}——

Report No. 92004

1EC TE
MAY1 41992
IMPROVING THE TRANSLATION FROM
DATA FLOW DIAGRAMS INTO Z BY |
INCORPORATING THE DATA DICTIONARY
Author: G P Randell
“This d°ml—hﬂ>-"‘—‘

309398 UNLIMITED, ; @ '

AD-A250 769
il ﬁlmm il Report No. 92004
ROYAL SIGNALS AND RADAR ESTABLISHMENT,

MALVERN

“'IHWNMwnnTWIIUNII“

L5 11 18Y i

PROCUREMENT EXECUTIVE, MINISTRY OF DEFENCE
RSRE

Malvern, Worcestershire.

January 1992

UNLIMITED

CONDITIONS OF RELEASE
0121567 309398
Cenausarncstnnnientinreans oRIcy
COPYRIGHT (¢)
1988
CONTROLLER
HMSO LONDON
sressaencnsesannanatannnns oRICY
Reports quoted are not y available to of the publc or 1
ofganisations.

DEFENCE RESEARCH AGENCY
g RSRE Report 92004

Title: Improving the Translation from Data Flow Diagrams
into Z by Incorporating the Data Dictionary

Author: G P Randell
Date: January 1992

Abstract

Earher worh developed formal translation rule- for generating a
specification i the formal language Z from a data { « diagram The Z
specification produced lacked detall, especrally on the types of the data
flowing around the system. This report desenbes how to use information
from a data dictionary to \mprove the Z specification Formal translation
rules from a data dictionary to Z are presented

Acceson For

NTIS CRA&I
ONIS TA
Uiannouneed
Justtcotion

Cod-

8y
Ontribatoaf

Avalats Ity Cores

-r\vau XY ;o.'
Dt Specul

A-|

Copynight
©
Controller HMSO, London
1992

‘479

INTENTIONALLY BLANK

Contents

1. Introduction

2. The Data DICtONATY ..., wve covrenies wuee coeerresaressnesenseseeesseoss oo, 2
3. Translation into Z... ... cecevirieeesireeeseeeeeeneeeeeeos s PR 5
3.1 The Speaification of the Data Dictionary......ceereeveeiveveneens v 5

3.2 The Specification of 2

Annex - Translating Data Flow Diagrams into Z

A1 Introductien.. e e ew e e 4 JART

A 2 The Specification of Data Flow Diagrams... A

A 3 The Speafication of the Translation Rules A5

b — - -

INTENTIONALLY BLANK

i

LIntroduction

Data flow diagrams are a commonly used tool of systems’ analysis, and
are used by many of the current structured methods for system
development. They are used to represent pictorially the data flows within
a required system, showing how data enters and leaves the system,
what changes the data, and where the data is stored. As such they are

an important technique for understanding and communicating the
functionality of the system,

Data flow diagrams contain four types of symbols (elements). These are:

1, External entity: a source or recipient of data outside the
system, represented by a rectangle.

2. Process: an activity which transforms or manipulates data,
represented by a circle.

3. Data store: a collection of any type of data in any form,
represented by two parallel horizontal lines.

4. Data flow: showing a movement of data, represented by an
arrow with the arrow head indicating the direction of flow and
a label showing what data is involved.

Earlier work (1) developed formal translation rules for generating a
specification in the formal language Z [2,3) from such diagrams.
However, the specification generated was an outline only, and contained
no information on the types of the data flowing round the system or on
what data is actually kept in each data store.

The reason for this lack of detail is that the information from which the
types of the data can be deduced does not appear on a data flow diagram.
Data flows are only labelled with the name of the data, and do not say
anything more about the composition of that data. Rather, an
accompanying data dictionary contains details about the data and also
details of what data is stored in the data stores.

The purpose of this report is to explain how the information in a data
dictionary may be incorporated into the 2 specification generated from
the relevant data flow diagram. A fuller, more complete Z specification
will then result,

The strategy is to provide formal translation rules from a data dictionary
to Z. This is achieved in the same manner as that used for the original
translation from data flow diagrams into Z in {1). That is, the data
dictionary is specified in Z, and an abstract syntax for the relevant parts
of Z specified, again in Z. A function is then defined between the
specification of data dictionaries to the abstract syntax of Z, which gives
the meaning of the data dictionary in Z This meaning function gives the
translation rules

ar e s = e ———

e e

The remainder of this report is structured as follows. Section 2 descnbes
the particular form of data dictionary which has been used for this
work, and gives some examples of data dictionary entries and the
equivalent Z. Section 3 presents the specifications of the data dictionary,
Z and the translation rules, and section 4 contains the conclusions, An
updated version of the translation from data flow diagrams into Z,
incorporating the information from the data dictionary, is given in the
annex.

2. The Data Dicti

The particular form of data representation chosen for this work is that
defined in {4). This notation is based on the three basic operations of
sequence, selection and iteration. The notation is summarised in the
followang table:

Symbol Read As
= 15 composed of
+ together with
[bo.l..] select one of
{..} iterations of

This particular notation has been chosen because it is well used, easy to
understand and is well defined. The three basic operations are those
used in structured programming and in methods like JSD (Jackson
System Development).

To give an idea of how a data dictionary expressed in this notation looks,
consider the following examples. The data dictionary contains an entry
for all types of the data in the system, so that the type of every data flow1s
defined.

