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Preface

These proceedings contain the papers presented at the 1992
Symposium on Interactive 3D Graphics held at the Royal
Sonesta Hotel in Cambridge, Massachusetts on March 29 -
April 1, 1992,

The symposium focuses on innovative 3D graphics architec-
tures and hardware, algorithms for generating visual, haptic
and auditory output, perceptual and psychological issues of
viewing and operating in complex virtual spaces, interactive
simulations distributed over local and long-haul networks,
real-time dynamics, and innovative human-machine interface
technologics and paradigms.

The call for participation was written in April, 1991, distrib-
utedat Siggraph'91, and disseminated throughout the graphics
community. The deadline for submission of extended ab-
stracts was September 18, 1991 at 5:00pra. Inkeeping withthe
rule applied for Siggraph conferences, this deadline was
strictly enforced, On September 19, the 69 submitted abstracts
were scanned by program co-chairs Ed Catmull and Marc
Levoy and distributed to a committec consisting of 24 promi-
nent rescarchers from the graphics, human-computer interac-
tion, and psychology research communities. Each abstract
received at least four reviews, and many received five, On
October 28, the program committee met at Stanford Univer-
sity and selected 30 papers to be published in the proceedings
and presented at the symposium, Submissions were accepted
citherasshortor long papers (4 pagesor 12 pagesrespectively)
and were designated as shortor long symposium presentations
(15 minutes or 25 minutes respectively).

To insure alively symposium and close interaction among the
participants, attendance was limited tounder 200 participants,
and the program was spiced with frequent panels, live demon-
strations, and social events, We were also privileged to have
asourkeynote speaker Andries vanDam, 1991 recipientof the
Steven A, Coons Award for Outstanding Creative Contribu-
tions to Computer Graphics, and as our capstone speaker
Stuart Card of Xerox PARC,

There are many people without whose volunteer effons this
symposium could not have succeeded. The chairs would first
of all like to thank the members of the program committee for
their reviews, their hard day’s work at Stanford, and their
numerous suggestions on the format of thus and future sympo-
sia:

Kurt Akeley, Silicon Graphics

Norm Badler, U. of Pennsylvania
Eric Bier, Xerox PARC

Elain Cohen, U. of Utah

Tom DeFanté, U, of Illinois - Chicago
Tony DeRose, U. of Washington

Tom Ferrin, U, of California at San Francisco
Alain Fournier, U. of British Columbia
Henry Fuchs, U. of N, Carolina at Chapel Hill
Paul Haeberli, Silicon Graphics

Pat Hanrahan, Princeton University

Paul Heckbert, U. of California at Berkeiey
Leo Hourvitz, NeXT Computer

S. Kicha Ganapathy, AT&T Bell Labs
Margarct Minsky, MIT

Eben Ostby, Pixar

Alex Pentland, MIT

Rich Reisenfeld, U, of Utah

Carlo Sequin, U. of Califomia at Berkeley
Spencer Thomas, University of Michigan
Brian Wandell, Stanford University

Lance Williams, Apple Computer

Andrew Witkin, Camegie Mellon University
Mike Zyda, Naval Postgraduate School

Special thanks are due to Dee Bell of Pixar, whose organiza.
tional skills kept the work flowing smoothly throughout her
advancing pregnancy, Kay Seirup of Pixar, who picked up the
torchand formatted these proceedings when Dee's pregnancy
became matemity, and Rhea Zdimal of Stanford, who orga-
nized the program committee meeting with skill and style, In
Boston, Janette Noss of the MIT Media Lab provided admin.
istrative and organizational support, and handled an infinity of
details for the symposium itself, Greg Tucker, also of the
MediaLab, valiantly provided support for the audio/visual and
demonstration equipment.

We thank Judy Brownand Steve Cunningham for their help
in obtaining ACM SIGGRAPH "in cooperation” status and
publication of these proceedings. Thanks to Nicholas
Negroponte and the MIT Media Lab for providing generous
support for color reproduction in the proceedings. Inaddition,
wealso wishto acknowledge the generous contributions of the
following organizations:

Office of Naval Research

National Science Foundation

USA Ballistic Research Laboratory
Hewlett-Packard

Silicon Graphics

Sun Microsystems

It has been a privilege to work with such an enthusiastic and
dedicated crowd of people. Although it is only December as
these proceedings go to press, inquirics conceming registra-
tion have beenrunning at feverpitch. Aswith the previous two
symposia, the strict attendance limit has generated contro-
versy and occasionally disappointment, but the program com-
miltee feels that the small size and narrow focus of the
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symposium are keys to its continuing success, We anticipate
aprovocative and inspiring symposium in March, and we look
forward to many repetitiors in the coming years.

David Zeltzer, Symposium Chair
Ed Catmull and Marc Levoy, Program Co-Chairs

December 1991



Fast and inexpensive computers and many productivity-
enhancingapplications have made computerusersofasignifcant
percentage of our population, professional and casual users
alike. And the advances in ease of learning and ease of use
made possible by modem user interfaces have helped immea-
surably in this process. These superior interfaces, made
possible by hardware such as bitmap graphics and the mouse,
depend on the contributions of user interface designers who
have created a new design discipline with its own tools and
methodologics.

Hardwarc advances continue unabated, and decreases by
a factor of two in price/performance occur almost ycarly.
Multimedia is today’s buzzword and the hardware support for
it, as usual, outpaces the software to exploit it. Low-level
hardware support for 3D realtime shaded graphics is alrcady
builtintoacommodity CPU chip (the Intel i860) and will soon
not just be part of workstations specialized for the nascent 3D
market but be integrated into entry-level workstations and,
shortly thereafter, personal computers. Indeed, distinctions
between workstations and personal computers will all but
disappear as they share more and more hardware and software
features. As forccast by Raj Reddy and others, affordable 3G
machines (gigalPS/FLOPS, gigabytc of main memory,
gigabaud communication) will appear on our desks before the
endofthe decade. They will also smooth-shade the equivalent
of 1 megapolygon/sec. Thus multimedia support and 3D
graphics will {inally become mainstream, integratedintocvery
desktop computer,

What new opportunitics do these exciting technology
developments make possible?

Can we expect paradigm shifts in computing akin to
those arising from Xerox PARC’s pionecring work on bitmap
workstations in the early seventies?

Thoseattending this symposium understand the impor-
tance and potential of 3D. They will therefore not be surprised
by my claim that one of the next major fronticrs in computing
is the introduction of realtime 3D graphics into existing
everydayapplicationsand the creation of new 3D applications.
The eightics were the decade in which computers and 2D
graphics finally became fast enough to run a host of 2D
interactive applications. These include drawing/painting pro-
grams, WYSIWYG word processors and desktop publishing
programs. The nineties will see a rapidly growing set of
interactive 3D applications, both the traditional applications
for specialists (e.g., 3D CAD/CAM, scientific visualization)
and those for both professional and casual users (e.g., 3D
illustration and animation programs, interior design and
walkthrough programs). There need not even be a ‘killer
application’ for 3D, akin to 2D’s spreadsheets or
wordprocessing, 10 justify its importance us a new dimension
in computer applications: I believe 3D will be found useful in
many applications today considered 2D.

Escaping Flatland in User Interface Design
Andries van Dam, Brown University

Spreadsheets are 2-1/2D already, and Xerox PARC has
used 3D widgets that cxploit real-time animation to visualize
data that is not intrinsically spatial, let alone 3D. CASE tools
that provide program and algorithm visualization will reap the
same benefits from realtime 3D graphics that science and
engincering obtain from scientific visualization technology
today. Electronic books, to be used, for example, for technical
documentation, education and entertainment, will contain
‘interactive illustrations’, i.e., user-controlled, model-driven,
rcal-timc animation, in addition to video. Many of these
models will be 3D vintual worlds; 2D illustrations can then
become an important special case of the more general 3D
illustrations,

While 3D has been prevalent for many years insuch ficlds
asmechanical CAD/CAM and scientific visualization, evenin
such applications the uscr interface has been largely 2D:
menus, dialogue boxces, stiders, etc. There are surprisingly few
3D widgets beyond 3D cursors, virtual sphere simulations of
3D joysticks, and gestural selection, translation and rotation.
Why this paucity? Among the rcasons arc that until very
recently 3D has been unavailable to interface and application
designers except on specialized, expensive platforms, An-
other reason is that 3D (and realtime animation) introduce rot
only new modalities of use butalsonew complexities, Further-
more, user interface designers have not had 3D toolkits for
constructing 3D widgets. Finally, little research hasbeendone
thus far on creating new 3D metaphors and interaction para-
digms. Even virtual reality research has had to focus on using
and improving the still primitive hardware technology. Yet it
is necessary not just for input and output hardware to continue
to evolve dramatically; it is cqually important that we stretch
our imugination to think of new ways of interacting with our
objects and data items and their interrelationships,

Among the issues that arise in designing 3D interfaces are
the tradeoffs between direct manipulation and indirect ma-
nipulation through a widget. Direct manipulation involves
widgets that have behavior but little or no geometry, such as
gestural control for selection, translation and rotation, Indirect
manipulation is done using 2D and 3D widgets that have both
geometry and behavior such as object handles in a drawing
program. Such widgets abstract out the salicnt parameters of
the objects to be manipulated and/or of the operations them-
selves. Another issue is the separation between interface and
application objects. Current user interface design favors
separating widgets from the objectsthey control, Such widgets
are constructed with thewr own design tools. In our paper in
these proceedings we advocate making widgets first-class
objects in the sune environment that contains the application
ubjects, and constructed wath the same tools. Examples of our
3D widgets will be shown, which we hope will sumulate the
3D research community to consider realtime 3D notonly as a
technology or applivation dumain bat also as a means for
creating engaging, productive user interfaces,

9 -0




Management of Large Amounts of Data in
Interactive Building Walkthroughs

Thomas A. Funkhouser, Carlo H. Séquin and Seth J. Teller
University of California at Berkeley?

YAbstract

We describe techniques for managing large amounts of data
during an interactive walkthrough of an architectural model.
These techniques are based on a spatial subdivision, visibility
analysis, and a display database containing objects described
at multiple levels of detail, In each frame of the walkthrough,
we compute 2 sct of objects to render, i.e. those potentially
visible from the observer’s viewpoint, and a set of objects to
swap into memory, i.c. those that might become visible in
the near future. We choose an appropriate level of detail at
which to store and to render each object, possibly using very
simple representations for objects that uppea: small to the
observer, therebs, saving space and time. Using these tech-
niques, we cull away large portions of the model that are ir-
relevant from the observer’s viewpoint, and thercby achieve
intcractive frame rates,

CR Categories and Subject Descriptors:
[Information Systems]: H.2.8 Dawbase Applications.
|Computer Graphics]: 1.3.5 Computational Geomeltry and
Object Modeling - geometric algorithms, languages, and
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visible linelsurface algorithms,

Additional Key Waords and Phrases: architectural sim-
ulation, virtual reality.
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1 Introduction

Intcractive computer programs that simulate the experience
of “walking” through a building intcrior arc useful for vi-
sualization and cvaluation of building models before they
are constructed. However, realistic-looking building mod-
cls with furniture may consist of tens of millions of polygons
and require gigabytes of data - far more than today's worksta-
tions can render at interactive frame rates or fit into memory
simultancously. Inorder to achieve intcrartive walkthroughs
of such large building moudels, a system must store in mem-
ory and render only a small portion of the model in each
frame; that is, the portion scen by the ovscrver, As the ob-
server “walks” through the model, some parts of the model
become visible and others become invisible; some objects
appear larger and others appear smaller. The challenge is to
identify the relevant portions of the model, swap them into
memory and render them at interactive frame :aces (at least
ten frames per second® ac the ebserver's viewpoint is moved
under user control,

Using the design of Soda Hall, a planned computer sci-
ence building at UC Berkeley, as a test object, we have com-
pleted the first version of a system that supports interactive
walkthroughs of large, fully furnished building models, Our
system builds upon pioncering work by Airey and Brooks
[1,2,5) and uses conceptual ideas going back to Jones [8] and
Clark [6]). The special features of our system are 1) a hier-
archical display database that describes the building model
as a sct of objects represented at multiple levels of detail;
2) a spatial subdivision and visibility analysis in which the
building model is divided into cells, and cell-to-cell and cell-
to-object visibility information is computed; 3) a real-time
memory management algorithm for swapping objects in and
out of memory as the observer moves through the model; and
4) a real-time refresh algorithm for choosing which objects
to render at which levels of detail in each frame.

1.1 System Qverview

Qur system is divided into three distinct phases as shown in
Figure 1. First, during the modeling phase, we construct the



building mcdel from AutoCAD floor plans and clevations,
and populate the model with fumiture. Next, during the pre-
computation phase, we perform a spatial subdivision and
observer-independent lighting and visibility calculations. Fi-
nally, during the walkthrough phase, we simulate an observer
moving through the building model under user control with
the mouse, rendering the model as scen from the observer's
vicwpoint in cach frame. The display database is the link
between these three phases. It stores the complete building
modcl, along with the results of the precomputation phase,
for usc during the walkthrough phasc.
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Figure 1: Systcm overview,
.
2 Modeling Phase

Our walkthrough system requires a detailed 3D model of a
building, coniplete with furniture and realistic materia! and
lighting information,

We first convert the raw 2§D model received from the ar-
chitects in AutoCAD DXF format [3] into a consistent 3D
representation in Berkeley UNIGRAFIX format [10). Un-
fornately, the raw architectural models that we received
were not true three-dimensional models and contained non-
planar faces, coincident coplanar faces, improper face inter-
sactions, and inconsisient face orientations. During vonver-
sion, our poograms |9) detect and automatically correct many
of these anomalies. Any remaining medeling errors are cor-
rected manually using interactive tools.

We then poputate the architectural model with stanrs, fumi-
ture ana sther objects thata user would expect to find inatyp-
ical building. We have generated highly detailed descriptions
for several pieces of furniture using inieractive modeling pro-
grame and received others from Greg Ward of Lawrence
Berhed v Laboratories. We place msteaces of these ubjects
v the bulding niodel using buth automativ and int. . .-
e placement programs, We have wnilten several progranis
that utuiiiatically place vbyects 1o specific v pes of oo
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based on sets of parameters. For instance, the “conference
room generator” places a rectangular or elliptical table in the
middle of a room, chairs all around it, a blackboard on onc
wall, a transparency projector on the table, and so on. The
“office generator” places a desk against one wall, a chair in
front of the desk, some bookshelves against the walls, and so
on. Numerous parameters are available for the user to control
the size, number and placement of objects with each of these
programs. We have aiso writicn a program for interactively
placing objects into a threc-dimensional model. It allows a
user to add, delete, or move object instances with regl-time
visual feedback.

Gradually, we load the walls and furniture of the build-
ing model into the walkthrough display database. The dis-
play database represents the building model as a sct of ob-
jects (c.g. walls, desks, chairs, telephoncs, pencils, etc.),
cach of which can be described at multiple levels of detail
{6). We construct less detailed representations of objects
from the highly detailed ornginals using an interactive de-
sign tool that allows a user to simplify 3D objects by deleting
and merging vertices and faces. For instance, we construct
five representations of a desk: 1) a highly detailed desk with
faces subdivided along gradicnts of radiosity, 2) a slightly
less-detailed desk with simple handles and larger faces, 3)
an cven less-detailed desk without any handles at all, 4) a
coarsely detailed desk with only legs and drawers, and 5) a
simple box. These object abstraction hicrarchics are adjusted
interactively so that transitions between levels are barcly no-
ticeabie as one zooms closer to an object and detail isrefined.
Levels of detail are chosen dynamically during the interac-
tive walkthrough phase to improve refresh rates and memory
utilization,

So far, we have built a completely furnished model of the
sixth floor of Soda Hall, the planned computer science build-
ing at U.C. Berkeley. This floor model has a total of 2,320
objects, represented at up to five levels of detail, and contains
over 400,000 faces, requiring 68MB of storage. Color Plate
I shows a top-view of the model.

3 The Precomputation Phase

After the complete building model has been loaded into the
display database, we distribute the modef into a spatial sub-
diiston and perform a wisibility analysis of the model cells
and objects. The resulting information is stored inthe display
database for use by the display and memory management al-
gorithms during the walkihrough phase,

3.1 Spatial Subdivision

We suvdivide the model using a variant of the k-D wee
data structure [4].  Splitting planes are introduced along
the myjor opaque ¢lements in the model, namely the walls,
dour frames, floors, and ceilings (detaiis are given in [11])




The subdivision terminates when all sufficiently large, ax-
ial opaque elements in the model are coplanar with an axial
boundary plane of at least one subdivision lcaf cell,

After subdivision, cell portals (i.c., the transparent por-
tions of shared boundarics) arc identified and stored with
cach leaf ccli, along with an identifier for the neighboring cell
to which the portal Icads (Figure 2). Enumerating the portals
in this way amounts to constructing an adjacency graphover
the leaf cells of the subdivision; two leaves (nodes) are adja-
cent (share an cdge) if and only if there is a portal connecting
them. All the visibility computations to be described exploit
the adjacency graph data structure.

This procedure can be applicd quickly. At the cost of per-
forming an initial O(n Ig n) sort, the split dimension and ab-
scissa can be determined in time O(f) at cach split, where f
is the number of faces stored with the node. We have found
that these subdivision criteria yield a trec whose cell structure
reflects the “rooms” of our architectural model. For our floor
model with 1920 split faces, the subdivision created 1280
cclts and 3600 portals in 23 scconds.

3. Celi-to-Cell Visibility

Cnee the spatial subdivision has been constructed, we com-
pute and store cell-to- cell visibility for each lcaf cell, i.e. the
sct of cells visible to an observer able to look in all direc-
tions from any position within the cell. The cell-to-cell vis-
ibility for a cell C' contains exactly those cells to which an
unobstructed sightline lcads from C'. Such a sightline must
be disjoint from any opague clements and must intersect, or
stab, a porial in order to pass from one cell to the next (Fig-
urc 2). Sightlines connecting cells that are not immediate
neighbors must traverse a portal sequence, cach member of
which lics on the boundary of an intervening cell. We have
implemented a proc “dure that finds sightlines through axial
portal sequences, or determines that no such sightline exists,
in O(nlgn) time, where n is the number of portals in the
sequence [7).

Figure 2: Stabbing an axial portal sequence in three dimen-
sions.

We compute the cell-to-cell visibility by constructing o
stabtree for each leaf cell C of the Lubdivision [11] as shown
in Figure 3. Each node of the stab tree corresponds to a cell
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visible from C'; each edge of the stab tree corresponds to a
porial stabbed as part of a portal sequence originating on a
bouvndary of C. The stab tree is constructed incrementally us-
ing a constrained depth-first scarch on the adjacency graph
As each cell is encountered by the depth first scarch, it is
cffectively marked “visible™ by its inclusion into the source
cell’s stab tree. For any source cell C, we say thatacell Ris
reached if R is in C’s cell-wo-cell visibility sct.

3.3 Cell-to-Object Visibility

Cells that arc immediate neighbors of the source cell are en-
tirely visible 10 it, since the cycpoint can be placed on the
sharcd portal, Cells farther away from the source, however,
are in general only partially visible to an obscrver in the
so. ‘cc cell. This is due to the fact that, as the length of a
portal sequence increases, the collection of lines stabbing the
cntire sequence typically narrows.

Casting the sightline scarch as a graph travessal yield; a
simple method for computing the partially visible portion of
cach reached cell, First, the traversal orients cach petal cn-
countered, since the portal is traversed in a known airection,
Thus cach portal contributes a “lefthand” and a “righthand”
constraint to the sct of sightlines stabbing the sequence. The
result, after stepping through n portals in the plane, is a
bowtic-shaped bundle of lines that stabs every portal of the
sequence, and which “fans out” beyond the final portal into
an infinitc wedge. This wedge can then be clipped to the
boundary of the reached cell. In our three dimensional mod-
cls, all porials are axial rectangles, so any portal sequence
can gencrate at most three pairs of bowtic constraints (one
from each collection of portal edges parallel to the £, y, and
z axes). Color Plate I depicts the clipped polyhedral wedges
for a source cell in three dimensions,

We define cell-to-object visibility as the sct of objects that
can be scen by an observer constrained to a given source cell
C (but, again, frec to move anywhere in C and look in any
direction). For cach reached cell R, we compute a superset
of C”s cell-to-object visibility in R by assembling a set of
halfspaces bounding the portion of R visible from C', We
then store with C those objects in £ that are completely or
partially inside the assembled halfspaces. One special case
cxists: all objects in C”s neighbor cells are tagged as visible
from C without any bowtic computations,

Figure § depicis this process in two dimensions, using a
simplified floorplan of our three-dimensional test model, The
ubjects found potentially visible from the source (the filled
squares in Figure 5) are associated with the source cell and
reached cell in a compacted representation of the stab tree.
Later, in the interactive walkthrough phase, this object List
will be retrieved and culled dynamically based un the ub-
server’s position and view direction,
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Fizure 4: In general, only a fraction of the reached cell is
visible to the source.
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Figure 5: Computing cell-to-object visibility; the filled
squares are marked visible.

4 The Display Database

The results of the modeling and precomputation phas2s arc
stored in a display database designed specifically to identify
and swap relevant objects into memory quickly as the ob-
server moves through the model during the interactive walk-
through phase. The structure of the display database is shown
in Figure 6.

Cell

Visibility Information
Extent
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Portal Object
Visibility Information
Extent Extent

Geometry
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Figure 6; A structural diagram of the display database show-
ing entities (boxes) and relationships (diamonds).

4.1 Segments

All entities (e.g. cells, portals, objects, ctc.) are stored in
segments in the display database. A scgment is simply an
abstraction for a variable-sized contiguous group of bytes
in a display database file that can be read and rcleased as
a unit. Each segment is represented by its size, a byte offset
into a file, and a pointer into memory. as shown in Figure 7.
The arrangement of bytes in a segment is identical in mem-
ory and on disk so that only pointers within a segment must
be updated when a segment is read (requiring onc addition
per pointer); there is no need to allocate extra memory or to
move or copy bytes. With these propertics, scgments can be
swapped quickly in and out of memory,

All relationships (e.g. adjacent, incident, visible, ctc.) are
stored in segment references in the display database. A seg-
ment reference can be represented by cither an integer seg-
ment ID (if it has not yet been read into memory) or a pointer
10 a segment’s gata in memory. At any time, a segment ref-
erence may be read (converted from an 1D to a pointer) or re-
leased (converted from a pointer to an ID). A reference count




is stored with each segment so that segments can be read and
released through multiple segment references quickly and
transparently.
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Figure 7: The implementation of display database segments,

4.2 Layout

Since the latency overhead of each rcad operation is rela-
tively large, we group the segments for all objects incident
upon the same cell contiguously in the display database file.
‘This layout allows us to utilize the cell-to-cell visibility in-
formation from the precomputation phase to load groups of
objects (those likely to become visible at the same time) into
memory in asingle 10 operation. If an object is incident upon
more than one cell (i.c. straddles a cell boundary), then we
store it redundantly, once for each cell,

Furthermore, we store descriptions of all objects incident
upon the same cell at the same level of detail contiguously in
the display database, as shown in Figure 8. Within a single
cell, the object headers appear first, followed by descriptions
of the objects at increasing levels of detail. As a result, all
objects incident upon a cell at or up to any level of detail
may be read at once in a single read operation during the
interactive walkthrough phase.

S The Walkthrough Phase

During the walkthrough phase, we simulate an observer
moving through the architectural model under user control,
The goal is to render the model as seen from the observer’s
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Figure 8: The layout of objects incident upon the same cell
in the display database,

viewpoint in a window on the workstation display at intcrac-
tive frame rates as the user moves the obscrver’s viewpoint
through the model.

The primary problem is that building models are very large
and so 1) do not fit into memory, and 2) cannot be rendered
completely in an interactive frame time. Thus we must iden-
tify a small, but relevant, portion of the model to store in
memory and torender in cach frame. We use the results of the
visibility precomputation along with the object hicrarchy of
the display database and dynamic culling algorithms to iden-
tify which objects are visible to the obscrver, and choose an
appropriate level of detail for ecach one. We load into mem-
ory and render only relevant levels of detail for potentially
visible objects.

5.1 Display Management

We use two techniques toreduce the amount of data renderced
incach frame: 1) we compute the subset of objects visible to
the observer using a real-time visibility analysis based on the
results of the precomputation phase, and 2) we choose an ap-
propriate level of detail at which to render cach visible object
from the object hicrarchy constructed during the modeling
phase. Using these techniques, we are able to cull away large
portions of the model that are irrelevant from the observer’s
viewpoint, and therefore achieve much shorter refresh times.
Morcover, computations are done in parallel with the display
of the previous frame and do not increase the effective frame
time,

Visibility Analysis

To compute the set of objects to render for a given observer
viewpoint, we first identify the cell containing the observer’s
position and fetch its cell-to-object visibility from the display
database. Since the cell-to-object visibility contains all ob-
jects visible from any viewpoint in a given cell, it is always
a superset of the objects actually visible to o particular ub-
server in that cell. Tus typically a small subsct of the entire
model.




Since the observer is at a known point and has vision lim-
ited to a view cone emanating from this point, we can cull
the set of visible objects even further. We define the eye-to-
cell visibility as the set of all objects incident upon any cell
partially or completely visible to the observer (the light stip-
pled regions in Figure 9). Clearly, the eye-to-cell visibility
is also a superset of the objects actually visible to the ob-
server. The visible arca in any cell is always the intersection
of that (convex) cell with one or more (convex) wedges em-
anating through portals from the eycpoint. To compute the
eye-to-cell visibility, we initialize the visible area wedge to
the interior of the view cone, and the eye-to-cell visibility to
the source ccll. Next, we perform a constrained depth-first-
scarch (DFS) of the stab tree, starting at the source cell, and
propagating outward. Upon encountering a portal, the wedge
is suitably narrowed, and the newly reached cell is added to
the eye-to-cell visibility set. If the wedge is disjoint from the
portal, the active branch of the DFS is terminated,

Finally, we estimate the eye-to-object visibility, a nar-
rower superset of the objects actually visible to the observer,
by generating the intersection of the cell-to-object and cye-
to-cell sets, For example, consider the observer viewpoint
shown in Figure 9. The cye-to-object visibility set (filled
squares) contains all objects in the intersection between the
cell-to-object (all squares) and eye-to-cell (gray regions)
sets. Itis a small subset of all objects in the model, but still
an over-cstimate of the actual visibility of the observer, In
Figure 9, only ong square lics in a cell visible to the obscrver
and can be scen from some point inside the cell containing
the observer, but is not visible from the observer’s current
viewpoint. Color Plate I1I depicts the eye-to-object visibility
set for this observer viewpoint in three dimensions.
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Figure 9: Eye-to-object visibility, Shown arc only the po-
tentially visible objects, i.e. the black objects from Figure 5.

Object Hierarchy

After we have culled away portions of the model that are in-
visible from the observer’s viewpoint, we can further reduce
the number of faces rendered in each frame by choosing an
appropriate Ievel of detail at which to render each visible ob-
ject. Since the image must ultimately be displayed in pixels,
itisuseless torender very detailed descriptions of objects that
are very small or far away from the observer and which map
to justa few pixels on the display (Figure 10). Likewise, it is
wasteful to render details in objects that are moving quickly
across the screen and which appear blurred or can be seen
for only a short amount of time (Figure 11). Instead, we can
achicve the same visual effect by rendering simpler represen-
tations of these objects, consisting of just a few faces with
appropriate colors. This is a technique used by commercial
flight simulators, however little has been published on these
systems [12].
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Figure 10: Perceptible detail is related to apparent size.
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Figure 11: Perceptible detail is related to apparent speed.

Rather than rendering all objects at the highest level of
detail in every frame, we choose a level of detail at which to
render cach object based on its apparent size and speed from
the point of view of the observer. For each level of detail, we
estimate the size of an average face in pixels, and the speed
of an average face in pixels per frame. We render an object




at the lowest Ievel of detail for which the average size of a
face is greater than some threshold, and the size of an average
face divided by its speed is greater than another threshold. If
cither of these values is less than the corresponding threshold
for all available levels of detail of an object, we render the
object at its lowest level of detail.

As the observer moves through the medel, an object may
be rendered at different levels of detail in successive frames.
Rather than abruptly snapping from one level of detail to the
next, we blend successive levels of detail using partial trans-
parency. Since the complexity of any level is typically small
compared to the onc of the next higher higher level (by more
than a factor of two), the extra time spent blending the two
levels during transition docs not constitute an undue over-
head, considering the small fraction of objects making a tran-
sition at the same time.

5.2 Memory Management

Since the entire model cannot be stored in memory at once,
we must choose a subset of objects (o store in memory for
cach frame, and swap objects in and out of memory in real-
time as the observer moves through the model, As a min-
imum, we must store in memory all objects to be rendered
in the next frame. However, since it takes a relatively large
amount of time to swap data from disk into memory, we must
also predict which objects might be rendered in future frames
and begin swapping them into memory in advance. Other-
wise, frame updates might be delayed, waiting for objects to
be read from disk before they can be rendered,

Asdescribed in Section 4.2, we group cach level of detail
for allobjects incident upon the same cell contiguously in the
display database. Totake advantage of the rclative efficiency
of large 10 operations, we always load all ebjects incident
upon the same celi into memory together at the same level of
detail. Thus, our memory management algorithm must com-
pute for cach frame which cell contents (o store in memory
at which levels of detail,

In general, we store in memory the contents of the cells
containing the objects most likely to be rendered in upcom-
ing frames. Specifically, we determine which cells are most
likely to contain the observer in upcoming trames, and store
in memory all objects incident upon cells visible from any of
these cells. Each time the observer steps across a cell bound-
ary, we traverse the cell adjacency graph, considenng cells
in vrder of the minimum amount of time before the cell can
possibly contain the observer using a shortest path algorithm.
The user interface also enforces some limits on the size of
a step or turn that the observer may take in a single frame.
For each cell C, visited in the search, we mark and claim
memory for the contents of all cells visible from C in the
direction of the observer’s frustum up to the precomputed
maximum level of detail at which any object incident upon
the cell might be rendered for an observer in C'. Qur search
terminates when all available memory has been claimed or
when we have considered all possitie observer viewpoints
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more than some maximum amount of time in the future. We
then read the contents of all newly marked cells into memory,
possibly replacing the contents of unmarked cells.

For instance, consider the observer viewpoint shown in
Figure 12, Cells are labeled by the minimum amount of time
(in seconds) before they can possibly become visible to the
observer; and shaded by the level at which their contents are
stored in memory - darker shades represent higher levels,
The cells surrounded by the thick-dashed line represent the
cells visited during the scarch, i.c. the range of observer po-
sitions for which we store visible objects in memory.
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Figure 12: Cells labeled by the number of scconds before
they can possibly become visible to the observer, and shaded
by level of detail stored in memory (a darker shade repre-
sents - hioher level of detail). White cells are not loaded into
memasy.

6 Results and Discussion

In this section we present and analyze test results collected
during real interactive walkthroughs performed with our sys-
tem. During these tests, we logged statistics regarding the
performance of our display and memory management algo-
rithms in real time as a user walked through the building
model,

We present results for one observer viewpoint used as an
example in the previous discussion (marked by an ‘A’ in Fig-
ure 13), as well as for a full sequence of observer viewpuints
generated during an actual walkthrough alung the path shown
in Figure 13). The path is about 300 feet long, and a real-
istic physical walk along it should take approsimately une
muinute. All tests were performed on a VGX 320 Silicon
Graphivs workstation with two 33 MHz prucessurs and 64
MB of memory.
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Figure 13; Test path through the building model.

Display Management

Asdiscussed in Section 5,1, we compute the set of potentially
visible objects by gencrating successively smaller supersets,
culling away objects invisible to the observer, The sizes of
these sets, and the times (in seconds) required to render them
arc shown for viewpoint ‘A’ in Table 1 and averaged over the
test walkthrough path in Table 2, On average, we are able to
cull away 94% of the model and reduce rendering time by
a factor of 17 by rendering only objects in the eye-to-object
visibility sct rather than the entire building model.

Culling # # Draw | %of
Method Objs. | Faces | Time | Model
Entire model | 2,320 | 242,668 | 3.77 | 100%
Cell-to-cell 1,065 | 109,227 | 1717 | 45%
Cell-to-object | 558 | 40475 § 065 | 17%
Eye-to-ccll 241 | 30,265 | 052 | 12%
Eye-to-object | 165 | 18927 | 033 | 7.8%

Table 1: Visibility cull results for vicwpoint ‘A’

Culling ft # Draw | % of
Method Objs. | Faces | Time | Model
Entire model | 2,320 | 242,668 | 3.66 | 100%

Cell-to-cell 778
Cell-to-object | 440
Eye-to-cell 207
Eye-t0-object | 141

78475 | 122 | 32%
36921 | 059 | 15%
20,657 | 034 | 8.5%
13,701 | 0.23 | 5.6%

Table 2: Average visibility cull results for test walkthrough.

We further reduce the number of faves rendered at each
frame by chousing un appropriate fevel of dewil at which

to render each potentially visible object based on its appar-
ent size and speed to the observer. Statistics regarding the
number of faces and the time required to render cach frame
using diffcrent pixels-per-face thresholds for viewpoint ‘A’
and averaged over the test path are shown in Tables 3 and 4,
respectively. Usable rendering modes for which little or no
degradation in image quality is perceptible (> 256 pixels per
face), are shown in bold typeface.

Color Plates 1V, V and VI show the difference between a
static image produced using the highest level of detail for all
objects (Plate IV) and one gencrated with reduced levels of
detail for objcts with fewer than 256 pixcls per face (Plate
V). Plate IV has 23,468 faces and took 0.34 seconds to ren-
der, whercas Plate V has 7,555 faces and took 0.17 seconds,
These images were rendered without interpolated shading or
antialiasing in order to accentuate differences - notice the
reduced tessetlation of the chairs further from the observer,
Plate VI shows which level of detail was used for cach object
inPlate V (a darker shade represents a higher level of detail),

Overall, after computing the set of potentially visible ob-
jects and choosing an appropriate evel of detail for cach ob-
ject, we are able to cull away an average of 97% of the build-
ing model and reduce rendering time by an average factor of
39 in each frame.

Min, Pixels # # Draw | %of
Per Face | Objs. | Faces | Time | Model
0 165 | 18,927 | 0.33 | 7.8%

64 165 | 11,763 | 0.26 | 4.8%

128 165 | 8,861 | 0.22 | 3.6%
256 165 | 6,204 | 0.17 | 26%
512 165 | 3889 | 0.13 | 1.6%

1024 165 | 2871 | 0.12 | 1.2%

Table 3: Average detail cull results for viewpoint *A’,

Min. Pixels # # Draw | % of

Per Face | Objs. { Faces | Time | Model
0 141 | 13,701 023 | 5.6% |

64 141 | 9,700 | 0.18 | 4.0%

128 141 | 7979 | 0.16 | 3.3%

256 141 | 6,176 | 0.14 | 2.5%

512 141 | 4745 | 0.12 | 2.0%

1024 141 | 3427 | 0.10 | 14%

Table 4: Average detail cull results for test watkthrough,

Memory Management

As described in Section 5.2, the memory manager trics 10
store in memony the objects incident upon the cells that are




most likely to be visible to the observer in upcoming frames
in order of decreasing urgency. One of the two processors of
the VGX is used for pre-fetching data concurrently with the
rendering of the current frame. The results presented here
were gathered from a walk along the test path shown in Fig-
ure 13, Since the current floor model is not very large com-
parcd to the memory capacity of our machine, we impose an
artificial SMB limit on the amount of object data that can be
stored in memory at any one time. As the observer, “walks”
along the path, we swap data in and out of memory, never ex-
ceeding the 8MB limit. We are still experimenting with tech-
niques to control the intcraction between our memory man-
agement algorithm and the paging of the operating system.
Thus the data below must he regarded as tentative and rather
preliminary, More reliable data will be gathered orce the
fully furnished model of the whole building becomes avail-
able.

Figurc 14 shows a plot of the number of bytes that must
be in memory in order to render the visible parts of the scene
(lower curve); superimposced is a plot of the number of bytes
our algorithm loads into memory in preparation for possible
ncar-terin observer moves. As expected, these amounts of
dia fluctuate strongly depending on whether the observer is
in a relatively simple part of the model with rather confined
vicws, or whether the visible cells stretch out to great depth
along severl directions. In all, we rcad 52MB during the
261 frames.

Megatyie

Figure 14: Comparison of the amounts of data fetched from
disk (top curve) and actually needed for rendering (bottom
curve) while fotlowing the walkthrough test path; marked
spots correspond to the labels shown in Figure 13,

In general, we are able to pre-fetch objects before they are
rendered, and so the observer can move smoothly through the
model. However, there are a few cases in which the mem-
ory manager is not able to predict winch objects are going
10 become visible to the observer far enough in advance to
pre-fetch them, and o the user may have to wait while they
are read into memory. As the observer tuens a comer i a

corridor, the visible sct of objects can change dramatically
This prompts a request for a large amount of new data to
be loaded into memory. For the worst-case corners (labels
‘B’ and 'C"), the coprocessor is busy for about 8 scconds to
prefetch on the order of 2 MB of data that might be used in
the near future. However, the amount of data necded imme-
diately for the rendering of the next frame is much smaller;
because of parallel processing, resulting obscrvable dclays
arc on the order of a couple of seconds for a worst-case sit-
uation in our model. We arc developing more scphisticated
pre-fetching technigues that use a better prediction of the ob-
server’s motion.

7 Conclusion

Our paper describes a system for interactive walkthroughs
of very large architectural models. It builds a hicrarchical
display database containing objccts represented at multiple
levels of detail during the modeling phase, performs a spa-
tial subdivision and visibility analysis during a precomputa-
tion phase, and uses real-time display and memory manage-
ment algorithms during a walkthrough phase to judiciously
select a relevant subsct of data for rendering, We have im-
plemented a first version of this system, ang tested it in real
walkthroughs of a complctely furnished model of the sixth
floor of the planned Computer Science building atUC Berke-
ley. Our initial results show that these display and memory
management techniques are effective at culling away sub-
stantial portions of the model, and make interactive frame
rates possible even for very large models.
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Abstract

This paper intreduces an efficient object-precision
shadow generation algorithm for static polygonal
environments directly illuminated by convex area light
sources, Penumbra and umbra regions are calculated
analytically and represented as a pair of BSP trees for each
light source, As the trees are built, convex scene polygons are
filtered down the trees, and split into fragments that are wholly
lit, in penumbra, or in umbra. The illumination due to the light
source is calculated at selected points within the wholly lit and
penumbra regions by contour integration with the visible parts
of the light source. We use a fast analytic algorithm to
compute the fragments of the area light source visible from a
point in penumbra, Rendering is done using hardware-
supported linear interpolated shading on a 3D graphics
workstation.

Because the scene itself is represented as a BSP (ree,
visible-surface determination may be performed by using
either workstation-supported hardware (e.g., a z-buffer) or
software BSP-tree traversal. We provide sample images
created by our implementation, including timings and polygon
counts,
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Introduction

Shadow generation is a classic problem in 3D computer
graphics that has been addressed by a wide variety of
algorithms (13, 22}, Point light-source shadow algorithras
essentiatly compute the visibility of parts of the environment
from a point at the light source; therefore any point in the
environment is either fully in or out of shadow, In contrast, in
an environment lit by area light sources, a point in the
environment may be either visible to the entirety of the light
source, visible to no part of the light source (i.e., in the light
source's umbra), or visible to only a portion of the light source
(i.e., in the light source's pemumbra). In this latter case, to
compute the point’s illumination, it is also necessary to
determine which portions of the area light source are visible
from the point. Since real light sources are not points and
therefore cast both umbrae and penumbrae, an area light-
source shadow algorithm can be used to create pictures that
are more photorealistic in appearance than those created with a
point light-source shadow algorithm,

Shadows from area light sources have been computed
using radiosily approaches [9, 6], by summing the
contributions of an approximating set of point light sources
{5], by ray tracing shadow cones from points in a scene to
spherical light sources [1}, by distributed ray-tracing [10], and
by an object-precision algorithin developed by Nishita and
Nakamae {17). With the exception of this single object-
precision algorithm, all the other algorithms approximate the
shadow boundaries on the vbjects in the scene, For each pair
of a light source and a polyhedral object, Nishita and Nakamae
compute the volume that the object fully shadows from the
light source (its umbra volume) and the volume that the object
partially shadows from the light source (its pemumbra volume).
The ntersections of these volumes with the other objects in
the environment are computed and gwide the caleulation of the
luminativn at selected puints i the ubjects, For example, o
puitit 1s fully shadowedaf itis included 1o at least voe umbra
volume.

The algunthim that we describe here s inspir2d in part by
thus work; unlike Nistuta and Nakamae, however, we buld o
single merged umbra volume and penumbra volume for each
light source. Furthermore, these volumes are represznted as



BSP trees [14, 15, 21, 16] using an efficient extension of the
earlier BSP-tree-based shadow algorithm for point light
sources 7). Although subdivision is always done along exact
shadow boundaries, further subdivision may be necessary to
compute illumination more accurately. We have used both
regular gridding and adaptive subdivision of fragments in the
penumbra and wholly lit regions to compute the illumination
at additional points.

Background

The binary space-partitioning (BSP) tree visible-surface
algorithm was developed by Fuchs, Kedem, and Naylor [14],
based in part on the work of Schumacker [19, 20]. A BSP tree
defines a recursive partitioning of space by planes that embed
the polygons in the scene. The tree’s root is a polygon chosen
from those in the scene. This polygon’s plane partitions space
into two half-spaces: the “positive” half-space contains all
other polygons in front of the root’s plane (on the side into
which its normal points); the “negative” half-space contains all
polygons behind the root’s plane. If a polygon straddles the
root's plane, it is cut by it and each of its pieces is assigned to
the appropriate half-space, One polygon each from the
positive and negative half-spaces are then selected to become
the root’s children. Each child is then recursively used to
divide the remaining children in its half-space in the same
way. The tree is complete when each leaf node contains a
single polygon whose half-spaces are both empty. The BSP
tree visible-surface algorithm is a modified inorder traversal of
the scene’s BSP tree, guided by a simple comparison of the
eyepoint with each polygon's plane; this determines in O(n)
time a back-to-front ordering of the polygons for any eyepoint.

Thibault and Naylor [21}] shewed that BSP trees can be
used to represent polyhedral solids, Each of the empty regions
at the leaves is associated with a value of either “in” or “out”.
Assuming that each polygon :hat bounds a polyhedron hasa *
normal that points out of the polyhedron, then an “in” region is
bounded in part by the polygon’s negative (back) half-space
and an “out” region is bounded in part by the polygon’s
positive (front) half-space. The RSP tree’s leaf nodes
tessellate space into a set of convex polyhedral regions, a
subset of which (the “in” regions) represent the solid.

The point light-source shadow algorithm described in (7,
8] uses BSP trees to model the polyhedral shadow volumes
{11] cast by convex polygons. We call the BSP wree
representation of the shadow volume the SVBSP (Shadow
Volume BSP) tree. A regular BSP tree is first constructed for
all polygons in the scene. (Note that if the scene 1s modified,
then the scene BSP tree must be recaleulated.) The scene BSP
tree allows the shadow algourithm to obtun all seene polyguns
effiviently in front to back order relative to an arbitrary poit
light suurce. Only scene pulygons that face the hight are
selected. The point light svurce and the first scene polygon
chusen define tugether a shadow volume that is 4 semi finte
pyramid. Each of the pyramid’s faces s canbedded i 4 plane
defined by the light svurce and an edge of the svenie polygon.
A puint will be in shadow if it lies withia the pyranud snd in
the scene polygon’s negative half-space. The scene polygon is
itself fully lit.

Because of the frunt-tu back urder imposed by the BSP
tree traversal, cach new scene puly gon prucessed 1s guataniteed

not to block any of the previously selected scene polygons
from the light. It may be wholly or partially in shadow itself,
however. To determine which parts of the new polygon are
visible from the light source, we must partition the polygon
nto parts that are inside and outside the current SVBSP-tree
shadow volume. Note that these is no need to compare the
new polygon with the planes that embed the previous scene
polygons, since the BSP-tree traversal order ensures that the
new polygon does not lie between the light source and the
preceding scene polygons. Those parts of the new polygon
that are inside the shadow volume are in shadow; those parts
that are outside it are lit. Furthermore, any parts that are
outside define additional shadow volumes that must be added
te the SVBSP tree. The point light-source algorithm
efficiently combines these two steps of classifying polygon
fragments and enlarging the SVBSP tree by using a simplified
version of the Boolean set union operation algorithm presented
in [21]. Each remaining polygon is processed in this fashion
to determine which of its parts are shadowed.

Like the BSP-tree point light-source shadow algorithm,
our BSP-tree convex area light-source algorithin supports
multiple light sources. The area light-source algorithm
extends the point light-source algorithm by classifying
polygons into fragments that are wholly lit, in pcnumbra
(partially blocked from the light source), or in umbra (wholly
blocked from the light source), To do this, we must first
defing the umbra and penumbra volumes of an area light
source.

Constructing Penumbra and Umbra
Volumes

In environments composed of convex polygons
illuminated by convex light sources, the penumbra and umbra
volumes associated with a single scene polygon can be
constructed entirely from three kinds of planes:

o scene polygon planes, a single one of which is
defined by the scene polygon itself.

o light-source vertex planes, defined by a vertex of
the light source and an edge of a scene polygon,
oriented so that the scene polygon is entirely in
the plane’s negative half-space or on the plane.

o light-source edge planes, defined by an edge of
the light source and a vertex of a scene polygon,
oriented so that the scene polygon is entirely in
the plane’s negative half-space or on the plane,

We use Nishita and Nakamae’s critena for deternuning
thuse planes that define the penumbra and uinbsa volunes of
scenie polygon. The penumbra volutie 1s the mtersection of
the scene pulygon’s negative half space wath the negative half
spaces of certamn hight svurce vertex planes and hght soutce
edge planes. These Light source vertex planes and Light soutee
edge planes are thuse fur which the vertices of the light source
are ¢ntirely in the plane’s pusitiv ¢ half space or v the plane.
(The penumbra v vlume actually cocloses potits w wnbra, as
well as those in penumbra.)

Figure 1 shows the penumbra cast on a large polygon by a
triangle light source dlununating 4 quadrilateral seene
polygon. Dashed lines passing from cach Light soutee vertex tu



Figure 1: Penumbra of area light source, with light-
source vertex planes and light-source edge
planes.

Figure 2: Penumbra and umbra, with light-source vertex
planes and light-source edge planes,

all scene polygon vertices define the light-svurce vertex planes
and hight-source edge planes. (The additional fragmentation
surrounding the penumbra outline 1s caused by the algorithm’s
classification process, which we describe later.) Note that the
planes that bound the penumbra volume are those that have the
light source in their positive half-space and the scene polygon
in their negative half-space. Thus, any point in the positive
half-space of such a plane cannot be blocked from any part of
the light source by the scene polvgon.

The umbra volume, which 1s contained enturely withun the
penumbra volume, 1s the mtersectun of the seene pulygon’s
negattve half-space with the negative halt-spaces of certan
light-source vertex planes. These light-source vertex planes
are those fur which the vertices of the hight svurce are entuely
in the plane’s negative half-space or un the plane. No hight-
source edge planes contribute to the umbra volume.
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Figure 3: Shadows cast by 3 point light sources at the
vertices of an area light source.

Figure 2 shows the same scene as Figure 1 with the umbra
included. Note that the dashed lines that lic in the planes that
define the u:gna outline do not always pass through the umbra
outline’s vertices,

Figure 3 shows an alternative, but exactly equivalent, way
to define the umbra and penumbra volumes. They can be
derived from the shadow volumes gencerated when the convex
scent polygon is illuminated by point light sources at the
convex area light source’s vertices. (The additional
fragmentation of the ground plane is caused by the BSP-tree
point light-source shadow algorithmn used to create this figure.)
The arca light source’s umbra volume contains those points
that are blocked from all of the area light source’s vertices.
This corresponds to the intersection of the point light-source
shadow volumes, which is detined by the set of light-source
vertex planes specified previously.

The union of the point light-source shadow volumes
encloses all points that are blocked from one or more vertices
of the area light source, This is only a subset of the light
source’s penumbra volume, however, since it does not include
those points thai are visible from all the area light source’s
vertices, but are blocked from part of the area light source’s
interior. It can be shown that to enclose these points the
penumbra volume must be the convex hull of the point light-
source shadow volumes. The convex hull is defined by the set
of light-source vertex planes and light-source edge planes
specified previously.

Overview

Instead of the single SVBSP wree required by the point
light source shadow algorithm, we use two BSP trees: a
penumbra tree and an umbra tree {8). Each BSP tree interna’
nude is defined by a light source vertex plane or light source
edge plane.

Much bike the point hight sourve shadow alzerithm, two
steps must be performed for each scene poly gon:




 Classifying the polygon into wholly lit, penumbra,
and umbra fragments.

¢ Enlarging the penumbra and umbra trees with
light-source vertex planes and light-source edge
planes defined by the polygon.

The classified fragments must then be illuminated and
scan-converted,

Algorithm

Preprocess. An obvious approach to classification would
be to compare each scene polygon with the shadow volume of
every other scene polygon. However, polygons that are not in
the same half-space of a polygon as the light source cannot
cast shadows on that polygon or any other polygon in the light
source’s half-space. Therefore, as in the point light-source
shadow algorithm, we first compute a BSP tree for the entire
scene. This allows us to perform a modified inorder traversal
of the tree to process scene polygons in front-to-back ordes
relative to the light source.

Unlike a point light source, an area light source may not
lie entirely in a single half-space of a scene polygon. If this
occurs, choosing different points on the area light source will
generate different BSP-tree traversal orders. To obtain a
unique order, we first split each area light source by those
scene polygons that intersect it and that are in the lit half-space
of the light source’s plane, Since each of the resulting light
sources is wholly on one side of each scene polygon, any point
within the light source will generate the same front-to-back
ordering of the scene polygons. For convenience, we pick the
centroid of each resulting area light source as the point from
which to compute the ordering. We must also ensure that each
scene polygon that straddles a light source plane is split by the
plane,

Classification. Classificalion and tree enlargement are
interleaved as they are performed incrementally for ez h scene
polygon in front-to-back order. Therefore, the two shadow
trees represent the merged penumbra and umbra volumes of all
the scene polygnns processed thus far. Classification ovcurs
by filtering each polygon down one or both shadow trees,

This process is applied recursively until all of a polygon’s
fragments reach the “in” and “out” leaves.

A polygon is first Lilrered down the penumbra tree. Any
fragment that reaches an “out” cell is marked as wholly lit and
will not be compared with the umbra tree. (Recall that the
umbra volume is wholly contained within the penumbra
volume, so any fragment outside the penumbra volume cannot
be in umbra.) Any fragment that reaches an “in” vell is at least
in penumbra and may be in umbra. Each such fragment must
then be fittered down the umbra tree. Any fragment that
reaches an umbra tree ““out” cell is in penumbra, whereas any
fragment that reaches an umbra tree “in” cell is in umbra. The
penumbra and umbra BSP trees are enlaiged by unioning them
with the penumbra velume and umbra volume, respectively,
defined by the full sc 'n¢ polygon, We trivially classify as in
umbra any polygon that 1s in the back half-space of a light
source, without any need for filtering. In addition, if we
assume that polygons are “-ne-sided” and that they bound
closed polyhedra, we can ais» trivially classify as in umbra all
polygons that are back-facing relative to the light source.
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As in the earlier point light-source algorithm, multiple
area light sources are supported by pipelining. The fragments
classified relative to one light source must be used as input to
the algorithm when processing the next light source. Thus,
when all light sources have been processed, each of the output
fragments is uniquely classified relative to each of the light
sources. (See the pseudocode for the algorithm in the
appendix.)

Example. Figure 4 shows how the algorithm handles a
simple example. For ease of explanation, the figure is drawn
in 2D and thus shows umbra and penumbra areas cast by a
linear light source on lines in the plane. (In 2D, only light-
source vertex edges are needed, but the definitions are the
same otherwise.)

Initially, both shadow trees are null (“out™), as shown in
Figure 4(a). Polygon 1 is first filtered down the penumbra tree
and is trivially classificd as fully lit. Because no part of the
polygon was classified as in penumbra, no classification is
done using the umbra tree. Next, as shown in Figure 4(b),
polygon 1's penumbra is used to enlarge the penumbra tree,
Rather than using the many lit fragments that may have been
identified, the original polygon is used instead. In 2D, this
results in a union with polygon 1 and light-source vertex
planes a and b, which define polygon 1’s penumbra volume.
Although polygon 1 was not classified using the umbra tree, it
must be used to enlarge the umbra tree and results in a union
with volume defined by polygon 1 and the light-source planes
wand v

Next, polygon 2 is classified, as shown in Figure 4(c).
Much like polygon 1, polygon 2 is classified as wholly lit
relative to the penumbra tree and is not classified using the
umbra tree. The penumbra tree is then enlarged with polygon
2 and planes ¢ and d, and the umbra tree is enlarged using
polygon 2 and planes w and x. (Figure 4d). Unlike polygon 1,
however, polygon 2's addition to the merged umbra volume is
not semi-infinite.

Polygon 3 is more interesting. When it is classified
against the penumbra tree, as shown in Figure 4(e), it is split
by face @ into fragments 3.1 and 3.2, Fragment 3.1 is
classified as “out” (i.e., wholly lit), while fragment 3.2 is
tlassified as “in” (i.e., in some combination of penumbra and
umbra). Therefore, only fragment 3.2 must be filtered down
the umbra tree. When this is accomplished, the umbra tree’s v
plane further subdivides fragment 3.2 into fragments 3.2.1 (in
penumbra) and 3.2.2 (in umbra), At this point, both shadow
trees are enlarged using the original polygon 3, as shown in
Figure 4(f). This results (in 2D) in the polygon fragment 3.1
and plane e being added to the penumbra BSP tree and a
volume defined by planes y and z and 3*, the fraction of
pulygon 3 not in umbra, being added to the umbra BSP tree.

Hlumination

After cdassifying all fragments by all ight sources, we
need to illuminate them. We use an analytic direct diffuse
illumination model [17] based vn contour itegration, wiich 1s
evaluated at polygon vertices within the penumbra and wholly
lit regions. Unlike full global dlumination algonthms,
interreflections are not computed. Points in umbra are It by
4an ambient hgh' component alvne. In vur implementation,
interpuldted shading 1s performed using 3D graphies hardware.
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Figure 4: Classifying polyguns and enlarging the penumbra and umbra BSP trees. Parts (a-f) show penumbra and umbra
volumes (areas) and their wrees during the classification of three polygons (lines),

Although the classification process divides pulygons
along precise shadvow buundanes, large pulygons may remain
that are homogeneously lit or in penumbra. While direct
illumination should vary continuously across these surfaces,
linear interpolation dues not adequately represent these
changes and dues not alluw any pulygun interivr pixel tu be
bnghter than the polygon’s vertives, Therefore, llumination
must be computed at additional points within the scene. In the
pictures included here, we subdivide wholly lit and penumbra
regions using regular grids of user-specified granularity. We
generally use a finer grid in the penumbra region, since the
intensity typically changes more quickly than in an equivalent
wholly lit region. The umbra region is not subdivided because
it receives only constant ambient illumination. Subdivision is
performed after classification, since it has no eftect on the
precision at which classification occurs and would increase the
classification overhead if performed first. BSP-tree
subdivision can often generate thin sliver polygons thai can
cause shading anomalies. Better results would be obtained
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with an adaptive subdivision algorithm that attempted to
generate well-shaped fragments frum these putentially
problematic fragments [3].

Diffuse illumaation equation. Tu determine the
illuminativn at a point that is wholly lit, we perform contour
integratiun with the light source from the puint being lit, as
described in [17]. The diffuse illumination at puint p due o
the light-source is computed as

ll n
Y o cos(B).
v=)
where [ is the light svurce intensity, 2 1s the number of
vertices of the hight source, o 15 the angle between the vector
from p to light-source vertex v and the vector from p to hght-
source vertex v+1, and {3, 1s the angle between the plane
defined by the two vectors used to compute o and the plane on
which p lies, (The cosine of B may be computed as the dot
product of the normalized suiface normal at p with the cross
product of the normalized vectors used 1o define a,.)

lp=

|




Figure 5: Penumbra volume of a single polygon.

Analytic visibulity for pesumbra vertices. For points in
penumbre, we must determine the fragments of the light
source that are visible from the point. We accomplish this
with a simplified version of the earlier point light-source
shadow algorithm. By traversing the scenc BSP tree, we can
obtain all polygons between the point whose illumination is
being computed and the plane of the light source, (Whether
the traversal order is back-to-front or front-to-back is
unimportant.) As before, we consider only those scene
polygons that are front-facing relative to the light source (i.e.,
back-facing relative to the point being illuminated).

For each scene polygon, we clip the light-source polygon
by the point light-source shadow volume defined by the point
in penumbra and the edges of the scene polygon. The portion
of the light source that is inside this volume is discarded and
the portions that are outside are retained for comparison with
the next scene pelygon’s volume, (Since the original light-
source polygon bounds any light-source fragments produced,
it can be used to do an extent check if desired.) The fragments
remaining when the BSP-tree traversal encounters the light-
source polygon are those that are visible from the point in
penumbra and we sum the illumination contributed by each
light-source fragment.

Discussion and Implementation

In the BSP-tree point light-source algorithum, the SVBSP
tree was enlarged to reflect a polygon’s contribution to the
shadow volume by using a simplified version of the set union
algorithm described in {21]. This simplification ignored any
part of a polygon that fell within the existing volume. It used
only planes determined by those fragments of the polygon that
were wholly lit. For a point light source, the volume
determined by these planes is guaranteed not to intersect the
existing shadow volume. (In other words, no fragment it by a
poim light source casts a shadow that falls within the shadow
cast by any other lit fragment.) Tius 1s not the case for
penumbra volumes, however., The penumbra volume cast by
one polygon may intersect the volume cast by another.
Therefore, a regular BSP-tree set union operation [21] must be
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Figure 6: Incorrect merged peaumbra volume of two
polygons.

——

——me

Figure 7: Correct merged penumbra volume of two
polygons,

performed.

Figure 5 shows the penumbra volume defined by a single
scene polygon. Figure 6 shows the incorrect results that occur
if a second scene polygon is added and the planes defining its
penumbra volume are not continued into the penumbra volume
of the original polygon. In this case, the penumbra volume of
the second polygon considered by wself is sumlar to that of the
first polygon and overlaps the first polygon’s penumbra
volume. Tius new penumbra volume crosses over the leftmost
light-source vertex plane bounding the first poiygon’s
penumbra volume. Part of the second polygon’s contribution
to the merged penumbra volume 1s 1gnored, resulting 1., the
penumbra gap shown at the bottom of the figure. Figure 7
shows the correct merged penumbra volume that results when
the original volume 1s enlarged prog=rly by unioning the
second polygon's penumbra volume with the current
penumbra BSP tree, taking into account the possibility of




# input  shadow grid illum total  output actual illuminated

Plate lights polygons time (sec) time (sec)  time (sec) time (sec) polygons vertices vertices
1,2 1 14 0.3 0.6 22 3.1 747 1341, 1668, 231 494, 437,61
34 1 149 134 53 105.4 124.1 3348 3125, 8556, 3043 1576, 2512, 839
5 2 70 8.6 102 308,379 875 4085 6768, 4627, 5791 2211, 1140, 1823
7969, 5847, 3370 2608, 1429, 1132

6 2 151 35.8 232 178.1,247.2 4843 9344 10821, 14938, 13458 3904, 3839, 4008
12599, 16594, 10024 4352, 4424, 2944

Figure 8: Statistics ! °r color plates. All timings are given in elapsed wall-clock seconds for an HP 9000 380 (22 MIPS, 2.6
MFLOPS). Input polygon count takes into account splits caused by building the scene BSP tree. Shadow time is
the time to classify the input polygons. Grid time is the time to subdivide the wholly lit and penumbra regions to
produce the output polygons. Illumination time is the time to determine illumination values for the output vertices.
Actual vertices lists the numbers of wholly lit, penumbra, and umbra vertices. Illuminated vertices lists the
numbers of wholly lit, penumbra, and umbra calculations performed, which is lower than the actual vertex count
because of vertex sharing. (Figures 5 and 6 have one illumination time for each light source, and one set of vertex
statistics for each light source, Note that the sum of the actual wholly lit, pecnumbra, and umbra vertices is the same

for each light source in these figures.)

overlapping volumes.

If the penumbra volume were incomplete, fragments that
were contained in the volume’s missing parts wouid be
marked as wholly lit and would be incorrectly illuminated.
Therefore, it is essential that the entirety of the actual
penumbra volume be represented. In contrast, since the umbra
volume is contained within the penumbra volume, if the umbra
volume were incomplete, fragments that were contained in the
wibra volume’s missing parts would be marked as being in
penumbra. Since the illumination algorithm correctly
Jetermines that these fragments are wholly blocked from the
light, they will be correctly (albeit expensively) illuminated.

It is interesting to note that unioning each polygon’s
umbra volume with the existing umbra volume does not create
the complete set of all points that are fully blocked from the
light source. Instead, it creates the set of all points p such that
there is at least one polygon that fuily blocks p from the light
scurce. That is, the union of the individual polygon umbra
volumes does not contain those points that are fully blocked
from the light source only because of the contributions of
multiple blocking polygons. An example of this oceurs in
Figure 4(f). Points in the gap between planes v and y at the
bottom of the volume are fully blocked from the light source
because of the cornbined effect of polygons 1 and 3, yet do not
lie in the merged umbra volume,

As with most analytic algorithms, car: must be taken to
contend with finite floating-point precision. To avoid
problems, as polygons are split, the plane equations are
copied, not recomnuted. A similar method can be used to
guarantee that split edges remain truly collincar. When a
polygon edge is split, we also insert the new vertex in any
other polygon tha: shares the edge. This prevents the shading
discontinuities that would be caused by a “T” vertex. The
verte« at whicii a split occurs is also shared among the
polygon’s fragments. This allows each vertex’s illunination
computation tu be performed only once. It also makes it easy
to determine the kinds of fragments that share a given vertex.
If a vertex is shared by a wholly lit fragment and & penumbra
fragment, we treat the vertev as wholly it fur both, eliminating
the need for the ligh.-source visibility test, If a vertex is
shared by a wholly ht fragment and an umbra fragment, it 1»
treated differently in each to preserve the boundary. We

currently do not promote vertices shared by both penumbra
and umbra fragments to umbra vertices. This avoids the
possibility of smearing a full umbra shadow into a penumbra
fragment when the umbra fragment is bloched by an object
that does not block the penumbra fragment. This is similar to
the problem of “light leaks” [6], in which a polygon is
straddled by a partition that blocks light from some of its
vertices, even though illumination leaks under the partition
through interpolated shading.

Another possible optimization that would reduce
fragmentation is to merge fragments together when both
subtrees were classified as “in” or or as “out” [8). Since a
penumbra volume extends infinitely far past the object that
casts it, we have also considered some approaches to
restricting its extent, similar to Bergeron’s use of end caps un
shadow volumes to eliminate the need to perform shadow
computations outside of a light’s “sphere of influence.” [4).

The area light-source algorithm has been implemented in
C on an HP 9000 380 TurboSRX workstation, and the results
are displayed interactively using hardware interpolated
shading. Because the scene polygons are represented as a BSP
tree, either the hardware z-buffer or a software BSP-tree
visible surface algorithm van be used to render the scene,

Pictures. Colur Plate 1 shows two vbjects floating in air
and one triangle light source with their penumbra and umbra
regions, The light grey and dark grey fragments are in
penumbra and umbra respectively, while the colored
fragments are wholly lit. The wholly lit and penumbra
fragments have been gridded after Lassification, Note the
band of penumbra separating the umbta regivns of buth
ubjects. As described abuve, this strip should be  uiibra, but
will be properly illuminated because the dluunation
cumputation determines that its vertices are unlit. The sate
scene after illumination and uterpolated shiading 15 showu
Color Plate 2.

Color Plate 3 shows a rvom withi vtie quadrilateral area
light suuree and gray fragments to represcat the regions
wentified as beanig in penuimbra aud uibra, Colur Plate 4
shuws the rout as i appears after dlumtation and shading,
Color Plate 5 shows a different view of ¢ sinpler version of
the room without the playpen, luttinated by iwo guadiilateral
light suurces. Culur Plate 6 shows the samie suete as Culor




Figure 9: Room scene classified, 2 lights.

Plate 4, illuminated by both light sources, Figure 8 provides
statistics for the color plates. Figure 9 shows the room
depicted in Color Plate 6, prior to illumination, with the
fragments produced by classification with both light sources
and gridding.

Note that the most expensive part of the algorithm is the
illumination phase, which need not be accomplished if the user
is interested only in classifying objects according to their
visibility, which is necessary in a number of applications in
areas such as computer vision and graphics {12).

Conclusions and Future Work

The algorithm described here analytically generates
penumbra and a subset of the umbra for static convex
polygonal environments illuminated by convex area light
sources. It is relatively simple to implement, places no
restrictions on the location of objects and light sources, and
runs efficiently for small scenes on modern workstations with
hardware 3D graphics support. To generate further points at
which illumination is sampled, we have implemented both
regular gridding and simple adaptive subdivision of those
fragments that are wholly lit or in penumbra.

