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1. INTRODUCTION

Regenerative liquid propellant gun (RLPG) technology is being considered in the

development of the next U.S. Army artillery weapon. Test fixtures in 30-mm, 105-mm, and

155-mm sizes have been built and fired. The data from all these fixtures have been

extensively analyzed to better understand the RLPG process (Coffee, Wren, and Morrison

1989. 1990; Wren, Coffee, and Morrison 1990; Coffee et al. 1991). Previous reports describe

the design of the Concept VIC gun fixtures and the modeling modifications pertinent to this

design. Agreement between the interior ballistics simulations and the experimental data is

quite good. Details of the lumped parameter gun code used for these past simulations have

been described in previous publications (Coffee 1985, 1988; Morrison and Coffee 1990).

A Concept VIC RLPG is shown in Figure 1. An external solid or liquid propellant igniter

venting into the combustion chamber initiates the ballistic cycle. The chamber pressure forces

both the control and injection pistons rearward. Liquid propellant is then injected from the
liquid reservoir through the annulus between the pistons into the combustion chamber where it

bums. The motion of the control piston is modulated by the damper assembly.

Almost all firings of liquid propellant guns have shown high frequency oscillations. As an

example, Figure 2 shows pressures from shot 65 of a first generation 155-mm Concept VIC
regenerative liquid propellant gun. The top figure shows the pressure measured at the

combustion chamber wall. The bottom figure (moved down 100 MPa) shows the pressure at

a gauge 1.7 m downbore. Note that large pressure oscillations persist for a long distance

down the gun tube.

Figure 3 shows the Fourier transforms of the two pressures over a time window from 14 to

15 ms. One would normally expect the frequencies to be near the natural acoustic

frequencies of the chamber. However, for such a large chamber, the acoustic frequencies are

small (first radial - 4.0 kHz). It is not dear what causes the high frequency oscillations.

The barrel gauge shows frequencies similar to the chamber gauge, although the higher

frequencies are missing. Pressure oscillations are driven by the energy released by the
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Figure 1. A Concept VIC Regenerative Uqiaud Propellant Gun.
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Figure 2. Experimental Result From a 155-mm VIC, Shot 65. Gauge E222 (top).
Barrel Gauge B3 (bottom).
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Figure 3. Fourier Transform of the Experimental Data From 14 to 15 ms. E222 (fine).
B3 (dot)

combustion process. Since most of the combustion Is expected to occur in the chamber

(based on analysis of experimental data), it is also unclear why there are still large magnitude

pressure oscillations so far downstream.

2. MODEL ASSUMPTIONS

To study these problems, a two-dimensional computational fluid dynamic model of the

combustion chamber/gun tube has been created. At the present, no attempt has been made

to model the liquid reservoir or the damper.

In the Concept VIC regenerative liquid, the propellant is initially behind two p~istons. The

inner or control piston moves first, opening up an annular vent The outer or injection piston

then slightly trails the inner piston. Propellant is injected Into the combustion chamber. Most

of the combustion takes place in the combustion chamber. The gas then flows into the gun

tube. There is a large area change from the chamber to the tube. In the 30-mm and 105-mm

fixtures, there is a sharp comer. In the 155-mm fixtures, there is a taper from the chamber to

the gun tube.

3
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In the two-dimensional model, the combustion chamber is idealized as a cylinder. The left

wall is allowed to move in an arbitrary fashion, roughly mimicking the motion of the pistons

that inject liquid into the chamber. The grid is attached to the left wall and stretches as the

wall moves. The individual grid points are moved so as to keep the grid uniform in the axial

direction. There is a circular hole in the center of the right-hand wall corresponding to the

entrance to the gun tube.

The injection process is simplified. Liquid droplets of a specified size are injected at a

specified rate through an annulus in the left wall. The size of the annulus may vary with time.

Infinite drag is assumed, so the gas and liquid at a given point have the same velocity, and

only one set of momentum equations is required. The droplets then burn and release hot gas,

according to a pressure dependent burning rate.

The chamber may be run in isolation, with exit conditions specified at the gun tube

entrance. However, a gun tube model is available. The gun tube is also considered to be a

cylinder, with the projectile at the right end. The standard equations of motion for the

projectile are implemented. As the projectile moves, the grid stretches. Since the gun tube

length increases dramatically during the course of the firing cycle, additional grid points are

also added as the projectile moves. Values on the new grid are found by interpolation.

One option allows the use of the output from the lumped parameter gun code (Coffee

1985, 1988) as an input into the two-dimensional code. That is, the velocity of the left wall

(piston velocity), the injector area, the propellant injection rate, and the injected droplet size

are all read in as a function of time from the lumped parameter code output. This allows the

two-dimensional code to mimic a gun firing cycle. In addition, a primer model is required.

This causes hot gas to be injected through an annulus in the right-hand wall of the chamber at

a specified rate at the start of the integration.

3. NUMERICAL PROCEDURE

An orthogonal grid is set up in the combustion chamber. This divides the chamber into

annular control volumes. The scalar quantities (pressure, temperature, and density) are

assumed to be uniform within a control volume. The axial and radial velocities are defined on

4



the vertices of the control volumes. The position of the vertices may be arbitrarily specified as

a function of time. This type of mesh is called an arbitrary Lagrangian-Eulerian (ALE) mesh

(Hirt, Amsden, and Cook 1974; Cloutman et al. 1982; Amsden et a]. 1985) and is useful for

representing moving boundaries. In this case, the vertices only move axially with the left wall,

and the procedure is somewhat simplified from a general ALE formulation. Tue governing

equations are cast in integral form. The procedure is inherently conservative. That is, if

mass, momentum, or energy leaves one control volume through a boundary, it automatically

enters the neighboring control volume.

An explicit numerical integration scheme is used. Implicit methods improve the stability of

the integration and allow larger time steps to be used. However, the purpose here is to

actually track pressure waves. This implies that very small time steps must be taken to

accurately resolve the motion of the pressure waves. Therefore, the additional overhead of an

implicit method is not useful.

Turbulent transport processes are described by a k-c turbulence model (Jones and

Launder 1972; Jones and Whitelaw 1982). This Introduces two new partial differential

equations for the turbulent kinetic energy and the dissipation rate. The turbulent viscosity is

computed from these quantities. There are much simpler turbulence models. However, the

k-c model is the simplest model that allows for transient effects. That is, the turbulent

viscosity can start out negligibly small and grow during the firing cycle. More complicated

Reynold's stress models are judged not to be worth the additional effect. All of the turbulence

models involve empirical parameters that must be set by comparison with experiment. Since

these parameters have been chosen based on incompressible flow experiments near

atmospheric pressure, extrapolating to gun conditions is only an approximation in any case.

Physically, the gas velocity at the wall should exactly match the wall velocity (no slip

condition). The flow very near to the wall is laminar. Further away from the wall, the flow will

become turbulent. But there will be a boundary layer where the flow is primarily parallel to the

wall. Particularly for the large pressure gradients in a gun simulation, boundary layers at the

walls will be very thin. It is impractical to use enough grid points to actually resolve the

boundary layers. Boundary layer theory (law of the wall) is used to set the boundary

conditions (Bradshaw 1978). That is, the expected velocity at the edge of the boundary layer
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is used as the wall velocity in the code. Much of the turbulence is generated near the wall,

and this can also be computed using boundary layer theory.

3.1 Governing Equations - Laminar Flow. The governing equations are given In Cartesian

coordinates. While cylindrical coordinates might seem more appropriate for the problems of
Interest, it Is more convenient to consider the geometry when the equations are recast into
finite volume form. The continuity equation for two dimensions is (Bird, Stewart, and Ughtfoot

1960)

ap/at + a(p v,)/ax + a(p v)/ay - 0 . (1)

Now consider some volume in three-dimensional space. By the divergence theorem, the

above equation can be written as

aiatfVp d v P (p v,)Iax + a(p v)/ay] dV

-.- (p vI + p vI)ndS.

The first two integrals are volume integrals. The last integral is a surface integral. The

vectors I and J are the unit vectors in the x and y direction, and n is the unit outward normal
vector to the surface. So any change in the mass in the control volume is due to mass flux

across a boundary.

The energy equation can be written as (Bird, Stewart, and Ughtfoot 1960)

p ciaTlIot - -p cvva Pax - p c ,vyTlaMy

- T(ap/aT),(avlax + av/ay).

The viscous heating term, which is almost always small, is eliminated. The thermal

conductivity term is also not included. For the problems of interest, the temperature is fairly
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constant, and the thermal conductivity term is much smaller than the convection terms. For

the Noble-Abel equation, the derivative of p with respect to T with the density constant is just

pressure over temperature. Making this substitution and dividing by the specific heat,

p paTIat - - p va aTlax - p v,,a Pay

- p/c,(Sv,1ax + av/Iay).

Using the continuity equation, this can be written as

a(p T)lt - -a(p v, T) l ax - a(p v7T) l ay

-p/c'(av/ax + av7 /y). (2)

The divergence theorem is applied. The pressure is assumed to be constant in the control

volume and can be taken outside the integral. Then

a/atfv(p T) dV - -f.(p v, TI + p vT) ndS

- (p/c,)f (vI + vyJ)ndS.

The basic variable is the product of the mass and the temperature. This can, as before, be

changed by convection (first right-hand term). Hot or cold gas can enter through a boundary.

The temperature can also be changed through work (second right-hand term). Note that in

the last term the pressure is not evaluated at the boundary but is the pressure in the control

volume.

The momentum equation in the axial direction is (Bird, Stewart, and Ughtfoot 1960)

p a v,/ t - - p vv,/ax - p v7av /ay - aplax

-cx,1ax - a"Cyz1ay.
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Using the continuity equation, this can be rewritten as

a( 't__(PV ,2)Iat._ -a(pv)play _ aplaX

- azjrIaX - ya.

For a Newtonian fluid, the shear stresses can be written as

19= -4v,x + 2/3LvyIay

aY -43g.avThy + V/3ga~vIax

aTY-'y - -;~V/Y+ ya)

so

a(P~ V -Ia a(PV,)IaX _ a(PV'V7 )/ay _-pa

" alax(4I3galVIax - 2/3gLav,/y)

" M/y(gavIay + P.av,,Ix). (3)

Applying the divergence theorem,

+ f[(4/s aviax - 213pgavIay)I

+ (gav'Iay + Igavlax)JIndS.
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Similarly, the momentum equation in the radial direction is

pav/at - - p v, av /ax - pv, av/ay - ap/ay

-at,,/ax - ak,,jay.

Using the continuity equation and replacing the shear stresses,

a (p vy)/a t - - a (p v'vY)/ax - a(p vy)/ay - ap/oy

+ aIax(gLav'ay + gavylIx)

+ a/ay(4/3 .avy/ay - 2/3p av,/ x). (4)

Applying the divergence theorem,

a/a tfv(pv,)dV. -f.(p y. v, I+ p v, v,1 + pi)ndS

+ f, [av'iay + gav,/ax) I

+ (4/3gav,/ay - 2/3 v,/ax) 1] ndS.

Values for the viscosity of the fluid are required. The liquid is assumed to have a negligible

effect on viscosity, and only the gas viscosity is computed. The most common propellants
used are LGP1845 and LGP1846 (Decker et a. 1987). For simplicity, the assumption is

made that LGP1845 goes completely to the major species C02, N2, and H20 (no minor

species). The viscosity of these species as a function of temperature can be found using
Lennard-Jones (Reid and Sherwood 1966) (non-polar) or Stockmayer (Monchick and Mason

1981) (polar) parameters. For the mixture viscosity, the Wilke formula is used (Bird, Stewart,

and Ughtfoot 1960). This formulation is for the low density limit, and ignores the pressure

dependence of the viscosity. Fortunately, for high temperatures the pressure dependence is

very small (Bird, Stewart, and Lightfoot 1960). Finally, a least-squares fit of the viscosity is

9



made between 300 K and 3,000 K, covering the temperature range of interest. The values for

LGP1845 and LGP1846 are almost the same. The expression used is

. - 9.53 10- T .

3.2 Grid. Figure 4 shows the grid used in the chamber. The lower boundary is the center

line of the chamber, and the upper boundary Is the wall. The solid lines represent the vector

grid. The grid is labeled from 1 to nx in the axial direction and from 1 to nr in the radial

direction. The grid points are evenly spaced. The coordinates of the point labeled (i,j) are

denoted by [xv(i),yvA. The axial velocity v(i,j) and the radial velocity v(i,j) are defined at the

point [xv(i),yv(j)].