Example 1

A data type which represents all the days of the week will be represented
as:

DaysOfTheWeek = [Monday | Tuesday | Wednesday | Thursday
| Friday | Saturday | Sunday)

So eacin element of the type is one of the days Monday to Sunday. This is
a selection type. The selections do not have to be simple as in this
example, but can be any type.

Example 2

An iterated type is one in which a component 1s 1epeated some number
of times. For example, a bank statement is composed of a number of
transactions, and may be represented as:

Statement = { Transaction }

Iterated types may be annotated with lower and upper rarges, to
constrain the number of iterations. This has the form (... } where m
and n are both greater than or equal to zero and m is not greater than n,
If no range is given it is assumed that the component may be repeated
some arbitrarily large number of times. This ensures the iteration type
is finite. The type between the braces may be as complicated as is
desired, for example it could be a composite type, or a selection type.

Example 3

The third sort of type is a composition type. The bank transactions from
the previous example, is one of these, It is a combination of, say, the date
of transaction, a description of the transaction (for example, whether it
is a standing order, or direct debit, or cash withdrawal, etc.), whether it
is a debit or credit, and the amount of money involved, and may be
represented as

Transaction = Date + Description + DebitOrCredit + Amount

As before, the composite parts of one of these types may be complicated.
The ordering of the components is not important.

Example 4

If we do not wish to give the exact details of a type, we can simpy give a
description of the type. The description is a simple English sentence,
with an asterisk at each end to denote the beginning and end (rather like
a comment mn a programming language). So, for example, we may not
wish to give any further details about the amount of money invelved in a
transaction, from the previous example. The entry for "Amount” in the
data dictionary would then be:

Amount = * The amount of money debited (or credited) at each
transaction *

Descriptions can be added to any data dictionary entry, to help the reader
understand the purpose of the entry. And all data types must have an
entry in the data dictionary, even if it 15 only a description.

There are also entries in the data dictionary for all the data stores which
appear on a data flow diagram. The difference with a data store
defimition is that the key of the store, that is, that part of the data store
which acts as an index’ into the store, 15 highlighted (by underlining).
Consider the following example.

Example 5

This example is of a data store which contains a bank's database. That
15, each entry in the store consists of the bank account number, the
name of the customer, and the amount in the account. This would be
represented as'

Bank = { AccountNo + Name + Amount }

¥ OO

e,

This is an iterated type because a bank holds many accounts. The
account number is the key, The key does not, in general, have to be a
single component but may be a compound key when a single component
is not sufficient to uniquely identify the entry. For example, a telephone
book has a key comprising the subscriber's name and address, as the
name alone is not sufficient to find the "phone number.

To motivate the translation, consider the Z equivalents of the above
examples. The first was a selection type, and it's equivalent in Z will be a
free type as follows:

DaysOfThelleek ::= Honday I Tuesday I Hednesday
Thursday l Friday I Saturday | Sunday

The second example was an iterated type. The nearest equivalent in Z to
this is a sequence, as follows:

Statement == seq Transaction

where Transaction must also be defined. If range constraints were
used, then a predicate would be needed to say that all statements were of
an appropnate length. For example, if the range was 3 to 20, so that
every statement had to contain at least three entries but no more than 20,
then the following constraint would be needed:

Y s : Statement -3 § s § 20

The third example was a composite type. The nearest equivalent to this
in Z is a schema, as follows:

r Tronsaction ———————
| da : Date

desc : Description

d_or_c : DebitOrCredit

an : Asount

—

where Date, Descnption, DebitOrCredit and Amount must be defined.
The identifiers da, dese, d_or_c and am are added to the Z description to
make the schema complete,

The fourth example had no actual definition, just a description. The 2
equivalent of this is the given set, as follows:

[RAmount)

A Z speafication contamming such a given set should also have an
English explanation of what the given set represents, which will

probably be much the same as the description which appears in the data
dictionary.

And the final example is of a data store, with a key. This is again
represented in Z as a schema, but containing a function from the key to
the rest of the data store entry, as follows:

r Bank

] accounts : fAccountlo ~» AccountDetails
t

4

AccountNo is the key and must be defined elsewhere. AccountDetails is
a schema representing the type of the rest of the data store entry,
constructed in the same way as that for a composition type. Thus the
schema AccountDetails will be of the form:

RccountDetails =
[na : HNane

l an : Amount
-

In the cases where the key is compound, that is where it has more than
one component, u schema is also needed to represent it, constructed in
the same way. The 1dentifiers in the schemas and the additional schema
names themselves must be added to produce a correct Z specification.

The formal description of the rules for translating a data dictionary into
Z are given in the following section.

3. Translation into Z

8.1 The Specification of the Data Dictionary

A specification, 1n Z, of the data dictionary is needed to formalse the
data dictionary defimtions so that later a function can be defined
mapping these definitions on to their Z equvalents.

We start by introducing a given set to represent the description of each
definitton in the data dictionary.

[description)}

The description is textual, but we need not be concerned about its exact
form.