We believe that an efficient analytic shadow algorithm
would be useful in multiple passes of a radiosity approach (not
just for the initial light-source calculations, as implemented in
[18]). If selected radiators were treated as area light sources,
object-precision shadow boundaries could be determined,
instead of the relatively coarse boundaries obtained with
current adaptive meshing techniques. This may make it
possible to create more accurate images, with the illumination
contour integral used to caleulate analyti form factors (2] that
properly take intu account obstructions, guided by the shadow
(i.e., visibility) classification phase.
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Appendix: Pseudocode

procedure generateShadows (ALSlist, BSPtree)

for each node n in BSPtree ; scene BSP tree
copy n.scenePolygon into n.fragmentList
endfor

for each als in ALSlist
centroid := centroid of als

pBSP := OUT_CELL ; penumbra BSP tree
uBSP := QUT_CELL ; umbra BSP tree

for each node n in BSPtree in front-to-back order
relative to centroid

; move n.fragmentList to fragmentList

: so that n.fragmentList can be recreated

; with fully classified and subdivided fragments
fragmentList := n.fragmentList

n.fragmentList := NULL

for each fragment f in fragmentList
if f not facing centroid OR als not facing t
mark f in umbra
n.fragmentlist ;= append(n.fragmentList,f)
else
; split f into wholly lit & shadowed fragments
: by filtering down pBSP

tempFragmentList := NULL
classifyWhollyLitOrShadowed
(als,pBSP {,&tempFragmentList)

: partition shadowed fragments into penumbra
; and umbra

for each fragment t in tempFragmentList
if t is shadowed
classifyPenumbradrUmbra
(als,uBSP t,&n.fragmentList)
else
n.fragmentList :=
append(n.fragmentList,t)
endif
endfor

; enlarge pBSP and uBSP trees

pv =
constructPolygonPenumbra(als,n.scenePolygon)

pBSP := union{pBSP,pv) ; see [21]

uv =
constructPolygonUmbra(als,n.scenePolygon)

uBSP := union{uBSP,uv)

endif
endfor ; fragment
endfor ; node

discard pBSP and uBSP

endfor ; als
endproc



procedure classifyWhollyLitOrShadowed
(als,pBSPf,fragmentList)

if (pBSP is a leaf)
if ("BSP == OUT_CELL)
mark { as wholly lit
else
mark f as shadowed
endif
fragmentList := append(fragmentList,f)
else
splitPolygon(pBSP.plans,f,&negPart,&posPart)
it (negPart |= NULL)
classifyWhollyLitOrShadowed(als,pBSP.negChild,
negPart,&fragmentList)
endif
it (posPart l= NULL)
classifyWhollyLitOrShadower !als,pBSP.posChild,
posPart,&fragmentL.ist)
endit
endif

endproc
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procedure classifyPenumbraOrUmbra
(als,uBSP,f fragmentList)

if (uUBSP is a leaf)
if (uUBSP == OUT_CELL)
mark f as penumbra
else
mark f as umbra
endif
fragmentList := append(fragmentList,f)
else
splitPolygon(uBSP.plane,f,&negPart,&posPart)
if (negPart != NULL)
classifyPenumbraOrUmbra(als,uBSP.negChild,
negPan,&fragmentList)
endif
if (posPart t= NULL)
classifyPenumbraOrmbra(als,uBSP.posChild,
posPart,&fragmentL.ist)
endif
endif

endproc
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Abstract

Designing the illumination of a scene is a difficult task be-
cause one needs to render the whole scene in order to look at
the result, Obtaining the correct lighting eflects may require
a long sequence of modeling/rendering steps. We propose
to use directly the highlights and shadows in the modeling
process. By creating and altering these lighting effects, the
lights themselves are indirectly modified. We believe this
new technique to design lighting is more intuitive and can
lead to a reduction of the number of modeling/rendering
steps required to obtain the desired image.

CR Categorles and Subject Descriptors: 1.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism.
Interaction techniques.

General Terms: Algorithms.

Additional Key Words and Phrases: extended light
source, shadow volume, soft shadows, hard shadows, inter-
active light modeling.

1 Introduction

An important research area of computer graphics consists in
simulating realistic pictures. Reality is modeled by observ-
ing and measuring its attributes. In a next step, the models
are rendered onto an image. In that sense, computer graph-
ics models the causes and renders the effects onto an image.
On the other hand, computer vision is interested in analyz-
ing an image. It tries to isolate certain effects in an image in
order to identify the causes, While the two processes might
seem to go on totally opposite ditections, it is interesting to
consider how advances in one direction might actually help
the reverse process.

In computer vision, highlight information has been used
to determine light direction or local shape orientation. Babu
et al. [babu85) study contours of constant intensity in an im-
anc to determine the orientation of planar surfaces under the
illumination of a directional light source. Buchanan {buch87)
fits ellipses to the highlights to obtain the same information
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granted provided that the copios are not made or distributed for
direct commercial advarage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
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and/or specific permission.
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for planar surfaces illuminated by point light sources.

One important aspect of most of these algorithms con-
sists in identifying the highlight area, This is not an easy
task as many of the algorithms for shape from shading [horn88}
require almost entirely diffuse surfaces,

When techniques are not restricted to diffuse surfaces,
they often rely on some kind of thresholding. The un-
fortunate reality with thresholding is that different values
of threshold can lead to relatively different shape of the
highlight and therefore, to different shape/light recovery.
Other techniques like Wolf’s use of polarization [wolf91] are
promising although require the presence of polarizing lenses
on the cameras capturing the scene.

Much useful information can also be extracted from the
shadow areas in an image [walt75] [shaf85]. These areas pro-
vide additional information on the shape of the object cast.
ing a shadow and even on the shape of the object on which
the shadow is cast. Moreover, they provide information on
the direction and the shape of the light sources, Unfortu-
nately, very little work has been involved in recovering the
shape of an extended light source, as recovering shape from
shading under a directional or a point light source is already
a difficult task.

Shadows are not easy to extract from an image. De-
tecting shadows can be done in a similar way than edge
detection by applying various edge enhancing filters. For
extended lights, the shadow edges are soft and the shadow
must be detected based on changes in the gradients of the
shading. Gershon [gers87) use gradients in color space to
determine if the region corresponds to a shadow region or
simply to a change of material. Textures can also defeat
most of the techniques and must be carefully handled.

While modeling a scene, a user has access to important
information unavailable to computer vision, i.e. the geome-
try of the scene and the viewing projection parameters, To
better understand a 3D scene, the user can therefore move
the camera around, use at the same time several views of the
same scene, move objects, remove hidden surfaces, and all
of this in real time; however, so far, few applications use in-
formation about highlights and shadows in order to improve
on the modeling step in computer graphics.

This paper proposes to investigate how we can use high-
light and shadow information in order to help a user to define
the shape and position of a light source. It does not pre-
clude the previous ways of defining and positioning the light
sources, but enhances the whole process.




2 Defining and Manipulating Light Sources

With the advent of high performance graphics hardware,
it becomes possible to interactively create and manipulate
more and more complex models with a higher degree of re-
alism. Yesterday’s simple wireframe models can now be re-
placed by flat shaded polygons, Gouraud shaded and even
Phong shaded polygons, allowing for real time interaction
with the models. Hanrahan and Haeberli (hanr90] demon-
strate with their system how today’s graphics hardware could
be used to “paint® textures and various other surface param-
eters (transparency, perturbation of surface normals, etc.)
in a fully interactive system. This increase in rendering
power provides us with the possibility to investigate light
definition and manipulation from the highlights and shad-
ows it produces.

2.1 Lights from Highlights

In this section, the process of defining a light from its high-
lights is described, Its advantages are demonstrated and its
restrictions explained so one could better understand the
implications of using such a process.

Highlights are usually defined in the reflection models by
the specular term. Consider the specular term of Phong’s
shading [phon75] as expressed by Blinn [blin77]:

(N.m"

is the surface normal at a given point!

N

1! is the bisector vector of the eye direction and
the light direction

n  is the surface roughness coefficient.

()

where

This formulation tells us that for a given point on the
surface specified as the mazimum intensity of the highlight,
a unique directional light source can be determined as

L=2(N.-B)A -E

where £ is the eye direction.

The term mazimum intensity is not properly correct if
we think of it in the context of a complete shading model.
However we will use it here meaning maximizing equation
(1). It is interesting to note that other points on the surface
might reach this maximum but will never surpass it.

This simple relationship between the maximum inten-
sity of the highlight and light direction has been used in
the past. Hanrahan and Haeberli [hanr90] mention how
they can specify a light direction by dragging a highlight
on a sphere. This technique has also been previously imple-
mented in some modelers like a light modeler developed in
1983 at NYIT by Paul Heckbert (manipulating highlights
on a sphere) and a light editor written by Richard Chuang
around 1985 at PDI, which was used among others, to get
highlights to appear at the right time on flying logos. It also
came to the attention of the authors that a similar approach
to Chuang’s was used at LucasFilm to get the glare to ap-
pear at the crucial moment on a sword in the movie Young
Sherlock Holmes.

Our technique extends the basic approach in the above
systems by indirectly and interactively determining the sur-
face roughness coeflicient n in relation with the size of the
highlight. Here is how it works.

LAl vectars in this paper are assumed normahized
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Once the maximum intensity point of the highlight has
been chosen, the user drags the cursor away from this point.
At a new position on the surface, the surface normal is com-
puted. This new point is used to determine the boundary
of the highlight, i.e. where the specular term of (1) reaches
a fixed threshold t. To satisfy this threshold, n, the only
unknown, is easily computed as

_ logt

log(N - )

While only these two points on a surface are necessary
to orient a directional light source and establish the surface
roughness coefficient, they give almost no information on the
shape of the highlight. To approximate the contour of the
highlight, the pixel with the maximum intensity is used as a
seed point and the neighboring pixels covered by this surface
are visited in a boundary fill fashion until pixels on both
sides of the threshold are identified or until the boundary
of the surface is found. With this technique, the second
point might not appear within the contour of the highlight
determined from the seed point. If this happens, the second
point i< also used as a seed. Unfortunately, unless each pixel
covered by this surface is visited, some of the other highlights
produced by this light on this surface might be missed. If
the position of every highlight is necessary, the whole surface
is visited by the filling algorithm only on request from the
user because such a request can lead to considerable increase
in computation time.

When n has already been determined for a given surface,
care must be taken in order to keep a unique value {or n. If
another highlight is created on this surface, as soon as the
point with the maximum intensity is selected, the contour
of this new highlight is computed with the previous value
for n. However this value for n and the positior. of the high-
lights are not fixed and can be interactively changed because
some information is kept in a temporary frame buffer. In this
frame buffer, each previously visited pixel contains informa-
tion about its surface normal. The contour can therefore be
scaled down (i.e. a smaller highlight but a larger value for
n) very efficiently. If the contour is increased, only the un-
visited pixels need to have their surface normal determined.
Moving the contour on the surface is also possible although
more expensive if the highlight is moved to a completely
different location on the surface as many surface normals
might have to be computed. On some graphics hardware
like the VGX from SGI, information on the surface normals
can be obtained directly from the hardware and therefore al-
lows for even faster highlight manipulation. Figure 1 shows
the highlight produced by a directional light source over a
patch of the teapot. The white segment within the highlight
region represents the point of maximum intensity and points
towards the light direction.

Unfortunately, highlight information is dependent on the
eye position. Therefr -, if the camera is moved, every high-
light in the scene * .t be recomputed. Also, the points of
maximum intensity are not valid any more and consequently
every surface has to be scanned to recover every highlight,
an expensive process that one should try to avoid as much as
possible. This means also that a highlight computed in one
window would have a different definiticn in another window
with a different projection. To avoid confusion and increas-
ing too much the computing time, we decided to remove
every highlight information when the viewing parameters
are changed although we keep the light definitions. These
highlights are recomputed on request from the user.

®)




Figure 2: Incomplete highlight information

Another limitation of using highlight information to de-
scribe a light source resides in the fact that a highlight spec-
ifies only a direction. We therefore need more constraints
to use it to determine other types of light source. Such con-
straints exist for instance for polygonal light sources. As-
sume a plane on which a polygonal light resides. By adding
a highlight, a direction is established. The intersection be-
tween this direction and such a plane® defines a point light
source, a vertex of a linear or polygonal light source.

Torepresent highlights created by extended light sources,
the contribution of each vertex of the light is not sufficient
to determine the shape of the complete highlight. To display
this information, the boundary fill algorithm would have to
compute the specular integral for a linear light [poul91] or a
polygonal light [tana91] far each pixel to visit. Such integrals
are rather expensive to compute and in otder to achieve
real time, cheaper approximations based on precomputed
tables could be of some use here. We did not investigate
this approach in the context of this paper, relying solely
on the partial information provided by the light vertices as
shown in figure 2.

As it can be observed, highlight infurmation can be very
useful to specify directional light sources and surface rough-
ness coefficients. With extra constraints, they can even be

?Note that there might not be any intersection
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used to define point, linear and polygonal light sources al.
though creating an arbitrary plane in 3D is not necessarily
an easy task., Another technique, more flexible for extended
light sources, consists in using the shadow information to
define the light sources.

2.2 Lights from Shadows

Shadows are very important clues to help understanding the
geometry of the scene and ihe interrelationship between ob-
jects; in the context of this paper, shadows can reveal im-
portant information about the nature of the light sources.
We will define light sources by manipulating their shadow
volumes.> These shadow volumes have the advantage to de-
pend only on the lights and objects positions. Therefore, as
opposed to the case of the highlights, the camera position
can be changed without altering their description. More-
over, their definition is consistent for every projection, allow-
ing for multiple windows open with different orthographic
and perspective projections as used in most of the modeling
systems.

The shadow volume created by an object illuminated
by a directional light source consists of a sweep of the ob-
ject silhouette in the direction the light source shines. This
silhouette can be analytically determined for simple prim-
itives, computed for moderately complicated objects with
algorithms like in [bonf86], sampled by studying the varia-
tion of surface normals at the vertices of a tessellated object
or sampled using the information in a z-buffer projection of
this object. Specifying the direction of a directional light is
simply a question of choosing two atbitrary, although dif-
ferent, points in the scene. The second point will be along
the shadow cast by the first one. To move this shadow vol-
ume once defined, one needs to select a point on the shadow

3A shaduw volume formed by a single ubject and a directional or
a point light is the 3D volume within which every point is in shadow
of this object [crow?7) {berg86) For extended hght sources (linear,
polygonal), the shadow vulume 1s the 3D volume within which ever;
point 1s at least partly in shadow of this object
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Figure 4: Going from a directional light source to a point
light source

volume, The point on the object casting this shadow is
then identified, By dragging the cursor to a new location,
a new direction is computed, the direction of a directional
light source, Figure 3 shows a cylinder illuminated by a di-
rectional light source. For some primitives, computing the
exact silhouette can be expensive and not carry much more
information. In the case of this cylinder, each polygon ver-
tex forming the cylinder is simply projected in the direction
the light shines.

A dircctional light source can be viewed as a point light
source at infinity, If the point light source is not at infin-
ity, the silhouette defining the shadow volume can be differ-
ent than the silhouette defined by a directional light source,
Figure 4 illustrates the process of going from a directional
light soutce (figure 4a) to a point light source (figure 4b) by
modifying its shadow volume.

A point sny on the shadow volume is chosen. The point
snz on the silhouette casting shadow on the point sn, is
identified, This shadow segment sny — sn2 will now be con.
sidered as nailed and the point light source will reside on
the line extending this segment. By selecting another point
81 on the shadow volume, the point sz casting this shadow
on this point is identified. The nailed segment sny — sn;
and the point sz define a plane (sn; — snz — s3). By moving
the cursor, a point s] on this plane is located. s} now is on
the shadow cast by s2. The point light source is therefore
moved to p; as shown in figure 4b.

Once a point light source is created, it can be manipu-
lated in the scene by manipulating its volume shadow. This
can be done by fixing any shadow segment as previously
explained, or, if no shadow segment is nailed, by adding a
new constraint to the system by assuming for instance the
distance d from the light p, to the poir* ag a shadow
is constant. Combinations of these twu uct. ... are sufficient
to position almost any point light source in 2 scene.

In some rare configurations of a scene, some positions
might not be accessible. For instance, assume a scene is
made of a single flat polygon and of a directional light par-
allel to the plane of the polygon. In such a situation, the
light will never be able to escape the plane of the polygon.
Fortunately, this situation does not occur often in general
3D scenes, and so far combinations of moving the shadow
volumes with and without nailed segments proved to be suf-
ficient to position our lights.

It is important to note that the point sz might not lie
on the boundary of the shadow volume while the point light
source is moved around. However the real shadow volume is
always displayed so the user has a direct view of the altered
shadow.
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Figure 5: Umbra regioen in hatched undetected in the pro-
Jjection domain

To create extended light sources like linear or polygonal,
new point light sources are needed, defining the vertices of
the light source. The shadow volumes of each light vertex are
handled as normal point light sources although for polygonal
light sources with more than three vertices, care must be
taken so each light vertex will reside on the light plane.

Shadows of extended light sources are formed by the um-
bra and penumbra regions. The whole shadow region is de-
fined by the convolution of the object and the light source
in the projectioa domain [guib83). The umbra is defined by
the intersection of each shadow volume (one shadow volum:
per light vertex); the penumbra is the difference between the
whole shadow and the umbra. Nishita et al. [nish83] studied
the various parts of these shadow regions in 2D, once pro-
jected onto polygonal surfaces for shadow culling purposes.
Some problems occur when neither the object casting the
shadow or the light are limited to being convex. It can be
shown however that if both the light and the object are di-
vided into convex elements, the whole shadow is the union
in 3D of all the shadow convex hulls as:

For each convex light element
For each convex object element
Compute the convex hull of the shadow
volumes created by these tuo elements
Compute the 3D union of all these convex hulls

For now on, assume a polygonal convex light and a con-
vex object.

Assume an object does not intersect the light plane. All
the shadows lie on a plane parallel to the light plane but
located at infinity. As such, 2D convex hull algorithms can
be used to determine which part of the shadow volumes form
the 3D convex hull of the shadow volumes.

However computing the umbra region, i.e. the intersec-
tion of the convex hulls for each light vertex cannot be done
in 2D. Figuie 5 shows an exemple where using only the in-
formation in the 2D projection plane would fail to identify
the umbra region showed in hatched.

To recover the umbra region, one could intersect each
shadow polygon® of a light vertex shadow volume with each
other shadow volume of the other vertices of a single light.
This process can be very expensive as it is O((ps)?) where
p is the number of vertices of the light and s is the number

4The silhouette of the ubject can be discretized  Each puint cast
its shaduw an une direction Two cunsccutive puaits vi this sithou.
ette and their shadow direction define a quadrilateral with two of its
vertices at infimity
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Figure 3: Creating a directional light by its shadow

of shadow polygons forming the shadow volume, However
some improvements can be obtained by first projecting the
shadow quadrilateral onto the plane containing the convex
hull on the 2D projection plane,

Since we use Graham's 2D convex hull algorithm [sedg90),
the points of the shadow quadrilateral, once projected in 2D,
are converted in pseudo angles and an efficient combination
of angle comparisons and boxing allows for faster intersec-
tion culling.

This process could also be improved by using a different
data structure that might be more suitable for faster inter-
sections of half planes defined by the shadow quadrilater.
als. In object space, the binary space subdivision algorithm
haudling shadow volumes as presented by Chin and Feiner
[chin89] would be a good candidate to investigate, while in
scre n space the algorithm described by Fournier and Fussell
(four88] could be of use.

3 Results

A very simple modeler has been implemented in order to
test the techniques presented in this paper. The modeler
includes primitives like conics (sphere, disk, cone, cylinder),
squares, cubes, triangular meshes and Bézier patches. Fig-
ure 6 shows a glooal view of the modeler itself.

The co.'2, far from being optimized, is written under
GL and was developed and tested on an Iris 4D/20 with
z-buffer. This machine handles well a few primitives (= 10)
but as the scene complexity increases, a 4D/240 VGX be.
comes very handy. The VGX also allows for real time Phong
shading which is very useful to model a scene and when cre-
ating/manipulating shadows, but it can lead to some minor
difficulties when creating highlights, because the threshold
t must be adjusted to the SGI's Phong's shading implemen.
tation,

Figures 7 to 9 show a cone under a triangular light source.
At first, no convex hull is applied. In this image (figure 7},
it is easier to associate each shadow with a light vertex.
Once the convex hull is applied (figure 8), the silhvuctte
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of the penumbra is easier to detect. Notice the umbra re-
gion just under the cone, within the penumbra region. In
figure 9, the umbra and penumbra volumes are filled with
a semi-transparent mask. This representation gives a more
complete impression of the shadows that can not really be
shown here with a single image.

4 Conclusion

In this paper, we investigated using lighting effects, i.e. high-
lights and shadows, to define the lights themselves and spec-
ify their location. We showed some inherent limitations
with these approaches but also demonstrated a powerinl
new technique. This technique allows a user to interactively
manipulates highlights and shadows, which can be very im-
portant when designing a scene. In previous modeling sys-
tems, these effects were too often neglected. Therefore a
user needed to iterate between rendering the whole scene
and modifying the lights. It is a process that can be ex-
pensive depending of the quality of the rendering required.
Incorporating highlights and shadows in the modeling pro-
cess adds more information on the geometry of the scene
and its illumination which should help the user to under-
stand better the scene before even rendering it.

Our system, although simple, gives during the modeling
process direct information to the user on the lighting effects
since these effects are the objects being manipulated. This
direct manipulation is crucial as getting the right effect by
manipulating the causes is generally more difficult than ma-
nipulating the effects themselves.

We foresee that, as the graphics hardware improves and
as the CPU becomes faster, more and more effects available
once only at the rendering stage will become an inherent
part of the modeling stage itself. Real time Phong shading is
now becoming common with high-end modelers. These im-
provements will lead us to investigate more intuitive ways of
defining and cuntrulling these special effects. Although the
separation between computer graphics and cumputer vision
is still strung, we believe this will lead us to more and more
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Figure 6: Global view of the modeler
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Figure 7: Cone under a triangular light: No convex hull
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graphics in vision and more and more vision in graphics for
greater benefits to realism in graphics and scene analysis of
natural phenomena in vision.
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The Effect of Shadow Quality on the Perception
of Spatial Relationships in Computer Generated Imagery.
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ABSTRACT

The effect of shadow sharpness and shadow shape on the
perception of spatial rclationships was studied in three psy-
chophysical experiments. In each experiment, the accuracy with
which subjects were able to perform spatial estimation tasks was
measured while cither the sharpness or shape of the shadow was
varied,

The effects of shadow sharpness and shadow shape on the
aceuracy of size and position estimations were tested in the first
and sccond experiments respectively using fixed scaling tasks,
Neither variations in shadow sharpness or shadow shape had a
significant cffect on the accuracy of performance in the experi-
ments.

The third experiment tested the effect shadow sharpness on
the accuracy of performance in a shape matching task. In this
experiment, shadow sharpness had a significant effect on the ac-
cura~y of performance with soft edged shadows significantly re-
ducing the number of correct shape matches,

These results indicate that less physically accurate hard
edged shadow rendering techniques may be preferable in tasks
requiring accurate perception of an object's shape.
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1. INTRODUCTION

One of the difficult decisions facing the designers of appli-
cations for the interactive viewing and manipulation of virtual
spaces is determining the combination of rendering techniques
to use for the gencration of dispiays. Each rendering technique
provides a subset of the perceptual cues used in determining
spatial relations. The job of the designer is to maximize the spa-
tial information perceived by the user, without excecding the
computational limitations of real-time image gencration in the
target computing environnient,

Wanger, Ferwerda, and Greenberg [6),(7) ran several for-
mal - chophysical experiments to measure the relative effects
of a number of spatial cues on the performance of several spatial
manipulation tasks in a virtual space. One result of their ex-
periments was that shadows had a significant positive ¢ffect on
the performance of tasks requiring the determination of an ob-
ject's position and size.

Although these results indicate that shadows are a poweiful
cue for determining spatial relationships in many tasks, they do
not address the effect of the quality of the shadow on the per-
ception of the space, Since accurate shadow generation is com-
putationally expensive, it would be useful to understand the re-
percussions of various shadow approximations on the perception
of spatial relationshi; ~. This paper describes three psychuphysi-
cal experiments conducted to measure the cffect of shadow
sharpness and shadow shape on the perception of spatial rela
tionships in static computer generated images,

2. THE EXPERIMEN'TS

This sevtion deseribes the experiments purformed. Specific
details on the methods used for each of the experiments can be
found in Appendix A,

2.1 EXPERIMENT 1: EFFECT OF SHADOW SHARPNESS
ON THE PERCEPTION OF OBJECT SIZE AND POSI-
TION

The first experiment tested the effect of shadow sharpness
on the perception of object size and pusition estimations w4
fixed scaling task. In cach trial subjects wore prosented wali o
display of a virtual rovm on g monutor (Figure 1), Four blue
lines weie displayed un the fluur of the roon W provide 4 seale
for obpect depth (two at the front and wo at the rear of the
room), and four yellow lines were displayed on the back wall 1o




provide a unitless scale for object height. Five balls, increasing
lincarly in radial size from left to right, were disrlayed on the
floor near the front of the room to provide a scale for object
sizc, additionaily a sixth ball, the test ball, was suspended in the
room. Ii cach trial subjects were asked to type the answers to
the following tirrce questions on a keyboard:

1. Using the blue lines at the front and back of the
floor of the room as depths of 0.0 and 10.0 respectively,
what is the depth of the test object?

2. Using the yellow lines at the bottom and top of the
back wall of the room as heights of 0.0 and 10.0 respee-
tively, what is the height of the test object?

3. Using the right-most object in the line of objects at
the front of the room as a size of 1 and the left-most as a
size of 5, what is the size of the test object?

In addition to varying the size, height, and depth of the test
ball, onc of the following three shadow sharpness levels was
used for the test ball in each trial (Figure 2):

1. No shadows - The test object did not cast a
shadow,

2. Hard shadows - The test object cast a shadow with
a sharp boundary (i.¢. no penumbral region).

3. Soft shadows - The test object cast a complete
shadow with both umbral and penumbral regions accu-
rately rendered.

Twelve subjects were cach run through 36 triale represent-
ing one trial for each of the combinations of shadow level, test
ball size, test ball depth, and test ball height.

2.2 EXPERIMENT 2: EFFECT OF SHADOW SHAPE ON
THE PERCEPTION OF OBJECT SIZE AND POSITION

The second experiment tested the effect of shadow shape
on the perception of object size and position in a fixed scaling
task. The displays for Experiment two wtilized the same virtual
room as Experiment 1. However, barbells were used instead of
balls for both the size scale objects and the test object (Figure
3). For each trial subjects were asked the same three questions
as those asked in Experiment 1.

In addition to varying the size, height, and depth of the test
object, one of the following three shadow shape levels was used
for the test object in each wial (Figure 4)

1. No shadows - The test object did not cast a
shadow,

2. Bounding volume shadows - The test object cast a
shadow based on the its rectangular bounding volume.
This produced normal looking objects with "boxy” shad-
OWS,

3. "True" shadows - The test object cast a shadow
based on its actual geometry 1o produce properly shaped
shadows.

Twelve subjects were cavk run through 5 5:0als represent

ing une trial fur cach of the combunations of s Juw shape level,
test ball size, test ball depth, and test ball heig 1.
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23 EXPERIMENT 3: EFFECT OF SHADOW SHARPNESS
ON THE PERCEPTION OF OBJECT SHAPE

Expecriment three tested the effect of shadow sharpness on
the perception of object shape in a shape matching task. The
displays uscd in Expcriment 3 consisted of two windows (Figure
5). In the lower window five objects of revolution, numbered
from 1 to 5 from left to right respectively, were represented.
Each of these shapes were unique in both their shape and height,
but were identical as viewed from the basc along their major
axis. The top window displaycd a planc with the test object sus-
pended above it. The test object in the upper window was one of
the shapes from the lower window rotated such that only jts base
could be scen. In cach trial subjects were asked to type the iden-
tifying number of the shape from the lower window which cor-
responded to the test object in the upper window. In addition to
changing the light position, the shape of the test object, and the
clevation of the test object above the plane, cither the hard or
soft shadow sharpness levels described in Experiment 1 was
used in cach trial,

Twelve subjects were cach run through 90 trials represent-
ing onc trial for cach of the combinations of shadow sharpness
level, test object elevation, test object shape, and light position.
In addition, 5 trials without shadows were added as a control
condition to verify that the test object’s shadow was the only cue
provided regarding the test objects shape. This brought the total
1o 93 trials per subject.

3. EXPERIMENTAL RESULTS

This section describes the results of the experiments per-
formed. Details on the methods used to analy/ze the experiments
can be found in Appendix B. A detailed listing of the quantita-
tive results of the analysis can be found in {6).

31 EXPERIMENT 1

Statistical analysis of the results of Experiment 1 indicated
that the size, depth, and height of the test ball were all signifi-
cant factors in size, depth, and height estimation, but  tha
shadow sharpness was not a significant factor in any of the three
estimation tasks. Although the existence of shadow greatly in-
creased the accuracy of size and position (height and depth) es-
timations, the sharpness of the shadow did not have a statisti-
cally significant effect on the accuracy of the estimations,

A small, but swistically, significant interaction
(F(2,10)=4.296, p=0.0353)l between shadow sharpness and test
object clevation was seen in the position estimation task. When
the test object was at the middle clevation (one inch above the
ground plane) hard shadows significantly increased the accuracy
of positivnal estimations. The reason for this anomaly is un
known.

IThe F statistic is a measure of the variation in a sct of
vbscrvatiuns due to g particular eaperinientad factor, The p value
15 the probablity that the amwunt of varistion seeu for by a fuctor
in the data could have arisen merely by randum variation.




32 EXPERIMENT 2

Similar to the results of Experiment 1, the size, depth, and
height of the test object were all significant factors in the size
and position estimations in Expcriment 2, but shadow shape did
not have a significant cffect on the accuracy of cither size or
position cstimations. Although shadow shape by itsclf was not a
significant factor, higher order interactions between shadow
shape and other factors (such as shadow shape by light position
and shadow shape by test object clevation) indicate that shadow
shapc may have some subtle cffect on the perception of size and
position. It is unclcar what these effects may be as post hoc
analysis showed no clear dircctional trends for these interac-
tions,

33 EXPERIMENT 3

All of the factors tested in Experiment 3 had a significant
cffect on the determination of object shape (object shape, light
position, objcct clevation, and shadow sharpness: F(4,8)=4.829
p=0.028, F(2,10)=10.603 p=0.003, F(2,10)=32.440 p<0.001, and
F(1,11)=16.234 p=0.002 respectively).

The shape matching task appears to be dependent on identi-
fying features in the shape. Since cach of the factors tested had
some effect on the prominence of the featres, it is logical that
all of the factors were significant.

The position of the light affected the shape of the resulting
shadow. The percentage of correct responses were 47.9%,
78.4%, and 73.6% as the light moved from the front, middle,
and back light positions respectively, The increase in accuracy
when the light was in the middle and back positions is cxplained
by the fact that the light's normal came close to being perpen-
dicular to the test object's major axis in these positions. This in-
creased shape matching accuracy as the differences in the shape
of shadow contours for the various shapes became more pro-
nounced as the light's normal moved towards being perpendicu-
lar to the test object’s major axis.

The elevation of the object above the ground plane also af-
fected the prominence of object features when soft shadows
were present, As the test object moved higher above the plane,
the object’s shadow became more diffuse - blurring idemifying
features, This explains why the percentage of correct shape
matches decreased from 74.2%, 10 70.1%, 10 55.7% as the ob
ject moved from the lowest, 1o the highest position respectively.
The percentage of correct maiches stayed well above chance
(20%) for all three elevations as some identifying features, such
as the aspect ratio of the shadow, were visible in even the most
diffuse shadows..

Support for the use of identifying features is seen m the
fact that incorrect resronses were not distributed uniformly
among different shape pairs, but instead were concentrated be-
tween specific pairs of shapes. Confusion between shapes 1 and
2 (the ball and pear - figure 6) accounted for 18.6% of all mcor-
rect responses, while corfusion between shapes 3 and 5 (the cup
and capsule) accounted for 65.9% of all of the incorrect re-
sponses. In both of these cases incorrect matches occurred when
the identifying feature of one object was mimicked by the other
object. For example, some projections of the flat top of the cup

shape produced a shadow with two curved cnd - much like the
shadow of capsule shape. The lack of identifying featurcs was
compunded cven further by perspective forcshortening causing
the cup to often be mistaken for the capsule and vice versa.

Perhaps the most dramatic result is the fact that 82.6% of
all incorrect matches took place in trials where soft shadows
were present, [t is clear from this result that soft shadows can be
detrimental to determining an object's shape in the absence of
other cucs.

4. CONCLUSION

Although it is likcly that the patterns scen in these experi-
ments would be present in many other situations, onc must be
carcful in extrapolating the results of perceptual experiments
such as those represented here. In order to allow these experi-
ments to be accurately controlled and measured they were nee-
cssarily contrived. Assuming that these results are applicable to
other situations the following conclusions can be reached:

1. These experiments support the carlier result that
shadows are indeed a usefut cue for indicating the size and
position of objects. In addition, shadows can be a powerful
cue for indicating an object’s three dimensional shape.

2. Tt appears that the sharpness of a shadow dues not
have any appreciable effect in tasks based on the percep-
tion of the sive and position of an object, however, soft
shadows can have a sirong negative effect in tasks requir-
ing accurate perception of object shape,

3. Although the shape of a shadow has no apprecia-
ble effect on the perception of object size amd position,
higher order interactions indicate that it cannot be com-
pletely ignored,

These results indicate that in many cases, computationally
cheaper hard shadow generation technngues are adequate and in
fact may actually be more beneficial than more expensive soft
shadow techniques.
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APPENDIX A: EXPERIMENTAL SETUP

The same twelve subjects, six men and six women, partici-
pated in cach of the three experiments, Six of the subjects were
experienced in using three dimensional computer graphics and
six were not. The order of presentation of the three experiments
was varied among the subjects to eliminate ordering bias, All
subjects were either graduate students or facully members at
Comell University and had normal or corrected to normal vi-
sion,

Displays were pre-computed using stochastic ray tracing,
and were displayed on a HP 98752A 19 inch color monitor un-
der controlled lighting conditions. Color and brightness were set
by the experimenter and held constant for all trials.

Displays were rendered to correspond to the physical arca
of a 6 inch by 6 inch window located in the center of the moni-
tor. The window subtended 9.5 degrees of visual angle both
horizontally and vertically. The camera was set to be coincident
with the eye point of the subjects looking towards the center of
the virtual room, with the frustum of view corresponding to the
physical space of the monitor, and proper perspective projection
for a viewing distance of 18 inches. The scene was illuminated
by a white ,ambient light source and a 2.5 inch by 2.5 inch, uni-
formly distributed, white, area light source with its normal
parallel to the view vector.

In Experiments 1 and 3, shadow sharpnass levels were cre-
ated by varying the number of sample points used for the light
source for shadow ray light intersection testing. Hard edged
shadows were rendered using a single sample point located at
the center of the area light. Soft edged shadows were rendered
using a jittered 3x3 grid of sample points. Each grid was then
sampled for light visibility testing. Images without shadows
were produced by ignoring shadow rays which only intersected
the test object,

In Experiment 2 shadow shape levels were created by
varying the geometry of the object used 10 test object shadow
ray intersections. Shadow rays were intersected with the test
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object to render properly shaped shadows, and were intersected
with the test object's bounding box to create bounding volume
shadows. Images without shadows were produced by ignoring
shadow rays which only intersected the test object.

A more rigorous description of the experimental sctup can
be found in [6).

APPENDIX B: STATISTICAL METHODS

Results were analyzed using a multivariate analysis of vari-
ance (MANOVA), with a significance level cut-off of p<0.05.
Post hoc tests for the direction of cffects were performed with
two tailed matched pairs T-tests.

In all three experiments trials without shadows were treated
as control conditions and were left out of the final analysis.
Subjects performed at chance on non-shadow trials in all three
experiments verifying that subjects were making their spatial
estimations solely on the basis of the shadow information,

Detailed descriptions of the methods uscd can be found in

(6.




A Demonstrated Optical Tracker With Scalable Work Area for Head-
Mounted Display Systems
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Abstract

An optoclectronic head-tracking system for head-mounted
displays is described. The system features a scalable work area
that currently measures 10° x 12', a measurement update rate of
20-100 Hz with 20-60 ms of delay, and a resolution
specification of 2 mm and 0.2 degrees. The sensors consist of
four head-mounted imaging devices that view infrared light-
emilting diodes (LEDs) mounted in a 10" x 12° grid of modnlar 2'
x 2' suspended ceiling pancls. Photogrammetric techniques
allow the head's location to be expressed as a function of the
known LED positions and their projected images on the
sensors, The work area is scaled by simply adding panels to
the ceiling's grid, Discontinuitics that occurred when changing
working sets of LEDs were reduced by carefully managing all
error sources, including LED placement tolerances, and by
adopting an overdetermined mathematical model for the
computation of head position: spz.e¢ resection by collinearity.
The working system was demonstrated in the Tomorrow's
Realities gallery at the ACM SIGGRAPH '91 conference.

CR categorles and subject descriptors: 1.3.1
{Computer Graphics}:: Hardware Architecture - three-
dimensional displays; 1.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism - Virtual Reality

Additional Key Words and Phrases:
displays, head tracking

Head-mounted

1 Introduction

It is generally accepted that deficiencies in accuracy,
resolution, update rate, and lag in the measurement of head
position can adversely affect the overall performance of a HMD
{17][24){25]). Our experience suggests that an additional
specification requires more emphasis: range.

T Present address:  Structural Acoustics, 5801 Lease Lane,
Raleigh, NC, 27613. (919) 787-0887

Permission to copy without fee all or part of this matenal is
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Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission,
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Figure 1: The existing system in UNC's graphics laboratory

Most existing HMD trackers were built to support sitwations
that do not require long-range tracking, such as cockpit-like
environments where the user is confined to a seat and the range
of head motjon is limited. But many virtal worlds
applications, such as architectural walkihroughs, would benefit
from more freedom of movement (Figure 2). Long-range
trackers would allow greates areas to be explored nawrally, on
foot, reducing the need to resort 1o techniques such as flying or
walking on treadmills,

Such techmques of extending range work adequately with
closed-view HMDs that completely obscure reality. With see-
through HMDs [9][11], however, the user's visual connection
with reality is intact and hybrid applications are possible
where physical objects and computer-generated images coexist.
In this siwation, flying though the model is meaningless. The
model is regisiered (o the physical world and one's relatonship
10 both must change simultaneously.

This paper describes the second generation of an
optoelecironic  head tracking concept developed at the
University of North Carolina at Chapel Hill. In the concept's
first generation, the fundamental design parameters were
explored and a bench top prototype was constructed [28].
Building on this success, the second-generation tracker is a




fully functional prototype that significantly extends the
workspace of an HMD wearer.

Figure 2: Walkthrough of Brooks' kitchen design that runs with
the tracker. Actual resolution of images seen in the HMD is
much lower than this picture's resolution.

The curmrent system (Figure 1) places four outward-looking
imago sensors on the wearer's head and locates LEDs in a 10 x
12' suspended ceiling structure of modular 2' x 2' ceiling
pancls. Each panc! houses 32 LEDs, for a total of 960 LEDs in
the ceiling, Images of LEDs are formed by lateral-effect
photodiode detectors within each head-mounted sensor. The
location of cach LED's image on a detector, or
photocoordinate, is used along with the known LED locations
in the ceiling to compute the head's position and orientation.
To enhance resolution, the field of view of each sensor is
narrow, Thus, as shown in Figures 3 and 7, each sensor sees
only a small number of LEDs at any instant, As the user moves
about, the working set of visible LEDs changes, making this a
cellular head-tracking system.

Measurements of head position and orientation are produced at
a rate of 20-100 Hz with 20-60 ms of delay. The system's
accuracy has not been measured precisely, but the resolution is
2 mm and 0.2 degrees. It was demonstrated in the Tomorrow's
Realities gallery at the ACM SIGGRAPH 91 conference, and is,
to our knowledge, the first demonstrated scalable head-tracking
system for HMDs.

The system is novel for two reasons. First, the sensor
configuration is unique. Other optical tracking systems fix the
sensors in the environment and mount the LEDs on the moving
body [30}. The outward-looking configuration 1s supenor for it
improves the system's ability to detect head rotation. The
scalable work space is the system's second contribution. If o
larger work space is desired, more panels can be easily added to
the overhead grid.

2  Previous work

Many tracking systems precede this effort, and we will briefly
survey representative examples. The essence of the problem is
the realtime measurement of the position and orientation of a
rigid moving body with respect to an absolute reference frame,
a six-degrec-of-freedom (6DOF) measurement problem.
Solutions arc relcvant to many other fields,

To our knowledge, four fundamentally different technologies
have been used to track HMDs: mechanical, magnetic,
ultrasonic, and optical.

The first HMD, built by Ivan Sutherland [27), used a mechanical
linkage to measure head position. A commaercial product, The
Boom {12), uses a mechanical linkage to measure the gaze
direction of a hand-held binocular display, The Air Force
Human Resources Laboratory (AFHRL) uses a mechanical
linkage to measure the position and oricntation of a HMD used
for simulation [24]. Mechanical systems have sufficient
accuracy, resolution, and frequency response, yet their range is
scverely limited, and a mechanical tether is undesirable for
many applications.

Magnetic-based systems [3][21) are the most widely used hand
and head trackers today, They are small, relatively
inexpensive, and do not have line-of-sight restrictions. Their
primary limitations are distortions caused by metal or
electromagnetic fields, and limited range [13}.

Ultrasonic approaches have also been successful, such as the
commercially-available Logitech wacker {20). Time-of-flight
measurements are used to triangulate the positions of sensors
mounted on the HMD. The strength of this technology is
minimum helmet weight [13]. Physical obscuration as well as
reflections and variations of the speed of sound due to changes
in the ambient air density make it difficult to maintain accuracy
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Because of the potential for operation over greater distances,
optical approaches are plentiful, and it is helpful to categorize
them on the basis of the light source used. Visible, infrared,
and laser light sources have each been exploited.

Ferrin {13] reponts the existence of a prototype helmet tracking
sysiem using visible light.  Although it only iracks
orientation, it is worth mentioning here because of its unique
approach. A patterned target is placed on the helmet and a
cockpit-mounted video camera acquires images in real time, The
paltern is designed 1o produce a unique image for any possible
head orientation. The suength of this approach is the use of
passive largets which minimize helmet weight,  Reflections
and other light sources are notential sources of error.

Bishop's Self-Tracker ;7] is a research effort involving visible
light A Self-Trauker chip sences incremental displacements
and rotsticns by imaging an unstructured scene. A head-
mounted cluster of these chips provide sufficient information
for the computation of head position and orientaticn.
Although still under development, the concept is mentioned
here because it would allow an optical tracking system to
operate ouwtdoors, where a structured environment, such as our
ceiling of LEDs, would be impossible to reahze.




Because of the difficulties associated with processing
information in an unstructured scene, most high-speed optical
measurement systems use highly-structured infrared or laser
light sources in conjunction with solid-state sensors, The
sensor is & often a lateral-effect photodiode as opposed to a true
imaging device, because the photodiode produces currents that
are directly related to the location of a light spot's centroid on
its sensitive surface [32]. The resultant sensor is relatively
insensitive to focus, and the light spot's location, or
photocoordinate, is immediately available without the need for
image processing.

During the 1970's, Selspot (23] popularized the usc of infrared
LEDs as targets and lateral-effect photodiodes as sensors in a
commercially-available system. Their primary emphasis was,
and still is, on the three-dimensional locations of individual
targets, That is, the Selspot system does not automate the
computation of a rigid body’s orientation. In a response to this
shortcoming, Antonsson (2] refined the Sclspot system for use
in dynamic measurements of mechanical systems. The
resultant system uses two Sclspot cameras to view & moving
body instrumentod with LED:. Similar approaches have becn
applied to HMD sysioms in cockpits [13] and in simulators
11).

The use of an LED light source limits the range of these
systems. Typically, the distance botween source and detector
can bo no greater than soveral feet. Longer distances can be
spanned with laser light sources.

The only known cxample of a 6DOF tracker using laser sources
is the Minnesota Scanner [26]). With this sytem, scanning
mirrors are used (o sweep orthogonal stripes of light across the
working volume. Photodiodes are both fixed in space and
placed on the moving body. By measuring the time between a
light stripe's contact with a fixed and moving photodiode, the
diode’s three-dimensional location can be computed. Given the
location of three or more moving diodes, the moving body's
orientation can be computed. Similar technology has been
applied to the cockpit, although orientation was the only
concern [13).

Figure 3: Conceptual drcwing of outward-looking system and
the sensors’ fields of view

3 System overview

Wang demonstrated the viability of head-mounted lateral-effect
photodiodes and overhead LEDs, This system extends his work
in scveral ways, First, an overhcad grid of 960 LEDs was
produccd with well-controlled LED location tolerances, and
more attention was paid to controlling other error sources as
well, Second, mathematical techniques were developed that
allow an arbitrary number of sensors and an arbitrary number of
LEDs in the field of view of cach sensor to be used in the
computation of head location. This resulted in an
overdetermined system of equations which, when solved, was
less susceptible to system error sources than the previous
mathematical approach [10}. Third, the analog signals
emerging from the sensors were digitally processed to reject
ambient light. Finally, techniques for quickly determining the
working scts of LEDs were developed.

3.1 Sensor configuration

Typically, optical trackers arc inward-looking; sensors are
fixed in the environment within which the HMD wearer moves.
With Self-Tracker, Bishop and Fuchs introduced the concept of
outward-looking trackers that mount the image sensors on the
head, looking out at the environment (Figure 3).

If a large work area is required, outward-looking configurations
have an advantage over inward-looking tcchniques when
recovering orientation. The two are equivalent for measuring
translation: moving the sensor causes the same image shift as
moving the scenc. Rotalions arc significantly different.
Unless targets arc mounted on antlers, sn inward-looking
sensor perceives a small image shift when the user performs a
small head rotation. The same head rotation creates a much
larger image shift with a head-mounted sensor. For a given
sensor resolution, an outward-looking system is more
sensitive 10 orientation changes.

Figure 4: Remote Processor and head unit with four sensors

To improve resolution in general, long focal lengths must be
used with an optical sensor regardless of whether the
configuration is inward or outward-looking. Thus, a wide-angle
lens cannot significantly extend the work area of an inward-
looking system without sacrificing resolution and accuracy.

Narrow fields of view are a consequence of long focal lengths.
Therefore, the HMD wearer cannot move very far before an LED
leaves a given sensor's field of view. One solution is a celiular



array of either LEDs or detectors. For an infrared sysiem using
LEDs and lateral-effect photodiodes, system cost is minimized
by replicating LEDs as opposed to sensors. This is a result of
both the device cost as well as the required support circuitry.

In the current system, four Hamamatsu (model S1880) sensors
are mounted atop the head, as shown in Figure 4. Each sensor
consists of a camera body to which a Fujinon loens (model CF
S0B) is attached. The focal length of each lens is SOmm. Their
peincipal points were determined experimentally by an optical
laboratory. An infrared filter (Tiffen 87) is used to reject
ambient light.

3.2 Beacon configuration

Experience with simulations and an carly 48.LED prototype
revealed the problem of beacon switching error: as the user
moved around and the working set of beacons changed,
discontinuous jumps in position and orientation occurred.
Theso are caused by errors in the sensor locations, distortions
caused by the lens and photodiods detector, and errurs in the
positions of the beacons in the ceiling.

To control beacon locations, we housed the LEDs in carefully
construcied ceiling panels. Each 2' x 2' pane! is an anodized
aluminum enclosure that encases a 20" x 0" two-sided printed
circuit board. On this board are cloctronics to drive 32 LEDs,
The LEDs aze mounted in the front surface with standad plastic
insets. Using standard clectronic enclosure :manufacturing
tochniques, it was relatively easy to realize an LED-10-LED
certerline spacing tolerance of 005" on & given yancl.

The pancls arc hung from a Unistrut superstructure (Figure 1).
Al oxch interior vortex of & 2' x 2' grid, a vertically adjustabiz
hanger mates with four panels. Four holes in the facc of a panel
slide onto one of four dowels on cach hanger. The entire array
of panels is lovelled with a Specira Physics Laser-Level, which
establishes & plans of visible red light several inches below the
panels’ faces. Each hanger is designed to accept a seusor
(Industra-Bye) that measures the vertical position of the laser
rolative 10 its own case. By moving the hangers up o~ down,
they can be aligned 1o within .006" of ihic fight beam,

The panels are clectrically connecied by a data and powe: daisy
chain. The data daisy chain allows an individual LED to0 be
selected. Once selecied, the LED (Siemens SFH 487P) can be
driven with a programmable curmen: that ranges from -2
amperes. The programmable ¢ .urrent allows an electronic iris
feature to be implemented. Typically, an LED will be on for no
more than 200 psec. During this time period, the current is
adjusted 10 achieve a desired .ignal lcve! at the sensor (sec
Section 4).

3.3 Data Fiow

As shown in Figure 5, the signals emerging from the head-
mounted sensors are connected to the Remote Processor. Wom
as a belt pack, the Remote Processor functions as a remote
analog-to-digital conversion module. It can accept the four
analog voltages emerging from a lateral-effect photodiode, for
up to eight sensors. On command, the Remote Processor will
simultaneously sample the four voltages on a selecied sensor
and relay four, 12-bit results 1o the LED Manager. The Remoie
Processor was used to alleviate the need for long runs of analog
signals emerging from multiple sensors.

The LED Manager is a 68030-based processing module that
controls the Remote Processor as well as the ceiling. A TAXI-
based serial datalink [1] provides access to the Remote
Processor while the ceiling's data daisy chain terminates at the
LED Manager. Software exccuting on this module is
responsible for turning LEDs on and for extracting data from
the sensors. The LED Manager resides in a remote VME chassis
that must be located near the ceiling structure.
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Figure 5: Sysiem Daigflow

For each measurement of head location, the LED Manager
produces a list of visible LEDs and their associated
photocoordinates. This list is ransferred via shared memory o
the Collincarity module, which resides in the graphics engine's
VME chassis. The i860-based Collineatity module transistes
the list of photocoordinates into whe current estimate of head
location. For icasons explained in Section 6, an additional
653030-based processor is used to aid the iransfer of data from
the remote sysiem to the host. In ineory, this is not required.
The VME systems are connected by a Bit-3 VME buslink.

The sampled head position is communicated to the Pixel-Planes
§ graphics engine [14), which in tum updates the images on the
user’s displays.

4 Low-level software

A library of low-level routines running on the LED Manager,
called the Acquisition Manager, controls the beacons and
detectors. Given an LED and a photodiode unit, these routines
light an LED and determine if a photodiode's detector sees that
LED. The detector returns four analog signals, which the
Remote Processor board digitizes. A simple formula {16]
converts these four numbers into the x,y photocoordinates of
the LED's projection on the detector.

Hamamaisu datast ts specify 1 part in 40 accuracy and 1 part
in 5000 resolur . for the lateral-effect diode-based detectors
used. As wili Antonsson [2], we were able 10 achieve




approximately 1 part in 1000 accuracy for the combined
photodiode-lens assembly. Achieving this result required
significant efforts to improve the signal-to-noise ratio and
compensate for distortion, including:

Ambient light rejection: The voltage values with the LED off
(called the "dark current”) are subtracted from the voltage values
with the LED on, Sampling with the LED off both before and
after the samples with the LED on and averaging the two yields
substantially improved ambient light rejection.

Random noise rejection: Averaging scveral measurements
reduces random noiss effects, but costs time. A good
compromise between accuracy and sampling speed is to take 8
samples with the LED off, 16 samples with the LED on and 8
more samples with the LED off.

Current scaling: The distance between a photodiode and an LED

on the user's location. To maximize the signal without
saturating the photodiode detector, the Acquisition Manager
dynamically adjusis the amount of current used to light an LED.
Acquisition Manager routines estimate the threshold of current
that will saturate the detoctor and use 90% of this value during
sampling.

Figure 6: Optical bench for photodiode calibration

Calibration: Both the lens and the photodiode detector suffer
from nonlinear distortions. By placing the photodiodes on an
optical bench and carefully measuring the imaged points
generated by beacons at known locations (Figure 6), we built a
lookup table to compensate for these distortions, Bilinear
interpolation provides complete coverage across the detector.
More sophisticated calibration techniques should be
investigated. Accurate calibration is required to reduce beacon
switching error.

Programming techniques: Techniques such as list processing,
cache management and efficient code sequencing resull in a
substantially improved sampling rate. In addition, expedited
handling of special cases, such as when an LED 1s not within
the field of view of a photodiode unit, further helps system
performance.

Using 32 samples per LED, we compute a visible LED's
photocoordinate in 660 psec and reject a non-vistble LED n

100 psec. LEDs are tested in groups; each group carries an
additional overhead of 60 psec.

Figure 7: Sensors viewing LEDs in the ceiling. Each of the fowr
groups is the set of LEDs that a sensor can see. Picture taken
with a camera that is sensitive to infrared light.

§ LED Manager

The LED Manager uses the low-level Acquisition Manager
routines to determine which LEDs cach photodiode unit sces
and where the associated imaged points are on the photodiode
detectors.  We usually want 1o collect data from all visible
LEDs. since larger sample scts ultimately yield less noisy
solutions from the Collincarity module (Section 7). Because
the number of visible LEDs is small (scc Figure 7) compared 1o
the total number of LEDs in the ceiling, something faster than
a brute-force scan of the entire ceiling array is called for. Two
assumptions help us design a more efficient method:

1) Spatial coherence: The set of beacons visible to a
photodiode unit in a given frame will be contiguous.

2) Temporal coherence: The user's movement rate will be slow
compared to the frame rate. This implies that the field of view
of a given photodiode unit does not iravel very far across the
ceiling between frames, so its set of visible beacons will not
change much from one frame (o the next.

$.1 The basic method

In each frame, the LED Manager goes through each photodiode
unit in sequence, sampling beacons until it is satisfied that it
has capiured most of each photodiode unit's visible set. A
basic difficulty is that we cannot be sure whether a beacon is
visible or not until we attempt o sample it. The LED Manager
remembers which beacons were in the camera's visible set from
the previous frame. The set is called the st visible set. If the
last visible set is nonempty, all beacors in that set are tested.
The next action depends on how many of those beacons are
actually visible:

1) All: We assume the field of view has not moved much and
not many more beacons will be visible. We stop with this set
and go on to the next photodiode unit.

2) Some: We assume that the field of view has shifted
significantly, possibly ¢nough to include previously unseen
beacons. A shell fill (described later) is conducted, beginning
with the set of beacons verified to be visible.
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3) None: The field of view has moved dramatically, gone off
the edge of the ceiling, or is obscured. We check the neighbors
of the last visible set. If any of these beacons are visible, they
are used to start a shell fill. If none are visible, we give up on
this photodiode unit until the next frame.

What if the last visible set is empty? Our course of action
depends on whether we were able to compute a valid position
and oricntation for the head in the last frame:

1) Valid previous location: We can predict which LEDs should
be visible to our photodiode unit, if the user's head is actually
at the computed location, because the geometry of the head unit
is known. If no LEDs are predicted to be visible, we go on to
the next photodiode unit, otherwiso we sample those beacons
and use them as the start of a shell fill, if any of them were
actually visible,

2) No valid previous location: Now we have no way to guess
which beacons are visible, so we resont to a simple sweep
search, which lights the beacons in the ceiling row by row,
until we have tried the entire ceiling or an LED is found to be
visible. In the former case, we give up, and in the latier case,
we use the visible beacon as the start of a shell fill.

$2  Shell fiN

A shell fill stants with a set of beacons known to be visible to a
sensor and sweeps outward until it has found all the beacons in
the ficld of view,

We do this by first sampling the neighbors of the initial set of
beacons, If none are found visible, the shell fill terminates,
concluding that the beacons in the initial set are the only
visible ones, If any are found visible, we then compute the
neighbors of the beacons we just sampled, excluding those
which have already been tried, and sample those. We repeat
this process of sampling beacons, computing the neighbors of
those found visible, and using thosc neighbors as the next
sample set, until an iteration yields no additional visible
beacons.

Assumplion 1, that visible sets are contiguous, suggests that
this procedure should be thorough and reasonably efficient.

§3 Startup

Al starup, the head location is not known and all of the last
visible sts are empty. We do a sweep search, as previously
described, for each photodiode unit to locate the initial visible
sets,

6 Communications

Communication between the various processors in our system
is done using shared memory buffers, which offer low latency
and high speed. The buffers are allocated and deallocated via a
FIFO queue mechanism. Data is "transmitted” when it is written
to the buffer: no copying is necessary. The only
communication overhead is the execution of a simple
semaphore acquisition and pointer management routine,
Furthermore, all processors use the same byte ordering and data
type size, so no datu translation is needed.
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The queuing mechanism lets all modules in the system run
asynchronously. LED Manager, the Collinearity module, and
Pixel-Planes 5 run as fast as they can, using the most recent
data in the queuc or the last known data if the queue is empty.

The various processors in our system are split between two
separatc VME buses, which are transparently linked together
by Bit-3 bus link adapters (Figure 5). A subtle bus loading
problem prevents the i860 board and the ‘030 board that runs
LED Manager from operating in the same VME cage. This
configuration increases latency because inter-bus access is
significantly slower than intra-bus access, but increases
throughput because the bus link allows simultancous intra-bus
activity to occur. Because the i860 processor cannot directly
access the VME bus, a second '030 board, which runs the Queue
Manager, moves data between the LED Manager and the
Collinearity module.

A simpler and less oxpensive system could be built if we
acquired an i860 board that can run on the same bus as the LED
Manager '030 board. This configuration would not require the
Queue Manager board or the Bit-3 links and would reduce both
latency and throughput.

7  Space Resection by Collinearity

Given the observations of beacons, we compute the position
and orientation of the user's head by using a photogrammetric
technique called space resection by collinearity. The basic
method for a single camera is in [31]; what we describe here is
our extension for using it in a multi-sensor system. Because of
space limitations, the description is necessarily brief. Full
details are provided in [6).

7.1 Definitions

Three types of coordinate systems exist: one World space (tied
to the ceiling structure), one Head space (tied to the HMD), and
several Photodiode spaces (one for each photodiode unit).

A 1 1 A 1
Photodiode
Photodiode unit #2
unit #1 s %
t o HEAD
“ WORLD

Figure 8: World, Head and Photodiode spaces

Changing representations from one space to another is done by
a rotation followed by a translation. We use two types of 3x3
rotalion matrices:

M = Head space to World space
M, = Photodiode space i 10 Head space




with each matrix specified by Euler angles o, &, and x.

The optical model for each photodiode unit is simple: a light
ray strikes the front principal point and leaves the rear
principal point at the same angle (Figure 9).

. From
Re.ar tpnncnpll principal
pomn A po‘im

R

| Detector |

Photodiode unit §
Figure 9: Optical model

Finally, we list the points and vectors we will need, segregated
by the coordinate system in which they are represented. Given
photodiode unit i sces LED number j,

Photodiode space:
{xjjs yijs 0) = imaged puint o pnotodiode detector

Head space:
t;; = vector from rear principal point to imaged point
Hy = origin of Head space
d; = vector from Hy to center of photodiode detector
e; = vector from Hy to rear principal point
f; ~ vector from Hy to front principal point

World space:
(Xo. Yo. Zg) = coordinates of the origin of Head space
X, Y. Z) = coordinates of LED j
T;; = vector from LED j 1o front principal point

7.2 Geometric relationships

Figure 9 shows that T,; and t;, differ only by a scale factor; if
they were placed at the same start point, they would be
collinear. In equations:

Tu=lMtiJ (l)

We now express T,; and ,, in terms of the other vectors in
equations (2) and (3) and Figures 10 and 11:

Xo-X,
Ty=| Yo-Y, |+MT1 2)
Zp-2,
[xu]
t,=d-e,+ M|y, 3)
;)

O

FAN

Figure 10: Expressing T ; through other vectors

Imaged
point

Rear principal
pount ot i
Figure 11: Expressing t; through other vectors

Substituting (2) and (3) into (1) yields the collincarity
condition equation c;; :

Xij
+Mf.~=).M d.'ﬂ‘*Ml y'l
0

7.3 System of equations

When a photodiode unit i sees an LED j, it generates a ¢, which
represents three independent equations. If we see N LEDs in all,
the total number of unknowns in our system is 6+N: 3 for
position, 3 for orientation, and N scale factors. The first six
are what we are trying to find, but we do not care av..t the scale
factors. We eliminate these by rearranging the ¢;; equations,
then dividing the first und second equations by the third. This
leaves two indepcndent equations, of the form

Xo- X;
YQ'Y,
&'z'

Ciy

GI,(L)=0, G2;(L)=0

where L 1s a vector composed of the six unknowns: position
(X, Yo, Zp) and oricntation (w, @, & for matrix M). We
generate a lincar approximation to these two equations by
applying Taylor’s theorem:

-m‘,(L)=(3£‘A'-l) DKo+ (GG lu(l-)) io+ (BGI.,(L)’ s
0Xo oYo 2

. am.,(u) los ‘aal.,m) dm(am.,a.)) i
0w da K

and a similar expansion for the linearized G2 equation.

Now we have six total unknowns, and every LED that we see
generates two independent linear equations. Thus, we need to
see at least three LEDs  if we sce atotal of N LEDs, we can write
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our system of N linearized G/ equations and N lincarized G2
equations in matrix form:

2Nx1 2Nx6 6xl

where D = [dXy, dYo, dZp, do, da, dx]T,
9G is the matrix of partial derivatives of the G/ and G2,
and -G contains the values of the G/ and G2 at a specific L.

74 Iteration and convergence

Collincarity takes an initial guess of L (the unknowns) and
generates correction values (in D) to make a more accurate L,
iterating until it converges to a solution, Thus, we need to
extract D from oquation (4). If N = 3, then we can solve for D
directly. If N > 3, then the system is overdetermined and we
approximate D through singular value decomposition [24).
Simulations show that using more than the minimum of 3 LEDs
can reduce average error causcd by ron-systematic error
sources. In pseudocode, our main loop is:

Generate an initial guess for L

repoat
Given L., compute Gg and 9G
Estimate D using singular value decomposition
L=L+D

until magnituds of D is small

retum L

How do wo generate the initial guess of L? Normally we use the
last known position and orientation, which should be an
cxcellont guess because we track at rates up to 100 He
Collincarity usually converges in | or 2 iterations when the
guess is close, But in degenerate cases (at system startup, or
when we lose tracking because the photodiode units are pointed
away from the ceiling), we have no previous L. Collinearity
will not converge if the guess is not close enough to the true
value; we empirically found that being within 30° and several
foet of the wrue L is a good rule of thumb. So in degenerate
cases, we draw initial guesses for L from a precomputed lookup
table with 120 entries, trying them sequentially uniil one
converges. We can double-check a result that converges by
comparing the set of LEDs used to generate that solution 1o the
theoretical set of LEDs that the photodiode units should see, if
the head actually was at the location just computed. When
these two sets maitch, we have a valid solution.

8  Performance

A “typical situation” is defined as a user of average height
standing erect underneath the ceiling, with at least three
photodiode units aimed at the ceiling, moving his head at
moderate speeds. All measurcment bounds assume that the user
remains in tracker range with at least two sensors aimed at the
ceiling.

Update rate: The update rate ranges between 20-100 Hz. Under
typical situations, 50-70 Hz is normal, depending on the
height of the user. The wide variation in the number of LEDs
seen by the sensors causes the variation in update rate. The
more LEDs used, the slower the update rate, because LED
Manager is the slowest step in the pipeline. If the head
remains still and the sensors sec a total of B beacons, LED

Manager requires 3.33 + 0.782*B ms to run. Rapidly rotating
the head increases this time by a factor of about 1.3, since
additional time is required to handle the changing working sets
of LEDs. Slower head movement rates have correspondingly
smaller factors.

Lag: Lag varies between 20-60 ms, with 30 ms being normal
under typical situations, Lag is measured from the time that
LED Manager starts to the time when the Collincarity module
provides a computed head location to the graphics engine.
Therefore, tracker latency is a function of the number of LEDs
scen and the quality of the initial guess provided to the
Collincarity module. As B gets smaller, both the LED Manager
and Collincarity modules become faster, reducing latency, This
mutual dependence on B means that update rate and lag are
closely tied: faster update rates correspond with lower latency
values.

Resolution:  When moving the head unit very slowly, we
obscrved a resolution of 2 mm in position and 0.2 degrees in
orientation. Measuring accuracy is much harder, and we do not
have any firm numbers for that yet. At SIGGRAPH ‘91, users
were ablo to touch a chair and the four ceiling support poles
based solely on the images they saw of models of the chair and
the poles in the virtual environment.

9  Evaluation

The system provides adequate performance but has several
limitations and problems that must be addressed. The most
noticcable is the combination of excessive head-born weight
and limited head rotation range. Rotation range depends
heavily on the user’s height and position under the ceiling. A
typical maximum pitch range near the center of the ceiling is
4S5 degrees forward and 45 degrees back. When the user walks
near an edge of the ceiling, head rotation range becomes much
more restricted. To accommodate the full range of head motion,
multiple image sensors must be oriented such that wherever the
head is pointed, two or more sensors are able to view LEDs on
the ceiling. Given the current focal lengths, simulations show
that as many as eight fields of view are required for a
respectable rotation range [29]. The weight of each sensor
must be significanily reduced to achiev= this goal.

To reduce weight, we are trying 1o replace the current lenses (11
oz. each) with smaller, lighter lenses (2 oz. each). Other
approaches are possible.  Wang proposed optically
multiplexing multiple fields of view onto on a single lateral-
effect photodiode [29). Reduced signal strength, distortions,
and view identification ambiguities make this a nontrivial
task. It may be easier to design a helmet with integral
photodiodes and lenses. Given that each photodiode is about
the size of a quarter, the entire surface of a helmet could be
studded with sensors.

Beacon switching error has been greaily reduced, but not
eliminated. Small observable discontinuities occasionally
occur, and while they are not a major disturbance, they are
annoying. Calibration techniques are being explored to
estimate error sources and compensate for their effects.
Photogrammetric techniques hike the bundle adjusiment method
{8} or an altemate scheme suggested by our colleagues [18] may
provide the answer.




Infrared light sources in the environment surrounding the
tracker, such as sunlight or incandescent light, must be
controlled for the system to operate correctly. Specifically,
any light source whose wavelengths include 880 nm will be
detected by the photodiodes as if it were an LED. For this
reason, fluorescent ambient lighting is preferred. Extreme
caution is not required, however, Whereas a sensor pointed
directly at an infrared light source other than the LEDs will
confuse the system, a certain level of indirect infrared
background light is tolerable due to the combination of optical
filters and the ambient light rejection techniques described in
Section 4.

Surprisingly, the bottleneck in the system is the time required
to extract data frora the photodiode detectors, not the time
required to compute the head's location, The 1860 processor
performs the latter task adequately, and cven faster and cheaper
processors will be available in the future. But getting accurate
photocoordinates from the detectors takes longer than
expected, because of the time spent in current scaling and in
sampling multiple times per LED. Further experimentation is
required to see if we can safely reduce the number of samples.
Optimizing the low-level software may improve sampling
speed by 20-30%.

The use of Euler angles in the collinearity equations opens the
possibility of gimbal lock. The cument system avoids this
because the head rota.ion range is too limited to reach gimbal
lock positions, but a future version may. If we cannot place the
gimbal lock positions out of reach, we can solve for the nine
rolation matrix parameters individually, subject to six
constraints that keep the matrix special orthogonal, or we may
be able to recast the rotations as quaternions.

