
~3O0 3 98 UNLIMIfEq'00

AD-A250 769
IIIIIIEI IiB~IU~ii]IReport NO. 92004

0
C-4

ROYAL SIGNALS AND RADAR ESTABLISHMENT,
d !i4~1 ALVERN

0
0z

m DTIC
PIl ECTE

3MAY i4192

IMPROVING THE TRANSLATION FROM
DATA FLOW DIAGRAMS INTO Z BY

INCORPORATING THE DATA DICTIONARY

Author: G P Randall

03 cd ole I

92-12649

IPHOCUREMENT EXECUTIVE, MINISTRY OF DEFENCE
RSRE
Malvern, Worcestershire.

January 1992

UNLIMITED

012156? CONDITONsOF REIEASC D99

COPYUICIT (C3
1988
CONTFIOULER
IIMSO LONDON

..................... Onr_ y

flopofts quoted ore not nenswy uoo~ubio to eeorrs of the publi or toeorrreciul
org-ootroes

DEFENCE RESEARCH AGENCY

RSRE Report 92004

Title- Improving the Translation from Data Flow Diagrams
into Z by Incorporating the Data Dictionary

Author: G P Randell

Date: January 1992

Abstract

Earlier work developed formal translation ruk- for generating a
specification in the formal language Z from a data f , diagram The Z
specification produced lacked detail, especially on the types of the data
flowing around the system. This report describes how to use information
from a data dictionary to improve the Z specification Formal translation
rules from a data dictionary to Z are presented

Acceooo Fer

NTIS CRA&i
DTiC TAU)

O* ba~o~ t - A

AMilil, ty Coes

A-,.a I W

Copyright E
Q

Controller HNMSO, London
192

INTENTIONALLY BLANK

2. The Data Dictionary 2

3. Translation into Z .. 5

3.1 The Specification of the Data Dictionary 5

3.2 The Specification of Z............................ 8

3.3 The Translation Rules 11

4. Conclusions...................2

Referenices... 21

Annex -Translating Data Flow Diagrams into Z

A I Introduction............. A1
A 2 rhe Specification of Data Flow Diagrams.. A-I

A 3 The Specification of the Translation Rules 5

INTENTIONALLY BLANK

1. Indtu

Data flow diagrams are a commonly used tool of systems' analysis, and
are used by many of the current structured methods for system
development. They are used to represent pictorially the data flows within
a required system, showing how data enters and leaves the system,
what changes the data, and where the data is stored. As such they are
an important technique for understanding and communicating the
functionality of the system.

Data flow diagrams contain four types of symbols (elements). These are:

1. External entity: a source or recipient of data outside the
system, represented by a rectangle.

2. Process: an activity which transforms or manipulates data,
represented by a circle,

3. Data store: a collection of any type of data in any form,
represented by two parallel horizontal lines.

4. Data flow: showing a movement of cata, represented by an
arrow with the arrow head indicating the direction of flow and
a label showing what data is involved.

Earlier work [1] developed formal translation rules for generating a
specification in the formal language Z 12,3J from such diagrams.
However, the specification generated was an outline only, and contained
no information on the types of the data flowing round the system or on
what data is actually kept in each data store.

The reason for this lack of detail is that the information from which the
types of the data can be deduced does not appear on a data flow diagram.
Data flows are only labelled with the name of the data, and do not say
anything more about the composition of that data. Rather, an
accompanying data dictionary contains details about the data and also
details of what data is stored in the data stores.

The purpose of this report is to explain how the information in a data
dictionary may be incorporated into the Z specification generated from
the relevant data flow diagram. A fuller, more complete Z specification
will then result.

The strategy is to provide formal translation rules from a data dictionary
to Z. This is achieved in the same manner as that used for the original
translation from data flow diagrams into Z in (1]. That is, the data
dictionary is specified in Z, and an abstract syntax for the relevant parts
of Z specified, again in Z. A function is then defined between the
specification of data dictionaries to the abstract syntax of Z, which gives
the meaning of the data dictionary in Z This meaning function gives the
translation rules

The remainder of this report is structured as follows. Section 2 describes
the particular form of data dictionary which has been used for this
work, and gives some examples of data dictionary entries and the
equivalent Z. Section 3 presents the specifications of the data dictionary,
Z and the translation rules, and section 4 contains the conclusions. An
updated version of the translation from data flow diagrams into Z,
incorporating the information from the data dictionary, is given in the
annex.

2. The Data Dictiona=

The particular form of data representation chosen for this work is that
defined in (4]. This notation is based on the three basic operations of
sequence, selection and iteration. The notation is summarised in the
following table:

Symbol Rea As
= is composed of
+ toether wth

[.. I]select one of
I .iterations of

This particular notation has been chosen because it is well used, easy to
understand and is well defined. The three basic operations are those
used in structured programming and in methods like JSD (Jackson
System Development).

To give an idea ofhow a data dictionary expressed in this notation looks,
consider the following examples. The data dictionary contains an entry
for all types of the data in the system, so that the type of every data flow is
defined.