The vector grid splits the chamber into annular scalar control volumes. The scalar grid is

defined by the dotted lines. The scalar grid is labeled from I to nx-1 in the axial direction and

from I to nr-1 in the radial direction. The scalar grid coordinates are defined by

xs(i)= [xv(i) + xv(i+l)]/2 ys(j)= [yv(j) + yv(j+1)]/2.

The scalar quantities are assumed to be constant within each scalar volume (between

solid lines). There is a discontinuity in the scalar quantities at each solid line. Each scalar
volume has a volume (V), divided up into a liquid volume (VL) and a gas volume (VG).

Similarly, each volume has a mass (M), divided into a liquid mass (ML) and a gas mass (MG.
The gas volume fraction e = VG/V. The gas has a temperature (T). The liquid is assumed to

be isothermal, and heat transfer to the liquid is ignored. The gas has density PG, and the

liquid density is PL. The liquid is in the form of drops with a Sauter mean diameter (d) and a

total surface area (S). The pressure (p) is assumed to be the same for both the gas and the

liquid.

The dotted lines split the chamber into vector control volumes. The velocities are

assumed to be the same within each vector control volume, and there is a jump in velocity at

the dotted lines. Note that each vector control volume is made up of parts of four scalar

control volumes.
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Figure 4. Combustion Chamber Grid.

There are additional scalar control volumes around the physical chamber to assist in

setting the boundary conditions (see below).

3.3 Governing Eguations - Combustion. The code takes a time step in two stages. First,

a Lagrangian calculation is made. That is, the grid is assumed to move with the fluid. The

advection terms are considered in the second stage, and the grid is returned to the desired

location.

Consider a scalar control volume (V). Since all four vertices can have different velocities,

the Lagrangian volume (VI) is no longer defined by a simple rectangle rotated about the

center line. A general formula for a quadrilateral of rotation is required. Consider first one line

segment from (x,,) to (x2,y2). The volume under this line segment after it is rotated about the

center line is given by

2 2

(,r/3)(x 2-x)MY, +YI Y2 +Y2
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To find the volume of the entire figure, apply this formula to the four line segments going in

the clockwise direction. Bottom boundaries will then generate a negative volume, and the

total signed volume will be correct.

For the Lagranglan portion of the integration, there Is no motion across the boundaries.

Each scalar control volumes can then be integrated using the ordinary differential equations

derived for lumped parameter models (Gough 1983; Coffee 1985, 1988), with the added

simplification that there are no inflow or outflow terms.

In the scalar control volumes, the densities are given by

pL = ML/V, and P = MG/VG

The density of the mixture is given by

p = MIV = (1 -E) PL + G PG,

where e. - V/V. The Noble-Abel equation of state is used for the gas

P-PGR, T/(1 -bpG),

where R, is the specific gas constant and b is the covolume. The liquid equation of state is

p . (K1IK2) [pLIp."K _1i1

where K, is the adiabatic bulk modulus at zero pressure, K, is the derivative of the bulk

modulus with respect to pressure, and p, is the density at zero pressure. The pressure is

assumed to be the same in both the liquid and the gas. The speed of sound in the liquid is

given by

12



c,. -go(KL + K P)/PL ,

where g, is a conversion constant, and in the gas by

CO-,gYp/[p 0 (1 -bP)].

The speed of sound in the mixture (assumed to be homogeneous) is

c - (1/p){1/[EG/(pocGC) + (1 - £a)/(PLCL2 )]}

The enthalpy of the liquid is

hL - eL + P/PL,

where the constant eL is the chemical energy of the liquid, and the enthalpy of the gas is

ho - cp T+ bp,

where c. is the specific heat at constant pressure.

Now the governing ordinary differential equations can be written. Let m be the combustion

rate (g/s). Then

dML/dt= -nh

and

dM/dt -h .

The total mass M does not change. The rate of change of the volume is given by

dV/dt = (V' - V)/dt,

13



where dt is the time step. The rate of change of the pressure is

dpldt - (p C2/g. V) (dV1dt -rp+ rhp

+ rh g,, (hi, - ha) (y - 1I/[pG cG2(1 - bopa)].

The liquid density is found from the equation of state. The mixture density p = M/V'. The

new liquid volume is V = ML/PL, and the new gas volume is V. = V I - VL . The new gas

density is then PG = MGIVO. The gas temperature is found from the equation of state.

The pressure equation is the only equation that is integrated implicitly. Because of the

large velocities in the system, the volume can change noticeably In a single time step. The

explicit integration may not be accurate enough. To advance from time t, to time tw,,, the

derivative of pressure is found using the known quantities at time t,. Then a first estimate of

the pressure at time t,,, is from the explicit equation

p,.,r - p, + (dp/d). d:t.

Then new values are found for the densities and sound speeds. The new Lagrangian volume

is used. The same values are used for the rate of volume change, the enthalpies, and the

combustion rate. Then the time derivative of pressure is found at the new time and

p=., - p, + 0.5 [ (dp/dt), + (dp/dt),,, ] dt.

This will converge after a couple of iterations.

To close the system, the rate Ih at which the liquid droplets are combusting must be

known. The rate of surface regression is assumed to be of the form Ap. The rate of

combustion is

rh PLSAp.
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In general, there will be different sized droplets in each control volume. In this code, only the

Sauter mean diameter is tracked. If all the drops are assumed to have the same diameter

(d), this Is the diameter that will preserve the surface area. For one droplet,

V, - x d3 / 6 and S = x d2.

So the total liquid surface is given by

S= 6 VL Id,

and the total number of drops is

N- VL/I - VL 6 / X d 3 .

The quantity of interest is the surface area, S. This can also be written as

Sm N% d2.

Then

dS/dt, N 2 d dd/dt

- Nx2d(-2Aps)

- - (VL 6/ d3 ) x 2 d ( 2 f'fn/ PL S)

-- VL(24/d2)(fn/PL)(d/6V

-- 4M' /dpL.

The new Sauter mean diameter can then be found from the surface area.

If there is no influx or outflux, mass and energy conservation should hold. The energy in a

scalar control volume is given by

I - ML el + Mc , T+ Mv/2g.,

15



where v is the average magnitude of the velocity in the control volume. The last term is, in

practice, found in four parts. The magnitude of the velocity at each vertex of the control

volume is found, and this is multiplied by the appropriate mass.

3.4 Time Step. Now we can consider the procedure for advancing a time step. Consider

the axial velocity equation. The integration is performed over a vector control volume

(bounded by dotted lines). The velocity v,(ij) is assumed constant over the control volume,

so it can be taken outside the integral. The density can take on four different values, since

the vector control volume is made up of parts of four scalar control volumes. Let V,(j) be half

the volume of the lower section of the scalar volume V4j) and VUj) be half the volume of the

upper half. Then, if Mv is the mass in the vector control volume,

Mv, - fvP dV=- p(i) * VV (j) + p(i-l1j)*,V (1)

+ p(iQ-I )* .U - 1 ) + pUi-lI j-1 )VXj- 1 )

The advection terms (first two terms on the right) disappear for the Lagrangian step. The

momentum equations have actually been given for a fixed grid. In general, the advection

terms are given by the momentum p v, times the velocity across the control volume boundary.

For a Eulerian calculation (fixed grid), the velocity across the axial boundaries is v,, and the

velocity across the radial boundaries is v.. For a Lagrangian calculation, there is no flow

across the boundary.

There are pressure terms on the right and left boundaries. Let A,) be the lower axial

area of a scalar control volume and AU~) be the upper area. Then

a(Mvv,)(i)/at - p(i-1,j)*A1 (j) + p(i-1,j-1 )*A.(j-1 )

- p(ij)*A,(j) - p(i,j-1 )-A.(j-1 ) +
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The viscosity term is more complicated. Let

dvl,(I,J) 8 avl/ax on left boundary of the vector volume (ij)

- - v,(I- 1,j)]/[xv(i..1 )];

dvly(i,j) - avyIay on left boundary of the vector volume (i,j)

- 0.5[vY(i,j+ 1) - v,(i,j-1) + v (i- ,1+ 1)

- V(-,j1)]/[yV(j+l) yV(j1);

dvb.,(i,j) - avIax on bottom boundary of the vector volume (i,j)

- [v,(ij) - v(ij- 1 )]/[yv(j) - yv(j-1 )];

dvb,,(i,j) - avIax on bottom boundary of the vector volume (ij)

i0.5.[vY( i+ I j) - v(i-l,j) + v,(i+ l,j-1)

- v(i-l1,j- 1) ]/[xv(i/l I xv(i-1)]

The axial viscosity term becomes

a( MvV,) (Q~) / at . [43 dvl,, (Q~) -2/3 dvlYY (Q~)]

[p.(i-1,j)A,(j) + j.(i-1,j-1 )A.(j-1 )]

+ [4/3dvl,(i +1,j) - 2/3dVly(i +1,I)I

[ .(ij) A (j) + g(i,j-1 )A,(j-1)].
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There is an added complication in the radial viscosity term. On each boundary, we want the

viscosity term times the radial unit vector times the normal vector. But since the area of a

control volume increases in the radial direction, this term is not zero on the axial sides of the

control volume. Under the assumption that the viscosity term varies linearly from the bottom

to the top boundary, a little algebra shows that the total contribution is the difference

between the two sides times the area halfway from the bottom to the top side. Call this area

A,(j) (area in the middle of the vector control volume j or at the bottom of the scalar control

volume j). Then

a( MvV),)l = ... - [ dvb,,(i,j) + dvby(i,j) ] 0.5

[p.(i-1,j-1 ) + ;(i,j-1 )]A,(j)

+ [ dvby,(i,j + 1 ) + dvb, ( i, j + 1 )] 0.5

[ .(i -1 j) + .(iQ) ] A,(j + 1

For the radial momentum equation, we also need to define

dvl1(i,j) - a vl/ay on left boundary of the vector volume (i,j)

- O.5[v+(i,j 1) - v,(i,j-1) + v,(i-1,j+1)

- v,(i-l ,j-1)]I[yv(j+1 ) - yv(j-1 )];

dvlY,(i,j) - a v/ax on left boundary of the vector volume (ij)

- [vY(iQ) - vyUi-14) ]l[xv(i) - xv(i- 1 )]1;

dvbyy(i,j) a vay on bottom boundary of the vector volume (i,j)

. [vY(i,j) - v,( ij-1) ][yv(j) - yv(j-1 )];
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dvb,,(i,j) - a vxlx on bottom boundary of the vector volume (,j)

= 0.5 *[vx(i+ l,) - v(i-lj) + v,(i+ 1,j-1)

- v,(i-1,j- 1)P]([xv(i+) - xv(i-)].

)( MvVy)( i,j)/18t-0.5[p( i- l,j-1 ) + p(i,j-1I)

-p(1-lI.J) - p(iQ) ]A.( J - I)

-[dv (i j) + dvI, ( ij)]

[g (I-I1,J) A (j) + g (I-lI,j-1) A.(j- 1)

+ [dvl.(i+1,j) + dvl. ( i+1,j)]

g( Q.i) , (j) + IL( iQj- I ) A,,(j - 1)]

- [4/3 dvb,(ij) - 2/3 dvb,,,( i,j)] 0.5

[t,(i-1 ,j-1 ) + .(iQ- 1 )JA,(j)

+ [4/3 dvb,(i,j+ 1 ) - 2/3 dvb,(i,j+ 1 )J 0.5

[g(I-lj) + g(i,j)]A.(j+ 1 ).

,The new value of mass times velocity is found by taking the old value plus the time derivative

times the time step. The quantities MvV, and Mvv, are kept in vectors. The actual velocities v,

and vy are also updated at this time.

Next, consider the coordinates [x'(i), yvj)] of a vector grid point (intersection of solid

lines). Let xvl4i,j) and yvl~i,j) be the corresponding coordinates at the end of the Lagrangian

part of the time step (this grid is not orthogonal). Then

xvl(i,j) - xv(i) + v,(i,J)dt;

yvl(i,j) - yv(j) + vy(i,j) dt.
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The Lagrangian volume VI of the scalar control volumes can now be found (see Equation 5).

Then the equations in Section B can be applied, and all the scalar quantities can be updated.