Since this tracker encourages the user to walk around large
spaces, lripping over the supporting cables is a danger. We
will investigate the feasibility of a wireless datalink to remove
this problem,

Under certain circumstances, the sensors can see large numbers
of beacons, such as a total of 30 or more. While using many
LEDs usually improves the solution from the Collinearity
module, it also slows down the update rate and increases the
lag. Further experiments are needed to explore this tradeoff and
determine rules of thumb that proside a reasonable halance
between resolution and update rate,

Cellular systems using different technologies or configurations
could be built to achieve simular scalable work areas. For
example, Ascension has announced a cellular magnetic system
{4]. Regardless of the technology, any cellular approach
creates the problem of beacon switching error or its equivalent.
Steps we took to control these errors would apply to other
technologies as well: 1) precise positioning and measurement
of system components, 2) averaging techniques to reduce
random error sources, and 3) cahbration routines to compensate
for systematic error sources.

10 Future work

We intend to continue mproving this system  1n addison 1o
the tasks listed in Section 9, we would eventually like 1o

expand the ceiling size to around 20° x 20°, to provide much
greater range of movement, both quantitatively and
psychologically. Also, ample room exists to improve the
heuristics and optimize the code, increasing the update rate and
reducing latency.

But beyond these incremental improvements, we do not expect
to pursuc this particular technology further. The system is a
vehicle for further rescarch and provides room-sized tracking
capability toduy for HMD applications that require it. For
example, the UNC Walkthrough team has begun interview-
based uscr studies on what impact large-environment tracking
has on the architectural design of a kitchen. In the future,
emphasis will be placed on technologies that allow unlimited
tracking volumes in unstructured environments. This potential
exists in systems that measure only the relative differences in
position and orientation as the user moves, integrating these
differences over time to recover the user's location. Examples
include inertial technologies and Self-Tracker. Since these
technologies suffer from drift problems, initial versions may
be hybrid systems reliant on the optical tracker for auxiliary
information. Thus, the optical tracking system will serve as a
testbed for its own successor.

Tracking HMDs will only get harder in the future. The higher
resolution displays being developed demand higher resolution
trackers. See-through HMDs add additional requirements. In
the completely-enclosed HMDs commonly used today, the
entire world is virtual, so resulution is much more important
than accuracy. But for a sce-through HMD, accurate
registzation of the HMD 1o the real world is vital. The effecis
of latency will also become more disturbing in see-through
HMDs. Viewing computer-generated objects superimposed
upon the real world, where those objects move with significant
lag but the real world does not, will not provide a convincing
illusion. People can perceive as little as 5 ms of lag [15), and
it is unlikely that the combined tracker and graphics engine
latency will be below that anytime soon. Therefore,
compensation techniques need to be explored [19}(24). If
HMDs are to achieve their potential of making a user wuly feel
immersed inside a virtual world, significam advances in
racking technologics must occur.
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ABSTRACT

Techniques are discussed for creating a rendered view into a 3D
scene, interactively based on the locations and orientations of the
obscrver’s head and the display surface. Stereoscopic head-
mounted displays (HMDs) demonstrate a simplified, special case
of these techniques, because the eyes and monitors move in uni-
son, A largely overlooked class of interactive displays uses the rel.
alive positions between the eyes and monitor as input. These
displays can be stereo or monoscopic, fixed or mobile, and the ren.
dering process should incorporate the correct perspective distor-
tion, which depends on the Jocations of the viewpoint(s) and the
display monitor.

Three real-time graphics display systems were prototyped and
examined: a high-resolution display which corrects the perspective
projection based on the location of the observer's eye; the same
display, extended to nodify the view as the monitor is tilted and
swiveled; and a handheld LCD display which can be freely moved
and rotated as it displays a view based on the eye and monitor
positions,

A simple experiment indicates that tracking the head and pro-
viding the appropriate view improves the ability to pick specific
3D locations in space using a 2D display. when compared to a
fixed view and a mouse-controlled view,

1. INTRODUCTION
In the everyday world, we continually shift our visual attention
from place to place. We rotate the eyes and head, scanning differ-
ent regions of our field of view. In addition, we move our heads to
different locations in space, changing our viewpoinis. As an
observer changes his or her viewpoint, objects at different relative
depths appear to move Wwith respect to each othez. This effect is
known as mation parallax, a powerful depth cue [5;7). Changing
one's viewpoint also allows an observer to “look arornd” objects,
and to see the different sides of objects, obtaining multiple per-
spective views. Perspective and motioa parallax are both misnocu-
lar depth cues; the sensation of depth we derive from them
requires only one eye, and thus, requires only a 2D display.
Motion parallax can be used to increase the visual correspon-
dence between an operator and a remote of synthetic telerobolic
manipulator. An important aspect in the design of displays and
controls is creating isomorphisms between the local and remote
operations [8). (See Figure 1.) For example, the movement of a
control should create a movement of the comresponding manipula-
tor in the same direction, of the same apparent magnitude, on the
display. An intelligent display should provide the operator with a
view “corrected” for his or her relative position to the display, so
that the displayed manipulator movements always appear isomor-
phic with her or his own movements. An uncorrected view requires
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that the operator remain exactly centered in front of the display, in
order to remain isomorphic. One way to provide the correct view is
through the use of a “true” 3D display— i.c. an autostereoscopic
display, which does not require viewing aids such .s glasses [7}.
Real-ime autostercoscopic displays are problematic, especially
concerning bandwidth and computational requirements. For tele-
operations, a more difficult problem is the development of the
camera required to record the spatial information for an autoste-
reoscopic display. An alternate means of supplying the correct
view is to track the locations of the eyes, and then provide the
appropriat:. imagery. For a teleoperator, this requires that the
remote cumera be servoed to the operator’s head movements. In
addition, views in which the operator moves off-axis from the cen-
ter of the monitor require that the displayed image be distorted,
cither by translating the receptors on the image-focus planc of the
camera, providing a sub-image from a wide ficld-of-view, or by
approximating the distortion in hardware/sofiware. The use of
head-mounted display systems bypasses the problem of distortion,
since the eyes do not move relative o the displays.

The modification to the rendering prosess to generate off-axis
perspective  projections is straightforward, using parameters
already built into most rendering systems. This can easily be
implemented on today’s real-time rendering workstations, through
the addition of any number of tracking methods. Unfortunately,
this technique has been largely overlooked, despite its ease of
implementation and perceptual benefits. It is important that the

Display scree

bigure | bomorphisms between 3 remote obotie manipulator and human
operator Measures that appear equal between the two diagrams are, in fact,
cqual The operator cannot put bus or her hand through the display, obviously
However, the use of a head mounted or a flat pancl display allows the optical
unage of the display 1 share the same space as the operator’s hand. Adapted
from Shendan {8)




correct perspective distortion be incorporated in the rendering pro-
cess, This is not a type of “eye-in-hand” or “eye-on-head” camera
control paradigm, in which only the eyepoint and viewing direc-
tion are modifiéd {13}, Instead, it is an accurate way of modeling
the visual characteristics of a 3D scene.

Prototype display systems were developed by the author to
examine the use of tracking techniques to provide an accurate per-
spective projection, based on the relative positions of the viewer’s
eyes, the display surface, and the “real,” inertial reference frame.
Qualitatively, these displays add a great deal of depth perception
via motion parallax. The case of “look around” by moving the
head is also a very attractive feature. Providing for a mobile dis-
play creates even greater flexibility for “look around™ and the
exploration of 3D scenes,

A simple experiment was conducted in order to explore the
importance of isomorphic imaging on perceiving and interacting
with three-dimensional information. Specifically, the experiment
tested how many times a subject could move & three-dimensional
cursor (o a three-dimensional target within a given time period
while viewing a 2D displa,. Different phases of the experiment
tested the subject’s responses when the view was fixed, when the
view could be interactively changed using a mouse, and when the
view could be interactively changed by moving the head.

By adding tracked objects in real space which have matching
computer representations, important applications can be devel-
oped. For example, for medical examination and surgical planning
and assist, computer models and scanned data of internal body fea-
tures can be isomorphically displayed in the “patient space,” along
with tracked surgical instruments, Similarly, for training and
repeir, real workd objects can be augmented with computer models
1o guide, instruct, and inform the uzer.

2.8A .XGROUND

Head-mounted displays have been used to interactively view and
explore 3D data and scenes for a number of years, recently gaining
more popularity (3:11]. The head is tracked, and imagery is gener-
aled appropriate for the viewing location and direction. Boom-
mounted displays provide similar functionality, allowing for more-
massive, high-resolution displays and greater ease of us¢ in certain
situations [6].

A different approach was taken by Fisher, who used a monitor
fixed in place, allowing the eyes to move relative to the display.
Videodisc technology was used to store and playback mulliple
images of a scene, from different viewpoints. The observer’s head
was tracked and the appropriate image for that viewpoint location
was displayed on a CRT display, creating what Fisher termed view-
point dependent imaging {2).

About the same time, a similar system was demonstrated by
Diamond, et al., using real-time image generation, Wire-frame ren-
dering was used to generate the perspective projection appropnate
for the observer's eyepuint, tracked by a light bulb on the head
using a video camera. The authors described the effect of their
monoscopic system as “*dynamic parallax” {1].

The above technique was extended by Suetens, et al., o provide
a stereoscopic image, using electro-optical shutter glasses. A Pol-
hemus sensor was used to track the head, and a stercoscopic wire-
frame rendering was generated in real-time {10].

Venolia and Williams created a similar system, which provided
for real-time shaded stereoscopic imagery. In order to provide
more complex imagery than could be generated in real-time, they
employed a “viewpoint array” simular to Fisher’s approach. The
precomputed images were stored 1in memory and were displayed
based on the observer’s horizontal location [12].

This paper provides more details than the above references on
the transformations used to generate viewpownt dependent unages.
1t also extends this techmque to allow for a mobile display surface
By tracking both the head and montor, greater flexibilny 1s

Figure 2: The perspectives and sizes of the 2D projections of 3D objects

change as the viewpoint moves.
/ screen plan/

achieved in the exploration of 3D information, while retaining an
isomorphic correspondence between the synthetic space and the
real, laboratory space.

3. FIXED-DISPLAY MONOCULAR SYSTEM

Figure 2 shows an example of how the perspective projection of a
3D object is modified as the view changes. Points which lie at the
same depth as the screen are the only ones which do not “move”
relative » the screen as the viewpoint changes. Figure 3 depicts a
stereoscopic, viewpoint dependent display. The display screen acts
like a “window" into the three-dimensional space, cutting off the
view of objects which lie outside the current viewing volume.
Objects “behind” the screen are cut off just as we expect a real
window 1o obscure objects. Objects in front of the screen and out-
side the viewing volume are also clipped. However, this is not a
phenomenon we are familiar with from our everyday experiences.
The “closer” objects are seemingly obscured by the screen, “fur-
ther” back. This is often called a “window violation™ and can sig-
nificantly disrupt the depih perception of the scene, whether using
a stereoscopic or monoscopic display.

To generate a viewpoint dependent image, a normal perspective
rendering takes place, using a “window” onto the view-plane,
which is off center from the vector which passes through the eye-
point and is normal to the display surface. Figure 4 shows an
example viewing setup. The window center rendering parameter is
used to shift the area to be rendered away from the view normal
{4:9).

The monitot 's and the observer’s locatiens and dimensions are
racked and located m the rendenng “world-space™ with the 3D
objects. The eye location is established as a constant translational
offset within the head tracking coordinate frame. A coordinate
frame 15 established for the monutor, which has its origin at the
center of the display surface. Matters are simplified if the coordi-
nate axes are aligned with the display normal and the “vertical”




Figure 3: An off-axis view onto a stereoscopic, viewpoint dependent display.
The screen acts as & “window” into the space— clipping objects both in the
foreground and background.
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tnd “*horizontal” directions, such as the coordinate frame depicted
in Figure 4,

The viewing parameters are sct as follows: the eyepoint is set to
the tracked location of the eye, in world space; the view normal is
set to the “inwards™ monitor normal, rotated (and not translated)
into world space; the view up is set to the *‘vertical” monitor vector,
rotated into world space; the window half-size is s~ to one half of
the monitor's actual size; the view distance ix set to the Jistance of
the eye from the monitor plane, easily attainable by transforming
the world-space location of the eye into the monitor's coordinate
frame, and using the “height” of the eye, along the display normal
(=normal e eye); and the window center is set to offset the eye's
position relative to the display surface’s center: (-horiz » eye,
=vertical o eye). These calculations assume that the display sur-
face is planar.

This system was implemented using a Hewlett Packard Mode)
835 UNIX workstation, with a “Turbo-SRX" real-time polygonal
rendering system (performance approximately 12 MIPS CPU,
38,000 shaded triangles per second). A Polhemus sensor was used
to track the head. The display surface is fairly large (13" x 11%),
with a resolution of 1280x1024.

This is the display system used in the experiment described in
Section 6. The system has been used to view 3D objects and ani-
mations, qualitatively enhancing 3D perception significantly.

4. MOBILE DISPLAY MONOCULAR SYSTEM

By tracking the position and orientation of the display monitor, we
can accommodate changes in its location in the rendering process,
s0 that isomorphism is retained between the imagery and the real-
world. The monitor can be moved to attain a better view of the
data, or sim, .y shifted to a more comfortable viewing position,
without losing the correspondence to the real world coordinates.

The fixed-display method is extended simply by tracking the
monilor, and adding the appropriate transformations. A monitor
coordinate frame is established as above, only in this case, the
monitor frame is a “child” of the display’s tracking device coords-
nate frame, rotating to the normalized monitor space, and translat-
ing to the display center.

Two mobile display systems were implemented. The first used
the high-resolution HP display, allowing 1t to tlt and swivel. The
display could be translated as well, but 1t 1s quite bulky. The Polhe-
mus sensor was mounted on a “‘boom,” away from the EM field of
the CRT. It is an unportant 1ssue to meunt the sensor as close as
posstble to the monitor’s center, however, since error and nowse i
the orientation sensing will be amplified by distance. Movement of
the monitor proved useful for adjusting the view, and for exploring

Figure 4: Shifting the “window center”” based on the position of the eye gen-
enates the appropriate perspective for that viewpoint. The “window center”
parameter is used in the rendering pipeline to control a shear transformation,
which aligns the center-line of the viewing pyramid with the z-axis, in the
horizontal: (1,0, 0)

coordinate system shown here,
f (©, O,O)N vertical: (0, 1,0)
screen planc /
>

window center

view planc (z=0)

lookat (X, Y,0)

view nomal (0,0, -1)

view distance (d=Z)

eye (X.Y.2) :

the data without losing the correspondence between object space
and real space, The display was quite “jittery,” unfortunately, due
to tracking noise. However, a mode can be employed to deactivate
monitor tracking when it is not being moved, to reduce the overall
noise, Ideally, a low-noise tracking system would be employed,
such as measuring the joint angles in the monitor base,

The sccond mobile display used a simall (2.5x1.8"), hand-held
LCD screen, tracked by a Polhemus, which could be freely moved
in space. This system was interesting due to its high mobility— the
user could quickly explore 3D data, from many different positions
and orientations, The small screen is certainly limiting, but the
results indicate that larger screens are worth exploring in this con-
text.

5. STEREOSCOPIC SYSTEM

The extension of the above systems to include stereo is very sim-
ple. The second eyepoint is located in world-space in the same
manner as the first eye, with a different translational shift from the
tracked point (e.g. the polhemus sensor). A second rer.dering is
generated from the second viewpoint, and the left and right eye
images are displayed in the appropriate manner for the type of ste-
reoscopic display used.

A tracking device should be used which detects orientation, as
well as position, so that the two eyes are accurately located in
space. In addition, the “roll” of the head can be detected, as it tilts
towards the sides, and the stereo imagery is aunmatically offset in
the appropriate direction, This can be especially important when
the display is mobile, since it may take on unusual viewing config-
urations. The stereoscopic display must be able to support these
types of rotations— for eaumple, some polarized systems use }in-
ear polarization, which will not allow "rolls.”

Due to a lack of equipment, we have not, as yet, experimented
with a non-HMD stereoscopic display.

6. EXPERIMENT

An informal experiment was conducted to test the effect of view-
point dependent control on the speed required to manually locate a
three dimensional target location. The fixed-monitor, moving
viewpoint system was used, as descnbed in Section 3. A second
Polhemus sensor was used to track the hand locauon.

The expennment progresses as follows: A red cube, 2 cm per
side (1n modehing space and “real” space), appears on the display
to act as the target. A blue cube, also 2 e per side, is displayed,
and acts as a cursor, tracking the motions of the hand. The cursor,
m the depicted 3D space, moves with the same magmtude and
duwections as the tracked hand, sunply offset by a translanon. The
task 15 to align the cursor cube to the target cube (translation only,




Figure 5: The experiment results from the “expent” subjects. The different
phases of the experiments are shown across the plot on the x axis, and the
number of successful target matches is shown on the y axis. The mean score
is indicated by the central horizontal bar. The line boxes, partially overlap-
ping the grey boxes, indicate the median 25%-75% range of the scores.
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no orientation) within a given distance tolerance (1 cm). Once
aligned. the target moves to a new random location within the
workspace. The subject is instructed to reach the target as many
times as he or she can, within the given, fixed time limit.

There are three phases of the experiment: one in which the view
is fixed and unchanging, one in which the viewpoint can be moved
using & mouse, and one in which the viewpoint is directly con-
trolled by head movements,

Eleven subjects were run through the experiment, four novices
and seven oxperts (subjects familiar with real-time rendering and
tracking systems). Figure 5 shows the data from the expert sub-
jects. The novice subjects had the lowest scores, and their results
were more widely varying than the experts. In general, perfor-
mance did increase under viev vint dependent control, although
not dramatically. Use of the mouse generally decreased the score.

Qualitatively, the subjects preferred the viewpoint dependent
control, especially as compared to the mouse control, which most
found confusing. Some subjects considered the “jitter” in the view,
due to the noise from the polhemus tracker, to be distracting; oth-
ers thought it helped give a better sense of the depth, due to the
small amount of resulting motion parallax. This effect could be
tested experimentally.

7. DISCUSSION

Providing renderings based on the true viewing parameters of the
observer and display has proven to enhance the 3D perception of
real-time graphics, in our applications and experiments. Qualita-
tively, these displays significantly enhanced depth perception via
motion parallax, and the ability to “look around” objects and
explore the 3D scene, using intuitive motions. These displays gen-
erated significant interest and excitement in the lab,

The mobile LCD prototype display is too small to be of use for
many applications, but it demonstrates very intriguing viewing
qualities. The objects displayed on it are convincingly 3D, not so
much in that they “look” 3D, but rather, in that the 3D nature of the
data is so easy to explore.

There are interesting differences between these displays and
HMDs. These displays are particularly non-intrusive and non-dis-
orienting, since most of the eyes’ FOV remains within the real
world, and visual jitter does not, therefore, strongly conflict with
the vestibular system. Higher effective resolutions are achieved,
since the pixels occupy smaller visual angles.

Tracking noise is currently a problem in these prototypes, espe-
cially in the mobule-monitor systems. Tracking systems are avail-
able which generate significantly lower noise than Polhemus
trackers. In particular, articulated arms could be used to measure
monitor positions with high accuracy and low noise.

The experiment helped confinm the utility of viewpoint depen-
dent imaging in 3D picking operations. Further expeniments
should be designed 1in which 2 more complete understanding of the
3D scene 1s required, perhaps adding orientation critenia and more
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complex environments. In this experiment, the task seemed too
simple and quick to execute, in that the subjects would not take the
extra time to obtain multiple views unless it was required. An
experiment which “rewards” visual exploration would be more
appropriate to investigate the perceptual benefits derived from
interactive display techniques.
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Device Synchronization Using an Optimal Linear Filter

Martin Friedmann, Thad Starner and Alex Pentland !

Abstract

In order to be convincing and natural, interactive graphics applica-
tions must correctly synchronize user motion with rendered graph-
ics and sound output. We present a solution to the synchronization
problem that is based on optimal estimation methods and fixed-
Iag dataflow techniques. A method for discovering and correcting
prediction errors using a generalized likelihood approach is also
presented. And finally, MusicWorld, a simulated environment em-
ploying these ideas is described,

CR Categories and Subject Descriptors : 1.3.6 {Computer

J: Methodology and Techniques - Interaction Technigues;
D.2.2 [Software Engineering): Tools and Techniques - User Inter-
Jaces

Additional Keywords: Real-time graphics, artificial reality, in-
teractive graphics, Kaiman filtering, device synchronization.

1 Introduction

In order to be convincing and natural, interactive graphics applica-
tions must correctly synchronize user motion with rendered graphics
and sound output. The exact synchronization of user motion and
rendering is critical: lags greater than 100 msec in the rendering of
hand motion can cause users to restrict themselves to slow, careful
movements while discrepancies between head motion and rendering
can cause motion sickness [3; 5]. In systems that generate sound,
small delays in sound output can confuse even practiced users.
This paper proposes a suite of methods for accurately predicting
sensor posilion in order to more closely synchronize processes in
distributed virtual environments.

Problems in synchronization of user motion, rendering, and
sound arise from three basic causes. The first cause is noise in
the sensor measurements. The second cause is the length of the
processing pipeline, that is, the delay introduced by the sensing de-
vice, the CPU time required to calculate the proper response, and
the time spent rendering output images or generating appropriate
sounds. The third cause is unexpected interruptions such as net-
work contention or operating system activity. Because of these
factors, using the raw output of position sensors leads to noticeable
lags and other discrepancies in output synchronization.

! Vision and Modeling Group, The Media Laboratory,
Massachusetts Institute of Technology, Cambridge, MA 02139,
{martin,testame,sandy } @media-lab.media.mit.edu
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Unfortunately, most interactive systems either use raw sensor
positions, or they make an ad-hoc attempt to compensate for the
fixed delays and noise. A typical method for compensationaverages
current sensor measurements with previous measurements to obtain
a smoothed estimate of position. The smoothed measurements are
then differenced for a crude estimate of the user’s instantaneous
velocity. Finally, the smoothed position and instantaneous velocity
estimates are combined to extrapolate the user's position at some
fixed interval in the future.

Problems with this approach arise when the user either moves
quickly, so that aversging sensor measurements produces a poor
estimate of position, or when the user changes velocity, so that
the predicted positon overshoots or undershoots the user’s actual
position. As a consequence, users are forced io make only slow,
deliberate motions in order to maintain the illusion of reality.

We present a solution to these problems based on the ability to
more accurately predict future user positions using an optimal linear
estimator and on the use of fixed-lag dataflow techniques that are
well-known in hardware and operating system design. The ability
(o accurately predict future positions cases the need to shorten the
processing pipeline because a fixed amount of “lead time” can be
allotted to each output process. For example, the positions fed to
the rendering process can reflect sensor measurements one frame
ahead of time so that when the image is rendered and displayed,
the effect of synchrony is achieved. Consequently, unpredictable
system and network interruptions are invisible to the user as long as
they are shorter than the allotted lead time.

2 Optimal Estimation of Position and
Velocity

At the core of our technique is the optimal linear estimation of fu-
ture user position. o accomplish this it is necessary to considerthe
dynamic properties of the user’s motion and of the data measure-
ments. The Kalman filter (4] is the standard technique for obtaining
optimal linear estimates of the state vectors of dynamic models and
for predicting the state vectors at some later time. Outputs from the
Kalmar filter are the maximum likelihood estimates for Gaussian
noises, and are the optimal (weighted) least-squares esumates for
non-Gaussian noises [2).

In our particular application we have found that it is initially
sufficient to treat only the translational components (the £, y, and z
coordinates )output by the Pulhemus sensor, and to assume indepen-
deat observation and acceleration noise. In this section, therefore,
we will develop a Kalman filter that estimates the posiuon and ve-
locity of a Polhemus sensor for this simple noise model. Rotations
will be addressed in the following section.




2.1 The Kaiman Filter
Let us define a dynamic process

Xisr = £(Xu, At) + £(2) (M

where the function f models the dynamic evolution of state vector
X at time k, and let us define an observation process

Yi = h(X4, at) +9(2) 2

where the sensor observations Y are a function h of the state vector
and time. Both £ and » are white noise processes having known
spectral density matrices.

In our case the state vector X, consists of the true position,
velocity, and acceleration of the Polhemus sensor in each of the z,
¥, and z coordinates, and the observation vector Y x consists of the
Polhemus position readings for the z, y, and z coordinates. The
function f will describe the dynamics of the user’s movements in
terms of the state vector, i.e. how the future position in z is related
to current position, velocity, and acceleration in z, y, and z. The
observation function h describes the Polhemus measurements in
terms of the state vector, i.e., how the next Polhemus measurement
is related to current position, velocity, and acceleration in z, y, and
z.

Using Kalman's result, we can then obtain the ontimal linear

estimate X« of the state vector X by use of the following Kalman

filter:
Xi = X; + Ka(Yr - h(X}, ) 3)

provided that the Kalman gain matrix K. is chosen correctly [4).
At cach time siep &, the filter algorithm uses a state prediction X3,
an error covariance matrix prediction P}, and a sensor measure-
ment Y, to determine an optimal linear state estimate X, emor
covariance matrix estimate P4, and predictions Xisi Piy for
the next time siep.

The prediction of the state vector X}, at the next time step is

obtained by combining the optimal state estimate X and Equation

I
Xi+ = Xi + (X, An)At (4)

In our graphics application this prediction equation is also used
with larger times steps, to predict the user’s future position. This
prediction allows us to maintain synchrony with the user by giving
us the lead lime needed to complete rendering, sound generation,
and so forth.

2.1.1 Calculating The Kaiman Gain Factor
The Kalman gain matrix K« minimizes the error covariance
matrix P, of the emror e, = X — X, and is given by

K: =P;H,"H.P;H\" - )™ (5)

where R = E[n(t)n(t)7] is the n x n observation noise spectral
density matrix, and the matrix H is the local linear approximation
to the observation function h,

(Hi),, = oh, /oz,

evaluatedat X = X;.

Assuming that the noise characteristics are constant, then the
optimizing error covariance matrix P is obtained by solving the
Riccati equation

0=P;=FP,+P;F] -P;HIRT'H,P;+Q (1)

where Q = E(£(t)€(t)7) is the n x n spectral density matrix of the
system excitation noise €, and F; is the local linear approximation
1o the state evolution function f,

(Fy),, = of./ox,

(6)

(8)
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evaluated at X = X.

More generally, the optimizing error covariance matrix will vary
with time, and must also be estimated. The estimate covariance is
given by

Pi= (Y- KH,)P; 9)

From this the predicted error covariance matrix can be obtained

Pl =&:.P.3T +Q (10)
where ®, is known as the state transition matrix
P = (I+ FiAt) (1)

2.2 Estimation of Displacement and Velocity

Inour graphics application we use the Kalman filter described above
for the estimation of the displacements P;, P, and P, the veloc-
ities V4, Vj,, and V;, and the accelerations A,, Ay, and A, of
Polhemus sensors, The state vector X of our dynamic system is
therefore ( Ps, Vi, Az, Py, Vi, Ay, Pi, Vi, A5)7, and the state evo-
lution function is

[ Vit As4 T
3

0

V. +A At

fXan=| a7
0

Vi + A:%

z

(12)

The observation vector Y will be the positions Y
(Ps, P,, P})" that are the output of the Polhemus sensor. Given
a state vector X we predict the measurement using simple second
order equations of motion:

P+ ViAt+ A4

h(X,a)= | P, +VAt+ 4,4 (13)
Pz + V:A' + A:%‘
Calculating the partia) derivatives of Equations 6 and 8 we obtain
- o l A‘- -
o |
0
01 4
F= o f{ (14)
0
01 &
o i
L 0
and
1A &
H= ) 1 At A—;: (15)
t
i 1 At &

Finally, given the state vector X, at time k we can predict the
Polhemus measurements at time k + At by

Yia = h(Xs, A) (16)
and the predicted state vector at time k + At is given by
Xisar = Xi + £(Xx, At)At (17)
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Figure 1: Output of a Polhemus sensor and the Kalman filter prediction of that output for a lead time of 1/30th of a second.

2.2.1 The Nolee Model

We have experimentally developed a noise model for user mo-
tions. Although our noise model is not verifiably optimal, we find Height (mm)
the results to be quite sufficient for a wide variety of head and hand 250} — polhemus signal
tracking spplications. The system excitation noise model £ is de- . .03 second look ahead
signed to compensate for large velocity and acceleration changes; 200 " 06 second look ahead

we have found - -,.93‘ second look ahead 75

enT=[1 20 631 20 63 1 20 63] (19 190

(where @ = £()€(¢)7) provides a good model. In other words, 100

we expect and allow for positions to have a standard deviation of sob 7
Imm, velocities 20mm/sec and accelerations 63mm/sec’. The

obscrvation noise is expected to be much lower than the sysiem
excitation noise. The spectral density matrix for observation noise .-
is R = n(t)n(t)T: we have found that -50 Timé" (seconds)

) =[.25 25 .25 (19)
provides a good model for the Polhemus sensor.

2.3 Experimental Results and Comparison

Figure 1 shows the raw output of a Polhemus sensor attached to a
drumstick playing a musical flourish, together with the output of
our Kalman filter predicting the Polhemus’s position 1/30th of a

Figure 2: Output of Kalman Glter for various lead times

second in the future. Height (mm)
As can be seen, the prediction is generally quite accurate. At 250 polhemus signal

points of high acceleration a certain amount of overshoot occurs; * - -~ .03 second look ahead

such problems are inuinsic to any prediction method but can be 200} T 0e Secongd ook ahead

minimized with more comnplex models of the sensor noise and the RN Y

dynamics of the user’s movements. 150 e
Figure 2 shows a higher-resolution version of the same Polhemus

signal with the Kalman filter output overlayed. Predictions for 1/30, wor -

1/15, and 1/10 of a second in the future are shown. For compari- sol,

son, Figure 3 shows the perfonmance of the prediction made from a

simple smoothed local position and velocity, as described in the in-

troduction. Again, predictions for 1/30, 1/15, and 1/100f a second

in the future are shown. As can be seen, the Kalman filter provides -50 \/

a more reliable predictor of future user position than the commonly Tiné (seconds)

used method of simple smoothing plus velocity prediction.

3 Rotations Figure 3: Output of commonly used velocity prediction method.

With the Polhemus sensor, the above scheme can be directly ex-
tended to filter and predict Euler angles as well as translations.




However with some sensors it is only possible to read out instant-
by-instant incremental rotations. In this case the absolute rotational
state must be calculated by integration of these incremental rota-
tions, and the Kalman filter formulation must altered as follows [1].
See also [6].

Let p be the incremental rotation vector, and denote the rotational
velocity and acceleration by 9 and a. The rotational acceleration
vector o is the derivative of 9 which is, in tum, the derivative of
p, but only when two of the components p are exactly zero (in
some frame to which both p and ¥ are referenced). For sufficiently
small rotations about at least two axes, ¥ is approximately the time
derivative of p.

For 3D tracking one cannot generally assume small absolute rota-
tions, so an additional representation of rotation, the unit quaternion

q and its rotation submatrix R, is employed. Let

Qo

‘.l = g; » (20)

4]

be the unit quaternion. Unit quaternions can be used to describe the
rotation of a vector v through an angle ¢ about an axis i}, where 1l
is a unit vector. The unit quaternion associated with such a rotation

has scalar part
go = sin (¢/2) (21)
and vector part
]
' ) = fcos (¢/2) . (22)
U]

Nole that every quatemion defined this way is a unit quaternion.

By convention (.l is used to designate the rotation between the
global and local coordinate frames. The definition is such that the
orthonormal matrix

R = (23)

w+e-g-a z2 (n goqa) 2(¢ + goq2)
2+ gn) gG-q+e- Z(ngs goq:)
2 - gog2) 2(ma+qom) -gi-a+a

transforms vectors expressed in the local coonhnale frame to the
corresponding vectors in the global coordinate frame according to

Vgtobat = RViccal. (24)

In dealing with incremental rotations, the model typically as-
sumes that accelerations are an unknown “noise” input to the system,
and that the time intervals are small so that the accelerations at one
time step are close to those at the previous time step. The remain-
ing states result from integrating the accelerations, with corrupling
noise in the integration process.

The assumption that accelerations and velocities can be integrated
to obtain the global rotational state is valid only when p, is close
to zero and p, ., remains small. The latter condition is guaranteed
with a sufficiently small time step (or sufficiently small rotational
velocities). The condition p, = 0 is established at each time step by
defining p to be a correction to a nominal (absolute) rotation, which

[
is maintained externally using a unit quaternion ¢ that is updated at
each time step.

4 Unpredictable Events

We have tested our Kalman filter synchronization approach using
a simulated musical environment (described below) in which we
track a drumstick and simulate the sounds of virtual drums. For
smooth motions, the drumstick position is accurately predicted, so
that sound, sight, and motion are accurately synchronized, and the
user experiences a strong sense of reality.

The main difficulties that arise with this approach derive from
unexpected large accelerations, which produce overshoots and sim-
ilar errors. It is important to note, however, that overshoots are
not a problem as long the drumstick is far from the drum. In these
cases the overshoots simply exaggerate the user’s motion, and the
perception of synchrony persists. In fact, such overshoots seem
generally to enhance, not degrade, the user’s impression of reality.

The problem occurs when the predicted motion overshoots the
true motion when the drumstick is near the drumhead, thus causing
a false collision. In this case the system generates a sound when in
fact no sound should occur. Such errors detract noticeably from the
illusion of reality.

4.1 Correcting Prediction Errors

How can we preserve the impression of reality in the case of an
overshoot causing an incorrect response? In the case of simple
responses like sound generation, the answer is casy. When we
detect that the user has changed direction unexpectedly — that is,
that an overshoot has occurred — then we simply send an emergency
message aborting the sound generation process. As long as we can
detect that an overshoot has occurred before the sound is “released,”
there will be no error.

This solution can be implemented quite generally, but it depends
critically upon two things. The first is that we must be able to very
quickly substitute the comrect response for the incorrect response.
The second is that we must be able to accurately detect that an
overshoot has occurred.

In the case of sound gencration due to an overshoot, it is easy to
substitute the correct response for the incorrect, because the correct
response is to do nothing. More generally, however, when we de-
tect that our motion prediction was in error we may have to perform
some quite complicated allernative response. To maintain synchro-
nization, therefore, we must be able to detect possible trouble spots
beforehand, and begin to compute all of the allernative responses
sufficiently far ahead of time that they will be available at the critical
instant.

The strategy, therefore, is to predict user motion just as before,
but that at critical junctures to compute several altemative responses
rather than a single response. When the instant arrives that a re-
sponse is called for, we can then choose among the available re-
sponses.

4.2 Detecting Prediction Errors

Given that we have computed aliemaltive responses ahead of time,
and that we can detect that a pred.ction eror has occurred, then we
can make the correct response. But how are we to detect which of
(possibly many) altemmative responses are to be executed?

The key insight to solving this detection problem is that if we
havethe correct dynamic model then we will always have an optimal
linear estimate of the drumstick position, and there should be nothing
much better that we can to do. The problem, then, is that in some
cases our model of the event’s dynamics does not match the true
dynamics. For instance, we normally expect accelerations to be
small and uncorrelated with position. However in some cases (for
instance, when sharply changing the pace of a piece of music) a
drummer will apply large accelerations that are exactly cormrelated
with position.

‘The solution is to have several models of the drummer’s dynam-
ics running in parallel, one for each alternative response. Then at
each instant we can observe the drumstick position and velocity,
decide which model applies, and then make our response based on
that model. This is known as the multiple model or generalized like-
lihood approach, and produces a generalized maximum likelihood
estimate of the current and future values of the state varjables [10].
Moreover, the cost of the Kalman filter calculations is sufficiently
small to make the approach quite practical.




Figure 4: MusicWorld's drum kit.

Intuitively, this solution breaks the drummer's overail behavior
down into several “prototypical” behaviors. For instance, we might
have dynamic models corresponding to a relaxed drummer, a very
“tight” drummer, and so forth. We then classify the drummer’s
behavior by determining which model best fits the drummer’s ob-
served behavior.

Mathematically, this is accomplished by setting up one Kalman
filter for the dynamics of each model:

X(-) X'(')+K(')(Yg

where the superscript (i) denotes the i*” Kalman filter. The mea-
surement innovations process for the i*" mode! (and associated
Kalman filter) is then

l—()

‘The measurement innovations process is zero-mean with covariance
R.

‘The +** measurement imnovations process is, mtunuvcly. the pant
of the observation data that is unexplained by the 1** model. ‘The
model that explains the largest portion of the observations is, of
course, the most model likely to be correct. Thus @t each time step
calculate the probability P of the m-dimensional observatons
Y i given the i*® model's dynamics,

exp( r‘"TR"r‘") (27)
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Yi - hO(X;W, (26)
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and choose the model with the largest probability. This model is then
used to estimate the cumrent value of the state vanables, to predict
their future values, and to choose among alternauve responses
When optimizing predictions of measurements At i the future,
equation 26 must be modified slightly to test the predicuve accuracy
of state estimates from At in the past.
ﬁkl) =Y~ h‘"(X:‘,‘Q, +

fOX L anALL)  (28)

by ubsututing equation {7
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5 MusicWorld

Our solution is demonstrated in a musical virtual reality, an ap-
plication requiring synchronization of user, physical simulation,
rendering, and computer-generated sound. This system is called
MusicWorld, and allows users to play a virtual set of drums, bells,
or strings with two drumsticks controlled by Polhemus sensors. As
the user moves a physical drumstick the corresponding rendered
drumstick tracks accordingly. The instant the rendered drumstick
strikes a drum surface a sound generator produces the appropriate
sound for that drum, The visual appearanceof MusicWorld is shown
in Figure 4, and a higher quality rendition is included in the color
section of these proceedings.

Figure S shows the processes and communication paths used to
filter and query each Polhemus sensor. Since we cannot insure that
the application contro! process will query the Polhemus devices on
arcgular basis, and since we do not want the above Kalman loop to
enter into the processing pipeline, we spawn two small processes to
constantly query and filter the actual device. The application control
process then, at any time, has the opportunity to make a fast query to
the filter process for the most up to date, filtered, polhemus position,
Using shared-memory between these two processes makes the final
queries fully optimal.

MusicWorld is built on top of the ThingWorld system (7; 8],
which has one process to handle the problems of ieal-time physical
simulation and contact detection and a second process to handle
rendering. Sound generation is handled by a third process on a sep-
arate host, running CSound [9]. Figure 6 shows the communication
network for MusicWorld, and the lead times employed.

‘The application control process queries the Kalman filter process
for the predicted positions of each drumstick at 1/15 and 1/30 of
a second. Two different predictions are used, one for each output
device. The 1/15 of a second predictions are used for sound and
are sent to ThingWorld to detect stick collisions with drums and
other sound generating objects. When future collisions are detected,
sound commands destined for 1 /15 of a second in the future are sent
to CSound. Regardless of collisions and sounds, the scene is always
rendered using the positions predicted at 1/30 of a second in the
future, corresponding to the fixed lag in our rendering pipeline. In
general, it would be more optimal to constantly check and update
the lead times actually needed for each output process, 1o insure
that dynamic changes in network speeds, or in the complexity of the
scene (rendering speeds) do not destroy the effects of synchrony.

6 Summary

The unavoidable processing delays in computer systems mean that
synchronization of graphics and sound with user motion requires
prediction of the user's future position. We have shown how to con-
struct the optimal linear filter for estimating future user position, and
demonstrated that it gives better performance than the commonly
used technique of position sm  \ing plus velocity prediction. The
ability to produce accurate preaictions can be used to minimize un-
expected delays by using them in a system of multiple asynchronous
processes with known, fixed lead times. Finally, we have shownthat
the enmbination of aptimal filtering and careful construction of sys-
m cominunicalions cag result in a well-synchronized, multi-modal
virtual environment.
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Abstract

This paper introduces a predictor based visual feedback aid
for navigating through virtual environments using velocity
control. The predictor indicates to the user where and how
fast he or she is travelling and has a direct manipulation feel
to it. Experiences using the predictor to navigate over
digital terrain mops are discussed, which show it to be an
aide in leaming to use velocity control and in creating
smooth flight paths over thinned wire frame representation
of a scene for subsequent single frame animation,
Measurements of performance in using the predictor (o fly
through a tube scene show a benefit for the less experienced
users.

Introduction

For the past six years our work has focussed on
methods for exploring “fishiank” virtual environments.
These are not the full-blown environments with head
mounted displays, coupled to head position (Sutherland,
1968; Blanchard, et al, 1990), but rather the (currently) far
more useful environments where the virtual 3D world is
perceived to be behind the monitor window. Given this
common configuration, the user requires a means to move
through the virtual environment and manipulate objects
within it - both of these are 6 degree of freedom (6DF)
tasks. Previous work on viewpoint manipulation in our
laboratory using the Bat input device has established that
control over viewpoint velocity (o be a preferred exploration
mode (Ware and Osborne, 1990). The Bat (like a mouse
that tlies or fledermaus) senses the user's hand position and
orientation. We use the button as a kind of engagement
device and while the button is held down relative position
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and orientation is converted to viewpoint velocity,
translational position is converted to translational velocity
and orientation is converted to rotational velocity. We use
aquadratic function to map hand displacement to both
translational and rotational velocities and this gives control
through changes of scale of up to four orders of magnitude.

‘The hand position is computed relative to the 6D
coordinates of the initial change to the button down state.
Using relative position in this way has advantages and
disadvantages. It allows the user to work comfortably. If
the user finds a position awkward, letting go of the Bat
button instantly stops motion; the hand can be then moved
to a more convenient position, usually fairly close to the
body without undue arm extension, and motion can be
resumed relative to this new position. The disadvantage of
the relative mode is that the user is not likely (o remember
the starting position of the hand (buiton down transition).
If you knew where your hand was your could infer your
velocity. As it is there are only visual cues available from
the virtual environment about the current viewpoint
velocity and these are often not adequate, especially when
the environment has little texture.

‘The present project was initiated to develop a
viewpoint navigation aid by providing the user with
feedback on his or her cumrent velocity. The most important
source of inspiration came from experimental heads-up
cockpit displays designed to illustrate the aircraft altitude in
the pilot's field of view. In some experimental studies it
has been found useful to display the aircraft's predicied
attitude in addition to the current aircraft attitude (Gallagher
etal, 1977; Kelley, 1968). Taking this a step further is the
"quickened" display which only shows the aircraft's future
position (for a discussion see Wickens 1984).

‘The notion of quickening was especially attractive
to us since we felt it might give a direct object
manipulation feel to the interface. Even though the user is
in fact directly manipulating the current velocities, he or
she may feel that it is the predictor that is being
manipulated and the predictor shows a future position and
orientation based on extrapolation. Assuming success, the
user will feel in control over the predictor and, in a sense,
control over the future view point with a guaranteed
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The predictor is a rectangular frame placed
in front of the viewpoint.

Viewpont
at time Ti Predicted viewpoint

at time Ti+n

Figure 1. The predictor which is perceived at time Ti is based on the
predicted position of the viewpoint at time Ti+n. The streamers from the
comers of the predictor trace out the path of the predictor over the previous
frames.
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Figure 2. The predictor is seen in use over a digital terrain map representing the North
Atlantic
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smooth transition from the current viewpoint. To arrive at a
particular location it will be only necessary to point the
predictor at it, and changes of orientation may be achieved
in a similar fashion. In this respect the display would be
like Mackinlay et al's (1990) technique for viewpoint
navigation relative to specified points on the surfaces of
objects, only without the necessity of tieing navigation
directly to objects.

Predictor design

The aircraft problem and the fishtank interaction problem
are not exactly isomorphic. An aircraft has complex flight
dynamics whereas our interface was designed for complete
frecdom of motion with ease of use being the only
consideration. We are able to move up down
forwards,backwards and sideways with equal facility.
Because a conventional predictor will not be visible except
in the case of forward motion we gave our predictor a
neutral point in front of the viewpoint, as illustrated in
Figure 1. To add velocity and trajectory feedback we added
tails to the four comers of the predicior frame. Although
these tails actually look like ribbons, they behave like
smoke trails. That is, they mark the course of the predictor
frame through space. Figure 2 illustrates the predictor
being used to create a motion path over a digital terrain
map.

Uses

Our first real application of the predictor is in virtual
camera control, We are involved in a major Canadian ocean
mapping project at UNB and we have created pan of an
animaied videotape for the Canada pavilion in the upcoming
World's Fair in Seville Spain. We used the predictor with
the velocity control interface 1o create a motion path in real-
time over a thinned wire frame representation of the
topographic data. We can then reused the i ¢d motion
path with single frame animation and high quality rendering
techaiques to create the required movie.

We are also building the predictor into a data
visualization and editing system for oceanographic
research.

Evaluation

Our experience in using the predictor to explore
various kinds of termin data suggest that the predictor tails
help in providing feedback about velocity, smoothness and
direction of travel which is invaluable in the specification
of a motion path for a flyby animation. In this kind of
scene the terrain consists of a wire mesh which means that
the tails were always visible to the user. [n addivon, the
visual feedback from the predictor tails are especially useful
in graphically impovenished scenes, they make up for the
lack of visual motion parallax information (Gibson, et al,
1959)

The first stages of predictor design were an iterative process
without formal evaluation. However, it is obvious to us
already that it is a valuable navigation aid and as anticipated
it has a direct manipulation feel ¢9 it. It has had additional
benefits which were not anticipated. Because our system
uses the standards Z buffering for hidden elimination. it
gives a collision cue. The predictor can be seen to enter an
object, leaving it's tail still visible allowing for avoidance
action,
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Figure 3. At a particular time setting, the
presence of the predictor allows inexperineced
subjects to perform better. Exporienced subjects
perform worse. See text for explanation

We are beginning a series of formal studies to evaluate
various predictor parameters such as optimal extrapolation
time and streamer length. The results we have thus far
come from a task in which subjects navigate through a
tunnel which is made up of a sequence of eight curves each
having a diffferent radius. Each time the subject does the
task a different randomly connected sequence of curves is
used. The subject’s task is to navigate the tunnel as fast as
possible without flying through a wall. We measure both
time to completion and errors under the three conditions:

No predictor

Predictor without tails

Predictor with tails.
‘The most interesting results obtained to date are plotted in
Figure 3 which shows data from eight subjects. The
relative time to completion for the predictor without tails
condiuon is plotted agains average tune to completion. The
negative correlation shows that subjects who did the task
slowly (on average) were did significantly better with the
predictor - they are represented by the five points below the
line, while subjects who did the wask fast were actually
hindered in their performance of the task. The subjects who




did the task slowly were ones with no prior experience with
our velocity navigation system and they clearly benefited
from the presence of the predictor. The reason for the
degradation of performance with the more experienced
subjects became clear on detailed analysis. The speed with
which they navigated through the tube was such that the
predictor was projected right out of sight beyond the next
bend, most of the time. Because of this the subject only
occasionally obtained glimpses of the predictor which
proved to be a distraction rather than a help. It appears
likely that for experienced subjects the predictor should be
projected a shorter time into the future.

The data obtained we have obtained thus far with
the tails give a confusing picture which suggest that some
subjects benefit while other subject find them to be a
hindrance, irrespective of experience. We are continuing
our investigation,

What has been achieved

We feel that the combination of Bat, fishtank environments
and predictor has immediate utility for Scientific
visualization and Cad systems. It lacks many of the
motion constraints of full blown, head mounted virtual
reality while it allows for almost as much functionality,
although, of course the feeling of immersion in the
graphical environment is absent - but this saves on Gravol.
There are now three Bat devices in or close to production:
the SimGraphics Flying Mouse™, the Ascension
Technologies Bird™, the Logitech™ 3D mouse, and the
Gyration GyroPoint™. In other studies we have found that
Bats are good for object manipulation (Ware and Jessome,
1988, Ware, 1990) and superior to the SpaceBall™ for 3D
navigation (Ware and Slipp, 1991)
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Videotape

‘The videotape that accompanied this paper showed
sequences are shown:

1) ‘The predictor is seen in use in the Duct Maze
environment used to evaluate performance. The manouvers
being carried out show how the predictor behaves when itis
flown in and out of walls.

2) 'The predictor is used in an interface which allows the
exploration of a digital terrain map of the North Atlantic
and the west coast of North America. When motion stops
the surface is rendered at successive levels of detail. The
colour coding of the surface illustrates gravity anomalies.

In the version illustrated in the videotape, the predictor tails
extead from 20 frames in the future to 10 frames into the
past. Ata frame rate ol 20 frames/second this yields a one
second predictor which scems about right
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Abstract

This paper presents a general system for camera movement
upon which a wide variety of higher-level methods and applica
tions can be huilt, In addition to the basic commands for camera
placement, a key attribute of the CINEMA system is the ability to
inquire information directly about the 3D world through which the
camera is moving. With this information high-level procedures can
be written that closely correspond to more natural camera specifi-
cations. Examples of some high-level procedurc ; are presented. In
addition, methods for overcoming deficiencies ot this procedural

approach are proposed.

1. Introduction

Camera control is an integral part of any 3D interface. In
secen® years a number of techniques for interactively specifvin:
came.a movement have been implemented or proposed. Es |
these techniques has provided an '.ierface for solving a problem
for a particular domain, but all of them have remained independew
making it impossible to us- them across domains, These domains
include keyframe based computer graphic animation technijques
(8, 11), navigation of virtual environments [1, 2,9, 12, 13}, general
3D interaction {3, 12}, automatic presentation (6] (in which com-
puters generate a presentation), and synthetic visual narratives {4)
(in which users author presentations). The CINEMA system
described in this paper is a camera protocel that supports camera
interface paradigms useful for all these domains, and provides a
framework on which new interfaces can be developed.

The CINEMA system has a procedural interface for specify-
ing camera movements relative 10 objects, events, and the generai
state of an environment. This task level approach enables the
implementation of many common nterachve metaphors and pro-
vides the ability to build higher level parameterized procedures
that are reusab. .

After a br.f introduction to the problem, we will review
related work in c.. ~* ~ontrol, and then descnbe the CINEMA
system, including the underlying support structuze, the unplemen-
Permission to copy without fee all or part of this matenal is
granted piovided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
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tation, and several examples that diemonstrate the system. Funally,
we will discuss problems with this approach and suggest alterna-
tives based upon our findings. We will work under the assumption
that the actions in the environmeny are occurring independently
from the observer. By making thes assumphion, the specification of
the camera is independent fronr the 3D world, or can be treated as
a window into the world that does not impact on it. This simplifica-
non 1s made by many of the existing camera interfaces reviewed in
thus paper, and although lwnting, 1t 1s appropriate for a variety of
situations.

An effective camera protocoi must support mierfaces that
mvestigate/explore and wrerfaces that presenthllustrate the 3D
world. Although we have only begun o explore the uses of this
system, there are many applications i which it could be used. In
both scientific and archutectural visuahzation there 1s the need w
explore the virtual environment interactively and then to later
author a set of dlustrative camera movements 1o be shown to ch-
ents or colleagues In edectronie books there will be the need for a
designer or knowledge based system to generate an mterface
through which a reader < an view the information In the entertamn-
ment wdustry an anumator could use it to direct or specily camera
movements. Live action Ghn makers may use it 1o create mterac-
tive story boards of their ~cenes, plan camera movements, or even
to generate commands for motion controlled cameras. Telerobotc
or wirtual envronnent apphcanons require a task level camera




protocol in order to allow a human operator to efficiently and intu-
itively control the view while performing or directing some remote
operation. All of these interfaces can be supported on top of the
camera protocol described in this paper.

2. Previous Work

Early work in animation is devoted to making the movement
of the camera continuous and to developing the proper representa-
tion for camera movements along a path {8, 11]. These works are
devoted to giving the animator greater control in creating smooth
movements and to finding ways to interpolate between user speci-
fied keyframes. Although generating spline curves for camer
movement can produce smooth paths, it can be difficult to relaie
the movements of the camera to objects in the environment.

With the advent of virtual environments and related 3D inter-
active worlds, a great deal ot effort has been spent on preseniing
convenient metaphors through which to change the user’s view of
an object or the world. A metaphor, as discus: *d in Ware et ¢! [12]
provides the user with a model that enables the prediction ¢ svs-
tem behavior given different kinds of input actions. A good rax...-
phor is both appropriate and easy to leam. Some examples of
metaphors are the ‘eyeball in hand’ metaphor, the ‘scene in hand'
or ‘dollhouse’ metaphor, and *flying vehicle control.’

In the ‘eyeball in hand' metaphor, a 6 degree of freedom
device 15 used to position and orient a camera by directly translat-
g 2ad rotativg the input device. Ware ¢t al found this method
somewhat awkw ard 1o use but easy to leam. The ‘scene in hand’
metaphor allows I' i user to rotate and translate the scene based on
the positian of the mput device, This was found to be very conve-
nient for hand €ized objects, but nearly impossible to use for navi-
gating inside closed «,paces. Another scheme discussed by Ware et
a! was to contro} a simulated flying vehicle. The user’s position
and orientation respectevely affected the linear and angular veloc-
ity of the camera viewpoint and direction of gaze. This metaphor
makes it easy to navigate, but difficult to examine a particular
object. Although 3D mput devices such as a Polhemus Isotrack
system or a Spatial Systems Spaceball enable the user to specify 6
degrees of freedmm simuitaneously, simulations of these devices
can be done using only 2D devices [3].

Mackinlay et al [9] discuss the problem of scehng camera
mavements appropnately. They develop methods to select an
object of interest and to move exponennally towards or away from
- obpect. In this way, when the user 1s close 1o an object, the
viewpornt changes only a little, while when they are far from an
object, the viewpoumnt changes rapidly. By selecung *pount of nter-
est,” the authors can reonent the camera to present a maxunal view
of the desired object. The degrees of freedom ate therefore
restncted and the user can concentrate more on the task of navigat
ing through the environment.

Brooks [1, 2] developed several different methods for moving
around architectural sumulations mcluding steerable treadnulls or
shopping carts with devices to measure the duection and speea of
movement.

The above work shuws that different interfaces are appropri
ate for different application requirements. In our view, no one
interface 1s ideally suited for all tasks, and 4 common underlying
structure on top of which several different metaphors can be imple-
mented would give the user a powerful tool to mteract with 3D
environments.
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An important ability 1s to allow the user to select an object of
interest within the environment. We have expanded on this by
allowing the user to make general queries about the visibility and
orientation of objects within the environment. This allows the user
to manipulate camera motion based on the actions within the envi-
ronment.

Furthermore, while direct mampulation has certain advan-
tages in int.ractive systems, there are several deficiencies, It is not
necessarily good for repetitive actions, and any action that requires
a great deal of accuracy, such as smooth movement for cameras, is
not necessarily suited to input using one of the metaphors sug-
gested in the preceding paragraphs. Some of the problems inherent
in using 6 DOF input devices presently available are noise which
is inherent in user movements and the number of degrees of free-
dom which must ve simultaneously controlled. Textual systems,
with interaction built on top of them, allow both a high level input
device interface, and an underlying language through which com-
mands can be specified directly or generated through other rule
bases,

An expert system for presentation, mcluding the selection of
proper camera movements, 1s discussed i some detail by Karp and
Feiner {6]. In their Esplanade system (Expert System for PLAN-
ning Animation Design and Editing), they emphasize the ability to
incorporate cinematic knowledge for the construction of coherent
descriptions of a scene. To do so, they need to have representations
of a database of objects and explicit events, along with a notion of
how frames, shots, scenes and sequences can be put together to
muke an effective namative. Thewr work emphasizes using a
knowledge based system for automatically selecting camera place-
ment and for choosing appropriale camera movements based on
cinematic considerations. Currently, they do not concentrate on the
movements themselves, but more on the initial placement of the
camera for shots and how to make transitions to other shots,

3. The CINEMA System

We have developed the CINEMA system to address the prob-
lem of combining different paradigms for controlling camera
movements into one system. The CINEMA system is extensible,
permitting the user to build mgher level procedures from simpler
punutives. It also provides the very unportant ability to make
inquinies into a database which contains mformation describing the
state of objects within a 3D envuonment. After the system was
developed, 1t was used by a dozen students i a course entitled
“Synthetic Cinematie and Cinematic Knowledge.™ In this course
the students used this system to explore alternative ways of ani-
mating one of several scenes. Although this system has mainly
been used for a synthetie narrative application, we feel that what
was learned 1 applicable to the other domains such as the apphica-
tons mentioned above.

The CINEMA system 15 divided up 1nto two major parts. The
first 15 a database which contams information about objects, their
posttions over tume, and events over e The second part s a
parser that accepts and iterprets user co. .nands. The user com-
mands are restricted to mgunes about the state of the database and
commands which query or affect the state of the camera.

I Ihe counse has been taught at the ML Modia Lab by Protessors Dasid
Zelzer and Glonianna Dasenpont  two short versions wr January 1939 and
1990, and two full semester courses i the Sprung ot 191 and 1992




3.1.Support structure for CINEMA

To_ produce CINEMA's procedural interface it was necessary
to develop.a set of primitive functions. There are three parts to this
support structure, First, there is a set of commands for moving the
camera or inquiring about the current camera state. Second is a set
of commands for inquiring about the state of the 3D world. Last is
aset of mathematical routines for manipulating the values retumed
from the other functions.

There are two scts of primitive functions for changing the
camera position and orientation, The lower level of these are the
commands that directly sct the x, y, and z positions and the from,
up, and at vectors that are so commonly used in computer graph-
ics, The slightly higher level primitives (but still part of the support
structure) perform simple camera moves like pan, tilt, roll, truck,
dolly; and crane (7). In the film industry terms such as dolly and
truck are loosely used, For example, truck may be used to mean a
move in or out, or a move from side to side. In this implementation
we have chosen one of the possible definitions for these terms to
avoid confusion. The conversion between the computer graphics
vectors and the film standards is straightforward,

Many descriptions of how to film, frame, and navigate the
scene (by both screenwriter and layperson) are with respect to the
objects in the world. For example one might ask for the camera to
move alongside object A while looking at object B. An interface
that supports these descriptions must provide information about
cvents, geometric and spatial relationships such as position, rela-
tive occlusion, direction of glance, and distances. For example,
functions like obj.visibility(), obj_obj visibilityr) find
visibility information between the camera and an object or
between two particular objects. Currently this is implemented by
using simple ray casting with bounding box intersection. More
sophisticated techniques can be used to provide a more precise
notion of visibility. However, this implementation has proven ade-
quate for this preliminary rescarch. Other functions (like
frane events()) are provided to support inquiry into discrete
events which might teke place during an animation.

In addition to the commands described above, the system pro-
vides a set of supporting mathematical commands, including both
scalar and veetor calculations. These commands are needed to
manipulate the output of the inquiry commands, With these func-
tions, an inguiry about the state of the scene can be manipulated to
calculate new camera parameters (such as position, from, at and up
vectors). With combinations of these basic tools higher level pro-
cedures can be built,

3.2 Implementation

The entire system 15 currently implemented on 2 platforms.,
an HP9000-835 turbu SRX 1n C using a public dumain front end
language called Tcl [10), and vn an Apple Mauntosh. The Mavin
tosh platform can not provde unteractive update rates for rendered
images, but is <uiccessfully used for wireframe images.

3.3 Examples

The fullowing eaamples ate 1epreseutaizre of huw the CIN
EMA System was used i several different syygtions. The first
example shuws huw the CINEMA system i anterfiaoved to o 3D
enviunment, and umplements vne of Wate et al's wuyement ineta
phurs. The secund example shuws how lughet level vameid inove
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ments can be built from lower level primitives and inquiry
functions. Finally, example 3 shows the cinematic power of the
system in filming a simple animation.

Example 1: CAMERA MOVEMENT METAPHOR: This
example shows how a 3D input device such as the Isotrack Polhe-
mus or Spatial Systems Spaceball can be used to change the view
in a scene. In the accompanying video, we usc an Ascension Tech-
nologies Bird to control the x, y, and z position of the camera while
always looking at the object called “joe.” This is very similar to the
“cyeball in hand” movement metaphor discussed by Ware et al,

The following pseudocode shows how this function is imple-
mented using the CINEMA system, The function consists of an
inquiry to the 6 DOF input device and then translating the camera
based upon the translation returned by the input device.

proc eyeball_in_hand(chject) ({
(X,y,2) := get_input_from_device():
cam_set_point(x,y,2);

lookat (object) ;

)

Example 2: EXTENSIBLE LANGUAGE: The procedure
“vertigo shot™ simulates Hitchcock’s classic shot in the film “Ver-
tigo™ where the camera moves outwards while the field of view
grows narrower keeping the object a constant size at the center of
the frame. This effect makes viewers feel as if they are moving
closer and closer to an unattainable goal. In only a few minutes we
constructed the following procedure to make a vertigo shot.

proc vertigo_shot{obj, rate, no_framesg) ({
/* get the angle subtended by the object */
angle := get_angle_height (obj);
/* get the camera’s field of view v/
fov = cam_£fov();
/* compute the percentage of the fov */
/* which the object subtends */
percent := angle/fov;
for (i=0;i<no_frames;i++) {
/* truck in the specified direction */
Vad at the specified rate */
cam_truck(rate);
/* set the field of view so that */
/° the object subtends the same */
Vad percentage as before */
frame_it (obj, percent);

Example 3: SYNTHETIC NARRATIVE: The last example
shows that the system can be used for simple cinematic teaching
purposes. An animation of a figure sitting down is filmed. A cut in
the muddle of the animation changes the view point fiom an oblique
view 1o a head on view. The views are selected so that a “match”
vut [5] 15 avhieved. See sequenve of frames at the end of the paper.

4. Future Work

The CINEMA system needs to be extended to provide a
micchansm tu ewsily combine and constrain multiple procedures.
For example, suppuse a user would like to track the motion of a
walking figare while preventing the camera from moving through
walls. Ideally, une would tike to have these prucedures (one for
ttaching and one for avoidanee) automatically combined to




achieve the desired performance. Currently, it would be necessary
to construct a new procedure meeting both constraints.

The ability to combine procedures would allow user input to
be treated as another procedure that can be combined with other
constraints, Camera movements could then be interactively
adjusted to achieve a desired result.

To address some 1 F these problems, we have already begun
exploration into cons.aint satisfaction techniques for camera
placement and movement. By specifying the camera’s relationship
to other objects via weighted constraints, the system can find the
best position that satisfies certain criterion. These constraints are
maintained as the objects, and the camera moves throughout the
environment. Additional constraints can be placed on the move-
ment of the camera, so that the camera can have attributes of a sim-
ulated physical object such as a fluid head.

5. Conclusion

The CINEMA system provides users with the ability to rap-
idly experiment with various camera movement paradigms. Users
can create new camera metaphors or extend existing ones. The
ability to inquire about the state of objects in the environment pro-
vides support for more powerful camera movement procedures.

The CINEMA system has already proven quite useful in the
teaching domain, Students were able to use the CINEMA system
1o explore different ways to film and present a simple animation,
and to plan a real camera shoot, The constraint satisfaction meth-
odology described above is an ongoing area of research, There are
many other areas to explore in camera movement systems includ-
ing rule based generations systems, codifying stylistic attribates,
examining cuts, and interfacing with task oriented applications to
name just a few. The hope is that once a strong support base for
camera positioning and movement is produced, further research in
these areas will be easier.

The CINEMA system makes it possible to experiment with
camera paradigms quickly and conveniently, We intend to continue
evolving the CINEMA system with an eye toward different appli-
cation domains including telerobotics/virtual environments and
synthetic narratives,
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Abstract

This paper describes a technique for augmenting the

-process of 3D direct manipulation by automatically find-

ing an eflective placement for the virtual camera. Many
of the'best techniques for direct manipulation of 3D ge-
ometric objects are sensitive to the angle of view, and
can thus require that the user coordinate the placement
of the viewpoint during the manipulation process, In
some cases, this process can be antomated. This means
that the system can automatically avoid degenerate sit-
uations in which translations and rotations are difficult
to perform. The system can also select viewpoints and
viewing angles which make the object being manipu-
lated visible, ensuring that it is not obstructed by other
objects,

Introduction

3D direct manipulation is a technique for controlling
positions and orientations of geometric objects in a 3D
environment in a non-numerical, visual way., Although
much research has been devoted to 3D direct manipu-
lation of geometric objects, no existing system has ade-
quately integrated the controls for viewing into the di-
rect manipulation process. Evans, Tanner, and Wein
[3], Nielson and Olson[6}, and Chen et al [1] all discuss
techniques for manipulation that are sensitive to the
viewing direction, but they do not address how the view
can be manipulated. Ware and Osborne[10] discuss the
viewing process in general, in terms of metaphors that
it suggests, and Mackinlay et al [5] discuss an effec-
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tive technique for manipulating the viewpoint, both in
proximity to other objects and through large distances,
Neither of these relate the viewing process to direct ma-
nipulation.

Our direct manipulation system includes a mecha-
nism for automatically placing the virtual camera at
a viewpoint which avoids the problems with degenerate
axes suffered by most direct manipulationschemes, The
basic idea is to rotate the camera through small angles
to achieve a better view. Qur system also rotates the
camera to avoid viewing obstructions. This viewing op-
eration is an integral part of the manipulation system,
not a separate viewing facility which the user must ex-
plicitly invoke.

The problem of automatic viewing placement for ma-
nipulation is different from that of automatic camera
control in animation. Karp and Feiner[4] describe a sys-
tem called ESPLANADE that automatically visualizes
simulations. It automatically finds camera placements
which provide a good view of movement during an ani-
mation. This is an adjunct to the process of animation,
not an interactive technique.

3D Direct Manipulation

Several techniques have been developed for describing
three dimensional transformations with a two dimen-
sional input device such as a mouse or tablet. Niel-
son and Olson [6] describe a technique for mapping the
motion of a two dimensional mouse cursor to three di-
mensional translations based on the orientation of the
projection of a world space coordinate triad onto the
screen. This mapping makes it difficult to translate
along an axis parallel to the line of sight, because the

'Cary Phillips’ current address: Pacific Data Images, 1111
Karlstad Dr, Sunnyvale, CA 94089




axis projects onto a point on the screen instead of a
direction.

Rotations are considerably more complex, but several
techniques have been developed, with varying degrees
‘of success. The most naive technique is to simply use
‘horizontal and vertical mouse movements to control the
world space euler angles which define the orientation
of an object. This technique provides little kinesthetic
‘feedback because there is no natural correspondence be-
tween the movements of the mouse and the rotation of
the object. A better approach, described by Chen et
al (1), is to make the rotation angles either parallel or
perpendicular to the viewing direction. This makes the
object rotate relative to the graphics window, providing
much greater kinesthetic feedback, but it also makes the
available rotation axes highly dependent on the viewing
direction.

