column of water as
approximately constant. Conditions which demand the horizontal
velocity to drastically increase or decrease will again decrease the
accuracy of the model. These assumptions place some obvious
limitations on the accuracy of the water model, but for most
conditions, they will have little effect on the visual realism of the
simulation.

To illustrate how the model works, the method is described in
two dimensions (see fig.1). For a sample point x, bx is defined as the
altitude of the terrain surface and hx the altitude of the water
surface. Then, the water depth can be stated as dx = hx - bx. Finally,
ux is the horizontal flow between column dx and column dx+l.
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The shallow water equations themselves can be

O written:

8 U " ' 5 h (eq. 1)

8h +d 8u = 0 (e. 2)
t 8 x

where g is the gravitational constant equal to 9.8 m/s2.

The first equation states that the velocity of a column of water is
determined by gravity acting upon it. The second states that the
height of the water surface depends upon the depth of the water and
the speed and direction it is moving.

Differentiating eq. 1 with respect to x, eq. 2 with respect to t,
and substituting yields
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0 t2  6X 2  (eq. 3)

which is the one-dimensional wave equation with wave velocity

4/gd [Stoker 571.

2.4 The Finite-Difference Technique

The problem now is to solve eq. 3. One widely used method of
dealing with partial differential equations is the finite-difference
technique. This technique is base on the theorem which states that
any curve can be divided up into nearly straight segments with
sufficiently small divisions [Reece 86].

To start, consider a first derivative, where samples in the x-

direction are uniform:

8h increase in h hi - hi-105x increase in x A x

(eq. 4)

This approximation can be applied to eqs. 1 and 2 to derive

8ui . (hi + - hi )-= -g
at X

(eq. 5)

8hi (di + di+i) (di-i + di )
8t 2A x 2A x

(eq. 6)

with flow rate ui being calculated between columns hi and hi+l as
previously stated, and di the depth of the fluid in a column.

0
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Putting these equations together produces the finite difference
approximation to eq. 3

2  -di-1+ d i )Bui-1+(d i+ d i+1)8u-i

t2A x 8 t 2A x 8)

(di-l+di) (hi -h. 1)

g( 2(Ax)
2

+ g di+di+) (hi+l - h i
2(Ax) 2

(eq. 7)

2.5 Integration

The next step in the process is to solve the differential
equations resulting from applying the finite-difference technique to
the original partial-differential equations. For this, a first-order
implicit method is used. Using h' and h" to denote differentiation
with respect to time, and n to denote the nth iteration, the first order
implicit equations are:

h(n) - h(n-1) h'(n) (eq. 8)

At

h'(n) - h'(n-1). = h"(n) (eq. 9)
At

Calculating h' and h" at the end of the iteration (time n)
instead of the beginning of the iteration (time n-I) makes the
iteration implicit and stable [Kass 901.

Solving for h(n) in eqs. 8 and 9 gives:
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h(n) = 2h(n-1) - h(n-2) + (At)2 h"(n) (eq. 10)

Substituting eq. 7 into eq. 10 yields

hi (n) = 2h i (n-1) - h i (n-2) (I la)

-g(At)2(di'+ 2di) (hi(r) - h i . l (n)) (I Ib)

2Ax)2

+ g(At) 2(i d (hi l(n) - hi(n)) (lIc)2(Ax)2 +)

(eq. 11)

which is still non-linear because the column height, d, depends on
the surface height, h.

In Equation 11, the terms can be physically interpreted as
follows [Moshell 91a]:

The overall equation is intended to be integrable so as to
compute the new height of a water column, and thus must
measure the net effect of water flowing in and out of the
column. Term Ila represents the history of the column before
the current simulation step; its precise form is a relic of two-
stage Euler integration.

Two factors influence the rate of flow into a container: the size
of the aperture and the pressure differential driving the flow.
We can regard the open sides of a water column as the
aperture, and the height difference between this and adjacent
columns as indicators of pressure difference.

Term lib concerns flow between columns i and i-I. Term I Ic,
for flow between columns i and i+l, is similar. The expression
((di-1 + di)/2(Ax) 2 ) in term Ila measures the effective height
of a column of water (bottom to surface), divided by its
horizontal area. The effect of this term is to reflect the fact that
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a taller column would have a larger external surface area, and
thus would offer less resistance to in- and out-flow; whereas a
"thicker" column (larger horizontal area) would offer relatively
more resistance, since water within the column is obstructed
by water on the outside.

The expression (hi(n) - hi-l(n)) in term lib measures the
difference in height of this and adjacent columns, and thus the
driving pressure differential.

In a continuous integral, the aperture would change continually
along with the height of the water surface; thus, the net inflow
computation during a time interval would yield a nonlinear
time history (figure 2) for the surface height. However this
quadratic situation makes the simultaneous solution of large
numbers of coupled cells in a discrete-time simulation too
expensive.

h

t

Figure 2: Time history of surface height for
continuously varying aperture

A slight simplification is to fix the size of the "aperture" during
one time slice. Thus, the flow into or out of a cell is still
proportional to the cell's recent aperture, but the flow rate is
constant during the time interval, and a picture of the time
history of the surface for the discrete-time simulation would
look like figure 3.
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Figure 3: Time history of surface height for piecewise
static aperture

It is important to note that the hydrology model remains
nonlinear in the overall sense: flow into cells is proportional to
both aperture and pressure difference. However we have
linearized the simultaneous equations which must be solved to
establish the surface profile across one time step.

Thus, to linearize the equations, d is treated as a constant
during one step of the iteration. Now h(n) can be calculated from
previously calculated values in a tridiagonal system of equations.

A tridiagonal system of linear equations has nonzero elements
only on the diagonal plus or minus one column [Press 86]. Because of
its nature, the solution (using forward- and backsubstitution) takes
only O(n) time. The tridiagonal matrix is derived rearranging eq. 11

to the following form:
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g(At)2 (di. 2 hi (n)

= 2h i (n-i) - hI (n-2)

(eq. 12)

The left hand side of the equation is used to form the tridiagonal

matrix, with the first term of the equation being the diagonal. Thus.

the left hand side of the equation can be reduced, yielding

0 Ahi(n) = 2hi(n-1) - hi(n-2) (eq. 13)

where the matrix A is constructed as follows (from eq. 12):

0
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S0 = 1+ g(At) 2 (do + di1 2(Ax)2)

2( di + 2d i +d i+lIe i =1 + g(At) (0 < i < n-i)

2 dn2+ 2dind- i

2(Ax)

en l- 1 + g(At)2( 2(Ax)

A0 0 x

Sf0 e f 

f l e 2 *

ee 2f

en- 3 fn-3

fn- 3 en- 2 fn-2

f n-2 en-1

(eq. 14)

One final modification to the equations can be performed. By
altering eq. 13 to the form

Ahi(n) = hi(n-1) + (1-r)(hi(n-1) - hi(n-2)) (eq. 15)

where 0 _ r i1, a damping force on the waves is added to simulate
viscosity. If t = 0, eq. 15 is equivalent to eq. 13.
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2.6 Vo!ume Conservation

The simplifications applied to the original shallow water

equations to derive eq. 13 have one major drawback - the volume of
water is no longer precisely conserved. An iteration may compute

the height of the surface of the water to be less than that of the

terrain at a particular location. This means that an excess of water

will be created elsewhere. This requires the negative water heights

be set to the terrain height (depth = 0) and the new volume of water

adjusted to equal the old volume. This is done by reducing the new
volume uniformly over the samples which contain water.

2.7 Sources and Sinks

At the start of the simulation, the surface height of the water is

initialized to the surface height of the terrain. If the water height is
below the height of the terrain, adding water to the terrain will not

have the desired effect.
The addition and subtraction of water to the model is a

relatively simple process. All that is required is a modification of the
water surface height at the desired locations. Both the current and

previous water height fields need to be adjusted for volume

conservation.
The sources and sinks should be simulated after the drawing

routine but before the next water height field is calculated. If not.

the sources may appear to be solid "mounds" of water, while the

sinks may appear as holes in the water surface. Also, special

attention must be taken when creating sinks so that no more water is

taken away from an area than exists. Volume conservation will

account for the negative heights created, but the difference will be

distributed over the entire volume, which does not produce the

desired effect.

0
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* 2.8 Algorithm

With all the pieces in place, the algorithm can finally be given.
It is surprisingly straightforward and concise.

Set waterSurface(0) and waterSurface(1) equal to

terrainSurface
For j = 2 to n by 1 (n is the number of iterations)

Adjust waterSurface(j-1) and waterSurface(j-2) to
reflect any additions or subtractions of water

Compute the waterDepth using waterSurface(j-1) and
terrainSurface

Using equation 13, calculate waterSurface(j) from
waterSurface(j-1) and waterSurface(j-2)

Using waterSurface(j-1), adjust waterSurface(j) to
conserve volume as discussed in section 2.6

. 2.9 Three Dimensions

The move to three dimensions is treated as an extension of the
two dimensional case. The iteration is simply divided into two sub-

iterations: one for the x-direction and one for the y-direction. Each
iteration, the height field is computed for the rows using the two
dimensional method. The result is then used to compute the height
field using the columns. Some potential visual defects can arise, but

they are slight, and can be justified by the speed of the algorithm.

2.10 Increasing Performance

As previously stated, this fluid model produces realtime
simulations superior to other existing methods. The equations have
been simplified and put into a form which is computationally
efficient. Still, the vast amount of computation required each
iteration is very demanding on the system, especially if the number

of grid points is large.
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In an attempt to increase the frame rate, the display routine

and the fluid model have been separated to run in parallel on
different processors, using a Silicon Graphics 240 GTX (Power Series)
workstation. The single processor frame rate is just under 3

frames/second. With two processors, the frame rate has increased to

just over 5 frames/second. This makes a significant difference on

the overall visual effect. The terrain used in the performance test

consisted of a 75x75 grid of elevation posts. Since the gravitational

constant for the model is 9.8 m/s 2 , the distance scale between two

terrain posts is one meter.
The method of display imposes a lower bound on the maximum

frame rate that can be obtained. The entire display routine must be

performed on the processor which opens the display window. The

display method used for this project (flat shading for both the terrain

and the water polygons) takes only slightly less time than the
computations for the fluid model. For these reasons, no further
consideration was given to the use of additional processors.
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Chapter 3
*Floating Objects

To simulate objects floating in a fluid, two important issues

must be addressed. The first is orientation. As waves sweep across

the fluid surface, an object sitting in the fluid will be rocked back

and forth, side to side, and up and down. For each iteration it is
important to orient the object in the appropriate manner based upon

the fluid surface so that the object appears to float. The second task

is buoyancy. For an object to truly appear to float, it should sink into

the fluid a distance proportional to its weight. Also, the object should

displace fluid, resulting in an increased fluid level.
This chapter addresses these two issues as they pertain to

rectangular objects. More specifically, a raft on a body of water will

be used as an example, although the methods used will work for any
rectangular object. The solutions provided are designed to be

compatible with the fluid model chosen.

* 3.1 Orientation

The orientation of a raft on a body of water is governed by the

water's surface. By sampling height values at various points along

the raft, a surface normal to the water can be determined. Using this
normal, the angles of rotation around the x- and y-axes can be

computed. The raft can then be translated and rotated according to

the values computed, creating a realistic visual effect.
The process starts by obtaining height values for points along

the raft's surface. This is simply a table lookup at a known <x,y>

location in the array containing the water height field. Using any
three points along the surface of the raft, a surface normal to the
water can be obtained using the cross product.

Obviously, arbitrarily choosing any three points and calculating
the normal will not produce accurate results. A better solution is to

calculate several normals using sets of points from different locations
on the raft and using the average. In the interest of speed, this
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project computes the average of the two normals obtained from the
two triangles resulting from splitting the raft's surface along the
diagonal. This is still a crude approximation, yet the results are quite
good.

Once the normal to the water surface is known, it is a simple
exercise in trigonometry to determine the angles of rotation with
which to orient the raft. Two angles, E and 9, need to be computed

(see figure 4). This is accomplished using the cosine rule for right
triangles:

Cos side adjacent (eq. 16)
hypotenuse

z

Fiue 4.mm i

I I

I I

,- ----- - -y

Figure 4.

For E, the problem is projected into the x-y plane. The length of the

adjacent side is the x component of the water surface normal. The
hypotenuse can be determined using the Pythagorean theorem. Thus

we have
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E = arccos normal(x)

(normal(x)) 2 + (normal(y))2

(eq. 17)

For p, the problem is a bit simpler. The angle is between the z-axis

and the water surface normal, which is a normalized vector (i.e. its
length is 1). The equation is simply

E = arccos(normal(z)) (eq. 18)

The final step is to perform the rotations. To obtain the correct
orientation, the sequence of rotation is as follows: rotate by 9

counterclockwise around the z-axis, rotate by p counterclockwise
around the new y-axis, and finally, rotate by E clockwise around the

new z-axis. This will give the raft the proper orientatiun in the

* water.

3.2 Fluid Displacement

When an object is placed in a fluid, the total weight of the

object must be supported by the buoyant force of the water. This

buoyant force acts vertically upward through the center of gravity of

the object when it is at rest. Archimedes' principle states that the

buoyant force is equal to the weight of the fluid displaced by the
object. Using this principle, the following equation is derived:

Vpg = Mg (eq. 19)

Here V is the submerged volume of the object, p is the density of the

fluid, g is gravity, and M is the total mass of the object.
This project deals only with rectangular floating objects. Thus

the volume can be decomposed into length (1), width (w), and depth

0
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(d) (see figure 5). Also, gravity can be factored out of the equation
altogether. Thus, eq. 19 becomes

lwdp = M (eq. 20)

This equation is then used to calculate the volume of fluid displaced
by a rectangular object as well as the depth to which the object will
sink into the fluid. This of course assumes that the center of gravity
of the object is at its center and that the object is at rest. While this
is not always the case, this assumption is acceptable for simulation of
a raft with no cargo. Extension to a more accurate simulation is
presented in ch,,pter 6.

d

Figure 5. A raft floating in water

3.3 Other Details

This section describes some of the issues faced when creatinC

the simulation of floating objects and how they are handled in this
project.

3.3.1 Water-Object Interaction

Flowing water must interact with objects placed in it. This
interaction can be very complex. Water will rebound off of the

object and seek an alternate path. The water also exerts a force upon
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the object, which may be sufficient to give the object a nonzero
velocity. Accurate interaction goes beyond the scope of this project,

since the final objective is the simulation of a ribbon bridge, which is

constrained to remain at the same location during the simulation.

However, some discussion on the subject of velocity is given in

chapter 6.
The representation of the water as a height field poses special

difficulties for accurate interaction with objects floating in them. The

height field representation prevents water from flowing over the top

of an object, just as it prevents breaking waves. And the water

height under an object must be constrained to not rise above the

height of the bottom surface of the object.
A possible solution to these problems is to treat the terrain

under the object as having the same height as the object's surface for

the computation of the water surface. As an object moves, the

section of terrain can be adjusted to remain consistent with this

approach. The advantages of this approach are that the water height

is constrained under the object by removing of it altogether. This

* approach will cause waves to rebound off of the object, and it will

allow water to flow over the top of the object if the object is

submerged. However, this method has many disadvantages. The

water volume and height fields must constantly be adjusted to

reflect the amount of water which is added and discarded by

adjusting the terrain. Also, the water flow is not just disrupted by

the object, but by the entire column from the object to the terrain

surface. Most importantly, this method defeats the advantage of

having a model based upon actual water equations and is

computationally expensive. For these reasons, this method is not

recommended.
Another solution considered is an obvious one: reduce the

height field under the object to reflect the volume of water displaced

and increase the height field of all other points which contain a
volume of water to reflect the displaced volume. The advantage of

this method is that it is simple and fast. Also, the water flow under

the object is not obstructed as in the previous method. One

disadvantage to this approach is that the water cannot flow over the
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top of the object. Another is that the water surrounding the object
will flow toward the "gap" made by displacing the water under the

object, which is unrealistic. At each iteration, the water flowing back
into the "gap" will have to be removed. To counteract this problem,
the height field could be constrained, but this would lead to the same
problems the last method encountered.

The method chosen to model fluid displacement is to simply
add the amount of fluid displaced to the total volume. The water
level will rise the appropriate amount, giving a realistic visual effect.
This method allows the water to flow over and under the object

unobstructed. Most importantly, there are no additional
computations to be made. The disadvantage is that the water flow is
unaffected by the object. This is, of course, unrealistic, yet is an
acceptable tradeoff considering the rebounding waves off of the
object will probably be unnoticeable most of the time. The model
could probably be modified to simulate rebounding waves, at
additional computational cost. And, as previously stated, the effects

of the water's force on the object to cause movement are explored in
chapter 6. The speed and simplicity of this method and the benefits
of the implementation makes this approach suitable for this project.

3.3.2 Generating Waves

Adding weight to a floating object will cause the object to sink
further into the fluid. If the weight is great enough, waves will be
generated outward from the object due to the displaced water. The

same visual effect occurs when a great enough weight is removed
from a floating object as the buoyant force pushes the object out of

the fluid.
The previous section described how fluid displacement is

performed. The method descri--d is easily modified to create waves
as the force on a floating object is disturbed. Instead of distributing
the volume of the displaced water uniformly throughout the body of
water, distribute it only along the edges of the object (see figure 6).

This creates the appropriate rippling effect across the water surface,

* and also causes the object to bob realistically as the waves settle.
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The water level rises to reflect the volume of water displaced. The
effect is used for both the addition and subtraction of water resulting
from an adjustment of weight (force) on an object.

I I---LIIN---
Figure 6. A raft floating in the water (a) and

the instant weight is added (b).

3.3.3 Time Slicing

The fluid model calculates the flow of a fluid over time. The
time is not continuous, but is divided into small slices. Thus, the
state of the water surface is calculated at specific instances in time.
All that occurs between these instants in time will be lost.

An actual flowing fluid can be thought of as using an infinitely

small time slice. The accuracy of time slicing system is increased as
the time slice is decreased. However, as the time slice decreases, the
amount of computation required maintain the speed (frame rate) of

the animation increases.
When dealing with the fluid model, too large a time slice means

the waves will appear to dampen out too quickly and the simulation
will not look realistic. With too small a time slice, the waves will not

appear to move quickly enough, giving the visual effect of being
"chunky" instead of fluid. For these reasons, it is important to
determine a time slice which will produce a realistic looking
simulation for the type of situation being modeled.
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Chapter 4
*The Ribbon Bridge Simulation

As stated in section 1.2, the ribbon bridge is an important part
of ground-based military maneuvers. It is composed of modular
components, and has the capability of transporting large volumes of
traffic across a river in a short period of time.

The simulation of a ribbon bridge has several parts: the river to
be crossed, the vehicles which will use the bridge to cross the river,
and the bridge itself. This chapter discusses the various components

of the ribbon bridge simulation, how they are modeled, and how they
interact.

4.1 Modeling the River

The dynamics of the river do not play an important role in the
simulation of the ribbon bridge. As stated in the last chapter,
floating objects are only aware of a buoyant force acting upon them.
Thus, there is no horizontal force on the bridge from the water.