ExamplelI

A data type which represents all the days of the week will be represented
as:

DaysOfTheWeek = Monday I Tuesday I Wednesday I Thursday
I Friday I Saturday I Sunday]

So each element of the type is one of the days Monday to Sunday. This is
a selection type. The selections do not have to be simple as in this
example, but can be any type.

Exam2
An iterated type is one in which a component is iepeated some number
of times. For example, a bank statement is composed of a number of
transactions, and may be represented as:

Statement - (Transaction }

2

Iterated types may be annotated with lower and upper ranges, to
constrain the number of iterations. This has the form m(...)n where m
and n are both greater than or equal to zero and m is not greater than n.
If no range is given it is assumed that the component may be repeated
some arbitrarily large number of times. This ensures the iteration type
is finite. The type between the braces may be as complicated as is
desired, for example it could be a composite type, or a selection type.

Example 3

The third sort of type is a composition type. The bank transactions from
the previous example, is one of these. It is a combination of, say, the date
of transaction, a description of the transaction (for example, whether it
is a standing order, or direct debit, or cash withdrawal, etc.), whether it
is a debit or credit, and the amount of money involved, and may be
represented as-

Transaction = Date + Description + DebitOrCredit + Amount

As before, the composite parts of one of these types may be complicated.
The ordering of the components is not important.

Example 4

If we do not wish to give the exact details of a type, we can simpiy g-ve a
description of the type. The description is a simple English sentence,
with an asterisk at each end to denote the beginning and end (rather like
a comment in a programming language). So, for example, we may not
wish to give any further details about the amount of money involved in a
transaction, from the previous example. The entry for "Amount" in the
data dictionary would then be:

Amount = " The amount of money debited (or credited) at each
transaction

Descriptions can be added to any data dictionary entry, to help the reader
understand the purpose of the entry. And all data types must have an
entry in the data dictionary, even if it is only a descnption.

There are also entries in the data dictionary for all the data stores which
appear on a data flow diagram. The difference with a data store
definition is that the key of the store, that is, that part of the data store
which acts as an 'index' into the store, is highlighted (by underlining).
Consider the following example.

This example is of a data store which contains a bank's database. That
is, each entry in the store consists of the bank account number, the
name of the customer, and the amount in the account. This would be
represented as'

Bank = I Asmnt o + Name + Amount)

This is an iterated type because a bank holds many accounts. The
account number is the key. The key does not, in general, have to be a
single component but may be a compound key when a single component
is not sufficient to uniquely identify the entry. For example, a telephone
book has a key comprising the subscribers name and address, as the
name alone is not sufficient to find the 'phone number.

To motivate the translation, consider the Z equivalents of the above
examples. The first was a selection type, and it's equivalent in Z will be a
free type as follows:

DaysOfTheUeek :: ondoy I Tuesday I lednesdoy
Thursday I Friday I Saturday I Sunday

The second example was an iterated type. The nearest equivalent in Z to
this is a sequence, as follows:

Statement -- seq Transection

where Transaction must also be defined. If range constraints were
used, then a predicate would be needed to say that all statements were of
an appropinate length. For example, if the range was 3 to 20, so that
every statement had to contain at least three entries but no more than 20,
then the following constraint would be needed:

V s : Statement. 3 s J 20
The third example was a composite type. The nearest equivalent to this
in Z is a schema, as follows:

Transact ion

do : Date
desC : Description

d-or-c : DebitOrCredit

am : Amount

where Date, Description, DebitOrCredit and Amount must be defined,
The identifiers da, desc, d or.,c and am are added to the Z description to
make the schema complete.

The fourth example had no actual definition, just a enscription. The Z
.quivalent of this is the given set, as follows:

(Amount I

A Z specification containing such a given set should also have an
English explanation of what the given set represents, which will

4

probably be much the same as the description which appears in the data
dictionary.

And the final example is of a data store, with a key. This is again
represented in Z as a schema, but containing a function from the key to
the rest of the data store entry, as follows:

r Bank
accounts : Accountflo -. ccountDetoils

AccountNo is the key and must be defined elsewhere. AccountDetails is
a schema representing the type of the rest of the data store entry,
constructed in the same way as that for a composition type. Thus the
schema AccountDetails will be of the form:

R fccouitOetoil3 -

no : None

on Rmount

In the cases where the key is compound, that is where it has more than
one component, a schema is also needed to represent it, constructed in
the same way. The identifiers in the schemas and the additional schema
names themselves must be added to produce a correct Z specification.

The formal description of the rules for translating a data dictionary into
Z are given in the following section.

3. Translation into 2

3.1 The Specification of the Data Dictionary

A specification, in Z, of the data dictionary is needed to formalise the
data dictionary definitions so that later a function can be defined
mapping these definitions on to their Z equivalents.

We start by introducing a given set to represent the description of each
definition in the data dictionary.

description

The description is textual, but we need not be concerned about its exact
form.