3D Manipulation in Jack

Our interactive system is called Jack™', and it is de-

signed for modeling, manipulating, animating, and an-
alyzing human figures, principally for human factors
analysis. The 3D direct manipulation facility in Jack al-
lows the user to interactively manipulate figure positions
and orientations, and joint angles subject to limits7].
Jack also has a sophisticated system of manipulating
postures through inverse kinematics and behavior func-
tions [8, 9]. Jack runs on Silicon Graphics IRIS work-
stations, and it uses a three button mouse to control
translation and rotation. Within the direct manipula-
tion process, the user can toggle between rotation and
translation, and between the local and global coordinale
axes, by holding down the CONTROL and SHIFT keys, re-
spectively.

With translation, the user controls the movement by
moving the mouse cursor along the line which the se-
lected axis makes on the screen. This is similar to the
projected triad scheme of Nielson and Olson(6], and it
ensures good kinesthetic correspondence. Pairs of but-
tons select pairs of axes and translate in a plane. A 3D
graphical translation icon located at the origin of the
object being manipulated illustrates the selected axes
and the enabled directions of motion.

The user can control rotation around the z, y, and
z axes, in either local or global coordinates. Only oune
axis can be selected at a time. A graphical wheel icon
llustrates the ¢..gin and direction of the axis. The user
controls the rotation by moving the cursor around the
perimeter of the rotation wheel, causing the object to
rotate around the axis. This is analogous to turning
a crank by grabbing the perimeter and dragging it in
circles. This is somewhat similar to Evans, Tanner and

tJack 15 a trademaik of the Cunersity of Pennsyhauia.
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Wein’s turntable technique[3], but it provides greater
graphical feedback.

Drawbacks

A drawback of the manipulation technique in Jack is the
inability to translate an object along an axis parallel to
the line of sight, or to rotate around an axis perpendic-
ular to the line of sight. In these cases, small differences
in the screen coordinates of the mouse correspond to
large distances in world coordinates, which means that
the object may spin suddenly or zoom off to infinity.
This is an intrinsic problem with viewing through a 2D
projection: kinesthetic correspondence dictates that the
object’s itnage moves in coordination with the input de-
vice, but if the object’s movement is parallel to the line
of projection, the image doesn’t actually move, it only
shrinks or expands in perspective.

In the past, we adopted the view that the first prereq-
uisite for manipulating a figure is to position the camera
in a convenient view. Although the viewpoint manip-
ulation techniques in Jack are quite easy to use, this
forced the user through additional step in the manipu-
lation process, and the user frequently moved back and
forth between manipulating the object and camera.

3D Viewing

The computer graphics workstation provides a view into
a virtual 3D world. It is natural to think of a graphics
window as the lens of a camera, so the process of ma-~
nipulating the viewpoint is analogous to moving a cam-
era through space. Evans, Tanner, and Wein describe
viewing rotation as the single most effective depth cue,
even better than stereoscopy (3]. In order for an inter-
active modeling system to give the user a good sense
of the three-dimensionality of the objects, it is essential
that the system provide a good means of controlling the
viewpoint.

Control over the viewpoint is especially important
during the direct manipulation process, because of the
need to “see what you are doing.” The whole notion of
direct manipulation requires that the user see what is
happening, and feel the relationship to the movement of
the input devices. 1f the user can’t see the object, then
he or she certainly can’t manipulate it properly.

Jack uses Ware and Osborne’s camera in hand
metaphor{10] for the view. The geometric environment
in problems in human factors analysis usually involve
models of human figures in a simulated workspace. The
most appropriate cognitive model {o promote is one of
looking in on a real person interacting with real, life-size
objects. Therefore, Jack suggests that the controls on
the viewing mechanism more or less match the controls
we have as real observers. move side to side and up and
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down while sta.ymg focused on the same point.

The viéwing adjustments in Jack are easy-to invoke

»ftom within.the dire¢t manipulation process, and this is
a very:common thing to do, The-typical way of perform-
‘mg a manlpulatxon is to intersperse translations and ro-
tations' thh viewing adjustments, in order to achieve a

bettér view diring the process: The context switch be-
tween -viewing- and manipulation is very easy to make.

Automatic Viewing Adjustments

Much of this viewing adjustment as an aid to manipula-
tion can be automated, in which case the system auto-
matically places the camera in a view which avoids the
problems of degenerate axes. This can usually be done

‘with a small rotation to move the camera away from

the offending axis, This automatic camera rotation can
even-be helpful by itself, because it provides a kind of
depth cue.

To prevent degenerate movement axes from caus-
ing problems during direct manipulation, Jack uses a
threshold. between the movement axis and th2 line of
sight, beyond which it will not allow the user to ma-
nipulate an object. To do so would mean that small
movements of the mouse would result in huge transla-
tions or rotations of the object. This value is usually
20°, implying that if the user tries to translate along
an axis which is closer than 20° to the line of sight,
Jack will respond with a message saying “can’t trans-
late along that axis from this view,” and it will not allow
the user to do it. The same applies to rotation around
axes perpendicular to the line of sight. In these cases,
the rotation wheel projects onto a line, so the user has
no leverage to rotate it.

The automatic viewing adjustment invokes itself if the
user selects the same axis again after getting the warn-
ing message. Jack will avtomatically rotate the camera
so that its line of sight is away from the transforma-
tion axis. To do this, it orients the camera so that it
focuses on the object’s origin, and then rotates the cam-
era around both a horizontal and a vertical axis, both
of which pass through the object’s origin. The angles
of rotation are computed so that the angular distance
away from the offending axis is at least 20°,

This technique maintains the same distance between
the camera and the object being manipulated. In gen-
eral, this “zoom factor” is much more subjective and is
difficult for the system to predict. In practice, we have
found it best to require the user to contrul this quantity
explicitly.

The reason for the repeated axis selection is to ensure
that the user didn’t select the axis by mistake. It is
common to position the view parallel to a courdinate
axis to get a 2D view of an object. If the user likes this
view, then it would be wroung to disturb it. For exanple,
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if the user positions the view parallel to the z axis to
get a view of the zy plane, and then accidentally hits
the right mouse button, the view will not automatically
change unless the user confirms that this is what he or
she wants to do,

Automatic view positioning also takes place when the
object is not visible. This may mean that the object is
not visible at all, or only that its origin is not visible.
For example, a human figure may be mostly visible but
with its foot off the bottom of the screen. In this case, a
command to move the foot will automatically reposition
the view so that the foot is visible.

Smooth Viewing Transitions

Both the horizontal and vertical automatic viewing ro-
tations occur simultaneously, and Jack applies them in-
crementally using a number of intermediate views so
the user sees a smooth transition from the original view
to the new. This avoids a disconcerting snap in the
view, Jack applies the angular changes using an ease
in/ease out function which ensures that the transition
is smooth.

The procedure for rotating the camera is sensitive to
the interactive frame rate so that it provides relatively
constant response time. If the camera adjustment were
to use a constant number of intermediate frames, the
response time would be either too shor if the rate is fast
or too long if the rate is slow. Jack keeps track of the
frame rate using timing information available from the
operating system in 1/60th’s of seconds. We compute
the number of necessary intermediate frames so that the
automatic viewing adjustment takes about 1 second of
real time,

Avoiding Viewing Obstructions

When manipulating an object using solid shi.ded graph-
ics, it can be especially difficult to see what your are
doing because of the inability to see througl. other ob-
jects. In some situations, this may be impossible to
avoid, in which case the only alternative is either to
proceed without guod visibility or revert to a wireframe
image. Frequently however, it may be possible to au-
tomatically change the view slightly so that the object
is less obstructed. To do this, we borrow an approach
from radiosity, the hemicube [2).

The hemicube determines the visibility of an en-
tire geunuetric environment from a particular reference
point, and we can use this information to find an un-
obstructed location for the camera if une eaists. We
perfurm the hemicube computation centered around the
origin of the ubject being manipulated, but vriented to-
wards the current camera location. This yiclds a visibil-
ity niap of the entire environinent, or what we would see
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through a fish-eye lens looking from the object’s origin
fow‘étr:ds the camera. If the camera is obstructed in the
visibility map,.wé look in the neighborhood of the direc-
tion of the camera for an empty area in the hemicube
map. This aréa suggests a location of the camera from
which the.object will be visible, From this, we com-
pute the angles through which the camera should be
rotated, ‘We generate the hemicube map using the hard-
ware shading and z-buffer, so its computation is quite
efficient.

This type of hemicube is somewhat different from the
type used radiosity because it is not necessarily centered
around the surface of an object. In fact, it need not
be associated with a surface at all, as when the direct
manipulation operation is applied to a shapeless entity
‘like a 3D control point or a goal point for an inverse
kinematics operation. Therefore, our hemi-cube is ac-
tually not “hemi” at all, since we use all six sides of the
cube, In crses when the direct manipulation operation
is moving 2 geometric object, it is convenient to omit
the object from the hemicube visibility computation al-
together. Otherwise, most of the visibility map will be
filled up with the object itself, even though it is usually
quite acceptable to manipulate an object from a view
opposite its coordinate origin.

In our current implementation, the hemicube main-
tains only occlusion information, not depth information.
Therefore, it will fail to find suitable camera locations
in an enclosed environment. In such cases, there are no
holes in the visibility map at all, although there may be
regions only occluded by very distance objects. These
very distant objects don’t matter unless we were con-
sidering placing the camera very far away. A better
approach would be to retain depth information in the
hemicube and search for a camera position which is un-
obstructed only between the camera and the object, al-
lowing the distance between the object and the cam-
era change as necessary, possibly causing the camera to
move in front of other objects.

Conclusion

The control of a virtual camera is vitally important to
many techniques for 3D direct manipulation system, al-
though no one has previously addressed the two issues
in an integrated manner. Our technique for automati-
cally adjusting the view in conjunction with direct ma-
nipulation has been implemented, and it is an effective
addition to the manipulation process. The automatic
viewing rotations are usually very small so they do not
interject large changes to the user’s view of the geomet-
ric environment, Since the viewing adjustments are only
activated on the second attempt at movement along a
degenerate axis, the adjustments are seldomly invoked
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accidentally, minimizing the degree to which the adjust-
ments are inappropriate.
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Hardware Antialiasing of Lines and Polygons

Walter Gish and Allen Tanner
Terabit Computer Engineering

ABSTRACT

‘This paper describes a hardware design for antialiasing both
lincs and’ polygons. The hardware prefilters lines and poly-
gons defined on a high resolution grid at one—enghth the pixel
.spacing. The resolution of this sub-pixel grid is based on the
limits of human visual perception, Theantialiasing filters can
extend overa 1-by-1 or 2-by-2 pixel domain for polygons and
a'3-by-3 pixcl domain for lines, The design uscs regular
decomposition and the symmetry of antialiasing filters to
minimize the size of the filter tables, The resulting hardware
issurprisingly smalland very efficient (typically onccycle per
output pixel), Itisthercfore suitable for antialiasing lines and
polygons at rcal-time or intcractive rates,

CR CATEGORIES AND SUBJECT DESCRIPTORS:
1,3.1. [Computer Graghlcs] Hardware Architccture - Raster
display devices; 1.3.3 [Computer Graphics]: Picturc/Image
Gencration - display algorithms,

ADDITIONAL KEYWORDS AND PHRASES:
Antialiasinig, prefiltering, real-time graphics,

1 INTRODUCTION

Antialiasing is a desirable feature for interactive graphics, but
it is not currently available without cost or performance
compromises, Although today's workstations can draw
antialiased vectors at high speed, rendering antialiased poly-
gons with workstations impases a performance degradation
proportional to the number of samples per pixel calculated for
antialiasing (supersampling). Antialiased polygons at real-
time rates are available only on flight simulators, but flight
simulators have their drawbacks. Flight simulators are much
more expensive than workstations and they are not general
purpose platforms.

We begin with a review of existing prefiltering techniques
with an emphasis on those techniques potentially suitable for
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hardware, We then describe our approach in detail, Finally,
we present some thoughts on how thisapproach toantialiasing
can be integrated with hidden surface removal.

2 EXISTING METHODS FOR ANTIALIASING
2.1 Lines

A common technique for antialiasing lincs models the gcom-
etry of a finite width linc and pixel by a single parameter - the
distance from the center of the pixel to the center of the line
[13). This single parameter is then used as the index into a
precomputed table of filter results (i.c., precomputed convo-
lutions). While this single parameter model is exact suffi-
ciently far from the endpoints, it requircs a correction near the
endpoints, Furthermore, modeling lines as finite width enti-
tics causes other problems necar endpoints, When lines are
connccted end-to-end, overlapping can cause intensity errors
at endpoints (sce Fig. 1),

(a)

(c) | — |

e =
e
)M&

Fig. 1, Overlapping with different line endpoint shapes
- the original line (a), with cut-off (b), rectangular (c),
and rounded (d) endpoints.

(d) (——————

Onesolutiontothese overlapping effectsis tosolve the hidden
surface problem for finite width lines [28]. Alternatively lines
can be modeled as infinitely thin, so that the antialiasing filter
itself gives thickness to the line and “shape” to the endpoints.
Accurate handling of endpoints is crucial for rendering curves
using a sequence of short line segments [19).

2.2 Polygons

Polygons are commonly antialiased using supersampling [8).
Unfortunately, with supersampling the number of samples
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required.to. eliminate aliasing- artifacts is significant. Al-
-though' non-uniform sampling requires fewer samples than
‘regular sampling, even with optimized non-uniform sampling
the number of samples per pixel necessary for high quality is
on-the order of 25 ({17]) to 40 ([14]). This forces either a
performance degradation with respect to aliased rendering (as
with workstations) or more hardware (as in flight simulators),

The alternative to supersampling is prefiltering, To place the
téchnique described here in perspective, we review several
prefiltering methods published in the literature.

Catmull [4] introduced the technique of calculating visible
arca as'a method of antialiasing, This arca calculation is
straightforward and relatively fast. Unfortunately, using
visiblearcaforantialiasing isequivalenttousingan unweighted
filter, and unweighted filters are far from the optimal filter
shape, [16]

Feibush, Levoy and Cook [7] described a method for
prefiltering polygon cdges. Their method begins by clipping
a polygon to the filter domain surrounding cach pixel. The
resulting clipped polygon is decomposed into several right
triangles, two for cach cdge in the clipped polygon. The
filtered contribution for each of these triangles is obtaincd
from a small table, and the individual contributions arc accu-
mulated (with sign) to yicld the final filter result. They
mention two extensions: one for filters that arc not circularly
symmetric (a three parameter table), and one that uscs the
coordinates of edge endpoints to look-up the filter result with
one table access per edge instead of two (a four parameter
table). The drawbacks of this approach are that it is oriented
toward circularly symmetric filters and that it is slow. Forthe
basic two parameter table, it requires calculations to deter-
mine the base and height of the right triangles into which the
clipped polygon is decomposed followed by several table
look-ups (atleastsix). The four parameter table would require
atable as large as that used in our method, yet there are still
several table look-ups per pixel. In contrast, the method we
propose requires only simple reflections on the clipped poly-
gon fragments and typically only one table look-up per pixel.

Abram, Westover, and Whitted [1] proposed amethod requir-
ingonly onelook-up for many cascs, Afterclipping the visible
portion of a polygon to the filter domain surrounding a pixel,
they directly look-up the result for cases where no edge
cndpoint is within the filter domain, When one or more
vertices lie within the filter domain, the method reverts to
using sub-pixel bit masks, While it is claimed that this causes
only an “unnoticeable degradation™ at 64 sub-pixel mask bits
per pixel, it does require perturbing the table values and using
sub-pixel bit masks. In contrast our method decomposes
polygons into fragments whose shape is well-constrained (so
there are no special cases) and it explicitly allows vertices to
lic within the filter domain,

Lobb [15])described amethod for prefiltering, restricted again
to filters possessing circular symmetry. His method is much
like line antialiasing in that it is simple and exact sufficiently
far from vertices. The filter response near a vertex is approxi-
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mated with a claimed error of less than 4%,

Duff [6] extended the trapezoidal decomposition generally
used to calculate area for antialiasing to a method for comput-
ing the exact (to floating point accuracy) convolution for non-
uniform filters (particularly polynomial splincs). He men-
tions the possibility of storing convolution results in tables,
This would require one to three table look-ups while our
approach requires only one, Still, his method is very efficient
as a software algorithm,

Schilling [25] described a method which uses tables to deter-
mine sub-pixel masks. Schilling bases his table look-up upon
edge slope and distance from pixel center, although other
parameters such as intersection location along the filter do-
main boundary (as 1] used) arc cquivalent, The unique
feature of Schilling’s method is that the table turns on sub-
pixel bits according to polygon arca rather than explicit
geometric coverage of the sub-pixel sampling point, Conse-
quently, some of the bits turned on are outside the polygon!
The mask for a convex polygon is the logical AND of the
masks for cach of its edges. The effect of ANDing masks that
have samples outside the polygon was not discussed, This
method is similar to a technique used in some flight simula-
tors, in which edge parameters are used to look-up the sub-
pixcl mask for non-uniform sampling, Fig, 2 diagrams this
technique. Any two of the four parameters (slope, distance to
pixel center, x-intercept, y-intercept) can serve as the index
into a table containing the mask for an edge,

L
p———

Fig. 2. Table look-up of sub-pixel mask bits

Overall, none of the existing methods is entirely satisfactory.
Each has on¢ or more drawbacks:
» Filter shape is restricted o unweighted or circularly
symmetric functions ({4], [7], [15], [25)).
*The method is slow, requiring several look-ups per pixel
or other calculations ([4], (7], {151, [6]).
+ The method is approximate near vertices ([1), [15],
(25)).
» The method is simply a way to maintain sub-pixel masks
(1), {25)).
The first drawback is important because an unweighted filter
leaves too many residual artifacts, and a circularly symmetric
filter can’t provide uniform total field response (17] (also
called the constant energy criteria {29] or zero sampling
frequency ripple {16]). The last drawback is important be-
cause the number of bits needed in a sub-pixel mask is at least
32 for high quality antialiasing. To store an arbitrary filter
function in a table that can be indexed by sub-pixel mask




' becomes difficult for high resolution masks because the table
"§izé grows exponenually with the number of sub-pixel masks
bits (16 bits require a 64K word table, but 32 bits require a4
Giga-word table!). Furthermor¢, since prefiltering must be
-used for lines, resorting to sub-pixel masks forces line and
polygon antialiasing to be somewhat inconsistent. Incontrast
-the method proposed here offers:

» Arbitrary filters defined over large domains,

» High image quality (from the 1/8 pixel grid resolution),

» Hardware speed (one table look-up per output pixel),

» Hardware simplicity.

* Uniform antialiasing of both lines and polygons.

3 HARDWARE FOR PREFILTERING

Our hardware implementation of prefiltering allows arbitrary
filters defincd over a 1-by-1 or 2-by-2 pixel domain for
polygons and a 3-by-3 domain for vectors (Fig. 3). Input
primitives are described by the polygon vertices or line
endpoints. These pointsare specified toaresolutionof 1/8the
pixel spacing. Intersections (for clipping) of lines or polygon
edges with the boundaries of filter domains are calculated to
the same accuracy, The high resolution of this grid is impor-
tant, Atlowcrrcsoluuonsmany implementations are possible:
but they can’t result in high quality antialiasing, This resolu-
tion was chosen because itmatches the ability of human visual
perception-to infer sub-pixel position from greyscale (i.e.,
antialiasing) information [18), By comparison, prefiltcring at
aresolution of 1/8 pixel is more accurate than supersampling;:
on an 8-by-8 regular grid (64 samples per pixel). Th
consequences of using a coarser grid (or fewer samples per
pixel) have been discussed in a previous paper [11).
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Fig. 3. Filter domains for lines and polygons.

To use tables for prefiltering requires transforming input
primitives into a form simple enough to allow the filter table
to be of reasonable size. Qur approach is comprised of three
steps for both lines and polygons:

(1) Regular decomposition.

(2) Efficient clipping to the filter domains,

(3) Encoding of intersection shape.

For lines, the decomposition stage simply orders the end-
points in top-to-bottom order. For polygons the decomposi-
tion is a conventional trapezoidal decomposition of input
polygons. The second step clips the input line or trapezoids
from the polygon decomposition to the filter domain at each
pixel. Itorganizes the process of intersection calculationasa
sequence of interpolations along edges. Interpolations are
calculated only once and shared between neighboring filter
domains, The third step reduces the plethora of clipped line
segments and polygon fragments into a sct small enough for
direct table look-up., It uses the horizontal and vertical
symmetry of antialiasing filters to reflect clipped fragments
into a canonical form, This reduces the table size for lines by
a factor of 8, and for polygons by a factor of 4,

3.1 Decomposition and Clipping of Lines

Thedecomposition stage for lines simply orders the endpoints
in top-to-bottom order, Chained lines arc broken up into
groups of linescgments thatcan be processed in top-to-bottom
order,

The result of clipping a linc to a filter domain is clearly a
scgment of the original line, If the filter domains were single
pixels, the clipping would consist of simply slicing the lincup
into pieces, cach of which lics on a single scanline, and then
slicing those picces horizontally for cach pixel, However, the
filter domain for antialiased lines is larger than a single pixel
so that the filter domains overlap, Therefore, the clipping
process must take this into account. Fig. 4 shows how the
clipping in the y-direction works for the 3-by-3 pixel domain
for antialiased lines.

il jl
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Fig. 4. Vertical clipping for lines,

Fig. 4 shows a line from a sub-pixel location in scanline B to
one in scanline F. The x and color parameters of the original
line are interpolated (as a function of y) at the boundaries
between scanlines B through F. Thenaseriesof lineseg:. .als
iscreated from the original line endpointsand the interpolated



‘points, One segment is created for all the filter domains on

each scanlme (as shown at the right of the Fig, 4), This
construction is- equivalent to sliding a horizontal band 3
‘scanlines: high down over the original line and noting the
intersection when the band is centered on a scanline,

'Operationally, the hardware creates a stream of pomts inthe
following order: the top point of a line segment, an intcrpo-
lated pointat the bounda:y between the topmost scanlines (B
and C for the éxample in Fig. 4), . . ., an interpolated point at
thé boundary between the bottom-most scanlines (E and F),
and the bottom point, This stream of points flows through a
régister followed by a variable depth pipeline that together
reconstruct the clipped segments. The outputof theregister is
the bottom point for the filter domain on a scanline while the
output of the variable depth pipeline is the corresponding top
point (Fig, ).

input
point
variable stream
depth
pipeline register
l Y
top bottom
point point

Fig. 5. Reconstruction of overlapping segments.

The clipping process in the x-direction operates on these new
scgments in an analogous fashion (y and color interpolated as
a function of x). The final result is the intersection of the
original line with its occupied filter domains,

3.2 Decomposition and Clipping of Polygons

Conventional (aliased) polygon scan conversion interpolates
polygon edges in one direction to produce a set of imbedded
lines and then interpolates along these lines (in the perpen-
dicular direction) at the center of each pixel [2). This gencr-
ates the set of points that lie within the original polygon (left
of Fig.9). Incontrast, the antialiased scan conversion method
presented here retains the shape of the original polygon within
cach filter domain. That is, it clips polygons (actually trap-
ezoidal slices of polygons) to the filter domain surrounding
each pixel. This decomposition and clipping is nonetheless
similar to conventional scan conversion. As we saw with
lines, this process is a sequence of interpolations on the point
data(x,y,color, opacity, texture co-ordnates, etc.) that defines
the original line or polygon.

Polygon decomposition and clipping occurs in three stages,
First arbitrary polygons (any number of sides, convex or
concave, and with or without holes) are decomposed into
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horizontally aligned trapezoids, Secondly, these trapezoids
are clipped in the y-direction into smaller trapezoids within
the filter domains on only a single scanline, This clipping is,
like the edge clipping, a series of interpolations followed by
reconstruction using hardwired registers. Then a similar
clipping occurs in the x-direction, Usually this clipping
resultsin a piece with just one edge per filter domain, If there
are two edges in the filter domain, the picce is represented as
the difference of two single-edged picces.

concave
minimum

o\

maximum

Fig. 6. Trapezoidal decomposition example,

Fig. 6 shows an example of the decomposition of a polygon
intoasct of horizontally aligned trapezoids (whichcan degen-
erate into triangles). The resulting trapezoids are defined by:
(1) Left and right cdges
(2) A vertical extent detc rmined by the endpoints of the
left and right edges and possibly a concave minimum
(atthetopof region 3in Fig. 6) oraconcave maximum
(at the bottom of region 4 in Fig 6): .
Ymax = iR { Yie-top, Yright-tops Yeoncave-min }
Ymin = Max { Yle-bottom, Yright-bottoms Yconcave-max }

Operationally, this trapezoidal decomposition creates two
sequences of points, one for the left bounding edges and one




fortheright. Note that the top and bottom horizontal edges are
implicitly defined. The actual vertices of the trapezoid are not
calculated until the clipping in y takes place, Algorithms for
‘performing this decomposition on arbitrary polygons (includ-
.ing concave and with holes) are known {3].
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Fig. 7. Types of polygon spans,

Once a polygon is decomposed into trapezoids, the left and
right edges are clipped in y (analogously to the line clipping
described carlicr) producing a set of smaller (vertically)
trapezoids, These smaller trapezoids are called spans, For
polygons, the size of the filter domain is either a single pixel
or 2 pixels high (in which case the interpolation points are at
the middle of a scanline instcad of the boundary between
scanlines). Fig. 7 showsthe types of spans thatcanresult from
clipping in y (with the single pixel filter domain shown for
clarity). A polygon span often has its left and right edges
separated in x while the extent of the span y covers the entire
filter domain (Fig. 7a). The left portion of the span just
contains the left edge, the middle has no edges and the right
portion has just the right edge. At the top or bottom of a
trapezoid from the polygon decomposition, the extent in y
docsn't necessarily cover the whole filter domain (Fig, 7b).
Lastly, a filter domain can contain two edges near vertices or
for very thin polygons (Fig. 7c). When two edges are present
(which occurs only a small percentage of the time) the filter
result is computed as the difference for each individual edge
(Fig. 8). The case of two edges per pixel is the only shape that
is not handled in a single cycle.

7 B

— A - %

Fig. 8. Handling domains with 2 edges.

Fig.9 compares conventional scan conversion (left) and the
antialiasing decomposition and clipping (right) for the single
pixel domain (again, for clarity). In the y-direction, both
require 5 interpolations - the only difference is that in
conventional scan conversion the interpolations are at the
middle of scanlines, while in the antialiasing case they are

between scanlines and opposite every encountered vertex
(e.g., vertex 1in Fig. 9). Because interpolations are shared
between neighboring scanlines, the number of y-interpola-
tions is, to first order, the same in either case. Thus no
additional calculation is necded for the clipping in y required
forantialiasing, The final stage, clipping in the x-dircction, is
performed only on color in the conventional case, whilein the
antialiasing case, y also needs to be interpolated at the vertical
boundaries between filter domains ( the 4 points indicated by
the small arrows in Fig, 9). This interpolation needs to be
accurate to only 5 bits since y is within a filter domain, In
summary, the antialiasing dccomposition and clipping is of
about the same difficulty as the simpler interpolations for
aliascd scan conversion, Antialiasing additionally requires
only alow-resolution interpolation of y as a function of x, and
registers for reconstructing the data describing the clipping
result,

(spans)

B>
5
=

Fig. 9. Conventional (left) and antialiasing (right)
decomposition.




3.3 Line Encoding

Clipping a line to the 3-by-3 pixel filter domain yields a
(usually shorter) line segment. Direct addressing of a filter
table using the coordinates of the endpoints of this clipped line
wouldrequiré atable whose size is much too large. Thex and
y coordinates of each endpoint take on a possible 25 values (3
pixels at 1/8 pixel resolution), A straightforward translation
from geometry to table address, i.e.,
ADDR =x1 + 25 y1 + (25)2x2 + (253 y2

requires 254 = 380,625 wable entries or ahalf-megaword table!

Our solution is to encode these endpoints using conditional
reflections and followed by bit-packing, The reflections
assume only that the antialiasing filter possesses x- and y-
symmetry, Given the result of clipping a line to a filter
domain, the cndpoints are conditionally reflected about filter
symmetry axcs so that one of the endpoints always lies in a
small region. In particular, given two endpoints (xy,y;) and
ru2.y2), the reflected line always has point (x,y)) lying in a
particular octant, The reflections are done in two stages as
shown in Fig, 10. First both points arc reflected across the y-
axis if x; > 0, and simultancously the x-axis if yy > 0, The
second stage reflects the result across the line x = y if the
reflected X3 <y This scquence of conditional reflections
forces point 1 to end up in the shaded region shown in Fig, 10,
For the 3-by-3 pixel domain at 1/8-pixel resolution this
encoding yiclds 91 possible values for (x;,y;) and 625 values
for (x2,y2) for a total of 56,875 possible ~ases (a reduction by
almost a factor of cight),

Fig. 10, Two-stage reflections for line encoding.

yad

Fig. 11, Bit-packing point 1.

After the conditional reflection, the co-ordinates for point 1
are packedintoa7-by-13 rectangle (Fig. 11). The conditional
reflections and packing of point 1’s coordinates are easily
done in small PALs. The table address could be computed as
ADDR =x1 + 7 y1 + 7(13) x2 + 7(13)(25) y2
forlook-upina 64K word table. However, we prefertosimply
concatenate the co-ordinates (3 bits for xy,4 bits for yy, 5 bits
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for x2 and 5 bits for y2) for direct addressing of a 128K-word
table.

3.4 Polygon Encoding

Analogous to line encoding, polygon encoding consists of
conditional reflections followed by bit-packing. Note that the
material of a polygon lies to the right of a left edge, and to the
leftof aright edge. Thus if the antialiasing filtus is symmetric
about the y-axis, a right bounding edge can be reflected into
aleftedge (Fig.12a). Likewise, y-symmevry allows reflection
across the filter domain’s x-axis so that the slope of an edge is
always positive (Fig. 12b).

7
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Fig. 12, Conditional reflections on edge-domain
intersections.
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These positive-sloped left-cdge regions of a filter domain are
called fragments, A fragment is primarily defined by the two
cndpoints of the edge inside or on the boundary of the filter
domain, In addition, a fragment can posses an optional third
y value, Yg (Fig. 13), which ariscs when the span doesn’t
cover the entire vertical extent of the filtering domain (recall
Fig. 7b). Because of the reflections, Yg for a fragment will
always be below the main cdge,
This edge

hés thlsy \

jam

% b i

LY

\This edge
has this Yg

Fig. 13. Optional y-values associated with an edge.

Our concept of fragment differs from that of others in that we
explicitly allow edge endpoints to lic within the filter domain.
In addition, we include the global y-value for efficiency in
scanconversion (otherwise these cases would take twocycles,
and they occur a significant percentage of the time).
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Fig, 14, Fragment taxonomy aud their encouings.
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A taxonomy of fragment gecinetry (with the final address
gpm&it-packing) can be organized into six cases as shown in
ig. 14:
& Case 1. Edge at left or no edge in domain,
Case 2, Edge crossing (top-to-bottom).
Case 3, Edge crossing (left-to-right).
Case 4. Edge crossing (corner).
Case 5. One point inside.
Case 6. Both points inside,
These cases are presented primarily for comparison with
previous methods, The bit-packing follows directly from the
definition of afragment, not from the explicitconsideration of
cach of these cases,

Forarcsolutionof 1/8 the pixel spacing, all possible fragments
are encoded into 13 bits for a single pixel filter domain or 17
bits for the 2-by-2 pixcl domain, The following description is
for the single pixel case, the 2-by-2 pixel case differs only in
vhat 4 bits arc allocated for coordinates instead of 3 bits,

Xiop
012345670
NA =0
7 N
6 6
5 s
Ybottom 4 — 4 Ytop

3 3
2 2
1 : 1
0 NA

01 2345 6 7NA
xbottom
| NA = Not allowed

Fig. 15, Allowabl: values for fragment coordinates.

The fragment encoding is given the top and bottom points of
thefragment’sedge, (Xiop, Y top) and (Xpot, Ybot), and possibly
Y. Initially, these coordinates are defined on a grid and can
wﬁc onthe values O through 8 for the 1-by-1 domain (or values
0 through 16 for he 2-by-2 domain). The constraints that
allow efficient bit packing are:
(1) Since Yyop cannot be 0 (Fig. 16b) and Ypor cannot be
8 (Fig. 16a), Yo and Yiop are encoded in 3 bits by
having 0 signify different positions for the top and
bottom y (Fig. 15).
(2) Similarly, since edge slope is positive Xpoi cannot be
8 (Fig. 16¢),and so Xy alsorequiresonly 3 bits(Fig.
15

?3) Becz;usc the edge slope 1s positive, then Xiop > Xbor.
Thus when Xpoy > 0, Xiop = 8 can be represented by
the value 0.
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Fig. 16. Polygon bit-packing constraints,

All that remains is to encode Yy (if present) and the case Xiop
= 8 with Xpot = 0, This rcqunrcs onc additional signal bu.
When Y occurs, we must have Xpot =0, Thusin either case
Kiop= § and Xpor = 0, or Yg present), the signal bit implics
that Xyois zero, This frees up the bits normally used for Xpot.
Since Yg < Yoo, this allows substituting Y for Xpoy when Yg
is ncccssary. or substituting Yot for Xpot for the case Xiop =
8 with Xbor =0 This bit-packing can be summarized in thc Cc
programming language as follows:
Xtop = Xtop % 8;
Ytop=Ytop % 8;
if (Yg is not nceded) {
if (Xtop==8 && Xbot==0)
ADR = (1,Ybot,Ybot,0,Ytop);
clse
ADR = (0,Xbot,Ybot,Xtop,Ytop):
) clse
ADR = (l.Yg.Ybot.Xtop.Ytop);
When there is no edge in the domain, the encoding defaults to
(0,0, Ybat, 0, Yiop). This bit-packing requircsatotal of 1+3
+3+3+3=13 bus for the signal pixel filter domain, and
similarly 17 bits for the 2-by-2 pixcl domain, This is not the
mast compact packing possible (there are 69,632 cases for the
2-by-2 pixel domain), but for memory sizes in powers of two
it's good enough,

3.5 Alpha-Blending In the Frame Buffer

Forbothlinesand polygons the filter weight obtained from the
table is multiplied by the opacity { spacity = 1 - transparency)
of the polygon or lie, and the 13sult is called oo This o
controls the blending of the new coior with the existing color
(or the background color) in the frame buffer. Color can be
blended according to the rules of compositing [22]:

Cr =0 ™ Cn+ (1-0py) * Crp
Orp = Oy * Oy + (1-0p) * O

where C stands for any color component, and the subscripts
FB and IN designate the current frame buffer contents and the
input values coming into the frame buffer respectively. This
is used primarily for rendering transparent surfaces in back-
to-front order and for lines. There is also a mode where the
pixel can be “filled” until it is “full”;

o= min(opy, 1-0ep)
Cra=0.* Cpy + (1-0) * Crp
O = Ofg + O

Thisiscalled theimage accumulation mode, and it is primarily
uscd for ~~ndering polygons in front-to-back order,

3.6 Hardware Detalils

The system as a whole consists of three 9U-sized VME circuit
boards built with off-the-shelf TTL and CMOS parts, At
present no ASICs are used, The first board performs the
decomposition and clipping in the y-dircction, The sccond
board does the clipping in the x-dircction, Gouraud shading,
symmetry encoding, filter able access, and alpha calculation,
The third board contains the frame buffer, alphablending, and
video output.

Allencoding is done inalayer of PAL logic, and the resulting
tables fit in a 1 Mbit RAM for cither lines or polygons, The
required hardware is surprisingly small, Fig. 17 comparesthe
module that implements the encoding logic and filter tables
with a similar module for Gouraud shading. While both
modules are about the same size, the Gouraud module is
double-sided while the encoding-filter module is only single-
sided,

The system runs at 20 MHz and fills up to 4 pixels in cvery
clock cycle. Thisresults in a polygon throughput (when used
with a front-cnd performing hidden surface removal) of 600
thousand antialiased polygons per second (interlaced) or 300
thousand polygons (non-interlaced) for a 1-megapixel dis-
play. The line throughput (averaged over all orientations) is
2 million antialiased 10-pixcl vectors per second. This perfor-
mance is competitive with larger systems requiring custom
VLSI,

Fig. 17, Encoding-filter and Gouraud modules.




4 HIDDEN SURFACE REMOVAL

Supersampling has the advantage that it integrates casily with
point sampling methods for hidden surface removal such as z-
buffering or ray tracing, Because antialiasing requires hidden
surface removal, we must address just how the hidden surface
problem might be solved given that the point sampling para-
digm (z-buifer or ray tracing) has been abandoned. A full
consideration of this issue is beyond the scope of this paper,
Our goal here is simply to suggest that useful hidden surface
techniques already exist, and there is room for even better
ones, We will bricfly consider two approaches: priority based
rendering and a hardware implementation of a scan-line
hidden surface algorithm,
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Fig, 18, Priority rendering cases.
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4.1 Priority Methods

One way to employ this antialiasing method is to render front-
facing polygons in front-to-back order using the image accu-
mulation mode described in Section 3.5, The resulting image
is correctly rendered at all pixels except those that contain
contours from three or more overlapping relevant surfaces
[26] (a scievant surface is a forward-facing connected set of
polygonsorother surface elements). Let's explicitly consider
several cases to uderstand where it's exact and where it crrs

(Fig. 18).

Case 1, where there is one polygon in the domain, is trivially
seen to be correctly filled, Case 2, where there are no visible
contour cdgesin the domain, isalso correctly filled because all
the picces will simply add up to unity, Case 3, where there is
only one contour (which may consist of more than one cdge)
and therefore only two visible relevant surfaces, is also
correctly rendered. The front-most surface is accumulated in
the pixel and the back-most surface “fills” theremainder of the
pixel, This assumes that the shading gradients for the back-
nost surface are small, but the error in shading is inversely
proportional to the visible arca of the backmost surface, Thus,
the shading error can be large only when the total contribution
of the backmost surface is small, Case 4, where there are two
non-intersecting contours, and the two front-most surfaces do
not overlap is also rendered correctly by the same logic, The
only crrors occur for Cases 5 and 6, where there are three or
more visible surfaces and the first two overlap, Clearly these
two cascs occur only for a few pixels in most scenes. Further-
more, the front-most surface is always weighted correctly.
This has led Crow to conclude that the crrors in this approach
have “not proven to be noticeable in practice™ [S).

Plate 1 shows an e¢xample of front-to-back rendering at a
resolution of 1024 by 768 pixels. Methods for determining
polygon priority cither a priori [10] or on-the-fly are well
known. The advantage of priority methods is that the time to
input polygonal data is proportional to the number of polygon
vertices and the time to render is proportional to the total arca
(visible or not) of all polygons within the viewport, The
disadvantage is that the rendering time is also proportional to
the average depth complexity of the scene.

4.2 A Scan-Line Algorithm

Itisintriguing that, despite the significant literature on hidden
surface removal, almost all hardware systems use the z-buffer,
what Sutherland aptly called “brute-force image space” (26).
Furthermore, most proposals for future hardware systems
employ either the z-buffer or ray tracing [12]. What’s hap-
pened to analytic and optimal hidden surface removal? Isthe
hidden surface problem simply an academic cxercise? We
don’ think so. We believe that there are simple reasons why
analytic hidden surface methods are not common in hardware.
Three of these reasons are:

(1) Numerical problems

(2) Absence of optimized programmable hardware

(3) Asymptotic efficiency is not linear,




Let's consider numerical issues first, All efficient hidden
surface algorithms make extensive use of calculated edge
intersections. Unfortunately, the edge (or ling) intersection
calculation is not numerically stable. This calculation re-
quires the quotient of two cross products of endpoint co-
ordinates. The problem is that the denominator of this
quotientapproacheszeroasthe two line segmentsbeing tested
forintersection approach parallel, Near zero, round-off errors
in computing the denominator can result in a completely
erroncous answer - a misplaced intersection location or even
no intersection where there is one and vice-versa. The
solution to this problem is either to use fixed point co-
ordinates with extended precision or use accurate dot product
calculations for floating point co-ordinates [21] [27).

The second issue is the absence of optimized hardware archi-
tectures for running graphics algorithms. Historically, the
widespread use of Z-buffers was coincident with the advent of
VLSI powerful enough to imbed the z-buffer algorithm in
silicon. Software Z-buffers were too slow. Is this the general
purpose graphics processor? In comparison, digital signal
processing (DSP) has its genre of architectures and chips.
DSP chips are optimized for FFTs and filtering (fast address
calculations and multiply-add instructions). Also, today’s
workstations have architectures optimized for performance
with compilers (and Unix), i.c., RISC, There ar¢ no corre-
sponding programmable architectures optimized for gcomet-
ric calculations, In practice manufacturers use DSP chips or
RISC chips for graphics. We think an optimized graphics
architecture cxists and offers significant performance im-
provement over using cxisting DSP or RISC processors as
graphics substitutes. One possible architecture is described
below, While it hasmuch incommon with DSP chipsorRISC
chips, the diffcrence is in how the major functional blocks are
organized and optimized.

First, we obscrve that graphics algorithms have two compo-
nents - a topological component and a geometric component.
The topological component deals with list-like relationships

Data Memories

Shared Geometric
Data Data

Topological
Data

N, ¥
Topology »! FIFO —s Geometry
Processor ; Processor
Processors

Fig. 19, Topology-geometry processor (TGP).

while the geometric component deals wiih calculations on
geometric entities such as points, lines, plane equations, ctc.
We propose handling these two components in separate pro-
cessors with separate data memories, We call this arrange-
mentatopology-geometry processor (TGP), It has the generic
structure shown in Fig, 19,

The topology processor is optimized for manipulating lists
and pointers, Forexample, inasingle cycle it cansclect abase
address (like a “C” structure address), calculate an offsct
address (an item within that structure), and read or write the
corresponding memory location, Calculating these addresses
in a RISC processor would take several additional cycles,
Such address calculation units are more common in DSP
chips, The geometry processor is a floating-point or fixed
point arithmetic unit. It receives macro comma:ds from the
topology processor (e.g., "do these two lines interscct?"), By
running it as a scparate processor with separate datapaths,
simultancous operation of both processors is more casily
handled than on chips that require complex interleaved soft-
ware in order to dispatch integer and floating-point operations
inthesamecycle, Clearly, thisismore orless the same amount
of hardware as exists in current RISC processors, it's just
organized and optimized a little differently. Lastly, the data
and instruction memories are small enough to be implemented
in SRAM, climinating caches.

We have performed a preliminary assessment of one possible
implementation of this architecture. Theimplementation uses
two TGPs in scries. The first TGP takes the world data base,
transforms it and discards polygons which are back-facing or
outside the ficld of view, Its output is a topologically-
connected screen-space database of potentially visible poly-
gons. The sccond TGP has two topology processors and two
geometry processors. It executes a scanline hidden surface
algorithm and decomposes the visible picces of polygons into
trapezoids (as in Section 3.2). This scan-line algorithm uses
the plane-sweep [20] paradigm at the highest level, with
pointers to distinguish internal and contour edges [24). The
algorithm processes cach polygon vertex and well asintersec-
tionsbetween contouredges andintersectionsbetween visible
contour cdges and visible internal edges. Each of these cases
is processed in 30-50 machine cycles. Thus a 25 MHz
implementation results in polygon throughputs of 300K-
600K polygons per sccond for all but the most pathological
cases. Extending this algorithm to multiple processors for
parallelism (in screen space) is straightforward.

Although this scanline algorithm is adequate for real-time
(30Hz-60Hz) scenes of moderate complexity (5k-10K poten-
tially visible polygons per frame), there is still the question of
how cffective is such an approach for more complex scenes,
Itisknown that the asymptotic performance of analytic hidden
surface algorithms is not linear. In particular

« Intersections can be O(n2)

» Soring is O(n log(n))
These problems are topics of current rescarch. One obvious
approach is some degree of parallel processing for hidden
surface removal [9]. Other possible approaches are

» Hybrid algorithms

« Content-addressable and associate memories




“Hybrid algorithms use some combination of pnonty and full
hidden surface removal, In areas with many intersections,
priority can ‘be more efficiént (trading intersections agamst
-depth compléxity). The non-linéar efficiency of sorung can
be ameliorated by noting-that the n log(n) complexity is for
traditional algonlhms running on traditional machines, In
contmst, content addressable and associative memories can
sort in lincar time; Very efficient CAM cells (in terms of
silicon area) have been reported in the literature and the use of
such innovative memory architectures holds interesting pos-
sibilities.

-5 SUMMARY AND CONCLUSIONS

We have described a straightforward and comprchensive
implementation of prefiltering, Our design leverages the
availability of large (1 M-bit) scmiconductor memory to
provide an efficicnt system, both in hardwarc complexity and
speed, The high-resolution onc-eighth pixel grid provides
excellent image quality and smooth motion for both lines and
polygons. The antialiasing filters themsclves can be arbitrary
symmetric functions over a 2-by-2 pixel domain for polygons
and a 3-by-3 domain for lines.

This antialiasing approach is used in commercially available
hardware. We believe it encourages the development of
algorithms and special hardware for priority or full hidden
surface removal, Such systems would combine real-time
performance with image quality not possible with z-buffer or
ray tracing architectures.
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Abstract’

Direct volume rendering is a computationally intensive opera-
tion that has become a valued and often preferred visualization tool.
-For maximal data comprehznsion, interactive manipulation of the
réndering parameters is desirable. To this end, a rcasonable target
would be a system capable of displaying 128° voxel data sets at
multiple frames_per second, Although the computing resources
required to attain this performance are beyond those available in
current uniprocessor workstations, multicomputers and VLSI ren-
dering hardware offer a solution, This paper describes a volume
rendering algorithm for MIMD message passing multicomputers.
This algorithm addresses the issues of distributed rendering, data set
distribution, foad balancing, and contention for the routing network.
An implementation on a multicomputer with a 1D ring network is
analyzed, and extension of the algorithm to a 2D mesh topology is
described. In addition, the paper presents a method of exploiting
screen coherence through the use of VLSI pixel processor arrays,
Though not critical to the general algorithm, this rendering approach
is demonstrated in the example implementation where it serves as a
hardwate accelerator of the rendering process. Commercial graphics
workstations use pixel processors to accelerate polygon rendering;
-this paper proposes a new use of this hardware for accelerating
volume rendering,

1. Introduction

Direct volume rendering is the common name that describes the
viewing of volume data as a semi-transparent cloudy material, fts
advantages are that much or all of the volume may be visible to the
observer at one time; there is no need to introduce intermediate
geometry that doesn't really exist in the data. We assume the input
datais a scalar field sampled at the vertices of a 3D rectilinear lattice
- asituation often encountered 1n medical and simulanon data. Plate
1 is an image of a representative medical data set of dimensions
128x128x124. The following 3-step conceptual model of the vol-
ume rendering process is based on previously published derivations
[Blinn82} [Kajiya*84). Much of this exampl comes frum Wilhelms
and Gelder [Wilhelms*91].
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direct commercial advantage, the ACM copynght notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republsh, requites a fee
and/or specific permission.
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1 - Reconstruct the continuous 3D scalar function F by con-
volving each sample point f with a reconstruction filter kernel

F(x.y.2) = x;;z fya *K

2 - Applyanopacity O and shading S function to the continu-
ous scalar field, These user definable transfer functions yield a
differential opacity Q = O(F) and color emittance E = §(F) at
cach point in the volume as a function of the scalar ficld
properties at that point. The Q and E fields should then be low-
pass filtered for resampling in the next step.

3- Integrate an intensity and transparency function along
sample view-ray paths through the volume. The integrals may
be taken toward or away from the viewer. When taken towards
the viewer, the accumulated intensity I and transparency T
along the sample ray is

P
p
| a
1 =T0)| X4y, where 1‘(P)=°Jo m
o TV)

The intensity equation has an analytic solution if we assume T
and E constant over the interval [0,p]. By applying this
constraint over limited size intervals, we may approximate the
intensity and transparsncy of any interval. Successive intervals
are composited to obtain the cumulative intensity or color
reaching the viewer along the ray,

There are fourcommon algorithmie approaches to approximating the
above three step process in actual implementations.

1.1. Ray-casting - The volume is resampled along view rays
{Levoy88] [Sabella88] [Upson*88). The Q and E functions must be
reconstructed at the new sample points along the rays. Typically, 30
reconstruction is dong by trilinear interpolation of the Q and E
function values evalnated at the lattice vertices, Successive samples
along a ray are composited to produce the final ray color.

1.2. Serial Transformations - An affine view transformation is
decompused into three sequential 3D shear opegations. Each shear
isaffected by a 1D transformation of the form x' = Ax + B [Drebin*88}
(Hanratan90).  Since these transtunnations reguire only a 1D
recunstruction filter, cubic splines are commonly used to facilitate
the resampling. The resampled volume is screen-aligned and ready
for integration and compositing.




1.3, Splatting - This approach computes the effect of each voxel on
the pixels near the pomt to which it projects. Slices of voxels are
sorted by depth order and reconstructed by convolution with a 2D
filter kerncl. The reconstructed function is resampled and accumu-
lated on a screen-aligned grid. Successive slices are composited to
produce the final image. Since the filter 1s position-invarient for
affine transformations, software table methods are often used to
quickly approximate it [Westover89).

1.4, Cell Projection - Volumes are decomposed into polyhedra
whose vertices are derived from the sampled dita lattice [Shirley*90)
[Max*90] Wilhelms*91]. The polyhedra are converted to polygons
by projecting them under the view transformation. Reconstruction
is done to obtain each polygon's vertex values for the opacity and
emission functions, The resulting polygons are rendered by conven-
tional means using a painter’s algorithm and alpha compositing.
These methods make effective use of existing polygon rendering
hardware. The reconstruction functions are usually linear since most
rendering hardware does lincar interpolation of the polygon vertex
values.

2, Rendering Hardware

The rendering method proposed here is a parallelized splatting
approach. Using multiple processors with parallel frame buffer
access, a splat kernel is produced and merged into an image at many
pixels simultancously. Current graphics workstations [SG1] use
multiple processors to allow parallel access of pixel values in a frame
buffer. Such groups of processors with parallel irame buffer access
are what we refer to with the term pixel processors.

This idea of using pixel processors to accelerate volume rendering is
not totally new. Cell projection methods were created to make use
of it. Laurand Hanrahan approximate splat filter kernels with groups
of polygons rendered by dedicated hardware {Laur'91). The new
aspect of the method proposed here is that of coercing the hardware
to render a splat filier kernel directly as a single graphic primitive,
The next sections descnibe two methods whereby pixel processor
arrays create splat kernels for convolution with voxels,
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Data Point
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Splat-Polygon Splat-Pelygon
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Textured
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Fig.1. Splathing with hardware for textured polygons
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2.1. Textured Kernel - The kernel primitive can be thought of as
apolygon with anonhnear interpolation function. Arbitrary interpo-
lation functions may be defined as textures. Given an array of pixel
processors capable of texture lookup and multiplication, the screen
coherence of each splat can be exploited. Current generation
graphics worhstations have this capability, although they may not yet
offer the firmware needed to exploit it [SGI). The splat-polygon's
color and opacity are those of the voxel it represents. The splat-
polygon with its texture coordinates is transformed and rendered
normally except for the additional processing required by the pixel
processors (Fig. 1). The pixel processors compute the texture value
based on the texture coordinates at each pixel. This texture is the
kernel function which is used to weight the polygon color and
opacity. The convolution results at each pixel are accumulated ina
slice buffer [Westover89], When a complete slice of voxels is
splatted, the pixel processors composite the slice buffer into the
image.

In Irew of texture loohup capability, a hernel may be computed. This
Iatter approach is most appropriate for Pixel-Planes S, the target
machine for the implementation described here, Before detailing the
kernel computation algorithm, the next section briefly describes
some esscntial aspects of this machine.

2,2. Pixel-Planes 5 Overview - This machine has multiple i860-
based Graphics Processors (GPs), and multiple SIMD pixel proces-
sor arrays calicd Renderers (Fig. 2). Each Renderer is a 128x128
array of pixel processors capable of executing a general purpose
instruction set. GPs send Renderers opcode strcams which are
exccuted in SIMD fashion, Renderers also have a Quadratic Expres-
sion Evaluator (QEE) that may be configured to occupy any screen
position [Fuchs'89]. Special QEE opcodes evaluate the function

Q=Ax +By+C+ Dx*+ Exy + Fy?

ateach processor in the Renderer for its unique x,y location. Config-
uring a Renderer to a new screen position is accomplished by
offsetting the QEE so that each pixel provessor’s QEE result is based
on its offset x,y location. The coefficients A - F are part of the
instructionstream from the GPs, Renderers also have ports thatatlow
data movement in and out of the processor array under GP control,
The GPs, Renderers, a Frame Buffer, and workstation host all
communicate over an eight-channel 1D ring-network whose aggre-
gate bandwidth is 160 Mwords per second.

i Unix
EMB RAM Workstation
‘ Host
Interface fafpp

1282128
" 1280x1024
A ’?z'é’ﬁf:iﬁi Frame Buffer

Fig. 2. Pixel-Planes 5 system cnrponents




:2.3::Computed Kernel and Slice Splatting = Polynoinials are rea-
sonable approximations to'a gaussian filter kernel and easily com-
-putéd. ‘The function

203041 whefe 0<r<l

is alow order gaussian approximation, but is somewhat awkward to
compute directly. ‘A quartic

Q@=(1:r

is a more practical solution since a quadratic term Q = (1-r%) may be
computed directly by the QEE and later squarcd at all pixels in
parallel: The kemel value (Q?) at each pixel scales a voxel's colorand
-opacity. Volumesare splattedaslice atatime by summing the scaled
color and opacity values into a slice buffer and then compositing the
slice buffer into the accumulated image. The squaring and scaling
operations are expensive and should be factored out of the per-voxel
inner loop. The-kemels of adjacent-voxels, however, typicaily
overlap so we must square and scale more than orice per data slice.
By limiting the kernel radius to two inter-voxel distances, every
fourth voxel in x and y will affect a disjoint set of pixels (Fig, 4).
Therefore, in one pass we can splat one-sixteenth of the voxels in a
slice before squaring, scaling, and accumulation into the slice buffer
must be done. (A kemel radius of about 1.6 seems to yield the best
overall image.)- Pseudocode to implement the slice splatting process
‘on Pixel-Planes 5 is given in figure 3,

for (xs = 0; xs <4; xs++) {
for (ys = 0; ys < 4 ys++) {
for (x = xs; X < slice_xsize; X +=4) {
for (y = yz: y < slice_ysize; y +=4) {
{* take every fourth voxel inx and y */
GP computes QEE coefficients needed to produce Q at
position S in the Renderer array;
GP sends opcode and cocfficients to Renderer which
computes Q values in the pixel aray;
Renderer enables pixels with Q > 0;
[* only enabled pixels participate in the next instruction ¥/
Renderer pixels save Q and load voxel color and

[* cycle all 16 passes ¥/

opacity sent by GP;
1) 1* end of pass ¥/
GP instructs Renderer to square the saved Q values at
ALL pixels; 1* one mult ¥/

GP instructs Renderer to scale the color and opacity
y Q2; [* two mults ¥/
GP instructs Renderer to accumulate scaled color and
opacity into slice buffer; /¥ two adds ¥/
[* end of slice ¥/
GP instructs Renderer to composite slice buffer into image;

Fig.3. Pseudocode for splatting one slice using
Pixel-Planes 5 Renderers

Whenallthe voxels inslice i are splatted, the accumulated slice color
and opacity at each pixel are composited behind the current image of
i-1 slices to produce an image of i slices. The compositing operation
is efficiently done in parallel for each pixel of the array.

Alphai := Alphai-1 + Alphaslice * (! - Alphai-1)
Colori := Colori-1 + Colorslice * (1 - Alphai-1)

For arbitrary rotations, different slice orientations are used and the
kernels are made elliptical to preserve the independence of pixels
during each pass (Fig. 4). For affine projections, the elliptical shape
is constant for all voxels making the D, E, and F quadratic coeffi-
cientsconstant over the whole frame. Inthis case, alincar expression
evaluator (LEE) is all that is needed on the pixel processor since the
D, E, and Fterms may be computed once per frame at each pixel and
added to each data point's linear term. This, however, exacts a small

Fig.4. Elliptical kernel extents for one pass showing
independence of every fourth voxelin x and y

performance penalty, so in this implementation the available QEE
was used.

The elliptical kernel coefficients are computed from the scaling and
rotation portions of the view transformation V. We first scale V to
account for the kernel radius T, specified as the number of inter-voxel
distanccs,

M]= TV]

Now the pixel coordinates <x, y, z>must be transformed back to the
data space coordinates <i, j, k> where the computed kernels are
always radially symmetric, of unit radius, and therefore, the kemels

]| y |- j
2 k

of each pass are non-overlapping.

zt:M;i-L and b=-M_3.Z
M33 M33

Let k = 0 always, Selving for z produces z = ax + by where
Now we can express data coordinates <i, j> in terms of pixel

;]

where [P]:[ Mll'*“M.lZ‘a M2 +aM23
M2 +bM|3 M22+bM23

coordinate <x, y>.
The kemel function is Q* = (1 - *)?, but we render

Q=(t-P)=1-[G-i)f+(-j)

where i and j, define the center of the kernel. Using P, we transform
Q into a function of pixel Loundinates <x, y», and after sume algebra
we ubtain the cueffivients that allow the QEE to directly evaluate Q
in the Renderer.




A-22[xo (Ph+P3) + 6 (PuP12+P2iP2)]

B = 2[yo (P%2+P32) + X0 (PnPi+P2P2)
C= 1= %o PutP2) < yo P12+P2)
D=-Ph-P}

E =2(PuP12+PaP2)

F=-Ph-P}

Note that D, E, and F do not depend on the kemel posmon <Kg Vo>
Given any kemel position and allowing for prccomputauon of the
view dependent terms, computing A or B requires only two mulnpl:-
cations and one addition. 'Computing the C coefficient requires two
multiplications and two additions.

3. Multicomputer Rendering Algorithm

Parallel volume rendering algorithms must cope with poten-
tially moving massive amounts of data every frame. For this reason,
optimizing the distribution of data among the memory spaces in the
machine is irmportant. Full datareplicationisa trivial option deemed
100 expensive for most cases, Partial replication is often necessary

-of-desirable:  Data subscts may be slabs or blocks, packed or

mlerleaved and static or dynamic, The proposed algomhm makes
use of astatic, interleaved, slab distribution. It is static because each

voxel is assxgned a home node (or nodes) where it remains. It is

interleaved since each node has several subvolumes of data, slicesto
be exact, that are not adjacent to each other. Slices are identified as
slabs since they extend to the volume boundaries in two dimensions,
This distribution is simply achieved by assigning slices to nodes in
around-robin fashion. It was chosen forload balancing and memory
limitation reasons. If packed slices (a single slab) were used, there
exists a strong possibility of the outer slice sets having less non-zero

+data to render than the inner slice sets. By interleaving slices, the

spatial distribution of data at each node is similar.

The memory spar2 issue arises from the need to buffer an entire
slice's Renderer instruction stream as well as store three sets of slice
data. This distribution stores three copies of the data set since we
need slice sets oriented perpendicularly to each of the data axes i, j,
andk. Thesetof slices most parallel to the view plane are used when
traversing the data set.

The proposed algorithm attempts to maximize the utilization of
Renderers and GPs without requiring an executive processor. Al-
though this implementation uses special hardware Renderer nodes,
rendering could be performed by general purpose processors. In
fact, the latter would offer freedominallocating GP or Renderertasks
as necessary to achieve optimal performance. The algorithm makes
use of image parallelism by assigning each Renderer to a unique
128x128 pixel screen region. Renderers receive splatting instruc-
tions only for voxels that project to their region. Voxels near region
boundaries are splatted at two or four Renderers to eliminate seams
in the image, Since compositing must proceed in front-to-back or
back-to-front order, Renderers must receive slices in sequence.

Figure 5 i)lustrates three GPs and two Renderers computing a frame
of a six »fice data set. At the start of a frame, each GP shades and
transforms their front-most slice. Phong shading is accomplished via
a lookup table indexed by the voxel’s gradient vector. An affine
transformation is performed by DDA methods requiring only three
adds per point after setup. Renderer instructions for splatting the
shaded and transformed voxels are sorted by screen regions and
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Renderer GP1
Instructions Make Slicel
Renderer GP2
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Send Slice0 Ronderst ’
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o Ren e Instructions

Send Slice0 Send Slicel
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Fig.5. Rendering & Frame

placed into separate buffers. A token for each Rendereris circulated
among the GPs to indicate permission to send splat instructions to
that Renderer. Initially, all renderer tokens originate at the GP with
the front-most slice, The TO and T1 arcs in figure S represent the
tokens for Renderer0 and Renderer! respectively. Upon receipt of a
token, aGP transmits the splat instructions for that Renderer's region.
The token is then passed tothe GP with the next slice. The circulating
tokens ensure that Renderers receive slices in front-to-back se-
quence. The tokens also allow multiple GPs to simultaneously
transmit instructions to different Renderers. When all the tokens
have passed through a GP, it computes the Renderer instructions for
its next slice. The GP with the last slice is responsible for instructing
the Renderers to transmit their final color values to the frame buffer.

3.1. Mesh Topology Extension - Since large mesh topology
machines are being built and commercially offered, it is of interest to
note that this general approach does extend to them. Extension to
square N x N mesh topologies requires that at least one edge of the
mesh be connected to N Renderers. The data slices are assigned to
meshnodes sequentially row by row (Fig. 6). Tokens (N of ther: )are
circulated through the nodes as before. To avoid conter ion, we
specify that manhattan-style routing 1s performed for all Renderer
messages; messages travel as far as possible in the direction sent, and
then, if needed, with one turn they head to their destination. Ineffect,
we utilize the mesh as a cross-bar interconnect. With some inspec-
tion 1t should become apparent that, if tokens move in-step, Renderer
splat instructions will never compete for a communication link;
routing hardware will always be able to forward messages.

It should be noted that although the number of nodes ncreases as
O(IN?), the number of Renderers increases only as O(N). A scheme
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Fig.6. -Data distribution, Renderer region assignment,
and message paths for a mesh topology

thataccommodatesalimited N rangeistoplace Renderersalong both
sides of the array and allow 2N tokens to circulate. In a vertically
wrapped mesh, all 2N Renderers can receive instructions simultane-
ously without incurring contention for the network, Figure 6 shows
sixteen nodes and eight renderers with eight tokens in circulation,
Nodes with arrow arcs leaving them (nodes 2 - 9) have tokens and are
transmitting Renderer instructions. Utilized paths are marked with
the message's destination Renderer number.

A practical issue inhibiting this and other implementations of this
sort, isthe general difticulty of constructing distributed frame buffers
and their consequent commercial unavailability,

4, Performance

To understand the behavior of this system, we first analyze the
performance of each system element.  Then we look at the load
balance betweenthe elements and how that affects the overall system
performance,

4.1. Renderer Performance - The Renderers digest six instruction
words per splat point and compute Q to ten bit precision in 77 cycles
of a 40 MHz clock. ‘The squaring and scaling operations use about
900 cycles per pass. Compositing at the end of each slice requires
about 700 cycles. For a 128° data set, the pass and slice overhead
totals 1,932,800 cycles for each Renderer, or about S0 ms, Based on
these cycle counts, splatting 128° voxels on one Renderer should take
4.09 seconds including the 50 ms overhead. Experimental data
correlates well with this predicted Renderer performance. Using
twenty GPs and one Renderer, a 128° cube of voxels is splatted in
4,38 seconds. This corresponds to a Renderer throughput of about
478,000 voxels persecond. Use of multiple Renderers distributes the
voxel load while increasing only the GP token passing overhead,
With four Renderers, the same 128° voxels are splatted in 1.29
scconds, or equivalently, a combined Renderer throughput of 1.622
Mvoxels per second.

4.2, GP Performance - The GP cost of splatting a voxel is the view
transformation followed by four additions and six multiplies to
compute the QEE coefficients. The transformed voxel must also be
sorted by screen region so that the six instruction words to splat it are
placed in the proper Renderer's buffer. For a 1282 slice, a GP
processes 16,384 voxels into 98,304 buffered instruction words in
0.16 seconds, achieving a computation throughput of about 102,

voxels per second. As tohens arrive, the buffered instructions are
transmitted to the Renderers Pixel Planes 5 GPs use specially
addressed read cycles tomuve datatothering This scheme achieves
>30 Mword per second peak throughput into the transmit FIFO. The
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ring requires about 5 milliscconds to transmit this data, Message
software overhead adds roughly 4 milliseconds for the 192 message
packets transmitted, hence a GP is able to transmit a slice's buffered
Renderer instructions in under 10 milliseconds assuming no ring or
Renderer contention.

In most volume data sets, many voxels are transparent and therefore
no Renderer splat instructions are gengrated for them. Passes or
slices that contain only transparent voxels produce no Renderer
instructions for splatting or overhead operations, Figare 7 shows
performance statistics for the 128x128x124 data set shown in Plate
2. About 32% of the voxels (664,486) are non-transparent and
actually rendered, The image size is determined by the number of
Renderers, FourRenderers produce a256x256 image while nineand
sixteen Renderers produce 384x384 and 512x512 images respec-
tively. It is unusual, but with this sort of hardware larger images
render faster because of the increased Renderer parallelism,

4.3. Load Balance - In heterogencous systems load balancing is
difficult, Computing resources are not interchangeable and therefore
can not be shifted (without swapping boards) as needed to the task
most burdening the system. Inthis implementation, either Renderers
or GPs can limit system performance.

Figure 7 illustrates the case where performance is limited by the
number of Renderers. This is often the case if there are many non-
transparent voxels to be splatied. Adding more than twenty GPs has
minimal effect unless the number of Renderers is increased above
nine. In the case of thirty GPs and four Renderers, GPs are waiting
over 0.5 seconds total for their first Renderer tokens after they have
finished processing slices. Figure 8 illustrates a Renderer-bound
frame with three GPs, two Renderers, and a six slice data set. The
shaded areas are wasted GP waiting time. Circulating tokens are
shown as arcs and marked TO and T1 for their respective Renderers.