For this reason, the river does not have to be modeled as

flowing water. It could be thought of as a pond. Still, it is desirable
to have a realistic looking simulation. And, since this approach does
not require much additional computation, the river is modeled with

flowing water.
This is accomplished by simply creating a source at the end of

the river with the highest elevation, and a sink at the other end (see
section 2.7). For an accurate simulation, care should be given to add
and subtract approximately equal amounts of water so the river
doesn't flood the banks or dry up.

4.2 The Vehicle Model

The simulation involves a vehicle driving across a ribbon
bridge. The vehicle has been modeled to allow the user to control
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the vehicle's velocity and direction using the mouse and keyboard
(instructions are provided at the end of this chapter).

The vehicle's orientation is determined much the same way as
for a floating object (see section 3.1). The height of the terrain at
each of the four corners of the vehicle is determined and used to
determine the normal to the vehicle. This normal is used to compute
the angles of rotation needed to orient the vehicle.

The height of the terrain at the corners of the vehicle is
calculated in the following manner. First, the terrain polygon in
which the corner lies is used to determine the equation of the plane
in which the polygon lies. Then, the coefficients of the equation and
the x and y coordinates of the point are used to determine the z
value (altitude) of the point.

The position of the vehicle must also be computed for each
iteration. The heading of the vehicle is always known. It is
controlled by the mouse, and is simply incremented or decremented
according to user input. The same is true of the vehicle's velocity.
Thus, the change in position of the vehicle in the x direction is
obtained by multiplying the x component of the velocity by the
cosine of the heading angle. Similarly, the change in position of the
vehicle in the y direction is obtained by multiplying the y component
of the velocity by the sine of the heading angle. Adding these values
to their respective coordinate values yields the new position of the
vehicle.

4.3 Modeling the Ribbon Bridge

The ribbon bridge is made of modular components. The
orientation of these components will change as a vehicle drives
across them. While they must be allowed to bob up and down and
rock back and forth in the water, they must also be constrained in
some manner so that the edges of one component match the edges of
its neighboring components. This creates a smooth surface over
which a vehicle can drive.

This effort requires an approach to physical modeling. The
is bridge is modeled as having very strong springs between its sections.
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This imposes constraints which cause the bridge to act in the

appropriate manner, and supplies the orientation for the bridge

sections.
As a vehicle drives across the bridge, the weight of the vehicle

causes bridge sections to sink in the water, causing ripples. The

methods described in chapter 3 are used for water displacement and

wave generation.

4.3.1 The Penalty Method

The penalty method approach to physical modeling [Barr 89] is

used in modeling the ribbon bridge. This approach forces objects to

behave in a specified manner by imposing penalties forces to objects

if they behave inappropriately. The penalties become stronger as an

object deviates further from the desired behavior.

The motion modeled by the penalty method will continue with

no loss of energy (indeed, penalty forces may introduce spurious

energy). Thus, a ball will bounce and springs will oscillate

indefinitely. To counteract this effect, damping factors are

introduced. However, obtaining the interaction between the time

slice interval and the damping factors which produces a realistic

visual effect often takes some trial and error.

4.3.2 Exponential Springs

Using springs to constrain the sections of the bridge to meet

together provides the flexibility needed to simulate the ribbon

bridge. However, the springs are not strong enough to hold the

pieces closely together. The result leaves large gaps between the

bridge sections and the orientation of the sections look more like a

parabola than a horizontal line (see fig. 7).

McKenna and Zeltzer describe a modification to the usual sprinZ

method which results in a much more effective spring [McKenna 901.

Instead of the usual spring equation:

F = kx (eq. 21)
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O they introduce the following exponential equation:

F = a(elPIXI-1) (eq. 22)

where x is the displacement of the spring from its rest position, a
controls the linear strength, and j3 controls the exponential rise.
From these equations, it is obvious that the latter provides a much
stronger restorative force as the spring's length increases. In terms
of the ribbon bridge, this will hold the sections tightly together.

-.- -../.

a b

Figure 7. Simulation of sticks being held
together by linear springs (a) and
exponential springs (b).

The following sections describe the implementation of the
penalty method approach to the exponential spring model as applied
to a two dimensional chain of sticks. A stick has equal weights on
each end, with no mass in between. The model consists of four parts:
position, penalty forces, acceleration of the center of mass, and
angular acceleration. This is the method used to model the ribbon

bridge.

4.3.2.1 Position

Each stick has two ends, A and B, and a center, C. With radius,
r, the positional equations for the ith stick are

Ai = (Cix - r * cosine(Oi), Ciy - r * sine(Ei)) (eq. 23)

28



Bi = (Cix + r * cosine(Ei), Ciy + r * sine(ei)) (eq. 24)

The angle 0i is initially zero, and is calculated in section 4.3.2.4. Also,
the radial vectors, Ra and Rb, for the ith stick can be calculated with

the following equations

Rai = Ai - Ci (eq. 25)
Rbi = Bi -Ci (eq. 26)

These will be used to calculate the angular acceleration of the sticks.

Ai

Figure 8. Stick i in the chain

4.3.2.2 Penalty Forces

The spring equation (eq. 22) can be stated in terms compatible
with the model as follows

Fai = kI * (elk 2 * (Bi.1 - Ai)l 1) (eq. 27)

Fbi = kI * (elk 2 * (Ai+l Bi). 1) (eq. 28)

The constant k2 is used to limit the force supplied by the
exponential. The value of k2 should be between 0 and 1, but
experience has shown that the upper range still causes too much
restorative force, causing the model to diverge rather quickly. A
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good amount of experimentation is often needed to determine
constant values which produce the appropriate effect.

Damping forces are needed to keep the springs from oscillating
indefinitely. An effective method of damping uses a force
proportional to the velocity of the ends of the sticks, A' and B', where

A'(n) = (A(n) A(n-1)) / dt (eq. 29)
B' (n) = (B(n) - B(n-1))/ dt (eq. 30)

for the nth iteration and time slice, dt.

Thus, equations 26 & 27 become

Fai = kI * (elk 2 * (Bi-1 Ai). 1) k3 * A'i (- 2mig) t

Fbi = k1 * (elk 2 * (Ai+l - Bi)l . 1) - k3 * B'i (- 2mig)-

I used only in for computing force in y direction
(eqs. 31 & 32)

where 2mi is the mass of the ith stick.

4.3.2.3 Acceleration of the Center of Mass

Newton's Second Law of Motion (F = ma) can be used to
calculate the acceleration of the center of mass, C". The forces are
calculated in the last section, and the masses of the sticks are known.
The equation is

C"i = (Fai + Fbi) / 2mi 'q. 33)

This equation can then be integrated with respect to time to
determine the position of the center of mass

C'i(n) = C'i(n-1) + C"i(n) * di (eq. 34)
Ci(n) = Ci(n-l) + C'i(n) * dt (eq. 35)
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Here, n is the number of the iteration, and dt is the time slice.

4.3.2.4 Angular Acceleration

By analogy with Newton's Second Law of Motion, we have

T = 2mir 2 * (eq. 36)

Here, T is torque, 2mir 2 is the moment of inertia, and 0-" is the

angular acceleration.

The torque, T, is computed by crossing the radial vectors and
forces, yielding the following equation for angular acceleration:

E"i = ((Rai X Fai) + (Rbi X Fbi)) / 2mir 2  (eq. 37)

As in the previous section, 6 can be derived from integrating

the angular acceleration with respect to time

'i(n) = e'i(n-1) + E"i(n) * dt (eq. 38)
O i(n) = Oi(n-1) + W'i(n) * dt (eq. 39)

for the nth iteration.

4.4 Driving Across the Bridge

The simulation of the vehicle driving across the bridge involves

several processes. First, the location of the vehicle must be detected

as being on the bridge, and the section of the bridge it is on must be

computed. The vehicle's weight is added to the section(s) of the
bridge which supports it. The exponential spring model is then used
to get the orientation and position of the bridge sections. The

amount of water displaced by the additional weight is computed, and
waves are generated to express the effect of the vehicle's weight on

the system. As the vehicle drives across the bridge, the amount of

water displaced does not change, but is shifted from section to

0
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section to provide realism. When the vehicle leaves the bridge, the
volume of water it displaced is subtracted, lowering the water level

back to its original state.

4.4.1 Car on Bridge Detection

Determining whether or not the car is on the bridge, as well as
which section it is on, turns out to be a simple problem. The bridge

is initially drawn about the origin, then is rotated and translated to
its position on the terrain. Since the angle of rotation and the
translation coordinates of the bridge are known, they can be applied

to the vehicle to find its position relative to the bridge when the
bridge is at the origin.

All that remains is a simple bounds check on the extents of the
bridge and the car to determine if they intersect (actually, the
centers of the front and rear of the vehicle are used). If the vehicle

is on the bridge, it is again a simple check along the x-direction to
determine which section the vehicle is on.

0 4.4.2 Bridge Simulation

For a vehicle to drive across the bridge, it must somehow

recognize the bridge as being a surface which can be driven across

(as opposed to the water surface, which cannot be driven across). An

easy, although memory expensive, way to accomplish this is to keep
a separate copy of the terrain database for the vehicle and modify it

so that the bridge is considered part of the terrain.
To accomplish this, an array of the (x,y) coordinates which

make up the surface of a bridge section is computed and stored for
each section. These arrays are used to adjust the vehicle's terrain to
reflect the surface of the bridge so that the car can drive across.

As a vehicle drives across the bridge, its weight is added to the

appropriate "stick" in the exponential spring model. The slope of
each "stick" can be obtained using its endpoints. The slopes can then
be used to determine a height value for every point on the bridge

using the surface arrays described above. These height values are
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used to adjust the vehicle's terrain database to reflect the surface of

the bridge. The informal formula for this calculation is

vehTerrain[x][y] = bridgeZ - x * slope (eq. 40)

where bridgeZ is the current height of the bridge after water

displacement but before orientation, and slope is the slope of the two

dimensional "stick" which corresponds to a given section of the

bridge.

This representation looks slightly unrealistic when more than

one vehicle crosses the bridge at a time. Since the spring model is

anchored at each end, the section of bridge between two crossing

vehicles remains flat, while the space between two vehicles on an

actual ribbon bridge would rise up due to the buoyant force of the
water (see figure 9). A possible remedy may be to dynamically

change anchor points as vehicles drive across the bridge.

(a) (b)

Figure 9. Illustration of two vehicles crossing an

actual ribbon bridge (a) and the simulated

ribbon bridge (b).

4.4.3 Water Displacement

As a vehic!e drives onto a section of the bridge, that section has

weight added to it, which causes it to sink into the water. As the

section lowers, it displaces water. In the simulation, the water is not

actually displaced, but the volume of the water that should be

displaced is calculated and added to the overall volume of water.
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Likewise, this volume is subtracted from the overall volume of water
* when the vehicle leaves the bridge.

This is accomplished in a manner similar to modeling the
bridge surface in that an array of coordinates is computed for each
section of the bridge. Only this time, the coordinates are of the rows
adjacent to either side of the section. These arrays will be referred

to as "water arrays".
As the vehicle drives onto a section, the volume of water

displaced by the weight of the vehicle is calculated. This volume is
added to the rows along both sides of the section, as opposed to the
entire volume of water, using the coordinates in the water array for
that section. Similarly, as the vehicle leaves a section, the displaced
volume of water is subtracted from the water array for that section,
giving the effect of the section rising back up to its original position.

Both the front and back of the vehicle are used to create this
effect. Thus, if the vehicle is positioned at the point at which two
bridge sections meet, both of the sections will have weight on them
and both will displace water. Therefore, as the vehicle crosses the
bridge, there is a somewhat fluid motion of the bridge sections

lowering and rising, with ripples in the water being created at the
sides of the sections which are being driven onto or off of, which is
the goal of the simulation.

4.5 Controlling the Simulation

The name of the executable file is bridge. After typing this
the user will be prompted for an input file. The name of the terrain
database file is terra. Typing this will bring up the demonstration.
which consists of a piece of terrain with a river on it, a ribbon bridge
across the river, and a small red vehicle. The vehicle can be
controlled using the following buttons and keys:

Mouse buttons:
left button - turn the vehicle left

right button - turn the vehicle right

middle button - toggle forward, reverse, and stop
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Keys:

"a" key - increase the speed of the vehicle

"s" key - decrease the speed of the vehicle

ESC key - quit

The vehicle can be driven across the terrain and over the bridge. If
driven into the river, the vehicle will follow the terrain and will not
be effected by the water.
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Chapter 5
* The Distributed Database

Management System (DDBMS)

Work is currently being done at IST/UCF on a distributed

database system and network protocol [Moshell 91b]. This method
proposes to decrease the amount of traffic across the netwoik,
compared to schemes using a single common database, by dividing
the terrain database into smaller portions which are distributed
among the simulators on the network. The implementation of this
approach is explained below, with some ideas as to how boundary
conditions might be handled.

5.1 Functionality

Each workstation in the DDBMS can be thought of as being
composed of two parts: a simulator and a display. Simulators and
displays on the same workstation can communicate locally, with no
network traffic. Simulators can communicate with other simulators
and displays by sending mail messages over the network. Similarly.
displays can request information from simulators residing on
different machines through messages. Displays do not communicate
with other displays.

5.1.1 The Simulator

The .'mulators each hold a portion of the terrain, which
collecti~el) f -m the entire database. The simulators are also tasked
with runnii, Ii - models of entities in the simulation. If an entity

moves off tht ,. 'ion of terrain it is on, a message is broadcast to the
other simulators to determine which one holds the portion of the
database the entity is moving onto. The entity is then passed to that

simulator.
When an entity modifies the terrain database, the changes are

recorded locally, greatly reducing network traffic. Still, some
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network messages may be generated in order to update any displays
(see below) which may be holding copies of that portion of the
terrain. Messages are also generated by the simulator when user
input causes a change in an entity's state. This is more fully
explained in the next section.

5.1.2 The Display

The display is responsible for providing the user a window into
the simulation. It ;an be thought of as being attached to a particular
entity, usually the one associated with the workstation at startup.
Unlike simulators, which pass entities back and forth, the display
remains with one entity throughout the simulation.

The display's database consists of a fixed area surrounding the
entity with which the display is associated. As the entity moves
through the database, portions of terrain are swapped in and out to
keep the area in the database a constant size. This will involve mail
messages across the network to request new terrain information if
the information is not stored locally in the simulator's database. The
terrain request is sent to all simulators, and the one which has the
information will send a message to the display, which updates its
database. The display also receives terrain update information from
simulators when terrain in the display database is modified by an
entity.

The display must also show other entities which are on the
terrain held in its database. To further reduce network traffic, the
display runs a dead-reckoned model (or "ghost") of all entities on its
database [Moshell 91c]. Instead of having a constant stream of
information about the entities on the display database from the
simulators which are running them, the display need only be
informed of changes in the entity's state (velocity, heading, etc.).
Otherwise, the dead-reckoned model can be run locally, with no
network traffic.

0
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5.2 Partitioning Strategy

As previously stated, the terrain database is partitioned and
divided among the simulators participating in the simulation. The
partitioning strategy determines how the database will be

distributed.
The terrain database is composed of planar polygons. These

polygons are grouped together to form patches, which are used to
reference databases. Patches are grouped together to form blocks.

These blocks are then distributed among the simulators. With

coarse partitioning, tl'e number of terrain blocks approaches the
number of simulators. Fine partitioning occurs when the number of
terrain blocks approaches the number of terrain patches (see figure
10).
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Figure 10.

The advantage to coarse partitioning is that it generates very little
network traffic. The terrain blocks are large enough that their

boundaries are not often crossed. The disadvantage is that for the
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entities to interact, they will often all be on the same terrain block.
This means that one simulator would run all of the entities, while the

other simulators remain mostly idle. The opposite is true of fine

partitioning. Here, the work of the simulation is more evenly
distributed at the cost of increased network traffic. With the

partitioning strategy, the block size can be varied to determine the
size which gives the best overall performance.

5.3 Crossing Boundaries

As previously mentioned, entities in the simulation are capable

of altering the terrain database. Entities are passed between
simulators according to which terrain block they are on. Thus,

terrain modifications are made locally. However, there are times
when an entity in one terrain block causes a modification to an
adjacent terrain block. Consider a bulldozer with its blade down

digging a ditch across a terrain block boundary, a tank firing a shell
which creates a crater in another terrain block, or water flowing

across adjacent terrain blocks.
There are many ways to handle such situations. Several

thought experiments are discussed below, using the above examples
to give indications of the strengths and weaknesses of each strategy.

Of the three examples, water flow presents the most difficulty when

dealing with distributed databases.
Before discussing these strategies, two terms must be

explained. Data redundancy occurs when duplicate information

exists. Data consistency deals with keeping redundant information.
A conflict occurs when two entities are modifying the same data at

the same time. If the modifications are handled sequentially, tho~e
of the second entity can overwrite those of the first entity. Also, if

two entities each hold their own copy of the data (data redundancy)
and each modifies the same area, the information must be updated

correctly, not simply overwritten, for the data to be consistent.
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5.3.1 Strategy 1: Absolute Boundaries

0The easiest and most obvious strategy for dealing with
modifications to adjacent terrain blocks is to allow modifications only
on the block on which the entity is located. This strategy, however,
produces the least realistic simulation. Tank fire will produce no
craters when shells land in a different terrain block. A bulldozer
digging along the boundary between two terrain blocks will make
modifications recognized in only one of the two blocks (see figure
11). Likewise, water flow will be stopped at a terrain block border
by an "invisible wall."

block

" -boundary

Figure 10: Bulldozer digging along block boundary
with absolute boundaries strategy.

The advantages to this strategy are that there is no data
redundancy, no problems with data consistency, and no added
network traffic. However, this strategy clearly should not be used
for a realistic simulation.

0
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5.3.2 Strategy 2: Guess

A different strategy is to make a guess about what the terrain

on an adjacent terrain block looks like based upon what the terrain

around the entity in the local block looks like. Modifications to the

conjectural terrain are recorded and sent to the simulator which

holds the actual terrain block, where they can be realized.

The point at which to send the modifications is flexible. It

could be after some number of time intervals, or all changes could be
stored until the entity has crossed or retreated from the terrain

block boundary.

A disadvantage of this method is that it will not produce

accurate results, only approximations. The best results will come for

entities which modify the terrain immediately around them, such as

the bulldozer, since very little of the terrain must be approximated.
This method will probably not work well with artillery fire, since the

cratering occurs at a considerable distance from the entity. Water
flow presents a problem, in that modifications can spread across the

terrain block which resides on a different machine. While the flow

close to the boundary may be fairly accurate, the accuracy will

decrease as the flow spreads.

Other disadvantages of this strategy are the lack of data

consistency and a slight increase in network traffic. The advantage

of this method is that there is no data redundancy.

5.3.3 Strategy 3: Dual Existence

A third strategy is to temporarily run the entity crossing the

terrain block border on both simulators. All terrain modifications

are local, producing no network traffic.