[definition

The actual definitions are recursive, so we first introduce them as a
given set There are five sorts of definition: compositions, iterations,
selections, data store definitions and null definitions. The null definition
occurs when just a description is given

operation ::- composition I iteration selection

The three basic operations are specified

r cop-def

op : operation

components : F1 definition

op - composition
-component s J

The first kind of definition is a composition definition This has the
appropriate operation and a set of other definitions, which are the
components of the composite type. There must be at least two
components for the definition to be sensible For example, consider the
composition definition given above, namely

Transaction = Date + Description + DebitOrCredit + Amount

This definition has the set of components (Date, Description,
DebitOrCredit, Amount).

r iterdef
op : operot ion

component : definition

lower, upper :IN

op - iteration
lower $ upper

An iteration only has one component. the type between the braces. This
type may be a coiplicated definition. Lower and upper range
constraints on iteration definitions are given, to restrict the number of
iterations. For example, consider the iteration definition given above,
namely:

Statement = (Transaction }

6

The component here is "Transaction", the lower limit is 0 (by default)

and the upper limit , .n arbitrarily large number (the exact number is
left unspecified as it ,ill depend on the implementation).

r select-def
op : operation
components : F1 definition

op - selection
ucomponents 2

As for composition types, a selection type has the appropriate operation
and a set of other definitions, which are the components of the selection
type. Again there must be at least two components for the definition to be
sensible. For example, consider the selection definition given above,
namely.

DaysOfTheWeek Monday I Tuesday I Wednesday I Thursday
I Friday I Saturday I Sunday]

This has the set of components (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday).

r ds-def
key, rest : IF definition

I -key > 0

A data store definition has a non.empty Ley which identifies the rest of
the data store contents. For example, consider the data store definition
given above, namely:

Bank = I AcconNo + Name + Amount)

This has key {AccountNo} and the rest is the set (Name, Account). A
data store may have no other contents, but just have a key, In this case,
the schema generated will contain just a set of the key elements rather
than a function

definition ::- compccomp_def I iterciterdefi

I selcselect-def, I nullcseq Char, dsds..def;

These are all brought together to form the free type describing
definitions. Null definitions just have identifiers (names)

We can no%% construct data dictionary entries

7

r dotodict-entrg

name seq Char

def definition

desc description

def c rng null ,o null"idef name

Each entry has a name, which is an identifier, a definition and a
description. In the case of entries with null definitions, the definition
simply uses the name of the entry.

datadictio..iry : I? (seq Char -* datoadictentry)

I Vdd:doto-dictionory Vn:dom dd (dd n).nome - n

A data dictior,ary is simply defined as a map from the types names to
their entries. Throughout this specification it has been assumed that the
data dictionary is sensible, that is it contains only valid entries and does
not have anything like

Bank = (Bank),

for example If the dictionary is sensible, a useful Z specification will be
produced. On the other hand, if the dictionary contains some circular
definitions or other incorrect ones, then a Z specification may be
generated, but will contain some type errors which may be found using
a Z type.checker such as [3].

And this completes the Z specification of the data dictionary.

3.2 The Specification of Z

In order to provide translation rules into Z using the strategy described
in section 1 above, we also need a specification of the relevant parts of Z.
This specification is an extended version of that given in (1]. The
extension is to encompass Z free types which are needed for the
translation of selection types in the data dictionary, to allow syntactic
definitions which are needed for the translation of iteration types and to
allow a particular sort of predicate.

identifier -- seq Char

We start by introducing identifiers, which are just sequences of
characters (strings). To specify schemas we need to specify names,
signatures and predicates: the three components of every schema

schenaonome -- seq Char

8

aThe name of a schema is just a sequence of characters. The signature is
more complicated. There are two sorts of elements in a signature:
inclusions and declarations. Inclusions are names of other schemas to
be included, and declarations are (identifier,type) pairs. Ident'fiers have
already been defined. Types are more difficult. In fact, the definitions of
types and signatures are mutually recursive, so a set of all possible typesis first introduced as a given set, and then later constrained.

[type I

signature-element :* inccchemo-namei

I decc(identifierxtype),
signature -- IF signature.element

A signature is a set of signature elements, each of which is an inclusion
or declaration

Free types are composed ofa set of branches.

branch ::- sinplectype, I constructedt(identifierxtype),

Branches are either simple ones consisting of the name of a set, or more
complicated ones consisting of a constructor function applied to a type.
For example, the free type signature-eleaent above has two

complicated branches. The first comprises the constructor function i nc
applied to the set of schema names, and the second comprises the
constructor function dec applied to the set of(identifiertype) pairs Note
that the sets referred to are actually types and the names of the
constructor functions are identifiers.

The definition of types can now be completed.

type ::g iventseq Chari f tuplecseq types

powersetctypei, scheo-typesignaturei

freetypecF bronch o

There are five sorts of type in Z: those arising from given sets; tuple
types, arising from Cartesian products; powerset types; schema types
and free types.

The third part of a schema is the predicate.

predicate]

empty ; predicate

9

Nothing is said about the construction of predicates, just that they exist.
The empty predicate is defined.

r scheoo
n : scheno-noe
sig : ignature

pred predicote

A schema has a name, a signature and a predicate.