When a very high percentage of voxels are transparent, the system
behavior changes. This occurs in the case of isosurface extraction.
Figure 9 shows performance statistics for a 128x128x128 data set
where about 11% of the voxels (238,637) are non-transparent and
actually rendered. Here, the GP slive traversal time dominates the
system performance. With so few voxels actually getting splatted,
ustng more than mne Renderers has no appreciable benefit.  Figure
5 tllustrates a GP-buund frame with three GPs, two Renderers, and
a stx shee data set. The shaded ares represent idle Renderer time.
Tuhens have been sent to GPO where they must wait fur the traversal
ot the neatshive to complete befure Renderer instructions can be sent.
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Finally, it should be observed that the limiting resource utilization
does not approach 100% in either the GP-bound or Renderer-bound
testcase, Utilization peaks only in the unlikely situation where each
GP's slices are an identical workload and the Renderers are each hit
by the same number of voxels every slice. Since the system
resynchronizes every slice due tothe token passing, each slice has it's
ownloadbalance. The overall behavior of the systemcould resemble
GP-bound, yet a number of slices in a frame may actually be
Renderer-bound, thereby lowering the GP utilization. In most cases
then, neither the GPs nor Renderers are fully utilized. This is
unfortunately symptomatic or many parallel algorithms - computing
resource utilization often decreases as parallelism increases

4.4. Progressive Refinement The interactive response of a system
can often be increased at the expense of image quality. Usually this
isdone by undersampling somew hore during the rendering process.
Using the pixel processor apprvach, there is no wdvantage to
undersampling in screen space and then interpulating the remaining
pixels, in fact, as pointed vut befure, frame rate vften increases as the
number of Renderers, and therefure screen pixels, increases. Instead
we may undersample the volume itself. The undersampling may be
adaptive [Laur'91] or a regular skipping of some fraction of voxels.
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The latter is simple to implement by rendering every other voxel in
all directions of the data set, A 128* data set is, for example,
cffectively rendered s 64%, While the speed up varies due to load
balance issues and relative frame overhead, this technique usually
yields at least a factor of five. As an example, consider the small
system of ten GPs and four Renderers that produces the image in
Plate 2 04 0.93 Hz, Undersampling the volume as a 64x64%62 duta
set produces a sightly blurred image at a rate of 6,15 Hz; a speed up
of over 660%. Undersampled image quality can be improved by
rendering a separate prefiltered data set instead of simply skipping
voxels,

5. Summary and Discussion

This paper presented a distributed algorithm for volume render-
ing on multicomputers along with two methods for using a pixel
processor array to accelerate splatting. The algorithm was imple-
mented on a 1D ring topology and its extension to a 2D mesh
topolegy was outlined. The splataccelerationtechnique was demon-
strated on a processor array with QEE capability. An altemative
approach using texture table lookup was proposed for other pixel
processor array architectures.

This implememation is not presented as the fastest or best way of
doing volume rendering, but as a promising altemative approach
whose menits are system and application dependent. The algorithm
was implemented on Pixel-Planes § since that machine was available
and was the inspiration of the pixel processor rendenng 1deato begin
with. This system has no less than five different parallel volume
renderng approaches umplemented on it at this time, Itis acreditio
its designers that this is so, since volume rendening was never an
uaplicit design consideration. The algorithm 1s implemented in C,
some of the low level communications library routines were crafted
in i860 assembly code.

Many issues remain for consideration in future work, The errors
produced by view dependent filter hemels need further analysis,
Faster pixel processur ammays are desirable, perhaps with mbble or
byte wide data paths. The textured filter hemel method should be
explored vn a switable machsne. Other parallel algonthms that cope
with load imbalance and offer adaptis ¢ prucessing savings shuuld be
investigated. The algunthme impact of different data distnbutions
shuuld alsu be studied  particularly dynamie distnibutions in which
data nugrates amonyg the GPs as the view changes [Neumann91].
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Abstract

We describe a software system on the Pixel-Planes 5 graphics
engine that displays user-defined antialiased procedural
textures at rates of about 30 frames per second for use in real-
time graphics applications, Qursystem allows auser tocreate
textures that can modulate both diffuse and specular color, the
sharpness of specular highlights, the amount of transparency
and the surface normals of an object. We describe a texture
editor that ‘allows a user to interactively create and edit
procedural textures, Antialiasing is essential for real-time
textures, and in this paper we present some techniques for
antialiasing procedural textures. Another direction we are
exploring is the use of dynamic textures, which are functions
-of time or orientation. Examples of textures we have
generated include a translucent fire texture that waves and
flickers and an animated water texture that shows the use of
both environment mapping and normal perturbation (bump
mapping).

introduction

The current trend in graphics libraries is to give users
complete control of an object’s surface properties by
providing a language specifically for shading [Hanrahan &
Lawson 90). There are two lines of research that have come
together to form modern ckading languages. One line of
research is the notion of programmable shaders, which hasits
roots in the flexibility of the shader dispatcher [Whitted &
Weimer 82} and which was expanded to fully programmable
shaders in [Cook 84]. The other research track is the use of
mathematical function composition to create textures
[Schachter80] [Gardner84]. These two lines of research were
dramatically brought together to produce a mature shading
ianguage in the work of Ken Perlin [Perlin 85). There are now
several graphics machines fast enough to bring some of this
flexibility to real-time graphics applications [Apgar 88]
{Potmesil & Hoffert 89] [Fuchs 89]. This is the point of
departure for our research.

The organization of this paper is as follows: adiscussion of the
pros and cons of procedi al textures; an overview of the Pixel-
Planes 5 hardware and software; a brief description of our
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language for composing textures; an outline of the algorithms
involved in displaying such textures on Pixel-Planes 5;-a
description of an interactive texture editor that dynamically
displays atexture as the user changes its parameters; examples
of dynamic textures; examples of applications that make use
of the texture capabilities of our system; and future directions
for this research,

Why Use Procedural Textures?

Procedural textures provide an altemative to the choice of
image-based textures. The central tradeoff between image
and procedural textures is between memory cost and
execution time.

Graphics architectures that are well-suited for displaying
image textures typically have large amounts of memory
associated with a handful of fast processors. Each processor
retains a copy of every image texture for a given scene so that
any processor can perform the texture look-up at any given
pixel in the scene, Texture evaluation thus has a small, fixed
computational cost, at the expense of using large amounts of
memory to store the texture copies. The Silicon Graphics
Skywriter and the Star Graphicon 2000 are two commercial
graplhics engines that use this approach with impressive
results.

Our implementation of procedural teatures on Pixel-Planes 5
provides a look at the opposite end of this spectrum, Each
pixel processor has only 208 bits of memory, but the graphics
machine may be configured to have on the order of 256,000
pixel processors, giving the ability to perform several billion
instructions per second. Their very small memory makes the
pixe! processors poor for rendering image-based textures but
their computational power makes them ideal for generating
procedural textures on-the-fly.

It is clear that any procedural ;exture can be computed once,
saved as an image, and used in a scene like any other image
texture. In this scnse, it can be argued that image-based
textures offer everything that procedural textures can provide,
with the only additional cost being the use of more memory.
Also, itis clear that procedural textures are a poor choice when
the scene requires a picture hanging on the wall or an image
on the cover of a book. Nevertheless, procedural textures do
have benefits of their own. One benefit is that the texture can
be arbitrarily detailed, provided that the texture coordinates
are represented with enough bits. Each additional bit added to
computation of a function of two variables is reflected by a
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factor.of four in, ‘memory-cost to’ rhimi¢ the-texture Wwith.a

stored i image, Ad more dramatic benefit is the ability:to define

fexturés.-which -are functions-of many variables, such. as

ammated texires and solid fextures. The memory capacity ¢ of
graphlcs systems that we are familiar With is not farge enough

10 explicitly store such textures. Pixel-Planes 5 offers us the
.alternative of evaluating on demand thé values from textures

of several variables.

‘Pixel-Planes 5 Overview

Hardware < The Pixel-Plaries 5 machine has multiple Intel

i860-based Graphlcs Processors (GPs) and multiple SIMD-
-pixel processor arrays called Renderers: A Renderer is a
'128x128 array of bit-serial pixel processors, éach with 208

bits of local memory, called pixel memory, and 128x32 bits of
off-chip- backmg store memory. Each' Renderer can be
mapped to any -128x128 pixel region of an.image, The

‘Renderer processors are capable of géneral arithmetic and
‘logical operations and operate in SIMD mode,  Each
_processor has an enabls bit that regulates its participation in

instructions, Graphics Processors, Renderers, Frame Buffers,
and waikstation host communicate over a shared 640 Mb/sec

ring nétwork,

Software - Generating images with textured polygons on
Pixel-Planes § is a multi-stage process which can be viewed
as-a graphics pipeline {Fuchs 89] as shown-in Figure 1.

Transparent polygons are handled by making multiple passes

through the pipeline, Inthe first stage of the graphics pipeline,

the Graphics Processors transform the polygon vertices from
model space-to perspective screen space and create SIMD
instruction streams (/mage Generation Controller or IGC
commands) for the Renderers to rasterize the polygons, A Z-
buffer algorithm is executed in parallel for all pixels within a
polygon. During rasterization, intrinsic color components,
surface normals, texture o,v coordinates, texture scale factor
(usedfor antmlnasmg), texture-id, etc., are stored in the pixels.
After rasterization of all polygons, each pixel processor has
the parameters of its front-most polygon. Thiese parameters
are then used in the next two stages of the pipeline: texture
program interpretation and lighting model ccmputation, At
the beginning of texture program interpretation, some
initialization is performed. The rasterization phase actually

Graphics Processo: | IGC Commands Renderer

"{ Polygon Data [ D
; | Raw Pixel Data ]

[Texture Programyie-C by —-—Pv
I’I‘extund Pixels |

[Cihimg ModelHiw-C >

gi

Frame
Buffer

Figure 1: Pixel-Planes 5 Graphics Pipeline

stores uez and vez rather than u and v in piel memory (since
uez and vz are linear in scréen space), 0 a z division is
needed. Also a time value is stored in pixel memory.for use
in animated textures. ‘The lighting model currently used is

‘Phong shadmg “Since all pixels are handled concurrently after

all rasterization, we call this approach deferred shading.
Because of the high degree of parallelism achieved.-during
deferred shading, we can afford to have quite elaborate
precedural textures and lighting models while maintaining
high frame rates,

Texture Programs

Programming Maodel - Procedural textures are implemented
viaasimple virtual machine. This texture machine comprises
anassembly language-like instruction set called T-codes, aset
of registers in pixel memory, and a st of parameters in the
Graphics Processor memory. The pixel parameters, such as
intrinsic color, u uyv coordmates, etc., are-accessible to the
texture machine via its pixel memory regnsters. The Grephics
Processors execute the T-codes interpretively, modifying the
pixel variables that affect shading. More exacily,
interpretation of a T-code program produces an IGC
command instruction stream, which is routed to the
appropriate Renderers for SIMD execution,

T-Codes- There are three kinds of T-codes: generators, which
produce several basic texture -patterns, operators, -which
perform simple arithmetic operations on texture patterns, and
conditionals which permit selected pixels to be included or
excluded inacomputation. Generators include Perlin’s band-
limited noise function {Perlin 85), Gardner’s sum-of-sines
1Gardner 84), antialiased square waves, and a Julia set,
Examples of operators include add, scale, max, square root,
splines, and color table lookup, These operators can be
cascaded to implement arbitrary functional composition.
There are T-codes -for conditional execution (by having
selected pixel processors conditionally disable themselves),
but no T-codes for looping, Adding a new T-code to our
systemis astraghtforwa d task. Bezides coding and testing of
the T-code subroutine in C, the programmer needs only to
update the T-code assembler parse table and the T-code
subroutine dispatch table,

Sample Texture Program - The following T-code fragment
computes an antialiased black and white checkerboard
pattern. The Uand V registerscontain the texture coordinates,
and the D register contains the texture scale factor, Outputis
to the diffuse color components D_Red, D_Green and
D_Blue. The swave generator produces antialiased square
waves in one dimension, Note how the outputs of the
generators are combined by continuous operators for
antialinsing, rather than using birwise exclusive-OR.

# make antialiased square wave in U direction
swave R,U,D; swave params

# make antialiased square wave in V direction
swave S§,V,D; swave params

§ R and S registers now contain stripes

mul ™R8
add RS
sub W,u,7T
sub W,W,T

§ W 1= R#S-2*R*3, countinuous exclusive OR
& set diffuse colors from W

copy D Red,W

copy D _Green,W

copy D Blue,®




Certainly, our texture programming language is hardly state-
of-the-art with respect to programming ease. This is
compensated to some extent by the fact that texture programs
tend to be rather short - typicaily 20-40 instructions. The
programs are short because the built-in generators and some
of the operators (such as spline and color table lookup) arc
fairly powerful. The main job of the texture programmer is
producing the appropriate “glue” code to tie these together. In
additicn, as discussed later, programming is facilitated by an
interactive texture editor program which allows the use of
MAacros.

Texture Procedure Evaluation Detalls

Pixel Memory Management - The Pixel-Plan2s 5 Renderers
contain 208 bits of on-chip memory and 4096 bits of off-chip
backing store memory per pixel. Backing store memory
cannot be directly addressed vy IGC instructions, but must be
swapped in and out by special instructions, Because texture
programs usually require the use of scratch memory space and
because arather large number of pixel variables are needed to
suppo+t deferred shading, there is not enough pixel memory to
statically allocate it for the worst case, Therefore, a pixel
memory manager keeps track of the locations of the variables
and to perform memory movement and backing store
swapping to make available required amounts of scraich
memory space.

Caching of IGC Commands - For static texture programs,
the IGC commands do not change from frame to frame, and
thus the T-code translation step need occur only once. Note
that static texture programs do not imply static textures; the
result of executing a texture program may vary with time, if
time is an input variable. Duriny texture parameter editing,
the T-code program must be reinterpreted euch time it is
changed. The Graphics Processors ache the IGC commands
resulting from texture interpretation o avoid genc. uting them
sepeatedly.

Region-Hit Flags - Since each Renderer covers a small
(128x128 pixel) region of the screen, it is likely that only a
small subset of the textures will be represented in a given
region. The Graphics Processors flag each region that any
textured polygon intersects as needing that particular texture.
The Graphics Processor that creates the texturing commands
for a particular region checks the OR’ed flags from all
Graphics Processois for that region, and creates and sends the
texture programs for only those textures that mighs be visible,

Obtaining Real-Time Performance

Our goal for real-time procedural textures was to deliver at
least 15 frames-per-second to real applications in research
projects at *INC. This goal has been met, and these
applications i re described in a later section.

There are two crucial issues foz rapid texture evaluation. The
first issue is *o muximize utilization of the pixel processors.
This is achieved by waitiag 1> execute the texture programs
until all polygons have been rusterized, su paratlelism of the
texture programs can be maximized. In addition, by use of
region-hit flags, we avoid processing texture programs for
screenregions that don't have the texture. The second issue is
enabeling the Graphics Processors to heep up with the
Renderers, This > accomplished by the IGC instruction
caching, We incre.ased the performance of the Walkthrough
application from 2 to 20 frames/sec by the use of region-hit
flags and the IGC instruction caching.

97

Antialiasing Techniques

Antialiasing of procedural textures is a difficult problem to
which we have not found a general solution; instead we have
developed a few techniques which work fairly well for many
texture programs, The theoretically proper method is to
convolve the texture with a filter kernel of an appropriate
shape, centered at the pixel. In principle, this is possible since
each pixel processor knows the entire texture, but in practice,
this can be done only for the vimplest textures, because
integrating arbitrary functions of two variables is difficult,

Inordertodo antialiasing, we need some estimate at each pixel
of how an area element in screen space maps into texture
space. Ideally, we would use the derivatives of u and v with
respect to screen space x and y. However because of limited
pixel memory, we decided to record this estimate using a
single number, called the texture scale factor. This number is
intended to represent the maximum magnification factor that
can occur when a unit vector in screen space is mapped to
texture space. The texture scale factor is available in a pixel
memory register for use in T-code programs, The
approximation we use is max(lu l+lu Llv l+lv ), which is
within a factor of 1.42 of the commoniy used formula max
((u+u, Hz (v Sy, 27y for MIPmaps [Williams 83).
Becausé of this, our téxtures are over-blurred when viewed at
certain angles, just like MIPmaps. Texture scale factor i is
computed for polygons as follows. When the polygon is
rasterized, the u and v coordinates at the middle of the
polygon,u_,andv_, are computed, The linear expression for
uz= ax+by+c, is d¥tferentiated to give u z+uz = a, which is
solved for the constant u z = a-u_ 2., Similarly u ,% V.2, and
v,z are compute:. From these max(lu zl+lu zllv z|+lvyzl) is
computed and stored in pixel memory. Fmally, Just before
texture program evaluation, a parallel z divide is performed
for all pixels. This is, of course, an approximation due tc the
substitution of u_, foru. The approxnmauon evror manifests
itself as a difference in the amount of ¢ blurring at the corners
ofapolygon thatis being viewed ata very oblique angle (large
z,). We found that the error is not noticeable in ordinary
scenes, although it can be seen in contrived 15t cases,

The antialiased square wave generator produces an
antialiased stripe pattern with a specified phase, frequency,
and duty cycle. The generator analytically computes the
convolution integral of a box filter kernel with a square wave
function of its input parameter in one dimension. The width
of the box filter is the texture scale factor. Initially we
implemented a triangular filter kernel, but found that it
required too much scratch pixel memory.

A method that works for some textures is to antialias the final
color table lookup. The ideaisto returnafinal color that is the
integral over some finite interval in the color table, rather than
a point sample. The width of the integration interval is
proportional to the texture scale factor times the maximum
gradient magnitude of color with respect to u and v. This
integral is simple enough to be computed analytically in the
pixel processors. If the gradient magnitude of the texture
value input to the color table is reasonably smooth, this
roughly approximates the correct convolution integral, and
does a fairly good job in practice for many textures. It fails
utterly forwextures that are discontinuous functions ofuand v.
This kind of texture gradually loses contras’ as the texture
scale factor increasss, but before the texture fudes to auniform
color, there is severe aliasing.




Another method works in the frequency domain. Some of our
texture programs “roll off” the amplitude of the band-limited
noise based on the texture scale factor. The result is that the
noise fades to a uniform value at scales where aliasing would
be a problem.

Interactive Editir.g of Texture Procedures

An interactive texture editor eliminates the need for an edit-
compile-link-test cycle. Since T-code programs are executed
interpretively at run time, texture procedures can be changed
without recompilation, Furthermore, the interpretation phase
is fast enough so that literal values (Graphics Processor
parameters) in T-code instructions can be updated in a single
frame time, at frame rates of more than 30 frames per second.
The texture editor displays the T-code instructions of a
selected procedural texture in a text window, The user can
position a movable cursor on any literal value in a T-code
instruction, and then smoothly vary this value via a joystick.
The dynamically updated texture pattern is displayed on the
graphics system with a two-frame lag (the graphics pipeline
overlaps two frames). At over 30 frames per second this lag
time is hardly noticeable. Hence the user zan explore the
parameter space of a texture procedure cominuously in real
time,

More drastic changes to texture programs can be made by
interactively editing the text of the program in another
window via a conventional text editor. T-code instructions
can be added, rearranged, and deleted, producing a new
program. Then with a couple of commands, the user can save
the updated texture program and reload it into the texture
editor for immediate display. This process takes from one to
five seconds, which due to the more discrete nature of such
changes, can still be viewed as interactive editing,

What the user sees on the graphics system is a complete scene
with possibly many graphics primitives and texture
procedures, not just a single isolated texture pattern. The
texture editor provides a complete set of commands to access
the facilities of our graphics library. Thus the user can change
the viewpoint, move objects around, change the locations and
parameters of light sources, etc. This is important, because the
appearance of a texture is dependent on its visual context.
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Figure 2: Generating Flames

Dynamic Textures

Texture; have been traditionally considered to be functions of
spatial coordinates u and v. A generalized texture, however,
need not be restricted to just mappings from the spatial
coordinates. One could consider a texture to be a function of
several other parameters as well - time and surface normal, to
mention just acouple. Procedural textures permit us to create
these generalized textures without the memory overheads that
would be required with image textures. Since these textures
change spatially based on input parameters that need not be
restricted to just those that define the mapping, we prefer to
call them dynamic textures,

If we consider a texiurcs to be a function of u, v, and t vhere
tis a time variable, we can produce time-varying arimated
procedural textures such as a fire texture that flickers and
water waves that ripple. If we consider textures as functions
of u, v and n where n is the normal to the surface that has been
textured, then it is possible to do environment mapping by
defining an appropriate procedural texture. Dynamic textures
implemented this way can still be precomputed because the
program text for the texture doesn’t change. Another way to
produce dynamic textures istoeditthe  «<ture programs after
each frame, but then there is some loss of performance since
precomputation of IGC commands isn’t possible. In the
following sections we describe how we implemented several
dynamic textures.

Fire - Anexample of an animated texture is a flickering flame.
We implement a fire texture as follows (Figure 2): First
perturb u by adding to it a 2D noise function of uand 1. Then
generate a height field h by applying a 2D noise generator to
uand t. Compute flame intensity {= l-v/h. Iff<0setfto0.
This creates a moving outline of the flame, Because of the
noise perturbation of u, the outline moves both vertically and
horizontatly. Finally we copy fto opacity and use a color table
withinput fto produce color. We use two layers of transparent
fire texture to produce the fireplace shown in Photo 3.

Environment Mapping - The next exampie is a dynamic
texture depending on object orientation instead of time. It
implements environment mapping of a simple checkerboard
patternonto ateapot. The texturedieapotappearstobe located
inside a room with checkerboard walls, as shown in Photo 5.
Rotating the object lets the reflections move across the surface
in a realistic way. We accomplish this by performing typical
environment mapping computations [Blinn & Newell 76]
(determine reflected eye vector, compute indices, compute
procedural texture as function of indices) ina T-code program
for each pixel.

Our current system has two limitations for environment
mapping. First, because the normal vector is only available in
eye space coordinates, the (infinitely distant; .cflective
environment appears to be attached to the camera. Thus,
whenever the camera is rotated (pann=d, tilied or rolled), the
reflections move across the object’s surface in an erroneous
way. If we nad enough pixel memory to store world space
normals this restriction could be removed. Second, we cannot
perform antialiasing properly, since we do not have surface
curvature information available in pixel memory.

Water - The final example, shown in Photo 6, is an animated
texture approximating water waves by means oy an animated
procedural bump map. This dynamic texture is a function of
both time and spatial orientation. The pixel normals are




perturbed on the basis of a height ficld whose value is
ccmputed at each pixel. The derivatives requited for the
normal perturbation are computed by finite differences. The
height field consists of superimposed circular and paralicl
moving sinusoidal waves generated by a number of sources
distributed across the water-textured surface, a common
approach for this problem. The surface characteristics are
such ihat the water surface appears highly specular. In
addition, the normals are used to compute a simple one-
dimensional color scale environment map, which is used to
create a more natural appearance, The map has rotational
symmetry about a vertical axis, so that the camera can be
arbitrarily panned. However, tilting or rolling the camera
would generate erroneous results, for the reasons mentioned
in connection with the environment mapping texture. As
mentioned, this restriction could be removed by storing world
space normals at each pixel. We also have a problem with
determining which way to perturb the surface normals, since
we do net have the surface tangent vectors in the u and v
directions available in pixel memory. We can circumvent this
problem for horizontal polygons (like water surfaces) by
broadcasting the current transformation matrix to the pixel
processors during the texturing phase of each end-of-frame
calculation, The scene in Photo 6 was rendered in 33
milliseconds, low resolution, with 24 GPs and 12 Renderers.

Applications Using Procedural Textures

Pixel-Planes 5, besides being a research project in its own
right, is also an important resource for several other research
projects at UNC, Two of those for which textures are
imj...stant are the Building Walkthrough project and the Head-
Mounted Display project. Both of these use a stereo head-
mounted display and head tracking, so high frame rates are
necessary to maintain the illusion of the virtual eavironment.

Walkthrough - The UNC Walkthrough Project aims at the
development of a system for creating virtual building
environments [Brooks 86]. This is intended to help architects
and their clients explore a proposed building design prior toits
coastruction, correcting problems on the computer instead of
in concrete. Texturing plays an important role in enhancing
image realism. Having textures for bricks, wood, ceiling tiles,
etc., adds to the richness of the virtual building environment
and gives an illusion of greater scene complexity. The
radiosity illumination model is used in the Walkthrough
project. We can display a model of a house that contains about
34,000 polygons and 20 procedural textures at 15-20 frames/
sec on 24 Graphics Processors and 12 Renderers at 640x512
resolution. Photo | shows a view of the living room of the
house, and Photo 2 shows a view of the kitchen.

For enhanced realism, textures have been integrated with
radiosity in Walkthrough. There are two stages in this
integration. The first stage is to calculate radiosity values for
atextured polygon, such that the radiosity effects such as color
bleeding are correctly simulated for the polygons near this
textured polygon. The second stage is to shade the textured
polygon itself by the radiosity values atits vertices. To effect
the first step, the color of a textured polygon is assigned to be
the average color of its texture. This color is then used in the
radiosity process as usual. After the radiosity values at the
vertices of a polygon have been computed, they are passed as
mnput purameters to the prucedural texture for this polygon
along with other input parameters such as the u and v
coordinates. These shading values are linearly interpolated
across the polygon. The procedurdl texture is computed as
before and a pust-multiphication of the interpolated radiosity
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shading values w:ih the computed texture colors at each pix21
gives a smooth shading effect over the textured polygon.

Another application which textures find in the Walkthrough
project is that they offer one way to switch lights in a virtual
building. The total radiosity illumination of a polygon is
determined by the dot-product of the vector of light values and
the radiosity vector specifying the contribution of each light
source to the illumination of the polygon. This thenmeansthat
giventhe latter, the user can vary the intensity of a light source
and observe the same building model under different light
scales (but same light positions), by just computing the dot
product as described before [Airey90]. This however takes
roughly 3 - 5 seconds for a dataset of roughly 30,000 polygons
and 20 light sources if done sequentially on the host
workstation and fails to provide the effect of instantaneous
light switching. One possibility to do this fast enough to
provide an instantaneous effect (under a tenth of a second) is
to do this in parallel by using T-codes. The idea is to pass the
intensity value of a light source as an input parameter toa T-
code program (along with the polygon colors) which
computes the dot-product of the input parameter with the
value of the interpolated radiosity (as described in the
preceding paragraph) and uses the resulting value to shade the
polygon. Changing the intensity of a light source can then be
done by editing the T-code program and changing this input
parameter. This is essentially using the T-code commands as
a shading language.

Head-Mounted Display - In the Head-Mounted Display
project, the primary use of textures has so far been in a
mountain bike simulation, where the user rides a stationary
bicycle and views simulated terrain through the head-
mounted display. Textures sre used to increase the apparent
scene complexity and to fiaptove the user’s perception of
motion through the environment. This application features
relatively few textures (grass, wad, and cloudy sky), each of
which covers a fairly larg. arez of the images. A scene from
this application is shown «n Phuto 4. The cloudy sky texture
makes use of the Gardner rexture generate -, The grass and
road texture make use of band-limited 2 ¥ noise, and are
antialiased by decreasiy the noise amplitud. as the texi-re
scale factor increases. Several {requencies of noise are used
each with its own thieshold for roltoff. Thi- smulation runs
at 20-25 frames pe~ second in low resolution ($40x512) stereo
mode using 32 G aphics Processors and 2(: Xenderers.

Future Work.

The logical nesi step to vur simple textune language is to
implement . full tledged shading lungui ge that can be
executed on-the-{lv. Using the deferred shiading paradigm on
ahigh-end graphics ma hine, real ‘ime exe . ationof a shading
language st.ch - Renderman [Hiwrahan & Lawson90] seems
tobe avery real pussibitiy. Unfustenately this is impractical
on the currest Pixel-Planes sy stem due to the small amount of
memory available to the pixer processors. However, it is
likely that the Pixel-Flow machine [Niolnar 91], now being
designed 4t UNC Chapel Hill, wi. have sufficient pixel
memory to make this idea viable.
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Geometric Manipulation of Tensor Product Surfaces
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Abstract

Tensor product surfaces arc now widely used in application ar-
eas such as industrial design and computer animation and thus the
quest for more effective design methods continues, Although sev-
eral methods exist for applying high-level operators such as bends,
twists and free-form deformations (FFD's), much less effort has
been applied to improving direct and precise free-form shaping
which is often desired, The dominant form of free-form manip-
ulation has been control-point based. Here we offer a manipula-
tive method that presents geometric properties (e.g. points on the
surface, normal vectors, etc.), rather than control vertices or defor-
mation Jattices, and allows direct manipulation of these properties
at any sclected point on the surface, The difficulties of interacting
with these three-dimensional geometric entities using both two- and
three-dimensional input devices are discussed, as are possible inter-
active schemes using several such devices.

CR Categorles:  1.3.5 [Computer Graphics]: Computational
Geometry and Object Modelling - parametric surfaces; 1.3,6 [Com-
puter Graphics]: Methodology and Techniques - interactive tech-
niques, direct manipulation, constraints: J.6 [Computer-Aided En-
gineering): Computer-Aided Design (CAD).

Keywords: Computer-aided geometric design, B-spline sur-
faces, interactive sculpting, three-dimensional interaction,

1 Introduction

Tensor product surfaces are a widely used primitive in many
geometric modelling systems. The majority of recent work in the
interactive aspects of modelling these surfaces has been in provid-
ing high-level deformation tools [6, 12, 7}. In many applications,
how.ver, free-form shaping is required that is not easily expressed
in terms of regular shape operators. Control point manipulation is
generally inappropriate in such cases, and construction of deforma-
tion lattices for tool-based deformation is an indirect, often unnec-
essarily tedious, solution. When specific geometric properties are
required, a designer should be able to select a point or region of a
surface and specify these target properties. Such direct manipula-
tion can be achieved for curves [10] and recent work on differential
manipulation [14] points to constraint based methods for surfaces.
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granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
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that copying is by permission of the Association for Computing
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Meanwhile, there is a constant drive to develop new geometric
forms that overcome these and other limitations of tensor product
surfaces, Triangular surface patches have long been available (see
(8]) as a blending primitive to help alleviate the topological restric-
tions of tensor product surfaces, Meanwhile Loop and DeRose[11]
are two of many who have pursued multi-sided patches, More re-
cently a new modetling paradigm, based on triangular patches, has
been presented [3] that combines geometric constraints with sculpt-
ing operations bascd on forces and loads that yield very fair shapes,
hence addressing both the topological restrictions and geometric
constraints, Although this method shows definite promise for the
engineering community, its suitability for non-technical users is un-
clear as the interactive issues in dealing with forces and loads are
still being explored. Regardless of the promise of these new forms,
there is still a large investment in tensor product surfaces, and de-
velopers would rather find ways to improve their current technology
than pursue a new approach.

There has been little attention paid to the problems of interac-
tively designing free-form geometric shapes in three dimensions,
not from the view of algorithms or tools, but in terms of direct in-
teraction with surface geometry in three dimensions. Clark [5] used
a hand held wand to select and reposition B-spline control vertices
as carly as 1976, but not much has happenedsince that time, More
contemporary work in 3D interaction, including Bier [2), relies on
the use of construction aides that affect attributes being manipu-
lated, but in the case of surfaces, those attributes are almost always
the control points. More recently, Weimer and Ganapathy [13] have
used a VPL DataGlove to manipulate surfaces in an experimental
modelling environment. Although their system is far in advance
of Clarke's work (incorporating voice and hand gestures for input)
their methods of manipulating curves and surfaces consist primar-
ily of free-hand sketching and direct contzol point manipulation in
space — methods that have long been achievable (albeit more awk-
ward) with a mouse or tablet. One of our goals is to use a pair of
“virtual hands” (at this point a pair of YPL DataGloves) that will
allow direct “hands-on” interaction with the surface itself, and not
it’s mathemeudical atributes, i.e. it's control points. To this end,
we discuss a few methods we have imglemented to provide more
intuitive shaping of the surface with & singie DataGlove.

Accepting the fact that tensor product surfaces are widely used
and that their full potential has not yet been realised, we propose
methods of improving interaction with these surfaces. In Section2
we illustrate how to efficiently solve and apply systems of ifferen-
tial constraints to tensor product surfaces. In Section 3, the formu-
lation of geomelric constraints in terms of diffesential constraints is
given, along with a discussion of additional degrees of freedom that
have intuitive geometric effects (which we refer to as uniform and

1RMIT Advanced Camputer Graphics Centre, 723 Swanston Strect, Melboumne,
Victoria, AUSTRALIA 3053, +61-3-282-2461, bmfowler@godzitla.cgl citri.cdu.an
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directional tension). We limit ourself in this paper to the manipula-
tion of properties dependentsolely upon first-order derivatives, de-
ferring a more analytical study of surface curvature to a later date,
In Section 4, we suggest possible ways of interacting with these
geometric properties and degrees of freedom with conventional 2D
input devices (a mouse or tablet), a Polhemus 3Space Isotrak 2 and
a VPL DataGlove,® We close with a summary and description of
related work in progress.

2 Differential Constraints

Recent work on interactive techniques for curves has led to the
development of direct manipulation interfaces that do not rely on
user interaction with control points. The direct manipulation tech-
nique described in [1] was generalized in [10] to manipulate higher
order properties including tangency and curvature. Here we extead
this work to tensor product surfaces.

For parametric curves, direct manipulation of geometric prop-
erties was achieved by coordinating the parametric derivatives (to
achieve a specified geometry) and solving a linear system of equa-
tions that enforced the required changes to these derivatives, We
refer to such specifications of derivatives as differential constraints
whereas a set of differential constraints that achieve a specified ge-
ometric property are referred to as a single geomelric constraint,
Vther sets of differential constraints that are significant, but not
secessarily geometrically intuitive, may be referred to looscly as
a parametric constraint.

Since a geometric constraint at a particular point on the curve is
determined by its parametric derivatives at that parametric point, a
geometric constraint will generally consist of an underdetermined
(in aminority of cases, well-determined) system of equations. This
statement, however, assumes that the degree of the curve supports
the degree of the properties to be manipulated, e.g. specifying a
change in curvature for a curve that is a straight line (a linear poly-
nomial) would result in an overdetermined system, requiring the
degree of the curve to be raised. Overdetermined systems may also
occur when combining multiple geometric constraints at different
(but nearby) points on the curve. Such asystem can always be made
underdetermined by suitable refinement.

The solutions obtained for these underdetermined systems was
that which minimized the combined movement of the control ver-
tices involved. This method is briefly summarized here. Its appli-
cability to tensor product surfaces is then illustrated.

2.1 Constraints for Curves

A parametric curve segment of degree n (both non-rational and
rational) may be expressed as

L]
Y ViBiw = Qu)
=0
and thus its derivatives as
»
Y VB = Q¥ ).
i=0
A change to a desivative of the curve is similarly represented as

Y AViBM@) = AQM(w)

=0

238gace IsoTrak is a trademark of Palhemus Navigation Sciences,
3DauGloveis a trademark of VPL Rescarch Inc.
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which is referred o in matrix form as
BPw)AVT = AQ™ (). (1)

When shaping a curve in a design application, a user typically has
some target geometry in mind, e.g. a point to be interpolated, a
tangent line to be met, etc. Such targets can be expressed in terms
of changes to the derivatives of the curve at some chosen paramet-
ric point. A system of equations containing these changes to the
derivatives is given as

B@AVT = AQT ) (2)

where each row of the matrix B(%) and vector AQ T () represents
a differential constraint, recall (1), applied at .

Note that we select T at which to apply the constraints, Although
we might allow the parametric point to vary in satisfying the con-
straints, we select ¥ to preserve the linearity of the system, which
allows extremely efficient interactive updates. The actual determi-
nation of % can be performed geometrically by the user by either
selecting the curve itself, or by specifying a nearby point to te in-
terpolated, in which case the closest parametric point on the curve
can be determined. In both of these cases, T is chosen implicitly by
a geometric specification on the user's part,

Conventional contro} point based manipulations require the user
to specify the left hand sideof (2), i.e. the AV T, in order to achieve
a desired change to the shape of the curve reflected in the resulting
AQT. Theassessmentof the success of this change is usually per-
formed visually, and is thus often inadequate (exact positioning of
control points or endpoints of the curve is often permitted, but not
an arbitrary point on the curve). Instead, we derive a suitable so-
lution for AV7 given a specification of the right hand side, AQ ¥,
i.e. given one or more geometric constraints,

The solution to the system in (2) is given in {10] as

AVT =BT (BBT)™! AQT 3)

which turns out to be the right-inverse of B when the rows of B are
linearly independent (as is most often the case). For the sakeof no-
tational convenience, when we refer to the inverse of a matrix, if it
is non-square, this will imply the right-inverse. Note that since B~
is independent of AQ ¥ (which changesin each iteration of an inter-
ctive loop), the solution can be applied efficiently by precomputing
B! for a given ¥ (or set of W's at which constraints are applied).
This solution becomes particularly efficient when only one element
of AQ is nonzero (a common occurrence) in which case only one
column of R~ need be computed.

One issue that arose with direct manipulation of curves was how
many and which control vertices to incorporate into the systems of
constraints. We found that the control vertex with maximal posi-
tional influence on the curve at % should definitely be used, and
that one additional degree of freedom (control vertex) should be in-
cluded, i.e. if we have two constraints, then three control vertices
should be included in the sys:=m. Including this additional degree
of freedomreduced undesirable asymmetry that canresult when the
solution is unique. The control vertices discarded from the system
should be those with the least influence on the curve at 4.

2.2 Constraints for Surfaces

The solution method described for curves can be applied to any
underdetermined system of linear equations. Tensor product sur-
faces are merely bivariate polynomials that are expressed conve-
niently in terms of univariate basis functions:

n-! m=-l

Z Z V;, B,w) Bi(w) = S(u,v).

0 j=0




When we re-express this as a linear combination of control vertices

-and bivariate basis functions
Y ViiBigtu,v) = S,v) @
L)

where

B;,;(u, v) = Bi(u) B;(v)

we can apply the methods described in Section 2.1,

In keeping with the notation of Section 2.1 we use matrix nota-
tion for our differential constraints, A systemof constraints at some
parametric point (%, v) will then be represented as:

B('-‘.la) AVT = AST(E.‘ﬁ) (&)}

where AV is now indexed as a vector, rather than a matrix, At
(@, v) we may now constrain any subset of pertial derivatives by
selecting appropriate values for the right hand side, By applying
changes to appropriate partial derivatives in a controlled manner,
we can obtain direct control of the surface geoinetry at (%, ¥).

An ¢..ernate solution method can be applied in certain instances,
Recalling the matrix representation of a tensor product surface

Bo(u) V Bo(w)T = S(u,v) (6)

we can expre:s a set of changes to the derivatives of the surface as
follows

ASy
AS,

Bo B 17
B lav| B

AS, ..
ASw ™

. . . .
. . . .
. . .

where we have omitted the (u, v) for brevity, When a chosen sub-
matrix of the right hand side of (7) is fully specificd we can apply
the curve solution to the rows and columns of AV to yield the so-
lution

AV = B~ AS3,9) (B®)™)T. (8)

Here we precompute B(%)™* and B(%)~'. The cost of applying
these two matrices to each AS is no greater than the cost of ap-
plying the single matrix that would result using the bivariate vector
solution(5). The savingsin (8)is in computing the right inverses of
two basis matrices with low row dimension (one or two inthe cases
to be discussed), rather than one matrix whose row dimension s the
product of the row dimensions of these two matrices. When partial
derivatives in the right hand side submatrix are not specified, i.e.
are left free to vary, we use the vector solution (3).

Basedon our experience with curves, we generally choose not to
incorporate all control vertices defining the patch containing (%, v).
Instead, we use the control vertex of maximal influence and an
additional degree of freedom in each parametric direction. This
amounts to introducing zeroes into the least significant columns of
B(u) and B(v). The resulting control vertices that are affecled typi-
cally belong to a rectangular subset of the control point mesh. This
has produced goodresults for most systems of constraints, although
in some cases the area of effect can be further reduced. In order to
involve a non-rectangular subset of control vertices, however, the
vector solution (3) must be used.

3 Geometric Constraints

Here we describe how appropriate systems of differential con-
straints are formulated to achieve certain geometric properties, i.e.
how to construct geometric constraints. The details of how one
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might interact graphically with the surface to control these proper-
ties are deferred to Section 4. For this paper we restrict our discus-
sion to geometric properties that can be specified in terms of of the
first derivatives of the basis functions

[Bom) AV[BOW)]T_[ASO@W AS.m,w]
B.(@) B,@ | = | AS«@,%) ASw(,9)

which actually includes the mixed partial (a second derivative)
commonly referred to ¢s the “twist” vector, We assume that we
are dealing with a regular surface and that the derivatives we are
interested in (not necessarily all of the above) do not vanish at the
parametric points of interest. The examples in all illustrations are
of bicubic non-uniform B-spline surfaces.

3.1 Position

Controlling the position of a point on the surface is a straight-
forward process, If a desired point is to be interpolated, a designer
can select a nearby point on the surface (for which we determine
(%, 7)) and relocate the point to the target location. This is done
by applying a change in position to the surface at (i, ¥) using the
single differential constraint

[ Bu@ ] AV [ B |7 = [ ASe@,®) ],

Figures 1 and 2 illustrate examples of positional displacement

Figure 1: Positional displacement of a point near the centr of
flat sheet, One control vertex is involved, hence the asymmetry.

incorporating varying degrees of freedom, The gross asymmetry
in the former is absorbed by the inclusion of an extra degree of
freedom in each parameter. This extra degree of freedom involves
four control vertices and has produced good results in -our current
B-spline modeller.

3.2 Tangent Plane Orientation

Controlling tangency for surfaces is a much less well-defined
task than was the case for curves, For aregular parametric surface,
the cquation for the normal vector is given by

S.(,7) x 8, (%, 7)

NE&) = I5.@ < S @




— orientation by rotation of the partial derivative frame. Adding an
extra degree of freedom here incorporates nine control vertices,
which distributes the effects well, but over a potentially signifi-
cant area of the surface. Using bicubic B-splines, this results in 36
patches affected by the change. In cascs where one or both partials
do not change significantly, a degree of frecdom can be dropped in
one or both directions reducing the area of effect without introduc-
ing any “unbalanced” effects,

Figure 2: Positional displacement as in Figure 1 using an extra
degree of freedom in each parametric direction. The previous
asymmctry is absorbed,

whichin turn defines the tangent plane at (4, %). To control the tan-
gentplane at (%, v), while preserving S(u, ), we use the following
system of differential constraints

Bo(4,%) 0 Figure 4: Alignment of the tangent plane with a ventical plane.
B.(u,%) | AVT = | AS ®,¥) 9)
B,(%,7) AS,(G,7)

and apply coordinated changes to AS  and AS,.

If we wish to change the normal vector (and hence the tangent
plane), we can do so by rotating the entire frame defined by N,
S«(4,7) and S, (¥, 9). Once a desired normal is obtained, both
S.(%,v) and S, (¥, v) can be further manipulated within the tan-
gent plane for additional shaping freedom. When rotated about the
normai vector, a twisting effect results without affecting tangency.
In cases where one partial is to be manipulated while the other is
fixed, another of the right hand side entries will become zero.

Figure 5: The “iwisting" effect produced by rotation of the par-
tial derivative frame about the normal.

3.3 Tension

In the case of curves, changing the magnituds cf the first deriva-
tive produceda “tension-like” effect (a marked change in curvature)
similar to that produced by changing the tension parameter of 8-
splines or the weights of a rational curve. An analogous effect can

Figure 3: Normal orientation by rotaung the frame about one of

the coordinate axis. . ¢ ! A
be created by changing the magnitudes of the partial derivatives at
a point on a surface. We apply two styles of this ternsion-like effect
Figures 3 through 5 illustrates threc examples of tangent plane while preserving the onentation of the tangent plane. Both styles
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involve changesto (in general) both partial derivatives, thus we use
the same set of differential constraints in (9).

‘We refer to uniform tension as the effect created by scaling both
partial derivatives uniformly, Figures 6 and 7 illustrate uniform
-tension applied while preserving position and tangent plane.

Figure 6: Uniform tension applied to the example in Figure 2,
Magnitudes of the partial derivatives are decreased,

Figure 7: Uniform tension applied to the example in Figure 2.
Magnitudes of the partial derivatives are increased.

We could also scale the partial derivatives individually, but this
restricts us to two directions of effect - directions which are para-
metrically dependent. Instead, we allow application of tension in
a user-specified direction in the tangent plane, hence the term di-
rectional tension. This directional tension is achieved by defining
an axis in the tangent plane (through the origin) and scaling the
perpendicular components of the partial derivatives relative to this
axis. Figures 8 and 9 give two examples of directional tension ap-
plied along varying axes oblique to the partial derivatives.

We apply directional tension by mapping the tangent plancto the
XY-plane and aligning the axis of interest with the X-axis. We then
apply the resulting transformation to the partial derivatives, scale

their resulting Y component, then apply the inverse transformation.
This works well for the vastmajority of cases. When extreme direc-
tional tension is applied in one direction and then a seconddirection
is chosen, the effect of the sccond deformation is sometimes not as
marked as expected. This can often be remedied by undoing the
effects of the previous deformation by rotating the partials so that
they “straddle” the deformation axis prior to performing the scaling
uansiormation,

Figure 8: Directional tension applied to example in Figure 7
along a parametrically independent axis.

Figure 9: Directional tension applied in the direction of one of
the purtial derivatives,

3.4 Other Parametric Constraints

There are other sets of differentiai constraints that may be of in-
terest, but that we choose not to include as geometric constraints, as
their effect on the surface 1n not necessanly geometrically intuitive,
We include them here as they may be useful in certain applications.

105



3.4.1 Direction Vectors

Although useful for cus ves, we have not found manipulation of
a single partial derivative at (%, 9) particularly useful for surfaces.
For cusves the first derivative has % close association to the unit tan-
gent, so the parametric and geometric properties are closely linked.
For surfaces, the directions of parametric derivatives have a lesser
significance when considering the cntire surface about a particular
point,

A partial derivative may be set simply by applying the required
change to the existing derivative, For example, in order to alter the
tangency of the curve through (%, ) traveling in the u or v direction,
systems of the form

[ Bo(ﬁ) ] AV [ BOGJ-) ]T = [AS‘%‘-’-ﬁ) ]

Bu(®%)
T
Bow) |7 _ _
[ Bo@) ] AV [ Bwy | = [0 45, ]
should be solved, If we incorporate the second derivative in the
same parametric direction, we can control curvature in that direc-

tion, as described in [10].
3.4.2 The “Twist” Vector

The mixed partial, Suy(u, v), is often referred to as the “twist”
vectlor and has a long history in the construction of composite sur-
faces [8]. If desired, the twist vector can be manipulated while the
normal to the surface is left free to vary using the following:

Be@,) |y [ O
Bus(3:5) ]A"T - [ ASw (@) ] :

‘The twist vector may also provide an added shaping handle while
the tangent plane is fixed at a point. This is achieved by augmenting
(9) with a differential constraint for the twist vector (which then
permits us to use the more efficient matrix solution) while setting
the change to the other partials to zere:

[m) Bo(a)]’_[o 0
B.@) B@ | “| 0 AS.G9)

Thetwist vector can thenbe arbitrarily rotated or scaledto adjust the
surface. The partials may also be manipulated within the tangent
plane while changing the twist vector. We have not yet found any
geometrically intuitive methods for controlling the twist vector at
this point,

4

AV[

Interactive Issues

Now thal we can express geomelric properties in terms of dif-
ferential constraints, we require visual and interactive mechanisms
to present and manipulate these properties. This section describes
numerous methods that we have tried with varying levels uf suc-
cess. This work is still in progress (particularly three-dimensional
input) and we will no doubt come across more possibilities.

One aspect that needs to be addressedbefore discussinginput de-
vices is the visual representation of the surface. Our favoured dis-
play representation is a shaded tesselated surface. Unfortunately,
few machines are capable of displaying complex shaded surfaces
at interactive rates. For such machines a wireframe rendering is
usually all that can be supported at such a rate. Aside from resolv-
ing the ambiguity present in wireframe models, a shaded represen-
tation gives a visual representation of the surface over the entire
parameltric range. This is in contrast to renderings of isoparametric
curves where the gaps present in the display make selection awk-
ward. The combination of direct mampulation methods with an
interactive shaded display has been extremely effective.
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4.1 Two-dimensional Input

Two-dimensional input devices will gericrally be less expe.isive
to manufacture than their three-dimensional counterparts. As are-
sult, we must consider reasonable methods of controlling surface
geometry with the ever-present mouse if our techniques are to be us-
able on conventional workstations and personal computers, There
are a variety of effective two-dimernsional input methods and in-
teractive techniques that are useful, notably [2] and [4]. Our first
application of geometric constraints was naturally tested and de-
bugged using a simple mouse for input.

Qur first issue to be resolved was that of selecting the point on
the surface. What was originally intended as a “'quick hack™ to get
something working for demonstration purposes has turned out to
be much more useful than expected. This method was to select
the parametric point on the surface by mapping screen space to the
parametric domain of the surface, As the user mioves the mouse
on the screen, while pressing a particular mouse button, a position
marker is moved across the surface. This guarantees that a valid
parametric point is always available, When just the position marker
for the point was displayed, this method was not visually interesting
and the presenceof poor mapping when the orientation of the object
changed was prevalent, However, once we displayed the normal
vector and tangent plane (either a wire-frame mesh or a transpar-
ent polygon), this method turned into a useful evaluation tool, The
undulating tangent plane gave a good feel for the curvature of the
surface, and sometimes barely visible changes were made obvious.
Prior awkwardness felt in the absence of the tangent plane was tol-
erated and virtually ignored as the visual feedback became much
mor2 valuable.

In ordar to experiment with the effects of applying the numer-
ous systems of differential constrair *s described, a series of inter-
action panels were created, each with a variety of buttons, valuators
and positioners, These were created for us to explore the various
constraint systems described, rather than as intuitive tools for a de-
signer. Since our primary intexcst is in three-dimensional input, we
did not go to great effort to pursuing any radical new methods, but
this experimentation did give us the oppo~tunity to compare a few
ideas,

Functionality was grouped into four panels that controlled posi-
tion, normal orientation, partial derivative manipulation in the tan-
gent plane, and the twist vector. Much of the functionality of these
panelsinvolved simple scaling and rotation of vectors, which ceuld
be performed in numerous ways. Separate sliders for rotation about
the three coordinate axes proved awkward (as expected) for arbi-
trary vector orientation. A separate 2D positioner for azimuth and
inclination was more successful when the extremities of the panel
were avoided. Chen et al's “virtual sphere” {4) provided a much
more intuitive feel than both.

The position panel contained several functions. Displacement
could be applied along any of the coordinate axes, along the normal
or partial derivalive vectors, or along a vector whose direction could
be set arbitrarily. The tangent plane could also be either fixed or free
to vary during the displacement. The normal and twist orientation
paneis provided simple orientation of their representative vector.
The panet o most interest to us was that which provided control
of the partial derivatives in the current tangent plane, and hence
controlled uniform and directional tension. This panel is illustrated
in Figure 10.© Again, although it is not suggested as tool for a
designer, it did provided us with flexible control of the parameters
at our disposal.

A more intuitive panel for tension control was designed to
presents a projection of the tangent planc onto a small window,
along with a few additional controls, asillustrated in Figure 11. The
window contains a vector for the application of directional tension
along its orthogonal counterpart. These vectors may be selected
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Figure 10: Nllustration of a panel used to experiment with ma-
nipulation of the partial derivatives in the tangent plane —~ not
suggested as geometrically intuitive,
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and scaled individually, or coupled to apply uniform tension. They
may also be rotated in two modes: one which simply re-orients the
axes for directional tension, another which actually results in tha ro-
tation of the partial derivatives to achieve the twisting effect previ-
ously described. The vectors are simultaneously displayed with the
tangent plane on the three-dimensional view of the surface. When
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Figure 11: A more useful panel to control tension and twist.

selecting a vector with the left mouse button, subsequentmovement
of the mouse was used to apply tension (set to either directional or
uniform). The scale factor was measured proportional to the dis

tance of the mouse to the centre of the window. Simularly, selectivn
and movement with the nght mouse button would applied rotation
(set to either orient the axes or actually twist the surface) to these
axes. We will soon be using this window to actually view the sur-
face beneath the tangent plane as these operations are performed.
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4.2 Spatial Input

Devices offering spatial input have been available for years now,
but have failed to become widely accepted. This may be due to a
combination of both high cost and poor utilization of the technol-
ogy.

One such device, the Polhemus 3Space IsoTrak, is “a full six
deggree-of-freedom” device, providing information on both posi-
tion and orientation. The IsoTrak is a magnetic ficld device consist-
ing of a fixed “source” and a movable “sensor,” The sensor has &
working volume consisting of a 30 inch hemisphere. Accuracy de-
grades significantly outside this range, or in the presence of other
magnetic devices, e.g. workstation monitors.

A three-dimensional locator allows the space in which a surface
is defined to be mapped into the space about the user’s hand. The
IsoTrak can be hand-held, is also available as part of a digitizing
stylus, and also may be mounted on the back of a VPL DataGlove.
This can permit a designer to move a 3D cursor frecly in space and
thus approach the surface from either side. An obvious method for
sclecting a point on the surface is to detect intersection of the cursor
with the surface, We have not yet implemented such selection, and
still rely on selection by the surface scanning method previously
described, Rather than use the mouse, though, we use the IsoTrak
as a 2D device, i.e. atablet, and map the table top of the user’s
work space to the parametric domain of the surface, The height
and orientation data is ignored. Sincethereis no button of any kind
on the IsoTrak, any character on the keyboard is used to indicate
sclection,

Once selected, the position of the surface is naturally displaced
by mapping the coordinatesystemof the IsoTrak to correspond with
the current view (or a selected view, if more than one are present)
of the surface (thus left-to-right movement of the hand corresponds
to left-to-right displacement of the surface). The change to the ori-
entation vector maps naturally to a change in normal vector. Note
that if the user intends to displace the surface downward in the cur-
rent view, selection must be done while the hand is at a sufficient
height above the table top to allow specification of the desired dis-
placement. The user's work space may also be mapped to the local
coordinate system of a desired surface if desired. The advantage
here s that the changes are relative to the surface, The IsoTrak can
thus be laid to rest on a table top, oriented at an angle that allows
most com.fortable application of the desired change.

We control the twisting of the partial d:nivatives about the tan-
gent planc is controlled by simply rotating the IsoTrak while main-
taining its “up-vector.” We do not provide any control of tension in
this “mode" of operation as yet.

This relative method has proven to be much easier than main-
taining absolute position and orientation at the selected point, as
originally attempted. The frecdom 1o rest and rotate the hand com-
fortably is much preferable to reaching out into space with the hand
atawkward angles. Due to the limited accuracy of the IsoTrak, it is
best to map only a local area about the point of deformation into the
sensor’s work space so that noise does not cause large unexpected
perturbances of the surface.

4.3 A “Virtual Hand”

Our primary goal is to develop a direct manipulation sculpting
environment utilizing three dimensional display and a pair of *vir-
tual hands.” We are currently using one of a pair of VPL Data-
Gloves with our direct surface manipulation methods. Each Data
Glove cunsists of a thin glove mounted with a 3Space IsoTrak and
a sct of opucal fibers (referred to as flex sensors) measuring two
Joint angles for each finger and the thumb. The angles of abduc-
uon between the fingers (and the thumb) are not measured by the
DataGlove.




Although the Dataglove.; are still along way from providing the
full flexibility of the human hand, the joint sensors have provided
us with additional shaping methods to those described for the Iso-
Trak, The vast majority of work with these gloves, including [13),
is through the use of gestures. We prefer to usethe right hand purely
as a shaping tool - free of the burden of making gestures - and use
the keyboard (eventually gestures from a glove on the left hand) to
initiate and terminate actions, Voice recognition, as used in [13),
would be even more preferable mechanism, freeing both hands for
shaping.

Since the DataGlovs is mounted with an IsoTrak, we inherit the
functionality described in Section 4.2, What we lacked with the
IsoTrak was a msans of applying uniform and dircctional tension.
We can employ the flex sensors of the DataGlove for this purpose,
We usethe flex sensors of the four fingersto apply tension along one
axis, and the flex sensors of the thumb to apply tension along the
orthogonal axis. A clenching of the fist flexes all joints simultane-
ously and thus results in the application of (approximate) uniform
tension, We climinaie the twisting of the surface about the normal,
and instead use that degree of freedom from the IsoTrak to alter
these axes of directional tension. In practice, the thumb is rarely
used independently of the fingers - it seems more natural to rotate
the hand to re-orient the required axis along the fingers,

Currently the values of the joint angles involved are simply av-
craged to determine the scale factors to be applied. This helps to
smooth out some of noise present in the flex sensors, which at times
canbe extrerie.. Theinner sensorscontrol a greater rate of “squeez-
ing" while we attempt to gain finer control from the flex sensors of
the outer joints, although the noise and non-linearity of these sen-
sors makes this difficult to achieve.

The keyboard must currently be used to control modes of opera-
tion, When the hand is fully clenched and more tension is desired,
a“clutch” must be used to release the hand from the surface so that
it can be reclers ned to apply further tensinn, We suggest that the
hand be loosely clenched when selection takes place so that tension
can be both increased and decreased by moderate amounts,

This technique at times shows great promise, but at other times
poor calibration of the glove and the instability of the flex sensors
make it difficult to gain fine control of the tension, We feel that the
approach is sound and that given a more accurate and stable device
will be very useful. Noise is present in both the IsoTrak and the
flex sensors of the DataGlove. The noise in the flex sensors makes
accurate “moulding” virtually impossible

5 Future Work

The current direct manipulation B-spline modeler runs on an
SGIIRIS 4D340/VGX. We are capable of dircct surface manipula-
tion with shaded display at reasonable interactive rates (i.c. several
frames per second). Surface position and tangency can be manipu-
lated using a mouse, Polhemus3Space IsoTrak, or VPL DataGlove,
as described.

A couple of caveats may become apparent in our description of
the direct manipulations. These manipulations are local in nature,
relying on the support of the basis functions to determine their area
of effect. As a result, one of our geometric manipulations applied
in a highly refined region will have little efiect. They are currently
only of use for local deformations. Since our goal is to rid the de-
signers of dependencies upon the underlying representation, such
direct manipulations must be applicable over a user-defined area.
We are currently implementing a method to provide this regional
conirol.

Another problem is the asymmetry that can result when the knot
spacing is highly non-uniform. Once a mechanism is in place for
applying direct manipulation over arbitrary regions, we can add ad-
ditional knots to balance out the parametric spacing, then deal with

the added knots in a well-behaved manner. As part of our regional
control scheme, we are extending the work of Forsey and Bartels
[9] to avoid insertion of entire knot lines that can lcad to data ex-
plosion,

With direct manipulation and regional control, we will have gone
along way inreducing the basis-dependent attributes in the interac-
tion with tensor product surfaces, We are also looking into extend-
ing our list of geometric constraints to provide intuitive control of
surface curvature, We will continue to pursue interactive schemes
for *‘virtual hands,” particuiarly as devices more sophisticated than
the DataGlove become available,
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COMPUTER INTERACTIVE SCULPTURE
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CENTRAL PURPOSE

As a sculptor I want to experience and avail to others
vital compelling forms. 1 desire access to quantitative
measured forms as well as qualitative expression, Com-
puters offer powerful tool possibilities. Other sculptors
find this so, cf,, [4, 9, 14]. It is not enough for me to
make models of mathematical equations or CAD struc-
tures, although the capability to do that is sometimes
imp.ortant. I invest my sculpture witi, a wide range of
knowledge. My sculpture process ten:ds to involve direct
carving or cutting away of matcrial. It is more fashion-
abie in sculpture today to do constructions or addition.
I prefer the more interesting and difficult subtraction
processes, While I make aesthetic artifacts, many of
our functional artifacts are made by industrial cutting
processes that are relevant to me.

As a research mathematician I have had the good
fortune to discover mathematics as a design language
for sculpture, cf., [3, 15). My use of this design langnage
folds naturally into our current computer technology.
Mathematics is an invisible art form of profound social
and scientific significance. Computer graphics makes
mathematics visible, I take the next step.

In this paper I discuss two of my successfui sculptural
forms, Umbilic Torus NC and Umbilic Torus NIST. }
have done a series of each using two different kinds of
computer interaction. These and my related sculptures
are in permanent collections, e.g., {10, 11, 12, 13] and
have been exhibited widely, e.g., [6, 7, 8).

17100 Science DRriIVE, Bowig, MARYLAND 20715-4300

E-mail: helamanf@super.org

Typeset by ApgS-TEX
Permission to copy without fes all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
© 1992 ACM 0-89791-471-6/92/0003/0109...$1.50

109

MATHEMATICAL DESIGN

I begin by plunging directly into the design consider-
ations for Umbilic Torus NC and Umbilic Torus NIST.
This looks like raw mathematics but it is not in the
usual sense because my motivations in writing it down
are sculptural, cf,, (3, 5). The setting is the stratifica-
tion of the space R* of real coefficients of binary cubic
forms by the action of the general linear group, Strat-
ification means the orbits and the relationship among
them. The correspondence between the points in R?
and the cubic forms is given by

(a,b,c.d) € R & [ = aa® + b2y + cay® + dy®

The general real linear group G = GL(2,R) consists
B

of the real invertible 2 x 2 matrices, : 5 ) where

the condition of invertibility of this matrix is that the
determinant aé — B be non-zero, These matrices will
be regarded as acting on the two variable vector (z,y)
as a column vector by left matrix multiplication The
group action is defined by the mapping

(5 6):C)-G6E)
()~ (i)

This in turn gives an action on cubic forms by substi-
tuting these images in the cubic form and multiplying
out. Thus the form ax® + br?y + cxy® + di® becomes

or

(aa® + %y + acy® + dy¥)ed+
(3aa®B + abo + 2abg; + 2ucby + Bey® + 3dé4* ) y+
(3aa3% + 20636 + act? + b 3% + 28ct + 3d6%1)ay’+

(a3 + 030+ 3c0° + d8%)y®




These four coefficients are linear in the four original
coefficients a, b, ¢, d and define a 4 x 4 matrix

o8 oy ay? )3
30’8 o6 +2afy 2aby+ Py 36v°
3af® 20B6+ 3%y ab® 4208y 36%

ﬁs ﬂz § ﬂ52 8

This matrix has the determinant (af — 87)° which ﬁ
the sixth power of the determinant of the original real
invertible 2 x 2 matrix. This new 4 x 4 matrix is invert-
ible if and only if the original matrix it is representing
is invertible. This 4 x 4 matrix is an important example
of a group representation.

The cubic az? + bz?y + czy? + dy® can be completely
factored over the complex numbers C,

az® 4 bzly + cay® + dy® =

(2 + s1y)(raz + say)(raz + s3y),

T 1y,81,1,82,r3,83 € C. This gives three ratios or
lines given by the pairs rj, 55, j = 1, 2,3, We can think of
them as lines because non-zero scaling of the form corre-
sponds to non-zero scaling of the pairs. The ratios cor-
respond to roots of the cubic and can be classified into
five types: hyperbolic umbilics, two complex, one real
root, e.g., 23 + y°; elliptic umbilics, three real distinct
roots, e.g., % — 3zy%; parabolic umbilics, three real,
two equal roots, e.g., zy; exceptionals, three real equal
roots, e.g., 23, and the origin. These root types corre-
spond to orbits of the group of dimensions 4,4,9,2,0
respectively.

The discriminant of the cubic is an invariant under
the linear changes of variable we have been considering,.
The cubic discriminant is

(= (8%¢?) + dac® + 4b3d — 18abed + 27a°d?) .
The parabolic uinbilics are those (a, b, ¢,d) such that
— (b¢*) + dac® + 4b%d — 18abed + 27a%d® = 0.

The ‘hy perbotic umbilics at infinity” and ‘elliptic umnbii-
ics at infinity’ are those (a, b, ¢, d) such that

- (*¢®) + dac® + 4b°d — 18abed + 27a*d® < 0

- (b*¢?) + dac® + 4b%d — 18abed + 27a%d* > 0

respectively The root types and orbits amount to the
same things. The discriminant is homogeneous in the
four variables so it suffices to look at orbits of forms
represented by points on the 3-sphere,

{la boe.d]la® + 0+ +d* =1}
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This reduces the dimensions above to 3, 3,2, 1, ignoring
the origin. The situation is now in a sculpture appro-
priate space.

In the complex number representation for the real
cubic forms; the four real coefficients can be replaced
by two complex nurabers, Consider the real part of the
complex cubic form

R (uz:3 +v2%z%),

where z = z+yi, the complex conjugate z* = z—yi, and
u = Uy + usl, v = vy + voi. The linear transformation
relating the a,b,¢,d and the u, v coeflicient sets

a 1 0 1 0 Uy
b 0 ~3 0 -1 U
¢c] " {-3 0 1 90 u
d 0 1 0 =1 vy
has determinant 16 and inverse
1 0 -1 0
_1_ {0 -1 0 1
4 {3 0 1 O
0 -1 0 -3

There are two interesting planes of forms here, u = 0
or the v—plane or the R(vz*z*) form and v = 0 or
the u~plane or the R(uz3) form. They are interesting
because the group C* contains the rotations ¢! which
acts on each of these forms and corresponding planes in
a simple way. At least it looks simple when written as
complex multiplication instead of matrix multiplication.
Here is the action of this circle group on the form as it
acts by complex number multiplication

i6 i0

€ 1z e 2

e )

to give
e R (u2® 4 v2¥2")

-
R (we®28 4 vel?2%2%)
Geometrically this means
(u,v) — (ue®, ve'?),
or that u gets rotated thrice whilst ¢ is rotated once.
We will use this observation below twice.

Consider the plane u = 1, the unit translate of the
v—plane, or the real cubic forms (=3 + v2%z*). The
question is how does the discriminant variety inter-
sect this plane or these forms The discriminant va-
riety consists of those forms having double roots at
cast. For which v's will there be double roots? Since
least. For whicl Il there be doubl ts? S

234+ vz°2") 15 homogencous iz and z = 0 is ac-
R (23 + "
counted for, we miay suppose that the roots have abso-
lute value one, |z] = 1. or that z = ¢** In this case

'.’;-)

:+1':
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For what v’s does this form have a double root and

‘hence be on the discriminant variety? This is the same

farm after multiplying by e to get

(e4i9 + e-—2i0 +u (6210 + 1)) .