It might be more consistent to use the velocities at the end of the last time step, rather

than the velocities calculated after the pressure step. However, the integration is more stable

using the updated velocities. The flow is kept current with the present pressures.

Next, the grid is updated. In general, the left wall of the combustion chamber is allowed to

move at an arbitrary speed, vIefL Then the grid velocity at the left vg(1) = vieft. The right wall

is kept fixed (vg(nx)= 0.0). The axial grid is kept evenly spaced, so the grid velocity is

assumed to be a linear function of position. The grid velocities at the other values are found

by interpolation. Then the new position of the axial vector grid is

xv(i) - xv(i) + vg(i) dt.

The radial grid positions are unchanged.

Now the advection terms for the scalar quantities can be found. Conceptually, the

boundaries of the Lagrangian control volumes are moved to the boundaries of the new control

volumes. The amount of material the boundary passes through is convected from one volume

to the next For instance, consider the left-hand boundary of the scalar control volume (ij).
Assume that both Lagrangian points are to the right of the final boundary points. Compute the

volume of the rectangle bounded by the points [xv(i), yv(j+1)], xv(i,j+ I), yv(i,j+ I), [xvl(i,j),

yvli,j)], and [xv(i), yvj)], integrating in this order. For the assumed case, this is a positive

number, which implies that the flow is from the previous control volume (i-1j) to the present

volume (ij). Upwind differencing is used, so the value of any quantity on the boundary is set

equal to the value in the volume (i-1,j). In this case, the upwind differencing is physically

correct, since quantities will be moved from the volume (i-lj) to the volume (ij). If, instead,

both Lagrangian points are to the left of the final grid boundary, the volume is negative.

Material will be convected from the volume (i,j) to the volume (i-1,j). Again, using upwind

differencing, the correct values will be used. The ambiguous case is when one Lagrangian

point is to the left of the boundary and the other point is to the right. Some material will be
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convected to the right and some material to the left. The computation above will give the

proper signed volume change for the volume (ij). However, upwind differencing is no longer

exactly correct. The upwind differencing is used because it Is stable even In the cases when

It Is not strictly correct, and for this formulation it is more often correct than other simple

differencing schemes.

Consider first the gas mass. Let / be the volume between the left boundary of the

Lagrangian volume and the left boundary of the final boundary. Then set

fluxl [M(i- 1 ,j) I V' (i- 1,J) ] VI(i,j) , if V(i,j) > 0

[M.(ij)IV(i,J)IVI(i,j), If V/(i,j) <0.

The flux through the other three boundaries is computed the same way. Then the new gas

mass is

MG(iJ) - M(iQ) + (fluxl + fluxr + fluxb + fluxt).

For the liquid mass, the analogous equations are

flux/ [ML(i-Ij)IV'(i-1 ij)]VI(i,j), if Vl(i,j)>O

[M,(i,j)/ V/ (i,j) I VI(i,j), if V(i,j)<O

and

ML(i,I) - ML(i,j) + (flux/ + fluxr + fluxb + fluxt).
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For the energy equation

fluxI - [M(i- I ,j) I V' (I - I ,j) ] T( - I ,j) Vl(i.j), If VI(i,j)>O

[ ML (ij) / V' (ij) ] (i,j) VI(iJ), If VI(i,j) <

and

(MOT)(ij) - (MaT)(i,j) + (fluxi + fluxr + fluxb + fluxt).

There Is also an equation for the surface area.

fluxi [S(i-1 ,j) V1 (i-1 .J) ] T(i- 1.J) V(i,j), If V(i,j) > 0

[S(i,)VI (,J) ] T(iJ) VI(iJ), If VI(i,j)<O

and

S(IJ) = 6(1,j) + (fluxi + fluxr + fluxb + fluxt).

A similar procedure Is used for the vector quantities. The vector control volumes are

bounded by the scalar points. The boundary locations of the vector control volumes are given

by

xsl(i,j) - [xvl(i,j+ 1) + xvl(i+ 1,j+ 1) + xvl(i+ 1,j) + xvl(i,j) ]/4

ysl(i,j) - [yvi(i,j+1) + yv/(i+1,j+ I ) + yvl(i+lj) + yvl(i,j)]/4

Let Vl(ij) now represent the volume change at the left boundary of the vector control volume

from the Lagrange to the final position. The density on the left boundary is approximated by

an area weighted average
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[A/i-IJ-1 + Ai (i-I,/)].)

For the axial velocity,

flux/ - pI(,j) v,(i- 1,j) VI, Vl(i,j)>O

plAiQ) v'(iQ) W, WI(iQ) < 0

and

(Mv v)(i,j) - (Mvv,)(i,j) + (fluxl + fluxr + fluxb + fluxt).

Similarly, the radial velocity is given by

flux! - pl(i,j) v(i-1 ,j) V/ V(i,j) > O

pl(l,j) vY(i,j) VI V(i,j) < 0

and

(Mv v)(i j) - (Mv V)(i,j) + (fluxl + fluxr + fluxb + fluxt).

The formulas need to be modified for the vector control volumes along the centerline. In

this case, the standard form of the vector control volume would extend below the centerline.

However, since a volume of rotation is being considered, this does not add anything to the

vector control volume. So for a velocity at the centerline, the vector control volume is

considered to be only the part above the centerline. So only the part actually in the physical

chamber Is considered. Special logic is then required for the change in volume. For
consistency, the vector control volumes along the top boundary are treated the same way.

That Is, the vector control volume does not extend past the physical boundary.

Most of the other quantities can now be calculated in a straightforward manner. The

exception is the pressure term. By assumption, the pressure in the new control volume (i,j) is
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uniform and equal for both the gas and the liquid. The new pressure is somewhere between

the pressure in the Lagrangian volume and the pressure(s) of the fluid convected into the final

scalar volume. But as the pressure changes, both the liquid and gas volumes change. The

constraint is

PL - Po . 0.0

From the gas and liquid equations of state

(K/K 2 )[(pL/p,) - 1 pR8 T/(1 - bpa) - 0

Rearranging, a function of the liquid volume can be defined

f(V) - (KIK 2)(V- VL - bMG)[(ML/p.)K2 - VK2I

- R.Mc T V" - .0

The equation is transcendental and is solved by the Newton-Raphson iteration. The derivative

f'V ) - -(K/IK 2 )[(ML/p,)' = - VK2)]

K,( V -VL-bMG) VL'K-

-R, M. TK, VL" '

and

VL . V-f (V)f' ( VL).

The time step is determined by the Courant-Friedrichs-Lewy condition (McBratney 1980), as

modified for compressible flow
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dt-dx/[c + v]

dt5dy/[c + v,]

That is, a signal cannot propagate farther than a cell length during one time step. The code

loops over all the scalar control volumes and finds the minimum dt by the above criteria. The

velocity in the cell is taken to be the average of the four corner velocities. The time step is

then multiplied by a user-supplied safety factor (usually 0.5). This is further modified so that

the output times are hit exactly.

3.5 Boundary Conditions. An extra set of scalar control volumes are placed around the
physical chamber. These volumes are the same size as the scalar control volumes just inside

the physical boundary, except at the top boundary.

Consider the case where the chamber is completely closed (no inflow or outflow). The
physically correct boundary condition on the walls is a no slip condition. That is, the velocities

on the boundary are zero. This is included as an option in the code.

For this case, consider a scalar control volume next to the physical boundary. To

integrate the scalar quantities, the four sets of velocities at the comers of the control volume

are required. These are known. Values for the four scalar control volumes adjacent to the

volume of interest are also required. This includes one scalar control volume outside the

physical chamber. However, there is no convection across the boundary. So while these

control volumes are put in to avoid having a special code for the boundaries, it is irrelevant

what values are assigned to the extra volumes. Consider the vector control volume nearest

the boundary. The values in the four control volumes that make up the vector control volume

as well as the eight velocities in a box around the point of interest are required. These are all

available.

At the centerline, the radial velocities must be zero, so there is no mass flow across the

centerline. The axial velocity under the boundary (j = 0) is given the same value as the axial
velocity over the boundary ( = 1). The radial velocity is reversed (flow up becomes flow

down).
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For the high pressures and velocities in a gun simulation, the boundary layers will be very

small, and it is impractical to resolve these in detail. Instead, a slip condition is normally used.

It Is assumed that the boundary layer is negligibly small compared to the grid spacing, and the

boundary layer is ignored. Instead, the tangential velocity is calculated using the standard set

of equations. The normal velocity is, of course, still zero. This has no effect on the scalar

quantities, since the flux through the boundary is still zero. However, the tangential velocities

at the boundaries must be calculated.

Consider a point on the top boundary. The scalar quantities just outside the boundary are

given the same values as the scalars just inside the boundary. However, the axial areas are

set to zero. Then the pressure equation can be used unchanged. To obtain the proper

velocity derivative terms, extrapolation conditions are used for the velocities -that is,

v,(i, nr+ 1 ) = v,(, nr) + v,(, nr) - v,(i, nr-1 )]

vy(i, nr+ 1 ) - v,(i, nr) + [v,(i, nr) - vy(i, nr-1 )]

On the right and left boundaries analogous conditions are used.

The code allows for injection of liquid through an annulus in the left boundary. The upper

and lower boundaries y, and y, are input, as well as the injection rate rhi, in gis, and the

injected droplet diameter d.,. The injection area is denoted by A,. Consider the scalar control

volumes which are totally or partially inside the injection annulus. The corresponding scalar

control volumes just to the left of the boundary are assumed to be pure liquid with the density

of the liquid just inside the boundary but made of droplets with the diameter d,. Pure liquid

cannot really be made up of droplets, but this is a way of simulating the assumption that the
liquid breaks up into droplets of the specified size as soon as it enters the chamber. Now

consider the vector points between y, and y,. Let r,,(j) be the ratio of the area of the left

boundary of the vector control volume that is in the injection annulus to the entire control

volume area. That is, the vector control volume might only be partially in the annulus. Then

v,(1 j) - vleft + r,,(j) (rh,,I A,(j)) I 0.5 [pt (1,j) + PL(1, 1 )]
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The other boundary quantities are found as before.

There Is a problem if the injection area is small compared to the grid. The amount of

liquid injected depends on the Lagrange volume computed. The Lagrange volume calculation

assumes that the gas velocity varies linearly from one vector grid point to the next. For the
Injection process, however, there is a physical boundary where the velocity should suddenly

change to zero. To obtain the proper injection rate even for a coarse grid, special logic is
used to compute the volume change over the injection area. The volume change at the left

boundary of a scalar control volume is the sum of the axial velocities at the boundary times

the appropriate vector areas times the time step. The injection area is allowed to vary with

time.

There is also a primer injection model. In the gun, the primer pressurizes the combustion

chamber to start the firing cycle. The actual primer is injected through a circular opening and

can only be modeled by a three-dimensional code. However, the details of the primer
injection are not of interest, and the requirement is just to bring the chamber up to about the

correct pressure. The model used in the lumped parameter code is extended to the present

case. The primer is assumed to inject a specified mass of hot gas M. uniformly over a time
period t.. The injection rate Is then q= Mplt. A top and bottom boundary in the right wall is

specified, and the injection area A. is calculated. Normally about 50% of the primer energy is
lost during the injection process. So an energy loss term fp is also input.

During the primer injection, the scalar control volumes outside of the injection area are

assumed to be pure gas. The density is more or less arbitrarily set to 0.2. The primer is
assumed to be the same material as the liquid propellant The temperature of the gas is the

energy term fp times the chemical energy of the propellant divided by the specified heat at
constant volume. Consider all the vector points in the annulus. Let rp be the ratio of the area

of the right boundary of the vector control volume that is in the injection annulus to the entire

control volume area. Then

v,(nx,j) a - rp(j) [rh.! AP(j) ]/ 0.5 [p 0 (nx,j) + p,(nx,j- 1)]

After the primer has been injected, this boundary is treated like a standard wall.
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Finally, there is the flow into the gun tube. This is a circular opening at the centerline of

the chamber. The gun tube must not overlap the primer injection annulus. The radial grid is

adjusted so that the top of the gun tube always coincides with a vector grid point. Since the

formulation of the equations does not depend on the radial grid being evenly spaced, this

does not cause any problems. The gun tube can be modeled in detail (see below), or this

can be viewed just as an outflow boundary.

If the detailed gun tube model is not used, the pressure pt just outside the chamber must

be specified. This is the pressure in the scalar control volumes just outside the chamber in

the tube region. The flow through the boundary is assumed to be isentropic. For a

Noble-Abel equation of state, the process equation is

p(1/p -b)y = constant.