This method works particularly well with artillery fire,

although special attention must be given to craters formed on the

border between terrain blocks. This method also works well with

bulldozers, although it can produce some incorrect results when the

bulldozer is entirely on one terrain block but is close enough to the

boundary that dirt piles up across the border. This strategy is not
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well suited for water. Flow depends upon what is occurring over the
entire volume of fluid. Separating the fluid into two parts will
produce inaccurate results.

The advantages of this method are that there are no problems
with data consistency and there is no data redundancy.

5.3.4 Strategy 4: Boundary Overlaps

Another strategy is to overlap the boundaries of adjacent
terrain blocks. When an entity nears the border of a terrain block,
the strip of terrain the entity is on actually resides on two different
simulators (see figure 12).

a b
I I

I I

' a b
' ,

patch boundary overlap

Figure 12: Two patches, a and b, and their overlapping

boundaries

This method works well with entities such as bulldozers. All
terrain modifications are accurate, although changes on the
overlapping strip must be passed between simulators. This method
will not work well with artillery fire which crosses over the overlap.
No information about the terrain where the artillery fire will land is
known. For water, this strategy can work, although there can be data
conflict which causes inaccuracies. This occurs because water can

0
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flow onto the overlapping strip from both adjacent terrain blocks, as
opposed to the bulldozer, which makes modifications in one direction.

The disadvantages of this method are data redundancy,
problems with data consistency, some increase in network traffic,
and the need for a more complicated partitioning strategy to account
for the overlapping borders between terrain blocks.

5.3.5 Strategy 5: Temporary Patch Copies

The final strategy addressed is to temporarily copy sections of
a terrain block which reside on a different simulator while an entity
is near a block border. Modifications to this temporary section of
terrain are made and are copied back to the simulator from which
the section was copied when the entity crosses or retreats from the
border.

This strategy works well with the bulldozer and tank entities.
The modifications are accurate and little network traffic is generated.
As for water, this method has some distinct advantages. Water can

flow freely across the terrain block boundary in either direction. The
flow is accurate. The only problem is that the water flow should
reach a stable state before final changes are copied over to the
simulator which holds the actual terrain block. This shouldn't create

a problem with small flows which will stabilize quickly. But large

flows could cause a long delay before the update. A possible
alternative could be to send an update every n time intervals, which
would cause a slight increase in network traffic, but may increase

realism.
The disadvantages of this method are redundant data and the

problem of data consistency. There is also a slight increase in
network traffic. However, the advantage is that this method seems
to present a solution which will work reasonably well with all of the
simulator entities presented.
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5.3.6 Discussion of Strategies0
The strategies presented are meant to give the reader an

overview of some of the methods considered. Creating temporary

patch copies seems to be the most promising approach for
implementation in a complete distributed database management
system for dynamic terrain. For specific applications or restricted
requirements, another strategy may be better suited. Also, a hybrid

approach of different methods depending upon the entity may be the
best solution.
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Chapter 6
*Conclusion

This chapter takes a final look at some weaknesses of the work

that has been done, some possible extensions and improvements, and

some current applications which have been spawned by the work
presented in this paper.

6.1 Weaknesses

While the water model chosen for this project provides the

required speed and versatility, it is not without some weaknesses.
The problems lie more in the implementation rather than the theory,
and become visibly noticeable in certain situations.

6.1.1 Directional Artifacts

The partial differential equations for the fluid model are solved
in two sub-iterations when dealing with three dimensions. The fluid
height field is first computed in the x-direction, and that solution is
used to calculate the height field in the y-direction. This produces

small inaccuracies in the height field values.
The effects of computing the height field in alternating

directions is hardly noticeable with flowing water. They become

more clearly evident when dealing with floating bodies. As weight is
added to a floating body, additional water is added around the object
to make waves and account for the displaced volume of water. If a

lot of weight is added to the object, or many small amounts are

added in succession, artifacts can be seen extending out from the
corners of the object in the x- and y-directions.

This problem may be resolved by determining a way to solve

the two sub-iterations described above simultaneously. Methods to
accomplish this are being explored, but have not yet progressed far

enough to be reported at this time.
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6.1.2 Volume Conservation

Section 2.6 briefly describes how the simplifications to the
shallow water equations can produce an excess volume of water
during an iteration. The height field must be adjusted to account for
the excess volume. This is performed by reducing the new volume
uniformly over the areas which contain water.

This solution can create disturbing effects in certain situation-.
Consider terrain with two ponds on it. If a hole is poked in the side
of one pond, the water begins to flow out and the volume
conservation scheme is applied. As the flowing water spreads, the
likelihood of the iteration creating an excess volume increases, as
does the amount of excess volume. To compensate, the total volume
of water is adjusted, which results in a lowering of the water level in
the untouched pond.

At first this may seem to be a minor obstacle. Simply perform
a different volume conservation pass over each body of water so that
the volume conservation for one pool cannot effect any other pool.
The problem is that pools do not remain separated. If the terrain has

many contours, as it often does, the pools will merge and separate as
the water flows over the land. Keeping track of which pools from the
previous iteration should be used to conserve volume with the pools
of the current iterations is not an easy problem. This is the major
shortcoming of the water model.

6.2 Improvements and Extensions

A number of possible enhancements surfaced as the project
progressed. Also, a few additions could be implemented to make the
water model more robust. These ideas are briefly discussed below.

6.2.1 Dynamic Computational Boundaries

The fluid model has been implemented over a static square
grid. Each iteration, the fluid surface is computed over the epch
terrain point, whether or not a volume of water exists there. This
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method is sufficient for the research of this project, but is not
feasible for a full scale simulation, where the size of the terrain may
be very large.

A possible solution to this problem may be to allow the size of
the area over which to compute the fluid surface to expand as the
fluid flows. This would require maintaining a square bounding box,
or a more complex boundary, which is slightly larger than the area
covered by the fluid. This bounding box would be used to compute
the fluid height field and for volume conservation.

This approach could still run into trouble if a very large volume
of water is involved, such as a river or a breach in a large lake.

6.2.2 Fluid Velocity

Situations may arise where it is necessary to know the velocity
of the fluid flow. A possible method for determining the velocity and
direction of the flow at each of the surface points may be to compare
the volumes of the columns of water across iterations. The fluid

* height fields of the current and previous iterations are readily
available. By comparing the volumes of a column and its neighbors
from one iteration to the next, it may be possible to obtain a
reasonable approximation of the magnitude and direction of the fluid
flow in that column. These values could then be used as needed.

The drawback to this method is that it would probably be very
expensive computationally, even for small areas of flow.

6.2.3 Nonrectangular Floating Bodies and Cargo

The method presented for modeling floating bodies applies
only to rectangular objects. To make the model more complete, it
could be extended to handle objects which are not rectangular. This
would not cause a problem for fluid displacement, but the creation of
ripples around the object to visually simulate the fluid displacement
would be more difficult. However, if the weight of the object
remains constant, wave generation may be unnecessary.
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Currently, when weight is added to an object, it is assumed that
the weight is added at the center of the object. Another extension
could be to allow for objects to carry cargo which alters the center of
mass of the object. This would affect the orientation of the object at
rest, since the center of mass is no longer at the center of the object.

6.2.4 Three Dimensional Springs

The exponential spring model presented in this paper is two
dimensional. This means the sections of the ribbon bridge rock back
and forth, but not side to side. An obvious improvement would be to
extend the model to three dimensions. This would require a slightly
more complex spring model, but the concept is basically the same.
The most difficult aspect of extending to three dimensions is that it
requires the incorporation of an additional torque.

6.3 Applications

Several applications using the water model have been
constructed. All of these applications involved other graduate
students at the University of Central Florida. These applications are
explained below.

6.3.1 The Beaver Pond

The first application constructed using the fluid model involves

a dynamic terrain bulldozer, created by Xin Li, which has the ability
to alter the terrain in the manner of a real bulldozer. The application
has been named the beaver pond. It consists of a square piece of

terrain with a pond on it. The bulldozer can be controlled by the
user, and can be used to breach a section of the pond wall, allowing
the water to flow out.

49



6.3.2 A Raft on Rapids

0 Larry Gibbs extended the model of a floating raft to simulate a
raft floating down a section of river rapids. He uses the orientation
of the raft to derive an acceleration, based on the idea that waves
will determine the orientation of the raft and that the raft will move
in the direction that the waves are traveling. The larger the tilt of

the raft, the greater the acceleration.
Using the acceleration, the velocity and position of the raft can

be obtained by integrating with respect to time, the same method
used in the exponential spring model. Similarly, the velocity from
the previous iteration is used as a damping factor when calculating
the acceleration.

This method produces a convincing simulation. The raft moves

at different speeds, depending on the water flow, and thus never
travels the exact same path twice.

6.3.3 Surfaces

0 Marty Altman has applied the fluid model to his work with

surfaces. He uses the surface points generated by the fluid model as
control points for the B-splines used to define a parametric surface.
This creates a very smooth water surface.

The disadvantage to this approach is that computing the

surface takes a lot of time. The animation is still rather slow using a
grid of only 25x25 posts.

An important detail of Marty's model is that he computes the
surface from B-splines in the x- and y-directions simultaneously. It
may be possible to use this method to solve the water surface height
in a similar method, thus solving the problem presented in section
6.1.1.

6.3.4 Rain

Collaboration with both Larry Gibbs and Marty Altman has
resulted in simulation of rainfall runoff. However, both attempts
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failed to produce a realistic simulation. The problem is that the
water model works to pull down the higher volumes of water. Thus
a single "drop" of water very quickly spreads out, no longer looking
like a raindrop. The simulation doesn't look realistic because the size
of the terrain is too small. Yet, using a large enough terrain to create
a realistic simulation would make the animation painfully slow.
Therefore, simulating rainfall runoff which is interesting to watch is
not feasible with existing hardware.

6.4 A Final Comment

The fluid model and methods presented in this paper provide a

basis for adding water to dynamic terrain. However, a full
simulation with dynamic terrain does not yet exist. The reason is
speed. Existing hardware cannot perform the vast amount of
computations needed to support dynamic terrain. However, the
research being done now will aide the creation of a dynamic terrain
simulation when sufficient hardware becomes available, and as

* algorithms and data structures are improved.
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TO: Dr. J.M. Moshell

* FROM: Julie Carrington, Jennifer Burg

DATE: December 2, 1991

RE: Terrain Relaxation, Project number VSL91.3

One aspect of the problem of how to realistically represent

dynamic terrain is the problem of how the terrain behaves when it is

dug or stacked up by a bulldozer. Upon being piled up, it should
"relax" slightly, i.e., some should trickle down the sides and in

general the pile should settle some.

In our program, SMOOTH, we use a variation of an algorithm

suggested by P. H. Winston in his book Artificial Intelligence,

(Addison-Wesley, 1984, pp. 75-78). He suggests this procedure for

making a digital terrain map using a set of altitude readings from

just a few accessible places on the terrain using barometer readings

which are sparse and noisy and thus have different associated

confidence factors. For simplicity's sake, we discuss the two

dimensional case; the extension to three dimensions is obvious. Then

we have three arrays,

ai : Altitude at point i. Initial altitudes will be obtained

using barometer readings.

bi : Barometer readings at point i. At most points, no

barometer has been read and so bi is assumed to be zero at those

points.
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ci Confidence factor of barometer reading at point i,

between 0 and I where I means certainty. If there was no reading

at point i, ci is taken to be 0.

In general, the altitudes are weighted averages of the

barometer readings and the altitudes of neighboring points where

the weights are provided by the confidence factor. Initial altitudes

are obtained by:

bil + bi-.1
a i = ci bi + (1 - ci) 2

After the first iteration, further relaxation is done using

neighbors' altitudes from the previous iteration as follows:

acb+( c)ai+l + ai-.1
ai = ci bi + (I - ci ) 2jj+a-

until a point is reached where successive changes are sufficiently

small.

In our adaptation of this idea, we have an invisible bulldozer

dig up four altitude posts (four is what we consider to be the width

of the blade) and stack the amount dug up onto the four posts in

front of the bulldozer. Then we relax so that the "dirt" appears to

settle.
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We found that showing every iteration of that settling process

gave an unrealistic appearance. Suppose we have a very tall post

(such as one which has just been stacked up by the bulldozer ) next

to a short one (where we want the dirt to settle onto.) Then on the

first iteration, the short post will pull the tall post down to a much

lower altitude than even its final settled altitude and similarly, the

tall post pulls the short one up too far. On the second iteration, the

tall post moves back up nearly to its original position and on the

third it is pulled down again, not as far as the first time. In other

words, it looks as if it is bouncing. We solved this problem by

showing only the peaks so the tall post appears to settle downward

gradually. The short one appears to grow suddenly on the first

iteration, then it also settles downward. This process looks very

realistic.

One goal was to ensure that the volume of dirt does not change

in the relaxation process. We found that as long as all of the

confidence factors have the same value, this property holds. Note

that for purposes of visual realism, this may not be necessary. The

dirt before being dug up by the bulldozer may be packed and so

after being dug will appear to have more volume.

Ideally, the confidence factor should be some kind of

expression which takes into account the dynamics of soil of varying

consistencies and conditions. Soil dynamics is beyond the scope of

our program which shows simply that a relaxation algorithm can be

used to give a more realistic appearance to dynamic terrain.
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Handling Soil and other Bulk Materials
with the Virtual Bulldozer

VSL Memo 90.9
25 July 1990
M. Moshell

Abstract

This paper focuses on the bulldozer as a creator of syntactic structure on the
land's surface. The goals are to minimize the computation required for acceptably
realistic realtime soil handling, while leaving behind a rich enough data
structure that meteorology, hydrology, forestry, subsequent soil handling and the
building of structures are operating on the basis of a reasonably organized set of
objects.

A simple class hierarchy of landforms is proposed and described as explicitly as I
can in pseudocode. Everything here is intended for implementation within the
Virtual Reality Testbed, as augmented with constraint resolution and
CurtPhysModeler components, during the fall semester of 1990. Readers
unfamiliar with the above should obtain VSL Memo 90.2 from Moshell.

This paper is heavily focused on the idea of knowledge representation for
subsequent querying. As such it impacts both database and AI theory, as well as
the obvious graphical concerns.. The main goal of this paper is to outline a coherent approach to soil-related
problems which will serve as a basis for outdoor versions of Virtual Reality, both
in the Army's Dynamic Terrain application and in larger contexts.

CONTENTS

0. The Rationale
1. The Scenario
2. The Part-Whole and Class Hierarchies
3. Overlays

0. The Rationale

Information in the Land. What kinds of information does a piece of land contain?

Depending on the viewer, the answer can be extremely various. A geologist sees
evidence of ancient processes; vanished mountains, streams and oceans. A
farmer sees written in the vegetation a history of the land's use. A military leader
looks for the tactically significant features: cover and trafficability.

- Where can , or the enemy hide and do battle on this land? Is he therm now?

- How can forces move across this land?
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* An engineer (military or civil) looks at the hydrology and the soil's stability.

- What structures (roads, bridges, buildings, barriers) can this land support?

- How will the land's usefulness change as time passes and as the weather
changes?

The traditional cartographic approach stores two kinds of data: DTED (a regular
grid of elevation data points, called "posts") and DFAD (feature data). DFAD
consists of either point features ("a church is here") or lineal and areal features
(polylines defining the route of a road, the perimeter of a forest, etc.)

DFAD features can and usually do overlap (e.g. a road passing through a forest).
To construct a topographic map, contours are constructed from the DTED
information and the DFAD information is then registered with the contours. This
rather tedious process assures that rivers follow valleys, and other data-
consistency issues are resolved.

An essentially similar process is required to produce the polygons used by a
realtime image generator. A major additional concern for realtime IG's is the
development of levels of detail - multiple versions of the database at various
resolutions - so that inessential polygons are not drawn when distant regions are
viewed.

* Landforms and the Grammar of Objects. Our object oriented approach goes
slightly beyond DTED and DFAD, to include a third category of data
representation: the Landform. Landforms are similar to DFAD areal features,
with three crucial differences:

* All the DTED quads (the small quadrilateral regions bounded by elevation posts)
know the identity of every Landform to which they belong;

* Landforms, being proper objects, have behaviors. They respond to mechanical
and hydraulic actions, weather and the passage of time by modifying the quads
under their "care";

* Landforms may only be created in a highly controlled and formal way; we will
think of the set of allowable Landforms as constituting a kind of language, and of
a particular piece of land as being represented by a document in that language.

The language of DTED and DFAD is conceptually simple; it is simply a textual
encoding of marks on a paper map. Nothing in the language itself forbids
ridiculous juxtapositions.

The language of Landforms, on the other hand, is intended to reflect a grammar
of the land. A piece of terrain has a certain innate logic to it, depending on the
kind of land it is. A grammar for deserts would be very parsimonious with
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wooded areas and lakes. If the grammar is a good one, then all user-actions
* within our simulation system will produce realistic landforms of the given kind.

Aside from producing correct "sentences" or structures, the second purpose of a
grammar is to render comprehensible that which is produced. Our Landform
grammer will leave behind both a part-whole and a class hierarchy, for
subsequent use by any Virtual Entity which needs to undersand and interact with
the land.

The Dual Between ab initio and ad hoc Knowledge Representations. In the world
of AI, a classic struggle has taken place. One body of opinion holds that a small
collection of "semantic primitives" - objects, actions, attributes - should suffice to
describe the world. If physics and chemistry were well enough understood and
expressed in the appropriate primitives, then all else could be deduced.

Ab initio: "from first" (principles).

A second body of opinion asserts that most so-called "intelligence" is just the
recognition of situations drawn from a huge reportoire of "scripts" and the
application of the appropriate behavior, based on the details of the situation. This
viewpoint has increasingly carried the day, as workable AI systems are slowly
developed.

Ad hoc: "to this" (do whatever it takes to get this specific job done).

* Our attempts in early 1989 to construct models of bulldozers in action fell prey to
our inadquate understanding of this dichotomy. If you design a simulation that is
too ad hoc , you get nothing but a bulldozer. If you try to be too ab initio, you would
build in all of physics, and take four Crays and forever to compute anything.

The formalism I propose below is intended to balance between the extremes. Its
goal is to provide acceptably realistic simulations of common soil operations that
can be executed in realtime (defined as >= 4 simulation frames per second) with
our network of workstations.

The quickest way to explore these concepts is to describe our to-be-built simulation
system in action, in storybook form.

1. The Scenario

Definition: bern: a small manmade hill, usually long and narrow.

A small stream flows east to west; the bulldozer is on the north bank (figure 1).

The dozer constructs an arc-shaped tank barrier ditch, with two berms b2, b3,
north of the stream (figure 2). The dozer leaves behind its fore-berm bi.

The dozer back:, up, turns to the right and pushes its new fore-berm b4 down the
hill and into the stream. Two additional berms b5, b6 result. (figure 3)
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Blue Figure 1: Stream and Bulldozer
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Figure 2: The Tank Trap
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Figure 3: Pushing Dirt into the Stream b4



* The dozer again backs up, turns right and then left, and pushes a second mass of
soil (fore-berm b7) into the stream, destroying b6 and creating b8 and b9.