Three extra Z elements are introduced. First, a free type is needed for
those elements defined as a selection in the data dictionary. Secondly, a
s)ntactic definition is needed for those elements defined as an iteration.
Thirdly, a predicate is needed for constraining the size of sequences
produced from iterations.

r freetypedef

n : seq Char
branches : IF1 branch

Free type definitions have a name and a set of branches.

zeleoent given3set(seq Chor)

I free-typecfree-type-def, I boxcscheo o,
syn.defseq Charxtype,

boundscseq ChorxVANlN

The parts of Z needed are given sets, free types, schemas, a particular
form of syntactic definition and a particular form of predicate. The
syntactic definition wfl be a sequence definition, with a name and the
type of the elements of the sequence. The function syndef takes this
name and type and produces a Z sequence. The predicate, constructed
using the function bounds, will be a restriction on the size of the
sequence corresponding to a particular iteration definition.

z3pecification -- F z.eleaent

So a Z specification is just a set of these Z elements. At a more concrete
level, a Z specification is actually a sequence of elements, to ensure that
rules of declaration before use are followed. However, this detail is
unnecessary for the purpose of this report. This completes the
specification

10

3.3 The Translation Rules

Having specified the data dictionary and the necessary parts of Z, the
next stage is to specify the meaning function which provides the
translation. There are two stages in this process: first, a function which
generates the appropriate Z type from each data dictionary entry must be
defined; and secondly, the function to translate each data dictionary
entry into the Z construct which will appear in the generated
specification must then be defined.

tronslotedef : definition . type

The function to generate the Z types will be defined in parts, one part for
each of the sorts of definition which may appear in a data dictionary,
and it is recursive. Remember that each data dictionary entry has three
parts: a name, a definition and a description; and that there are five
sorts of definition: compositions, iterations, selections, data store
definitions and null definitions.

get-ids 4 signature -" F identifier

Vsig'signoture

•get-ids 3ig - (i:ioentifier;ty:typeldec(lty)csig. I)

type-of : identifier -* type

in-branch : identifier .- type

Extra functions are needed which retrieve the identifiers used in the
signature of a schema from that signature, associate identifiers with
their types and relate identifiers and types which together make up a
complicated branch of a free type. The second and third of these are left
unspecified.

trons.pors

dd definition

zt : type

trans-pors

dd c rng cop
zt - schemo-type (el9)

slghr signature

I : F1 Identifier

(sig,l) c get-ids

3ig - i:l;ty'type

I ty c tronslotedef ((comp"' dd).components)
type-of I , ty

dec (i,ty))

Composition definitions will be translated into Z schems, so the Z type
they give rise to is a Z schema type The Z schema will have one
component for each of the components of the composition, so the schema
type has a signature containing one declaration for each of these. The
actual identifiers which appear in the signature are left unspecified.
and an anonymous set I is provided,

F trons-It er
tra 3-por3

dd c rng iter

I zt-poWerset(tuple<given (Mot'),
I translatedef (iter

"I
dd) component))

Iteration definitions will be translated into sequences In Z, sequences
are really functions from the natural numbers to the type of the
elements of the sequence. So the Z type for an iteration is a powerset type
of a tuple (sequences are just functions and functions are really just sets
of pairs) The first part of the tuple type is the natural numbers (the
domain of the sequence), and the second part is the type of the iterated
component (the range of the sequence)

12

tran-sel

tran...por3

nd c el

t reetype (ft)

wherer

FI branch

op Fl Identifier

aft ' lop - 2(sel dd).coponents

ft (o:op;ty:ty;e

t c tronslotedef ((sel' dd).coponents)

(o,ty) c in.branch

•constructed(o,ty))

A selection definition will be translated into a Z free type. Thus the Z type
generated is a free type, and it has the same number of branches as
there are components in the selection. Each branch is constructed from
an operation (the name of the constructor function), and the type of one
of the selection components. All the branches generated are complicated
branches. If, by later examination, it was realised that the type of a
selection component contained only one element, then the complicated
branch generated for that element could be replaced by a simple branch
(the constructor function would, in effect, be the identity function).

make.def :F 1 definition -" definition

V defs F1 def;nition; def : definition

def " make.def defs

2defs - I (def) * defs
2defs > I ^def * comp cd

where

cd : comp-def

cd.coponents *def

A preliminary function is introduced before we specify the translation of
a data store. This function takes a set of definitions and, if the set has
more than one element, it generates a new composition definition with
components being those in the original set. The purpose of this is to
allow the key and the rest of the elements of a data store to be treated
exactly the same as composition definitions for the purpose of

13

'V
t generating Z schemas and types from them. For example, in the

example given in section 2 above ofa data store, the components other
than the key (Name and Amount) will be grouped together into onecomposition definition, and the rules for translating composition

definitions into Z applied to generate the schema Account Details.

trons.ds

ironlspors

dd c rng ds

zt - schematype (sig)

where

Ssig signotur
e

identifier

Pt type

sig (dec (i, poverset Pt)fl ((ds" dd).rest) " 0

pt a translote-def(moke.def((ds "

dd).key))

#((d "I dd).rest) > 0

pt - tuple
(translotedef(moke.def((ds

"
dd).key)),

I I tronslote.def(mokedef((ds
"

dd).rest)) >

Data store definitions will also be translated into Z schemas, so the Z
type produced is a schema type. As in the final example in section 2
above, the signature of the schema contains just a function, mapping
the key of the data store to the rest of the components, unless there are
no other components in which case the signature contains just a set of
the key elements.

trons3null

tron3-pors

dd c rng null
zt - given (null' dd)

The final definition is the null definition This gives rise to a Z given set,
with name the same as the definition

14

Vtrans.pors zt - tronslotedef dd * trans_€omp

trans-iter trons.sel . trons.ds . trons.null

All these parts are brought together to define the function.