Then the gas density can be found from the process equation and the gas temperature from

the equation of state. The mass of liquid just outside the chamber is assumed to bq the same

as the mass of liquid just inside the chamber. The liquid density is found from the liquid

equation of state. The velocity just outside the chamber is found by extrapolation.

There is a sharp comer at the top of the gun tube region. The top right comer of the

vector control volume for this point is not actually in the fluid. There is flow out of the

chamber through the bottom part of the vector volume, but the top part of tle vector volume

still includes the chamber wall. So the axial velocity at this comer is considered only to apply

to the bottom part of the vector volume. Similarly, the radial velocity only applies to the
left-hand part of the vector volume. Special logic is put into the integrator to handle this one

special case.

For some problems, there may be flow into the chamber. The above boundary conditions

are not consistent for inflow, since extrapolation should be done in the upwind direction.

Generally, the conditions outside the chamber are not known in detail. So to preserve

stability, back flow into the chamber is not allowed. It the flow reverses, the exit velocity is

arbitrarily set to zero.
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For guns, the flow out of the chamber will, in general, be subsonic. There is a test fixture

at Sandia Laboratories (see below) where the chamber empties into atmospheric pressure and
the flow Is choked. A burst disc prevents flow until the chamber is properly pressurized.

To model this case, the outflow is set to zero until the pressure at the right centerline goes

over the burst disc pressure. Then the assumption Is made that choked flow is

Instantaneously established.

For an ideal gas, there are algebraic formulas for choked flow (Fox and McDonald 1985).
Let M be the mach number of the gas on the centedine.

M - v,(nx- 1,1)/ c(nx- ,1)

The stagnation pressure, p, is the pressure of the gas if the velocity is isentropically reduced

to zero.

p, -p(nx - 1,1) [1 + ( - )M 2 / 2]' ' ( '') .

The critical pressure is the pressure at which the Mach number is unity.

pe - p0 [(¥* 1)/2](7 '(71.

For choked flow, the pressure at the throat is the critical pressure, and the velocity is the local

speed of sound. The stagnation enthalpy of the fluid is defined as

h. - h + v 212,

and this is constant throughout an adiabatic flow field.

For the present two-phase mixture, where the gas follows the Noble-Able equation of

state, an analytic solution is not possible. Instead, an iterative procedure is used. The initial

guess for the value of p, is found using the above ideal gas equations. The corresponding
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gas density is found from the process equation, and the gas temperature frorn the equation of

state. The mass fraction e. - MC!(MG + MJ is assumed to be the same as just inside the

chamber. The liquid density is found from the liquid equation of state. The enthalpy of the

fluid in the throat is given by

h,- (c.T. + bp,) eG + (eL * PIPLc)( 1 - e).

The throat velocity is found from the stagnation enthalpy equation. The throat speed of sound

is found from the usual equations. The difference between the speed of sound and the fluid
velocity is computed. If this is less than 10"7, the iteration is concluded. Otherwise, the critical

pressure Is modified by

p,- pC1 +(v - c,)/cc]

and the calculation is redone. Once the iteration concludes, the conditions outside the

chamber are set equal to the critical conditions, and the velocity at the exit is the speed of

sound at the critical conditions. However, in the code, the velocity acts on the fluid just inside

the chamber. So the critical sound speed is multiplied by the ratio of the critical density and

the density just inside the chamber. This gives the appropriate mass flow out (density times
velocity times area). For simplicity, the calculation is only done for the centerline values, and

the exit velocity is assumed to be uniform. The radial velocities at the exit are set to zero.
7

3.6 Combustion Rate. All the problems considered in this report involve LGP1846. The

surface regression rate has been measured as

1.64 p 0 < p < 60

by McBratney (1980, 1981). McBratney observed some indication of a slope break in the

burning rate above 60 MPa. More recent work by Oberie and Wren (1990) indicates a

regression rate of

0.000577 p-oo" 100 <p <200.
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In the code, a two-part burning rate is used, with the McBratney rate used under 67 MPa and

the Oberle and Wren rate above 67 MPa.

Due to the rapid burning rate, very high pressures can be generated near the injector. To

simplify the numerics, the burning rate is assumed to reach a maximum at 1,000 MPa. That

Is, for pressures above 1,000 MPa, the burning rate is set equal to the value at 1,000 MPa. In

actuality, the burning rate is expected to level off at some value, but the point where this will

happen is not known.

To set up acoustic pressure oscillations, there must be some liquid accumulation in the

chamber. Initial combustion generates a pressure wave. The pressure wave bounces off the

chamber wall and returns to the combustion region. The higher pressure increases the

combustion rate, which further increases the pressure. The pressure wave then becomes

steadily larger until nonlinear effects come into play. From studies of liquid propellant rockets,

it is known that acoustic oscillations can only be set up it the pressure exponent of the

regression rate is large enough (generally greater than one) (Harrje 1972). In fact, if the

McBratney rate alone is used, the code will not generate pressure waves under any

circumstances. For infinitesimal pressure waves, the natural frequencies of a chamber can be

solved for analytically (acoustic modes) (Harrje 1972). Even for large pressure waves, the

observed frequencies are usually close to the acoustic modes.

4. VALIDATION

Some simple test problems were set up. The various options were tested with a closed

chamber (no outflow) and then with an open chamber.

4.1 Closed Chamber. First, consid" i closed chamber 5.0 cm long and 5.0 cm in

diameter. The chamber was filled with a uniform gas mixture at 100 MPa and 2,000 K. The

code was run for several milliseconds. The velocities become nonzero because of round-off

error. However, the velocities stay negligibly small, and the pressures and temperatures do

not change noticeably. This indicates that the code is stable.
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Next, a 1 0-cm-long chamber is considered. The left side of the chamber is filled with gas

at 50 MPa and the right side at 100 MPa. At time zero, a rarefaction wave propagates to the
right and a shock wave to the left. This case can be solved analytically (Hughes and Brighton

1967; Band 1960). The rarefaction wave spreads out as it propagates. The front of the wave

moves at the speed of sound, and the back of the wave moves at the sound speed minus the

gas velocity. The shock wave, on the other hand, will become steeper.

With the no slip boundary conditions, this reduces to a one-dimensional problem. In the

code, all the quantities are, in fact, uniform in the radial direction. Figure 5 compares the

theoretical solution with four different axial grids after a short time period. Even with the

coarse grid, the solution is reasonable. The fine grid Is very close to the theoretical solution.

There is one problem here. The pressure between the shock wave and the rarefaction

wave should be flat. Instead, there is a rise in pressure just to the right of the shock (Gibbs

phenomenon). This is an artifact of the numerical procedure and cannot be eliminated by

grid refinement There are techniques for eliminating this phenomenon. Artificial viscosity can

be added to the equations. However, this will smear out all the peaks in the solution,

including the pressure waves of interest. A more sophisticated procedure is flux-corrected

transport (Peyret and Taylor 1983; Boris and Book 1976). This Is a procedure for diffusing out
numerically introduced peaks while having minimal effect on the rest of the solution.

Unfortunately, for the problems of interest, some high frequency oscillations will only be a few

grid points in size, and the flux-corrected transport will also tend to damp these physical

peaks. Flux-corrected transport has been implemented as an option in the code but will

usually not be used. For a fine enough grid, essentially the same solution is obtained with

and without flux-corrected transport.

Next, a uniform mixture of gas and liquid is put in the chamber. The liquid is assumed to

be LGP1846, which has a flame temperature of (eL/c,) = 2,468.5 K. A total of 5 g of liquid is

distributed in the chamber, with a droplet diameter of 100 p.m. The initial gas temperature is

set to the flame temperature. At the end of the combustion, there is a uniform gas mixture at

the flame temperature. So the combustion procedure works properly. Both mass and energy

are conserved.
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Figure 5. Shock Tube Simulation. Time = 0.1 ms. Theoretical Pressure Curve (line). Axial
Grid - 20 (dot). 40 (dash). 80 (dot-dash). 160 (lona dash).

The liquid was then axially put into the first centimeter of distance. Again, a purely
one-dimensional solution was generated. Oscillations matched a first longitudinal mode with
overtones. Next, the liquid was radially put Into the first centimeter of distance. This is also a
one-dimensional problem, with the profiles uniform In the axial direction. A first radial mode
was generated. In both cases, accurate solutions were obtained with a fairly coarse grid.
Mass was conserved almost exactly. There were energy errors due to the work term. The
implicit formulation reduces these errors but does not eliminate them. For a coarse grid, the
energy error was a small fraction of 1%. For the fine grids, the energy error was near 1%.
The reason the energy error gets worse for a fine grid is due to the procedure for choosing a
time step. Values are generated every 0.002 ms. For a coarse grid, the time step from the
Courant condition would be larger than this. Since the code hits the output times exactly, it
takes a smaller step than required for stability and so has improved accuracy. For the finer
grids, with much smaller control volumes, the time step would have to be made smaller to get
equivalent accuracy. A 1% error in the energy conservation is judged acceptable.

To obtain an actual two-dimensional problem, 2.5 g of liquid was axially and radially put
into the first centimeter. Figure 6 shows the resulting pressure, measured at the wall in the
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Figure 6. Closed Chamber. Uniform Upuid Distribution (line). Liquid in Left Center of
Chamber (dot).

middle of the chamber. The Pressure from the corresponding uniform distribution Is shown for
comparison. Figure 7 shows a blowup of part of the curve for three different grids. Grids with

higher resolution in the radial direction were used since the radial modes are more important

than the longitudinal modes. Figure 8 shows the Fourier transform of the pressure curve

between 1 and 2 ms for the different grids. The major peak is the first radial (28 kHz), and
the second highest peak is the first longitudinal (23 kHz). Since the curves are not pure
sinusoidals, higher overtones are also generated. The first radial becomes more clearly

defined as the grid is refined. However, even the coarse grid shows the main features of the

solution.

To check the injection algorithm, the chamber is filled with gas at 100 MPa and 2,468.5 K.
Then 5 g of liquid is injected over the first millisecond through a circular opening 1.0 cm in
radius. Mass conservation is exact for all the grids tried. To check energy conservation, the

chemical energy of the injected liquid must be added to the internal energy of the gas in the
chamber. In addition, the injected liquid does work on the gas in the chamber, compressing it
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Into a smaller volume. When this is taken into effect, the energy error is much less than 1%.

The first radial and first longitudinal modes are set up as before. However, the amplitudes are

smaller, since there is much less liquid accumulation.

The primer model was also checked by injecting 5 g of hot gas over the first millisecond.

A very small first longitudinal mode Is set up. This Is caused by the Injected gas displacing

gas already in the chamber.

Some unexpected results also were observed. When liquid was radially put into the first

centimeter, a clean first radial mode was observed. Next, a smaller amount of liquid was

radially put into the first 0.25 cm. The liquid was again assumed to be in 100- .Ln-diameter

droplets. Figure 9 shows the observed frequencies. The first four radial modes were excited.

For a fine grid, the main frequency is the third radial mode.

At time zero, the liquid combusts rapidly and generates a high pressure region. This

begins to move the fluid away from the centerline. Eventually, enough fluid has been

accelerated toward the wall that the pressure drops, and combustion slows drastically.
However, because of momentum, the fluid continues to move, and the pressure drops below

the initial pressure. The flow reverses, and combustion picks up again. Because of the high
burning rate of the propellant, this process can generate fairly large pressure oscillations

before there are any reflections from the chamber wall. The smaller the liquid region, the

higher the frequency of the generated waves. For the present problem, the natural frequency

of the liquid region is close to the third radial mode of the chamber, and this mode is
preferentially pumped. The coarse grid cannot resolve the steep pressure gradient in the

liquid region. So as the grid is refined, the main effect is to increase the resolution of the third

radial mode.

I also tried the same initial setup but with 50-1rn-diameter droplets (Figure 10). The

oscillations are larger. But the natural frequency of the liquid region has been changed, and

now the first radial mode is preferred.
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In liquid rockets, the propellant is usually injected as uniformly as is practical. In liquid

guns, on the other hand, the propellant is usually injected through an annulus that is small

compared to the chamber area. Hence, higher frequencies can be generated.