The dozer now leaves. Water in the stream slowly accumulates into a lake, until
its height matches the top of the soil dam that has been pushed into the ditch.
When that happens, it flows over the top of the dam. (figure 4)

b2

ditch

b3 8 :: b 1

Figure 4: The Stream Dammed b7 b4 ::

If a tank arrives before water crosses the dam, it can traverse the dam; otherwise,
it gets stuck.

If the tank tries to cross the tank barrier in a north-south direction, it can do so
UNLESS it has rained. If it rains, the ditch fills with water and becomes
impassable.

The prime reason that a scenario like this is interesting is that the underlying
simulation system must be functional for an infinite class of similar situations.
No matter how you dig the ditch, drive the tank, or get rainfall, things must work
reasonably. When this happens, we can fairly claim to have a useful knowledge
representation over this restricted domain.
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2. The PartWjole and Class ieranhesT h e cla ss h iera rch y d es • , 5 "subclasses: Landforms and Overlays. shows Terrain as falling in

d ecsss s :cr 
ib e d in ?i u e 5 S o W e r i s a l n nt r a

LanorTerrain

Land erm Depression 
Waterway 

Forest Treadmark
Ditch Crater Figure 5: Class Hierarchy for TerrainLare 

centrally concerned with topography (the z coordinate); they are a

structured (and sometimes redundant) representation 
of DTED inforiatin. A

of quads (stored in the Landform's 
QuadList).QverlpY3 are centrally concerned with attributes; they are the spiritual

descendants of DFAD. They have Polygonal bounda

AS.rTheyrhave 
ariesr which laly acrs the

landforms. Their boundaries do not necessarily correspond to the discrete
structural grid of the quads.

a are the basic "atoms" of the terrain. A quad has four edges parallel to the

lists: 
axes Each corner has an elevation value. The quad has severala MemberMode list which names all the movable modelsthis quad (e.g. a tank, a bridge footer, etc.);

" a MemberLandforn 
list, which names all the Landforms to Which it belongs;

and
a AMemberOverla 

li t wh
aon lo which names all the Overlays which pass across it. It

Quads may vary in size, to allow ma

also in general cut into two t icro-terrao eing res, O a t

iotriangles for vi..- _ mrxation, 
etc. Te rsurfaces are available for shading. vwin Purposes, so t a -,a Tar

is the concrete class of which an instance, named theLand, serves as the

underlyingstructure 
for the entire scenario. theLand contains all quads in the

simulation.
R are the most fully developed objects in this paper. The basic idea is that we

want to be able to do bulldozer operations as a direct and simple transaction
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between five objects: a dozer, three berms and a ditch, rather than (as is now
done) the detailed manipulation of elevation posts within theLand by the dozer.
How can we do this?

Let's look at a detailed sub-scenario, in figure 6. The berms are deliberately over-
simplified (large quads are used) to keep the drawing comprehensible.

)itc hl Ber 1

Figure 6. Overlapping Berms and Ditch

All the quads belong to theLand. Quads 1,2,3,4,5 (and five unnumbered quads)
also belong to Berm2; Quads 4,5,9,10,14,15,19 and 20 belong to Berml, etc. The
landforms overlap as advertised. Now - what can the dozer, the berms, the ditch
and theLand do to one another?

When the dozer is driving across plain land, it need only inform the land of its
location (four corners), plus velocity vector. The dozer is responsible for always
traversing (with its leading edge, as defined by the velocity vector) every quad
which will ever be underneath the dozer. Thus, theLand knows which of its quads
are being run over.

if any of the newly-run-over quads contains any moving models, the dozer is
informed of that fact. This simplifies initial collision detection (e.g. with models
such as trees, rocks, etc) because you don't have to constantly search every model
against every other.

Likewise, if any newly-run-over quads belong to any Landforms other than
theLand, the dozer is informed. If the blade is up, the dozer doesn't care; it simply
interacts with theLand "in bulk" to determine if it can move, or if it's stuck (more
later on how this is done).
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. Blade-down situations. First let's consider the dropping of the blade on plain
ground. In figure 5, the blade lands on the border between quads 8,13,18 and
9,14,19. Three berms and a ditch are created immediately. The left berm (Berm2
above) initially consists solely of quads 4 and 5; the fore-berm (Berml) consists of
the ten marked quads; Berm3 is quads 24, 25; Ditchl has no quads in it yet.

None of these quads is elevated yet; they've just been added to the QuadLists of the
newly created berms and ditch, and the berms and ditch have been added to the
MemberLandform lists of the quads. Berml is distinguished; the dozer knows
that Berml is in front. Likewise the ditch is known to the dozer.

As the dozer's blade moves forward, the dozer calculates how much volume has
been scraped up (this is a direct query to theLand, actually). Messages are sent to
the ditch and to Berml, specifying this volume of dirt and describing the blade's
movement in (x,y,z) (probably by sending two x,y pairs specifying the ends of the
blade, and the z of its lower edge.)

This order of business is to avoid having the ditch and Berml both compute
the volume.

The ditch informs its member quads as to how they should react. It might ignore
the volume and simply adjust the z of the traversed quads.

Berm 1 has a more interesting task. It must use the incoming volume info and the
new (x,y) coords of the blade's ends to compute its own new shape. This will
involve some growth during startup, and then the translation of the "full berm"
with minor volume adjustments as the blade is raised or lowered.

Then it must compute the volume of dirt that falls off the ends into berms 2 and 3,
and tell them. ("3.4 cuMeters of dirt just fell on you at xy location 23,44").

Berms 2 and 3 are now responsible for reshaping themselves on the basis of the
new information. That will probably just involve raising the named quads and
splining the adjacent quads (quad 3 in this case) to fit. If berm 2 didn't pre-iously
own quads 4,5 then it just grew, so it must add them to its QuadList, and itself to
their MemberLandform lists.

A berm is also, in general, of a different color than the undisturbed quads. For
undisturbed quads, the color (e.g. grass-green) is not dependant on the soiltype,
but once the quad has been bulldozed, its color changes to the appropriate color for
the soiltype. Even if the berm is subsequently flattened, it will still be brown
instead of green (at least until we get to the section on ground cover, below).

In summary, data flows as follows during each simulation step:

(1) Dozer moves forward, asks theLand how much volume it just ate.

* (2) theLand replies with a volume. Dozer informs ditch and Bermi.
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O (3) Ditch and Berml redraw themselves. Berml tells Berms 2 and 3 what their

spillover is.

(4) Berms 2 and 3 redraw themselves.

Whenever the tractor backs up, its current set of berms and ditches is abandoned.
When the tractor goes forward, a new set is created (if the blade is down). This
proliferation of data structures amounts to trading space for time, as will now be
shown.

Economies of Scale. The main advantage of this structure is that none of the above
message traffic required any knowledge of the granularity (size of quads). The
discussion is all in terms of bulk materials: how much volume, and where in
x,y,z space it'll be delivered; where my blade is and where I'm going.

Thus, a viewing system (such as an Iris elsewhere in the net) can be maintaining
its polygonal view of the scene at any desired level of detail. The ghost objects
corresponding to berms and ditches there will have to include their own splining
routines so as to properly "digest" incoming bulk material deliveries. Rather than
shipping lots of update-elev-post info over the net, we're just shipping minimal
descriptions of the changes to those berms and ditches which changed.

The central database must store an explicit destiiption of each ditch and berm,
somehow - perhaps as a log of "loads delivered" - so that a querying remote
workstation at a later time (it wasn't "looking at the action" when the earthworks
were built) can get the data for rendering its own local version of the berms and
ditches.

Alternatively, the central database can just keep track of where within the
network a fully rendered version of the terrain exists, at each different level of
detail (quad size) and send a querying workstation to the right place to get the
elevation posts.

Crossing Old Berms. What happens when the dozer backs up and turns out of its
old ditch, as in figures 3 and 4? Not much, really. The polygons in the disturbed
region of Berm3 are lowered, because they became part of Ditch2 and Ditch3. They
are still listed as members of Berm3 (which doesn't cost us any execution time,
just some memory space).

This information (former membership in a berm) could be useful in the future,
inasmuch as soil that has been underneath a berm is more compressed than
otherwise, and probably damper. The most important fact is just that it doesn't
hurt to leave these quads in Berm3's list; purging would be expensive and
difficult.

3. Overlays
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It is desirable to retain the topographic information in the Landforms even whenewe wish to superimpose features such as a stream. The topo data will describe the
streambed's shape, which is essential when water levels are to rise and fall.

Thus, the "feature data" in our system must drape itself across the landforms.
Let's consider the water feature, since I'm looking to Chuck Campbell to build
this feature into our simulation as his Master's thesis.

A Waterway has an altitude, a polygonal boundary and a color. It is rendered as a
horizontal polygon. With z-buffering, any berms or topo lumps which project
above the surface will automatically appear as islands. <more later>

0
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Review : Object Oriented Terrain
* Databases for Visual Simulators

Brian Blau
VSL Document 91.35

Visual Systems Laboratory
Institute for Simulation and Training

University of Central Florida
Orlando, Florida

Introduction
This document is a review of the work done for the Dynamic Terrain

Project at the Institute for Simulation and Training during 1989-90. The topic
is object oriented databases which provide dynamic terrain capabilities. This
project was part a masters thesis. A project report [Blau90] and demonstration
programs were presented at IST in January 1990.

Motivation for Object Oriented Terrain Databases

In recent years, the computer revolution has made possible high fidelity
computer simulations. Visual simulators have traditionally employed static
terrains over which active objects move. In these environments, actions that
should alter the terrain sometimes result in visual changes. The construction
of earthworks, erosion and traffic damage are examples of the complex effects
which occur in real life and need to be emulated in graphical simulations.
Unfortunately, existing systems rarely modify the terrain's internal structure
and behavioral characteristics.

Developments in hardware and software are now making it possible to
manage and display dynamically changing terrain in real-time. Using an
object oriented approach, it is now possible to implement a system which
supports dynamic terrain. The project described in this report has developed
novel data structures and modeling algorithms for land formations that can
be modified during display.

Motivation
Massive processing power combined with the need for accurate

simulations has created the computer simulation industry. This industry
focuses its efforts on how humans use computer inputs and outputs to better
train for a particular task. Many private and public institutions conduct
research to continually improve the training/response scenario. An example
of a training simulator is the SIMNET network of tactical tank trainer. In this
simulation, many separate tank units participate in a single computer
networked battle, giving the soldier a feeling of being in a large battle. This
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device helps the U.S. Army give soldiers effective training in a "semi-real"
situation so they might be better prepared for actual battle.

Some computer based simulations are used for training, but there are an
equal number of computer applications which are not training situations, but
have more social implications. Examples can be seen in Walt Disney World
and Universal Studios in Florida. The engineers there have created the Star
Wars/Body Wars and Hanna Barbara ride experiences. In these similar rides,
passengers sit in a room where they view an animated film. The motions
portrayed in the film are felt by passengers as a motion platform moves them
around. In some of these cases, computers can generate the film shown to the
audience as well as coordinate the control of the motion platform.

This project focuses on how to make computers better represent the real
world in a simulation and training environment. Although there have been
many advances in computer simulations, there still remain many hard
preblems to solve. The work described below brings into focus some of the
difficulties with today's computer simulations.

Data Paths
The data flow in a simulator mimics how a soldier fights in a real battle.

First there is some input to the fighting machine, or in the simulator's case,
input through discrete switches or analog controls. Next, a weapon is fired
and some destruction occurs, the simulator computes the trajectory of the
round and it determines if any object has been hit. Finally the soldier sees the
result of his action and again inputs some action to his fighting machine.
Here the simulator computes the graphical screen and displays it on a
monitor. Finally the cycle is complete and input is again introduced to the
unit.

User Output Output Image
Device Generator

User Input i oeynmof,

Dynamic
Model of
Vehicles and Database
Weapons Traversal

Fig. I Life cycle of user input to user output

User input can come in many forms. There can be triggers, knobs, pedals,
switches, steering wheels, throttles and buttons. Once the input has been
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gathered inside the host simulation computer, the computation system starts.
Here all of the inputs are converted to world coordinates so all data is in the
same coordinate system. The physical dynamics of the simulation determine
the velocity, direction and explosive effects of all objects which are in the
simulation. Next, a database is read to determine what environment
surrounds the user. This data is then sent to the image generator and a
picture is displayed. There may also be lights and gauges for the user to read.

Visual Systems
One important output of a simulator is the visual display. Here the user

is presented with some graphical representation of the virtual world which is
located on the other side of screen. This display is generated by a high speed
graphics engine, commonly called an image generator. This functional
component takes three dimensional information about a scene and using
mathematical transformations, projections and rendering routines, produces
a picture display. Inputs to the image generator come from the user's position
in the virtual world and a database which contains a model of the world. The
output of the graphics engine is through a CRT monitor and video projector.

Dynamic Terrain
Even though there are many successful image generators on the market,

they are all lacking in one respect. Some of the inputs the user is giving to
the simulator unit are not being recognized. These may be very subtle inputs,
but they still are not handled. For example, if a tank is driving close to a river
bank, but not actually in the river, the ground underneath the tank may be
soft. When the tank moves it should leave marks in the soft ground. Also, if
a tank fires its weapon and the round does not hit another object, it then
strikes the ground leaving a crater. A simulation of these events should
correspond to their real world counterparts.

If this capability were to exist in simulators, the functions to create craters
and tank tracks would be located in the image generator, or some piece of
equipment closely connected to it. But the databases and graphics engines in
today's simulators do not have this capability.

Both of the events described above modify the underlying terrain.
Previously the terrain was named as a static model because it would never
change, but it now must be made a dynamic model. We will now call a
dynamic model of terrain, dynamic terrain.

There are a few possible solutions to the problem of dynamic terrain.
When a tank leaves tracks, it may be enough to simply display a black mark
where the tank has driven. This is an attempt to leave a permanent mark of
the tank's presence. This method is acceptable when only looking at the
tracks, but it is not acceptable when trying to navigate them. This effect can be
seen in Fig. 2, Tank A. Here textures are left behind the tank as it moves
across the terrain.

If one tank is in pursuit of another, then the visual and motion cues
felt by driving over the tracks might be important. After the passage of a
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column of tanks, a roadway is often impassible to wheeled vehicles. This
effect can be seen in Fig. 2, Tank B. As the tank moves across the terrain,

Tank A Tank B

Fig. 2 Tank A may look good, but Tank B leaves real tracks

changes to the terrain polygons are made automatically. A small depression
in the polygon signifies that the ground is lower at these points. The depth of
the crater might give the enemy some idea of its size. These visual cues are
not part of today's visual systems. The inputs that have been given (e.g.
driving over soft ground) are not registered by the simulation computer.

Not only does the dynamic terrain model apply to terrain, but if the
model is extended, all forms of databases will be able to share in the dynamic
nature of models. As it stands now, the simulation industry has put a
restriction on what can and cannot move in a simulation. By making all
models of a simulation dynamic, we can better recreate reality.

Object Oriented Design for Simulations

There has been a software evolution which may hold the answer to
some of the problems with visual simulators. Object oriented technology has
the inherent ability to manipulate and manage the complex data structures
which are necessary for dynamic terrain.

Many parts of a simulation can be described as encapsulated data
structures, or objects. A house, tree or tank can be an object. Objects are
instantiations of data structures with actions and slot variables. The slot
variables of an object are objects themselves. Sending a message to an object
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requires that object to respond by executing one of its associated actions.
Actions can be passive or active and the only way the outside world has access
to that object is through one of the actions. The collection of an object's
actions are known as its protocol.

Because objects are encapsulated data structures, they are dynamic by
nature. By knowing the protocol, objects may send messages to each other
without regard to implementation or method of execution. Thus when a
message is sent to an object and the action is passive (i.e. the action is simply
to assign a value to a slot variable) no message propagation takes place, but if
the action is active, then many messages may propagate and affect other
objects located in the system. Nesting of objects is possible through the use of
slot variables. This is called an object hierarchy or part-whole hierarchy. One
slot variable may contain an object, which has a slot containing another
object.

A simulator database may be modeled by using objects. Houses, trees,
rivers, lakes and terrain are candidates for these encapsulated data structures.
A simulation database may easily take advantage of the part-whole
hierarchical structure. For example, a house object may have as its parts a
door, a kitchen, a fireplace and a room. The kitchen object may in turn have
a stove, a sink and a cabinet. The terrain of a simulator database may be
modeled the same way. A terrain may be one object, itself comprised of
smaller pieces of terrain. Each smaller terrain may contain even smaller
terrain objects. A terrain object may even contain houses and trees as parts.
This encapsulation of objects gives the terrain a natural hierarchy. Using the
object oriented structure to implement the database, both static and dynamic
models can be incorporated into the database.

Within an object oriented design, each part of the simulation is
independent from the others. Objects may receive messages and act upon
them accordingly. Because each object is encapsulated, different parts of the
simulation will not know how other parts are implemented. The only
communication route is through message sending. This means each object
must have a well defined protocol which must be known to all other objects.
This is the main restriction on how objects interact, and it is not a drawback,
but a feature. Because the implementation is not known to the outside
world, there will be no direct modification of the internal variables. This
encapsulation leaves the object free to use any implementation without fear
of losing reuseability or portability. The state of the object is defined by its
internal variables, while modification is done through its standard protocol.

Accomplishments and Lessons Learned

The OOTDB was a proof-of-concept experiment. Because there were
many unknown variables at the start of the project, some of the results
obtained were unpredictable. In this section, some specific conclusions and
recommendations will be presented about the object oriented design, the
terrain editor and the use of Smalltalk-80 and GemStone.
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Object Oriented Representation of Terrain Geometry
One of the main ideas presented in this project was the use of object

oriented technology as a foundation for the construction of the terrain
database. Object oriented design was chosen because it facilitated the natural
representation of real world data in the form of structured programming.

The decomposition of a region of the world can be described spatially by
using the part-whole relationship. It is easy to say that a mountain range has
a city and lake located in its area. This straightforward approach to the design
of the part-whole hierarchy also is used in the design of the class hierarchy. It
is very natural to say that a region of terrain has water formations and man-
made formations as its parts. This breakdown of the terrain into its object
oriented representation is usually expressed without any difficulty, but an
experienced geographer would perhaps be better equipped than a computer
scientist to describe realistic terrain attributes.

Complex Queries
Incorporated into this project are methodologies from object oriented

databases. It is important to realize that the terrain database is not an
implementation of a traditional, query processing data manager. Rather it is a
specific collection of classes which can manipulate dynamic terrain databases
efficiently.

The query language processor of the terrain database is a part of the
Smalltalk-80 language. The database modeler must specify the operational
code of the query, and the host system will do the dynamic binding of the
query call. This implementation of an object oriented database will support
the complex queries which are generated from a dynamic terrain simulation.
Queries such as those from a geographic information system and a real-time
simulator can be supported by the OOTDB. The work of this project has
focused on the efficient representation of spatial data. Therefore more work
will be needed to fully demonstrate the real-time capabilities of the OOTDB.