L2 B

The derivative of this form is supposed to vanish since
we want v's giving a double root, so, after solving for v,
we have

v = =26 4 gm0,

A more recognizable version of this equation is had by
rewriting the variable 6 = 3(¢ — ),

v=2e" e 0 < ¢ <O

‘This is the locus of a point on a circle of radius 1 rolling
inside a circle of radius 3, otherwise known as a hypocy-
cloid of three cusps. This includes the case of ail three
roots of the cubic form being identical. In this case the
second derivativa of the form vanishes,

dv . . -
Iﬁ = 2iel? - 2de '-'lé‘

which when set equal to zero gives

cSitﬁ =1= efﬂ:k

and \
] w
v= 3613“,’: €2,

which iatter is the set of the three cube roots of unity
scaled by three.

These scaled cube roots of vnity are cusps of the
curve because a tangent line is defined there as every-
where else on the curve, but there is 1o tangent circle
defined there but is everywhere else.

Figure 1. Hypoceicloid of Three Cusps
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Cycloids in general are defined in terms of a circle
of radius B rolling without slippage inside or ontside
a circle of radius A. The equation in complex variable

form is
r=(A+ B)e!P¥ — Bel(A+Blp,

where B > 0 gives an epicycloid (the smaller circle
rolling outside the larger circle) and B < 0 gives a
hypocycloid (the smaller circle rolling inside the larger
circle), If B = 0 we just get the point 2 = 0. If
(A, B) = (8,—1) we get the hypocycloid of three cusps
above. If (4, B) = (1,1) we get the cardioid which we
shall see below.

We have chosen to look at those of the form
R (2% + v2%2*). This says that the form (u,v) = (1,0)
or (a,b,¢,d) = (1,0,-3,0) is included which has neg-
ative discriminant —108 and the form has three dis-
tinct real roots and is thereiore 2u elliptic umbilic. The
hypocycloid we have discovered lies in the plane given
by « = 1 or the v—-plane. This plane gets moved by
the unit circle group, Recall the u thrice while v once.
Otherwise said, one third rotation of v while u rotates
once, This means that the hypocycloid rotates one cusp
over while u = 1 moves to u = e?*, The hypocycloid
has three fold symmetry, so the resulting surface closes.
We are looking at this torus with a hypocycloid cross-
section from the point of view of the (e, v) geometry.
This torus does indeed present us with a picture of the
parabolic umbilic surface, but keep in mind that we are
looking at this singular set from a chosen perspective,
one where the elliptic umbilic point (u,v) = (1,0) and
all other elliptic umbilic points are inside the bounded
part of the hypocycloid; the hyperbolic umbilic points
are are all outside the hypocycloid and this is the un-
bounded part of the space.

Could we choose instead of (u,v) = (1,0) the case
of {(1,v) = (0,1)? This gives us the forms in the plane
v = 1, the unit translate of the u—plane, or the real
cubic forms R (uz3 + z%2*). The question is how does
the discriminant variety intersect this plane or these
forms. The discriminant variety consists of those forms
having double roots at least. For which w’s will there be
double roots? Since R (uz® + :¥z°) is homogeneous in
z and z = 0 is accounted for. we may suppose that the
roots have absolute value one, |z| = 1, or that z = €.
In this case

R(u+2%7) =

(lt (eSiG + e——3i8) + eiG +e-i9) )

B -

For what u’s does this form have a double root and
hence be on the discriminant variety? This is the same
form after multiplying by ¢* to get

é(u (5 4 1) 4 3 o i)




The derivative of this form is supposed to vanish since
we want u’s giving a double root, so, after solving for
u, we have

—3u = 2™ 4 o6
To recognize this equation as a cycloid rewrite the vari-
ables f = ¢ and u = ~% to get

w= 2 +e%%,0 < p < 2m,

This is the locus of a point on a circle of radius 1 rolling
outside a circle of radius 1, otherwise known as an epicy-
cloid of one cusp, or a cardioid. This includes the case
of all three roots of the cubic form being identical. In
this case the second derivative of the form vanishes,

dvw = 21" 4 2ie= %0,
dp

which when set equal to zero gives

eW =—]= e(2k+l)h

and 1
V= _58(2k+1)h’
for k in the integers Z and v is the single point %.
This scaled fraction point is a cusp of the curve be-
cause a tangent line is defined everywhere on the curve,
and there is a tangent circle defined everywhere but at
that point.

FIGURE 2. Epicycloid of One Cusp or a Cardioid

This titne we have chosen to luok at those of the forn
R (uz? + 2%2*). Tlus says that the form (u,v) = (0,1)
or {a,b,c,d) = (1,0,1,0) is included which has posi-
tive discriminant | and the form has one real rvot and
twu distinet complex roots aud is therefore a hy per-
Lulic umbilic. The cpicy ddoid we have discovered lies in
the plane given Ly + = 1 « the u-plane. This plane
also gets moved by the unit vudde group. Recall the u
thiice while ¢ vnice  Otherwise said, vne third rotation
of ¢ while u rotates vnee. This mcaus that the epicy-
cluid 1 the u—plan rotates uice while « = 1 moves tu
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v=e¥. The zpicycloid has bilateral symmetry, and
this puts the epicycloid in the same position. Moving
through the next two thirds puts the epicycloid back
twice again to its original position. We are looking
at this torus with a hypocycloid cross-section from the
point of view of the (u, e?%) geometry. This torus does
indeed present us with a picture of the parabolic um-
bilic surface, but keep in mind that we are looking at
this singular set from a chosen perspective, one where
the hyperbolic umbilic point (4, v) = (0,1) and all other
hyperbolic umbilic points are inside the bounded part
of the epicycloid; the elliptic umbilic points are all out-
side the epicycloid and they form the unbounded part
of the space of forms.

I have summarized symbolically a collection of per-
haps 10 years of some of the most important ideas in
mathematics. Indeed, many of these ideas are founda-
tion stones of contemporary computer graphics. I have
reformulated them in a way to express them in three
dimensional or physical materials. These are priceless
ideas which I work into otherwise worthless stone or
bronze.

NC: NuMERIcAL CONTROL

The initials ‘NC’ represent ‘numerically controlled’
a phrase which originated in 1952 at the Servomecha-
nisms Laboratory of MIT which was subcontracted by
Parsons, Inc., who was commissioned by the U.S. Air
Material Command to automate helicopter rotor blade
manufacture. SL-MIT modified a Cincinnati Hydrotel
milling machine to operate from binary punched tape.
Umbtlic Torus NC is more complex than the early rotor
blades, but owes its existence to the continaed develop-
ment of this technology.

By 1988 when 1 was ready to do the Umbilic Torus
NC at the Brigham Young University Robotics Labora-
tory, the largest machine available there was a Cartesian
3-axis Kearney & Trekker, VB-2. This machine could
still read paper tape. Fortunately it was also interfaced
with a PC. As it was we had to install an on board hard
disc to accomodate all of the quill moves for the Um-
bilie Torus NC. The source of the data luad arose from
the fact that while the Umbilic Torus NC has spatial
synunetry that syuunetry is not particularly compati-
ble with the Cartesian structure of the 3 axis machine.

The central problens in any NC application is tool
path The ball end will approaiiates a sphere of pos-
itive radius and too] offsets Liad to be computed in ad-
vatiee wWhatever tool path was sdlected. Siiee the Um-
belic Turus NCis a comiplex surface the normals to this
surface at any poiit wore computed sy bolically and
paranetrically prior to computing the toul offsets

For acstlictiv aud it tutned out practical reasots, £,
03] I selected the tool path for the Cmbedec Torus NCto




be a surface filling curve. The parametric single domain
for the vector valued function defining the Umbilic Tori
is essentially a square. It is not enough to define this
domain square with inequalities. To machine the torus,
points within the square domain have to be accessed in
an ordered path. This ordered path is to be followed
by a cutting tool. The surface filling curves offer effec-
tive ways of covering a single domain square and hence
covering the image object.
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FIGURE 3. Hilbert Surface Filling Curve in
the Domain of the Umbilic Torus NC

The Hilbert curve, which is a 2-adic version of
Peano’s suite of g-adic curves is defined (up to scale)
recursively by the following set of ordered points. Be-
gin with H([0] = (0,0). Then for n > 1, define

01

o)
U

(2"Y,0)+ H[n - 1)
u
@, 2" 4 Hn — 1)
u

("’""“’2"'0-"["—11'((1) 3)

where U is an ordered union of the sets of puints. The
straight line segmients which juin the poiuts in order
become space curves on the Umbidic Torus NC. Further
details can be found in [4, 5).

I encountered two difficulties with this NC tedhnol-
ogy. ngidity and scaling, The computer desven illing
machine is essentially o mindless 1obot, the tool path
and trajectory have tu be spedificd i complete detail
i advance. While 1t can du very well certain kinds
of elegant, accurate, and reptoducible work, it s very
difficult to mterrupt or reposition. After the program-
mung is done you hope you hike what you sec Onee the
general hardness, toughness, etc., of the matciad to be

H[n]:H[n—l]-(
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FIGURE 4. Hilbert Surface Filling Space
Curve in the Image of the Umbilic Torus NC

cut is determined the material is not relevant and not
a part of the process. As for scaling, how big can a
robot be? Milling machines tend to be built around the
space in which they do the cutting, they don’t reach out
anywhere, They are profoundly expensive to build and
maintain. The capital cost of equipment like the VB-2
used for the Umbilic Torus NC was between 3 M$ and
;‘;M $. This gives a active cutting region of four or five
cubic feet maximum at a capital cost of 25 X'§ per cubic
foot.

The interactive aspect of NC milling of a three di-
mensional object is limited to the computer graphics
previewing of the image, the tool path, the trajectory
of the cutting apparatus.

VIP: VirTruaL IMAGE PROJECTION

The concepts involved in the virtual image projection
system were certainly motivated by the difficulties with
rigidity and scaling described above. Addressing scal-
ing, the active cutting region has increased to iwenty
seven cubic feet at a capital cost of 0.37K$ per cu-
bic foot. While there are sacrifices in accuracy in the
present system, they are not there in principle [1).

The virtual image projection system offers the possi-
bility of human interaction in a positive way. Software
for selection of tool trajectories is difficult to develop
and is not available in generality. Yet the relative po-
sitioning involved in global tool trajectory selection is
sumetling humans arc well equipped to do  Humans
arc less well equipped to do absolute quantitative posi
tioning.

A virtual image projection system strengthens the
latter aud allows a wide range of interactive choices of
when aud where to approach the desired image The
suftware makes it very easy tu reposition the virtual
hage after relocating the material. Also, the system
i> wdependent of any particular tool, so that a van
oty of touls can be used to addiess the material This
adlows wosensitivity to the material which is wportam
fur ducct carving i natuial stone The process can be




interrupted, new images superimposed, and ‘quoted’ in
rescaled form,

FIGURE 5. A bronze Umbilic Torus NC sit-
ting on an enlarged Carrara marble quotation
of a fragment of itself, Note the Hilbert curve
articulation in the marble

The idea of the virtual image projector is simple yet
powerful: Invert a 3D digitizer. The computer is used
as a kind of oracle. Inquiries are made about the lo-
cation of the desired image which can be thought of as
present in the material. Specifically, give the computer
the software capability of calculating the nearest dis-
tance from a point on the uncut material to the image.
We will refer to the uncut material as ‘the block’ since
the system has been used primarily for quantitatively
carving stone,

On the ceiling of my studio is a fixed triangle with
a string potentiometer at each vertex. Three steel ca-
bles under tension meet at a ‘point’ plectrum and can
be pulled down to touch the block. The potentiome-
ter outputs are digitized and the information interfaced
with a Mac II. A foot mouse (rat} ie used to click the
points into the Mac 11

Preuie 6
string potentiometers at the end pomts Th
operator's hnger can be seen m the plectrumn
fornnng a vertex of a tetrav-dron under teyn

SP 1, the ceiling triangle with

s10n
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Three general position registration points are se-
lected on the block. These thrce points are labelled
in some specific order. Three distinct labelled points in
general position on a block suffice to determine the po-
sition and location of the block before and after a rigid
motion. If the block is moved then the three points are
touched with the plectrum and clicked into the Mac II.

FIGURE 7. Note the operator’s finger in the
plectrum forming a vertex of a tetrahedron
under tension and touching the registration
point labelled 1

The three general position registration points in or-
der can be thought of as rows of a 3 x 3 invertible matrix.
The position and orientation of the block is implicit in
this matrix. For example, think of the general decom-
position of the n x n invertible matrices

GL(n,R) = A(n) x D(n) x SO(n)

into lower tri.. _ «nipotent, diagenal, and orthogo-
nal matrices, e.g., Gram-Schmidt orthogonalization. In
the case of n = 3, dimA(n) = 3 and dimSO(n) = 3
where the semi-direct product A(n) x SO(n) corre-
sponds 1o the group of rigid motions. There is software
for relocating the three registration points on the block
as well as fur realigning the virtual image with the new
block position.

~

The Bluek face with holes drilled
to the mndlimeter depths indicated

Fraure




The virtual image in this application is resident in
the Mac Il in the form of parametric equations. In indi-
cation of how these parametric equations were designed
is in the mathematical design paragraph above. Find-
ing the right parametric equations to do specific things
is non-trivial. The parametric equation set could be
replaced by a previously digitized data set, systems of
splines, nerbs, etc. The software includes an algorithm
which calculates from any given point in space the near-
est distance from that point to the virtual image.

FiGure 9. One side of the block has been
excavated to the depths of the holes drilled in
the stone to the nearest distance to the vir-
tual image. The virtual image is becoming
less virtual

Given a point on the block and the nearest distance,
one can safely remove and entire sphere of radius that
nearest distance and center that point on the block. The
closer to the virtual image one is, the smaller the sphere.
In principle it does not matter what direction one drills
from the point, in fact one drills short to account for
the diameter of the drill.

The block has now been turned
over. The three labelled 1cgistration points
are clicked off in order so that the virtual -
age 1s abso ‘turned over’

FiGuRre 10.

The other side of the block has been quantitatively
Wl

canved after dolling 1o an acptable accuracy
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this equipment, accuracy can be achieved to a millime-
ter or two. This piece has some undercut features which
were extrapolated. Three small registration holes that
were drilled into the block were left as reminders of the
quantitative origins of the piece.

Frontal view of the Umbilic
Torus NIST. Note that the curve of cusps goes
once the long way and thrice the short way

Ficure 11.

Furure

The next generation of Virtual Image Projector, SP
2, scheduled to be installed in my sculpture studio for
testing and evaluation, has six instead of three digitized
cables. These are arranged in Stewart platform format,
cf., [1]. The six cables terminate in pairs in the vertices
of a ceiling triangle and in the vertices of a neutrally
bouyant triangle with a rigidly affixed tool. The oper-
ator interactively flics the triangle. Tool tip position
(2,y,2) coordinates and tool orientation (pitch, roll,
yaw) are available from the digital readout mounted on
the triangle. Software uptions include spatially parallel
hole drilling to the depth of the virtual image This sys-
tem ullows for an active cutting region (with under uts
possible) of four cubic yards at a capital cost of 0.25K'$
per cubic foot.

A twenty fout version of this Stewart platform with
4 cham saw attachiment has been built at NIST Larger
systems with spans of hundreds of feet are feasible, {1].
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Designing Solid Objects Using
Interactive Sketch Interpretation

David Pugh
School of Computer Science
Carnegie Mellon University

ABSTRACT

Before the introduction of Computer Aided Design and
solid modeling systems, designers had developed a set of
techniques for designing solid objects by sketching theirideas
on pencil and paper and refining them into workable designs.
Unfortunately, these techniques are different from those for
designing objects using a sotid modeler, Not only does this
waste a vast reserve of talentand experience (people typically
start drawing from the moment they can hold a crayon), but
it also has a more fundamental problem: designers can use
their intuition more effectively when sketching than they can
when using a solid modeler,

Viking is a solid modeling system whose user-interface is
based on interactive sketch interpretation, Interactive sketch
interpretation lets the designer create a line-drawing of a de-
sireG object while Viking generates a three-dimensional ob-
ject description, This description is consistent with both the
designer’s line-drawing, and a set of geometric constraints
either derived from the line-drawing or placed by the de-
signer. Viking's object descriptions are fully compatible with
the object descriptions used by traditional solid modelers.
As aresult, interactive sketch interpretation can be used with
traditional solid modeling technigues, combining the advan-
tages of both sketching and solid modeling.
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1 INTRODUCTION

Sketching has long been an important element of the
design process, For hundreds of years, psople have designed
by making quick, abstract drawings or “sketches,” Sketching
was used both to specify embryonic concepts and to refine
these concepts into workable designs, Thirty or so years
ago, the advent of Coraputer Aided Design (CAD) and solid
modeling systems began to revolutionize some aspects of
the design process, These programs let designers create a
mode! of a three-dimensional object on the computer. This
model can then be analyzed in ways that would be difficult
or impossible without the computer. For example, CAD
systems and assoclated programs can display realistic images,
do stress analyses, and generate milling machine programs
from the computer's modet of the object.

Unfortunately, the CAD revolution did not extend to at
least twocritical aspects of the design process: exploringnew
ideas and refining these ideas into workable designs, With
current CAD systems, the model typically changes in large,
discontinuous steps. The designer is often forced to fully
specify a change before he or she has a chance to see how it
interacts with the rest of the model. This makes “feedback
driven” design, in which the designer uses feedback from one
change to guide the next change, difficult on a solid modeler:
the magnitude of each change is too large to let the designer
use his or her intuitioneffectively, As aresult, designers will
often use pencil and paper to “work out” a change before
making the change on the computer.

‘The techniques used to design objects on pencil and paper
are didferent from those used to design objects on a solid
modeler {13]). Sketching, in this context, is a visual and
intuitive process in which a drawing is refined over time
by making small, incremental changes. At each point in
the process, the designer uses feedback from one change -
the appearance of the modified sketch - to guide the next
change. The continual feedback lets the designer use his or
her intuition effectively.

This paper presents a solid modeling system, Viking, that
lets the user design three-dimensional objects using tech-
niques normaily used to create and refine two-dimensional
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Figure 1: Viking's display.

sketches, Viking uses interactive sketch interpretation to cre-
ate a “what you draw is what you get” user-interface, Users
can create a line-drawing of a desired object and use sketch
interpretation to generate a three-dimensional object that is
consistent with the line-drawing, Users can also place geo-
metric constraints on the object. These constraints, together
with a set of constraints derived from the line-drawing, are
used to define a vertex geometry in subsequent interpreta-
tions, Geometric constraints let the user create precisely
dimensioned objects. The resulting user-interface combines
the power of traditional solid modeling systems with the con-
tinuous feedback of sketching.

2 THE VIKING SOLID MODELER

Viking extends the direct manipulation metaphorto three-
dimensional object design by letting the user modify an object
by changing its line-drawing. For most changes, deducing
an appropriate change in the object description is trivial. For
example, if the user erases a line, delete the corresponding
edge. With other changes, such as making a line-scgment
visible, there is no obvious corresponding change in the ob-
ject description. Sketch interpretation is used in these cases
10 generate a new object description that is consistent with
the modified line-drawing.

Sketch interpretation divides the task of interpreting a
line-drawing into two parts: finding a surface-topology and
solving for a vertex geometry. The first part is done by gen-
erating surface-topologies that are consistent with the line-
drawing until one that is acceptable to the user is found. The
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second is done by using a geometric constraint solver to find
a vertex geometry that satisfies a system of constraints ¢i-
ther derived from the line-drawing and the proposed surface-
topology, or placed by the user. The surface-topology and
vertex geometry combine to form a three-dimensional object
description that is consistent with both the line-drawing and
the constraints.

2.1 VIKING'S USER-INTERFACE

Figure 1 shows Viking’s display after crcating an equi-
lateral triangle. The left window shows a line-drawing of
underlying object description and the upper center window
shows the view transform used to generate the line-drawing,
Both windows let the user directly modify their contents,
‘The user can, for example, move a vertex by draggingittoa
new location with the mouse. The user can also dynamically
change the view transform by dragging the mouse across the
orientation triad, rotating the view about an axis perpendicu-
lar to the mouse’s motion {9],

The line-drawing displays more than just an object’s
shape. Thick, thin and double lines respectively correspond
to edges adjacent to zero, one and two faces in the object de-
scription. Circles correspond to vertices that can be moved
by the constraint solver when solving for a vertex geometry.
Triangles correspond to vertices whose positions are consid-
ered fixed constants oy the constraint solver. Constraints are
drawn in a variety of ways. Distance constraints, for ¢x-
ample, arc shown by thin, bent lings. In Figure 1, the “A”
symbol at the bend indicates that all three sides of the triangle




have the same length,
2.1.1 VIKING'S COMMAND MODES

The four items shown in the center window of Figure 1
(Edit, Move, Constraint and Component) correspond to the
four most commonly used modes in Viking., These modes de-
termine how mouse actions in the line-drawing’s window are
interpreted. If the user enters either Constraintor Component
modes, the center window is overwritten with a specialized
menu,

Edit mode is used for changing the appearance of the
line-drawing displayed in the image window. While in it,
the user can draw new cdges, erase old ones and change
the visibility of line-segments, For the first two actions,
both the line-drawing and the underlying object description
change, For the last action, only the line-drawing changes:
the underlying object description is not always modified: the
Autosolve switch, located on in the bottom center window,
determines whether Viking will automatically generate a new
interpretation after the uscr changes the visibility of a line-
segment, or wait until the user explicitly requests a new
interpretation,

Move mode is used for placing tacks, and moving vertices
and edges. Tacks are simple constraints that either lock a
vertex intoa fixed position or force an edge to pass througha
point in space. If the Autosolve switch is on, Viking will use
the constraint solver to maintain the constraints as the user
drags a vertex or edge around with the mouse. Otherwise,
the vertex or edge will follow the mouse without maintaining
the constraints.

Constraint mode is used for placing or editing geometric
constraints on the object. The constraint menu lets the user
select a constraint template and then define constraints by
picking vertices or edges to “fill in” the blanks, The user can
also modify or delete previously defined constraints, When-
ever the user adds a constraint, Viking will attempt to find a
solution to the new system if the Autosolve switch is turned
on,

Component mode is used for manipulating groups of
vertices, edges and faces., Every component has a coordi-
nate transform that defines the effective position of its ver-
tices. The coordinate transform is generated from cleven
variables that control a component’s size (using both an axis-
independent variable and three axis-dependent variables), po-
sition, and orientation (using quatcrnions {12]). The user can
lock or free these variables independently and the constraint
solver can manipulate the free variables when solving for a
veriex geometry.

2.1.2 SKETCHING IN THREE-DIMENSIONS

Sketching is traditionally done in only two dimensions.
With Viking, however, sketches are three dimensional enti-
ties. This both aids and hinders the user. A three-dimensional
“sketch™ can help the user visualiz¢ the object 1 represents.
But 1t also means the user must specify the location of each
vertex in three-dimensions,
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A simple mechanism for specifying a vertices’ approxi-
mate location is needed. If the user can place every vertex
near its correct position, then the user can rotate the object and
the line-drawing will behave intuitively. This lets the user
continue the design process until he or she knows enough to
start using constraints to specify the vertices’® position pre-
cisely, Also, since the vertices start close to a geometry that
satisfies the constraints, the constraint solver wiil need less
time to find a solution,

Geometric constraints are not, by themselves, a good
mechanism for specifying approximate vertex positions, In
part, this is because the constraint solver works best when
all »ertices are ncar a solution. Relying on the constraint
solver to move a vertex a significant distance is, at best, time
consuming and often results in unexpected and unwanted
solutions (assuming any solution is found). A more funda-
mental problem with using constraints for rough positioning,
however, is their precision. Often, users do not know the
precise location of a vertex until late in the design process,
Using constraints to position a vertex before the user knows
its precise location is time consuming since the constraints
will have to be changed later, when the precise dimensions
are known, It can also be intimidating: people do not like
answering questions until after they know the answers,

The user can position a vertex in three-dimensions by
showing where it “should be” in two different views. Un-
fortunately, this technique forces the user to work in two
different views, which is difficult, For example, it is not al-
ways obvious which vertex in one view corresponds to which
vertex in the other,

When no other information is available, Viking uses a
simple rule when drawing cdges: both end-points have the
same z-coordinate in the display’s coordinate space. For
many cases, such as drawing a short edge from an existing
vertex, this is sufficient. In other cases, neither this method
nor the afternatives given above suffice. Because of this,
Viking provides two additional mechanisms to let the user
easily specify the location of a vertex in three-dimensions:
preferred diractions and cutting planes.

Preferred directions are three-dimensional vectors, When
the user draws an edge, Viking draws short lines parallel 1o
cach preferred direction at the new edge's origin. As the user
moves the mouse, the edge's endpoint is projecied onto the
closest preferred direction,

Preferred directions can be defined in two ways. First,
the user can define vectors in object space, such as the x,
y and 2 axes, for preferred dircctions, Any new edge, no
matter where it is drawn, will be able to use these preferred
directions, Second, the user can put preferred directions on
automatic. In this case, Viking automatically defines pre-
ferred directions depending on the context in which the user
started to draw the new edge. If the user is drawing an edge
from an exsting vertex, then the preferred directions are de-
fined to be parallel to each of the edges radiating from the
vertex. If the user is drawing an edge from an existing edge,




then one preferred direction is defined to be parallel to the
edge and, for each adjacent face, a preferred direction is de-
fined to lie in that face's plane and be perpendicular to the
edge, Ifthese rules generate one preferred direction, then two
preferred directions are added that are perpendicular to the
original preferred direction and each other. If two preferred
directions were generated, then a third prexerred direction
perpendicular to the first two is added.

A cutting plane is a plane defined in object space. Cut-
ting planes are a tool for both positioning a vertex in three-
dimensions and helping the user visualize the object’s three-
dimensional structure. The user can position a vertex in
three-dimensions by moving it paralle! to the cutting plane
or parallel to the cutting plane’s normal,

The user can manipulate the cutting plane by moving it
parallel to its normal, changing the orientation of its normal,
and controlling the way in which it is displayed. The user
can, among other things, make the cutting plane opaque or
translucent, highlight the intersection of the cutting plane
with the object, show the orthogonal projection of the object
onto the cutting plane, and draw height peles between each
vertex and the cutting plane.

3 IMPLEMENTATION

Viking's implementation of interactive sketch interpreta.
tion uses two distinct data-structures: one holds the current
object description and the other holds the line-drawing dis-
played to the user. The user can modify the line-drawing
and most changes automatically propagate to the current ob-
ject description, maintaining consistency between the two
data-structures. The user can also change the vicwpoint, in
which case the line-drawing is recreated from the new view
transform and the current object description,

Sketch interpretation generates a new object description
when the user makes a chiange that can not be propagated to
the object description automatically, Viking's sketch inter-
pretation algorithm splits the task of generating a new object
description inic two parts: finding a surface-topology that
is consistent with the line-drawing and solving for a ver-
tex geowmetry that satisfies the object’s implicit and explicit
constraints. Together, the surface-topology and the vertex
geometry completely describe a three-dimensional object.
The new object description is consistent with both the line-
drawing created by the user and any geometric constraints he
or she may have specified.

Viking uses arc-labeling {10}, an extension of Huffman-
Clowes line-labeling [3, 8] to non-trihedral vertices, to gener-
ate a surface-topology from a line-drawing and an old object
description., The surface-topology defines a set of faces that
are consistent with the line-drawing, Since line-drawingscan
have many different interpretations, Viking uses heuristics to
seck out the more desirable interpretations first. Viking gen-
crates surface-topologies in order of increasing cost, where
the cost is based on several heuristics, including:

¢ how similar the surface-topology is to the current ob-

ject’s surface-topology and

o if the user has given a preferred object type, how close
the surface-topology is to the user’s preferred type.

Surface-topologies are generated until the user either accepts
one or aborts the search, In my experience, the desired
surface-topologyis normally the first svrface-topology found,

Once an acceptable surface-topology has been found, a
non-linear constraint solver finds a vertex geometry that sat-
isfies a system of geometric constraints, These constraints
fall into three categories:

+ world: every face is a planar polygon.
o image: visible lines are in front of obscuring faces.

o cxplicit: constraints explicitly defined by the user.

The first two types of constraints are implicit constraints
since they are automatically generated by Viking, World and
explicitconstraints are always part of the system of equations
used by the constraint solves. Image constraints are only
used when finding a vertex gecometry after generating a new
surface-topology for the object,

The constraint solver uses an algorithm developed by
Bullard and Biegler {2]). This algorithm repeatedly solves a
systera of linear equations derived from the non-linear equa-
tlonsand their first derivatives until the global error is reduced
below a threshold. The vertex positions from the current ob-
ject are used as the initial solution for the new system of
constraints. The solver tends to move the vertices only in
small, well controlled steps and, as a result, solutions tend
not to differ unnecessarily from the vertex geometry in the
current object.

Once an acceptable surface-topology and vertex geome-
try have been found, Viking replaces the current object de-
scription with the new interpretation. A new line-drawing is
then generated from the new current object description and
the current view transform, The user can manipulate the new
line-drawing just like the old one, letting the user continue
the cycle of modification and interpretation.

4 EXAMPLES
4.1 CREATING A CHAIR

This section describes a session using Viking to create an
“easy chair,” This cxample is somewhat contrived (for exam-
ple, chairs are not normally made from homogeneous blocks)
but it docs convey the flavor of Viking’s user-interface. Italso
demonstrates how modifying the line-drawing can be used as
a substitute for constructive solid geometry. It took me less
than two minutes to transform the cube in Figure 2a into the
chair in Figure 2i.

Pre rred directions (see Section 2.1.2) were on auto-
matic w.roughout this example. As a result, whenever the
user started to draw an edge, Viking defined a set of context
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- dependent vectors that cculd be used to position the edge’s
endpoint in three-dimensions. For example, preferred direc-
tions made it possible to draw the new edge in Figure 2b so
that it was parallel to the edge between the upper and lower
vertices at the right and back of the cube,

Figure 2a shows the initial object, a cube loaded from
a library of standard objects, The first step in turning this
cube into a chair is to add a raised back, Figure 2b shows
the user drawing a new edge up from the upper-right corer
of the cube. The user has finished drawing the edges for the
chair’s back in Figure 2¢ and is in the process of hiding the
line-segments that would be obscured if the chair’s back was
solid and opaque,

In Figure 2d, the user deleted one unwanted vertex and
is in the process of deleting the other (the user must pick a
vertex twice to delete it: the first pick highlights the selected
vertex, the second deletes is), These vertices are unwanted
because deleting them and redrawing the missing edges cn-
sures that the chair’s back is a single, planar surface. If these
vertices had not been delsted, Viking would have found an
interpretation in which the chair's back and sides were each
formed by two faces.

Deleting a vertex also deletes its adjacent edges and faces,
although Viking preserves the hidden status of line-segments
whose obscuring face is deleted. For example, in Figure 2d,
the line at the bottom-back of the cube is drawn with a single,
thin line (indicating that it is a2jucent to only one face) since
the top, back and right faces of the cube were deleted when
the first vertex was deleted. Also, the entire line remains
hidden, even though the face obscuring its right secgment has
been deleted.

Figure 2e shows the user redrawing some of the edges that
were deleted when the user deleted the unwanted vertices,
in preparation for using sketch interpretation to generate a
new object description. Figure 2f shows, from a different
viewpoint, the user starting to draw a lowered seat on the
first interpretation found for Figure 2¢, Since the user had set
the search bias to prefer solid objects, Viking sought out an
interpretation corresponding toa solid object. Asaresult, the
interpretation contains faces wat were not needed to generate
an object description consistent with Figure 2e since they
would have been hidden by the rest of the chair.

‘The user has finished drawing a lowered seat for the chair
inFigure 2g and is in the process of removing some unwanted
and unnccessary edges. In Figure 2h, the user is exposing
the line-segments that would be visible if the chair’s seat was
lower than its arm rests. Figure 2i shows, from a different
viewpaint, the first interpretation found for Figure 2h,

Even though the chair looks correct in Figure 2i, the ge-
ometry is not correct. For example, some edges that should
be parallel to each other are skewed about 10°, These prob-
lems can be fixed in a minute or two by using gcometric
constraints. But, since the next example demonstrates the
constraint solver, that part of the design process is skipped.
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Figure 2a: Initial object: a unit cube,
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Figure 2b: Drawing the chair's back.
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Figure 2¢: Hiding obscured line-segments.
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Figure 2d: Remove unwanted vertices and edges,

Figure 2¢: Redraw the missing edges.

Figure 2f: Drawing the chair’s seat.
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Figure 2i: The “completed” chair.



: 4.2 AN EXERCISE IN GEOMETRY

; Suppose you have the following problem: if you place
. a solid equilateral tetrahedron face to face with a solid equi-
lateral octahedron, how many faces does the resulting poly-
: hedron have? The polyhedra are positioned and sized so
: that thrée of the te.rahedron’s vertices coincide with three of \

the octahedron’s vertices, Answering this question, by using
Viking to create the object shown in Figure 31, takes me less
than three minutes,

Figure 3a shows the user starting to draw the two poly-
: hedra, In Figure 3b, the user has changed the view transform

by rotating it about the horizontal axis and is in the process
of completing the octahedron’s wire-frame. Figure 3¢ shows
the user hiding the line-segments at the “back” of the poly-
hedra, Figure 3d shows the first interpretation found after
hiding the rest of the line-segments that should be obscured.

The edges in Figure 3d were drawn without using either
preferred directions or a cutting plane to position the ver-

tices in thres-dimensions. The user made no attempt to draw
the edges so that they all had exactly the same length, In-
stead, geometric constraints will be used to tum these “rough
sketches” into equilateral polyhedra.

Figure 3¢ shows the effect of adding and solving for
cqual length constraints on the tetrahedron’s edges. Figure 3f
shows the effect of placing a similar set of constraints on the
octahedron, The bent lines and “A” symbols indicate tha
all of the tetrahedron's edges have the same length, The
bent lines and “B" symbols do the same for the octahedron’s
edges. In both Figures 3¢ and 3f, the vertices have moved to

accommodate the constraints. Figure 3g, in which display of
the constraints has been turned off, shows the two polyhedra Figure 3c: Hiding obscured line-segments.
from a different direction.

In Figure 3h, the user has added, but not yet solved
for, constraints forcing three of the tetrahedron’s vertices
to be coincident with three of the octahedron's vertices. The
bent line and 0" symbol indicates that the distance between
the vertices should be zero. Figure 3i shows the solution
found by the constraint solver to the system described in Fig-
ure 3h, Figures 3hand 3ihave, despite appearances, identical
surface-topologies: the constraint solver moved the vertices
without changing the underlying structure,

InFigure 3, the view transform has been changed to give
a view “straight-down" one of the edges where the tetrahe-
dron and octahedron are in contact. This view suggests that
the vertices to either side of this edge are co-planar, forming
a single four-sided face. In Figure 3k, the user has merged
the six coincident vertices into three vertices, deleted the
nnwanted edges, and generated a new, seven-sided, interpre-
tation. Figure 31 shows Figure 3k with all constraints hidden.
Since all faces must be planar, Viking would not be able to
find a vertex geometry for Figure 3k unless the quadrilat-
cral faces were planar polygons. The answer, therefore, to

the question posed at the beginning of this section is that a Figure 3¢: Making an equilateral tetrahedron,
tetrahedron and octahedron form a seven-sided polyhedra.

Figure 3a: Drawing the polyhedra,

Figure 3b: Completing the wuc-framcs.
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Figure 3f: Making an equilateral octahedron.

Figure 3j: An “edge-on” view.

Figure 3k: The resulting seven-sided polyhedra.
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Figure 31: Figure 3k with the constraints hidden.




5 FUTURE WORK

Viking's user-interface has some significant weaknesses.
Some of these are problems should not be difficult to solve,
Others do not seem to have easy solutions, These problems
are presented in the order that they will be addressed in future
research,

CAD modeling interface

Currently, Viking provides few of the capabilities
found in conventional solid modeling systems, For
example, Viking can neither calculate the mass of an
object nor find the intersection of two objects. Com-
biningconventional solid modeling capabilities and in-
teractive sketch interpretation should not be difficult:
Viking's underlying object description is equivalent to
the boundary representation description used by some
solid modelers.

Explicit constraints specification
Viking's users must explicitly specify cvery geo-
metric constraint, Other constraint based design sys-
tems, such as Snap-Dragging [1] (5], provide mecha-
nisms for defining constraints implicitly. Incorporating
similar mechanisms into Viking could alleviate one of
the more tedious aspects of Viking's uscr-interface.

Planar faces and straight edges

Viking can, currently, only interpret line-drawings
of objects with planar faces. The sketch interpretation
algorithm can be easily extended to objects with non-
planar faces, Modifying the rest of Viking however, is
more difficult: planar faces provides one of the better
implicitconstraintsand designinga good user-interface
for letting the user specify which faces are noa-planar
and controlling the shape of a non-planar face is not
casy,

Quadhedral vertices

Viking can only analyze line-drawings in which
every vertex is adjacent to four or fewer edges. This is
because Viking's sketch interpretation algorithm must
match every intersection in the line-drawing to anentry
in a fixed intersection library, This library contains atl
possible intersections of two, three and four lines. The
program used to generate Viking's intersection library,
however, is already capable of generating entries for
intersections of five or more lines. Adding this capa-
bility to Viking should not be difficult.

Simple polygonal faces

Faces in Viking must be simple, planar polygons:
no internal holes or repeated edges or vertices. It
should be possible to extend the algorithm to allow
more complicated faces, although it may not be worth
the extra processing time required. The current version
of Viking lets the user simulate holes and the like by
using artifact edges.

125

Explicit topology specification

Viking's sketch interpretation algorithm uses the
presence of hidden lines-segments to automatically
reject inconsistent interpretations, The downside of
this is that the user must correctly indicate which line-
segments are hidden, This can be a tedious and time-
consuming process.

Viking lets the user generate a blind interpretation,
in which the visibility cues are ignored and, ihere-
fore, the user does not have to indicate which line-
segments are hidden, Blind interpretations are slower
and less discriminating than conventional interpreta-
tion, since visibility cues can not be used to reject
unwanted topologies. Despite this, it is often easier
to generate a blind interpretation and manually reject
unwanted topologies than it is to indicate which line-
segments are hidden and generate a standard interpre-
tation,

5.1 OPEN PROBLEMS

The following section describes problems that do not

seem to have easy solutions,

General view

Viking's sketch interpretation algorithm can only
interpret line-drawings that correspond to a general
view of an object. A general view is one in which a
small change in the view direction makes correspond-
ingly small change in the line-drawing [11]. So, for
example, a general view could not contain any faces
that are “edge-on” to the viewer (such as Figure 3j).

Thisisaproblem, since engineering drawings often
do not correspond to general views, However, it is not
clear how significant this problem is. Enginecring
drawings often used specialized viewpoints because,
historically, specialized views were easier to draw or
because they illustrated a particular point, Specialized
views are not, for the most part, easier to interpret
than general views and both types of views are easy to
generate using the computer.

One possibility for gencrating interpretations of
specialized views is to use graph based algorithms [4)
[7). These algorithms do not depend on the viewpoint,
generating a surface-topology by finding a planar em-
bedding of an object’s vertex-edge graph. Unfortu-
nately, these algorithms probably could not be modi-
fied to use Viking’s search heuristics.

Sketch interpretation performance

Viking's sketch interpretation algorithm is not as
fast as one might wish, taking almost three minutes to
generate an interpretation of a line-drawing containing
100 points. The time required to generate an interpre-
tation seems to be roughly proportional to the square
of the number of points in the line-drawing. Although



faster workstations and more efficient algorithms may
alleviate this problem, it is not realistic to expect that
Viking's sketch interpretation algorithm could be used
on large objects (which might three or four orders of
magnitude more complex than the objects created in
Sections 4.1 or 4,2). It should, however, be possible
to automatically partition a large object and use sketch
interpretation on only the relevant parts,

Constraint satisfaction performance

Viking's constraint solver is used in two basic
modes: when one or more constraints have been added
and Viking must solve for a solution and when the user
is moving a vertex by dragging it with the mouse and
wishes to maintain the pre-existing constraints, The
response time when dragging is far slower than de-
sired, often taking several seconds to find a solution
that satisfies all the constraints. It might be possible
to use differcntial constraints [6] to improve response
times when dragging,

6 CONCLUSIONS

Viking is a solid modeling system that uses intcractive
sketch interpretation to combine the simplicity of pencil and
paper sketches with the power of a solid modeling system,
Viking lets designers draw the object they wish to create and
then modify it by changing the line-drawing to make it “look
right.” Each action is obvious from context, leaving the
designer free to concentrate on the design itself and not how
to convey it to the solid modeler.

This case of use comes without sacrificing any of the ca-
pabilities inwrinsic to solid modeling systems, As with other
solid modeling systems, Viking lets the designer manipulate
the underlying object description as if it were a solid ob-
ject. This provides the designer with a powerful tool for
visualizing an object’s structure, For example, the designer
can wiggle the object by dynamically changing the view
transform or drag a translucent cutting planc through the ob-
ject to see where vertices lie with respect to one another in
three-dimensions. And, although Viking’s user-interface is
based primarily on sketching, the designer can create pre-
cisely dimensioned models by using geometric constraints,
This combination of sketching and solid modeling techniques
creates an effective user-interface for developing ideas into
practical designs.
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ABSTRACT

We have implemented a system for Computer-Aided Plastic Sur-
gery, Planning plastic surgery procew.res is complex because the
surgeon needs to stretch and reshape the patient’s skin to replace
missing tissue while minimizing distortion of the surrounding tis-
sue. Traditional planning techniques rely on the surgeon's experi-
ence to select among a myriad of possible procedure designs,
While mathematical techniques for predicting the outcome of sur-
gery have been proposed in the past, these are not in widespread
use by surgeons because they require the surgeon to perform man.

-ual constructions and geometric calculations. Qur system makes

the analysis process easier by allowing the surgeon to draw the
surgical plan directly on a 3D model of the patient. An automatic
mesh generator is used to convert that drawing into a well-formu-
lated problem for finite element analysis,

Key Words
Interactivity, 3D Graphics, Computer-Aided Surgery, Plastic Sur-
gery, Surgical Simulation.

1. INTRODUCTION

This paper describes our experience designing a Computer-Aided
Plastic Surgery (CAPS) system. The system provides surgeons
with a computer graphics environment in which they can explore
the biomechanical implications of surgical alternatives, The CAPS
system uses a combination of interactive 3D computer graphics,
automatic mesh generation algorithms, physically-based modeling
using the Finite Element Method, and animated visualization of
the surgical result. We have implemented the system and have had
it evaluated by a number of practicing plastic surgeons with very
positive results.

Computerized planning represents an important development
for plastic surgeons because their current techniques do not allow
iterative problem solving. Today, a surgeon must observe and per-
form many operations to build up the experience about the effect
of changes in the surgical plan. Each of these operations is unique,
and it is difficult to isolate the effects of different surgical options
since the result is also influenced by many patient specific vari-
ables. The CAPS system allows exploration of the various surgical
alternatives with the ability to modify the existing plan, or to create
a new plan from scratch. This procoss may be repeated as many
times as needed until the surgeon is satisfied with the plan.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery, To copy otherwise, or to republish, requires a fee
and/or specific permission.

¢ 1992 ACM 0-89791-471-6/92/0003/0127...$1.50
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In our view, it is crucial that the user interface to the system not
burden the physician with the implementation details of the com-
putational model Specifically, the physician should not be required
to manipulate points and polygons, or nodal points and elements of
the finite element model, Our work follows a task-level analy-
sis[33) of the goals of plastic surgery: in this system the surgeon
only deals directly with the problems associated with the task ---
identifying the clinical problem, selecting the surgical procedure to
apply, and specifying the execution of the procedure. All other
aspects of the analysis are carried out automatically. The interface
to the CAPS system is designed to simulate the process of drawing
on the patient’s skin with a marker, as is done when the surgery is
transferred to the patient in the operating room.

The remainder of this paper describes the techniques used in the
implementation of the CAPS system., This is motivated by a
review of related work an a brief discussion of the goals of plastic
surgery and the problems faced by the clinician. The following
sections describe the simulation model, and the clinician’s inter-
face to the system. We then look in detail at the mesh generation
algorithms that convert the surgical plan into a well-formed prob-
lem for finite element analysis.

2. BACKGROUND

Previous work has conceatrated on either building mathematical
models of the soft tissue mechanics in order to analyze specific test
cases, or on imaging systems that present renderings of volumetric
scans of the patient. Qur work is an attempt to bring these two
components together with a powerful user interface. This results in
a system where the simulation procedures are attached to the
graphical model --- a combination which allows the surgeon to
operate on the graphical model in a manner directly analogous to
operating on the real patient, This approach is crucial for the suc-
cessful clinical application of mechanical analysis of soft tissue
because without the assistance of a computer graphics tool the sur-
geon has nejther the time nor the training to formulate a specific
surgical case at the level of detail required for analysis,

Mechanical Analysis of Plastic Surgery

Previous research in biomechanical analysis of plastic surgery has
not included methods for automatically converting a surgical plan
into a forin appropriate for the analysis programs. For example, in
her work on analysis of plastic surgeries, Deng describes a system
in which the user is required to type an input file which describes
the incision geometries, regions of tissue to simulate, and con-
straint conditions on the tissue 1n terms of their world space coor-
dinates{ 11]. Kawabata and huis coworkers describe their techniques
for analysis of surgical procedures but report no method for auto-
matically generating a mesh for a particular plan[16]. Larrabee dis-
cusses the problem of modeling arbitrary incision geometries
using graphical input devices, but the solution he proposes requires




the user to define each of the dozens of analysis nodes and ele-
ments[18]. While Larrabee’s approach is useful for small two-
dimensional analyses (which is the way Jarrabee used it), the
approach becomes unmanageable for three-dimensional structures
with a greater number of nodes. The user interface and mesh gen-
eration techniques described in this paper begin to address these
three-dimensional problems.

Computer Graphics Models of Skin

Waters describes a system based on the for simulating the expres-
sive action of facial muscles through a combination of pre-defined
action units{30]. Waters and Terzopoulos subsequently extended
this technique to include physically-based dynamics of the skin in
response to the muscle action[31]. However, their system could
not be used directly for plastic surgery simulation because it does
not support cutting and suturing. In addition, their physical model
is based on the mass-and-spring lattice approach, which we feel is
more difficult to control and less accurate than the finite clement
method.

Volumetric Approaches

Previous computer graphics work has emphasized special purpose
rendering algorithms for visualization of data obtained from volu-
metric scans of the patient{22;19:9]). or geometric methods for
extracting and repositioning pieces of the volume data[7:28), Our
approach differs since the CAPS system integrates a biomechani-
cal simulation with a graphic presentation.

Interactive Computer Graphics for Surgical Simulation

The terms surgical simulation{24) and Computer-Aided Sur-
gery[21;5] have both been used to refer to the combination of
physically based modeling of the human body and interactive
computer graphics applied to planning and analysis of surgical
procedures. In an example of this approach, Delp et al. have cre-
ated a system for simulating tendon transfer operations on the
lower extremity{10). This system includes a geometric model of
the major bones of the hip and leg, a kinematic model of six joints,
and a mechanical model of 43 muscle-tendon actuator units. A 3D
graphics interface can be used to select and move tendon attach-
ment points. Thompson ef al. have developed a similar system for
hand surgery[27]. Our work on the CAPS system is most similar in
spirit to, and was inspired by the work of these groups.

3. GOALS OF PLASTIC SURGERY

The goal of plastic surgery is to create a proper contour by
making the best distribution of available materials. Opera-
tions take place on relatively limited surface arcas and, in
local procedures, skin cover is not brougnt from distant
areas.® Rather, skin should be borrowed and redistributed
in the area where the operation is being carried out. In this
way, surgeons should be able 1o perform typical plastic
operations that will restore proper form to distorted sur-
Jaces. Different maneuvers are used in various combina-
tions as either simple or complex figures. The location,
form, and dimensions of the incisions necessary for plastic
redistribution of tissues determine the plan of the opera-
tion.

A. A, Limberg, M.D.[20]

Apphcations of plastic surgery include repawring lesions caused
by Jisease, replacing sk lost to burns or amputations, rebullding
features misshapen by wyury or burth defects, and removing excess
tissue to teduce the visual effects of agng[13). This s accom-
plished through the precise apphcation of surgical techmiques
including excision {removal) of ussue, direct closure of a wound
site, and a vanety of flap U msposition and rearrangement surger-

* In contrast to skin grafting operations
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ies, Each of these results in a redistribution of the available tissue
and requires the application of plastic surgery principles to pro-
duce the optimum contour.

An example plastic surgery (simulated on the CAPS system) is
shown in figures 6 and 7. This procedure combines excision of a
tumor with two flap transpositions. The flap transpositions have
the effect of using tissue from the area surrounding the excision to
relieve the stress caused by covering the wound, The resultant
effects on the surrounding tissue contour can be seen. This
includes distortions, redistribution, and standing cones (dog ears)
at the point of rotation of the flaps, The CAPS system can be used
to compare various flap transposition and excision options, and
provides an environment that allows the surgeon to iteratively
approach the planning problem.

4. THE PATIENT MODEL

The model of the patient used in the CAPS system is a combina-
tion of patient specific geometric data and a generic mechanical
model of the soft tissue,

Sources of Patient Geometric Data

The patient specific geometry we have used to date is derived from
cither a Cyberware surface scan of the patient(8] or from a CT
scan. The Cencit scanner system is also a promising technology for
use in this application{29]. The mesh generation algorithms make
use of a cylindrically-mapped range image of the type produced by
the Cyberware and Cencit scanners. In order to create a solid
model of the skin, our current system assumes a constant soft tis-
sue thickness when working with this type of data. Full volumetric
scans (CT or MR scans) of the patient provide enough information
1o create a solid mode] with the appropriate variation in soft tissue
thickness. We have experimented with some techniques for build-
ing models directly from volumetric scans{25], however, we feel
that the surface scanners will be more appropriate for use in plastic
surgery because of the time, expense, and radiation hazards associ-
ated with volumetric scanners. In the future we will be working on
techniques for creating a generic map of facial soft tissue thickness
in order to generate more accurate solid models from surface scan
data,

Model of Soft Tissue Biomechanics

The finite element method is a well established technique for bio-
mechanical analyses[12] and provides a basis for detailed model-
ing of skin nonlinearities[11), Finite element methods can also be
used to mode! the shape changes and force generaling properties of
other parts of the body, such as the muscles[6]. Although we use a
relatively simple linear solution technique in the CAPS system, the
user interface and mesh generation techniques described below
can be used directly with a nonlinear finite element back end. The
finute element module of the CAPS system uses the displacement-
based formulation to solve the elasticity equilibrium equations.
The implementation closely follows the procedure described in
Bathe([1]. Readers are referred to Bathe's excellent text for further
details on the implementation of finite element codes.

Visualization of the Finite Element Model

The two components of the patient model, the scan of the patient
and the finite element mesh, exist different resolutions. A typical
Cyberware patient scan contains 512x256 range and color sam-
ples, while the finite element meshes we can easily simulate con-
tamn only 50 elements, with each element covermg approximately a
square inch of skin. In order to display the full resolution of the
original scan data both before and after the finite element solution
(corresponding to pre- and post-operative conditions), we use the
following texture and displacement mapping techmque. First, we
subdivide the outer face of each element nto micropolygons (the
outer face being the one which lies on the skin surface). The posi-
tion of each micropolygon vertex is transformed back into cylin-




drical coordinate space, and the 0 and z coordinates are used to
sample the Cyberware range and color data (a bilinear interpola-
tion is used to sample between pixels). The color value is stored as
the vertex color of the micropolygon vertex. The sampled range
point is transformed back into cartesian space and used as the posi-
tion of the micropolygon vertex. The user can select the number of
micropolygons created for each element and thus can visualize the
full resolution of the Cyberware data. We maintain a data structure
for each micropolygon vertex in which we store the vector from
the point on the surface of the element to the corresponding posi-
tion on the range data.

This vector is then used to display the full resolution post-oper-
ative model. The output of the finite element solution is a set of
displacements for each nodal point in the finite element mesh.
These nodal displacements are interpolated through the element to
define a displacement vector at each point in the element. Thus, for
each micropolygon vertex, there is a displacement vector. By add-
ing the finite element displacement vector to the range data dis-
placement vector, we can generate post-operative images using the
full resolution of the original scan, Images generated using this
method are shown in figure 7,

5. SPECIFYING THE PLAN

The heart of the interactive system is the user interface which
allows the surgeon to input the parameters of the surgical proce-
dure. For this task, we selected an interface based on a combina-
tion of 2D and 3D computer graphics techniques using the X
Window System with the Motif toolkit, and on a set of 3D interac-
tion tools built on top of the Starbase graphics library from
Hewlett Packard. The CAPS system is built on top of the bolio
simulation system{32]. The clinician is presented with an X Win-
dow System screen containing a menu bar and buttons, and a 3D
graphics window showing a rendered image of the geometric
model of the patient. The user conlrols the 3D view of the patient
model and modifies other rendering parameters using the mouse,
The user interface also allows the surgeon to switch between the
pre- and post-operative patient geometry, or to animate the transi-
tion between them,

Mouse actions are used to select points on the rendered image
of the patient, These points are used to define the incision lines on
the skin surface and the tissue to be excised. The system converts
this into a data structure for subsequent use by the mesh generator.

Cperating on the Surface

Planning the operation on the skin surface requires a technique for
mapping selections on the screen window back onto the surface of
the object, i.e., a mouse click on the window should pick a point on
the patient model which appears directly beneath the mouse loca-
tion. For use in their 3D object painting system, Hanrahan and
Haeberli describe a technique for hardware-assisted calculation of
this location that makes use of an object ID buffer[15].

Since our graphics hardware did not support this feature, we
implemented this operation with ray tracing as follows. A ray is
cast from the view pomt to the selected point on the view plane
and 1s intersected with a polyhedral reconstruction of the scan data,

Figure 1. This figure shows the node
numbering and pattem for an ¢llipti-
cal excision, both before and after
wound closure. The surgeon origi-
nally enters the points 0,1, 2, and 3.
The system then adds points 4 and 5,
initially coincident with2 and 3 The
surgeon then moves points 4 and 5
to enclose the excision region

0
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The polyhedron is created by making vertices at the scan data sam-
ple points (transformed from source data space to world coordi-
nates) and connecting each set of four adjacent vertices with a
polygon, This operation requires checking the ray against each of
the polygons in the polyhedral reconstruction. To reduce the num-
ber of polygons, a filtered version of the source data is used. The
operation could be made more efficient with octree sorting of the
polygons or other ray tracing optimizations. It turned out that we
did not need to explore this since the point is picked on a 2D
image, and feedback can be given instantly when the button is
pressed; the system can then be calculating the 3D intersection in
the background while the user is selecting the next point.

After a set of points on the surface is created, it is useful to be
able to pick a point by clicking the mouse on that point. Again, we
chose a ray tracing approach to select the nearest point to the ray
from the view point through the picked point on the view plane,

Defining a Hole: Incision

An incision through the skin is topologically a hole, but geometri-
cally it is infinitesimally thin until it is deformed by the mechanical
simulation. Rather than requiring the user to draw a hole by enter-
ing the points on both sides of the incision, the incision is entered
by picking a sequence of points corresponding to the cutling path
of the scalpel, This list of points is then converted into a loop of
points describing the hole. Figure 2 illustrates this mapping. The
points are entered by selecting locations on the skin surface using
the screen space to skin surface transformation described in the
previous section. The incision line can be modified by picking one
of the points and moving it.

cutpath:0123

hole boundary: 012348

2 3

Figure 2. This figure shows the reiationship between the cutting
path entered by the surgeon and the boundary of the incision
hole. The surgeon selects the points 0, 1, 2, and 3 to define a
simple Z-plasty incision. The system adds points 4 and $ coinci-
dent with points 2 and 1. The boundary of the hole is then stored
as the ondered list 0, 1, 2, 3, 4, 5. Note that no tissue was
removed in the incision shown. Tissue could be removed by
interactively picking and moving the points 1, 2,4, or $ in onder
10 enclose the tissue to remove within the hole boundary,

Modifying the Hole: Excision

An excision of tissue is defined by picking one of the points in the
hole border and offsetting it from its corresponding point on the
other side of the hole, with the result that the hole 1s no longer
infinitesimally thin. Moving one border point creates a quadrilal-
eral, while moving more than one creates an arbitrary polygonal
shape. A simple point picking algorithm cannot be used for this
picking operation because the two points on either side of the hole
are coincident. A modified algorithm could be devised to distin-
guish between coincident points by determining on which side of
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,the mcxsxon line the user picks. In our current prototype a menu
:Selection is used to indicate the point to be moved.

nCIoslng the Hole: Suturing

Sutunng fefets to the sewing together of edges of the incision. In
the ‘finité elemient simulation, this is accomplished by suture con-
siraint equations for the individual nodes in the continuum mesh.
‘Even fora sxmple wound closure, dozens of pmrs of nodes must
constramed together in order to suture the entire wound, Selecting
each:pair of nodes by hand would be unnecessarily tedious.
Ifistéad, the continuum mesh generator automatically creates a list
of nodes.to be sutured from a description of which edges of the
hole border are to be brought together, Figure 1 shows the pre- and
post-operative topology desired for a simple excision. For this con-
figuration, the edge sutures are specified as (O.1), (O, 5N, ((1.2),
(5,4)), and ((2,3), (4,3)). When the same point is included in both
of the edges to be sutured, the mesh generator recognizes this as a
comer being closed and does not define any sutures for the nodes
corresponding to that point. The suture edges for the Z-plasty
shown in figure 2 are ((5, 0), (5, 4)), ((2, 1), (2, 3)), and ((0, 1), (3.
4)). In the CAPS system, the suture edges are specified by select-
ing a menu item corresponding to the type of surgical procedure
being performed (e.g. elliptical excision or Z-plasty). This tech-
nique works because the suture relationships depend only on the
pe-defined topology of the procedure and not the interactively
specified geometry. The menu item approach has the advantage
that the suture conditions do not need to be re-entered for each
simulation of the same surgical procedure,

The drawback of this menu-based approach is that in order to
simulate a new procedure, the suture relationships described above
must be worked out by hand and added to the user interface config-
uration file, While this is not a very difficult task, a more flexible
solution would be to allow the user to define the suture relation-
ships by selecting pairs of wound edges. The system could differ-
entiate between coincident edges by determining which side of the
incision line the user picked. Picking edges in the proper sequence
would then define the suture relationships for the surgical proce-
dure, These suture relationships could then be added to the menu
for use in future analyses.

6. MESH GENERATION

The surgical plan is entered in the CAPS system using a graphical
interface which corresponds to the way the surgeon draws on the
patient’s skin in the operating room. An important part of this
interface is the mesh generator, which creates a well-formed finite
element mesh directly from the surgical plan and the onginal scan
of the patient geometry.

The mezh generation algorithm consists of two major steps: sur-
face meshing and continuum meshing. The surface meshing por-
tion of the algorithm grows a mesh out from the incision hole
border along the skin surface, Surface meshing 1s performed 1 a
normalized cylindrical space 1gnonng the r (radial) coordinate.
After the surface mesh is generated, the mesh is snapped back to
the skin surface by looking up the r coordinate in the Cyberware
range data.

The continuum meshing portion of the algorithm refers 1o the
process of creating a continuum finite element mesh representng
the skin thickness, This is accomplished by growing the surface
mesh radially in from the skin surface to the bone surface along the
r axis. Triangles are extruded into wedge elements and quadnlater-
als are extruded into cuboid elements. Edges shared by polygons in
the surface mesh are extruded mnto shared faces 1n the continuum
mesh, Each vertex in the surface mesh defines a set of nodes i the
continuum mesh which lie along the hne from that vertex to the
central axis of the cylindncal space of the patient scan data. Note
that this extrusion process assumes that the mcision cuts miv the
skin along the r axis.
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Figure 3. A surface mesh gencrated from a Z-plasty incision. The original inci-
sion lines are indicated in bold. The first stage of the surface meshing algorithm
traverses the border of the incision hole and identifies the two concave regions
which became surface mesh polygons 1 and 2, The second stage of the algorithm
addr polygons 3,4, 5, 6,7, and 8. Polygons S and 8 result from vertices that were
“ezpanded"” becauso they meet at too sharp an angle.

Figure 4 shows a cross section of the nodes and elements cre-
ated by the continuum mesh algorithm, Heavy lines are edges from
the surface mesh, and filled circles are nodes from the surface
mesh,

A suture condition specified between two edges on the incision
boundary is converted into suture constraints between each pair of
nodes generated from those sdges. Nodes on the bottom layer of
the continuum mesh which do not have suture constraints are
marked as fixed in all three degrees of freedom. All other nodes in
the continuum mesh are unconstrained.

Surface Meshing Algorithm
The surface meshing approach used in the CAPS system is based
on the automatic mesh generation work of Chae and Bathe[3:4).
Their algorithm, which addresses the problem of automatic mesh-
ing of CAD parts such as a plate with holes drilled in it, works by
creating layers of elements along the borders of the object and
working inward until the rows meet. We have modified this
approach to work outward from the incision boundary hole and
have made the algorithm create quadrilateral elements wherever
possible.

Our algorithm consists of two stages: 1) Traverse the border of
incision looking for angles larger than a set threshold ¢}, convert
them to triangles in the surface mesh and update the border. This
process continues until no more angles need to be filled. 2) Go
around the border adding a layer of quadrilaterals of thickness /;: a
quadrilateral is added for each edge in the border, and an extra
quadrilateral is added at edges which join at an angle less than a
specified threshold 1.

Stage 1 is implemented as follows. For each vertex v, in the bor-
der list, examine the angle between the edges (v, v,, ) and (v,
v,,2).* If this angle is greater than ¢, add triangle (v,,2, v,,7. ¥) to
the surface mesh (30° is the default ¢, threshold angle in the proto-
type) and delete vertex 1, ; from the border list. Continue this pro-
cess until no more triangles are added in a complete traversal of
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; . the border list. After stage 1, the region defined by the border list

will be nedrly convex (no concavities will be greater than t,).

Stage 2 has two substages: creating the new border list and join-
mg the new and old border lists with quadrilaterals, The first sub-
stage proceeds as follows, Create an empty list to store the new
barder, For each vertex v; in the current border list, let n; be the
outwsrd normal from edge {v;.;» v;} and n, be the outward normal
from edge (v;, v;,;). Examine the angle between the edges (v;.;, v;)
and (vi, v;,;). If the angle is greater than ¢, then add a vertex to the
new border with vertex position of v; + §; (n; + np). If the angle is
less than 1, then mark v; as expanded, and add three vertices to the
new border with vertex positions of v; + Iy nj, v; + 1 (n; + 1), and
vt i 1 My

The second substage of stage 2 is to connect new and old border
lists with quadrilaterals as follows, Let j index the new border list
and / index current border list; initialize i and j to zero. For each
vertex v;, if v; is marked as expanded, add quadrilateral (v;, J. Viels

Vjy2h increment j by two. Add quadrilateral (v, v Viop ¥ig2):

Inctemem i and j by one, Make the new border the currént border,
The entire stage 2 process is repeated once for cach layer to be
added to the surface mesh, Figure 3 shows the surface mesh gener-
ated for a Z-plasty incision,

Continuum Meshing Algorithm

Generation of the continuum mesh from the surface mesh is
accomplished by extruding the surface mesh inward along the »
axis to form solid elements and then making a mapping from verti-
ces and polygons in the surface mesh to nodes and elements in the
continuum mesh. First we look at the nunbering of nodes in the
standard isoparametric element, then we Jook at the numbering of
he vertices and edges in the surface mesh, and then at the corre-
spondence between these numbering schemes, The continuum
meshing algorithm converts the surface mesh into an arbitrary
number of layers of elements, each layer being of an arbitrary
thickness,

Figure 5 shows the standard finite element used in the CAPS
system. The algorithm must generate elements with the proper
node ordering. Nodes 0-3 called the top_nodes, are the comers of
face 0; nodes 4-7, called the bottom_nodes, are the corners of face
1; nodes 8-11, called the top_mid_nodes are the nodes in the mid-
dles of the edges on the top face; nodes 12-15, called the
bottom_mid_nodes are the nodes in the middle of the edges on the
bottom face; nodes 16-19, called the center_nodes are the nodes in
the center of the edges joining face 0 to face 1.

In the surface mesh we have a set of vertex peints connected by
a set of polygons. Each polygon has a list of the vertices which
defines its shape. An edge of the polygon is defined by each pair of
vertices in the list and by the last and first vertices in the list, A
data structure is maintained for each layer of elements which keeps
track of the numbering of nodes in the layer. As each node is cre-
ated, its posmon is calculated and its index in ** list of nodes for
the structure is recorded in the layer de. .

For the top layer of elements, the top_nodes are posmoned at
the points of the surface mesh vertices, The positions of the
top_mid_nodes of the top face are calculated by taking the mid-
points of each polygon edge and offsetting those points to lie on
the skin surface. The pasitions of the bottom_nodes are calculated
by offsetting the positions of the top_nodes in r by the thickness of
the layer. The positions of the bottom_t: © _nodes are calculated by
offsetting the positions of the top_mid_nodes by the thickness of
the layer. The positions of the center_nodes are calculated by off-
setting the positions of the top_nodes by one half the layer thick-
ness. For continuum meshes with more than cne layer of elements

* Accesses to vertices tn the node hist wrap around if the ¢+n 15 greater
than the length of the list Sumilarly, negative indices wrp back to the
end of the list.
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Figure 4, Two clements from a continuum mesh, this shows the relationship
between the surface mesh polygons (corresponding to the top faces shown in
bold) and the continuum elements. The continuum mesh algorithm gencrates
elzments extruded along the 7 (into the skin) following the topology defined
by the surface mesh. The bottom layer of nodes are constrained to remain
fixed to represent the bony support. The figure shows a single layer of 20
node clements.
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wed in the CAPS system.

in the r direction, subsequent layers of elements are generated in
an analogous manner with the exception that rather than creating
new nodes for the top_nodes and the top_mid_nodes, the indices
of the previous layer's bottom_nodes and bottom_mid_nodes are
copied instead.

Once all the nodes have been created, the elements must be cre-
ated. One element per layer 1s created for each polygon in the sur-



face mesh. These elements must contain a correctly ordered list of
the node indices. This list of indices for the top_nodes is obtained
by looping through the vertices of the polygon and looking up the
node indices from the data structure of the layer corresponding to
the top the element. The indices for the bottom_nodes and the
center_nodes are obtained in the same manner, but using the
appropriate node indices from the layer data structure, The list of
indices for the top_mid_nodes and the bottom_mid_nodes are
found by looping over the edge list for cach polygon and finding
that edge's index in the list of edges for the surface mesh; that
index is then used to find the appropriate node index by looking up
the node in the appropriate layer data structure,

Triangles in the surface mesh are handled as a special case by
creating wedge shaped elemeiits, This can be accomplished by col-
lapsing one of the side faces of the isoparametric element. In this
case, only 15 nodes are created for the element, and a shared node
index is used for nodes 2, 10, and 3, for nodes 18 and 19, and for
nodes 6, 14, and 7.