We can now define the function which translates each data dictionary
entry into its equivalent Z construct(s).

translateentrg : doto.dict.entry - F c.z-element

As for the previous case this translation function will be defined in
parts.

F trans-entry-pars
dde dato.dict.entry

ze F z.element

- trons.entry.comp

tronaentry-pors

dde def c rng comp

ze - (b(,' 3
ohere

3 scheMO

3 n - dde noae

s.pred * empty

*s.ig * schemo.type
"

(tronlotedef dde.def)

The Z schema generated for a composition definition uses the name of
the data dictionary entry as its name, and has an empty predicate. Any
predicates constraining the values of the entry could be added later if
desired.

- trons.entry.iter

tron..sentrg-pors

dde.def , rng iter

ze - (syn-def (dde.nome,

tronslote.def (iter
"

dde.def).coomponent),

bounds (dde.nome, (iter
"
1 dde.def).lover,

I (iter
"
1 dde.def).upper))

An iteration gives rise to two Z constructs. One is the syntactic definition
which defines the sequence ofthe type of the iterated component, and the
other is a predicate which constrains the size of the sequence.

Itrons-entry-3el

trans.entry.pors

dde.def c rng sel
ze * { free-type ftd }

where

ftd '. freetypedef

I td.n • dde.nooe

ttd.branches - freetype
"
1 (translotedef dde.def)

Selections give rise to a Z free type. Most of the work in generating this
free type has been done by the tron lote.def function, which
generated all the branches of the free type. All that is done here is to give
the free type an appropriate name.

Data stores potentially give rise to three schemas, one for the data store
itself, one for the key, and one for the rest of the components of the store.
Schemac are only generated for the last two of these if they contain more
than one element.

St rans-ent r9-ds_1

dde dat..dict.entry; othera 6 z.element

11(ds' dde.def).key - 1 ^ #(ds
"1

ddedef).reat i 1

othera • {)

16

K

If both the key contains only one element and the rest of the components
contains at most one, then no extra Z element is generated.

F trons3entryds_.2
dde : data-dict-entry

others : z.-element

(dsi dde.def).key I . 9(ds
"

dde.def).rest > I

others = (box (t)

where
t : schema; tn :identifier

t.n - tn ^ tgpe-of tn •schemootype tsig

t.pred e mopty

t.sig schemootype'

I translotedef (make.def (ds" dde.def).rest)

If the key has only one element but the rest of the components has more
than one, then one schema is generated to represent the type of the rest
of the components. This schema has a suitable name, an empty
predicate, and a signature constructed by translating the composition
definition made from the rest of the components into a Z schema type.

- trans-entry.ds_-3

dde : data-dict-entry

others : IF zelement

v(dsi dde def).key > I ^ #(ds dde~def).rest 1 1

others * (box (t) }

where

t :chema; tn identifier

t.n - tn ^ type-of tn - schema-type t.sig

t.pred * empty

t.sig scheno.type
"
l

i tronslotedef (makedef (d3" dde.def).key)

17

Similarly, if the key has more that one element but the rest of the
components has either none or one, then one schema is generated to
represent the type of the key. Again this schema has a suitable name, an
empty predicate, and a signature constructed by translating the
composition definition made from the key into a Z schema type.

- trons3-entry-de_4

dde : datoadict-entry

others : F z-element

(dI lde.def).key > I ^ #(de1 "
dde.def).rest > I

others (box (t), box (u)

ohere

t,u schemo; tn, un identifier

t.n * tn ^ type-of tn 3 achenotype t.sig

t.pred e mopty

tsig 3 schemoatype'l

tronslotcdef (moke-def (ds' dde.def).key)

u-n - un . type-of un - schemoatype u.sig

upred e mopty
u.31g 3 chcmo-typel

tronslate-def (make-def (ds'
I
dde.def).rest)

If both the key and the rest of the components have more than one
elements, then two schemas are generated, one to represent the type of
the key and the other to represent the type of the rest of the components.
These schemas are constructed in the same way as before.

18

I r- tron s-entry-d s

t tonsiant ry-parsi

dde.def c rng ds - ze = { box s } u others
where
s : scheo; others : F z.eleent

:.n ; dde.noze ^ s.pred - eopty
s.sig . scheoc.type

"
(tronslate.def dde.def)

trans-entry-dsI , trons-entryqds_2 ,, trons-entrU-ds-3

, trons.entry.ds_4

Finally, the schema representing the data store itself is generated, with
the same name as the data dictionary entry, and with an empty
predicate. The other Z schemas generated, where needed, for the key
and the rest of the components of the data store, are combined with the
schema representing the data store to give the total set of Z elements
produced from a data store definition

Stranisentrynull
troranentry-pors

dde.def c rne null

I ze - { given-set dde namee

The last part of the function generates a Z given set for all those data
dictionary entries which just have descriptions.