Different Spatial Data Structures
Object oriented design states that the problem statement should be

broken down into the base structures to determine the relationships which
exist among different the entities. Once these relationships have been
established, the common structures are found and placed in classes. These
classes become the abstract classes, placed near the root of the class hierarchy.
The class hierarchy is then refined and tested, and the design process is
repeated until the resulting hierarchy is satisfactory. Using this method, the
terrain database was formed for this project. It contains one root class which
manages all of the part-whole hierarchy and lets more specific subclasses use
these resources.

After looking at the design process used for this project, it became clear
that some of the original design could have been done more carefully. This is
evident in the spatial data management. If a structure like Antony's [Antony
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88, 901 was followed, the performance and modularity might have improved
Specifically, a better merger of the class and part-whole hierarchies and spatial
relationships would have resulted in better data management. Some design
considerations, like the one mentioned above, were discovered late in the
implementation of the project. It also became clear that the DCEL structure
was a good choice for the spatial relationship, but the quad-tree might have
been easier to work with, and most likely, a combination of these two data
structures would have been very useful.

Frameworks
One final comment on the design of the terrain comes into light when

looking at object oriented design. One of the most important aspects of object
oriented design is the natural tendancy to reuse classes. A particular form of
reuse is called a framework [Johnson 88]. This would give the class structure
of the database as much reuseability and modularity as possible. It would also
be convenient when distributing the terrain database to users. They would
receive a copy of the terrain framework and would only need to know its
protocol to be able to use it.

Smalltalk-80
The Smalltalk-80 programming environment was chosen because it

was the only available application which met the original design goals. It is
available on popular UNIX workstations and is relatively inexpensive. But
the use of this tools had some effect on the outcome of the experimental
results in terms of performance.

One capability of the database is the ability to manipulate large
amounts of data. The Smalltalk-80 system is image based, meaning that all
source code is stored in binary format in the environment. The image also
contains objects and its size is determined by the number of objects currently
in use. As the object count increases, the internal memory manager allocates
space. Large terrain databases may be slow in processing because of the virtual
image, but they are only limited in size by the image size.

The only implementation of the database is in Smalltalk-80. This
programming environment is available on very fast UNIX workstations and
its performance on those computers is quite good, for some applications. An
advantage to using Smalltalk-80 is that the language supports late binding,
which means that classes can be added while an application is executing. This
is a powerful language mechanism which is available in Smalltalk-80,
interpreted rather than compiled language. This price of using an interpreter
is performance.

Another disadvantage is Smalltalk-80's lack of popularity among
computer and simulation professionals. Because object oriented ideas are
new, many commercial manufacturers have not accepted this as a legitimate
technology. Implementing this project in Smalltalk-80 meant that many
people would be exempt from using it and rehosting would require a large
effort. Recent releases of Smalltalk-80 have given this product more exposure
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to computer professionals. In the future, object oriented programming will
become popular in all aspects of computing. Mandates by the government in
the from of software standards will give this technology more exposure.

Gemstone
One of the other strengths as well as weaknesses is the software package

GemStone Object Oriented Database. The most useful part of this tool is the
persistence of Smalltalk-80 objects. It is very easy to use GemStone to
permanently store and retrieve objects. Using GemStone in its basic form
requires very few commands, and the objects can transfer back and forth
between Smalltalk-80 and GemStone easily.

One of the main problems in using GemStone is access time. Even
though the workstation which houses the GemStone server has a high
processor speed, database access is always slow. Typically, the time to read a
small (four patch) terrain database into Smalltalk-80 is about 30 to 60 seconds.
This speed would be unacceptable for any real-time simulation.

Another drawback is moving classes from Smalltalk-80 to GemStone.
The only way to transfer class definitions to GemStone is by hand. Each
Terrain class and its subclasses must be meticulously recreated using the
GemStone Class Browser. There is no automatic of doing this transfer.

An Experiment on Performance of the OOTDB

To show that the OOTDB is a viable resource for use in the simulation
community, it is necessary to conduct an experiment. This test was to
determine if any conclusions could be drawn about the relative performance
of the GemStone system. A database system should show improvements in
speed when queries are centralized and give average results when the queries
are randomized.

The following experiment involved five different terrain databases .
There are four queries which will be sent to the database and each query will
be sent a specified number of times. The timings given are the real clock.

Experiment
Each database was sent four queries with both randomized and

localized data points. The queries that were used were:

elevationAt: aPoint
elevationAt: aPoint put: anotherPoint
intersects: anObject
visibilityFrom: aPoint to: anotherPoint

Each query was sent to the same database which was located in the Smalltalk-
80 image and in the GemStone system. When the queries were being
processed in Smalltalk-80, no activity was being conducted in GemStone, and
the reverse was also true.
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Each query was sent 1, 5, 10, and 50 times to each database. For each
query sent, the distribution of the data points was either randomized or
localized. Randomized points, in the case of the elevation and visibility
queries, fell anywhere inside the legal boundary of the terrain. Thie
randomized areas which were used in the intersects: anObject query came
from the database itself. Two objects from the terrain part-whole hierarchy
were chosen at random. The localized points were statistically close together.
One seed point was picked at random. This along with a random range gave
an enclosure which was random in nature. All points that are localized fall
within that area.

Description of the Experimental Databases
There were five databases created and used in this experiment. Each

database was created from the same raw data files but the amounts of ter:ain
coverage by each database differs. Each database is also classified by the form
of hierarchy its takes. For example, there are flat, balanced and skewed part-
whole hierarchies. In addition, some of the databases contain terrain objects
such as houses, trees, treelines, roadways and lakes. The following is a list of
the five databases :

Database Size Balanced/Flat/ Objects or
Number Patches Skewed No objects

1 3x3 Balanced Objects
2 3x3 Flat No objects
3 2x2 Flat No objects
4 3x3 Skewed Objects
5 lxl Flat No objects

Results
The table which is located at the end of this chapter, Table 1, shows the

numerical results which were obtained from conducting the experiment. All
times are recorded in seconds. The queries are labeled at the top of the page
while the number of repetitions are located at the side. Each database is
marked with a number which corresponds to the list above.
There are three major conclusions that were discovered about the OOTDB
from the result of conducting this experiment. The first is that the terrain
database functions correctly. Both the Smalltalk-80 and GemStone queries
returned the same results. The second observation is that the GemStone
system is slow. It does not look like GemStone will be able to be used in its
present configuration in a real-time simulation. Finally this experiment
shows that more experiments need to be done. There is some obvious
correlation of the data from the GemStone and Smalltalk-80 queries. But
because GemStone is so slow, it is almost unnecessary to make any formal
evaluation of its performance.
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Table 1. Experimental Results
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One of the inconstancies found was in the difference in times between
the random and localized points. The localized queries should have taken
less time to execute than their random counterparts. The data presented in
the table shows that there are many times where this was not true. The
reason these times differ from the expected pattern is unknown.

Possible Reasons for Poor Performance
There are a few possible reasons why such poor results were obtained

from the GemStone system. First, the configuration of the software on the
workstation which houses the GemStone server may be limiting its
performance in some way. This particular computer is part of a network and
one of its functions is to be an administrator. It has some resources which
other workstations use.

Second, this database uses three dimensional data and all of the
computation uses floating point arithmetic. It is not known if the GemStone
server uses the underlying floating point processor, or must process all
floating point numbers in software.

Additional Research Needed

This section is devoted to exploring additional work which needs to be
done to better understand the usefulness of the OOTDB. Performance
analysis, real-time implementations and future directions for the OOTDB will
be discussed.

Performance Analysis
One important aspect of this project was that the design of the database

and the spatial management system would be computationally efficient. The
results of the experiment presented in chapter 6 did not cover any analytical
study which would have determined order statistics for database algorithms.
It only found that the use of GemStone as a real-time object oriented database
system is not possible. An analytical study as well as experiments to verify
the theoretical orders are needed.

Real-time Implementation
It is evident that the Smalltalk-80 and GemStone implementation

presented in this report would not be suitable for a real-time simulation
because the query processing is not fast enough. To be able to achieve real-
time performance, a rehosting of the database in the C++ language may be
necessary. There are some disadvantages is using C++ as a basis for the
terrain database. C++ does not support a dynamic class hierarchy, which
prevents any reorganization of the base class structure while the database is
active. A change to a class must be done off-line and the database source code
must be recompiled. An advantage to using C++ would obviously be the
speed.
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Another improvement which could be made to the terrain database is
an analysis of the innermost loops and traversals of the database data
structures. There may be some places where improvements can be made to
the flow of code without changing its functionality. Once a final version of
the database implementation is in place, it would then be interesting to look
at the possibility of designing a database machine. This would be a hardware
implementation of the terrain database, and it would be done to improve
performance.

Future Directions For OOTDB

One important area of discussion that was brought out in this report
was the use of object oriented designs and databases. The future of these
technologies has impacts on the next generations of the OOTDB. But what is
on the horizon for these products?

Distributed Processing
The main consensus is that object oriented research will be

investigating distributed processing. It was evident at the OOPSLA'90
conference that concurrent and parallel implementations of object oriented
products would be the next generation of research topics. Nine out of thirty
two papers and panels were devoted to either concurrent objects or parallel
object oriented programming [OOPSLA 90]. It is obviously an area of active
research and will be so in the future.

To continue with the topic of distributed object oriented programming
is the notion of a distributed OOTDB. It would be interesting to investigate
how the terrain database can "live" on separate nodes while participating in
one simulation. The class and part-whole hierarchies may be located on
different nodes and the interaction of the simulation players on those nodes
will determine where the different parts of the database will live. This line of
thinking is in concert with the distributed and parallel research in object
oriented programming above. Not only does this have enormous
implications in the networking of simulators, but the implementation of a
distributed terrain database may mean that thousands of players may be able
to participate in a single virtual world.

There are many considerations when looking at distributed databases.
One of the main questions asked is how to distribute the terrain data
throughout the nodes of the simulation. Some objects may need to reside on
more than one node. If a part of the terrain database needs to be used on one
more than one node at a time, there is a question as to which of those places
would actually get the terrain object, and which would have ghosts.

Another question to be answered would be how to establish
communication between objects on different nodes. This raises questions in
message route planning and the configuration of an underlying physical
network.

0
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A final area of investigation would be in the area of a distributed
terrain class hierarchy. Would the entire class hierarchy be replicated on each
node, or would some encapsulated version of the class hierarchy be
distributed? These questions, as well as many that were not mentioned here
will be the focus of work on the OOTDB in the future.

Effectiveness as a Training Simulation
Also worth mentioning are possible human experiments using the

OOTDB. One of the important factors of using a real-time simulation is its
ability to effectively train. Many times human factor experiments are used to
determine how well subjects perform while using new equipment and
software. This type of analysis is needed to determine how effective the
OOTDB is in a simulation environment.

Physical Modeling
Another important aspect of this work is the connection of the database

with other simulator components. There needs to be research in the areas of
physical modeling, soil dynamics and dynamic terrain. These aspects of
simulation along with a terrain database will improve the usefulness of a
simulator. Physical and constraint modeling will give the database symbolic
resolution of constraints which may be placed on terrain objects. Soil
dynamics will determine exactly how the terrain will react to its
environment. Dynamic terrain will lead to algorithms and data structures
which will better represent the terrain as it changes. All of the simulator
activities mentioned above should be supported by the OOTDB.
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Overview of the 3dbs project

* I. Approaches

Centralized Database Centralized Simulator (CDCS)

A single simulator runs all vehicles on a centralized database.
Display terminals hold a display database and receive user
input. All terrain changes to a given patch are made to the
centralized database and are forwarded to the display
terminals which hold that patch in their display database.

Centralized Database Approach (CDA)

A centralized database is kept and accessed by each of the
simulators. The simulators keep a local database on which they
operate. When a vehicle modifies a patch of terrain, the
changes are sent to the server, which updates the centralized
database and forwards the changes to each of the other
simulators, if any, which currently have a copy of the patch in
their terrain database.

Centralized Database Approach with Counters (CDAwC)

This approach is very similar to the CDA approach described
above. The server receives terrain changes for a patch and
sends them to other simulators which currently have a copy of
the patch in their local database as with the CDA. The
difference is that the server keeps a counter for each patch
which indicates how many simulators currently have a copy of
that patch in their local database. As long as the counter for a
patch is non-zero, the centralized database is not updated with
terrain changes to that patch. As patches are released from
simulator databases, the associated counter is decremented.
When a counter becomes zero for a patch, it requests that the
patch be sent back from the last simulator holding it so that the
centralized database can be updated.
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Distributed Database Approach (DDA)

The terrain database is divided into blocks of patches which
are distributed among the workstations. The size of a block is
arbitrary. Workstations consist of a simulator and a display.
The display has a small database which holds the area around
its vehicle. The display runs a dead-reckoning model of the
vehicles it is displaying and receives changes in velocity and
heading from the simulators. The display is always associated
with the same vehicle. Vehicle simulation is performed on the
simulator which holds the patch on which the vehicle is
currently residing, so a vehicle is passed to a different
simulator when it crosses a block boundary. This should cut
down network traffic since terrain changes are always local to
the simulator. The changes to a patch still need to be broadcast
to any display databases which hold the patch.

II. Performance Analysis Centralized Database
Approaches (using 4 vehicles)

The following are the test cases for the approaches which use a
centralized database. They were developed to gather data for
the various levels of interaction between vehicles during a
simulation. Each of the cases have an expected Tesult
associated with them, which is stated with the case below.
When more than one vehicle occupy the same patch, an update
message is sent from each vehicle to every other vehicle on the
patch, resulting in n2 messages per iteration for n vehicles.
Obviously a case which generates more messages per iteration
is expected to take more time per iteration.

The statistics recorded for each of the cases include the number
of messages sent and received per iteration, the number of
bytes sent and received per iteration, the time taken for an
iteration, and the number of iterations performed.

i. <1,1,1,1> All vehicles on different patches. This case is
expected to generate 4 messages each iteration, one from
each vehicle to the server. Since no patch is common to
more than one vehicle, the server will issue no patch
updates.
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ii. <2,1,1> Two vehicles on the same patch, the other two
vehicles on different patches. This case is expected to
generate 6 messages (2*2+1+1) each iteration.

iii. <2,2> Two vehicles on the same patch, the other two
vehicles on the same different patch. This case is expected
to generate 8 messages (2*2+2*2) each iteration.

iv. <3,1> Three vehicles on the same patch, one vehicle on a
different patch. This case is expected to generate 10
messages (3*3+1) each iteration.

v. <4,0> All vehicles on the same patch. This case is expected
to generate 16 messages (4*4) each iteration.

II1. Performance Analysis for the Distributed
Database Approach (using 4 vehicles)

The performance analysis for the distributed database
approach is more complex than that of the centralized database
approaches. The expected number of messages for the DDA is
variable. The occurs because a vehicle is passed between
simulators, while its display remains static. If a vehicle's
model is being run on a simulator which is part of the same
workstation as that vehicle's display, updates to the display
database can be made locally, without a network message.
However, if the vehicle is being run on a different simulator,
that sim,.Iator must send a network message to the vehicle
display's database.

There is one exception. In the case where all four vehicles are
being run on the same simulator, there will always be one
update to the local display database, and 3 update messages
sent to other display databases.

0
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To illustrate the variability of network messages, consider the

following example for the <3,1> case (see section 11):

Vehicles: vI, v2, v3, v4

Workstations: (display:simulator)

dl:sl, d2:s2, d3:s3, d4:s4

Display Assignments: (vehicle:display)

vl:dl, v2:d2, v3:d3, v4:d4

expected # I vehicle/simulator relationship I description
of messages I sl --s2 -s3 s4 I of messages

1 1
2 1 vl,v2,v3 v4 I s I->d2,

I I s1->2d3

3 1 vI,v2,v3 v4 I s I->d2,
II s 1->d3,
II s3->d4
I 1

4 I v4 v l,v2,v3 I s2->d4,
I s4->d 1,

11 s4->d2,
II s4->d3

Of course, this is just one scenario for the <3,1> case, but it
demonstrates the variability of the number of messages
produced.

Using this approach, the number of expected messages for each
case is as follows:

expected #
case of messages
<4,0> <3>
<3.1> <2,3,4>
-r22> <2,3,4>
<2, 1,1 > <1,2,3,4>
<1,1,1,1> <0,2,3,4>
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Performance analysis will be performed on each instance of
each case. These results will be reported in table form. For
each case, the results will be averaged giving each instance
equal weight for purposes of comparing the results of this
method with the results of the centralized database
approaches.

For more accurate results, one could determine the likelihood
of each instance occuring during a simulation, and assign
weights to the results reported in the tables. However, this is
beyond the scope of this experiment.
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I Simulator

0 , ~~~initailization i . ~ag---s,\/

LocaIDBM VehModel nextPatch

LDBinbox outbox localDB VEHInbox

MsgPass CmmcPkg

Functionality of Simulator:

1. LocalDBM:
i) receives patch requirements from inbox; Record patch numbers for update purpose;
ii) updates the local database by TerChanges and broadcast it to appropriate cameras-
iii) sends required patches to appropriate cameras.

2. VehModel:
i) receives keyboard & mouse input; calculates actual orientation and position of local

vehicle;
ii) if local vehicle changes terrain, puts the modification in TerChanges (temporary storage);
iii) puts local vehicle update message into outbox;
iv) determines if local vehicle is crossing boundary, if so, pass message to corresponding

simulator.

3. MsgPass: (see Camera)

4. CmmcPkg:
sends messges either between processes or machines.
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Camera

DispDBM DeadReckoning Display Vehlist

/

1

/ nextPatch

oubxDOBinbox dispDB DRinbox

MsgPass CmcPkgl

Functionality of Camera:

1. DispDBM:
i) checks current patches number and local vehicle to determines which new

patches are needed. broadcasts those numbers by putting them into the outbox;
ii) checks inbox for terrain updates or new patch information; updates display

database with new information.

2. DeadReckoning:
i) checks inbox for updated vehicle information;
ii) check display database and run dead-reckoning model for each active vehicle.