7. RESULTS

To date the system has been tsed in two ways, We have been able
to use the system to simulate a number of plastic surgerics of the
face and have obtained good visual match between the simulation

o T

results and post-operative photos of actual patients. In addition, we
have shown the system to over a dozen practicing plastic surgeons
and have obtained very positive feedback. Surgeons have noted,
for example, that this system is completely different than any cur-
rent form of surgery planning because it contains an actual model
of the elasticity of the skin. This critical feature is missing from
most current planning techniques such as drawings or paper mod-
els. The other planning techniques which do have some model of
skin elasticity (namely cadavers or animal models) do not allow
easy iterative design of the procedure.

8. Future Work

Physical modeling of human soft tissue presents many challenges
which can only be addressed by making simplifying assumptions
about the behavior of the tissue, The complexity of the tissue
includes the fact that it is alive, that it has a complex structure of
component materials, and that its mechanical behavior is nonlin-
car[17;23), The design of the CAPS system, we have attempted to
mode] those features of the tissue which have direct bearing on the
outcome of plastic surgery, but in doing so it ignores the following
effects: the physiological processes of healing, growth, and aging
are not included in the model; the multiple layers of material
which make up the skin are idealized as a single elastic continuum;
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and the system uses only a linear model of the mechanical behav-
ior of the tissue and does not include a model of the pie-stress in
the tissue (i.e., the skin does not open up when cut). Under these
assumptions, the model gives an estimate of the instantaneous state
of the tissue after the procedure has been performed.

These assumptions could be relaxed to build a more complete
model of tissue behavior. The complex structure of the tissue could
be addressed by creating a more detailed finite element mesh with
multiple layers of differing material properties. The nonlinear
mechanical response of the tissue could be better approximated
using a nonlinear finite element solution technique. Both of these
improvements will make the solution process more computation-
ally complex, but will become more feasible as computers become
faster, We plan to perform a series of clinical trials to identify the
parameters which have the most influence in the surgical result and
to obtain accurate estimates of the elastic and viscous moduli of
the soft tissue,

The incorporation of physiological processes presents a more
fundamental problem, since the processes themselves are not well
understood. In this realm, the physical modeling approach offers a
possible method for determining the action of these processes, For
example, if the physical imodel is calibrated such that it gives a
nearly exact prediction of the immediate post-operative state of the

tissue, then subsequent changes in the patient’s skin due to healing
could be determined by changing the material property assump-
tions of the model until it again matches the skin. It is possible that
this analysis would lead to a method of predicting the effect of
healing which could then be included in the planning system.

The field of plastic surgery simulation is still very new and
there are many promising directions for future work. For example,
more work is needed to improve modeling of the soft tissue to
more accurately model its nonlinear mechanical response and its
long term physiological changes. In the future, we would also like
to see improved user interface techmques to give the surgeon more
control over the direction and depth of the incisions. The current
incision technique is adequate for lanning surface inzisions, but
cannot be used for intemal surgery.

9. CONCLUSIONS

Simulation of plastic surgery presents many challenging problems
which can be addressed by interactive 3D graphics techniques,
Each patient presents the surgeon with a unigue set of problems for
which there are many possible courses of action. The surgeon's
goal is to optimize the rearrangement of tissue, to coreect the tissue
deficiency, and to minimize distortion of the surrounding tissue.
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The surgical plan must take into account the complex geometry
and mechanical behavior of the soft tissue,

In this paper we have shown how a task level analysis of the
plastic surgery planning problem has guided our development and
implementation of a computer-aided plastic surgery system, The
user interface techniques and mesh generation algorithms we have
presented directly address the requirements of the task without
hurdening the surgeon with the implementation details of the finite
clement model. Our approach has been well received by clinicians,
who report that they would be comfortable using this system to
plan operations. However, before we take that step, we will be put-
ting the software through a series of ~linical trials to validate the
simulation results through retrospective analysis of case histories.
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Abstract

3dm is a three dimensional (3D) surface modeling
program that draws techniques of mode! manipulation from
both CAD and drawing programs and applies them to
modeling in an intuitive way. 3dm uses a head-mounted
display (HMD) to simplify the problem of 31 model
manipulation and understanding. A HMD places the user in
the modeling space, making three dimensional relationships
more understandable. As a result, 3dm is casy to leamn how to
use and encourages experimentation with model shapes,

1 Introduction

The use of interactive 3D environments has
increased the demand for complex 3D models.{9) The 3D
cnvironments that provide a sense of telepresence or “virtual
reality” require a large number of models in order to give the
user the illusion of being in a specific place. This demand for
more models has highlighted the fact that most modeling
systems are difficult to use for all but a small number of
experts.,[9) Through identification and removal of some of
the fundamental obstacles to modeling we hope to make it
accessible to more users,

Typical techniques used to select and display
objects are a major hindrance to 3D modeling.{3] To place an
object in 3D requires six parameters: the position (threc) and
the orientation (three). Most modeling systems (modelers)
must settle for a 2D mouse augmented by a keyboard for this
purpose. This mismatch results in difficult placement and
picking of objects in modeling space. The display of models
usually takes the form of a projection onto a 2D monitor.
This has the effect of making spatial relationships unclear.
Technological improvements to 3D model display and
manipulation hardware can remove these barriers to model
creation and understanding,

Current virtual reality technology provides one
solution to more intitive modeling. A HMD system gives
the ability to understand complex spatial relationships of
models by placing the user in the model’s world. Within this
type of system, a hand-held pointing device supplies users
with the ability to specify 3D relationships through direct
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3D manipulation, As a result, the user can build the virtual
world from within the virtval world,

Our source of inspiration for designing a user
interface for a HMD-based modeler is the current software
used for 2D modeling. At one time, creating 2D models
required cumbersome CAD programs, This software took a
long time to learn and often did not provide real-time
interaction. Now, however, 2D drawings can be manipulated
by even the most casual users of personal computers, This
revolution is in part the result of intuitive drawing programs
like MacDraw, One of the keys to MacDraw's success is its
inherent simplicity. Most work done with it requires no
reading or use of the keyboard, Rather, it provides a paleite
of tools which is always available next to the model. To
change modes, the user s'mply selects the tool from the
palette using the mouse. ‘The process of 3D modeling can
become more accessible if some of the lessons learned from
this evaluation of 2D modeling can be applied to 3D
modeling systems.

This paper presents a HMD-based system called
3dm which simplifies the task of 3D modeling by
implementing the concepts introduced above. irasic
techniques for working within 3dm’s virtual world are
described to show how users access the various features. The
implementation of 3dm is described through a presentation
of its most useful commands. Finally, the results of actually
using 3dm are presented with an emphasis on new techniques
that can be applied within other virtual worlds,

2 Prior Work

A large body of work has been done on 3D
modeling. Although 3D input devices have been used to
enhance modelers, very little modeling has been done with a
HMD. Some examples of modeling with six degree-of-
freedom input devices are (1] and (8], but both of those used
traditional 2D displays. Previous uses of HMD systems have
concentrated more on exploration of virtual worlds rather
than creating or modifying them. Some examples of this
work with HMD's can be found in [5].

Modeling using a HMD system has been explored
by Clark.[4] Users of Clark’s system created parametric
surfaces by manipulating control points on a wire-frame grid.
This system highlighted the utility of using a HMD for
umproved understanding and interaction with models. Like
Clark's system, 3dm relies on a HMD to help simplify
mudeling, but 3dm’s intuitive user interfave design dlso
makes it easy to learn and use.
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3 Implementation

3dm was developed using a VPL eyephone as the
display device and Polhemus trackers to track the head and
hand. A 6D 2-button mouse, developed at UNC-CH, was the
input device. The images were rendered using the
Pixcl-Planes 4 and Pixel-Planes 5 high-performance graphics
engines developed at UNC-CH.[6](7]) Currently, all models
created with 3dm are made up of hicrarchical groups of
triangles.
2.1 User Interface
In addition to the model, the virtual world of 3dm
contains the components of the user interface, The most
important of these are the toolbox and the cursor. The cursor
follows the position of the hand-held mouse, giving the user
a sense of hand position in the modeling space. The toolbox
is the means by which most actions are performed.

Some of the user interface components are simply
helpful markers that can be turned off, unlike the toolbox and
the cursor, which are always visible. The user stands on a
“magic carpet” which marks the boundarics of where the
tracking system operates. Remaining within tracker range is
important because the virtual world will begin to tilt as the
user moves farther out of range. Below the magic carpet lies a
checkered ground plane, above which the model is usually
created. Additional reference objects, such as coordinate
axes, can be turned on by the user,

Figure 1: The toelbox as seen by the user.

The toolbox initially appears suspended in space
near the user's waist, but it can be moved to a more
convenient location. The toolbox remains autached to the
user as he or she soves around the modeling space, or it can
be disconnected and left anywhere above the magic carpet.
The toolbox is organized into cells containing 3D icons.
Each icon reprecents either a tool, a command, or a toggle.
Many of these icons can optionally appear in pulldown
menus at the top of the toolbox in order 10 reduce clurter.

Icons perform actions when they are selected with
the cursor. Tools change the current mode of operation as
reflected in the shape of the cursor. For instance, when the
user reaches into the toolbox and selects the flying tool, the
cursor takes the form of an airplane. Selecting a command
performs a single tash withuut changung the current mode of

operation. Toggles change some global aspect of 3dm. An
example is the snap-to grid toggle, which restricts cursor
movement to a 3D grid when it is on.

Exploring the model provides understanding of its
3D shape, so 3dm supports multiple methods of navigating
in the modeling space. The HMD system used for 3dm allows
the user to walk through the model space a few paces in any
direction. Walking simply does not provide the range of
novement neceded for most models, so 3dm supports
‘flying,” a commonly used method of traveling through
virtual worlds.[2] Flying consists of translating the user
through model space in the direction that the cursor is
pointing. Flying moves the magic carpet, which carries the
user and the toolbox along. A method of navigation that is
the complement of flying is “grabbing™ the world. Grabbing
the world allows the user to attach the modeling space to the
cursor and then drag and rotate it. Grabbing can be used to
bring a feature of the world to the user rather than forcing the
user to walk or fly to the fcature.

Models often require manipulation at vastly
different scales. To facilitate this type of work, the user can
be scaled using a process called growing and shrinking. This
scaling does not affect the model: it changes the user's
relative size with respect to the model. The user could shrink
down to bird size in order 1o add eyelashes to a model of an
elephant and then grow o the size of a house to alter the
same model's legs. Since the user can become disoriented by
all of these methods of movement, there is a command that
.mmediately returns the user to the initial viewpoint in the
middle of the modeling space.

The user receives continuous feedback in a varietly
of ways. The HMD system provides all visual input to the
user, so the display must be updated between 1S and 30 times
per sccond. Even during file loading and cther slow
operations, the screen is updated and the head is tracked.
Rubber banding is implemented in many situations: when
defining a ncw triangle, scaling or moving an object, and
extruding, Predictive highlighting shows the user what
would be selected if a mouse button were pressed. This
highlighting is used in the toolbox, and even more
importantly, when marking vertices. Whenever the cursor is
near a model, the nearest vertex is highlighted, giving the
user an indication of which vertex would be operated on
before actually attempting the operation.

Figure 2. A triangle being added to a model. Demonstrates
rubber banding and snapping to nearby vertices.




3.2 Toois and Commands

Although many tools are available in the 3dm
toolbox, it is more usefu} to understand the general classes of
tools supplied to the user than to cnumerate all of the specific
tools. Most of these tools were chosen because of their
proven utility in pre-existing modelers.

3.2.1 Surface Creation

Surface creation is the central purpose of most 3D
modeling, so 3dm provides more than onc mecthod for
creating surfaces. A triangle creation tool exists for
generating both single triangles and triangle strips. The
corners of these triangles are specified by pointing and
clicking the mouse, so the triangles are created in their
desired locations rather than appearing in a "building" arca
and then being moved into the model space. Pre-existing
vertices may be used during triangle creation to allow
triangles to share comers or entire edges, making scamless
connections easy.

The extrusion tool supplies a more powerful and
more specialized method of triangle creation. This tool
allows the user to either draw a poly-line or sclect one from
edges already in the model and stretch it out into an extruded
surface, The extrusion is performed by dragging the leading
edge of the surface with the mouse. Because the mouse can be
iwisted and translated arbitrarily during the extrusion, it
becomes easy to create complex surfaces with this tool. In
addition, the leading edge of this new surface can be scaled
and then extruded again as many times as necessary. This
form of extrusion can rapidly create such objects as walls,
legs, tree trunks, and leaves.

The last surface creation tools facilitate creation of
standard surface shapes. Currently box, sphere, and cylinder
tools exist. They each allow the user to interactively stretch
out an arbitrarily proportioned wireframe representation of a
standard shape. When the wireframe representation has the
desired proportions, it is turned into a wriangulated surface.

3.2.2 Editing

Since surfaces are rarely in exactly the desired shape
upon creation, it is important that surface editing be an easy
operation. The most commonly used editing ool is the
mark/move tool. This tool provides a method of grasping
and moving arbitrary portions of the model. Not only can
entire objects be grabbed and moved with the mouse, but
selected groups of vertices can be moved in order to distort
part of an object. Scaling can also be performed on either
entire objects or groups of vertices. During both movement
and scaling, the user sees the model changing in real time
This interaction decreases the number of edits needed to make
a desired change. The marking aspects of this tool are used to
mark arbitrary portions of the model for operations with
other tools.

Familiar editing operations from drawing programs
are a group of 3dm commands that facilitate rapid
cxperimental changes. An arbitrary number of triangles or
entire objects can be cut, copied, pasted and deleted. These
commands provide easy reuse of existing objects

An undo/fredo stack is provided for re ersing any
number of operations from any tool or com .and. As
operations are performed, the changes they ¢ is: to the

model are stored in the undo/redo stack. The undo command
can then be used to pop changes off of this stack to undo as
many operations as necessary. These undo operations can
themselves be undone with the redo command. The undo/redo
commands cncourage experimental changes to thc model
because no operation can causc permanent damage.

3.2.3 Hierarchy

The hicrarchical features of 3dm provide methods
for organizing complex models. “Grouping” can be used to
associate triangles and possibly other groups to more casily
manipulate them as a whole. These groups can be instanced,
An instance is similar to a copy of a group that can be
arbitrarily translated, rotated, and scaled. However, the
difference between an instance and a copy is that the
instances of a group are all linked to the same basic shape. If
this shape is changed, then the change is reflected in all
instances at once. An example where instancing would be
useful is in a model of a large building. Suppose that
hundreds of chairs were in this building. If one model of a
chair were instanced many times to make these chairs, then a
change to a single chair would be reflected in hundreds of
places throughout the building.

Groups can be organized into a hicrarchy
represented by a directed acyclic graph. This type of
hierarchy is particularly well-suited to modeling articulated
figures. The ability to instance groups and impose a
hicrarchy on them helps to organize models,

4 Results

Actual modeling sessions have shown that 3dm is
efficient for rapidly prototyping models. Organic shapes,
iike rocks and trces, have proven to be particularly good
subjects for 3dm. These shapes are easily created in 3dm
because it provides a good sense for spatial relationships.
Users of 3dm have commented that they feel a sense of
control, because they can reach out and grab any part of the
model with case. The ability 10 make these quick
modifications encourages the user to experiment with shapes
until they are satisfactory. However, 3dm has shown
weakness in the arca of constraints and models that
traditional CAD and drawing programs create well. For
instance, 3dm has no way of keeping two polygons parallel,
causing some models to appe.r irregular.

The extrusion tool is an example of a traditional
modeling tool that has become even more powerful bevause
of its use in a HMD framework. In most modeling systems,
extrusion is performed by moving one or two spatial
parameters at a time. 3dm users often alter many parameters
at once during an extrusion by twisting and translating the
new surface. Extrusion in 3dm often consists of many short
extrusions. In beiween these short operations the leading
edge of the extruded surface is ofien scaled and twisted. The
result is that complex surfaces can be rapidly created with an
easy 1o usc tool.

Sume initial solutions 10 3dm’s lack of constrants
have been to add tuggles i the wolbox for a snap-to gnd and
a snap-w plane. The snap-to grid constrains the pustion of
the cursor to the nodes of a regular 3D gnd. The resolution of
the snap-to grid is dynamically modified to be appropnate to
the user's current “grown” or “shrunk™ size. The snap-to
plane gives the ability to constrain cursor movement to 2
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dimensions. The snap-to constraints help in making regular
objects, such as mechanical parts.

5 Conclusion

3dm draws techniques of model manipulation from
both CAD and drawing programs and applies them to
modeling in an intuitive way, A HMD modeling system uses
these tools to simplify the problem of 3D model
manipulation and understanding.

3dm is a step toward making 3D modeling
accessible to unsophisticated users. It supports usars® natural
forms of intcraction with objects to give them better
understanding of the shapes of their models. Even a novice
user can understand how to manipulate a model by rcaching
out and grasping it. Users are cncouraged to experiment with
model shape because 3dm facilitates making rapid changes.
The effects of a change to a model can be clearly understood
because the user can explore the model using a variety of
intuitive navigation techniques.

Advanced users are also empowered by 3dm. Many
of the tools borrowed from existing modeling systems
become more powerful when used with a HMD. One source of
increased utility is the fact that complex operations can
involve simultaneous modification of many spatial
parameters, Examples of tools that take advantage of this are
object placement and extrusion, which both allow
combinations of rotation and translation in a single step.
By concentrating more functionality into each operation,
fewer operations are needed to perform a task and models can
be created faster.
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Abstract

Recent advances in software and hardware technology have
made direct ray-traced volume rendering of 3-d scalar dataa
feasible and effective method for imaging of the data’s con-
tents, The time costs of these rendering techniques still do
not permit full interaction with the data, and all of the pa-
rameters effecting the resulting images, This paper presents
a set of real-time interaction techniques which have been de-
veloped to permit exploration of a volume data set. Within
the limitation of a static viewpoint, the uscr is able to inter-
actively alter the position and shape of an area of interest,
and modify local viewing parameters. A run length encoded
cache of volume rendering samples provides the means to
rerender the volume at interactive rates. The user locates
and plants “seeds” in areas of interest through the use of
data slicing and isosurface techniques. Image processing
terhniques applied to volumes ( i.e. volume processing), can
then automatically form regions of interest which in turn
modify the rendering parameters. This “region growing”
of “secdlings” incrementally alters the image in real-time
providing further visual cues concerning the contents of the
data. These tools allow interactive exploration of internal
structures in the data which may be obscured by other imag-
ing algorithms. Magnetic Resonance Angiography (MRA)
provides a driving application for this technology. Results
from preliminary studies of MRA datx are included.

1  Introduction

Three dimensional scalar fields (or volumes) of data arise
in a number of applications from computer simulation of
physical phenomena to data gathered for medical diagnostic
use via CAT scans and Magnetic Resonance. Rendering
images directly from the volume has been demonstrated to
be an effective method for visualizing such data [7, 9, 11,
12, 14, 19, 27, 29]. Volume rendering avoids many artifacts
which may arise when intermediate graphics primitives are
required [7, 13).

Volume images are constructed either in image order by
sampling the volume along a ray from an eye point through
the data or by projection of the data directly onto the pixel
array. Differences in algorithms also deal with the order in
which the samples are processed, either front to back as in
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ray tracing [12}, or back to front analogous to a painter’s
algorithm. Ray tracing algorithms process a pixel at a time,
while in projection techniques, a singe sample or data point
may effect an area of pixels around the sample in some way
via “splatting” [28), or projecting of a representative area
onto the screen (22, 29).

As in earlier image synthesis techniques, acceleration
methods focus on exploiting coherence in the image and in
the data, and/or by progressively refining the image to pro-
vide rough results early in the rendering process {11, 15).
However, high quality images still require many seconds or
minutes, Thus interactive exploration of volume data sets
via these techniques is still not feasible, Changes in viewing
parameters, mappings of data values to opacity or color, or
enhancing regions of interest require complete new render-
ings.

The research presented here exploits the coherence across
all possible images from a given viewpeint to provide inter-
active rendering rates for high quality images. The starting
point of this algorithm is the volume ray casting technique
as presented by Levoy {12, 15). Earlier work in raytracing
[21] has shown that a view dependent cache can be exploited
to good eflect when surface properties and light source in-
tensities need to be adjusted while view position and geom-
etry remain unchanged. In this paper we apply a similar
idea to ray casting based volume rendering. The method
described lere caches rendering information at each sample
point along each ray. The cache allows new images based
on changes in rendering parameters to be generated as the
changes are made, providing an interactive loop for volume
exploration.

Local areas of interest within the volume can be indicated
by the user planting a “seed” in the volume. Local rendering
parameters can then be modified based on location relative
to the seed. The basics of interactive use of local rendering
modification through the use of “volume seeds” has been
discussed in an earlier paper [17), and will be summarized
in the next section. Problems in the earlier system included
excessive storage requirements, and difficulty in placing and
forming regions of interest.

The paper continues with a discussion of the use of coher-
ence in the sample caching process followed by a description
of new interactive positioning tools utilizing an integration
of slicing and isosurface techniques. We then describe the
use of image processing techniques generalized to volumes
(volume processing) to automatically generate matte vol-
umes modifying local rendering parameters. In this way,
the seed sprouts into a “seedling” to enhance the render-
ing in connected regions of particular interest. Rendering
parameters such as opacity are then based on minimum dis-
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tance from the seedling. Image processing methods have
been applied to volumes to segment the volume into discrete
regions [18, 25, 26]. However, it should be noted that, in
the application described here, the seedling itself is never
rendered directly, but rather the volume of data continues
to be rendered with directly, but rather the volume of data
continues to be rendered with volumetric techniques with
modified parameters based on position relative to the grown
region,

Much of the motivation for the development summarized
above has come from a medical application. In particular,
imaging of data arising from Msgnetic Resonance Angiogra-
phy (MRA), in which the focus of attention is on exploring
the vascular structure within the brain or other regions of
the body. MRA techniques ate used to diagnose malforma-
tions and aneurisms within the brain’s blood supply, and to
plan surgical and catheterization procedures. The intricate
nature of the vascular structure as well as the somewhat
noisy data capture require the ability to focus attention on
specific vessels as potential anomalies are discovered. Re-
sults of the use of the above algorithms on this application
will be presented and discussed.

2 Volume Seeds

Ray traced volume rendering involves sampling the data vol-
ume at evenly spaced points along a ray, computing a lo-
cal illumination and opacity value and composing the result
with earlier samples along the ray. Individual sample con-
tributions are computed from trilinearly interpolated values
from surrounding voxels, where each voxel contains a data
value and an estimated gradient determined through finite
differencing from its neighbors. The interpolated value and
gradient provide arguments to mapping functions to deter-
mine color and opacity at the sample point, These color
and opacity values may be u derived from a simple map-
ping from value to RGB (or opacity) or be determined from
more complex statistical procedures intended to classify the
likelihood of a particular material (e.g., bone, muscle) being
present at a particular location (7).

The final illumination contribution at each sample point
is computed from the color, opacity, local normal (estimated
from the gradient of the data), and direction vectors to the
eye and lights. These parameters to a Phong lighting model
produce the final illumination at each sample point. Finally
each sample illumination value is composited with earlier
samples along the ray based on the accumulated opacity
along the ray. Sampling can stop when the accumulated
opacity approaches unity.

2.1 Image Coherence from a Static Viewpoint

By examining the volume rendering process described above,
the required calculations can be broken into the two cate-
gories, those which are independent and dependent on map-
pings from position and value te color and opacity. Map-
independent computations include:

o gradient calculation at voxels,

o determination of rays, and sample points along cach
ray,

o trilinear int.rpolation of data values and gradients to
the sample points,

o the determination of lucal shading paramcters, e.g. an-
gles between view vector, light vector(s), and normal,
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o and evaluation of a monochrome local lighting model,
(i.e. independent of color and opacity).

Map-dependent calculations include only:

o mapping of data and position values to opacity and
color,

o final evaluation of the local illumination,

e and compositing sample value illumination for final
pixel color,

The above lists illustrate the fact that most of the com-
putation is map-independent. However, the remaining map-
dependent calculations leave a wide discretion for modifica-
tion of the final image. This includes changes in:

o the mapping from value to color,

¢ the mapping from value (and/or the length of the gra-
dient) to opacity,

e and position based variation in color and/or opacity.

By providing interactive tools to modify the local mapping
to color and opacity, a user can create new renderings in in-
teractive times (less than one to five seconds at 480x480 res-
olution or an SGI 240GXT). The locality of the mappings is
controlled by the interactive specification of matte volumes
[7). By planting a seed at a point in the volume, opacity
values can be modified as a function of the distance from
the seed location. This allows the user to focus attention on
particular regions of interest. By adding a binary decision
indicating if the sample is in front or behind an imaginary
plane throngh the seed, virtual cut-aways can also be pro-
duced in the same way. A final acceleration to the rendering
process can be made by recognizing that only a local region
of screen space will be effected by a new seed location when
the matte volume is limited in size. Details of the matte
volume functions and cut-away techniques can be found in
Ma et al [17).

2.2 Sample Data Caching

The ability to quickly modify the image based on new matte
volumes and the related mappings depends on caching the
map-independent information at each sample point. This
includes the partially computed illumination value and tri-
linearly interpolated data value for lookup into the interac-
tively medified mappings. Unlike standard volume render-
ing, the storage of samples along a ray cannot stop when
opacity reaches unity since opacity values can be changes
interactively. The current implementation stores a two byte
illumination value, and one byte data value per sample. Al-
though the three bytes per sample is compact, this may
require substantial memory, on the order of 150 Mb for a
500x500 image with 200 samples per ray. This problem can
be largely ameliorated for most data sets by run-length en-
coding the sample values along each ray. In particular, if
some range of values, e.g. zeros indicating empty space, can
be a priori ruled as transparent, then both the storage and
subsequent rerenderings can often be reduced by one to two
orders of maguitude. The run length encoding is awcom-
plished Ly stealing a bit from the 16 bit illumination value.




'3 Seed Positioning

The need for the user to locate and position seeds to indicate
-areas of interest requires the ability to easily move and posi-
tion-a cursor in the three dimensions of the volume, Visual
feedback for this process should provide clues both about the
cursor's position and some indication of the volume’s content
to allow a seed to be placed near a region with a suspected
anomaly, A multi-modal approach has been taken to serve
these needs, Operations which can be performed smoothly
in real time include manipulation of a rough 3D isosurface
model and display of data on a slice through the volume.

Isosurface and slice display provide the basis for the user
interface which has been developed. A low resolution isosur-
face is computed from a downsized data set by a polygoniza-
tion algorithm (3, 16). This provides enough detail to give
the user a correspondence between the data set and what
can be seen in the volume rendered image. A slice through
the data volume orthogonal to the view direction indicates
the depth position. A “screen doot” transparency render-
ing of the slice permits continued view of the partion of the
isosutface behind the slice. Finally, the coloration of the
isosurface is based on distance from the slice plane, white
away from the plany, ind red where the plane slices the iso-
surface. Color plate 1 shows the full screen presented to the
user in the Volume Seedlings system. The slicer/isosurface
interface is in the upper left, Seeds can be deposited on the
slicing plane which will then eflect the subsequent rendering
of the volume in the upper right.

Thus, the user can, in real-time, manipulate both the ro-
tation of the isosurface and position of the slice plane. By
pointing to some point on the resulting image, a seed is
placed at the depth of the slice plane and in the location
of the cursor. The volume rendering can then be modified
based on the new seed location,

4 Volume Seedlings

A single seed highlights a spherical region around the seed
point. In many applications, however, the shape of the re-
gion of interest within the volume is not strictly spherical,
but rather is data dependent. The idea of Volume Seedlings
is to use the seed point as a base from which to sprout a
seedling along paths of "maximum interest”, thus highlight-
ing the region of interest.

Identifying regions of interest within the volume is closely
related to the computer vision problem of identifying regions
of interest within an image. Hence the seedling growth al-
gorithm is similar to region growing algorithms described in
the computer vision literature {1] and 2d seed fill algorithms
described in the computer graphics literature (8, 24]. One
important difference is a primary interest in the intermedi-
ate states of the growth process. Computer vision region
growing algorithms are primarily concerned with a final seg-
mentation of the image. A similar problem of extracting
closed regions in a volume of data has been addressed by
Miller et al [18],

The seedling growth algorithm used in the work presented
here is voxel based. A priority queue [20] of voxels is main-
tained determining voxels within the volume which need to
be explored. Initially, the priority queue contains only the
user specified seed. At each growth step, the highest priority
voxel is extracted from the priority queue and its 26 neigh-
boring voxels are examined. The priority assigned to each
voxel within the queue is based on the "degree of interest”
of that voxel. We have currently experimented with linear
combinations of three priority functions:
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Figure 1: A graphical illustration of the opacity matte as a
function of the distance from the seedling,

¢ classification based

The priority of a voxel is based on its material classi-
fication. A voxel is given a higher priority the greater
its percentage of some user specified desired material.
This priority function encourages growth within regions
of this material.

o gradient based
The priority of a voxel is based on the magnitude of the
gradient at the voxel. High gradient values indicated
a surface boundary between materials so this priority
function encourages growth along the surfaces bound-
aries,

¢ position based

The priority of a voxel is based on the distance from
the original seed point, thus encouraging growth of the
seedling near the position indicated by the user.

Many other priority functions are possible.

In addition to the continuous priority function, a discrete
test is used to eliminate many voxels. Thus, the neighbors
are inserted in the queue only if:

o they haven’t been visited before
o they pass an "eligibility” test

The eligibility test is not required but can significantly re-
duce the size of the priority queue by eliminating obviously
uninteresting voxels. Currently, our eligibility test is a sim-
ple threshold on the priority, thus voxels are included in the
queue only if their priority indicates at least a modicum of
interest.

The seedling growth process yields a set of voxels, in pri-
ority order, definiag a region of interest within the volume
The region of interest is highlighted through the use of an
opacity matte as before for a single seed The opacity matte
volume is based on a function of the distance to the closest
voxel of the seedling as illustrated in Figure 1.




Figure 2: Traditional volume rendering of the UNC Chapel
Hill CT head data.

The scedling opacity matte is computed according to the
following formula:

a(p)
B(d,r)

mn + (mz ~ mn) - B(mindist(p, s),r)
cos’(§ - £2t) ifdist<r,
0 otherwise.

where mindist(p,s) is the minimum distance between any
voxel of the seedling s and the sample point p in three-space,
The mn, mz and r parameters are specified by the user.

In essence, ris used to control how wide an area the user
wants to see. Surfaces outside this area should be semi-
transparent or fully transparent, determined by mn. Mz is
used to indicate how much enhancement is to be made to
the area near the seed. Note that the opacity matte is never
stored explicitly but is instead computed on the fly from the
distance to the seedling.

By adding one additional byte to the sample cache to hold
the distance to the nearest point in the scedling, images can
be computed incrementally, As each new voxel of interest
is extracted from the priority queue, only rays representing
pixels which pass near the new voxel need to be processed.
The minimum distance from a sample point to any point
on the seedling is maintained by updating the distance only
when the new point on the scedling is closer than any pre-
viously processed points (as in a Z-buffer algorithm).

Interactive changes can be made to the matte function
mn, mz, and r parameters, as well as the color and opacity
maps based on data value, without invalidating the cache,
The rerenderings are thus very rapid due to the sample dis-
tance caching and the fact that ouly a small portion of the
image space is affected by each new vuxel added to the region
of interest. The current implementation vn an SGI 240GTX
eatracts new seedling points and rerenders the volunie image
approaimately 10 times per sceond, This dynamic nature of
the seedhing growth alsv provides visual cues tu the user.

Figures 2, 3, 1 illustrate the use of seeds and seedlings on

the CT head set from the UNC Clapel Hill Volume Data

Figure 3: A seed point is used to highlight a spherical area
in the data set.
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Figure 4: A gradient based seedling is used to highlight a
structure in the data set,

2]

Sets. Figure 2 is a nurmal volume randering of the data
set without the use of a seed. Tigure 3 uses a seed puint
tu highlight a spherical region in the nedh arca. Figuie o
shows a seedling grown frow the sanme seed polut using a
gradient basad seedling growth priority function. Figuie 1
uses a smialler opacdity matte radivs than Figure 3 to focus
un the scedling itsedf rathier than a broader arca around the
seadling. Notice that Figure 1 does a wudk better job of
isolating the region of interest.




Figure 5: Four views of the MRA vascular data set.

5 Magnetic Resonance Angiography

Magnetic Resonance Angiography (MRA) is used to extract
the vascular structure from within soft tissues like the brain.
Visualizing the vascular structure can help in diagnosing
malformations such as anuerisms and blockages, and/or help
prepare surgical procedures such as catheterization through
the vessels, or other invasive procedures designed to not dis-
turb the vascular structure. The non-invasive nature of
MRA over traditional angiography makes this diagnostic
approach safer and thus more widely applicable. Unfor-
tunately, MRA data capture cannot extract single vessels
as can be done by selective dye release from a catheter in
traditional angiography.

The vascular structure in MRA is captured by taking ad-
vantage of the fact that bloud fluws within the veins and
arteries. The signal which is received is related to the time
in which individual molecules are within the bounds of a
thin slice through the body. Difficulties arise due to noisy
data capture, or dropouts due to vessels which lic in the
plane of excitation.
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The most common visualization method used is a simple
Maximum Intensity Projection (MIP) in which, as the name
implies, a simple projection of the data onto a pixel grid is
performed in which the pixel values are given the maximum
value along a corresponding ray through the volume. A
series of such images from different angles are viewed in suc-
cession to provide depth cues. However, single frames lose
all or most of the depth information, and the sequence does
not provide the full range of geometric information visible
from more sophisticated algorithms.

The goals of the Volume Seedlings approach is to pro-
vide the three dimensional visual cues captured by voluwie
rendering, while providing interactive touls to explore the
data set and extract individual vessels for closer examina-
tion. Other work has Leen done in this area to extract sin-
gle vessils through connectivity information Cline et al
selected a si+ o vuxel value and extracted all voxels of the
same valu  .nnected to a seed point, and projected these
voxels dii. tly onto a screen [4, 5]. Other imaging tech-
niyues for MRA have been described as well [2, 6, 10, 23],
however, not in the context of interactive systems with the




Figure 6: Four intermediate steps in the growth of a scedling.

use of volume rendering as the final imaging method.
Figure 5 shows four views of the vascular structure within
the brain of a patient suffering from an anuerism. One single
large seed in the center of the volume is used to capture most
of the vessels while eluninating the vessels at the outer edges
which complicate and obscure the interior. (These images
are rendered at full 1K x 1K resolution as opposed to the
480x180 resolution in interactive mode.) After selection of
a seed in the area of the anuerisin a seedling is grown to
extract the region of interest (Figure 6). The four images
show the progress of the seedlings growth at four stages.

6 Conclusion

The ability to interactively isolate regions of interest within
a volume rendering context has been discussed By growing
Velume Seedlings within the data set according to “interest”
functions, features which may otherwise be hidden by the
image complexity or by opaque regions can be examined
A description of an interactive volume expluration system
has been described. Finally, the use of these techniques in
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the context of Magnetic Resonance Angiography to highlight
individual vessels has been demoustrated.

The application of iinage processing and computer visivn
techniques to the problems involved in scientific visnaliza-
tion is an exciting area for exploration. It is expected that
other more sophisticated region growing algorithins will be
applicable in a wide variety of applications.
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Abstract

The development of 3D visual simulation systems on inexpen-
sive, commercially available graphics workstations is occurring to-
day and will be commonplace in the near future, Such systems are
being constructed to move through and interact with 3D virtual
worlds, There are a varicty of goals for these systems, including
training, planning, gaming and other purposes where the introduc-
tion of the physical player may be *20 hazardous, too expensive or
too frivolous to be tolerated, We present ~s such system, NPS-
NET, a workstation-based, 533 vizus! Zinulator for virtual world ex-
ploration and experimentation.

Virtual World Systems

The attention to virtual world systems is particularly appealing
to the researchers of the Graphics and Video Laboratory of the De-
partment of Computer Science at the Naval Postgraduaie School as
our focus for years has been on the production of prototype 3D vi-
sual simulation sysiems on commercially available graphics work-
stations [9,18-25). 3D visual simulation systems have many of the
characteristics ol virtual world systems in that their purpose has
long been for visualizing and interacting with distant, expensive or
hazardous environments. If we turn off some of wur physical mod-
eling, we can even simulate non-existent 3D environments, so we
feel quite comfortable under the virtual worlds umbrella,

We do not study the construction of our 3D visual simulators on,
specially-designed graphics hardware, We instead assume that sucl
hardware is available from commercial workstation manufacturers.
We build 3D visual simulators on inexpensive graphics worksta;
tions instead of specially-designed hardware because of our obse:.
vation that the performance numbers from the manufacturers are st
suggestive.

NPSNET: Overview

The Graphics and Video Laboratory has been developing low-
<ost, three-dimensional visual simulation systems for the last sis.
yeare on Silicon Graphics, Inc. IRIS workstations. The visual sim
ulators developed include the FOG-M missile simulator, the VEI |
vehicle simulator, the aitborne remotely operated device (AROLY
the Moving Platform Simulator series (MPS-1, MPS-2 and MP$

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed ic;
direct commaercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or spacific permission.

© 1992 ACM 0-89791-471-6/92/0003/0147...$1.50

1

47

3), the High Resolution Digital Terrain Model (HRDTM) system,
the Porward Observer Simulator Trainer (FOST), the NPS Autono-
mous Underwater Vehicle simulator (NPSAUV), and the Com.
mand and Control Workstation of the Future system (CCWF),

Our current visual simulation efforts are on the NPSNET sys-
tem, a workstation-based, 3D visual simulator that utilizes SIM-
NET databases and networking formats, The DARPA-sponsored
SIMNET project had the goal of developing a low-cost tank simu-
lator[lhat provided & *70% solution” to the tank-war-gaming prob-
lem {17},

Unfortunately, the SIMNET system delivered has its graphics
hardware and software suffering from arigid specification based on
1983 graphics technology and was not designed to take advantage
of cver faster and more capable graphics hardware and processor
power, Low-cost for the project meant $250K per station, Instead,
the contractor designed its own graphics platform, its own process-
ing system, and wrote software that worked only on that platform.
In NPSNET, we want to be somewhat more flexible BUT still in-
teract with the DARPA investment.

‘The NPSNET system is an attempt to explore the SIMNET do-
main using a readily available graphics workstation, the Silicon
Graphics, Inc. IRIS workstation in all its incarnations (Personal
IRIS, GT, GTX, VGX...), instead of the contractor produced hard-
ware. Our starting point is that we assume databases and network
packet formats in a form similar to those utilized by the actual SIM-
NET system but allow the flexibility for continuing ~volutions in
efficiency.

NPSNET is areal-time, 3D visual simulation system capable of
displaying vehic” - movement over the ground or in the air. Displays
show on-ground cultural features such as roads, buildings, soil
types and eievations. The user can select any one of 500 active ve-
hicles via mouse selection and control it with a six degree of free-
dom spaceball or button/dialbox, In between updating events, all
vehicles are dead reckoned to determine their current positions.
Speed in three dimensions and the location of the vehicle can accu-
rately be predicted as long as the speed or direction of the vehicle
does not change. Vehicles can be controlled by a prewritten script,
or can be driven interactively from other workstations, as the sys-
tem is networked via Ethernet. Additionally, autonomous players
can be introduced into the system via a programmable network
“hamess" process (NPSNET-HARNESS).

As obvious from the above overview, NPSNET is in many ways
a departure from the goals of SIMNET. We can “push the enve-
lope" of real-time, workstation-based virtual reality while provid-
ing a workstation-based SIMNET ;.ode. We present our plan ior the
overall NPSNET effort in the following sections to provide an un.
derstanding of what is required to construct such a system.




SIMNET Database Display Work

The first effort in any virtual world development is obtaining
the data that represents the world to be modeled. For 3D visual sim-
ulations, this usually begins with a large 2D grid of elevation data
that is turned into a 3D terrain carpet.

Once the terrain carpet has been extracted and displayed, atten-
tion then turns to on-ground cultural features and 3D vehicle icons.
On-ground cultural features include roads, forest canopies, trees,
building, corrals and other stationary objects. Many cultural fea-
tures are provided in 2D and have to be projected onto the tezrain,
Significant work must be done to accomplish this, There is the pre-
processing work to turn 2D linear features like roads into 3D, cor-
rectly projected onto the terrain carpet, Projecting planar 3D road
segments onto the terrain carpet is also not easy. The problem is that
it requires projecting the road polygons onto the same place as the
terrain carpet, Under z-buffering, the standard hidden surface elim-
ination method for graphics workstations, coplanar, coincident
polygons cause what is known as z-buffer tearing [1). We see scan
lines alternately colored with the underlying terrain color and the
road color. We solve this by drawing the underlying terrain polygon
first into the RGB planes with z-buffering on but modifications to
the z-buffer off, We then draw the road overlay, Modifications to
the RGB planes are then tuned off and the underlying terrain poly-
gon is again drawn, this time with modifications to the z-buffer on,
This procedure must be done for all coplanar features in the system,
It requires that underlying layers be drawn multiple times and in an
ordered fashion, The visual simulator must handle this in a general
fashion, It is just part of the complexity of building such systems,

3D vehicle icons are the next consideration in constructing our
virtual world system. We call them 3D icons in that the goal is not
realism but rather low resolution indicators of players on the terrain,
Low resolution means whatever level of detail the user of the final
system is willing to live with,

Hierarchical Data Structures
for Real-Time Display Generation

If the modeled world is simple, just blasting all the polygons
through the graphics pipeline ought to get satisfactory display re-
sults, Since NPSNET uses data from the SIMNET Database Inter-
change Specification (SDIS) for an actual 50km x 50km terrain area
of Fort Hunter-Liggett, Califomia and has a resolution of one data
point for every 125 meters (6}, this will not do.

Hierarchical data structures are the heart of any complex real-
time, 3D visual simulator. Such data structures, in conjunction with
viewing information, provide for the rapid culling of polygons com-
prising the terrain carpet, the cultural features, the 3D icons and any
other displayable objects. The purpose of this operation is to mini-
mize or reduce the floy of polygons through the graphics pipeline
of the workstation's hardware. A classic reference to understand
this problem in more detail is {2]. The culling operation is per-
formed through the traversal of a data structure that spatially parti-
tions the displayable data. The appropriate hierarchical data struc-
ture to use is problem domain dependent. As we have adopted NPS-
NET to additional 1asks, we have had to modify and change ourdata
structure,

Expanding the Terrain Area

In order to increase performance, the initial NPSNET dataset
has been divided into 2500 text files based on the one kilometer
standard of the military “grid square™ with each file containing data
for one square kilometer. These were preprocessed into binary for-
mat and three additional lower resolutions generated (250, 500 and
1000 meter), together with fill polygons for each level. The final

form of the dataset is 2500 binary files, each containing 2 multiple-
resolution (4 level) description of the terrain for one square km,
stored as a heap-sorted quadtrec [7,12].

The final format for the binary terrain data files is designed for
fast access using the C function fread(). All polygon descriptions
are stored in memory-image format, therefore, no data conversion
has to be done during paging. The 2500 files resulting from prepro-
cessing contain:

Q Co;nl)t of polygons in each node of full four level quadtrec (85
total).

Q Total polygon descriptions in the file.

Q Multi-resolution description of terrain in this square kilometer
stored in quadtree heap-sort order, lower resolutions first (Fig-

ure 1),
One Kilometer Square
(only part of full %uad
Quadiree tree structure shown) K i

oy
e g
N 68
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Figure 1 - Multiple Resolution Quadtree

As the final dataset is too large to store in main memory at one
time, and we do not wish to limit the simulation to some smaller
area, paging terrain data through a dynamic algorithm is required.

A 16km x 16km active area was chosen based on considerations
for memory size of available workstations, frame rates, required
field of view and desired range of views. This amount of terrain data
is in main memory at any given time and available for rendering.
Sixteen kilometers allows a seven kilometer field of view in all di-
rections for immediate rendering with one kilometer acting as a
buffer to ensure terrain is fully paged in before attempting to render
it (Figure 2).

; it ‘_:____ Field of View

a = 1000 m square

8 [~ serving as center

[ N — 1200x1200 m

L bounding box

n with driven vehicle
|

..:I 1amic 16x16 km

| acuve area m memory
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I&:{%n Area Extending

Figure 2 Active Area of Terraln in NPSNET

148




5 o 30

e A e e )

.adjusted as required by vehicle
ninmiuisindepmdm!om\chimmhimdmmm imple-

e T R e W WS NPT A S S
St et

On multi- -processor workstations, the simulator does not wait

efor additional terrain to be paged in. Instead, the additional CPUs
. wmnmdtopa;mn the terzain in parallel,

Terrain Paging Algorithm

Wlmlhuimulnorisirﬁtidiud. the driven vehicle is centered
ona 16'x. leivem'l'hcmdicuofllwmwmkilomem

-square containing the driven vehicle become the notional center.
‘Data is loaded into the sppropriate elements of a 50 x 50 array, and
A bounding box is established around the driven vehicle (centered

on the index of the center square), When the driven vehicle reaches
ﬂnbomdin;bothyd&ecﬁon.mctmymhfmdinmedi-
rection opposite of travel, terrain is paged in the direction of travel,
and the bounding box moves.The size of the bounding box can be
rate characleristics, Ter-

Terrain Rendering

‘Tervain rendering involves several sieps in NPSNET:

Q Determine which 1000m x 1000m squares are actually in the
ficld of view,

Q Determine resolution within each 1000m x 1000m square
(there may be at most two resolutions), including which fill
polygons are necded,

Q Rendér the terrain,

Two algorithms are {.ivolved, One chocks o see if a polygon is
within the field of view by calling a procedure that checks for the
intersection of a point (each point of the polygon) and a polygon
(the triangle composing the field of view) {3}, The olier determines
the resolution, essentially which nodes of the quadtree 1o render, by

the intersection of nodes with concentric circles corve-
sponding to ranges of the resolutions [13]. The circle-rectangle and
point: poly;on intersoction algorithms are applied repetitively to
render only terrain within the field of view and at the appropriste
tesolution levels, Figure 3 depicts multi-resolution within the field
of view, NPSNET is graphics bound, Therefore, the computational
expense of the above algorithms is better than rendering terrain not
actually in the field of view.

16 x16 Active Area Field of View
Resolution [

.l?.Sm

Figure 3 - Multi-Resolution Rendering
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Implementation of the above has resulted in a doubling of the
performance of the simulation over high resolution rendering alone.
However, performance when lazge numbers of objects (trees, vehi-
cles) are present in the viewing area does not change.

NPSOFF: Overview

The development of interesting virtual world systems requires
the modeling of many different graphical objects. How these ob-
jects arc represented it the system plays a major part in determining
the capabilities and ctiiciency of the system, We use a s.mple, flex-
ible object description language to mode! graphical an¢ some non-
graphical aspects of our objects called NPSOFF.

NPSOFF is a language system that consists of “tokens " that rep-
resent graphical concepts. These tokens are combined in an ASCII
file to represent an objoect. The object can then be referenced by an
application in an abstract manner, The spplication does not need 1o
know the details of how the object is composed. The level of ab-
straction that NPSOFF provides offers numerous advantages that
are discussod below, NPSOFF objects can have varying levels of
complexity to represent a wide range of graphical objects and envi-
ronments, NPSOFF also serves as a standard for application devel-
opment. This makes general purpose tools plausible and extremely
useful,

Functional Description
The NPSOFF language can be broken down into tokens. In eae-
ly versions of the language, the tokens almost one for

one to GL functions, Later versicns have adied more abstraction
and fiexibility, The language tokens simplify the interface to the GL
library biy labeling components and help encapsulate some of its
x ty‘
NPSOFF extends the GL interface by allowing many system
seltings (o be named. Naming system definitions allows us to build
librazies of commonly usod seitings like materials and textures.

NPSOFF wkens generally belong to one of three categories:
definition, display or characteristics/composition. The definition
tokens define graphics system settings. Definition tokens define
lights (normal and spot), lighting models (normal and two-sided),
materials, textures, and colors. Definition tokens are named and
stored in tables for latee access.

Display or execution tokens make up the bulk of NPSOFF. Dis-
play tokens represent a change in graphics system state or graphics
primitives. They are stored in a sequential display list in the order
that they appear in an NPSOFF file. Example tokens that change
the system state ase: setmaterial, setlight, setexture, etc. Bach of
these tokens has a name argument that corresponds with an earlier
definition. In the case of sedlight, the named light is associated with
one of seven possible light numbers [14]. These state tokens make
it easy to manipulate the graphics pipeline. Complex lighting and
shading effects can be done with NPSOFF in a simple and straight-
forward way.

The graphics primitives used in NPSOFF are: polygons, surface
(polygon with vertex normals), triangular mesh and lines. Addition-
al display tokens perform manipulations of the system matrix stack.
NPSOFF objects and components of objects can be transformed
within the object definition file. The tokens loadmatrix, multma-
trix, pushmatrix, popmatrix, rotate, scale and transilate define
stack manipulations.

The third category of NPSOFF tokens allow the user to define
object characteristics and composition. This allows a high level of
abstraction and supports complex graphics techniques. Two of the
main abstractions are composite objects and polygon decaling. NP-
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SOFF obpcts can be named and contain nested object definitions.
The uutgq definitions ¢an contain any display tokens. This struc-
" .muluple related objects to be treated as a smgle object

fgg graphics display. It also minimizes the duplication of primitive
- definitions; Objects are defined with the Mabjm token and dis-

play; with the callobject token. This structure is flexible and use-
il f E\inlding complex objects from simpler sub-objects.

iUsing an'NPSOFF object is also simple Essentially the user
neednounonlytmeﬁmdoncdlnom and display an ob-

_ject, There ate many more programmatic enuypoims to NPSOFF
. ‘b\ummyofd\emdulwnminmemoty

ation that is not
‘needed fof standard use, They are used primarily by tools that build
or mmipulue NPSOFF objects,

Physical Modeling Support

.In the past, simulations developed in the Graphics and Video
leﬁtilwy have cach handled physically-based modelling (PBM)

sysiem is an object-orienwd PBM system (8], These enhancements
give NPSOFF objects physical characieristics and provide mecha-
nisms to control an object’s motion given a list of intemal and ex-
ternal forces on the object, Objects are handled in an enclosed ref-
erence called the “environment”, All objects that participate in the
NPSCFF PBM sysier are members of the environment,

The NPSOFF PBM sysien: models object rigid-body dynamics
using a Newionian framework. An object can be given many phys-
ical propérties using the defphysies token. These peopertics include
the object’s initial location and location constraints in the environ-
ment, initial orientation and orientation constraints, initial linear
and angular velocities and constraints on each, the object’s mass
and centor of mass, the objoect’s ability to absorb forces (clasticity),
the dimensions of a bounding volume and a local viewpoint for the
objoct, Each object can also use its own system of measurement,
The defuniss token allows the user to specify the units of measure-
ment for dimensions, force magnitude and mass. This capability
was incorporated lo accommodate the use of object models from
various sources. The Pi3M sysiem uses reasonable constant or cal-
culated defaults for all physical characteristics so none of the prop-
ertics is required to be present when object physical characteristics
are defined.

Forces are defined and added 10 an object's force list with the
defforce token. Two types of forces are supported: deforming and
non-deforming. Deforming forces are used for object explosions
and bending. Non-deforming forces are used to alter an objects lin-
ear and angular velocities. Forces can be specified as awake or
asleep. This allows the selective application of previously defined
forces. The characteristics of a force defined with defforce are: type
(deforming/non-deforming), origin relative to object center and or-
igin constraints, force direction vector, magnitude and magnitude
constraints and force state (asleep/awake).

The run-time interface of the NPSOFF PBM system is simple
and flexible. Once the PBM environmert has been initialized, the
user can add or delete objects from the environment, add and mod-
ify global forces, modify object physical characteristics, add and
modify object force characteristics and modify object and force
states. The environment is processed once each display cycle. The
processing involves resolving forces, calculating object states and
displaying the objects, The NPSOFF PBM system provides us with
a simple environment to model object dynamics and interaction.
‘This is one of our first steps to add more physical reality to our ap-
plications.
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Advantages

NPSOFF provides many advantages to the researchers in the
NPS Graphics and Video Laboratory:

Q NPSOFF allows an application independent description of
graphical objects, Objects can be designed and maintained by
general purpose tools. Collections of objects can be built and
shared with other researchers,

Q NPSOFF adds a level of abstraction that greatly simplifies ap-
plication development, Also, by having a large collection of
common objects, developers can concentrate on how objects
should be used rather than designing and rendering the objects.

Q NPSOFF provides a simple, object oriented, run-time interface
to an object. Functions such as read_object(), display_object()
and delete_object() all operate on individual objects in memo-
ry. Evglmy functions are provided so flexible manipulations are
possible,

Q The stand-alone, reusable nature of NPSOFF objects encourag-
es the use of common libraries of definition tokens such as ma-
terials and textures,

Support Tools

The wide use of NPSOFF in our laboratory has led to a variety
of tools to aid in the design and maintenance of NPSOFF objects.
Thess tools include: The OFF calculator, NPSME - 2 material edi-
tor, NPSTE - a texture editor, NPSICON - a model builder and
NPSMOVER - a physically based design editor.

The OFF calculator allows in memory manipulation of NP-
SOFF objects using a simple command line interface, Using the
OFF calculator, objects can be ransformed (transformation applied
to all primitives), primitives can be added to an object, graphica
objects (spheres, boxes, etc.) can be added to an object and objects
can be concatenated.

NPSME is a material editor that helps manags librarics of ma-
terials [26), It reads and writes material definitions. Material defini-
tions can be selected from the library foe viewing and editing, The
malerial editor helps us to maintain a large collection of material
definitions used by NPSOFF objects in our applications, The ability
to interactively design and modify material definitions is very im-
portarit to rapid application development.

NPSTE is a texture editor that helps manage libearies of NP-
SOFF texture definitions [26]. NPSTE can use images in many for-
mals as textures, Portions of an image can be copied and used as a
texture image. Textures can be viewed on any NPSOFF object us-
ing either the texture coordinates specified in the object or automat-
ically generated coordinates using the GL function texgen() [14).
Textures can be edited using a simple pixel editor. Finally, a texture
definition can be saved in a library of textures and the library saved
as an NPSOFF file. The texture editor lets developers interactively
create, select and view textures independent of a developing appli-
cation,

NPSICON is an interactive object design tool [10}. NPSICON
lets a developer design or modify NPSOFF objects using a set of
predefined building blocks. NPSICON is designed to be used pri-
marily to build vehicular models. Objects can be edited and trans-
formed in many ways and then saved to an NPSOFF file, NPSICON
allows rapid prototyping of vehicular objects for use in appliza-
tions. It also allows developers to modify existing models quickly
and easily.

NPSMOVER provides an environment for users to design and
test physical dynamics of NPSOFF objects [8}. NPSMOVER reads
any NPSOFF file and assigns default physical characteristics if not
present. The user can then adjust all physical characteristics of the
object. Forces can be defined and added to an object’s force list us-
ing interactive controls. Once the object’s initial conditions, con-
straints and characteristics are set and the forces acting on the object
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-are speclf' ed; the dynamics can be “turned on”. The user can ob-
serve- the ‘effécts of the forces and make necessary adjustments,

Once the user is satisfied, the object can be saved to an NPSOFF file

. with all the needed tokens, The NPSMOVER tool provides a sim-
plesi inleractivé environment to view and adjust an object's basic dy-
‘namic behavior,

NPSOFF Future Directions

C\mem and future projects at NPS are working to extend and
improve NPSOFF mcludm; support for defining mm—object rela-
tionships and constraints, This would allow the composite object

-sthicture to bé extended to where each subobject has physical peop-

ertics and affects the behavior of the whale object. Also the notion
of linked objects will be explored in the context of NPSOFF, This
will allow.the realistic modeling of such things as vehicle controls

(e.g: sircrafi itick movement changes control surface which chang-
-¢s forces on whole aircraft),

-Another arca that future research will address is animation sup-
pori within NPSOFF, Support for continuously animated portions
of u4n object (vehicle antennac) or consiraint management of sub-
objects (doors, arms, ctc.) would be very useful to our rescarchers,
Such asystem would benefit from the standardization that NPSOFF
provides aid offer much more capabilities to developers.

The NPSOFF system is object-oriented in its design and use but
is implemented in a non-object oriented language. Modifying or ex-
tending the current system is time consuming and error prone, We
are currently rodesigning NPSOFF to be truly object-oriented and
implementing it in C++, The main benefits of moving to an object-
oriented implementation will be increased extensibility through in-
heritance and polymorphism and better maintainability.

Collision Detection

In earlier versions, NPSNET did not detect nor respond to vehi-
cle collisions, Without collision detoction and response, the realism
was poor. Bven with texturing, environmenta) effects and realistic
looking vehicles, the virtual world falls apart the first time one ve-
hicle drives through another, A possible solution to this problem
would be to prevent interpenctrations by bouncing objects off of
cach other afier any contact, but this is rarely accurate. Another pos-
sible solution is to destroy the objects involved in collisions. A third
option is 1o combine these two solutions along with varying stages
of damage to involved objects depending upon the physical charac-
teristics of the involved objects. The current version of NPSNET
detects and responds to collisions between objects in real-time, De-
tection is sufficiently fast to allow the time needed to respond prop-
erly. Response time is dependent upon the level of physically -based
modeling.

Collisions with Fixed Objects

The algorithm for collisions with fixed objects constantly
<hecks moving vehicles to determine if a collision has occurred.
The position of the moving vehicle is updated constantly, Conse-
quently, as soon as a vehicle is moved and its position is updated, it
is checked for a collision. In order to tnaintain a real-time speed, the
scope of the collision detection is severely limited. A collision with
fixed objects is checked only if the moving vehicle is below a
threshold elevation. All fixed objects are in some way attached 1o
the terrain and thus below that threshold elevation. If an object is
below that elevation, NPSNET runs through a linked list of fixed
objects which are attached to the current gridsquare.
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Collisions with Moving Objects

A collision with other moving objects is more complicated
since any other moving vehicle or object has the potential for col-
liding with the vehicle we are checking. The potential exists for
checking up to 500 vehicles and any of their expendable weapons,
Consequently, the scope of the collision detection range has been
limited in several ways,

As soon as each vehicle is moved, its position is checked
against the position of the neighboring vehicles, If the X or Z posi-
tion of any other vehicle is within 100 meters of the checked vehicle
then those two vehicles are sent to the second level check, At the
second level check, the distance between the two vehicles is caleu-
lated, If this distance is less than the combined radi: of the two ve-
hicles, then a collision has occurred and the third level collision
check is done, A rudimentary form of ray tracing determines the ac-
tual point of collision,

If worst case numbers are used to determine the implicit range
limitations of al! vehicles, it can be shown why this culling is fairly
accurate, Reasonable speed limitations of the various types of vehi-
cles are v.od to calculate worst cases for each (Table 1), Conse-
quently, the movement across more than two gridsquares within
one tenth of a second, one frame, is unlikely,

Table 1: VEHICLE MOVEMENT LIMITATIONS

KPH | mysec | Frames/sec | m/Frame

Tand | 01 108 10 T.06

Sea 50 138 10 138
Ar | 1000 | 2777 0 27‘J'l'_

Collision detection is accomplished by determining if one ob-
Ject's bounding sphere has inierpenctrated another, The radius used
in the spherical check is the maximum distance from the center of
the object 10 the furthest outer vertex. In the collision response por-
tion of the sysiem, the actual object’s penetration point is deter-
mined, A slightly smaller value than the actual radius of the object
is used for the radius, This produces a more realistic collision pos-
sibility since it increases the likelihood of an actual collision of the
checked objects and not just their spheres. Once the collision has
been detected, the extent of damage and collision response are de-
termined.

Collision Response

Collision response is handled by a function which takes into ac-
count speed and angle of impact, mass of the objects involved, ex-
plosive potential, resistance to destruction, moldability of the ob-
jects, rigidity and fabricated spring forces which determine the
bouncing-off effect and likelihood of survivability. Each of these
factors is weighted in order to provide as realistic an effect as pos-
sible while maintaining the environment in real-time.

Moving Objects

In the case where two moving objects impact, all of the physi-
cally-based modeling characteristics of each object must be consid-
ered. The collision point must be known to create realistic respons-
es in the involved objects. The collision point determines the point
for any type of bending, crumpling and molding. Moreover, if the
point of collision is part of a wall that is interconnected 1o several
other walls then there will have to be corresponding responses in
those interconnected walls. The only way to find the collision point
is through ray tracing.




The first ray is shot from the center of a moving object towards
the center of an adjacent object to determine a possible point of col-
lision. This collision may simply be between the bounding sphcrcs
of the two objects and not the actual objects themselves, The inter-
section ‘between the first ray and the second object’s bounding
sphete is used to specify the direction of a second ray originating
from the adjacent object’s center.

The second ray determines if one of the object’s actual poly-
gons was penetrated, This second ray is the ray used in Haines’ al-
gorithm, This algonthm from Glassner [4] was adapted for use in
the collision point determination, It involves running through the
list of polygons that comprise the adjacent object and determining
if the second ray intersects the plane containing the polygon. If no
intersection is found once all of the polygons have besn checked,
then only the spheres were penctrated and not the objects them-
sclves,

Reactions

The proper response is performed by comparing the character-
istics of two objects involved in the collision, For fixed objects, the
responses include several degrees of damage, based upon the speed
and mass of the colliding object, Up 1o three levels of damage plus
the original undamaged fixed object are available for display after
acollision, For mobile objects, the response depends upon the angle
of impact as well as the speed and mass of the two involved objects.
The mobile object reacts by either bouncing away or being de-
stroyed and exploding. In the special case of contact by munitions,
the only response is an explosion,The limited number of options
available for the response to the collision keep the response fast to
mintain the real-time criteria. The collision point and direction of
tavel are passed to another module that handles physically-based
modeling of object movement. This function’s implementation can
be seen in [8).

SIMNET Networking Integration

SIMNET networking intcgration is part of our NPSNET efforts
on software structures for world modeling in that networking pro-
vides the locations and actions of other players in our visual simu-
lators, We use Ethernet and TCP/IP multicast packets of our own
design for the current NPSNET system. We are in the process of in-
tegrating the networking system with the SIMNET standard pack-
cts as the full description and documentation is now available. This
connection to SIMNET will provide players, weapons firing and
other state information with which we can test our world modeling
efforts. At a later stage, we hope to examine some of the available
work on higher speed networks, such as FDDI, as it becomes com-
mercially available and relevant.

NPSNET-HARNESS Structure

The NPSNET-HARNESS process was developed 1o allow the
rapid integration of different components into the NPSNET simula-
tion system and in partial response to Ethemnet's speed and address-
ing limitations {15]. The high level structure of the network hamness
is shown in Figure 4. The hamess is divided into two main sections,
the Network Daemon and the User Program Interface, which com-
municate via shared memory. The principle purpose of the Network
Daemon is to provide low level data and network management sup-
port for user written NPSNET “player” programs. Player programs
developed by users are stand alone applications that provide specif-
ic world interaction functionality.

The User Program Interface consists of a set of routines that al-
low the programmer to interact with the network at a higher level of
abstraction. These functions include setting up the shared memory
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space with the network daemon, creation of a network read key,
message formatting, and the actual reading and writing of network
messages.

Message Types

One of the interesting things abuut the Ethernet network is that
it is more efficient to have a few long messages rather then many
short messages[16). This influenced the creation of five message
types and formais.

The message types, NEWSTATMESS and DELSTATMESS,
are used when a a station enters the network and when it no longer
is an active player in the networked environment. These are used
solely as administrative messages and do not affect the appearance
of any vehicle,
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l Figure 4 Structure of the NPSNET Network Harness

One of the features of NPSNET is the capability of allowing the
user to change vehicles during the execution of the simulation, The
SWITCHMESS notifies all the other nodes on the network that the
user has changed vehicles. This does not affect the appearance of
any of the vehicles.

The UPDATEMESS is the largest message used in NPSNET
and it is also the most common, accounting for almost all the net-
work traffic. Before we discuss this message, the concept of the
state of the vehicle must be covered. As mentioned previously, the
vehicle's position is updated only after a speed or direction change.
The tilt and roll of the vehicle can be derived from the location on
the terrain and need not be sent across the network. Additionally,
the orientation of the turret, the gun elevation, vehicle destruction,
and weapons firing all change the state of the vehicle. Whenever
any of these state parameters change, a message must be sent to up-
date the other network nodes.

Since it is more efficient to have a few long messages rather
then many short ones, we combined all of the vehicle state parame-
ters into a single message. This has the additional benefit of updat-
ing all of the vehicle parameters at the same time to ensure accurate
placement and orientation of the vehicle.




NPSNET-HARNESS Future Directions

Currently there are two major efforts underway conceming
NPSNET-HARNESS, The first of these is the porting of the system
to Sun SPARC workstations, We envision providing the user a stan-
dard network interface for both the IRIS and Sun workstations, This
will allow the development of Autonomous Agents (AA) and Semi-
Automated Forces (SAF) that can interact with the vehicles that are
driven on the IRIS workstations, Our 100+ departmental Sun work-
stations would then serve as a distributed multiprocessor,

The second major effort is the utilization of the SIMNET Pro-
tocols [11]). As shown in Figure 5, we plan on constructing an inter-
face between the User Program and the Network Daemon to con-
vert the format of the protocols between the internal and external
protocol, This will later be extended to the DIS Protocols [5] as
well. The use of a translator will isolate the programmer from
changes in the protocols, Naturally, we will increase the number of
messages available to the user when we use the new protocols, but
the old message formats will remain,

User Program
~-I Network Send I Neiwork Read
Message  Request for Message
Interrupt Data 8 Message Data 8
Protocol Converter Protocol Convorter
+ Shared Memory *
i Inco
Mgslisoge ‘in eue | Mess-smue
Message
Message Data B
Y~ Neiwork Dacmon
k Network
Send M
o I S
Message Message |
—{

Figure 5 Protocol Interface

Semi-Automated Forces

The current DARPA SIMNET system has a semi-automated
forces (SA«) component in it. The SAF system provides autono-
mous players to SIMNET when sufficient numbers of actual, inter-
active players are not available or affordable. The Graphics and
Video Laboratory has considerable experience in generating such
players as our visual simulation efforts have a close coupling to our
depantment’s artificial intelligence and robotics efforts (20,21}, We
are continuing those efforts and expanding that work to take advan-
tage of the available parallel processing capabilities of our worksta.
tions.