[definition)

PSSR

e e A . St

JE N —-— [POEESTESEI

The actual definitions are recursive, so we first introduce them as a
given set There are five sorts of definition: compositions, iterations,
selections, data store definitions and null definitions. The null definition
occurs when just a description is given

operation ::= composition | iteration selection
The three basic operations are specified

r conp.def
op : operation
coeponents : [y definition

op = composition
Bcomponents 2 2

The first kind of definition is a compositior defimtion This has the
appropriate operation and a set of other definitions, which are the
components of the ccmposite type. There must be at least two
components for the definition to be sensible For example, consider the
composition defimtion given above, namely

Transaction = Date + Description + DebitOrCredit + Amount

This definition has the set of components {Date, Description,
DebitOrCredit, Amount},

r iterodef —_
op : operotion

component : definition
tower, upper : NN

op = iteration
lower § upper

An ateration only has one component. the type between the braces. This
type may be a comaplicated defimtion. Lower and upper range
constraints on iteration defimtions are given, to restnct the number of

iterations. For example, consider the 1teration defimtion given above,
namely:

Statement = { Transaction }

The component here is "Transaction”, the lower hmit is 0 (by default)
and the upper hmit i un arbitranly large number (the exact number 15
left unspecified as it \+ill depend on the implementation).
r select.def
op : operotion
components : IFy definition

op = selection
Bcomponents 2 2

;

As for composition types, a selection type has the appropriate operation
and a set of other definitions, which are the components of the selection
type. Again there must be at least two components for the definition to be

sensible. For example, consider the selection definition given above,
namely.

DaysOfTheWeek = [Monday | Tuesday | Wednesday | Thursday
| Fnday 1 Saturday | Sunday}

This has the set of components {Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday).

r ds.def
key, rest : F definition

®key > 0

A data store defimtion has a non-empty hey which 1dentifies the rest of

the data store contents. For example, consider the data store definmtion
given above, namely:

Bank = { AccountNg + Name + Amount }
This has key {AccountNo} and the rest is the set {Name, Account). A
data store may have no other contents, but just have a key. In this case,

the schema generated will contain just a set of the key elements rather
than a function

definition ::= compeconp.def> ' iterciter_defs
| seleselect defs ' nulleseq Chars I dseds_def>

These are all brought together to form the free type describing
defimtions. Null defimtions just have 1dentifiers (names)

We can now construct data dictionary entnes

deta.dict.entry
nane : seq Char
def : definition

desc : description

def ¢ rng null » nullldef = nane

Each entry has a name, which is an identifier, a definition and a
description. In the case of entries with null definitions, the definition
simply uses the name of the entry.

I data_dictiorary : ¥ (seq Char -» data_dict_entry)

i
I Vdd:data_dictionary - Vn:don dd - (dd n).name = n

A data dictioniary 1s simply defined as a map from the types names to
their entries. Throughout this specification it has been assumed that the
data dictionary is sensible, that is it contains only valid entries and does
not have anything hke

Bank = {Bank},

for example If the dictionary is sensible, a useful Z specification will be
produced. On the other hand, 1f the dictionary contains some circular
definitions or other incorrect ones, then a Z specification may be
generated, but will contain some type errors which may be found using
a Z type-checker such as (3).

And this completes the Z speafication of the data dictionary.

3.2 The Specification of Z

In order to provide translation rules into Z using the strategy descnbed
in section 1 above, we also need a specification of the relevant parts of Z.
This specification is an extended version of that given in {1}, The
extension is to encompass Z free types which are needed for the
translation of selection types in the data dictionary, to allow syntactic
definitions which are needed for the translation of iteration types and to
allow a particular sort of predicate.

identifier == seq Char

We start by introduang identifiers, which are just sequences of
characters (strings). To specify schemas we need to specify names,
signatures and predicates: the three components of every schema

schena.nane »= seq Char

The name of a schema is just a sequence of characters. The signature is
more complicated. There are two sorts of elements in a signature:
inclusions and declarations. Inclusions are names of other schemas to
be included, and declarations are (identifier,type) pairs. Ident fiers have
already been defined. Types are more difficult. In fact, the definitions of
types and signatures are mutually recursive, so a set of all possible types
is first introduced as a given set, and then Jater constrained.

[type]

signature.elepent ::= inccscheao_nanes
I dece{identifierxtype)s

signature == F signature.elenent

A signature is a set of signature elements, each of which is an inclusion
or declaration

Free types are composed of a set of branches.
branch ::s simplectypes l constructede(identifierxtype)y

Branches are either simple ones consisting of the name of a set, or more
complicated ones consisting of a constructor function applied to a type.

For example, the free type signature_elenent above has two
complicated branches. The first comprises the constructor function inc
apphied to the set of schema names, and the second compriges the
constructor function dec applied to the set of (dentifier.type) pairs Note

that the sets referred to are actually types and the names of the
constructor functions are identifiers.

The definition of types can now be completed.

type ::= givencseq Char> | tuplecseq type>
powerset«typer l schema_typecaignature>
freetypecfy branchy

There are five sorts of type in Z: those ansing from given sets; tuple
types, arising from Cartesian products; powerset types; schema types
and free types.

The third part of a schema is the predicate.

[predicate)

l enpty : predicate

P
i

‘J

Nothing is said about the construction of predicates, just that they exist.
The empty predicate is defined. !

schepng ———————ey
n : schesa_nane
sig : signature
pred : predicate

A schema has a name, a signature and a predicate.

Three extra Z elements are introduced. First, a free type is needed for
those elements defined as a selection in the data dictionary. Secondly, a
syntactic definition is needed for those elements defined as an iteration.
Thirdly, a predicate is needed for constraining the size of sequences
produced from iterations.