3. Display:
i) displays patches in camera diplay database and vehicles. (note: may provide 2 types

of viewing: Overhead and window views. View depends on orientation of the local
vehicle. )

4. MsgPass:
i) check outbox and pass the messages to this destination ( broadcast or point to point).
ii) receive messages and put into appropriate inbox,
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)Number of Messages ILoop partitioning: coarse
(Simulator)

CDCS
3.0 CDA

CDAwC

2.5

2.0

1.5

1.0

0.5

Degree of Interaction

<1,1,1.1> <2.1,1,0> <2,2.0,0> <3,1,0,0> <4,0,0.0>

Number of Bytes /Loop partitioning: coarse
(Simulator)

CDCS
400
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200

100

Degree of Interaction

<1,1.1.1> <2,1,1,0> <2.2.0,0> <3,1,0,0> <4,0.0,0>



Number of Messages ILoop partitioning: coarse
(Server)

14
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12
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8

6
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Number o Bytes /Loop partitioning: coarse
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1600 ODOS
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DDA

Delay (sec/loop) partitioning: coarse
Simulator

0.025

0.02

CDA
0.o015 CDAwC

CDCS
0.01

0.005

Degree of Interaction

<1,1,1,1> <2,1,1,O> <2,2,0,0> <3,1,0,O> <4,0,0.0>

Delay (sec/loop) partitioning: coarse
Server

0.8 CDCS

0.6

0.4 CDA

0.2 CDA%-C

Degree of Interaction

011.1, <2.1.1.0> <2,2,0,0O> <3,1.0.0> <4.0.0.0>

Although the DDA has less network traffic than other aproaches, it has to do more work to manage its local

database. The figure simply siggests that the DDA do not gain much performance by cutting off few messages

in this simulation model. If computations for vehicle model and display database are more subtantial. or if

long haul communications and slower baut rates are considered, the DDA could have better performance

than other approaches.



system: simulator approach: DDA Partitioning: coarse

_________INmsgs IN-bytes OUT _msgs OUT-bytes EXE-time

(4,0,0,0) 2.48 320.6 2.43 308.3 0.034

(3,1, 0, 0) 1.8 234.4 1.71 226.9 0.026

(2,2,0,0) 1.52 233.4 1.43 226.3 0.017

(2,1,1,0) 1.18 178.3 1.09 171.5 0.014

(1, 1, 1,1) 0.83 138.1 0.75 132.2 0.011



0

system: simulator approach: CDA partitioning: coarse

IN-msgs IN-bytes OUT-msgs OUT-bytes EXEtime

(4, 0, 0,0) 2.273 244.2 0.773 58.83 0.018

(3,1,0,0) 1.258 174.5 0.823 61.2 0.014

(2, 2, 0, 0) 0.895 154.8 0.832 63.1 0.013

(2,1,1,0) 0.531 123.3 0.821 63.2 0.011

(1, 1, 1, 1) 0.141 94.3 0.835 63.25 0.01

0
system: server approach: CDA partitioning: coarse

IN_msgs IN-bytes OUT-msgs OUT-bytes EXE time

(4, 0, 0, 0) 0.992 74.44 2.829 304.8 0.4713

(3, 1,0,0) 0.726 54.145 0.807 152.4 0.118

(2, 2, 0, 0) 0.689 53.26 0.691 126.0 0.0905

(2,1, 1,0) 0.673 49.34 0.36 94.63 0.071

(1,1,1,1) 0.664 50.88 0.051 71.53 0.052

0



0

system: simulator approach: CDAwC partitioning: coarse

INmsgs IN-bytes OUT-msgs OUT-bytes EXE-time

(4, 0, 0, 0) 2.21 239.7 0.783 56.8 0.017

(3, 1,0,0) 1.2 162.8 0.785 58.3 0.013

(2, 2, 0, 0) 1.06 162.3 0.793 58.6 0.014

(2,1,1,0) 0.51 118.8 0.808 60.3 0.01

(1, 1, 1, 1) 0.14 86.8 0.783 58.1 0.012

0
system: server approach: CDAwC partitioning: coarse

IN.msgs IN-bytes OUT.msgs OUTbytes EXEtime

(4, 0, 0, 0) 0.559 41.09 1.593 171.8 0.172

(3, 1,0, 0) 0.525 39.29 0.773 107.4 0.091

(2, 2, 0, 0) 0.506 37.83 0.516 94.0 0.067

(2, 1, 1,0) 0.542 41.01 0.283 77.46 0.056

(1, 1, 1, 1) 0.642 48.1 0.057 67.45 0.053

0



system: simulator approach: CDCS partitioning: coarse

INmsgs IN-bytes OUT msgs OUT-bytes EXEtime

(4, 0, 0, 0) 3.00 426.5 0.05 4.41 0.012

(3, 1, 0, 0) 2.31 364.2 0.05 4.37 0.011

(2, 2, 0, 0) 2.05 339.3 0.06 4.21 0.011

(2, 1,1, 0) 1.43 227.3 0.08 5.01 0.009

(1, 1, 1, 1) 1.13 219.1 0.07 4.67 0.008

0
system: server approach: CDCS partitioning: coarse

IN-msgs IN-bytes OUT-msgs OUTbytes EXEtime

(4, 0, 0, 0) 0.202 13.42 12.01 1725.7 0.818

(3,1,0,0) 0.173 11.53 7.92 1288.6 0.493

(2, 2, 0, 0) 0.142 9.46 6.355 1018.7 0.377

(2,1,1,0) 0.172 11.4 4.11 673.6 0.238

(1, 1, 1, 1) 0.152 10.1 3.07 637.9 0.213

0
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Number of Messages / Loop Partitioning: fine
(Simulator)

3.5

3.0 CDAwC
CDA
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2.5 DDA
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1.5

1.0

0.5 Degree of Interaction
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0Number of Messages ILoop Partitioning: fine

1.t(Server)
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Delay (sec/loop) Partitioning: Fine
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system: simulator approach: DDA partition: fine

IN_msgs INbytes OUT-msgs OUTbytes EXEtime

(4, 0, 0, 0) 2.62 280.5 2.4 262.3 0.036

(3,1,0,0) 1.55 199.7 1.62 184.5 0.032

(2,2,0,0) 1.54 191.3 1.38 177.3 0.026

(2, 1,1,0) 1.21 144.3 1.08 132.5 0.02

(1, 1, 1, 1) 0.96 118.5 0.81 105.2 0.016



system: simulator approach: CDA partitioning: fine

IN_msgs IN-bytes OUT-msgs OUTbytes EXEtime

(4, 0, 0, 0) 2.2 192.7 0.84 58.8 0.0135

(3,1,0,0) 1.2 121.3 0.84 59.0 0.0107

(2, 2, 0, 0) 0.48 70.9 0.80 54.9 0.0112

(2,1, 1,0) 0.58 73.2 0.82 56.2 0.0114

(1, 1, 1,1) 0.22 54.3 0.80 55.9 0.0094

system: server approach: CDA partitioning: fine

INmsgs INbytes OUT-msgs OUTbytes EXEtime

(4,0,0,0) 1.6 114.9 4.15 357.6 1.079

(3,1, 0,0) 0.96 67.7 1.38 136.9 0.313

(2,2,0,0) 0.62 43.1 0.51 59.8 0.11

(2,1,1,0) 0.63 44.6 0.26 47.9 0.095

(1, 1, 1,1) 0.66 46.9 0.099 35.6 0.073

0



system: simulator approach: CDAwC partitioning: fine

IN_msgs INbytes OUT-msgs OUTbytes EXEtime

(4, 0, 0, 0) 2.22 195.5 0.84 58.2 0.0165

(3, 1,0,0) 1.49 141.7 0.85 63.5 0.0147

(2,2,0,0) 1.16 119.8 0.84 62.7 0.016

(2,1,1,0) 0.76 90.1 0.82 62.2 0.013

(1, 1, 1, 1) 0.41 66.6 0.86 66.8 0.0124

system: server approach: CDAwC partitioning: fine

INmsgs INbytes OUT-msgs OUTbytes EXEtime

(4, 0, 0, 0) 0.78 52.3 2.12 198.2 0.315

(3, 1,0,0) 0.67 49.9 1.09 102.8 0.225

(2, 2, 0, 0) 0.6 44.9 0.76 77.1 0.164

(2, 1,1,0) 0.63 49.1 0.52 61.2 0.176

(1, 1, 1, 1) 0.66 51.6 0.23 42.4 0.0929



0

system: simuiator approach: CDCS partitioning: fine

IN-msgs IN-bytes OUTmsgs OUTbytes EXEtime

(4, 0, 0,0) 2.63 290.7 0.093 6.18 0.0098

(3,1,0,0) 2.18 252.3 0.108 6.88 0.0093

(2,2,0,0) 1.91 229.7 0.105 6.78 0.0089

(2,1, 1,0) 1.55 193.5 0.093 6.03 0.0081

(1, 1, 1, 1) 1.23 162.3 0.086 5.53 0.0091

0
system: server approach: CDCS partitioning: fine

IN-msgs IN-bytes OUT msgs OUTbytes EXEtime

(4,0,0,0) 0.41 26.3 12.65 1418.6 "1.428

(3,1, 0, 0) 0.31 20.2 7.45 885.9 0.645

(2, 2, 0, 0) 0.30 19.6 6.3 788.7 0.625

(2,1, 1, 0) 0.27 17.3 4.69 601.9 0.435

(1, 1, 1, 1) 0.25 15.9 3.37 475.7 0.345

0
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Final Report on the
Virtual Environment Realtime Network Project

B. Blau, C. E. Hughes, J. M. Moshell, L. Xin and J. Chen
Institute for Simulation and Training

University of Central Florida
Orlando, Florida

The Virtual Environment Realtime Network (VERN) was a series of
experiments designed to study the feasibility of distributing a virtual
environment across multiple graphics workstations. Using object oriented
technology and the dead reckoning concept borrowed from SIMNET, a set of
programs was developed to demonstrate our ideas. This has resulted in four
versions of the software (available on Sun Sparcs and Silicon Graphics
workstations) and two published papers in technical conferences [Appendix C,
Moshell 91].

The main design goal of VERN was to look at object oriented
technology to develop this virtual environment. Our first demonstration
program [Appendix A] was developed in Smalltalk-80, a pure object oriented
language. The concept of a Player and Ghost were developed by the staff and
students at IST.VSL. Each real world object participating in the simulation is
represented by a software object called a Player. The Player resides on the
object's home machine. If human or external input is required by the Player,
the data is read and processed on the Player's home machine. The main
responsibility of the Player is to accurately maintain state information, read
and process inputs, provide feedback usually in the form of real-time
graphics, and inform the network of any significant state changes that deviate
from the dead reckoning model.

In order to facilitate communication between Players residing on
separate machines, each Player has an associated Ghost located on every
machine involved in the simulation. Thus in an N Player simulation on M
networked machines, each machine is guaranteed to have exactly N objects
representing all players. Such a configuration allows Players to communicate
locally with any other Player (represented by its Ghost). It is the responsibility
of the Ghost either to respond directly to the message, or to forward it to the
actual Player.

Ghosts are approximations of their associated Players. That is, the state
of a Ghost is not always as precise (algorithmically) as the Players, but this
approximation is adequate for visualization and dynamics. All Ghosts that
are associated with a single Player are synchronized at any given instant in
simulation time through the use of the system cock, message passing and
dead reckoning. When the Player realizes that its Ghosts are going to be
inaccurate, the Player then communicates the correct state information to all
Ghosts.



This version of VERN was executable only in the Smalltalk-80
environment and no graphics were available. The next target platform was
the Silicon Graphics workstations. This meant a move from Smalltalk-80 to
C++. This move was accomplished and C++ is the current programming
language. The main features of the last version of VERN include:

* Supports multiple objects across multiple machines
* Dynamic dead reckoning thresholds
* Automatic updates of Ghosts at predetermined intervals
* Support of TCP/IP sockets

There are still unanswered questions and problems yet to be solved.
First, we did not design the software to run over long distances. This addition
is possible with the current software and would not require a redesign.
Additionally, there is no master control paradigm in VERN. This means that
programs compiled using the VERN classes produce an executable program
that can run on a workstation. The design of a user interface as a control
device is important and would enhance this project.

Appendices

Appendix A : VSL Document 90.14 Dynamic Terrain Project:The Virtual
Reality Testbed Smalltalk Prototype.

Appendix B: VSL Document 91.4 How To Implement Networked
Simulation Players Using VRTB vl.05.

Appendix C : This paper is to be published at the 1992 Symposium on
Interactive 3D Graphics in March of 1992.
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Dynamic Terrain Project:

The Virtual Reality Testbed Smalltalk Prototype

Charles E. Hughes, Brian Blau, Xin Li, J. Michael Moshell

Date written: I 1/2490
Date printed: 1/2/92

VSL Memo 90.14

Abstract

The Virtual Reality Testbed (VRT) protocol forms the software basis for an
environment that will support experiments with a network of visual
simulatos operating in a pseudo-universe. This universe will contain
animate as well as inanimate objects. Some might exhibit behaviors that
are controlled by a human operator, while others may have fully or semi-
automated behaviors. Objects that communicate with each other may exist
on the same or separate computers. In fact, objects might even move from
one computer to another during a simulation. Of paramount importance is
that no object need know the location of another. All may assume that they
have a direct link to every other object and that performance is not altered
based on the actual physical locations of these objects.

This report outlines the concepts and describes a prototype for the high-level
protocol of the VRT. Smalltalk code which implements this prototype is
also included and analyzed. Details on how network connections are made,
used and closed are not included here.

L Players and Ghosts.

In what follows we will make use of the terms Player and Ghost. Each
object participating in a simulation is represented by a software object
called a Player which resides on the object's home computer. If human or
other external input is required by an object, this input is read and
processed by the Player. The Player is responsible for computing and
maintaining precise state information of its object.

Since one Player might be on a completely different machine than another
with which it needs to communicate, each Player will have many Ghosts,
one per machine that contains an interacting Player. Ghosts are
approximations to their associated Players. That is, the state of a Ghost is
not always a precise reflection of the Player's state, but is a "good enough"
approximation. All the Ghosts associated with a single Player are
synchronized in the sense that, for any given instance in simulated time,
all report the same state information. Players are responsible for
discovering when their Ghosts are about to report poor approximations,



and sending update messages to inform the Ghosts about their new correct
states.

All communications between Players are mediated by Ghosts. Queries
(requests for state information) are completely handled by Ghosts who
merely report their own states. Commands (requests for state changes,
e.g., "Follow Me" or "You're Dead") are sent to Ghosts and relayed to their
associated Players.

The problem of keeping Ghosts and Players synchronized is one of the more
challenging ones that is faced in the VRT. To solve this problem, we have
divided each discrete interval of time (called a tick) into two phases
(initiated by the messages tickl and tick2.) The tickl phase is provided so
that Players and Ghosts can absorb state change messages sent during the
previous tick. Ghosts receive update messages sent by Players, and Players
receive command messages sent by other Players and relayed by the
appropriate Ghost resident on the sending Player's machine. In this
phase, Ghosts are also responsible for computing an approximate new
state. All the Ghosts of a given Player must use the same approximation
algorithm. In keeping with SimNet terminology, we refer to these
approximations as Dead Reckoning Algorithms.

The tick2 phase is when each Player computes its new state, checks it
against the Ghost's presumed next state, and sends an update message if
the Ghost's next approximation (by deadReckoning) is not "good enough".
The measure of "goodness" is, of course, dependent on the class of object
being modeled by this Player. Commands received during this phase, must
be held in a deferred queue until the start of the next interval. During tick2
Ghosts play a rather docile role, responding to query messages, relaying
commands that are intended for their Players, and remembering any
updates that arrive. To avoid timing problems, Ghosts may not use their
updated states until the next time interval.

IL Getting a Simulation Started

To test out the concepts in our VRT, we developed a Smalltalk program. A
simulation is started by sending a startup message to the VRT class. The
startup process will create new a instance of Random, called Rand, and
one of VRTCIock, called Clock. It then forks a process running the Clock
method tick and sends the message init to the class Network. At this point
startup is complete, and the simulation progresses under control of the
Clock object.

The random number object, Rand, is used in the simulation to create
random length delays, thereby simulating network traffic and process
contention. The Clock object controls the high-level flow of the simulation,
sending clock ticks and receiving requests to add new players. Both of
these objects are accessible to all other simulation objects via the VRT class
variables Rand and Clock.



Upon receiving init, the Network class creates a number of Nodes, each of
which represents a computer (node, machine) in the network, and each of
which exists as a separate process awaiting packets over the simulated
network. Each Node is also sent the message wannaPlay. Upon receiving
the message wannaPlay, a Node (machine) on the network returns a series
of packets, each of which contains a PlayerDescription of a Player who
resides on this Node and wishes to be part or the simulation. A
PlayerDescription object specifies the name of the Player, its class (e.g.,
Tank, Fish, Tree) and the machine id of this node.

As mentioned above, the Clock object has responsibility for accepting new
Players and sending out clock ticks. The Clock inspects its playerPackets
queue at the start of each time cycle to see if any new PlayerDescriptions
have been recently sent. If any have been, Clock broadcasts a make:
message which contains all the PlayerDescriptions. Each node then
creates its own Players and one Ghost for each Player participating in the
scenario.

Once each Node completes its make activity, it sends a done message back
to the Clock, using the queue donePackets. When all Nodes have reported
back, the Clock sends a startup message to the Nodes, who then distribute
the startup to all resident Players. The default action for startup by a Player
is to send an update: message to its Ghost. Since Ghosts always relay
updates (through the remoteUpdate: message) to their associated Ghosts on
all other Nodes, this will force every Ghost of a given Player to have the
same state at the start of the tick2 phase of the this time interval. Each
Node must again send a done message to the Clock when the startup
process completes.

After starting up all new Players, if there are any, the Clock sends the tick 1
and then the tick2 message to all Nodes. A new tick is sent only after the
previous tick has had its full effect. This synchronization is achieved by
having the Clock wait until all Nodes have sent a done message, indicating
that their Players and Ghosts are done.

This cycling between starting new Players, sending tick1 and then tick2
goes on until we somehow decide to end the simulation. At present, this is
done after some fixed passage of simulated time.

JIL Synchronization

The protocol discussed above, and elaborated below, seeks to avoid race
conditions in which the order of message handling could affect the results
of a simulation. This two phase ticking mechanism guarantees that
queries and commands are handled in a consistent way. It does not,
however, address how the simulation Clock knows when a phase has
completed so it can send the next tick. A factoring of this problem is
achieved by requiring each Node to send a done message when its Players



and Ghosts have all completed. Looking back at the startup , tick 1 and tick2
message, we see that we have already assumed that this is being done in
those cases. In fact, the problem seems to be easy to solve if we assume that
the Players and Ghosts on a given Node run in a single process that
includes the Node itself. Under this assumption, the Node can call its
objects in some predetermined, but unimportant order. The Node will send
a tick message to an object and, when this object call completes, send the
tick to the next object, until all have been served.

The purely sequential solution posed above works when all communication
is intra-node, but fails when inter-node communication occurs. In our
protocol a Ghost often communicates with its counterparts (Ghosts and
Player) on other Nodes. This occurs when an update message is relayed to
other Ghosts and when a command message is relayed to a Player. The
current solution to this problem requires an acknowledge message to be
sent by the receiver as soon as it completes handling the relayed message.
This acknowledgement is not to the sending object, but is rather to the
sending Node. The Node then determines that all inter-node messages are
processed whenever it receives as many acknowledgement as messages it
has sent.

IV. Vocabulary

The previous section introduces a fair amount of vocabulary that it will be
useful to summarize before we look at a coded prototype.

O Simulation Objects:

VRT Class: Starts a simulation by sending creating and forking the
Clock, and sending the init message to the Network class.

Node: Receives all messages and all acknowledgements from other
Nodes. This includes the Clock ticks and the make and startup
messages. The Node represents a machine in a network. Its
process includes the Players, Ghosts and PlayerDescriptions
present on this machine. Nodes are instances of a class Network
which includes several class methods to help manage the Nodes.