Vtrons.entry-pars ze - translate-entry dde 4=*

trons-entrycomp trons-entryliter . trons-entrysoel

tronsentry.ds . trons.entry.null

All these parts are brought together to define the function

trans3lated.d .d-totdictionory - z-specificotion

Vdd doto.dictionory,zs z-specificotion•

zs - U t-onslate-entry 9 rng dd D

19

We can now translate the whole data dictionary into a Z specification by

simply applying the translate entry function to each entry in the data
dictionary.

The Z specification generated from a data flow diagram using the rules
presented in (1] is an outline only. In particular, no information about
the type (composition) of the data flowing around the system is present.
The formal translation presented in this report fills that gap by using
the data dictionary which accompanies each data flow diagram to
generate type information automatically. The Z specification generated
from the diagram and dictionary together is a fuller, more useful
specification.

In addition, a data flow diagram says nothing about the content of each
data store on the diagram, whereas the data dictionary contains an
entry for each describing the data hcld. Thus the Z schema generated
from the diagram for each data store, which is in effect an empty
schema box, should be replaced by the schema generated from the data
dictionary description. Again, this will lead to a more useful Z
specification being produced.

The annex to this report combines both translations into one formal
translation from the diagram and dictionary together into a single Z
specification.

Thus translations have been developed which formaise both data flow
diagrams and their accompanying data dictionary, and which enable a
useful Z specification to be generated automatically from them.
However, the Z specification does not capture the communicatior
aspects of the data flow diagram very well, so is still limited, especially
when the data flow diagram contains mainly communications between
processes directly and not via data stores In order to overcome this
deficiency and enable communication aspects to be reasoned about, a
translation from data flow diagrams into Hoare's CSP (Communicating
Sequential Processes) has also been developed, and is presented in [51

20

[1] G P Randell, Translating Data Flow Diagrams into Z (and vice
versa), RSRE Report 90019, October 1990

[2] C T Sennett, Review of Type Checking and Scope Rules of the
Specification Language Z, RSRE Report 87017, 1987

(3] G P Randell, ZADOK User Guide, RSRE Memorandum 4356, 1990

[4] P T Ward & S J Mellor, Structured Development for Real-Time
Systems, Volume 1: Introduction and Tools, Yourdon Press, 1985

[5] G P Randell, Data Flow Diagrams and CSP, RSRE Report (in
preparation), 1992

21

INTENTIONALLY BLANK

Annex -Translating Data Flow Diagrams into Z

A1 Introduction

The purpose of this annex is to bring together an updoted version of the
translation from data flow diagrams into Z originally presented in [1]
and the translation presented in the main part of this report to
automatically generate a more useful Z specification. The same strategy
is adopted, in that first a specification of data flow diagrams is given,
then a specification of the relevant parts of Z, and finally the translation
(meaning) function.

The specification of Z needed for this translation is the same as that
given in section 3.2 of the main part of this report, and will not be
repeated in this annex. The translation rules presented make use of the
data dictionary to Z translation rules from section 3.3.

A.2 The Setificition of Data Flow Diarams

The interpretation put on a data flow diagram by this formalization is
that it represents operations being carned out on a state. The state is
represented by the data stores, and the operations by the processes. The
external entities just provide or receive data.

The different elements of a data flow diagram, namely external entities,
processes and data stores, are specified first. The data flows between
them are then specified as constraints on the set of diagram elements
that make up a given diagram.

r external-entity

none : F identifier

The relevant part of an external entity, from the point of view of this
translation, is the data which it sends to and receives from the system.
The data moving around the system is shown by the names on the data
flows. These names are modelled as simple identifiers.

Each process on a data flow diagram inputs data, transforms or
manipulates it, and produces outputs.

r process

inputs, outputs : IF identifier
reads, writes IF identifier

process.name seQ Char

A . ,

Inputs and outputs come from or go to other processes or external
entities Communications with data stores are treated as reads or writes
of the state data held in the store (a flow from a process to a data store
being a write, and the reverse direction a read). The inputs, outputs,
reads and writes correspond to the names on the appropriate data flows.
Processes also have names, which are intended to indicate the function
that the process performs.

Data storos represent the state of the system, upon which processes act
by reading from or writing to them.

- dotastore

reads, writes : IF identifier

store-namse : seq Char

Reads from and writes to a data store correspond to the names on the
flows to and from processes, respectively. Data stores also have names.
The contents of a data store do not appear on a data flow diagram, so no
mention of contents appears in this specification.