— free_type_def ———mm :
n ! seq Char
bronches : 1 bronch

Free type definitions have a name and a set of branches.

z-¢lement ::= given_seteseq Chars
| free_typecfree_type_defs I boxcschenas
| syn-defcseq Charxtypes
| boundseseq CharxiNxN»

The parts of Z needed are given sets, free types, schemas, a particular
form of syntactic defimition and a particular form of predicate. The
syntactic defimtion will be a sequence definition, with a name and the
type of the el ts of the seq e. The function syn_def takes this
name and type and produces a Z sequence. The predicate, constructed
using the function bounds, will be a restriction on the size of the
sequence corresponding to a particular iteration definition,

z.specification == F z_element

So a Z specification is yust a set of these Z elements, At a more concrete .
level, a Z specification is actually a sequence of elements, to ensure that |
rules of declaration before use are followed. However, this detail is

unnecessary for the purpose of this report. This completes the

specification

10

e ————

P

3.3 The Translation Rules

Having specified the data dictionary and the necessary parts of Z, the
next stage is to specify the meaning function which provides the
translation. There are two stages in this process: first, a function which
generates the appropriate Z type from each data dictionary entry must be
defined; and secondly, the function to translate each data dictionary
entry into the Z construct which will appear in the generated
specification must then be defined.

translate_def : definition =+ type

The function to generate the 2 types will be defined in parts, one part for
each of the sorts of definition which may appear in a data dictionary,
and it is recursive. Remember that each data dictionary entry has three
parts: a name, a definition and a description; and that there are five
sorts of definition: compositions, iterations, selections, data store
definitions and null definitions.

l get.ids : signature -+ F jdentifier
|

Vsig'signature
+ get_ids aig = (i:icen'.ifier;tg:!gpe[dec(i,lg)csig- i)

l typeof : identifier -» type

l in.branch : identifier ~ type

Extra functions are needed which retrieve the 1dentifiers used in the
signature of a schema from that signature, associate identifiers with
their types and relate identifiers and types which together make up a
complicated branch of a free type. The second and third of these are left
unspecified.

trons.pars —————
dd : definition
zt 1 type

1

I

~ trans_conp Y
trons_pars

dd ¢ rng comp

zt = schema.type (sig)
where

slg : signature

I : Fy Identifier

(sig,I) ¢ get_ids

sig = {i:l;ty:type
I ty ¢ translote_def § (comp™ dd).coaponents)
A type_of i = ty
< dec (i, ty))

Composition definitions will be translated into Z schemas, so the Z type
they give rise to is a Z schema type The Z schema will have one
component for each of the p ts of the composition, so the sch
type has a signature containing one declaration for each of these. The
actual identifiers which appear in the signature are left unspecified,
and an anonymous set I is provided.

— trans_iter \
trans.parsy

dd ¢ rng iter
zt=powerset{tuple<given (Hot"),
translate_def (iter?! dd) component>)

Iteration definitions will be translated into sequences In Z, seq e
are really functions from the natural numbers to the type of the
elements of the sequence. So the Z type for an iteration is a powerset type
of a tuple (sequences are just functions and functions are really just sets
of pairs) The first part of the tuple type 1s the natural numbers (the
domain of the sequence), and the second part is the type of the iterated
component (the range of the sequence)

— trans.sel

trans_pars

dd ¢ rng sel

zt = freetype (ft)
chere

ft : Fq branch

op : [y identifier

ft = {o:op;ty:tyoe
| ty ¢ translate.def ((sel” dd).coaponents)
~ (o0,ty) ¢ in-bronch

I
| 2ft = Sop = 3(sel? dd).components
I . constructed(o,ty))

A selection definition will be translated into a Z free type. Thus the Z type
generated is a free type, and it has the same number of branches as
there are components in the selection. Each branch is constructed from
an operation (the name of the constructor function), and the type of one
of the selection components. All the branches generated are complicated
branches. If, by later examination, it was realised that the type of a
selection component contained only one element, then the complicated
branch generated for that element could be replaced by a simple branch
(the constructor function would, 1n effect, be the 1dentity function).

| noke_def : Fy definition -» definition

YV defs : [y definition; def : definition
+ def = noke.def defs ¢m
tdefs = 1 A (def} = defs
v %defs > 1 A def =« comp ¢d
where
ed : coap.def

l cd.conponents = defs

A preliminary function is introduced before we speafy the translation of
a data store. This function takes a set of definitions and, if the set has
more than one element, it generates a new composition definition with
components being those in the original set. The purpose of this is to
allow the key and the rest of the elements of a data store to be treated
exactly the same as composition defimtions for the purpose of

13

|

C e e

generating Z schemas and types from them. For example, in the
example gven in section 2 above of a data store, the components other
than the key (Name and Amount) will be grouped together into one
composition definition, and the rules for translating composition
definitions into Z applied to generate the schema Account Details.