Clock: Acquires and makes known the presenece of new Players. It
also sends tick messages to the Nodes telling them to advance time
(tick1) or carry out the second phase of the current time (tick2).

Player: Encapsulates the "real" state and the methods needed to
compute each new state for an actual participant in the simulation.
Each Player resides on exactly one machine (Node).

PlayerDescription: Describes a Player by giving its name, home
machine (Node) and its class. Each participating Node keeps a
PlayerDescription of all Players that are in the simulation but do



not reside on this Node. During the simulation, the
PlayerDescription objects are used to relay messages to the "real"
Player.

Ghost: Encapsulates an approximation to the state of its associated
Player. Every Node contains a Ghost for all the Players in a
simulation. Ghosts are responsible for answering Queries and
relaying Commands to their Players. The VRT protocol is designed
to guarantee that all the Ghosts for a given Player respond with
precisely the same state information whenever a Query is issued.
This provides a consistent behavior independent of the physical
placement of the Player. For simplicity we will hereafter refer to a
Ghost on the same Node as its Player as a resident Ghost. Others
are called non-resident.

Messages:

wannaPlay. This is performed by each Node with the intent of to
sending to the Clock PlayerDescriptions of all Players on this
machine that will participate in tb current simulation. Nodes
return these PlayerDescriptions by a packet protocol implemented
through SharedQueues in Smalltalk.

make:. This is broadcast from the Clock to all Nodes reporting to them
the collection of all new PlayerDescriptions who have just entered
the current simulation. A Node creates a Player object for each
Player residing on that Node, a PlayerDescription object for each
non-resident Player, and a Ghost for every Player whether resident
or not.

startup. This is broadcast by the Clock to all Nodes telling them to start
all their Players. The Node distributes the startup message to each
of its resident Players. Each Player is expected to compute its initial
state and send an update: message to its resident Ghost. A Ghost
should relay the update: to all other Nodes so that each one
instructs its corresponding Ghost to have the correct initial state.
This message is also sent when a new Player arrives after the
simulation has started. Startup follows make and precedes tick1
for the current interval.

tick I. This is broadcast by the Clock to all Nodes telling them that a new
time interval is starting. Each Node distributes the tick1 message
to all its Players and Ghosts. During the tick 1 phase, each Player
processes commands from the previous time interval. Each Ghost
sets its new state based on either a deadReckoning algorithm or the
state from an update message received during the previous time
interval. It then approximates its NextState, using deadReckoning.
The Nodes are responsible for determining when their Players and



Ghosts have completed all activities in this phase. At completion,
each Node sends a packet with the message done.

deadReckoning. This is used by Ghosts to compute their next state
approximations.

tick2. This is also broadcast by the Clock. It tells all Nodes that the
second phase of the current interval is starting. Each Node
distributes this message to its Players and Ghosts. Each Player
computes its next state and then sees how closely this matches the
state approximated through deadReckoning. If the approximation
is not good enough, the Player sends an update message to its
Ghost.

update:. This is sent by a Player to its resident Ghost. The update
message passes the Player's new state which is copied by the Ghost
and then relayed to the non-resident Ghosts for this Player.

remoteUpdate:. This is sent from a resident Ghost to a non-resident
Ghost, using Node-to-Node communication. It serves the same
purpose as an update, but does not result in further relaying.

query. This is sent from a Player to a Ghost. The Ghost returns its
current state which is an approximation to that of its Player.
Queries can be sent in only the tick2 phase.

command. This is sent from a Player to another Player, using the
receiving Player's Ghost as an intermediary. Commands could
include messages such as "FollowMe". The actual interpretation of
any command is determined by the receiving Player's protocol. In
any case, commands are sent in only the tick2 phase and processed
in only the tick 1 phase.

acknowledge. This is sent by a receiving Node back to some message
sending Node. It should be sent only after the sending Node's
message has been fully handled. The most common situation for
an acknowledge is when a non-resident Ghost processes a
remoteUpdate.

done. This is sent by a Node to the Clock using the donePackets queue.
This is used to report completion of handling the make or startup
message and to report that the current tick phase has been
completed.
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Caveat
It should be noted that this work is in a design and review stage. The

validity of the algorithms and design have yet to be proven effective and
correct. The intent is to critique this work as well as finalize the ideas.
Hopefully, the efforts of a large group will make the deisgn of the VRTB as
robust as possible.

Introduction
The Virtual Reality Testbed (VRTB) protocol forms the software basis

for an environment that will support experiments with a network of visual
simulators operating in a pseudo-universe. This universe will contain
animate as well as inanimate objects. Some might exhibit behaviors that
are controlled by a human operator, while others may have fully or semi-
automated behaviors. Objects that communicate with each other may
exist on the same or separate computers. In fact, objects might even move
from one computer to another during a simulation. Of paramount
importance is that no object need know the location of another. All may
assume that they have a direct link to every other object and t1 at
performance is not altered based on the actual physical locations of these
objects.

Implementation of specific simulation objects using VRTB consists of
writing C++ programs which follow the VRTB protocol. This document
describes the specific implementation details without giving information
about how the VRTB internals work. Section VRTB Overview gives a brief
description of the internal workings, but a detailed explanation is beyond
the scope of this document

It is assumed that implementers have a working knowledge of
general programming techniques, C and C++ languages and object oriented
principles. The following terms should be known; class, superclass,
subclass, instance variable, method, casting, inheritance, polymorphism,
class hierarchy, abstract and concr'-te class.



VRTB Overview
Each object participating in a simulation is represented by a software

object called a Player which resides on the object's home computer. If
human or other external input is required by an object, this input is read
and processed by the Player. The Player is responsible for computing and
maintaining precise state information of its object.

Since one Player might be on a completely different machine than
another with which it needs to communicate, each Player will have many
Ghosts, one per machine that contains an interacting Player. Ghosts are
approximations to their associated Players. That is, the state of a Ghost is
not always a precise reflection of the Player's state, but is a "good enough"
approximation. All the Ghosts associated with a single Player are
synchronized in the sense that, for any given instance in simulated time,
all report the same state information. Players are responsible for
discovering when their Ghosts are about to report poor approximations, and
updating then accordingly. The notion that a Ghost can compute limited
state information is called dead reckoning and is an important aspect of the
VRTB.

Main VRTB Components
The implementation of the VRTB is in C++ and is object oriented in

nature. The entire VRTB is implemented as a set of classes in C++. This
provides a generic way to implement many different kinds of players.
Because an object oriented design was used, all of the attributes and
functions which are common to Players and Ghosts are placed in the most
abstract classes. Therefore, only the interface to these abstract classes will
be described.

There are 4 major components to any one particular player. Each of
these components will be implemented as a subclass to one the base
(abstract) VRTB classes. The abstract classes are:

AbstractPlayer
This class defines the basic components of the simulation
player. Methods in this are used to support such activities as
processing incoming messages, internal state configuration
and message creation.

AbstractLocalGhost
This class defines the components of the ghost object. An
instance of this class is located in the AbstractPlayer, there are
imbeded methods which use the ghost to check the state of
remote ghosts. The function of the AbstractLocalGhost and the
AbostractRemoteGhost (below) are the same, execpt that
AbstractLocalGhost is the ghost which is located on the same
machine as the player.

AbstractRemoteGhost
This class defines the view of a player by other remote players.
When a simulation player is located on a remote workstation,



its only line of communication is through remote ghosts.
These objects contain limited state information which is
useful to everyone. When the state of the player changes
signifigantly from the dead reckoned state, a message is sent to
all remote ghosts to reflect the new value of the state.

AbstractState
This class defines the state variable used in the AbstractPlayer.
Each implementation will inherit from this class and use it
only as a guide.

The main idea behind implementing each specific player as a
separate subclass is to promote reuse. For example, there may be several
different specific implementations of a simulation player. If there are
several common attributes in these players, then it is useful to place then
in a higher abstract class.

Another aspect of specific player implementation is to remember to
conform to the protocol that has been established. In the following section,
there will be methods that each player must implement. The behavior of
each method will be described. It is important that these instructions be
followed. The protocol will not work correctly if the state information is
modified in the wrong places.

Implementation Details
This section gives details on how each class must be implemented.

Along with the descriptions of the new classes, an example will be
developed. This example is called MovingObj. It is not intended to have
functional use, but is given to provide some insight to the coding process.

AbstractPlayer
The first class that must be created is a subclass of AbstractPlayer.

There are three methods that must be reimplemented in the new player.
They are processMsg, internalProcess, createGhost The player must also
have a constructor method. The following is a formal template for the
constructor method which is followed by the example method for the class
MovingObj. The comments in the (parenthesis) are to be replaced by the
implementer. Since this is a class definition, usually only method
prototypes are given, so it will be useful to compare the template with the
example. All methods defined in this document will be presented in this
same format, with the template first and the specific example second.



class (your class name): public (AbstractPlayer or any subclass of) {
/^ As with any C+ class, private methods and instance
variables are allowed. They should be placed in this section
and unless otherwise stated, are allowed in all VRTB subcalsses '/

public :
/P Constructor method '/
(your class name) (char A);

!a Reimplemented methods £/
void processMessage(Message):
void internalProcess(void);
AbstractGhost 'createGhost(void);

/" Your methods go here e/
};

class MovingObj : public AbstractPlayer
public :

I Constructor method "I
MovingObj(char ');

I Reimplemented methods /
void processMessage(Message):
void internalProcess(void);
AbstractGhost 'createGhost(void);

1.

Method: MovingObj(char')
The purpose of constructor methods in C++ is to provide a default way

to instantiate new instances of a class. In our case, a string is the required
parameter, it should contain the name of the player. The main function of
the constructor is to initialize the state instance variable. The following is
the constructor template and the actual constructor for class MovingObj

(.your class name) :: (your class nameXchar "name) : (name)

(your state class name) as;

/* Install an instance of your state /
s = new (your state class name);
state - s;

/ Other initializations go here /

MovingObj :: MovingObj(char *name) :(name)

MovingObjState s:

s - new MovingObjState;
s->acceleration.value(0.0, 2.0. -3.0).
state - s;

The important things to note here are that the input parameter name
is passed to the superclass, this is required. Also, the variable state is



assigned as an instance of the class MovingObjState. The instance variable
state is inherited from an abstract superclass. It must be initialized in this
method. The class MovingObjState will be described later.

Method void internalProcess(void)
This method serves two purposes. The first is to perform any internal

processing which might be required by the player. The internal processing of
the player is totally removed from the communications aspect of the VRTB.
It is the decision of the player to decide what to put here, but this method
will most likely compute the next state of the player.

The other purpose of this method is to update the state information.
This is the only place in the player that the state information is allowed to
be modified. Specifically, the instance variable state is allowed to be
modified in this method. It is best to have this assignment as the last step
of the method. The following is the template for the method
internalProcess and the example for class MovingObj

void (your class name) :: internalProcess(void)

(your state class name) s

s = (your state class name ) state;
/* Calculate state information and general processing "/

void MovingObj :: internalProcess(void)

float dt w 0.2;
MovingObjState as:

s = (MovingObjState *)state;
s->velocity -= s->acceleration a dt;
s->location -= s->velocity a dt;

Notice that the local variable s is needed. This is because of the
typing done by C--. The instance variable state is implemented as a pointer
to the class AbstractState, so the cast of state to a local version is necessary.
It is important to follow this model, otherwise any dereferencing of state
will lead to problems.

Method: createGhost(void)
This method is the standard way to create internal ghosts. There are

some very specific instructions which must be followed in this method. It is
easiest to look at the template and the example and explain later.



AbstractGhost *(your class name) :: createGhost(void)

(your localghost class name) *myGhost;
char ghostName[ 32];

sprintf(ghostName, "%sG", name);
myGhost - new (your local ghost class name) (ghostName):
return(myGhost);

AbstractGhost 'MovingObj :: createGhost(void)

MovingObjLocalGhost "myGhost;
char ghostName[32I:

sprintf(ghostName, "%sG', name);
myGhost = new MovingObjLocalGhost(ghostName):
returr,(myGhost)

This method must return a pointer to the class AbstractGhost,
regardless of the specific type of the actual local ghost. The name of the
ghost is to end with '_G" (see the section AbstractGhost for details about
the specific type of the local ghost).

Method: processMsg(Message msg)
This is probably one of the most confusing parts of the VRTB. It is still

unclear if internal processing of messages should be implemented by the
player itself. One of the main arguments against the use of C++ as the base
language for the VRTB is that is does not fully support polymorphism.
Dynamic lookup of method calls is restricted in some cases because of the
strict type checking. Because the design of this project incorporates abstract
classes and even abstract hierarchies, a language with run-time support of
dynamic binding would be more sutable. Because of the evolving nature of
this project, this subject should remain as a topic of discussion in the
future.

Because C++ does not have dynamic binding of method calls, and it
does not internally support inter-machine communications, a message
system is necessary. Support for sending messages between players has
been supplied, but the responsibility of actually sending the message is put
on the implementers of VRTB players. Because this message sending is not
a straightforward idea, a review of the message sending is given below.

Playerl located on Machinel wishes to send a message to
Player2, not knowing that it is located on Machine2.

* A message is constructed and sent.

The local router receives this message and determines that the
first receiver should be the RemoteGhost of Player2 which is
located on Machinel.

0



The RemoteGhost of Player2 determines if it can answer the
message directly (a query message), or must pass this message
along to the actual player (a command message).

* In the case of the query message, the RemoteGhost
computes the answer to the message and send a
message back to the sender of the original message.

In the case of the command message, the RemoteGhost
reconstructs the message with the appripriate source
and destination and then sends this message off.

The local router again receives this messages and determines
if the message is to remain local, or to send it to the router
which is located on Machine2.

At this point, either Playerl has received an answer to the
message from the remote ghost or the router on Machine2 has
received the message. The router located on Machine2 will
then send the message to Player2 and it will respond
accordingly.

To be able to send and receive messages, each player and ghost must
have some method to encode and decode message. The VRTB protocol
provides a standard method in which all incomming messages may be
deocded. Sending messages is, again, left up to the discretion of the player.
Sending a message will be discussed in the section Message.

When a message is recived by a player, the method processMsg is
called. The input parameter, msg is an instance of the class Message. It
has attributes (see section Message for more details) which can be accessed
and will be useful in this method.

It is important to note that messages can come from many different
places and from many different players, therefore, the format of all
messages is same. To distinguish between the different kinds of message,
there is a type field. To get the contents of the message, there will be a
method which decodes the raw data and converts it into something
meaningful.

In addition to the implementing this method, each new type of
message that is added to your system must be placed in a header file. The
name of this file is "data.h" and the new message is placed in the data
structure MsgType in the file "data.h". The following is the template for the
processMsg method:



void (your class name) :: processMsg(Message msg)

switch(msg.type) {
case (some mesage type)

lb
I. Decode the message
2. Action

°/

break:

In the following example, MovingObj class must respond to the
incornming messages. The message CHANGESPEED is a command and only
the real player is able to respond to this command. It does so by decoding
the message and changing is velocity. The message VELOCITY is a query of
the player. If the gost is properly designed, query messages will never be sent
to the player, only its ghost. Accepting the message VELOCITY in the player
class is permitted and may be useful in debugging situations.

void MovingObj :: processMsg(Message msg)

char buf125];

switch(msg.type) {
case STATEQUERY:

/* This is a query which should not have

made it this far, but respond and print error /
state->getByString(bur);
Message newMsg(this->name, msg.src, SQANSWER, buD.
send Mail(new.Msg):
printf("Error: STATEQUERY should not get this far \n"):
break:

case CHANGESPEED:
/* This is a command, decode message and

change the velocity accordingly. */
getNextComponent(msg msgBody, buD:
velocity = atof(buf):
break;

case VELOCITY:
/° This is a query which should not have

made it this far, but respond and print error °/
velocity->getByString(buf):
Message newMsg(this->name, msg.src, VELOCITY, buf,
sendMail(msg):
printf("Error: VELOCITY should not get this far\n"):
break;

default : break:

AbstractGhost



There are two kinds of abstract ghosts, local ghosts and remote
ghosts. The major difference between these two is that a local ghost is
instantiated inside of the player whereas a remote ghost will run as a
process on every machine other than the player's home machine. Many of
the methods between these two are the same, so it is convenient to describe
them both here. As a builder of simulation players, you will simply have to
create two classes with the same methods in them. The class definition
template and examples are given below:

class (your local ghost class name) : public (AbstractLocalGhost or
any subclass of)

public:
(your local ghost class name) (char );
void deadReckoning(void);
void processMsg(Message);

/I Your methods and instance variables go here /
I;

class (your remote ghost class name) : public (AbstractRemoteGhost
or any subclass of)

public:
(your remote ghost class name) (char )
void deadReckoning(void);
void processMsg(Message);

/" Your methods and instance variables go here /1;

class MovingObjLocalGhost : public AbstractLocalGhost
Pa 1)1, C :

MovingObjLocalGhost(char a);
void deadReckoning(void);
void processMsg(Message);

class MovingObjRemoteGhost: public AbstractRemoteGhost{
public :

MovingObjRemoteGhost(char a).
void deadReckoning(void);
void processMsg(Message);

Method:
MovingObjLocalGhost(char')
MovingObjRemoteGhost(char')
This method is a constructor for the class MovingObjLocalGhost and

MovingObjRemoteGhost. As stated before, there must be one method which
can create a instance of a particular class. The main function of this
constructor is to instantiate the ghosts. The following is the template for
this method and an example from the MovingObj player:

0



(your local ghost class name)
(your local ghost class name) (char 'name) (name)

nestate nw (your state class name);
nestate - new (your state class name);

Othr gostinitializations go here 0/

Moving~biLocaiGhost ::MovingObjLocalGhost(char 'name) :(name)

state new MovingObjState;
newState = MovingObjState;

Any other initialization of specific local variables should also go in
this method.

Method: deadReckoning(void)
The only objective of this method is to let the Ghost compute its

limited state model. It is up to the ghost to determine the next state of the
Player, without any additional information coming from the player. The
following shows the dead reckoning algorithm template method as well as
the example (or the MovingObj player:

void (your local ghost class name) deadReckoning(void)

(your state class name) asl; *s2;

si (your state class narne ')state;

s2 - (your state class name )nextState;

State computations using local variables si and s2.
Usually. s2 is computed using information located in si.

void MovingObjLocalGhost ::dead Reckoning(void)

float dt -0.2;
MovingObjState Asl; 's2;

sl - (MovingObjState O)state,
s2 -(MovingObjState ")nextState;
s2->orientation -s I->orientation;
s2-> acceleration -s I-> acceleration;
s2->velocity - sl->velocity - slI->acceleration 'dt:

s2->location -sl->location -s2->velocity "dt;

There are a few aspects of this method to notice. First, the local
instance variables si and s2 are assigned the class instance variables state
and nextState. When accessing these two class instance variables, this



r rocessMsg(Message msg)
Please refer to the AbstractPlayer, processMsg method for

justification on why this is a good way to handle messages. Here you will
find an example of the MovingObj method. The template can be found in
Abstract Player.