DFD-eleoent ext c external.entity

proc C process , I store , datostore i

The three schemas external-ent ity, process and dotostore
represent the three possible types of data flow diagram element. In
addition to diagram elements, a data flow diagram also contains data
flows

r doto.flow

origin, dest : OFO.element

label identifier

origin *dest

origin c rng proc ,. dest c rng proc

Each data flow has an ongin and a destination, both of which are
diagram elements. Each is also labelled with the name of the data which
flows along it. A data flow cannot be circular, in that it cannot return to
its own origin, and it must have a process as either its origin or
destination (or both). This prevents external entities having direct access
to state data (except via processes to read or write that data), and also
prevents a flow between two data stores, as data stores are passive.

A well-formed data flow diagram consists of a collection of diagram
elements, connected by suitable data flows. The first check is on the
connectedness of the diagram

A-2

Connected

elements : F OFDelement

flows : F doto-flos

Ve:elements . (3f:flocs. e * f.origin e e f.dest)

Vf:flovs . (f.origin c elements .dest c elements)

The first predicate says that, for each element (external entity, process
or data store), there must be a data flow either from it or to it (or both).
This is to ensure that no element is "orphaned'. The second says that all
flows must be connected to elements in the diagram. Further
constraints could be added, if required, to ensure that there were no
sources or sinks of data on the diagram, or that the diagram was
completely connected in that it could not be split into two groups of
elements, with no data flows between any two elements from the
different groups.

There are also checks on a data flow diagram to ensure that the
representation in terms of elements and data flows, as in the Z
specification above, is consistent with the diagram. The first check is on
external entities,

Ext ernol-ent it iesok

elements : IF OFO.element

Iflows : IF dotoflows

I Ve:elementa; ex:external.entity e - ext ex

I ex names - (f:flow je-f~origin e-f.dest • (lobel)

This check ensures that the names recorded for each entity correspond
to the names on the data flows to and from that entity

The second check is on processes

A-3

r Proce3e3-.ok
elenents :IF DFD...element

flows: IF dato..flos

Ve:elements; P:PrOCess e *proc p
p. inputs *(f: flOWsjf.origin c (r'ng ext u rng proc)

f.dest -e -f.lobel)

p-outputs {f: flovsjf.origin-e f~dest c(rng ext u
rg proc) - (label)

p.reods - (f:flowslf~oriqin c rng store f .dest-e

Ip.Wr'ite3 (f:floWSjf.origin-e (fdest crng store
f.lobel)

This schema says four things First, that the inputs to a process
correspond to the names on the data flows to that process from either
external entities or ether processes. Secondly, that the outputs from a
process correspond to the names on the data flows from that process to
either external entities or other processes. Thirdly, that the "reads" a
process performs corresponds to the names on the data flows from data
stores to that process. And, fourthly, that the "writes" a process
performs correspond to the names on the data flows from that process to
data stores

The third check is on data stores

r Dtastore3-ok

elemnts :IF D-D.element
flos: IF data-.flows

Ve:elements; d:dotoatore Ie - store d

Idowrites {f:floW31f origin c rag proc ^~ f~dest-e

* lobe
I)

dreads (f:fiowslf.origin-e -. dest c rng proc

This check ensures that the data written to a data store corresponds to
the names on the data flaws from processes to that data store, and that
the data read from a data store corresponds to the names of the data
flows to processes from that data store

A-4

Felements IF OFO-element

flows ; F dataflovs

Connected ^ External.entitiesok ^ Processesok ^

Dotostores ok

A valid data flow diagram passes all the checks.

A.3 The 2ocification of the Translation Rules

The translation takes a data flow diagram and its accompanying data
dictionary and produces a Z specification. The types of each data item
are found from the data dictionary, as are the data store schemas. The
diagram gives rise to one operation schema for each process.

We first need to relate data flow diagrams to data dictionaries.

appropriate : OFD . data.dictionary

V Ydfd:OFD;dd:doto-dictionary •appropriote(dfd,dd)

I {d:dfd.elementsjds c rng store (store
"

ds).storenoae)

u {df:dfd.floos df.lobel) !; don dd

A data flow diagram and a data dictionary are related if the data
dictionary contains an entry for every data flow (the labels on data flows
are the names of the data types) and every data store on the diagram.
The data dictionary must also contain entries for all definitions which
appear as components of an entry. Thus, for example, if a data flow label
"Address" had the following entry:

Address = HouseName + Number + Street + Town + County

then the data dictionary must also contain individual entries for
"HouseName", "Number", "Street", "Town" and "County". This
'completeness' constraint is left unspecified. It should be noted that if
the data dictionary is not complete then the Z specification generated
will simply not type.check

The translation function for the diagram takes each process from a
particular diagram with its associated data dictionary and produces an
appropriate Z schema which describes the effect the operation
represented by the process has on the state of the system. That is, it
describes which data stores are affected The data dictionary is used to
look up the label on each data flow to find the type of the data flowing

A-5

The signature of the schema generated from a process consists of just
thoe dta tors wicharerea bytheprocess but not altered in any

way, those data stores which the process does affect, and the inputs and
outputs.

generote-reod* (process x DFD x dota...dictionory)
signature

Vp:proces;dfd:F;dd:dota.dict ionorg
proc p c dfd.elements . oppropricte(dfd,dd)

generote-reods (p,dfd,dd)

Cdf:dfd.flses;ds3:dotostorejstore c13 c dfd.elements

df.dest-proc p ,. df.origin-3tore d3
,(3dfP:dfd. fiov3 dt' origin-proc p..df'dest-3tore ds)

inc ('" ds.store-.nome))

Data stores which are read by the process but not altered in any way are
prefixed by'S in the signature of the schema produced. These are found
by looking for data stores in the diagram from which there is a data flow
to the process in question, but for which there is no data flow in the
opposite direction. Each data store which is the destination of a data flow
is changed.