~— trans_ds]
trans_pars

dd ¢ rng ds

2t = scheno.type (sig)
vhere

sig : signoture

i+ identifier

pt : type

sig = { dec (i, pouverset pt) }
2((ds? dd).rest) = 0
~ pt = translate_def(aake_def((ds? dd).key))
2((ds" dd).rest) > 0
~ pt = tuple
< translote_def(make_def{(ds? dd).key)),
tronslate_def(noke_def((ds™ dd).rest)) >

Data store definitions will also be translated into Z schemas, so the 2
type produced 1s a schema type. As in the final example 1n section 2
above, the signature of the schema contamns just a function, mapping
the key of the data store to the rest of the components, unless there are
no other components in which case the signature contains just a set of
the key elements.

— trans.null ————

{rens_pars

dd « rng null
zt = given (null? dd)

The final defimtion is the null definition This gves nise to a Z gven set,
with name the same as the definition

3]

e e e e

Yirans.pars « zt = tronslote_def dd <= trans_coop +
trans_iter + trons_sel « trans.ds + trons.null

All these parts are brought together to define the function.

We can now define the function which translates each data dictionary
entry into its equivalent Z construct(s).

translote_entry : datao.dict_entry — IF z_elenent

As for the previous case this translation function will be defined in
parts.

— trans.entry.pars ———
dde : data.dict_entry
ze : F z.element

(~ trons_entry_conp d
trens_entry.pars

dde def ¢ rng conp
ze = { ber s}
vhere

s : scheno

s n = dde nane
s.pred = enpty
3.3ig = scheno_type’ (translate_def dde.def)

The Z schema gencrated for a composition definition uses the name of
the data dictionary entry as its name, and has an empty predicate. Any
predicgtcs constraimng the values of the entry could be added later if
desired.

[ol

e

ey

— -

~ trons.entry.iter
trans_entry_pars

dde.def ¢ rng iter
ze = {syn.def (dde.name,
translate_def (iter? dde.def).component),
bounds (dde.name, (iter? dde.def).lower,
(iter? dde.def).upper))

An iteration gives rise to two Z constructs, One is the syntactic definition
which defines the sequence of the type of the iterated component, and the
other is a predicate which constrains the size of the sequence,

— trans.entry.sel \
trens.entry-pars t

dde.def ¢ rng sel

ze = { free_type ftd }
vhere

| ftd 1 free_type.def

f
| ftd.n = dde.naae
‘ ftd.branches = freetype? (translote_def dde.def)

Selections give rise to a Z free type. Most of the work in generating this
free type has been done by the translate_def function, which

generated all the branches of the free type. All that is done here is to give
the free type an appropriate name.

Data stores potentially pive nse to three schemas, one for the data store
itself, one for the key, and one for the rest of the components of the store.
Schemace are only generated for the last two of these if they contain more
than one element.

— trans.entry_ds.i y
dde : data_dict.entry; others : F z_element

2(ds" dde.def) . key = 1 A ®(ds™" dde.def).rest § 1
others = {)

16

e~

If both the key contains only one element and the rest of the components
contains at most one, then no extra Z element is generated.

(— trans-entry.ds_2
dde : data_dict.entry
others : F z.elenent

®(dst dde.def).key = 1 A 3(ds?! dde.def).rest > 1
others = { box (t) }

vhere

I t : schema; tn : identifier

1

t.n = tn A type.of tn = schema_type t,sig
t.pred = enmpty
t.sig = achenma-type"

translote_def (make_def (ds' dde.def).rest)

If the key has only one element but the rest of the components has more
than one, then one schema is generated to represent the type of the rest
of the components. This schema has a suitable name, an empty
predicate, and a signature constructed by translating the composition
definition made from the rest of the components into a Z schema type.

— trans_entry.ds_3
dde : dota.dict_entry
others : F z2.eleaent

£(ds? dde def) . key > 1 ~ =(ds' dde.def).rest § 1
others = { box (t) }

where

I t : schena; tn : identifier

|

I t.n » tn A type_of tn = schema.type t.sig

| t.pred = enpty

I t.sig » schema.type”

I translote_def (make.def (ds?! dde.def).key)

17

e e o g

Similarly, if the key has more that one element but the rest of the
components has either none or one, then one schema is generated to
represent the type of the key. Again this schema has a suitable name, an
empty predicate, and a signature constructed by translating the
composition definition made from the key into a Z schema type.

— trans_entry.ds_4
dde : data.dict_entry
others : IF z_element

3(ds? dde.def).key > 1 A =(ds?! dde.def).rest > 1
others = { box (1), box (u) }

vhere

t,u : scheno; tn, un : identifier

t.n = tn A type.of tn = achema_type t.sig
t.pred = enptly
t.sig = schema_type”’

translote_def (maoke_def (ds' dde.def).key)
u.n = un A type_of un = achema.type u.sig
u.pred = enpty
u.sig = schena_type!

trenslate_def (make-def (ds' dde.def).rest)

If both the hey and the rest of the components have more than one
elements, then two schemas are generated, one to represent the type of
the key and the other to represent the type of the rest of the components.
These schemas are constructed in the same way as before.

a4

— trons_entry.ds

trans_entry.pars

dde.def ¢ rng ds ~ ze = { box s } u others
wvhere

s : schena; others : IF z_eleaent

s.n = dde.nane A s.pred = eppty
s.sig = schena.type? (translate_def dde.def)

transoentry~ds.1 + trans.entry_ds.2 + trans_entry.ds.3
v trans_entry.ds.4

Finally, the schema representing the data store aitself 1s generated, with
the same name as the data dictionary entry, and with an empty
predicate. The other Z schemas generated, where needed, for the key
and the rest of the components of the data store, are combined with the
schema representing the data store to give the total set of Z elements
produced from a data stor2 defimition