This example is for the local and remote ghost. In this case of
processMsg, the message CHANGESPEED is not to be handeled by the ghost.
so it must always pass this message onto the player. The message

VELOCITY is a query and can be answered by this ghost. This is the kind of
message that should not be passed along to the player. The following is the
example method processMsg from the ghost classes of MovingObj:

void MovingObj :: processMsg(Message msg)

char buf[25];

switch(msg.type) {
case STATEQUERY:

sendUpdateMsgO;
break;

case CHANGESPEED:
/* This is a command, so send it along a/
msg.src(this->name);
send Mail(msg):
break;

case VELOCITY:
/" This is a query, so answer it a/

velocity->getByString(buf)
Message newMsg(this->name, msg.src. VELOCITY, buf):
sendMail(msg);

* break;

default • break;

AbstractState
To let the user of VRTB have the most accessibility to the state

information, an abstract state was created, called AbstractState. This
abstract class provides default definitions of methods that must be
reimplemented. It defines no instance variables. This means that the user
must define and maintain all of his own instance variables.

There is one aspect to take note of when implementing subclasses of
AbstractState. This problem arises because C++ is not completely
polymorphic. Essentially, while the message passing paradigm ensures that
a choice of method is found based on the class of the receiver, the selection
of a method to be used in an overridden operator is based on the declared
(static) types of the arguments and not the current (dynamic) types, which

0



the VRTB to work correctly. Simply place all normal initialization for the
class in this method.

(your state class name) ::(your state class name) (void)

1. Any state initialization goes here A

MovingObjState :: MovingObjState(void)

location. value(0.0, 0.0, 0.0);
velocity. value(0.0. 0.0, 0.0):
acceleration. value(O.0, 0.0, 0.0);
orientation. value(0. 0. 0.0, 0.0);

It is important to remember that all of the classes described here are
part of a class heirerchy. When designing interesting player behavior, it will
be useful to design levels of abstract and concrete classes. The following is
an example of a class definition and constructor subclass of MovingObj
called Vehicle. The class definition is similar to the ones seen before, but
the constructor has been modified to show inherited initialization.

class VehicleState :public MovingObjState
public:

/a A vehicle has numberOlDoors. and engineType A

int numberOf Doors, engineType;

/' These methods are reimplementations of higher level ones A

VehicieState(void);
void operator= (Abstract.StateA)
int operator= =(AbstractState )
int operatorl (AbstractSt ate )
int setByString(charA)
int getByString(charA)
void print(void);

VehicleState ::VehicieState(int nod, int et, Vector 1, v, a, o): l v, a, o)

numberOfDoors nod;
engineType = et;

The technique of passing parameters to the parent class in
initialization can be done in any class/subclass pair. The Moving~bj class
must have a constructor which will acccept these parameters as well. This
code is given below.

MovingObjState ::MowingObjState(Vector 1. v, a, o)

location. valuei. x, Ly, Lz);
velocity. value(v.x. v.y. v.z).
acceleration. value(a.x, a.y, az);
orientation. value(o. x, o.y. o.z);



O Method: operator-(AbstractState )
The input parameter is received as a pointer to AbstractState. Before

any use of this input, it must be converted to a pointer which conforms to
the current state. In our example, this parameter will be converted to a
pointer to MovingObjState. Once this conversion is done, then it can be used
as a normal state variable. The code below shows the template for this
method as well as the implementation of the assignment statement for the
class MovingObjState :

k oid (6our state class namc) :: operator-(AbstractState *state)

(your state class name) *tmp;

tmp = (your state class name *) state;
/ Assignment of tmp to local instance variable /

void MovingObjState:: operator=(AbstractState *state)

MovingObjState "tmp:

tmp = (MovingObjState *)state;
location = tmp->location;
velocity - tmp->velocity;
acceleration = tmp->acceleration;
orientation = tmp->orientation;0

Notice the two requirements and how they are used in this method.
First, the method argument is defined to be a pointer to the class
AbstractState, second, the first action of the method is to convert the
argument to the type of the class. These two operations must be done for
each inhered function in the concrete state classes.

Method :
operator- (AbstractState )
operatorl-(AbstractState )
This is two methods are so similar in functionality that is worth

while to describe them both here. Again, the rules from above still apply.
Their implemetations are straight forward and are given below as well as a
template for the boolean operators.

int (your state class name.: operator (boolean operator)
(AbstractlState 'state)

(your state class name) estate;

tmp - (your state class name') state,
I.

Compute the value of th,. boolean operation
and return the result

0 4/



int MovingObjState: operator--(Abstract.State "state)

MovingObjState &state;

tmp -(MovingObiState *)state;
if(Iocation--tmp-> location &&

velocity=-tm p-> velocity &&
acceleration' -tmp->acceleration & &
orientation= =tmp-> orientation)
return(1);

else
return(O);

int MovingObjState :: operator! =(AbstractState "state)

MovingObjState &state;

tmp -(MovingObjState ")state:
if(location!=tmp-> location &&

velocity! =tmp->velocity &&
acceleration! -tmp-> acceleration &&
orientation! - tmp-> orientation)
return(l):

else
return(O):

Method: setByState(char)
This method is used by the semi-automatic messaging system. It

provides a way for the user to decode state information which has been sent
via VRTB message. In the case of the MovingObjState class, we have
provided default setbyString messages which can be sent to instance of the
class Vector. In general, users will provide methods which will encode types
into strings and decode strings into types. The only requirement is that
each message follow the standard format (see section Message for more
information). The following is the setbyString and getByString methods
which have been implemented for the class MovingObjState:

int (your state class name) :: setByString(char 'msgBody)

char *p;

p - msgBody;

Decode the string msgBody in the
same order it was encoded

int (your state class name):: getByString(char *msgBody)

char w1641;



int len=0;

Encode each state variables in some specific order
into the string rnsgBody, return 0 if any problems occur

int MovingObjState ::setByString(char 'msgBody)

char 'p;

p = msgBody;
if(location.setByString(&p)--0) return(O).
if(velocity.setByString(&p)==0) return(O).'if(acceleration.setByString(&p)==0) return(O);
if(orientation.setByString(& p)= =0) return(0);
return(1);

int MovingObjState ::getByString(char "msgBodNv)

char w[64];
int len=0;

location.getByString(w);
sprintf(msgBody. '%sl". w);
velocity.getByString(w);
sprintf(m sg Body. "Ws", w);
acceleration.getByString(w);
sprintf(msgBody. '" w);0 orientation.getByString(w):
sprintf(msgBody, "%si- ,
return(strlen(msgBod y));

As you can see, it is up to the user to define how the strings are
constructed, including the order in which the variables are placed in the
string. Because state information is needed at the abstract levels, the
reimplementatiori of these two methods are required.

Message
The class Message provides a way for the user to send C++ messages

from one object to another. One of the parts of this project that has not yet
been clearly defined is how to properly perform the message sending. It is
possible that G++ will take care of this task for us?

We have provided this class for the implementers of players who are
using the VRTB protocol. It will probably not be permanent, but for now it
will have to work. There are some uses of messages in the examples already
given, please refer to these examples for help. Additionally, all of the source
code for the Message is provided.
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ABSTRACT environments which are inputs for the system. ANIM has

been extended using VERN protocols and can nov, operate
The Virtual Environment Realtime Network on several computers distributing the computations of the
(VERN) is an object oriented testbed for the objects as well as distributing the space itself. This paper
interconnection of environments over a network will focus on VERN and how systems like ANIM can use
of graphical workstations. VERN is based on VERN to distribute virtual objects, computational loa,! and
extensions to the networking technology of the user interactions across multiple simulation platforms.
DARPA sponsored SIMNET combined combat Simulation Network (SIMNET) [7,12] is a project
training system and the Distributed Interactive sponsored by the Defense Advanced Research Projects
Simulation protocol being developed as a DOD Agency (DARPA) and was designed and built by BBN
standard. It allows for multiple participants to Laboratories Inc. and Perceptronics Inc. It allows for
interact in an environment, sharing ideas and collective team training in combined arms scenarios. All
solving problems, regardless of their physical of the simulators are networked via EtherNet and the
locations. Furthermore, dramatic reconstructions communication model is based on the "dead reckoning"
of historical events for education or entertainment paradigm [8]. VE applications are a far more demanding
will be possible. Indeed, much of the impact of simulation than SIMNET, because in a truly useful virtual
VERN is likely to result from the ability of world, every object is dynamic. In traditional simulators.
participants to learn from each other even if they only a small collection of moving objects can be
and their machines are separated by long distances. maintained.

As a follow-on to the homogeneous SIMNET system.
INTRODUCTION the US Army has explored the possibility of expanding
Virtual Realitx[Virtual Environments (VE) describes a these concepts to address the networking of large numbcrsViuTal -of dissimilar training devices. The next important step in
muti-sensory real-time simulation that immerses the

participant in a multi-dimensional (usually 3D) graphical this research is the development of a standard
space, allows freedom of movement within the space, and communications protocol for Distributed Interactive
supports interactions including the modification of most Simulations (DIS) [8].

features of the space itself [10,131. Additionally, a VE Interactive simulations in the SIMNET and DIS worlds
system may include modeling tools for world perform computations and communicate by a dead
construction, rendering tools for viewing, storage reckoning model. Each object in the simulation has a host

mechanisms for saving memorable experiences, 1/0 machine which will process its dynamics. All other
devices for controlling aspects of the space and machines have representations of the object which
communication ports for shared environments, maintain an approximation to the current state of the

Recently. research in the VE field has now turned its object. The approximation of a simulation object's state

attention to networking issues for shared experiences, is computed by a dead reckoning algorithm. This
Two phases must be considered : rendering (distribution of computation is usually an extrapolation of the object's
graphical data) and computation (distribution of the position based on velocity. When the host object realizes
physical model). The Visual Systems Laboratory (VSL) at that the dead reckoning model has deviated significantly
1ST is currently working on both of these problems. from the dynamic model (probably because of user input).

Our efforts have produced two software systems - an update message is sent to all other representations of

ANIM and VERN. ANIM is an interactive graphical the object on every other machine.

simulation system with support for devices like
SpaceBalls and gloves (VSL Input Paw). Modeling tools. DESCRIPTION OF VERN vl.2
such as Alias (high end rendering tool, Alias Research), VERN vl.2 was developed to meet the needs of the
MultiGen (tool for CIG databases, Software Systems) and simulation community as a vehicle for development of
S1000 (SIMNET's CAD system BBN) are used to build networked environments as wAl as to break new ground in

the development of interactive VE systems. This
implementation is an extensible object oriented class
hierarchy where the communications, dead reckoning and
process control are abstracted to the highest levels. Most
importantly, VERN extends the notion of dead reckoning

into a distributed physical model.
VERN evolved from a non-realtime Smallialk-80

prototype [2,1,4] Version 1.2 is implemented in C+- and



currently runs on Silicon Graphics and Sun Sparc UNIX Object
systems

The communications protocol forms the software
basis for an environment that will support experimentsI Clock
with & network of visual simulators operating in a single
simulation. This environment will contain dynamic and
static objects. For example, terrain over which objects AbstractVERNObJect Router AbstractState
move may be dynamic while buildings in a city may be
static. Objects in the simulation communicate with each
other without having to know the host machine on which
the receiving object resides. Each object assumes that all AbstractPlayer AbstractGhost
objects we in its own local memory. Under the VERN
protocol, messages bound for remote objects are Figure 1. Class Hierarchy for VERN vl.2
intercepted and routed accordingly.

Players tand Ghosts There are additional classes not shown here whicha and Gosts patp ireprcsent communication support sruclures such asEach rel Aorld ob1ject participating in the simulation is mailboxes, addresses, and sockets. The followingrepresented by a software object called a Player. The sdescribes each of the abstract classes.
Player resides on the object's home machine. If human or
external input is required by the Player, the data is read and class AbstractVERNObject:
processed on the Player's home machine. The main This class contains the virtual methods
responsibility of the Player is to accurately maintain state which handle actions to be performed in each
information, read and process inputs, provide feedback simulation loop. For example, initializations
usually in the form of real-time graphics, and inform the maintenance of the local mailbox (repository for
network of any significant state changes that deviate from messages), and access to the state information.
the dead reckoning model.

In order to facilitate communication between Players class AbstractPlayer
residing on separate machines, each Player has an This class defines the basic components of
associated Ghost located on every machine involved in the the simulation Player. Virtual methods in the
simulation. Thus in an N Player simulation on M class are used to support such activities as
networked machines, each machine is guaranteed to have processing of incoming messages, internal state
exactly N objects representing all players. Such a configuration and message creation.
configuration allows Players to communicate locally with
any other Player (represented by its Ghost). It is the class AbstractGhost
responsibility of the Ghost either to respond directly to This class defines the "view" of a Player as
the message, or to forward it to the actual Player. seen by other local and remote Players. A

Ghosts are approximations of their associated simulation Player located on a workstation can
Plaxers. That is, the state of a Ghost is not always as communicate with another Player only through
precise (algorithmically) as the Players, but this c n AbstractGhost, An instaa,.e of this class

approximation is adequate for visualization and dynamics. contains limited state information which is useful

All Ghosts that are associated with a single Player are to other Players. When the state of the Player

synchronized at any given instant in simulation time changes significantly frPy the dead reckoned

through the use of the system clock, message passing and chate s s ent o the adsrconed

dead reckonirg When the Player realizes that its Ghosts state, a message is sent to all AbstractGhosts to

are going to be inaccurate, the Player then communicates reflect the new value.

the correct state information to all Ghosts. class AbstractState:
Types This class defines the state variables used in

Message types the AbstractPlayer. Each implementation wi!:There are two types of messages to which Players and inherit from this class and use it as a guide. The

Ghosts respond: queries and commands. Queries are class AbstractVERNObject has an instance of

messages which can be processed entirely by the Ghost. AbstracteRoe h an instance of

Commands are messages that must be passed on to the AbstractState as one of its instance vriables.

Player. Thus, a message that requests state information IMPLEMENTATION DETAILS
would be considered a query while a change of behavior
message would be a command. To write a Player/Ghost program, the Programmer Must

create concrete subclasses of the abstract classes isted
Class Hierarchy above. For example, consider the definition of a moving
VERN vl.2 was designed using the object oriented ball. The classes that must be created are
paradigm. The classes that comprise the highest levels of MovingBallPlayer (subclass of AbstractP dyer),
the hierarchy contain the code for handling all of the MovinglallGhost (subclass of Abstactr'host), and
communications and process control protocols. This MovingBallState (subclass of AbstracSAtate). These new
hierarchy is considered a white box framework [6] because classes must then be compiled, linked and executed.
the user {progrmmer) of the system must follow the Further examples of Players may be found in 12].
structures that the abstract classes establish. Figure 1 The first classes that must be created is a subclass of
shows the abstract class hierarchy of VERN vl.2. Abstract Player and AbstractGhost. There are two methods

that must be reimplemented in the new Player. These are
processMsg and computeNextState. The Player ms' t also
have a constructor method to create instances.



objects. This global information allows the router to
Method : constructor make decisions about the direction of the message. The

The purpose of constructor methods in C++ Router's main loop asks each of the local objects to run
is to provide a default way to instantiate new one simulation cycle. During this cycle, objects execute
instances of a class. In our case, a string the inherited methods above.
containing the name of the Player is the required Node 1 Node Nparameter. The main function of the constructoris to initialize the state instance variable.

Method : processMsg Router Rauter
Since C++ does not internally support Reeh

machine to machine communications, a low level .--[Remote host Remote hostJ
messaging system is necessary. Support for .. *
sending raw packets of data between UNIX "
processes has been supplied. The responsibility .- Remote Ghost -- Remote GhostJ
of creating and interpreting the raw data is left to
the Player. Player Player

The purpose of processMsg is to interpret
and respond to incoming messages. It is
important to note that messages may arrive from
many different Players. Each raw message
contains the source, destination, data and tye Player Player

Method : computeNestState (for Player) Local
This method serves two purposes. The first Gh

is to perform any internal processing which
might be required by the Player. For example.
calculate new position and velocity based on Clock
current simulation time. The second purpose of
this method is to update the state information of
the Player.

Method : computeNextState (for Ghost) Figure 2. Process Architecture of VERN vl.2
The objective of this method is to compute

the Ghost's approximate state model. The Ghost Additionally, the Router can report the current
determines the next state of the player, without simulation configuration and detect simulation errors.
any additional information coming from the When a Player leaves the simulation, the Router
player. This is how dead reckoning is immediately realizes which Player is missing and then
implemented within VERN. Each Ghost performs reports this to all Routers in the system. Figure 2 shows
this message once each simulation loop. the overall system architecture of VERN v1.2.

There are additional system functions worth
In order to facilitate complete freedom in defining mentioning. An automatic update is has been added. This

state information of a Player's object, an AbstractState forces the Player to update its Ghost at a specified interval
was created. This abstract class provides default (usually 3-5 seconds) even if no update is needed. This
definitions of methods that must be reimplemented. It function is useful when the communication system drops
defines no instance variables. This means that the packets. Using this function provides for reliable
concrete Player class must define and maintain all of its Player/Ghost synchronization.
own instance variables. The main methods in this class An additional system parameter is called "dynamic
we comparison operators such as = and !=, mathematical update." Dead reckoning algorithms have a base threshold
operators such as + and -, and the assignment operator -. on which an update is based. The dynamic update is
There are no other restrictions placed on the addition of another threshold which provides the user with some
subclassses. control. The dynamic update threshold specifies the

amount of error in the dead reckoning algorithm. For
EXECUTING THE SIMULATION example, if the user is interacting with the environment at
Previous versions of the VERN used a synchronized clock a detailed level, then the dynamic update will be set to a
as the simulation coordinator. Using this small value, resulting in accurate synchronization between
synchronization system enabled the state of the Player to Player and Ghost.
know (via a local dead reckoning) the Ghost's exact state One last feature is called "update tracking." When a
at every tick of the clock. Although ts Ghost receives an update message from the Player. usually
can be accomplished using the computers' real-time the position has changed significantly. If the update
clocks. This allows each computer to execute as fast as tracking is set to "jump", then the object will disappear
possible and it also reduces the communications overhead from its current location and reappear at its updated
of clock maintenance, location, causing a visual disturbance. If the update

The function of the Router is to maintain the tracking is set to smooth, then the object will track
connections to the outside world, maintain a list of active evenly to its new position. This tracking wiU occur over a
local and global Players, and route messages according to number of frames and the amount of smoothing can be set
their source and destination. All of the routers know the as a system parameter.
locations of the other routers and the addresses of all



ISSUES FOR DISCUSSION
There are many issues that arise in research projects of this division of computations in an object oriented framework.
nature, It is useful to note that VERN vl.2 is only one part The next level of research for this project will look at
of a larger project to develop VEs, and its main purpose is these issues to determine commonality and reusability
to show proof of concept. Below are a few interesting which will extend the functionality of the entire system.
topics that emerged from this implementation. ACKNOWLEDGEMENTS
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