4.2 Oen Chamber. An opening 0.5 cm in radius Is put into the right-hand wall. For a

first test, gas Is put into the chamber at 100 MPa and 2,000 K, and the exit pressure just

outside the chamber is put at 90 MPa. Figure 11 shows the outflow rate. For comparison, a

solution is also given for a lumped parameter model (Coffee 1988). That is, the conditions in

the chamber are assumed to be uniform, and the flow velocity out is given by assuming

steady-state isentropic flow. For the detailed equations, there is a time delay as the flow gets

going. The flow does not get as large as for the lumped parameter model since there is a

delay in getting fluid from inside the chamber to the exit plane. This means the chamber

takes longer to empty. However, the time scale is similar. The exit flow is almost grid
independent. There are no noticeable pressure oscillations in this case.

Next, uniform injection at the left wall was implemented at a rate of 5 g/ms. Figure 12

shows the resulting outflow rates. The rate Is almost grid independent The model does
reach a steady state, where the outflow matches the inflow. There are some very small

oscillations. Pressure waves that hit the right wall reflect, but pressure waves that hit the

opening exit, and a rarefaction wave propagates back into the chamber. The two effects tend

to cancel, and it is difficult to start up oscillations.

The same basic setup was created with choked outflow. The injection rate was increased

to 7.25 g/ms to compensate for the higher outflow. For this case, large oscillations were set

up. The choked flow boundary acts more like a reflecting wall. Figure 13 shows the pressure

at the chamber wall, and Figure 14 shows the Fourier transforms of the wall pressure for

different grids. There is a longitudinal mode. Since the outflow is only near the centerline,

conditions are not uniform in the radial direction. Once the flow becomes disturbed, the first
radial mode is preferred. However, a fine grid is necessary to pick up the radial mode. There

is also a very low frequency around 1 kHz. This is probably due to bulk oscillations of the

material in the chamber as a whole.
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Next, injection through an opening 1 cm in radius in the left wall was considered. Figure

15 shows the Fourier transform for the pressure at the middle wall. With the coarse 10 x 10

grid, there are no oscillations. However, the 20 x 20 grid shows the proper behavior. The
pressure shows a clean first radial mode with overtones. That is, the pressure is not a pure

sinusoidal wave, so higher frequencies appear at multiples of the first radial frequency. This

can be distinguished from the higher radial modes, which have slightly different frequencies.

Figure 16 shows the corresponding result for choked flow. The oscillations are almost the

same magnitude. The coarse grid shows only the longitudinal modes. The finer grids show

primarily the first radial mode with overtones.

Next, the same amount of liquid was injected through a hole 0.25 cm in radius. Figure 17

shows the Fourier ::ansforms. For the 20 x 20 grid, the highest frequency is the first radial.

There is a frequency corresponding to twice the first radial, and a slightly lower frequency

corresponding to the second radial. For the 40 x 40 grid, it is primarily the second radial
mode that appears. The 60 x 60 grid shows results very close to the 40 x 40 grid. Since the

liquid appears in a small volume, it will generate pressure pulses that may excite higher

modes. It takes a fine grid to resolve this. The 20 x 20 case takes about 5 min to run on the

U.S. Army Ballistic Research Laboratory (BRL) Cray X-MP, while the 60 x 60 grid takes over

7 hr.

Figure 18 shows the early pressure at the control volume on the centerline next to the

injector. The time is too early for any reflected waves to retum from the walls. The large

oscillations are generated from the inertial confinement of the liquid. A fine grid can better
resolve the very steep pressure gradient in the small volume of liquid. However, this behavior

may owe something to the simplifications in the model. The model assumes that liquid is

injected at a steady rate, independent of the pressure by the inlet. The liquid breaks up

instantaneously into droplets ancl also ignites instantaneously. In reality, there must be some

delay while the liquid breaks up and ignites. The combustion front will start on the outside of

the jet and move in. The model merely shows that inertial confinement is capable of

generating large pressure waves. Whether this happens in reality is still to be determined. In

the futurv more sophisticated jet breakup models may be implemented in the code.
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Figure 19 shows the corresponding Fourier transforms for the choked outflow. The major

frequency is the first radial. It is not clear why the behavior is so different for choked and

unchoked flow. It is clear that rapid injection of liquid into a small volume can cause

complicated behavior.

5. TURBULENCE

With the large velocities in the gun, flow is unlikely to be laminar. So a turbulence model

is included as an option in the code.

Turbulence Is a three-dimensional phenomenon. Relatively large eddies are developed in

the flow. These eddies decay into smaller eddies. At a very small length scale, the physical

viscosity turns the eddies into heat Normally, the physical viscosity is not the rate-limiting

step, so the value of the physical viscosity is immaterial.

The k-c model of turbulence is used in the code (Jones and Launder 1972; Ng and

Spalding 1972; Hinze 1975; Bradshaw 1978; Kollmann 1980; Jones and Whitelaw 1982). The

simpler mixing length models do not take into account the history of the flow, which is

important for the transient problems of interest. The more complicated Reynold's stress

models are not really developed enough for practical use. All the turbulence models are only

approximations. The k-c model is normally adequate for internal flows. It does, however,

ignore some effects, such as curved streamlines. It is also very poor at predicting flow

separation.

The effect of turbulence is considered in the momentum equations. There is also a

turbulent transfer of energy. However, for the problems of interest, the temperature does not

vary much, and this effect should be unimportant.

Because the full three-dimensional equations are required, tensor notation is used. That

is, repeated subscripts indicate summation. The subscript 1 indicates the x direction, which is

assumed to be the main direction of flow (if there is one). The subscript 2 indicates the y

direction, which is assumed to be the main direction of shear (if there is one). The subscript 3

indicates the z direction.
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The vast majority of work has been for incompressible flow. First, the equations for this

case are derived. Then the equations are generalized to compressible flow.

5.1 Incompressible Flow. The flow Is assumed to be incompressible and the viscosity

constant The continuity equation reduces to

av0lax - o. (6)

The momentum equations are given by

avlat + avjvjlax ,, -(1 ip){aplaxi + a,=pj/axj},

with

- -lx(av,lax,.av/ax,) + 23gS.,,av/ax,

-. (av/ax+aVj/ax).
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Using the kinematic viscosity (cm2/s),

v - pip,

the momentum equations can be rewritten as

avlat + avjvj/axj - -(l /p)ap/ax

+ a1ax{v[av,/ax.a+V1/ax,]} (7)

The basic Idea is to split the flow into a mean part and a fluctuating part. Since transient

problems are of interest, an ensemble average is used. That is, the problem is repeated N

times, where N is a large number, and the mean is defined by

f( t) ,,Ef( t)/N.

For any given run of the problem, f - f + f where fI is the fluctuating component. By

definition, the mean of the fluctuating part is zero.

Now the mean of the momentum equations is taken. The only term that is nontrivial is

-v + ,'1, + v+,'

- + V, , V~

Note that a mean quantity can be moved out from under an overbar and that the mean of a

fluctuating component is zero.
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The momentum equations become

+ = -(1 /p) a/ax, + aIaX1{v[a jax + a /aX1 ] }. (8)

The new term, the product of the mean of the fluctuating velocities, Is called the Reynold's

stress tensor. This is the only term by which the turbulent fluctuating velocities affect the

mean flow.

The continuity equation is simply

av/axj = aaxj vaxj - 0.

For the k-e model, the quantity of interest is the kinetic energy of the turbulent fluctuations,

defined by

k - 0.5 v1' v/ .

Note that all information about the directional intensity of the turbulence is lost. Basically the

turbulence is assumed to be isotropic (the same in all directions). This is expected to be true

at small distance scales, where the turbulence is dissipated. However, the turbulence is

created at large distance scales and often in a preferred direction. So information that is

important for some problems is lost.

To obtain a turbulent kinetic energy equation, multiply the instantaneous momentum

Equation 7 by v1' and take the mean. The time-dependent term becomes

V1 avi/ at - V, / a iat + vil avl lat

- 0 + 0.5 av,' v,'i at - ak/lat.

The advection term becomes
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V, a V, y /Xj - Va ,j / + V11 7v1' a + 1aV"j / .

where

lst part= v1' v'l~x a, 7 av,'Iax -V 1 Vt vIx

2nd part.- V,'/ v, a / + v1,7 V, / axj W v1, ;,a V" /a xj

= 7,kaxj - akaxj - k;Ijaxj, U a7,kIaxj

and

3rd part - v,'IV vi av~Ix, + v, / ViI a V,'axj

- 0.5 avj1 j'v1,t IXj - 0.5 v1, vII )j ax,

The pressure term becomes

-(V,'/ P) a P/ aX, 1 -lp) {Vp /iaX, - T7-' /ax,}

The viscosity term becomes

V,' a1'axj{ V[;Vi/axj + avi, lax, + ;la + av, /aX,] } -Vv,' aV,' /j

+vvX, t  a2 IaaxvI2V /x+ 0 Va2klax v~avI/ax)

Puffing it all together,

48



aklat + a klax v, -v-'a' V~lax - al)x{ ' ,v, / 2

8-p-'lp - vak/axl} -) 2~v'x) (9)

The left side of the equation is now standard. There is a time-dependent term and an

advection term. The right side consists of a production term (turbulence is created from the
mean flow), three diffusion terms, and a dissipation term. The last term is given the notation

E = V( ,lx)2.

Normally, the physical viscosity terms are negligibly small. However, for this last term,

gradients in the fluctuating velocities are considered, and this has a small length scale. This

term is the only term that destroys turbulent kinetic energy.

Older theories are based on the idea of a mixing length, which is a length scale for the

turbulent eddies. The relation is

1 -

Under the k-e theory, the mixing length can change with time and/or space, rather than being

held constant.

The problem now is to find expressions for the various correlations in Equation 9. So

consider a very simple test case. Assume a steady-state shear flow. That is, the only
nonzero mean velocity is in the x direction, and the only nonzero space derivative of the mean

velocities is in the y direction. Also assume that the diffusion term is negligible. Then

Equation 9 reduces to

-v v2 av /axi.

Define

c, - (,v27/k)2.
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Then

e2 M ck 2(a1aX2 )2 ,

or
2 k/e) (a lx),

e - c( a22

and

- I v2" - c,(k 2 Ie) aX;.

Define the turbulent viscosity

v,- c,(k 2 Ie).

Then

- v,' v ia 1 v ax2,

or after much effort, the Reynold's stress now looks just like the molecular stress term, only

with a turbulent viscosity rather than a physical viscosity.

So now the major assumption Is made that in general flows, the Reynold's stress looks
like a viscosity term. That Is,

- .va 7,/LaxOI +a + ,ax,] - (2/3)jjk.

The last term is required to balance the equation. That is, if i = j, then

- v7" 1 - -2k.

The molecular stress also breaks into the following two parts: the inhomogeneous term

(dependent on direction) which becomes the viscosity term, and the homogeneous term

(independent of direction) which is called the pressure.

Now the Reynold's stress formula is substituted into the mean momentum Equation 8, and

the result is
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a 711at+ a 1J/axJ= -11p) a /ax - (213)aklax,

+ aax,{ (v +v,) [a 7 Ix+a ;7/ax,] 1 (10)

So there is a turbulent pressure term and a turbulent viscosity term. The turbulent pressure is

normally small compared to the actual pressure. In most cases, the turbulent viscosity is

much larger than the physical viscosity. One exception is in a boundary layer, such as near a

wall. The flow will have a laminar sublayer, as well as a region where laminar and turbulent

effects are about the same size (see below).

For the turbulent kinetic energy Equation 9, first consider the production term. This now

becomes

va ,1ax (a ;,ax +a ,ax,] - (2/3) ka ,/ax,

or
P,. - ,a 7,,a x[a 7,/a J a 7,,/a x,].

The diffusion term is very messy and is expected to be of secondary importance. So the

assumption is made that diffusion works like molecular diffusion. The result is the equation

ak/at + a 7k/axj -a/ax,[ (v/a,) ak/ax] + P- , (11)

where a, is a constant to be determined from experimental data.

An equation for the dissipation is still required. This can be derived using the same

general procedure as for the turbulent energy equation. However, the resulting equation has
messy correlations that cannot easily be simplified. Instead, the standard procedure is to just

apply dimensional analysis and get an equation following the kinetic energy Equation 11.

That is,
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a/at + a 7/aXj - a/aXiC ( v,/a8)aefaxJ]

+ ca1 (e/k) Pk - C1 2 (E
2 1k)'. (12)

The constants are determined by looking at expe.imental data for some simple cases. These
cases are normally homogeneous, decaying turbulence behind a grid, near wall turbulence in

local equilibrium, and free shear flows. The standard set of values is

cM Ca, Cs2  Cr, at

0.09 1.44 1.92 1.0 1.3.