Igenerote-urits : (process x IWO x doto-dictionory)

I signature

Vp~proces3dfd:FD~dd:dato-.dict isnory

Iproc p cdfd.element3 . oppropriate~dd,did)
Qgeflrate-urite3 (p,dfd~dd)

d~f:cIddlows; ds:dotastore
df.dest-3tore d1s ̂ df.origin-proc p
store d3 c dfd~eleoents

inc ("A' dsstore..nooe)

Those data stor. s which the process does affect are prefixed by 'A" in the
signature of the generated schema

A -6

generote.ins (process x DFO x dao-.dictionarg)

-. signature

Vp~proces;dfd:F;dd:dto-dict ionorg

Iproc p Cdfd.eleents .a pproppicte(dfd,dd)
-generte..nsi (p,dfd,dd)
(I ~p, nputs; ip~ identifier
l1ost lp-'?' type-of lp - tronslote..def((dd l).def)
dec (ip,tronslote-.def (dd).def))

Inputs are given an identifier ending with "? in the signature in the
usual Z style The types of these are found by looking up the relevant
entry in the appropriate data dictionary.

generote-..utts (process x OPO x dato-dictionory)

-"signature

'p-processdfd DFD;dd-dt..d~ctionorq

Iproc p c dfd elements -. opropriote(dfai,dd)
* generote..uts (p,d(d,dd)

{o:p outputs;opaidentifier

lost op-'
1
,. type..rf op - translote.def((dd o) def)

-dec (op,tronlate.def (dd o) def))

Similarly, outputs are given an identifier ending with

trons..proc (proces.DFdato..dictionorg) -~ z-.elemerit

Vpprocess,dfd OFD,dd doto..dictio'mory,ze z..element

proc p tdfd elerents . appropriote(dfd,dd)

L rcns..proc (p,dfd,dd) z e o-o ze - box 3

where
s schema

: * p.proces.nane ,.s pred - emptq

3 ener'ote-.reod3 (p,dfd,dd)
siv genroterite (dfddd)

u generote-.ovts (p,dfd,dd)

-3 .q9 -(p in~puts up ou~tputs u p reads v p writes)

A-7

So the schema generated is given the same name as the process and the
empty predicate as information relating to the predicate part of the
schema does not appear on a data flow diagram nor in the data
dictionary. The four functions defined above are used to generate the
signature of the schema, which has one element for each read, write,
input and output.

translate : (OFD x data-dictionarg) -.. z.specification

V dfd:OFD; dd:dotodictionory I appropriate(dfd,dd)

•translate (dfd,dd) - (p:processlproc p c dfd.elements
•tronsproc (p,dfd,dd)) u tronsltedd dd

To generate a Z specification from a data flow diagram and a data
dictionary together we simply translate all the processes on the diagram
into Z schemas and and put these together with all the type definitions
and data store definitions generated from the data dictionary Note that
the diagram only provides the processes, that is the operations in the Z
specification, and that the data dictionary must be appropriate for the
diagram Thus the translations into Z from the data flow diagram and
the data dictionary cannot be inconsistent.

As

REPORT DOCUMENTATION PAGE DRIC Reference Number (1 known).......

Overall security classification o h e UN of sheet . US' ICL F.S1. ED...
(As far as possible this sheet should contain only unclassified lntorrn-Ition. It It Is necessary to enter classified Informraton, the field conceffed
must be marked to Indicate the classification, eg (R). (C) or (S).

Originators Reference/Report No. Monh

R EPORT 9201.4 JANUARY 19
Originators Name and Loca*.on

RSRE, ST ANDFU-WS ROArj
MALVERN, WORCS WRI- 3PS

Monitoring Agency Name and Location.

Title

IMPROVING THE TRANSLATION FROM DATA FLOW DIAGRAMS
INTO Z BY INCORPORATING THE DATA DICTIONARY

Report Security Classification f asti)Titie Classification (LI, R. C or S)

IConference DOtW s

Agency Reference Contract Number and PeriodrProject Number Other References

Authors Pgnation and Ref

RANDELL. G P - 29

Abstract

Earlier worl, developed formal translation rules for generating a specification in the formal language Z
from a data flow diagram. The Z specification produced lacked detail, especially on the types of the
data flowinr: around the system. This report describeF how to use information from a data dictionary to
improve the Z specification. Formal translation rules from a data dictionary to Z are presented.

Abstract Cassit Allon (U K Cat 8)

U

Descriptors

D1stribution Statemnent (Enter anty llnftatons en the distribution of the document)
UNLIMITED

INTENTIONALLY BLANK