— traons_entry_null ——————y
transoentry.pars

dde.def ¢ rng null
ze = { given_set dde name }

The last part of the function generates a Z gaven set for all those data
dictionary entries which just have descriptions,

Virans_entry_pars . ze = translate.entry dde &=
trans_entry.comp v trans_entry.iter « trans.entry.sel
v trans_entry-ds v trans.entry-null

All these parts are brought together to define the function

transiate_d_d : data_dictionary — z_specification

Vdd dato_dictionory,zs z_specification »
zs = U tronsiatecentry § rng dd)

|
|
|

prrerereap—ay

We can now translate the whole data dictionary mnto a Z specification by
simply applying the translate entry function to each entry in the data
dictionary.

4.Conclusions

The Z specification generated from a data flow diagram using the rules
presented in {1) is an outline only, In particular, no informaticn about
the type (composition) of the data flowing around the system is present.
The formal translation presented in this report fills that gap by using
the data dictionary which accompanies each data flow diagram to
generate type information automatically. The Z speafication generated
from the diagram and dictionary together iz a fuller, more useful
specification.

In addition, a data flow diagram says nothing sbout the content of each
data store on the diagram, whereas the data dictionary contains an
entry for each describing the data held. Thus the Z schema generated
from the diagram for each data store, which 1s in effect an empty
schema box, should be replaced by the schema generated from the data
dictionary description. Again, this will lead to a more useful 2
specification being produced.

The annex to this report combines both translations into one formal
translation from the diagram and dictionary together into a single Z
specification.

Thus translations have been developed which formahse both data flow
diagrams and their accompanying data dictionary, and which enable a
useful Z specification to be generated automatically from them.
However, the Z speafication does not capture the commumcatior
aspects of the data flow diagram very well, so 1s still hmted, espeaially
when the data flow diagram contains mainly communications between
processes directly and not via data stores In order to overcome this
deficiency and enable communication aspects to be reasoned about, a
translation from data flow diagrams into Hoare's CSP (Commumcating
Sequential Processes) has also been developed, and 1s presented in [5]

References

M

{2)

3]
4]

[5)

G P Randell, Translating Data Flow Dragrams in.o 2 (and vice
versa), RSRE Report 90019, October 1990

C T Sennett, Review of Type Checking and Scope Rules of the
Speafication Language Z, RSRE Report 87017, 1987

G P Randell, ZADOK User Guide, RSRE Memorandum 4356, 1990

P T Ward & S J Mellor, Structured Development for Real-Tame
Systems, Volume 1: Introduction and Tools, Yourdon Press, 1985

G P Randell, Data Flow Diagrams and CSP, RSRE Report (n
preparation), 1992

2!

INTENTIONALLY BLANK

e

Annex - Translating Data Flow Diagrams into Z

Alntroduction

The purpose of this annex is to bring together an updated version of the
translation from data flow diagrams into Z originally presented in [1)
and the translation presented in the main part of this report to
automatically generate a more useful Z specification. The same strategy
is adopted, in that first a specification of data flow diagrams is given,
then a speafication of the relevant parts of Z, and finally the translation
(meaning) function,

The specification of Z needed for this translation is the same as that
given in section 3.2 of the main part of this report, and will not be
repeated in this annex. The translation rules presented make use of the
data dictionary to Z translation rules from section 3.3.

Specificati : Diagrams

The interpretation put on a data flow diagram by this formalization 1s
that it represents operations being carned out on a state. The state 1s
represented by the data stores, and the operations by the processes. The
external entities just provide or receive data.

The different elements of a data flow diagram, namely external entities,
processes and data stores, are specified first. The data flows between
them are then speafied as constraints on the set of diagram elements
that make up a given diagram,

— externgl_entity —————

I names : IF identifier
L)

The relevant part of an external entity, from the point of view of this
translation, 1s the data which 1t sends to and receives from the system.
The data moving around the system is shown by the names on the data
flows. These names are modelled as simple 1dentifiers.

Each process on a data flow diagram nputs data, transforms or
manipulates 1t, and produces outputs.

[~ process g
| inputs, outputs : F identifier
| reads, writes : IF identifier
L

process.name : seq Char

Inputs and outputs come from or go to other processes or external
entities Communications with data stores are treated as reads or writes
of the state data held in the store (a flow from a process to a data store
being a write, and the reverse direction a read). The inputs, outputs,
reads and writes correspond to the names on the appropriate data flows.
Processes also have names, which are intended to indicate the function
that the process performs.

Data stores represent the state of the system, upon which processes act
by reading from or writing to them.

— datastore 3
reads, vwrites : IF identifier

store.nane : seq Char
|)

Reads from and writes to a data store correspond to the names on the
flows to and from processes, respectively, Data stores also have names.
The contents of a data store do not appear on a data flow diagram, so no
mention of contents appears in this specification.