The above standard model generally does well for internal flows, as long as body forces are

negligible and the streamlines are not curved. However, some people believe that it is

fundamentally wrong and only works because the constants have been adjusted to match

experimental data. Unfortunately, this makes it a little risky to extrapolate to gun conditions,

since almost all measurements have been made at low pressures.

5.2 Compressible Flow. The case of actual interest Is compressible flow. The kinematic

viscosity is assumed to be the same as the mean kinematic viscosity. The continuity equation

is now

aplat + ap t /axJ - 0. (12)

The momentum equations are given by

apvlat + apv -a, = -aplax - ka,. (13)

with

*j, -PI(avax + avj/ax,) + 213g.1,avk ax,

- -pv(3v,ax,+av/ax,) + 213pv8Iavl/x,.
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Note that the last term of the stress tensor is no longer zero. The standard ensemble average

introduced above is used for the density,

p + p.

However, for the velocity, a mass-averaged quantity is introduced-that is,

, V, vl'=v + v,"

where

V, - P VI

or

" - v,.

This implies that

pv, .pv, - pv,. .

Then

, pv,v + +vpJ T v, + p v, V j
upv v v11  v, 1  ,,1' v"

Take the mean of the continuity equation,

a' lat + a' 5/axj - O.
Take the mean of the momentum equations,

a5 v/at + a' v,V/ax = -aaa/axi('v[a v,ax + a V1ax,]

2/3"vja V k/axk - F Vi Ivi").
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Now define the turbulent kinetic energy as

k - 0.5 v 1 v•

As before, assume that the Reynold's stress can be written as

- v," F". va v,/ax + a_ j/ax,]

- (2/3)8 11"pv vv,/ x, - (2/3) 8,5k.

Then the mean momentum equations become

a'p4/at + apvv/ax.. -a paxI - (2/3)apk/a,

+ a/axj(5(v+v,)[av,/ax, + aVIax,]

- 2/3 5(v +v,) 8aV/ax}. (14)

Next, take the instantaneous momentum Equations 13, rearrange using the continuity

Equation 12, and plug in the stress term to obtain

p aovI/at +p v"vja v/a xj -ap/ax/ + a pv[ avj/aoxj + av//ax]

- 2/3pvIiav /aXk).

Multiply by v,' and take the average. The time-dependent term becomes

p vIla vi/at a 5vilavl///lat a "pk/at.

The advection term becomes

54



P " via Vlx - TV V1 V,1 
aviax +TpV,' VaV1

1 a,

- I, II

rnpV, V1  v 1 x, +Fvak/axj+FO.5V J.~,Vg/X

The pressure term becomes

The first part of the viscosity term becomes

-- a/ax,(2/3Fv VI aviax.) - 2/3Fvav,/axkav,/1ax,.

Combining

55



FakIat + "Vjakax, V ," Vi a v,/ax

- __0.5 v_ av_/ vI x -v", ap/ax,

+ a/ax('v vill (av" /ax. av+ v"lax,)I

- a/ax,(2I35vv," avt"axj

- Fv(av,"laaxj + av"ax,)av / '

- 213pv av" /axaav" /ax,. (15)

This is somewhat messier than Equation 9 for incompressible flow, but the basic structure is
the same. The first line gives the time-dependent term, the advection term, and the

production term. The next three lines are diffusion terms. Again, for lack of a better idea, it is

assumed that diffusion works like molecular diffusion. The last two lines are dissipation terms,

and all of them are set equal to pe. So the result is

P't - v,[aV,/a3Xj + avjlax,]avilax

- (213)vavl/axk vklaxk - (213)kavklaxk

and
e - -v(av"/aXj + avl'/ax)avi,,lax

- 2/3vva 1vh"aXa Vk laX.

Rearranging the left side of Equation 15 using the continuity equations and plugging in the

indicated expressions on the right-hand side results in

apklat + apvklax - a/ax[(pla)ak1axj] + "Pt - Fe. (16)
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Similarly, the dissipation equation becomes

a'Feat + aFpvelax, - alax[(j, l)ae/x] + c,,(elk)FPt - c. 2p(e 2 k). (17)

Since there is almost no data for compressible flows, the constants are given the same values

as for incompressible flow.

5.3 Implementation. This new set of equations must be solved. From now on all

quantities are assumed to be the appropriate means, so overbars and underlines will be

omitted. Taking Equation 14 and writing it for the x momentum gives

a(pv,)lat - - a(pv,2)lax - a(pvv,)ay - aplax - (213)apklax

+ a/ax[4/3(,.+p.,)av,/ax- 23(.+.,)av.lay ]

*a /ay[ (g +;I) a v./ ay + (ii +li) av,/ ax]. (18)

Applying the divergence theorem,

a/atf(p v,)dV-f(Pv, v,I+p v, vy + (p+(2/3)p k]I)n ds

" f ([/(~taa - /( ga.yi

" [(gg,)av./ay + (g +x,)av/ax]j)ndS.

Similarly, the momentum equation in the radial direction is

a(pv)Iat - - a(pv v,)lax - a(pvyvY) ay - aplay - (2/3)apk/ly

+ a/ax[(g+g,)av 1/ay + (i+g,)3v,/3x]

+ a/ay[4/3(±+,.,)avY/ay - 2/3( +g.,)av,/ax]. (19)
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Applying the divergence theorem,

aIt~pv)-, (p v v.I+ pv. vI+ [p+ (2/3) pk]]) ndS

+ fs[ ( +A av/ay+ (A +J.At)av,Iax] I

+ [4/3(A + A,) a vlay - 2/3 (A+ A,) a vlax] J) ndS.

Next consider the turbulent production term. For a two-dimensional problem, this becomes

pP~- .L(4/3) (a V'aX)2 +(aV,/ay) 2 + (ax)

+ (13)avay)2 + 2(av,/ay)(avy/ax)

- (213)pk(avlIax + aJvIay).

The turbulent energy Equation 16 becomes

apkIat - -apvklax - apyly+ aIax(g.,ak/ax)

+ alay(p.,ak/ay) + p P, - p e

or

'It(p k) dV , f(P,-pe)dV -f(p vkI+p vykj) ndS

+ f.(p.,ak/axI+g,ak/ay) ndS.

The dissipation Equation 17 becomes

ape/at - -apve/ax - apyly+ a/ax(I,/1.3)ae/ax]

+ a/ayE(,1~1.3)ae/ay] + 1.44(e/k)p P. - 1.92p ( e2 /k)
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or
or!at f (p)dV= .v[4( k - 1.92p (el/k) ]dV

- f (pv,d + pvyej)ndS

+ fs[ (, ,/l.3)aelaxl + (p,/1.3)aelayj]ndS.

The new quantities are put on the scalar grid. There is still the problem of initial conditions. A

gun firing cycle starts with stagnant gas, so there should be no turbulence. However, the

turbulent terms cannot be zero because then the turbulent viscosity is undefined. If the

turbulent kinetic energy is set to zero, but the dissipation is nonzero, the kinetic energy term

will become negative. So for initial conditions, pk is set equal to 10-2 and pe is set equal to

10-5. The density times the turbulent quantities is used since the equations are being solved

in conservation form. This makes the turbulent kinetic energy, dissipation, and turbulent

viscosity all small.

5.4 Boundary Conditions. For flow close enough to a wall, the flow must be laminar, and

the turbulent kinetic energy will be zero. However, while kinetic energy cannot be generated

at a wall, it can diffuse in and be dissipated at the wall. Hence, a common boundary condition

for the dissipation is to assume a zero gradient. That is, the dissipation in a scalar control

volume next to the boundary equals the dissipation in the next scalar control volume away

from the wall. The turbulent kinetic energy is then still defined (equals zero). At the

centerline, reflection boundary conditions are used, and at the exit from the chamber,

extrapolation conditions are used.

In practice, the boundary layers are too small to be resolved with a reasonable grid, and

more complicated procedures are required. So consider flow near a wall. Assume that the

radial flow (perpendicular to the wall) is negligibly small. Assume that the axial gradients are

negligibly small. These assumptions will be good if we go close enough to the wall, where

close enough depends on the conditions of the flow. Under these assumptions, the only

nonzero stress is
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Very near the wall, the flow becomes laminar. So the stress at the wall is given by

'C' - -. lavlay.

Assume that the stress is constant through the boundary layer. Define the wall friction

velocity as

U* . W/- p

In this derivation, to be consistent with the usual notation, y is the distance from the wall

rather than the distance from the centerline. In the laminar sublayer,

avl ay - - .lA

v, - -(-z,/i)y

Vx pU 2 y/J.

vlu* - uOylv.

Defining

vx v/U" y. -Uy/v

then in the laminar sublayer,

v, my. (20)

Next, consider flow in the turbulent layer, where the laminar viscosity is negligible

compared to the turbulent viscosity. Then

a vlay = -r.lt.
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Assume that the kinematic turbulent viscosity is given by

Vt N ICUOy,

where K is a constant to be determined. The basic idea is that the turbulent eddy size is

constrained by the distance to the wall. The formula is in good agreement with the

experiment. Then

KU'yaV'lay = -,CElp _ U "2

av'Iay I ulKy

or

Ky~av, /ay* = 1

v, = (1/ K)Iny + C.

From experimental data, the usual constants chosen are

v,* - 2.5 In y* + 5. (21)

There will be a regime in between the above regions where both laminar and turbulent
viscosity is important. Various models have been proposed for this region. However, for

simplicity, this will be ignored. Instead, the boundary layer profile will be assumed to change

instantaneously from the laminar sublayer to the turbulent layer. This will occur when the two

velocities match, that is,

y* -2.5 Iny* + 5

or

y= 10.993.
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To implement this formulation, consider the first vector grid point next to the top wall, at a

distance Yb from the wall. This point is assumed to be in the turbulent layer, and Equation 21

is solved iteratively for u.

Given the wall friction velocity, the distance from the wall to the point where the transition

from laminar to turbulent flow takes place, denoted by y,, can be computed. Suppose that y,

is greater than y. This implies that the original assumption was wrong and that, in fact, the

vector grid point is in the laminar sublayer. In this case, the previous boundary conditions are

used.

Next, suppose that y, is much less than y. So the laminar sublayer is negligibly small.

Either Equation 20 or Equation 21 can be solved to obtain the velocity at y,, denoted as vc .

This can be taken as the velocity at the wall, neglecting the very thin laminar sublayer.

Since a simulation normally starts with stagnant gas, there will be a transition from the

laminar to the turbulent regime. To make the transition smooth, the wall velocity is actually

defined as

v. - v, (yb - y) / y1 0< Y,<Yb.

Boundary conditions on the turbulent quantities are also required. Various assumptions

are possible. The simplest of the standard assumptions is that local equilibrium exists in the

turbulent boundary layer, that is

C Uk -v,(dv,/aY) 2 "

This means that the production of turbulent kinetic energy exactly matches the dissipation.

The production term simplifies to the right-hand expression in a boundary layer. Using the

expressions derived above for the turbulent part of the boundary layer, the above equation

becomes

S- Ku'y(u'/ly)2 = 2.5 u 3 /y.
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By the definition of the turbulent viscosity,

vt - 0.09(kI/e)

or

k - u'2 /0.3.

Now consider the laminar sublayer. By definition, k = 0. The simplest standard

assumption is that the dissipation is constant in the laminar sublayer, or

e - 2.5 u "31ye .

Now what is required is the integral over the volume of the density times the turbulence

quantities. Consider first the top boundary. Let R, be the radius of the cylinder. Let Rb be the
radius up to the bottom of the scalar control volume at the boundary, and let R, be the radius

up to the crossover point between the turbulent and laminar regions. Then the control volume

can be split Into a turbulent and laminar section

V, - dx x ( R2 - Rif

The turbulent kinetic energy is zero in the laminar part and constant in the turbulent part. So

fVpkdV- (pue 2/0.3) Vt .

The dissipation is constant over the laminar sublayer, so

fvpedV - (2.5pu' 3 /y,) V.
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Over the turbulent layer

fpd v (2.5 pu'ly) dV,

f Y'(2.Spu'3ly)2x(JR,-y)dxdy

5 , 5p U,3 dx[Rtlny-y]Xx

X5p uo3 dx[R(Iny,-Iny) - (y,-y,)].