DFD.elenent ::i= ext ¢ external_entity >
| proc ¢ process > store ¢ dotastore >

The three schemas external_entity, process and datestore
represent the three possible types of data flow diagram element. In
addition to diagram elements, a data flow diagram also contains data
flows

— data_flow s
origin, dest : DFD.element
label : identifier

origin = dest
origin ¢ rng proc v dest ¢ rng proc

)

Each data flow has an ongin and a destination, both of which are
diagram elements. Each is also labelied with the name of the data which
flows along it. A data flow cannot be circular, in that it cannot return to
its own origin, and it must have a process as either its origin or
destination (or both). This prevents external entities having direct access
to state data (except via processes to read or write that data), and also
prevents a flow between two data stores, a5 data stores are passive.

A well-formed data flow diagram consists of a collection of diagram
elements, connected by switable data flows. The first check 15 on the
connectedness of the diagram

e oy

— Connected
elenents : I DFD_elenent
flows : F dotao_flous

Ye:elenents - (3f:flows . ¢ = f.origin v e » f.dest)
Vi:flows « (f.origin ¢ elenents ~ f.dest ¢ elenents)

The first predicate says that, for each element (external entity, process
or data store), there must be a data flow either from it or to it (or both).
This is to ensure that no element is "orphaned”. The second says that all
flows must be connected to elements in the diagram. Further
constraints could be added, if required, to ensure that there were no
sources or sinks of data on the diagram, or that the diagram was
completely connected in that it could not be split into two groups of

elements, with no data flows between any two elements from the
different groups.

There are also checks on a data flow diagram to ensure that the
representation in terms of elements and data flows, as in the Z

specification above, is consistent with the diagram. The first check 15 on
external entities,

— External.entities_ok
elenents : IF DFD_elenent
flows : FF dato_flows

Ve:elenents; ex:external_entity | e = ext ex .
¢x naney = (f:!lowsle-f,origm v exf.dest . f, lcbel}

This check ensures that the names recorded for each entity correspond
to the names on the data flows to and from that entity

The second check is on processes

b

- e -

— Processes.ok
elenents : F DFD.elenent
flovs : F data_flows

Ve:elenents; p:process [e = proc p-

p.inputs = (f:{lowslf.origin ¢ (rng ext u rng proc) A
f.dest = e . {.label}

p.outputs = (f:flouslf.origin-c A f.dest ¢ (rng ext v
rng proc) « {.label)

p.reads = (f:flowslf.origin ¢ rng store A f.destme
- f.1abel}

p.orites = (f:flowslf.origin-e ~ f.dest ¢ rng store
+ {.label}

This schema says four things First, that the inputs to a process
correspond to the names on the data flows to that process from either
external entities or other processes, Secondly, that the outputs from a
process correspond to the naines on the data flows from that process to
either external entities or other processes, Thirdly, that the "reads” a
process performs corresponds to the names on the data flows from data
stores to that process. And, fourthly, that the "writes” a process
performs correspond to the names on the data flows from that process to
data stores

The third check 1s on data stores

— Dotaestores_ok —_—
elenents : [F DFD_elenent
flows : I dota_flows

Ve:elenents; d:datastore I e = store d.

d.urites = (f:flousI! origin ¢ rng proc A f.dest=e
+ f.label}

d.reads = ({:!lowslf.omgin-e ~ f.dest ¢ rng proc
. {.label}

This check ensures that the data wnitten to a data store corresponds to
the names on the data flows from processes to that data store, and that
the data read from a data store corresponds to the names of the data
flows to processes from that data store

[—

Y

— DFD
elenents : [DFD_elesent
flows : F data~flows

Connected ~ External_entities.ok A Processes_ok -
Datastores_ok

A valid data flow diagram passes all the checks.

A3 The Specification of the Translation Rul
The translation takes a data flow diagram and its accompanying data
dictionary and produces a Z specification. The types of each data item
are found from the data dictionary, as are the data store schemas. The
diagram gives rise to one operation schema for each process.

We first need to relate data flow diagrams to data dictionaries.

appropriate : DFD e data.dictionary

{ds:dfd.elements|ds ¢ rng store - (store? ds).store_nane)

1
i
l Vdfd.0FD;dd:data_dictionary - appropriate(dfd,dd) <=
| v {df:dfd.flows - df.label} & don dd

A data flow dragram and a data dictionary are related if the data
dictionary contams an entry for every data flow (the labels on data flows
are the names of the data types) and every data store on the diagram.
The data dictionary must also contain entries for all definitions which
appear as components of an entry. Thus, for example, if a data flow label
"Address” had the following entry:

Address = HouseName + Number + Street + Town + County

then the data dictionary must also contain individual entries for
"HouseName", "Number”, "Street”, "Town" and "County". This
‘completeness' constraint 1s left unspeaified. It should be noted that af
the data dictionary is not complete then the Z speafication generated
will simply not type-check

The translation function for the diagram takes each process from a
particular diagram with 1ts associated data dictionary and produces an
appropnate Z schema which describes the effect the operation
represented by the process has on the state of the system. That is, 1t
descrbes which data stores are affected The data dictionary 1s used to
look up the label on each data flow to find the type of the data flowing

e ity

The signature of the schema generated from a process consists of just
those data stores which are read by the process but not altered in any

way, those data stores which the process does affect, and the inputs and
outputs.

generote_reads : (process x DFD x data_dictionory)
-+ signature

Vp:process;dfd:0FD;dd:data_dictionary
' proc p ¢ dfd.elenents A appropriate(dfd,dd)
. generate_reads (p,dfd,dd) =
{ df:dfd.flou:;ds:da(astorelslora ds ¢ dfd.elenents
~ df.dest=proc p ~ df.origin=store ds A
+(3df*:dfd. fiows - df'.origin=proc padf'.dest=store ds)
«inc (' 7 ds.store_naae))