The two terms are added.

It Is slightly simpler to work directly with the turbulent viscosity. The turbulent viscosity in

the laminar sublayer is zero. The turbulent viscosity in the turbulent layer is given by the

formula

III Kp U*y.

So

fIp,dV - f 0.4p uy dV

- 0.4pu*fy2c(R-y)dxdy

- 0.8ixdxu [Rty2/2 y3/3 ]Yxy

- O.8 xpdxu'[R,(yk,-y)/2 - (y-y, 3)/3].

This is divided by the control volume to obtain the average turbulent viscosity, and the

average dissipation is then found from the standard relation

v, - 0.09(k 2 /e).

The dissipation integrals then do not have to be evaluated.

Similar but slightly simpler expressions can be derived for the left-hand and right-hand

boundaries.
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5.5 Solution Procedure. The two new turbulence equations are solved along with the

previous equations. The first step is still the Lagrangian step. The pressure and viscosity

terms for the momentum equations are evaluated, and the velocities are updated. Then the

turbulent energy production term is evaluated. The diffusion of the kinetic energy and the

dissipation can then be computed, and the turbulence terms are all updated. The boundary

conditions are also updated.

Then the Lagrangian step is taken. The combustion term is computed. It is assumed that

the turbulence quantities do not change during this stage.

Finally, the convection terms are computed. Convection for the turbulence quantities is

done exactly the same as for the other scalar quantities. The boundary conditions are

applied, and all the quantities are updated.

5.6 Test Problems. The laminar flow test problems were now done assuming turbulent
flow. Since there is now a boundary layer, none of the test problems reduces to a

one-dimensional problem. So the two-dimensional problems are the ones of most interest.
For the closed chamber problems, the additional turbulence had only a minor effect.

Qualitatively, the results were the same.

For the open chamber, the results were more interesting. Consider the chamber with

uniform injection. Figure 20 shows the new exit flow (comparable to Figure 12). The outflow
rate is no longer grid independent because of the boundary layer at the exit comer. However,

convergence is good with the 20 x 20 grid. Small oscillations do eventually start in this case.

Next, the problem was run with choked outflow. Figure 21 shows the Fourier transforms

from 4 to 5 ms (comparable to Figure 14). The first radial mode now shows up even with the

coarse grid. This is probably due to the boundary layers disturbing the flow. Because of the

turbulent viscosity, the oscillations are not quite as large. However, this also means that the

coarser grids are a better approximation. The turbulent viscosity will smooth out some of the

very fine structure.
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Figure 20. Chamber With Outflow. Uniform Injection at 5 alms. Turbulence. Exit Flow.
10 x 10 Grid (line). 20 x 20 Grid (dot). 40 x 40 Grid (dash).
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Figure 21. Chamber With Choked Outflow. Uniform Iniection at 7.25-o/ms. Turbulence.
Fourier Transform of Wall Pressure. 10 x 10 Grid (line). 20 x 20 Grid (dot).
40 x 40 Grid (dash).
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The chamber was run with injection through a large hole (Figures 22 and 15). The results

are similar to the laminar case except that the first radial does appear even with the coarse

grid and the magnitudes are slightly smaller. The same behavior occurs if the outflow is

choked (Figures 23 and 16).

Next, Injection through the small hole was considered (Figures 24 and 17). The second

radial mode is the primary frequency. For the 40 x 40 grid, the oscillations are very small.

For choked flow (Figures 25 and 19), convergence is very bad. The agreement is actually

better at earlier times. For the finer grids, the oscillations start to die out 3t the later times.

As for laminar flow, rapid injection into a small volume can cause complicated behavior.

6. GUN TUBE

The model for the gun tube is set up almost exactly like the chamber model. The gun

tube is a cylinder with a projectile for the right-hand wall. The projectile acceleration depends

on the average pressure on its base. The velocity and displacement are found by using the

usual equations of motion. The grid in the tube is attached to the base and stretches

uniformly as the projectile moves.

Because the gun tube volume will increase dramatically over the firing cycle, additional

grid points can be added as the projectile moves. When the grid spacing becomes larger

than a specified value, a grid point is added at the end of the time step. A new scalar control

volume will normally contain parts of two old scalar control volumes. The appropriate fractions

of the old scalar quantities are combined to obtain the new scalar quantity, so the regridding is

conservative. The new velocities are found by interpolation.

The only new boundary condition is at the interface with the chamber. The values on the

gun tube grid just to the left of the tube are giver. e corresponding chamber values. Some

adjustment may be necessary, since the grids in the chamber and tube normally have

different spacing. Similarly, the values on the chamber grid just to the right of the chamber

are given the corresponding tube values.
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Figure 22. Chamber With Outflow. Iniecon Through a 1-cm-Radius Hole. Turbulence.
Fourier Transform of Wall Pressure. 10 x 10 Grid (line). 20 x 20 Grid (dot).
40 x 40 Grid (dash).
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Figure 23. Chamber With Choked Ouflow. Injection Through a 1-cm-Radius Hole.
Turbulence. Fourier Transform of Wall Pressure. 10 x 10 Grid (line).
20 x 20 Grid (dot). 40 x 40 Grid (dash).
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To take a time step, the pressure and viscosity terms are computed in the chamber and

then in the tube. The boundary conditions are updated. Then the combustion terms are

computed in the chamber and tube. Note that droplets can enter into the tube and combust,

although the amount of liquid in thc tube is generally small. Again the boundary conditions

are updated. Finally, the convection terms in the chamber and then the tube are computed,

the new pressures are computed, and the boundary conditions are updated. If necessary, a

new grid point is added to the tube.

To test the procedure, some simple test problems were set up and comparisons made

with the lumped parameter gun code. The chamber was filled with hot gas, which expands

and pushes the projectile down tube. For the first case, the chamber and gun tube were

given the same diameter. For a laminar simulation (slip boundary conditions) the problem did

reduce to one dimension (no radial variation). The chamber pressure and projectile velocity

were identical for the lumped parameter code and for the two-dimensional simulation.

Next, the chamber was made larger than the gun tube. The chamber radius was 3 cm,

and the tube radius was 1.5 cm (30-mm gun). The gas was set to an initial pressure of

100 MPa. The integration was carried out to 6 ms, at which point the projectile was just over

100 cm down tube. The chamber grid was 20 x 20. At the end of the integration, the gun

tube grid was 400 x 10. Again, the chamber pressure and projectile velocity were identical to

the lumped parameter code. Figure 26 shows the gun tube velocity profiles at the end of the

integration. The solid line is the lumped parameter code, using a modified Lagrange pressure

distribution. The dotted line is flow along the centerline, and the dashed line is flow along the

wall. The flow was laminar with a slip boundary condition. The flow is more rapid along the

centerline. In fact, there is a small recirculation region at the wall where the flow enters the

tube. However, the flow does become more one-dimensional farther down tube. Figure 27

shows the same curves for turbulent flow. The behavior is very different. The boundary layer

makes the flow much slower along the tube wall. However, there is a singularity where the

tube wall meets the projectile, since the gas at the projectile must move axially at the speed of

the projectile. At this corner, the fluid velocity must match the projectile speed. That means

that gas flows more rapidly down the centerline and then moves radially up near the projectile

to fill the space left as the projectile moves. However, the pressure equilibrates even though

70



250.0-

200.0-

0

0.0 2. 00 8. 8. 0. 2.

Oa~once (cm)

Figure 26. Gun Tube Test Problem - Laminar. Velocity. Lumped Parameter Model (line).

Two-Dimensional Model. Centerline (dot). Wall (dash).

350.0-

300.0-

250.0-

-200.0-

L 50.0
0

000

50.0

OMstance (cm)

Figure 27. Gun Tube Test Problem - Turbulent. Velocity. Lumped Parameter Model line).
Two-Dimensional Model. Centerline (dot). Wail (dash).
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the velocity does not (Figure 28). There is some oscillation near the projectile due to the flow

disturbance.

7. SANDIA TEST FIXTURE

A simplified test fixture has been developed at Sandia National Laboratories to study

pressure oscillations. Figure 29 shows a picture of the combustion chamber of the fixture.

Liquid propellant is injected through the circular opening at the left by a differential piston. The

liquid combusts and bums. Hot gas and possibly some liquid flow through the converging

orifice at the right into atmospheric pressure. There is a burst disc at the end of the injection

orifice to prevent liquid propellant from leaking into the chamber prematurely. There is also a

burst disc at the end of the converging orifice so outflow does not start until the combustion is

started. A primer initially prepressurizes the combustion chamber.

In the model, the chamber is represented by a cylinder. The radius is taken to be the

radius of the body of the chamber (one inch). The length is chosen to obtain the proper

chamber volume (volume between the two burst discs). A choked flow boundary condition is

applied at the right boundary.

The chamber is initially given a uniform pressure of 22.0 MPa due to the igniter. The

differential piston is driven by pressurized helium. The piston motion can be calculated from

the recorded helium pressure. The point at which the burst disc breaks can be found from the

sudden dip in the liquid pressure. This is taken as the zero time in the calculation. In the

experiment, 65 cm 3 of propellant is injected, followed by water. From the liquid pressure, the

density of the water and the propellant can be calculated. The amount of liquid in the

reservoir is then calculated, which gives the amount of liquid injected. The derivative of the

amount of liquid injected gives the rate of iniection required by the code. The code does not

presently allow two different kinds of liquid. So at the point where the propellant is computed

to be exhausted, the size of the injected droplets is increased by several orders of magnitude.

This makes the rate of combustion negligible.

72



11,0 ...

10.4L*
(L0_

10.2

10.0,
0.0 20.0 0.0 0.0 8C.0 1 0.0 120.0

OLaonce (cm)

Figure 28. Gun Tube Test Problem - Turbulent. Pressure. Lumped Parameter Model (line).
Two-Dimensional Model. Centerline (dot). Wall (dash).

Figure 29. Sandia Test Fixture - Combustion Chamber.
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The right-hand boundary is treated as a solid wall before the burst disc breaks. When the

disc breaks (41.4 MPa), the boundary condition for the exit orifice becomes that of choked

outflow.

Data were obtained for a typical test (CT-48). There are four pressure gauges in the
same plane 3.5 inches from the injector. Figure 30 shows the recorded pressures. All the

gauges show large pressure oscillations, but some gauges consistently show a higher
oscillation level. Experimentation has shown that if the holes in which the pressure gauges

are mounted are enlarged, the magnitude of the oscillations increases. So it is felt that the
higher level of oscillations is closer to what occurs in the chamber and that the lower levels

are caused by damping in the gauge hole (Griffiths 1991).

Figure 31 shows the filtered chamber pressures. There is some variation. All of the
pressure gauges eventually record negative pressures. Pressure gauges do tend to record

low when they become hot (thermal drift), so the actual chamber pressure may be slightly

higher than the recorded pressures.

In Figure 32, the Fourier transforms are given for a 1-ms time window. There is a wide
range in the magnitudes. However, all of the gauges show a fairly clean first radial mode.
The higher frequencies are overtones due to the fact that the pressure oscillations are not

pure sinusoidal waves. That is, the higher frequencies are multiples of the first radial mode,
rather than the slightly different frequencies corresponding to the second and third radial

modes.

A model was set up for this fixture. The liquid is assumed to enter as 200-Am drops.
Figure 33 shows the filtered chamber pressure from the model measured at the wall for three
different grids. The model pressure decreases substantially as the grid is refined. For a finer
grid, the jet is less spread out, and more of the liquid exits the chamber unburnt. The

sensitivity to the grid size is probably due in part to the simplification in the outflow condition.
The actual fixture has a converging nozzle, which the model cannot presently duplicate. If the

liquid is assumed to enter as smaller droplets, all the liquid burns in the chamber, and the

filtered pressure is not very sensitive to the grid refinement.

74



300.0-

250.0-

200.0-

150.0-

100.0-

0 50.0-
0L

S 0.0-

-50.0-

, 100.0-
(0-150.0-

~L -200.0)
-250.0

-300.0-

-350.0-

-100.0-

0.0 2.0 4.0 6.0 8 0 10.0
tLme (ina)
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Figure 31. Sandia Test Fixture. Filtered Chamber Pressures. P32 (line). P33 (dot).
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Figure 32. Sandia Test Fixture. Fourier Transforms - 5 to 6 ins. P32 (line). P33 (dot).
P34 (dash). P35 (dot-dash).

160.0-

140.0-

0
(L 100.0-

* 80.0-L

C-

40.0-

20.0-

0.000.

tA~me (mv)

Figure 33. Sandia Test Fixture. Filtered Chamber Pressures. P35 (line). Model.
20 x 20 Grid (dot). 40 x 40 Grid (dash). 60 x 60 Grid (dot-dash).
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In Figure 34, the unfiltered pressures are given for the three grids. For the coarse grid,

the agreement with experiment is reasonable, although the oscillations are a little too regular.

Unfortunately, for the finer grids, the oscillations decrease drastically. This effect has been

seen in some of the test problems. When the liquid combusts in a very small volume, it can

generate high frequency pressure oscillations which do not pump the first radial mode.
Figure 35 shows the Fourier transforms for the three grids. With the finer grids, the higher

radial modes are excited. A number of variations in the above model were implemented. In

every case, when the grid became fine enough, the oscillations essentially disappeared.

This problem may be due in part to the simplified geometry in the model. However, it is

probably related to the simplified combustion model. The breakup of the jet and the heat

transfer to the liquid are ignored in the model. Also, the pressure-dependent burn rate used is

not firmly established, especially at higher pressures. In the future, variations in the breakup

and combustion models will be examined. Results here indicate that the liquid must combust

as a unit in a reasonably sized volume to drive the first radial mode.

8. THE 155-mm GUN

Finally, a test case from the GE first generation 155-mm gun (Round 65) is modeled. This

is a 7.2-liter charge. The gun fixture and this particular shot are discussed in detail in a

previous report (Wren, Coffee, and Morrison 1990). The lumped parameter model was run

using a jet breakup model developed at BRL (Coffee et al. 1991). The piston motion, injection
rate, and injected droplet size from the lumped parameter model were used as input into the

two-dimensional code.

Figure 36 compares the experimental and model chamber pressure. The model

oscillations start a little later and die out much sooner. Analysis indicates that the oscillation

die out because the injected droplets are very small. The liquid burns almost instantaneously,

and there is no liquid accumulation to support the generation of oscillations.

The jet breakup model used was developed before the new burn rates were measured,

and the slower McBratney rate was extrapolated to higher pressures. When the new burn
rate is used at high pressures, much larger droplets can be injected with only a minor effect
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Figure 34. Sandia Test Fixture. Chamber Pressures. Model. 20 x 20 Grid (top). 40 x 40
Grid (middle). 60 x 60 Grid (bottom).
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Figure 35. Sandia Text Fixture. Fourier Transforms - 5 to 6 ins. Model. 20 x20 Grid (line).
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Figure 36. 155-mm Gun, Shot 65. Chamber Pressure. Experiment (too). Model - Small
Drops (bottom).

on the lumped parameter model. So the lumped parameter model was modified so that the

smallest droplets injected were 100 Itm in diameter. The result is shown in Figure 37. In the

model, the oscillations still start a little late and die out too rapidly. However, the magnitude of

the oscillations is a very good match. Figure 38 compares the experiment and model at the

barrel gauge, B3, which is uncovered after 79.5 cm of projectile travel. The model gauge is

uncovered a little too soon, and the oscillations are noticeably smaller than in the experiment.

In Figure 39, the effect of refining the grid is considered. The top curve is from a 20 x 20

grid in the chamber and a 450 x 10 grid in the tube. The middle curve is from a 40 x 40 grid

in the chamber and a 900 x 20 grid in the tube. The bottom curve is from a 60 x 60 grid in

the chamber and a 1,000 x 30 grid in the tube. The oscillations are very similar regardless of

the grid refinement. It is possible that, if the grid is made fine enough, the oscillations will

diminish in magnitude. However, since the last case required about 8 hr of run time on the

BRL Cray X-MP, further grid refinement is impractical.

The oscillations were filtered from the model chamber pressure, and the filtered pressure

was compared with the lumped parameter model (Figure 40). The agreement is very good
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Figure 37. 155-mm Gun, Shot 65. Chamber Pressure. Experiment (top). Model - Large

Droos (bottom).
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Figure 38. 155-mm Gun, Shot 65. Barrel Gauge. Experiment (too). Model (bottom).
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until near the peak pressure, when the two-dimensional model shows a little lower pressure.

Since the lumped parameter model has a simplified algorithm for flow into the gun tube and

the pressure distribution in the tube, this minor disagreement is not surprising. However, the

projectile velocity almost exactly matches the experimental data (Figure 41).

Figures 42-44 compare the Fourier transforms of the experiment and model for different

time windows. The agreement is actually quite reasonable. Both the model and the

experiment show a broad range of frequencies. The experiment shows higher peaks at the

higher frequencies, especially at later times. At later times, the model tends to settle in at a

third radial mode (at approximately 10.5 kHz), since the liquid is injected about a third of the

way from the centerline to the wall. Figure 45 compares the transforms for the barrel gauge.

The agreement is good for the lower frequencies, but the model totally fails to pick up the

frequencies from 10 to 20 kHz.

One of the problems in analyzing the experimental data has been the unexpected wide

range of frequencies. The expected acoustic modes of the chamber are fairly small (first

radial is around 4 kHz). In liquid propellant rockets, if oscillations occur, they generally match

the lower acoustic modes (Harre 1972). However, the operating pressures for a gun are

much higher than for a rocket. Large amounts of liquid have to be injected into a small

volume. The energy density is much greater than for a rocket.

One proposed mechanism has been a random combustion model (Haberi and Pasko

1990). That is, a cloud of droplets in a small volume ignites and bums very rapidly,

generating a pressure pulse. Since the liquid is injected rapidly, a dense cloud of liquid is

expected to be formed, and combustion may not be immediate. Groups of droplets could be

exposed to hot gas by vortex shedding, or combustion in a volume could be started by a

previous pressure pulse. For a previous version of the two-dimensional code, in which the

two-phase equations were not implemented, assuming random combustion was the only

mechanism which was found to generate high frequencies (Coffee 1990).

However, with the present version of the model, higher frequencies are generated

naturally, without the necessity of putting in a random element. The liquid is injected into a

82



700.0

600.0
S

- 500.0

-J
o 100.00

* 300.0

cD 200.0
..n ! o~0
L
C-

100.0-

0.0 ,-
0.0 5.0 10.0 L5.0 20.0

tLme (ms)

Figure 41. 155-mm Gun, Shot 65. Proiectile Velocity. Lumped Parameter Model (line).
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Figure 43. 155-mm Gun, Shot 65. Chamber Pressure. Fourier Transforms, 12 to 13 ms.
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Figure 45. 155-mm Gun, Shot 65. Gun Tube Pressure. Fourier Transforms, 14 to 15 ms.
Experiment (line). Model (dot).

small volume. This small volume combusts rapidly and generates a high pressure region.
The pressure is kept high for a short period by inertial confinement, and a pressure pulse is
generated. These pressure pulses bounce off the walls and interact with the accumulated

liquid.

The complicated frequency structure is probably due in part to the complicated geometry

of the chamber. The two-dimensional model was also run without the gun tube model. That

is, outflow conditions were implemented at the entrance to the gun tube, with the pressure just

outside the chamber obtained from the lumped parameter code. Figure 46 compares the

early frequencies from the model with and without the gun tube. Without the gun tube, the
frequencies correspond to a third radial mode with overtones. With the gun tube, the structure

is more complicated. The tentative conclusion is that the more complicated geometry causes
more structure in the frequencies. In the actual gun, the control piston extends into the

chamber, and there is chambrage from the chamber to the tube.

The presence of oscillations in the gun tube has been taken as evidence that liquid must

enter the tube and combust there. While the agreement between model and experiment at
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Figure 46. 155-mm Gun. Shot 65. Chamber Pressure. Fourier Transforms, 10 to 11 Ms.
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the barrel gauge is less impressive, the model does show that pressure oscillations can reach

far down tube. Figure 47 shows the liquid volume fraction in the chamber (volume of liquid

over total control volume). The graphs shows the chamber from centerline to wall. The liquid

combusts well before the entrance to the gun tube. Figure 48 shows the corresponding

pressure.

Of course, the model greatly simplifies the injection process. The model does not include

the actual jet breakup, the heat transfer to the liquid, and the ignition process. Nevertheless,

the model demonstrates that even if the combustion is confined to the chamber, pressure

waves can still propagate down tube.

9. CONCLUSIONS

A two-dimensional model of the combustion chamber/gun tube of a regenerative liquid

propellant gun has been developed. The code has been extensively checked over a series of

test problems. The code has been compared with experimental data for two cases-a Sandia
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Figure 47. 155-mm Gun, Shot 65. Chamber Uquid Volume Fraction. Time = 10 ms.

A

Figure 48. 155-mm Gun, Shot 65. Chamber Pressure. Time = 10 ms.
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test chamber and an actual 155-mm gun firing. While agreement between model and

experiment is not exact, the qualitative features of the experimental data are reproduced.

There are some known weaknesses in the model. The geometry is restricted to simple

cylinders. The liquid and gas always move at the same velocity (infinite drag). The actual

injection process is greatly simplified (that is, the let breakup, heat transfer, and ignition

process is not included). The first two weaknesses can be fixed. However, the details of the

injection process are not well understood.

It has long been a puzzle why high frequency oscillations are generated in large caliber

liquid propellant guns. The present model indicates this is related to the rapid irection of

large amounts of liquid propellant into a small volume. Due to the large pressure sensitivity of

the burning rate, large pressure pulses are generated just by inertial confinement. These

pressure pulses bounce off the walls of the chamber and further interact with the unburned

liquid. In liquid propellant rockets, the rate of injection of liquid per unit volume is much

smaller.

There are several possibilities for reducing or eliminating the oscillations. If the burning

rate exponent was smaller, oscillations would not be generated because the combustion

would not be sensitive to pressure. However, no known reasonable propellant has a small

enough exponent. Alternately, the burning rate could be increased, so that the liquid

combusts almost as soon as it enters.the chamber. If there is no liquid accumulation, there is

no way to generate a local high pressure pulse. This can be done mechanically, by breaking

up the jet into small droplets. There has been some success in the Sandia test fixture using

a splitter plate just inside the chamber (Rychnovsky 1991). Alternately, the propellant could

be chemically changed to bum more rapidly. A propellant with these properties is about to be

tested (Klein, Coffee, and Leveritt, to be published). Also, there are devices to damp out

oscillations used in liquid propellant rockets, such as liners, quarter-wave chambers, and

Helmholtz resonators. The model presented here indicates that the mechanisms that create

the oscillations are the same as in liquid rockets, and the same damping methods should

work. Again, work with the Sandia test fixture shows some success, especially with liners.

However, the moving pistons make it difficult to implement these designs in an actual gun.
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LIST OF SYMBOLS

b - covolume, cm3/g

c - liquid sound speed, cm/s

c. - gas sound speed, cm/s

c - mixture sound speed, cm/s

c; - specific heat at constant pressure, J/g-K

c, - specific heat at constant volume, J/g-K

eL - chemical energy of the propellant, J/g

g0  - conversion constant = 10 g/MPa-cm-s 2

hL. - enthalpy of the liquid, J/g

h G  enthalpy of the gas, J/g

k - turbulent kinetic energy, cm2/s2

K, - bulk modulus at zero pressure, MPa

K2 - derivative of the bulk modulus

m - combustion rate, g/s

IM. - liquid mass, g

MG  gas mass, g

M - mixture mass, g

p - pressure, MPa

Pk - rate of production of kinetic energy, cm2/s3

RS - specific gas constant, J/g-K

S - surface area, cm2

t - time, s

T - gas temperature, K

u" - wall friction velocity, cm/s

vX - axial velocity, cm/s

vy - radial velocity, cm/s

VL - liquid volume, cm 3

V3 - gas volume, cm3

V - volume, cm3

V1  - Lagrangian volume, cm3

x - axial distance, cm
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y - radial distance, cm

e - turbulent dissipation, cm 2/s3

e - gas volume fraction

Y - ratio of specific heats

PL - liquid density, g/cm3

PG - gas density, g/cm3

p - mixture density, g/cm

- normal stress, g/cm-s2

S- normal stress, g/cm-s 2

- shear stress, g/cm-s2

i. - dynamic viscosity, poise = g/cm-s

1.4 - turbulent viscosity, poise = g/cm-s

v - kinematic viscosity, cm2/s
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