Data stores which are read by the process but not altered in any way are
prefixed by ‘=" in the signature of the schema produced. These are found
by looking for data stores in the diagram from which there is a data flow
to the process in question, but for which there 1s no data flow in the

opposite direction. Each data store which 1s the destination of a data flow
1s changed.

generate_writes @ (process x DFD x data-dictionary)
-+ signature

Vpiprocess;dfd:DFD;dd:data_dictionary
proc p ¢ dfd.elements A appropriate(dfd,dd)
« generate_vrites (p,dfd,dd) =
{ df:dfd.flows; ds:datastore
| df.dest=store ds A df.origin=proc p A
store ds ¢ dfd,elements
«inc ("A" 7 ds.store.name) }

Those data stor. s which the process does affect are prefixed by “A™in the
signature of the generated schema

generate~ins : (process x OFD x dato.dictionary)
- signature

Vp:process;dfd:DFD;dd:do\a_dictionorg
l proc p ¢ dfd.eleaents A oppropriate(dfd,dd)
. generate_ins (p,dfd,dd) =
{i:p.inputs;ip:identifier
]last ip*'?'A typeof ip = translaote_def((dd 1).def)
. dec (ip,transtote.def (dd i).def))

Inputs are given an identifier ending with “?" in the signature in the
usual Z style The types of these are found by looking up the relevant
entry in the appropnate data dictionary.

generate~outs : (process x DFD x dato_dictionary)
-+ signature

Vp-process,dfd DFD;dd-date_dictionary
! proc p ¢ dfd elements A appropriate(dfd,dd)
. generate_outs (p,dfd,dd) =
{o:p outputs;op-identifier
Ilas\ op='l'A type.of op = translate_def((dd o) def)
+ dec (op,tronsiate_def (dd o) def)}

Sumlarly, outputs are given anidentifier ending wath '

trans.proc (processxDFDxdatacdict ionary) == z.eleaent

Yo process,dfd OFD,dd data.dictionary,ze z.elenent
proc p ¢ dfd elenents A oppropricte(dfd,dd)

« trans_proc (p,dfd,dd) = ze @= ze = box s

vhere

s : schena

s n = p.process_nane ~ s pred = enmpty
s 3ig = generate.reads (p,dfd,dd)
u generate_writes (p,dfd,dd)
u generate_ins (p,dfd,dd)
u generate_outs (p,dfd,dd)
Ty 31g = ¥(p tnputs u D outputs U p recds u p writes)

S UM AN

e -y

So the schema generated is given the same name as the process and the
empty predicate as information relating to the predicate part of the
schema does not appear on a data flow diagram nor in the data
dictionary. The four functions defined above are used to generate the
signature of the schema, which has one element for each read, write,
input and output.

translate : (DFD x dato_dictionary) -+ z.specification

V dfd:0FD; dd:datae.dictionary I appropriate(dfd,dd)
. translate (dfd,dd) = (p:processlproc p ¢ dfd.elenents
. trops.proc (p,dfd,dd)} v tronslote.d_d dd

To generate a Z specification from a data flow diagram and a data
dictionary together we sumply translate all the processes on the diagram
nto Z schemas and and put these together with all the type definitions
and data store defimtions generated from the data dictionary Note that
the diagram only provides the processes, that 1s the operations n the 2
specification, and that the data dictionary must be appropnate for the
diagram Thus the translations into Z from the data flow diagram and
the data dictionary cannot be inconsistent.

REPORT DOCUMENTATION PAGE DRIC Relerence NUmber {# KNOWN) ve..........ovvv. oo

Overall securlty classHication of sheet UNCLASSIF'ED et ea Lt e s e PN SRR R ORI OSSP AR SR IS $A09HERREIOR RS S eSS E TR RO BN S A bees e
(As far as possible this sheet should contain only unclassified information. It it is necessary to enter ciassified information, the fisld concemes

must be marked to indicate the classlfication, eg (R}, (C) or (S).

Originators Reference/Report No. Month Yvar
REPORT 92004 JANUARY 1992

Originators Name and Locaton
RSRE, ST ANDRWS ROAD
MALVERN, WORCS WRI1« 3PS

Monitoring Agency Name and Location

Title
IMPROVING THE TRANSLATION FROM DATA FLOW DIAGRAMS
INTO Z BY INCORPORATING THE DATA DICTIONARY

Report Security Classification Title Classification (U, R, C or S)
UNCLASSIFIED U

Foreign Language Title (in the case of translations)

Conference Details

Agency Reference Contract Number and Period

Project Number Other References)

Authors Pagination and Ref
RANDELL. G P 29

Atstract

Earlier wort developed formal fransiation rules for generating a specification in the formal language 2
trom a data flow diagram. The Z specification produced lacked detail, especially on the types of the
data flowinr; around the system. This report describes how to use information from a data dictionary to
improve the Z specification. Formal translation rules from a data dictionary to Z are presented.

Abstract Classi sation (U, R, C or §)
U

Descriptors

Distribution Statement (Enter any limitations on the distribution of the document)
UNLIMITED

TRV S S

INTENTIONALLY BLANK