NPSNET-MES: Overview

Earlier versions of NPSNET used randomly guided vehicles to
populate the battlefield. These vehicles had very little intelligence
and were only capable of firing back at an attacker or running away.
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It is not enough to have random vehicles moving about the battle-
field without a mission; we must populate the battlefield with com-
bat formations that act semi-autonomously as well. The NPSNET
Mobility Expert System (NPSNET-MES) provides realistic semi-
automated forces (SAF) to introduce sufficient numbers of un-
manned players into the system to make the simulation more chal-
lenging and exciting, NPSNET-MES consists of two components:
apath generation module and a vehicle controller module, The path
generation module determines the SAF route and mission based
upon the SAF controller input. The vehicle controller module uses
the programmable harmness, NPSNET-HARNESS, to multicast data
packets via Ethernet to control the SAF vehicles during the simula-
tion. NPSNET-MES integrates SAF into an already existing net-
work simulator such that no changes are necessary to NPSNET,

Problem Description

One of the major objectives of our work is to determine the best
approach to integrate semi-automated forces into an already exist-
ing simulation, The following are the minimum capabilities of the
semi-automated forces; The SAF controller specifies a path that in-
cludes start and goal points with possible way points along the
route. The SAF must negotiate all known obstacles without hitting
them in a relatively optimal path. The SAF vehicles within a SAF
formation must {ollow the lead SAF vehicle suck: that they maintain
relative positions and do not collide with each cther. The SAF con-
troller specifies the number of combat formations as well as the
number of vehicles, speed and type of each combat formation.
When a SAF vehicle is killed, it no longer moves, NPSNET-MES
integrates the SAF into the existing NPSNET without any change
to the system. Once the SAF controller determines the SAF prereq-
uisite information, NPSNET-MES makes that information avail-
able to NPSNET for use during the simulation, These basic consid-
crations drive the requirements for the NPSNET-MES prototype
system.

Integration with NPSNET

To get the desired results, NPSNET-MES is designed to act in
a stand alone mode. This means that NPSNET-MES integrates the
SAF into NPSNET by using the existing set of programmable net-
work hamess routines, NPSNET-HARNESS. The main problem
separates into two distinct subsets: designing semi-automated forc-
es that can navigate and travel a specified path and transmitting the
information generated by the first part.

Path Generation Module

This module is a 2D : rap/interface that the SAF controller uses
to perform SAF vehicle placement and route selection. The SAF
controller is able tu contro] the SAF parameters, such as number of
SAF formauons, number of vehicles in each SAF formation, and
type of SAF vehicles and input a desired path with intermediate ren-
dezvous points as well as a speed for each path segment.

NPSNET-MES stores this information in a file available to the
vehicle controller module.The path selection criteria for this mod-
ule is not an optimal path, rather it is a relatively simple path that is
found quickly. This module generates a path based on a priori ob-
stacle information using a circle world.

Computational versus a priori Path Planning

The path generation module’s path generation algorithm uses a
modified breadth-first search of a bounding box rather than the
more traditional artificial inteligence approach of a priort generat-
ed paths because 1t 1s more efficient and less complex. The compu-
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tational approach searches the bounding box, shooting a line be-
.twéen the start and goal to determine if the goal is visible from the

start, If the path has an obstacle, then the path finder is called recur-

‘sively until a path is found around obstacles enroute to the goal, The

NPSNET-MES path generation module algorithm bounds the
search area using the start and goal points to limit the search within
a wi'

An a priori path generation produces paths for the entire data-
baseé requiring a longer amount of time and more memory to store
those paths for quick access than a computational generation. The
recursive path planner grows in a linear fashion versus a non-linear
growth for the more traditional @ priori method (Figure 6).

Figure 6 Computational vs, a priori Search

Path Generation Module

The path generation module is the interface for NPSNET-MES
with NPSNET, This program places the generated paths in a sorted
linked list by ascending order of time. A path point time is a running
total time for the vehicle from the start up to that point. Using the
system clock to maintain relative time, the paths are taken off a pri-
ority list. The NPSNET-HARNESS sends updated messages re-
flecting the new vehicle position, direction, and speed 1o NPSNET.
NPSNET receives the path data and the SAF vehicles respond to the
vehicle controller commands ensuring that the SAF vehicles stay on
track with the generated paths,

NPSNET-MES Results

NPSNET-MES provides a relatively efficient solution to find-
ing a good path for the SAF vehicles. The path found by the path
generation module does not attempt to find the best solution only a
good solution, since the human that it emulates usually only finds a
good solution when conducting path planning. The vehicle control
module provides the necessary interface between NPSNET-MES
and NPSNET so that the SAF forces travel as they would in real
life.The system provides a realistic friend or foe force on the simu-
lation battlefield. NPSNET-MES effectively integrates SAF into
NPSNET. This system is a prototype for research, therefore it has
many potential capabilities that can be added at a later time,
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Path Generation Module Limitations

O No dynamic path planning for the SAFs to react to other play-
ers during the simulation,

O Produces only one combat formation type for the entire mis-
sion,

O Terrain slope considerations are not incorporated in the path
planning algorithm.

The most serious limitation with the system is the inability of
the SAF to react to other players in the simulation. The SAF mis-
sions are pre-set before the simulation begins and cannot be altered
once it commences. This was a design decision made at the outset
of the project, The deficiency can be corrected by incorporating a
local path generation capability within the vehicle controller mod-
ule. When a SAF comes within range of an active player, the vehi-
cle controller module path generation function would generate a lo-
cal path around the moving obstacle and then the SAF reenters the
previous path at the closest point.The path generation module plac-
es all follow-on vehicles in a column of wedges, This is a good
movement formation, but there are many occasions where other for-
mations would be appropriate, This additional flexibility is possible
by giving the SAF controller some options during his path planning
preparation, Terrain slope considerations are not incorporated into
the path generation module because the design calls for a fast and
efficient path planner, Terrain analysis requires more computation
per path segment since the path generator evaluates each path seg-
ment terrain slope for terrain selection.

Path Generation Module Limitations

0 Limited SAF vehicle reaction to active simulation players.

0 Projected and actual path plots deviate cuz to clock speed and
network transmission times.

A design decision was made carly in the design phase rejecting
multiple reaction capabilities, The SAF vehicles die when attacked
because NPSNET-MES no longer sends update positions and re-
duces the speed to zero, By increasing the number of items that the
vehicle controller module checks from the network, the reaction ca-
pability is upgradeable.

The final limitation is not a serious one since deviations arc
small and the shifting movement is not conspicuous. To fix the
problem, the system must be able to operate at the millisecond rate
or faster since the path points are in an ascending order queue. Some
path points may have the same time stamp causing a delay for at
least one of the SAF vehicles. NPSNET-HARNESS is not able to
operate faster than its current rate due to hardware system limita-
tions, The limitations create a bottleneck because there is only a sin-
gle wire and single port on the Ethernet. There will always be some
ervor due to transmission time delay, but this effect is negligible as
long as the machines are in relative proximity.

Aural Cues for 3D Visual Simulation

A realistic virtual world must include aural cues about the ob-
jects in the world. These cues should provide feedback about the us-
er’s environment and actions taking place. A recent addition to
NPSNET is the support of sound feedback to the user.

The addition of sound to a complex virtual world is itself com-
plex. Often, parallel event generated sounds are routed to sound de-
vices which are serial in nature. This imposes a severe limitation
that must be worked around.

One solution we are investigating involves a process that can in-
telligently manage requests for sound issued from NPSNET.




_ This process would have several responsibilities:

Q Receive sound requests, resolve multiple similar sounds into a
“single sound that can represent them and throw away requests

_ -of significant age.

'Q Coordinite re(l\‘:wts for continuous sounds (e.g. background
‘noise, other vehicular noise, etc.).

O Manage the use of multiple sound production devices (e.g.
samplers, keyboards, MIDI devices, etc.).

Q Facilitate the use of 3D sound,

This sound manager process would allow NPSNET to deal with
sounds in & fairly abstract manner. Only knowledge of classes of
souinds would rieed to be shared between NPSNET and the sound
manager. This will allow us to modify the sound manager easily
without affecting NPSNET.

Currently, sound support in NPSNET is limited. We use a Mac-
intosh II¢i running in-house software to play digitized sound files.
The Micintosh is connected to an IRIS workstation running NPS-
NET by a serial link between RS-232 ports, When NPSNET wants
to produce a sound, it issues a request for a specific sound to be
played by the Mac via the serial port. The Macintosh queues the re-
quest, locates and plays the sound in the system resource, There are
several limitations to this solution;

Q NPSNET must know specific sound names that exist on the
Macintosh and request them by name,

Q Currently all sound files on the Macintosh must reside in the
5 :tem older, This limits the number of sounds that are avail-
able,

Q Only discrete sounds are currently used. There is no notion of
continuous sounds.

Q A single device with one channel is used to reproduce the
sound. This can lead to a backlog of requested sounds.

Q The queue of sound requests on the Macintosh can become
overloaded due to the above backlog, This can result in lost
sounds, delayed sounds or queue overflow.

Ongoing work with sound and NPSNET is approaching the
model outlined above, We are beginning to investigate high quality
sound samplers and MIDI devices attached to the Macintosh to col-
lect, create and reproduce various sounds, Suphisticated sound ed-
iting, sequencing and control software on the Mac give us many op-
tions for creatively employing aural feedback in NPSNET. Support
for 3D sound is also under research.

Since many sounds are object-based, NPSOFF objects will sup-
port the description and management of sound that pertain to them-
selves. The sound control with NPSOFF will provide a standard use
of sounds and facilitate the collection of sound definitions just as
we collect materials and textures.

We believe that sound is an integral part of any serious virual
world simulation. We are actively pursuing efficient, extensible and
effective solutions to integrating sound into NPSNET.

NPSNET: Current Performance

The current NPSNET system runs on a variety of platforms.
Our highest performance system in the laboratory is the Silicon
Graphics, Inc. IRIS 240 VGX with 64MB CPU mcmory. The VGX
system is listed by the manufacturer as being capable of some 1 mil-
lion triangles per second, z-buffered and Gouraud-shaded. On that
system with terrain texturing on, NPSNET shows 6 frames/second
with many objects in the display and 9 frames/second with few vis-
ible objects. The system has a switch to tum off texturing of the ter-
rain and the frame rate roughly doubles respectively.

‘The performance of NPSNET is not affected by the addition of
the collision detection and response modules as it is. The response
time for detection of fixed objects is adequate regardless of the
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speer of the moving objects, However, for collisions between two
high speed objects, collision detection is sometimes slow,

Fully Interactive and Detailed Virtual Worlds

While the NPSNET virtual world is not yet complete (and may
never be), it is still a consequential and somewhat useful system,
The NPSNET project itself is a good study of the complexity of
constructing 3D virtual worlds with available commercial technol-
ogy and why fully interactive and detailed virtual worlds are not yet
even on the horizon despite media promises, We are optimistic and
hope that by “pushing the envelope” of real-time, workstation-
based virtual reality, we are finding a way to reach the goal of a ful-
ly interactive and detailed virtual world,
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ABSTRACT

The Virtual Environment Realtime Network
(VERN) is an object oriented testbed for the
interconnection of environments over a nctwork
of graphical workstations. VERN is based on
extensions to the networking technology of the
DARPA sponsored SIMNET combined combat
training system and the Distributed Interactive
Simulation protocol being developed as s DOD
standard. It allows for multiple participants to
interact in an environment, sharing ideas and
solving problems, regardless of their physical
locations. Furthermore, dramatic reconstructions
of historical events for education or eniertainment
will be possible. Indecd, much of the impact of
VERN is likely to result from the ability of
participants to Jeam from each other even if they
and their machines are separated by long distances.

INTRODUCTION

Virtual Reality/Virtual Environments (VE) describes a
multi-sensory real-time simulation that immerses the
participant in a multi-dimensional (usually 3D) graphical
space, allows freedom of movement within the space, and
supports interactions including the modification of most
features of the space itself [10,13]). Additionally, a VE
system may include modeling tools for world
construction, rendering tools for viewing, storage
mechanisms for saving memorable experiences, 1/O
devices for controlling aspects of the space and
communication ports for shared environments.

Recently, rescarch in the VE field has now turned its
attention to networking issues for shared experiences.
Two phases must be cunsidered : rendering (distribution of
graphical data) and computation (distribution of the
physical model). The Visual Systems Laboratory (VSL) at
IST is currently working on both of these problems.

Our efforts have produced two seftware systems :
ANIM and VERN. ANIM is an interactive graphical
simulation system with support for devices like
SpaceBalls and gloves (VSL Input Paw). Modeling tools,
such as Alias (high end rendering tool, Alias Research),
MultiGen (tool for CIG databases, Software Systems) and
S1000 (SIMNET’s CAD system, BBN) are used to build

environments which are inputs for the system. ANIM has
been extended using VERN protocols and can now operate
on several computers, distributing the computations of the
objects as well as distributing the space iwself. This paper
will focus on VERN and how systems like ANIM can use
VERN to distribute virtual objects, computational load and
user interactions across multiple simulation platforms.

Simulation Network (SIMNET) [7,12] is a project
sponsored by the Defense Advanced Research Projects
Agency (DARPA) and was designed and built by BBN
Laboratories Inc. and Perceptronics Inc. It allows for
collective team training in combined arms scenarios. All
of the simulators arc networked via EtherNet and the
communication model is based on the “dead reckoning”
paradigm [8). VE applications are a far more demanding
simulation than SIMNET, because in a truly useful virtual
world, every object is dynamic. In traditional simulators,
only a small collection of moving objects can be
maintained.

As a follow-on to the homogeneous SIMNET system,
the US Army has explored the possibility of expanding
these concepts to address the networking of large numbers
of dissimilar training devices. The next important step in
this research is the development of a standard
communications protocol for Distributed Interactive
Simulations (DIS) [8].

Interactive simulations in the SIMNET and DIS worlds
perform computations and communicate by a dead
reckoning model, Each object in the simulation has a host
machine which will process its dynamics, All other
machines have representations of the object which
maintain an approximation to the current state of the
object. The approximation of a simulation object's state
is computed by a dead reckoning algorithm. This
computation is usually an exirapolation of the object's
position based on velocity. When the host objeci realizes
that the dead reckoning model has deviated significantly
from the dynamic model (probably because of user input),
an update message is sent to all other representations of
the object on every other machine.

DESCRIPTION OF VERN v1.2

VERN v1.2 was developed to meet the needs of the
simulation community as a vehicle for development of
networked environments as well as to break new ground in

the development of interactive VE systems. This
implementation is an extensible object oriented class
hierarchy where the communications, dead reckoning and
process control are abstracted to the highest levels. Most
importantly, VERN extends the notion of dead reckoning
into a distributed physical model.

VERN evolved from a non-realtime Smallialk-80
prototype [2,3,4]. Version 1.2 is implemented in C++ and
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currently runs on Silicon Graphics and Sun Sparc UNIX
systems.

The communications protocol forms the software
basis for an environment that will support experiments
with a network of visual simulators operating in a single
simulation. This environment will contain dynamic and
static objects. For example, terrain over which objects
move may be dynamic while buildings in a city may be
static. Objects in the simulation communicate with each
other without having to know the host machine on which
the receiving object resides. Each object assumes that all
objects are in its own local memory. Under the VERN
protocol, messages bound for remote objects are
intercepted and routed accordingly.

Players and Ghosts

Each real world object participating in the simulation is
represented by a software object called a Player, The
Player resides on the object’s home machine. If human or
external input is required by the Player, the data is read and
processed on the Player's home machine. The main
responsibility of the Player is to accurately maintain state
information, read and process inputs, provide feedback
usually in the form of rcal-time graphics, and inform the
network of any significant state changes that deviate from
the dead reckoning model.

In order to facilitate communication between Players
residing on separate machines, each Player has an
associated Ghost located on every machine involved in the
simulation. Thus in an N Player simulation on M
networked machines, each machine is guaranteed to have
exactly N objects representing all players. Such a
configuration allows Players to communicate locally with
any other Player (represented by its Ghost). It is the
responsibility of the Ghost either to respond directly to
the message, or to forward it to the actual Player.

Ghosts are approximations of their associated
Players. That is, the state of a Ghost is not always as
precise (algorithmically) as the Players, but this
approximation is adequate for visualization and dynamics.
All Ghosts that are associated with a single Player are
synchronized at any given instant in simulation time
through the use of the system clock, message passing and
dead reckoning. When the Player realizes that its Ghosts
are going to be inaccurate, the Player then communicates
the correct state information to al} Ghosts.

Message Types

There are two types of messages to which Players and
Ghosts respond: queries and commands. Queries are
messages which can be processed entirely by the Ghost.
Commands are messages thai must be passed on to the
Player. Thus, a message that requests state information
would be considered a query while a change of behavior
message would be a command.

Class Hierarchy

VERN v1.2 was designed using the object oriented
paradigm. The classes that comprise the highest levels of
the hierarchy contain the code for handling all of the
communications and process control protocols. This
hierarchy is considered a white box framework [6] because
the user (programmer) of the system must follow the
structures that the abstract classes establish. Figure 1
shows the abstract class hierarchy of VERN v1.2,

Object

Clock

AbstractVERNObject Router AbstractState

VAR

AbstractPlayer AbstractGhost

Figure 1. Class Hierarchy for VERN v1.2

There are additional classes not shown here which
represent communication support structures such as
mailboxes, addresses, and sockets. The following
describes each of the abstract classes.

class AbstractVERNObject ;,

This class contains the virtual methods
which handle actions to be performed in each
simulation loop. For example, initializations,
maintenance of the local mailbox (repository for
messages), and access to the state information,

class AbstractPlayer :

This class defines the basic components of
the simulation Player. Virtual methods in the
class are used to support such activities as
processing of incoming messages, internal state
configuration and message creation,

class AbstractGhost :

This class defines the *view"” of a Player as
seen by other local and remote Players. A
simulation Player located on a workstation can
communicate with another Player only through
its AbstractGhost. An instance of this class
contains limited state information which is useful
to other Players. When the state of the Player
changes significantly from the dead reckoned
state, a message is sent to all AbstractGhosts to
reflect the new value.

class AbstractState:

This class defines the state variables used in
the AbstractPlayer. Each implementation will
inherit from this class and use it as a guide. The
class AbstractVERNObject has an instance of
AbstractState as one of its instance variables,

IMPLEMENTATION DETAILS

To write a Player/Ghost program, the programmer must
creale concrete subclasses of the abstract classes listed
above. For example, consider the definition of a moving
ball.  The classes that must be created are
MovingBallPlayer (subclass of AbstraciPlayer),
MovingBallGhost (subclass of AbstractGhost), and
MovingBallState (subclass of AbstractState). These new
classes must then be compiled, linked and executed.
Further examples of Players may be found in {2].

The first classes that must be created is a subclass of
Abstract Player and AbstraciGhost. There are two methods
that must be reimplemented in the new Player. These are
processMsg and computeN (xtState. The Player must also
have a constructor method (o create instances.
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Method : constructor

The purpose of constructor methods in C++
is to provide a default way to instantiate new
instances of a class. In our case, a string
containing the name of the Player is the required
parameter. The main function of the constructor
is to initialize the state instance variable,

Method : processMsg

Since C++ does not internally support
machine to machine communications, a low level
messaging system is necessary. Support for
sending raw packets of data between UNIX
processes has been supplied. The responsibility
of creating and interpreting the raw data is left to
the Player.

The purpose of processMsg is to interpret
and respond to incoming messages. It is
important to note that messages may arrive from
many different Players. Each raw message
contains the source, destination, data and type.

Method : computeNextState (for Pleyer)

This method serves two purposes. The first
is to perform any internal processing which
might be required by the Player. For example,
calculate new position and velocity based on
current simulation time. The second purpose of
this method is to update the state information of
the Player.

Method : computeNextState (for Ghost)

The objective of this method is to compute
the Ghost's approximate state model. The Ghost
determines the next state of the player, without
any additional information coming from the
player. This is how dead reckoning is
implemented within VERN. Each Ghost performs
this message once cach simulation loop.

In order to facilitate complete freedom in defining
state information of a Player's object, an AbstractState
was created. This abstract class provides default
definitions of methods that must be reimplemented. It
defines no instance variables. This means that the
concrete Player class must define and maintain all of is
own instance variables. The main methods in this class
are comparison operators such as == and !=, mathematical
operators such as + and -, and the assignment operator =,
There are no other restrictions placed on the addition of
subclassses.

EXECUTING THE SIMULATION

Previous versions of the VERN used a synchronized clock
as the simulation coordinator. Using this
synchronization system enabled the state of the Player 1o
know (via a local dead reckoning) the Ghost’s exact state
at every tick of the clock. Although this is important, it
can be accomplished using the computers’ real-time
clocks. This allows each computer to execute as fast as
possible and it also reduces the communications overhead
of clock maintenance.

The function of the Router is 10 maintain the
connections to the outside world, maintain a list of active
local and global Players, and route messages according to
their source and destination. All of the routers know the
locations of the other routers and the addresses of all

objects. This global information allows the router to
make decisions about the direction of the message. The
Router’s main loop asks each of the local objects to run
one simulation cycle. During this cycle, objects execute
the inherited methods above.

Node 1

Node N

Player Player
B Local Local
Ghost Ghost
Y eo e Py
[ ] [ ]
Player Player
u Local Local
Ghost Ghost
Clock

Figure 2. Process Architecture of VERN v1.2

Additionally, the Router can report the current
simulation configuration and dectect simulation errors,
When a Player leaves the simulation, the Router
immediately realizes which Player is missing and then
reports this to all Routers in the system. Figure 2 shows
the overall system architecture of VERN v1.2,

There are additional system functions worth
mentioning. An automatic update is has been added. This
forces the Player to update its Ghost at a specified interval
(usually 3-% seconds) even if no update is needed. This
function is useful when the communication sysiem drops
packets. Using this function provides for reliable
Player/Ghost synchronization.

An additional system parameter is called “dynamic
update." Dead reckoning algorithms have a base threshold
on which an update is based. The dynamic update is
another threshold which provides the user with some
control. The dynamic update threshold specifies the
amount of error in the dead reckoning algorithm. For
example, if the user is interacting with the environment at
a detailed level, then the dynamic update will be set 1o a
small value, resulting in accurate synchronization between
Player and Ghost.

One last feature is called "update tracking.” When a
Ghost reccives an update message from the Player, usually
the position has changed significantly. If the update
tracking is set to "jump”, then the object will disappear
from its current location and reappear at its updated
location, causing a visual disturbance. If the update
tracking 1s set to smooth, then the object will track
evenly to its new posiuon. This wacking wall occur over a
number of frames and the amount of smoothing can be tet
as a system paramelter,
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ISSUES FOR DISCUSSION

There are many issues that arise in research projects of this
nature, It is useful to note that VERN v1.2 is only one part
of a larger project to develop VEs, and its main purpose is
to show proof of concept. Below are a few interesting
topics that emerged from this implementation.

Communications

The base communications between different machines
is accomplished with a “broadcast” UNIX socket.
Broadcast sockets distribute their packets to anyone
listening. Socket communications using the broadcast
mechanism are not guaranteed: messages sent may not
reach their final destination. Additionally, broadcast is
convenient for local communications but may not be
useful in long haul systems. By experiment, the
performance advantages of broadcast messages outweigh
the risk of occasional lost messages. Point-to-Point
sockets are the main means for long haul communication.
VERN has been tested over private communication lines as
well as on the nation-wide Internet.

It should be noted that the lowest level
communications were written in-house. There was a study
of language based communications systems, such as those
that support TimeWarp and Actor |5,1]. It was determined
that these systems are useful, but our need to learn and
experience workstation based communications outweighed
their use. Implementing VERN using an Actor or
TimeWarp paradigm is possible and is part of our future
research.

Object Oriented Design Using C++

This is probably one of the most interesting parts of the
VERN. One of the main arguments against the use of C++
as the base language for the VERN is that is does not fully
support polymorphism. Dynamic binding of method calls
is restricted in some cases because of the strict type
checking. Since the design of this project incorporates
abstract classes, a language with flexible support of
dynamic binding and type checking would be more
suitable, Smalltalk would be a suitable alternative and
may solve some of these problems, but it is not yet
available on a wide variety of workstations.

Performance

The performance of VERN has been measuerd and a detailed
description of experiments can be found in [3]. Currenily,
running on & network of 2 Sun Sparcs and 4 Silicon
Graphics workstations, VERN v1.2 can achieve 300-350
frames/second. The test environment consisted of 5 balls
bouncing in a closed box. We have conducted extensive
experiments on non-triviar ..vironments and the results
are encouraging. We expect frame rates of 5-10 per second
with an environment consisting of 1000 objects (~10k
polygons).

Future Directions of VERN

The major goals of the next version are to improve
efficiency, investegate other dastnibuted simulauon
systems, experiment with extended environments and
continue work on long haul communications.

The design of this project represents only one hmited
view of VE system development, Framewor'ss, hke VERN,
need to be combined with other object oriented systems Lo
form complete VE systems. This project and others, hike
ANIM, are hkely to pave the way 1o robust systcms,
These new VE’s will contain physical aodehng. teal ume
control of objects, decentralized  clocks  and  spatial

division of computations in an object oricnted framework.
The next level of research for this project will look at
these issues to determine commonality and reusability
which will extend the functionality of the entire system.
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A Framework for Dynamic Visual Applications

Mark A. Tarlton and P. Nong Tarlton

Microelectronics and Computer Technology Corporation

Abstract

The Mirage system is an object-oriented framework for construct-
ing interactive visual applications. It takes a model-based ap-
proach o application development by providing a representation
system for graphics, interaction, and time-based dynamics. This
paper will provide a bricf overview of the architecture, examples
of its use, and s comparison to alternativs spproaches.

1.0 Introduction

The goal of this work is to create a foundation for animated, inter-
active 3D graphics that will reduce the time and expertise required
to produce visual applications. Our hypothesis is that a model-
based approach to application development provides significant
u'lmugea over more conventional procedural programming tech-
niques.

To test this hypothesis, we have developed a foundation for inter-
active 3D graphics that supports this paradigm. It combines ele-
ments of object-oriented programming and frame-base knowledge
represcntation to provide the functionality of window systems,
graphics systems and animation systems.

2.0 Modeling Methodology

The modeling process begins by describing elements of an applica-
tion domain in terms of the primitive clements of the representa-
ton system. These new classes of objects are domain-specific
primitives that map their domain attribuies onto graphical at-
tributes. They are then used to create models in the desired do-
main. As the domain attributes change through the evaluation or
simulation of the model, the ¢flects propagate down to the low-lev-
¢l graphical attributes. The resulting structure is then interpreted to
produce the desired visual presentation.

In Mirage, modeling is accomplished thsough the use of a repre-
sentation system. The purpose of the representation system is to
provide a framework for describing the elements and behavior of
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system in a modular, declarative style. The developer creates a
model by manipulating elements and attributes of the representa-
tion system. The representation framework then provides the nec-
essary infrastructure to handle rendering, flow of control and event
management. The intent is to hide details, such as how rendering is
to be done, and focus instead on what the resuli is to be.

The representation system cmployed resembles a simple frame-
based knowledge representation system(6). The primary clements
are:

¢ classes and instances of objects,
+ object attributcs and values,

» operations on objects, and

* relations between objects.

Models are created by making instances of objects, setting the at-
tribute values of the objects and composing the objects via wrious
relationships, such as a “component™ relation.

The graphics representation system of Mirage is where an applica-
tion specifica what is to appear on the screen, while the renderers
interrogate the model and perform the hardware-specific opera-
tions required to present an interpretation of the model on the
screen. (see Figure 1), The final result of interpretation depends

Device-specific

lntorpcetapt.l:n

Representation image

Figure. 1. Representation and interpretation

upon the specific type of interpreter being used and upon the re-
sources available to the interpreter. For example, different graphics
interpreters may behave differently depending upon the specific ar-
chitecture of the graphics subsystem they are using or the degree of
realism desired. Similarly, a different type of interpreter may pro-
duce an interpretation showing a partwhole structure diagram
rather that the literal appearance of the model elements.

The advantages of the modeling approach to graphics are:
« it reduces complexity via declarative, constructive style of
usage,
« it supports a variety of rendering styles and platforms,
« it is usable either by programming or through knowledge-
based or interactive tools.



3.0 The Mirage System

A representation system for 2D and 3D graphical presentations has
been defined and & prototype (Mirage) has been implemented in
C++ under Unix for both the Silicon Graphics Inc. Graphics Li-
brary (SGI-GL) and for X Windows/PEX. This prototype has been
used successfully to construct interactive applications including
scientific visualizations for the Superconducting Super Collider
Laboratory and a virtual reality, retail shopping system for the
NCR Corporation. The system consists of the following clements:
* a graphics substrate that supports interactive 3D graphics in
a heterogencous networked environment,
* a temporal representation that allows the dynamic aspects
of a system to be specified, and
* an cvent-manager for describing the cause-cifect behavior
of the system duc to user and system interactions.

3.1 Graphics

The representational framework for static graphics combines hicr-
archical graphics, object-oriented programming, and frame-based
knowledge representation techniques. This framework has been
described in more detail in [9,10]. The class lattice of Figure 2.

Camera mpmy

Form @B

Window

tght @
0d_Shapes (points, point_sets, ...)
1d_Shapes (lines, polytines, ...)
2d_Shapes (polygons, Images, ...)
3d_Shapes (platonic_solid, quadmesh, ...)
Figure 2. Classes

Shape

presents the graphical classes. The class Form represents objects
with spatial attributes such as location, scale, orientation and
shape. Each Form defines a Jocal coordinate system in space.
Forms may be combined hicrarchically. Forms by themselves
have no direct appearance but instead have a shape atribute which
may be filled by onc or more instances of 8 Shape sub-class.
Figure 3. shows how instances of these classes can be used to cre-
ale a visual presentation. From the top down, an instance of class
Window is viewing the “world” through an instancz of class Cam-
era. The “world” is an aggregation of Forms where the part-whole
structure is defined by the Component relation.  ‘The result of in-
erpreting this structure is shown in the upper right comer of Fig-
ure 3. as an image on a workstation display.

Relation Types

de_:

Component
—

Figure 3. Airplane and runway scene

In this framework, Windows, Cameras and Lights all inherit from
the Form class, so that they may be placed in a scene like any other
graphical object. As a result, synthetic cameras which may be at-
tached to other objccts as shown in figure 4 are directly supported.

View Pilot’s

Figure 4. Synthetic camera example

In this example, the display on the left shows an extemal view of
the scene, while the display on the right shows the pilot’s view
from ihe cockpit. In a similar fashion, A Window may be placed
in a scenc and then treated as a Form with the difference being that
its appearance is determined by the Cameras and scenes it is view-
ing.

The preliminary results have shown that having Camers and Win-
dow be sub-classes of Form makes intcrface composition both
simpler and more flexible than with the more traditional approach-
¢s. This follows from the fact that all objects have s common sub-
sct of attributes and behaviors, and there are very few constraints
on how they can be combined. The result is a simple, consistent
mode! of how graphical scencs are described.

Furthermore, by making the represcntation declarative and by en-
forcing the separation between represcntation and interpretation, a
high degree of display-architecture independence and suppost of
multiple display presentations are possible. The resulting architec-
ture appears well suited to supporting dynamic, interactive graph-
ics in a networked environment.

3.2 Animation

Time-dependent behavior is represented using & framework simi-
lar to that used in the graphics sub-system. The dynamic behavior
of objects is defined by constructing a gruph-based representation
of temporul objects. The nodes in the graph, Activity (sce Figure
5.), represents objects with a temporul extent, that is, one that ex-
ists over some interval of time. An Activity also defines a tempo-

Scrpted_Activity

Activity Procedural_Simulation
ctivi
Simple_Time_Dependency

Reference_Activity

Figure 5. Tempcral classes

ral coordinate system The actual behavior of an Activity is
specified by speciahizing the Activity class and expressing the
tme-dependent behavior prove iadly for the new sub-class  For
example, Figure 6a shows tme beng mapped onto the rotation at-
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Figure 8a. Rotating-wheel activity.
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Figure 6b. Moving-wheel activity
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Figure 6c. Rolllng—wheel activity structuro

tiibute of 8 wheel 30 that as time goes trom 0 to 1, the wheel ro-
tates 360 degrees. This behavior is represented by the Activity
“rotating-wheel™. Similarly, Figure 6b. shows time being mapped
onto translation of the wheel, to produce the effect of the wheel
moving a distance cqual to its circumference over | unit of time
(“moving-wheel” activity).

Next, 8 hierarchical temporal coordinate system is introduced in
which each node in the graph corresponds to & temporal activity of
some duration and which acts as a time-frame for all sub-activitics.
Complex activities are then created by composing simpler sub-ac-
tivitics under a parent activity. The result is that Activitica may be
composcd hicrarchically in the same way that graphical objects
are. Figure 6c. shows the result of combining the rotating-wheel
Activity with the moving-wheel Activity to define a new, more
complex “rolling-wheel” Activity.

An Activity defines a one-dimensional coordinate system for time.
Activities can be “scaled” and “translated” in  .n¢ in much the
same way that the graphical elements (Forms) are manipulated in
space. Scaling an Activity affects the rate and duration of the Ac-
tivity, while translating an Activity defines when the activity will
occur relative to its parent’s time-frame.

Figure 7. shows three variations of the “Rolling-Wheel” Activity.
In the Figure 7a., the wheel rolls one complete turn in one unit of
time. In Figure 7b., the Rolling-Wheel Activity has been scaled by
0.5 relative to its parent activity (not shown) and as a result, occu
pics one half the time as before and therefore rolls twice as fast. In
the third case, Figure 7c., cach of sub-activitics (Rotating-Wheel,
and Moving-Whecl) have been scaled by 0.5 and the Moving-
Wheel activity has been translated 0.5 time units. The behavior
here is that during the first 0.5 time units of the Rolling-Wheel Ac-
tivity, the wheel rotates one complete tun, and then during the sec-
ond 0.5 time units, the wheel moves a distance cqual to its
circumference

The behavior of an Activity can be described using a simple state-
machine (see Figure 8.). The transitions between states is deter-
mined by the change in local-time between samples and invoke
methods on the Acuvity. For some types of activities, the methods
triggered by state transions may be no-ops

Rolling Wheel
Rotating Wheel |

Moving Wheel
Figure 7a. Coordinated Motion

‘Rollln Wheei
Rotating Wheel

Moving Wheel
Figure 7b. Fast, Coordinated Motion

Rolling Wheel

Rotating Whee!

Moving Wheel
Figure 7c. Disconnected Motion
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Figure 8. Activity state transition model

The behavior of an Activity is procedurally specified through the
following methods:

Start - Begin execution of activity, create end initial-
i2¢ any resources required for the activity.

Update - Advance activity to new local time.

Terminale - Finish activity and release any resources no
longer needed.

Reset - Reset activity to initial state.

This framework allows time to flow forwards and backwards, be
reset 1o an carlier ime or jump 10 & lster time, and allows a variety
on non-lincar lime-warps (7] to be applied to Activity sub-graphs
providing effects such as slow-in-slow-out dynamics.

As indicated in Figure S., the class Actlivity may be specialized in
various ways o create different types of time-based behavioss. In-
stances of the various classes may be combined within a single
Activity structure allowing some dynamics to be producsd via ex-
ccution o, scripts while other dynamic behaviors to be controlled
by procedurul simulations.

Gibbs[4) proposes a sumular framework for audio and video media
which suggests that this framework may be appropriate for com-
bining animation, interactive sisnulation, and other media types.




3.3 Events

The third part of the system is the Event Manager. Events may be
generated by the user through interactive devices or within the sys-
tem itsclf. A rule-based framewank is used to describe how events
are to be interpreted and what actions are to be performed in re-
sponse to the various events.

In the Event Manager, the four primary classes are Events, Propos-
ers, Actions, and Contexts. Events are the mechanism that com-
municate the description of significant states that the system
achicves. Events occur within Contexts which provide a scoping
of events. Proposers are triggered by specific patterns of events
and cither schedule Actions, or inject new Events into the system.
Actions manipulate cither the underlying application, the graphical
presentation or the temporal model of the system.

The purpose of an Action is either to produce an interpretation of
the triggering Event, or to cause some function to be performed in
responsc to the Event. An interpretation of an event or pattern of
cvents may result in new events being created that contain the in-
terpretation. This cvent framework is sufficicnt to handle user in-
teraction, and discrete-cvent style simulation.

4.0 Related Work

There are many papers in the literature describing object-oriented
graphics systems[1,2,3,5,8). Typically these systems are cither
two-dimensional interactive systems, or three dimensional off-line
animation or rendering systems. A recent system that shares many
of the same objectives as this work is the Brown Animation and
Graphics System, BAGS [11]. Both BAGS and Mirage atiempt to
replace the traditional modeling / animation / rendering pipeline
with a framework suited to interactive applications. In doing so,
both systems build upon object-oriented programming foundations
to produce systems that are flexible and extensible. The systems
differ however, in several important respects.

First, BAGS dcfines its own delegation-based language for graph-
ics, whilc Mirage builds upon existing, class-instance languages
such as C++ or CLOS. While the delegation approach used by
BAGS provides a great deal of flexibility during exccution, in prac-
tice much of the functionality can be provided using more conven-
tional languages. Use of a standard language makes intcgration of
the graphical elements with the application easier, since the inter-
face clements and application can be built from the same object-
oriented programming language.

Next, the BAGS designers have chosen to tie the time-dependent
clements of the system closely to the graphical elements. The re-
sult is to change graphical attributes such as location or orientation
from simple values to time-dependent functions. In BAGS, time is
a special global variable. Hierarchical time is not explicitly sup-
ported, and effects such as localized time warps are more difficult
to achieve.

Finally, Mirage provides a separate framework for managing
events and actions. Events may result from either user sctions
(¢.8., mouse clicks), or from within the system (e.g., collision de-
tection, or application event) The event manager provides a frame-
work for interpreting patterns of events and scheduhing actions
which result from the events It also provides a mechanism though
which interleaved events in multi-participant systems can be orga-
nized, and controlled to provide correct execution without undue
serialization of execution.

Lo

5.0 Conclusions

In summary, the approach presented here addresses the issues of
dynamic graphics by defining a declarative representation system
for graphics, animation and interaction. Mirage also introduces the
conrept of windows as threc-dimensional graphical objects and a
hierarchical framework for animation. By using object-oriented
programming and declarative representational techniques, superior
modularity and case of use are achicved as compared to current
systems. The feasibility of this approach is demonstrated through a
working prototype and example applications.
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ABSTRACT

We describe a method for preserving a set of gevmetric
constraints while interactively sculpting a frec-form B-
spline surface. The surface seeks a fair shape by minimizing
an appropriate global energy function. The user controls the
surface through the creation and manipulation of gcometric
constraints such as interpolated points and curves,

We represent the free-form surface as a B-s:iline surface, and
formulate a quadratic deformation encrgy . terms of this
basis. Constraints are represented as gradiems of quadratic
functionals which have a global minimum value when the
constraint is satisfied. These constraints are linear in the
surface degrees of freedom, and are maintained during surface
minimization by transforming the constrained surface
equations into an unconstrained system with fewer degrees
of fr~edom,

Point, curve, and noruial cor<'zaints are formulated wati.
reference to a tensor-product B-sprine surface. By extension.
formulations are applice!-ie to any linearly blended surface.

1 INTRODUCTION

We are interested in developing an easy to use modeling
method for building shapes with free-form surfaces, In
conventional free-form modeling schemes the user must
manage both a large number of contre! parameters as well
as difficult to perceive relationships botween them to
achicve application specific effects,

The strategy we propose to address this problen is to find a
modeling technique that scparates the surface representation
from the surface modeling operators. In this approach one
modeling oj =rator might modify many degrees of frecdom
simultancou: 'y 1o create one highly leveraged modeling
effect. We be ieve that interactive free-form surface design
bascd on encrgy ...nimizing surfaces and geometric
constraints can be exploited to achicve this separation,
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Encrgy minimizing surfaces mimic the behavior of
cveryday physical objects providing the user with a famillar
metaphor for modifying shapc with forces in an intuitive
manncr. Surfaces can be pushed, pulled, and inflated to get
desired shapes. The form of the cnergy functional
determines the propertics of the shape being sculpted. We
use a functional that causcs the surface to minimize i(s aren
while distributing curvature over large arces to form very
smooth and graceful shapes,

We divide modeling operators into two classes; sculpling
tools and geomelric constraints, Sculpting tools are
implemented as sets of forces such as pressure, springs and
gravity to produce qualitative effects like enlarge, attract,
and flawen. Interacting sculpting loads are naturally handled
by adding the effective force vectors at each point on the
surface into a net force. Such surface modeling approaches
have been discussed in (3,4,21).

In contrast, gecometric constraigis ar¢ specificd as analytic
conditions which the surface must satisfy explicily. Such
constraints, including poimt and curve skinning, and
tangency and normal conditions, allow precise control over
a portion the surface, and are therefor a means of knitting
free-form shapes to analytic shapes.

This paper deals with enforcing gecometric constraints while
sculpting on deformable surfaces. Much of the recent work
in constraint based systems for gecometric modeling have
concentrated in preserving relationships between simple
parametcrized objects such as lines and circles, These
cfforts have been apiplicd to kinematics [8), dynamics based
animation (20}, and constraint based geometric modeling
{8,17). Previous wuik for enforcing consuaints on
parametric surfaces and curves have been based on penalty
methods without deformable surfaces [1,20], transformation
based constraints limated o the explicit degrees of freedom
in the surface representation with deformable surfaces [4),
and Lagrangian constraints [19].

In this paper, we restrict ourselves to a linearly blended
surface (a tensor-product B-spline surface), and consider the
class of gecometric constraints which are lincar functions of
the explicit degrees of freedom of the shape representation,
Such constraints can be imposed on the surfuce by a lineur



transformation of the constrained surface ¢quations which
reduces them to a smaller, unconstrained system in which
the constraints are implicitly satisficd. It is then possible to
perform other operations (such as surface minimization in
the presence of applied sculpting forces) on the remaining
surface degrees of freedom without violating the constraints.

We show how this technique may be uscd to constrain any
parametric point on the surface to remain at a fixed location
in 3-space, constrain parametric curves in the surface to
maintain fixed profiles in 3-space (fixcd-parameter curve-
skinning), and constrain the 3-space surface normals along a
parametric curve. The method is dircctly applicable tc; any
surface representation which is a lincar blend of its control
parameters. In this paper B-spline basis functions arc used.

2 DEFORMABLE B-SPLINES

A deformable surface is designed to mimic real physical
behavior, Like a physical surface, « deformable surface's
deformation behavior is modeled by minimizing « globsi
cncrgy functional which describes how much energy is
stored in the surface for any deformation shape, The
deformation cnergy used in this work is of the form.,

Egeformetion =[ (o stretch + B bending) do

g
where aan¢ Bare weights on stretching and bending,

This prodmces a surface which tends to minimize its arca 1o
avoid folding awd to distribute curvature over large regions
to make very graceful shapes, The quadratic functional uscd
in this work is made from the lincarized stretching and
bending terms

2
-2 fw|dudv

( (ullwuz + 2al2wuwv + ulzwvz)
Fwtwe =
cl, + (Buwa? #2Piawa? + Pawnd)

where w is the surface shape, a contiguous sct of points in
3.space represented with parametric variables u and v as

w = w(u,v) = [x(uv),y(u,v),2(u,v)] with
wy as shorthand for dw/du and

2
Wy as shorthand for 9 w/ay and
f = f(w,1) denoting the applied sculpting forces
which are changed over time t by the user,

The above problem is discretized by approximating the
minimal surface shape w by wh a weighted sum of
continuous shape functions. In this paper, we use the
tensor-product B-spline basis as discussed by [Picgl] for the
shape functions yiclding
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w(a,v) = wh(u,v) = i % Pi; Nip(u) Njo(v)
i=0j=0
1=( =

where Pj j are the familiar [nxm] grid of B-splinc control
points and N; , arc the univariate B-splinc basis functions
of or¢=r p defined recursively as

. _ 1V ifuSu<cu;yg 4
Niou) = 0 othcrwisc
Nop() = S8 Ny (u) + —22 NG 5
n.p(\-) Tivp - 1 n,p-l() Unepe1 - Uin] wl.p-l()

where uj are the knots forming a vector U = {ug, uy, ...
uy}. By convention, knots at the ends of the B-spline arc
repeated p+1 times so that a B-spline curve with r knots
will have n control points where r=n + p + 1. The range
of u is limited to up S u S u.p. In this work B-splines are

of 3 order sctting p = 3 and N;  is abbreviated as N,

The B-splinc approximation for shape wh is substituted
back into the original minimum principle yiclding a
discrete matrix minimum problem

min (x¥ Ko x - f3 x) 6

where the unknowns are ordered into a vector as

xT = [Poo Poy .- Py n)-. Kg and Fg define the stiffness
matrix and forcing vector. These terms are given by

- - 7
Kq=f¢zﬁ¢b+¢fu¢.dudv and fg= {Q)deudv
p Jo
[ &,
u o,
where @p=| by | Os=
by
20y
. Bu
and o= a2 ]B= B
L 2 G Bz

and @ = [No(u)No(v) No@)Na(v) ++« Na(u)Nu(v)]
an ordered set of basis functions,
The minimum of equation 6 is found by solving
Kox = fo(w,t) 8
Simple mass and damping effects are added 10 the surface as

Mx+ Bx + Kox = fo(w,1)

where M = pl, B =pl, T = Identity matrix, and p is a
mass density and g is a stabilizing damping term,




These equations are integrated through time by using finite
differences for the temporal derivatives which results in a
matrix equation relating the shape at time t+At to the shape
and sculpting loads at time t and t-At

Kxwar = F(fu,x,Xea)

Solving for x gencrates the control point locations used to
generate the surface in equation 3. The matrices Kg and K
are symmetric and positive definite due to the form of the
selected encrgy functional, The local support property of
the B-spline basis functions make Kg sparse.

3 CONSTRAINTS BY NULL-SPACE PROJECTION

An attractive way to enforce constraints on a system of
cquations is to transform it into an unconstrained system of
cquations with fewer degrees of freedom. We do this for
systems of lincar cquations by projecting the system of
cquations onto the subspace of solutions which satisfics the
constraints, General lincar constraints arc written as
Ax=b 9

where the vector x represents the degrees of frecdom, cach
row of the mxn matrix A (m < n) represents a lincar
constraint on x, and the vector b represents the values of
these constraints, Given a particular solution xg, the space
of satisfying vectors for the system can be expressed as
x=ZYy + X0 10
where the columns of the nxz matrix Z span the null-space
of A, and the vector y represents a reduced sct of z
unconstrained degrees of freedom, Substituting equation 10
into 9 shows that Z has the pioperty that AZy = 0 for all
y. The number of columns in Z is n minus the number of
independent rows in A because cach independent constraint
in A removes one degree of freedom from the system.

Given Z and xg, the minimization problem of cquation 8
can be projected onto this reduced space as
2'KZ y=2"F - 2"x0 1
Equation 10 regencrates a properly constrained solution x to

the original minimization problem for cach unconswrained
solution y of the projected minimization problem,

There are any number of stable ways of calculating Z (see
Gill et al.). In general, selecting a subset of A's columns
on which to base Z is a delicate procedure, especially in the
presence of nearly-dependent constraint rows (Golub and
Van Loan, Matrix Computations, p 571).

A very simple procedure for computing Z is (o apply
Gaussian climination with full pivoting tu the system
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Ax = 0, reducing the first n-z rows of A to the identity.
This produces the specially factored matrix A’
y

[ I R] in the rclation A’ x = [
00

that cxplicitly scparates the x degrees of freedom into
dependent and independent scts. The identity submatrix is
associated with the n-z dependent degrees of freedom xg
which are "removed” from cquation 11 by constraints and
the R submatrix is associated with the remaining
independent degrees of freedom in y, Each dependent
constraint in A produccs a zcro row at the bottom of the A’
matrix. The null-space basis Z is found by obscrving that
A'x = 0 is truc whenever Xg = -Ry so that

sl

where 1 is the zxz identity matrix. Note that full pivoting
is absolutely essential during this procedure if a well-
conditioned basis is to result (orthogonal factorizations such
as the SVD or QR are in general better conditioned, though
more computationally cxpensive),

IR 12

00

A =

0

-R

I]y=A‘Zy=o and /=[:‘] 13

It is important to note that this technique successfully
gencrates Z in the face of redundant constraints in A.
Redundant constraints can be cither compatible as in the
casc of multiple hinges supporting a single door or
conflicting, In our system we identify conflicting
constraints when solving for xo. We treat all dependent
constraints as compatible when solving for Z since Z is
not affected by the particular values of the constraints, In
this system a new xp is computed cach time the user
changes a constraint value, while a new Z is only computed
cach time a constraint is added or deleted,

4 GEOMETRIC CONSTRAINTS

We distinguish between two kinds of geometric constraints,
frozen and tracked, A frozen constraint is added to the
system at a particular time by freczing some geometric
property of the surface while allowing the rest of the surface
to vary. A tracked constraint varies the value of the
constraint over time also causing the surface to deform,
Our curreat strategy for exploiting constraints is 10 first
freeze in constraints and then to track them. A frozen
constraint has the advantage that at least the current surface
configuration is guaranteed 1o satisly the conswaint,

4.a Point Constraints

The simplest constraint to visualize is a freezing point
constraint, A particular surface point, identified by a
parametric location (u0, v0), is fixed to its current position
for all futurc times t+At.  The constraint equation s
gencerated from the B-spline surface equation and the current
values of the control points P;(1) as




w(uo,v0) = i i Pi;(t) Ni p(u®) Nj,p(vo) 14

i=0j=0

Each constrained point gencrates one additional constraint
equation that is added to the constraint matrix A.

4.b Curve Ccnstraints

The curve constraint is considerably more complicated than
the point constraint. The constraint allows any curve lying
within the surface to be frozen at time t such that the rest of
the surface can be sculpted in future times without violating
the frozen shape. The constraint cquations for the curve are
generated by considering a positive definite error functional
over the length of the curve as
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€

[ 12 (c(s)-°(s)Y’ ds

where c(s) = 3d shape of the curve in the surface given by

nom ]6
() =wt() =Y, Y PijNipu(s) Njp(v(s)

{a0j=0

= 2 Pij Ny(t(s))
{s0j=0

where t(s) = [u(s) v(s)]. a curve lying in the surface and
¢0(s) = the target 3d curve shape at time t =0,

The value of the error functional for the curve constraint is
both zero and a minimum when the curve ¢(s) is exactly
cqual to the curve ¢%(s). We can formulatc this as a lincar
constraint by requiring that the crror functional always be at
a minimum -- that its gradient with respect to the degrees of
freedom be 0. The constraint that cach term of the gradicnt
be 0 yiclds one lincar constraint equation for cach degree of
freedom in the system,

Finding the minimum error value € will automatically
satisly frozen constraints. However, this will not be
generally true for tracking constraints where ¢9(s) is
allowed to change over time. In such situations the system
will find the solution which best satisfies all the constraints
¢.g. finds the most minimum value available for € given
the shape representation but will not guarantee satisfying
the constraints exactly e.g. the value of € might not equal
zero, In this work we limit ourselves to frozen constraints,

The linear curve constraint ¢quations are

Lm (e()-<%s)) (%‘-l()—i)- - .

w ds=0
al)u

For the B-spline basis functions
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0
%clg—s) = Nj(t(s)) and %) =0 fora freczing constraint.
i i

Once integrated, the above cquations yicld a lincar set of
cquations in Pj;, Cx =v. A row in C is given by

n 18

Cua= 2, Py Ni:(t(S))) Nu(t(s)) ds

i0j=0
and the associated term in V is given by

n 19
Vit = (Z P Ni(t(s))| Ny(t(s)) ds

im0

- ¥

The curve constraint gencrates one constraint cquation for
cach control point in the surface. Typically, most of these
constraints are rcdundant or zcro cquations leaving the
surface scveral degrees of freedom in which to continue
moving. In our system we generate all nonzero constraints
and depend on the construction of the Z matrix to climinate
the redundant constraints,

4.¢c Surface Normal Constraints

We formulate a constraint on the surface normal along a
curve as a pair of constraints, The surface normal at a point
in the surface is in the dircction of the cross product of any
two indcpendent surface tangent vectors at that point. In
particular, surface tangents in the direction of a curve and
normal to a curve gencrate the surface normal as

n=|weX w 20
where n = surface normal at a point on the surface and
w; = surface tangent in the direction of the curve and
wp = surface tangent in the dircction normal 1o the
curve in parameicr space,

The surfuce tangents wy and wy, are related to the parametric
derivatives wy and wy along the length of the curve ¢(1(s))
by the lincar rotation

where ug and vg are the components of the normatized curve
tangent in parametric space given as tg = [ug, vs).

Wy
W,
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Wy ] 21
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The functions wy and wy along the length of the curve are



) =wmt)=3 3 Pi.j‘iﬁ'f@wv(s» 2

i=0j=0
and

cv(s) = w(t(s)) =§n; i Pi Nip(u(s)) dN;jp(v(s))
{=0j=0 dv

‘The error functionals for the constraints are written as

& =[ (cu(s) -cf(s))zds and e, =I (c..(s) . cg(s))z& 3

Joalle]

Like the curve constraint, finding the minimum of the error
functionals €; and e, with respect to the degrees of freedom
Pjj yield the scts of constraint equations to be enforced.
The combination of constraining the curve's tangent shape
¢; and the curve's normal shape ¢, acts to constrain the
surface normal along the length of the curve. Note that the
constraint on curve shape ¢ can replace the constraint on ¢;
since constraining the curve's shape automatically
constrains the higher order surface derivatives along the
length of the curve.,

5 RESULTS
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The techniques discussed in this paper were implemented in
an interactive sculpting design package that runs on a
Silicon Graphics workstation. An example of the system's
modeling capability is shown in Figure 1. The surface in
figure 1 is a 3rd order tensor-product B-spline with an 8x8
array of control points. The surface is constrained to
interpolate the closed curve shown as a heavy dark line.
The constraint climinates 24 of the original 64 systcm
degrees of freedom. Pressure sculpting loads are applied to
the surface inside the closed constraint, The sequence of
images in Figure 1 are produced by varying the magnitude
of the pressure force interactively with a slider bar, The
curve constraint is enforced exactly at all times while the
surface is sculpted.

6 CONCLUSIONS AND FUTURE WORK

An interactive modeling system designed to sculpt free-form
surfaces in the presence of point and curve constraints based
on the techniques described in this paper is implemented on
a Silicon Graphics Workstation. The system supports
interactive sculpting under any combination of frozen
constraints. Based on this expericnce we make the
following conclusions.

We have formulated a strategy for enforcing lincar
constraints on lincarly blended surfaces in interactive time,
Using the B-spline basis functions as a shape representation
we have shown how this strategy can be used to enforce a
rich range of geometric constrain... We have shown how
to constrain a point in the surface, and the shape of a curve
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lying in the surface, as well as its higher order derivatives.
Exploiting the first order surface derivative constraint we
were able to build a surface normal constraint.

i
g
W'W!l}ze\?‘\ |

N
7/ ’f&‘.‘gn A \

Figure 1, A closed curve constraint applied 10 a surface

An important limitation to the technique presented is that
the shape of the geometric constraint in the surface’s uv-
planc must remain fixed over time, Otherwise, the
nonlinearity of the surface basis functions produce nonlincar
constraint equations. Although techniques are available for
solving nonlincar constraint problems they tend to be




inappropriate for interactive systems since they depend on
iterative refactorizations of the basis. What is needed in
future work is a good solution for sclecting suitable
parameterizations for constraints. Such a solution would
enable a very exciting system for modeling with generalized
curve skinning.

Another limitation of the system described here involves
the discretization error of the surface approximation. The
curve constraint and energy minimization techniques used
here find the minimum solution for a given surface
representation, but such a solution may or may not be an
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Integrating Constraints and Direct Manipulation
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ABSTRACT

In this paper, we present techniques for integrating constraint
and direct manipulation approaches to geometric modeling.
Direct manipulation positioning techniques are augmented
to provide the option of making the relationships they estab-
lish persistent, Differential constraint techniques are used to
maintain these relationships during subsequent editing. Is-
sues in displaying and editing constraints are also addressed.
By integrating constraints with direct manipulation, it is pos-
sible to build systems that provide the power of explicitrepre-
sentation of geometric relationships and the properties which
make direct manipulation so attractive,

INTRODUCTION

Geometric relationships between parts are an important ele-
ment in geometric models, From the earlicst days of interac-
tive systems{13], the benefits of using constraints to explicitly
represent these relationships have been known.  Although
many have discussed the value of constraints, constraint-
based approaches have not been successful in practical sys-
tems. Their success has been hindered by a large number of
difficult issues.

In contrast to the failure of constraints, dircct manipulation
systems have been successful for geometric modeling tasks.
Users control the geometry of objects by interactively grab-
bing and pulling them, with continuous update providing
fecdback. Such systems employ snapping techniques, such
as grids, to aid in establishing rclationships, but these rela-
tionships arc immediately forgotten, They are neither explic-
itly represented nor automatically preserved. It is the user’s
job to maintain them during subsequent editing.

In this paper we combine the two approaches: snapping
techniques establish relationships and constraint techniques
maintain them during subsequent dragging. Our integrated
approach distinguishes the problem of establishing relation-
ships from that of maintaining them during subsequent edit-
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ing. This separation allows us to skirt several difficult issucs
in constraint-based systems. Integration with direct manip-
ulation addresses issues in solving, specifying, debugging,
displaying and editing constraints,

The Briar drawing program demonstrates our approach, When
direct manipulation snapping establishes a new relationship,
augmented snapping provides the user with the option of
transforming it into a persistent constraint. Differential con-
strainttechniques can maintain these during dragging. Direct
manipulation techniques also address editing constraints.

ESTABLISHING RELATIONSHIPS IN DRAWINGS
Previous constraint-based systems have operated in what we
call a “specify-then-solve” approach to constraint usage. In
such systems, the user describes the model by declaring rela-
tionships which must hold true and the system configures the
model to mect these requirements, This approach allows a
user to specify the important aspects of a design and have the
system resolve the details. Because the system explicitly rep-
resents the relationships, it can insure that these constraints
continue to hold during subsequent editing.

There are problems in using the specify-then-solve approach.
Oneis “solving” the constraints - finding a new configuration
of the geometric modcl which meets the set of requirements.
This is difficult because, in general, systems of non-linear
algebraic equations must be solved from arbitrary starting
points. While this problem is intractable[11], systems can
usually operate by limiting the class of constraints which
can be handled (as done by [6, 14]) or using temperamental
numerical techniques (as done by [9, 12]). If no configura-
tion is found that satisfies the constraints, it can be difficult
to determine whether none exists or if the solver was just
unable to find one. If no solution exists, the conflicts must
be diagnosed and debugged. If the solver does find a new
configuration, it must help the user understand how and why
it jumped to the new state,

These three challenges, solving constraint-satisfaction prob-
lems from arbitrary starting points, presenting state jumps to
users, and coping with conflicts, must be addressed to build a
specify-then-solve system. However, these issues only arise
when the constraint mechanism is used to reconfigure the
model to establish new relationships. To skirt these difficult
issucs, we separate the task of maintaining existing relation-
ships from that of initially satisfying them.,

Our systems use direct manipulation to establish relation-
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ships and use constraint techniques for maintaining them
during subsequent editing. Constraints ar¢ only generated
for relationships which exist in the drawing. They start out
satisfied so there is never a need to jump from an arbitrary
state to a consistent one. There are no constraint-satisfaction
problems to solve or state jumps to explain, There is no con-
cern about conflicting or unsatisfiable constraints, since there
exists at least one configuration which meets the constraints.

MAINTAINING RELATIONSHIPS

V'hen initial solutions are provided, the task of constraint
tevhniques changes; instead of establishing the relationships,
constraint-based techniques are used to maintain them. Rather
than jumping from an inconsistent state to one where the con-
straints are met, constraint techniques permit users to drag
models and have the constraints enforced as the drawing fol-
lows with continuous motion. We call this facility to drag
constrained models Differential Constraints.

Unlike solving non-linear algebraic equations, good tech-
niques exisi for maintaining constraints during dragging. We
use techniques which treat the motion of the model as a dif-
ferential equation and provide methods for maintaining scts
of non-linear constraints by solving systems of sparse lin-
ear equations{4). Altematively, solving can be accomplished
using a standard constraint-solving approach: the mode! is
repeatedly perturbed slightly, then re-solved.

Fast computers and good algorithms allow update rates which
give the appearance of continuous motion. This rapid feed-
back is essential. Although the trajectory the model follows
is not part of the resulting drawing, this animation makes it
possible for users to cmploy their perceptual skills to connect
states of the drawing with many things changing between
them(2].

Differential constraints provide a natural way to incorporate
constraints into a conventional drawing system, Objects are
dragged the same way, except that relationships can be main-
taincd among them. This allows the drawing process to be
incremental; each new relationship added to a drawing does
not disturb previously established ones.

The ability to directly manipulate constrained models helps
address many of the issues in constraint-based systems, It
provides an easy way for the user to explore underconstrained
spaces, permitting them to experiment with models to under-
stand how they work, or why they do not.  The existence
of a direct manipulation facility means that all parts of the
model do not need to be specified by constraints. If it is
difficult to devise a way to describe an aspect of a drawing
with constraints, direct manipulation can be used instead.

Constraints can aid in the direct manipulation process by
providing the user with “extra hands” to hold things in place.
Providing the user with “lightweight constraints” which are
casy to place temporarily to aid in manipulation is a useful
feature in modeling systems.
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SPECIFYING CONSTRAINED MODELS

Rather than using constraints, our approach, like most direct
manipulation systems, uses gravity to help users establish
relationships in models. The drawing cursor follows the mo-
tion of the pointing device, but snaps to locations which will
establish relationships in the model when it is close to them.,
This idea of gravity has existed for a long time, having been
demonstrated as early as Sketchpad[13]. The most common
variant of gravity is the uniform grid. A more interesting
technique is Snap-Dragging[1] which extends gravity by ex-
panding the set of snapping targets to include intersections
and construction lines.

Gravity is successful at helping a user establish relationships
in models, but previous systems promptly forget these re-
lationships once the positioning operation is complete. To
employ constraint maintenance, these newly established rela-
tionships must be made into persistent constraints. The user
could be required to explicitly identify the constraints, but
this creates excess work: each relationship is specified twice,
once to establish it and once to identify it as a constraint,
Previous systems have attempted to infer constraints after
drawing operations by looking at the resulting drawing(10],
orat a trace of user actions{7]. Because this information typi-
cally does not specify the relationships unambiguously, these
systems relied on heuristics or asked the user to resolve the
ambiguity[8). Our approach augments positioning methods
so they, in addition to location, unambiguously specify the
rclationships which are being established.

Our augmented snapping technique lets direct manipulation
positioning specify constraints as well as location. It cn-
hances the snapping opcration so that it gencrates constraints,
The basic idca is that cursor placement operations contain
information about why an object was positioned where it
was, and can, therefore, also provide a constraint specifica-
tion. Suppose the user, while dragging an object, moves the
pointer near another object so that the cursor and the point be-
ing dragged snap to the second object. Snapping has helped
the user establish a relationship between the dragged point
and the target object. We provide the user with the option
of making this relationship persistent so it can be preserved
during subsequent cditing.

When a snapping operation occurs, the system acknowledges
it by showing the newly established relationship to the user,
The user has the opportunity to accept the new relationship,
transforming it into a persistent constraint. To make the
constraint creation process more transparent, the default can
be to accept new consiraints, !

Augmented snapping permits direct manipulation techniques
10 be integrated with constraints, Since snapping is used for
all drawing operations, such as creating and moving objects,
all of these operations can specify constraints. Constraint
generation is opportunistic, as the user draws, constraints are

! Although we provide an “accident-prone” mode where acceptance is
not the default, we find that 1t 1y seldom used.




created when relationships are established. Aside from the
occasional rejection (or acceptance, if that is not the default)
of a constraint, the interface should not require any additional
effort from the user. Such an interface fecls just as fast and
clean as the non-augmented version,

As a constraint specification technique, augmented snapping
offers other advantages. It does not require the user to learn
new commands for each type of constraint since a uniform
interface creates all constraints. Because it provides both
constraints and an initial configuration that satisfies them,
augmented snapping cannot create conflicting constraints,

Carefu! attention to the user interface is crucial to making
augmented snapping work, Fecdback must show the snap-
ping operations to the user so it is clear what rclationship is
being cstablished, When a new relationship is established, it
must be displayed prominently enough that it is clear what
constraint will be created, but not be obtrusive to hinder the
drawing process.

Augmented snapping only generates constraints for relation-
ships which are unambiguously specificd by the user’s ac-
tions. A snapping operation unambiguously specifics a rela-
tionship, but if multiple objects coincide, it can be ambigu-
ous which to snap to. Feedback, which clearly shows which
object is snapped to, and a cycling mechanism to choose
between potential snapping targets resolves this problem.
Pruning the sct of objects that arc snapped to (for example,
avoiding snaps which would create a redundant constraint)
avoids excess cycling,

Augmented snapping does not guess about the user’s inten-
tions. It relics on the construction process to obtain con-
straints. The user may construct a mode! in a manner which
does not convey the desired constraints. To curtail this, it is
important to design modeling operations which make it casy
to convey what is intended, rather than just what is conve-
nient to express, For example, making two objects be the
same size should be no more work than making them both be
the same fixed size.

VISUAL REPRESENTATIONS FOR CONSTRAINTS
Constrained drawings have more state that must be displayed
to the user than non-constrained ones de. A system must con-
vey to the user not only the geometry of the model, but also
the constraints. The user must be able to edit this structural
information as well as the geometry. Although textual lan-
guages for describing constraints, such as in [9, 14] ure casy
to edit, they are distinct from the drawing and can be difficult
1o connect to their corresponding places in the model. Visual
representations{S, 12) superimpose symbols for constraints
directly on the model. Unforunately, devising clear visual
representations is chailenging and editing such representa-
tions is often difficult.

When differential constraints are used, the continuous motton
and ability for users to eaperiment with models can convey
much of the information about the constraints. We also use a

visual representation for constraints.

The problem of editing constraints transcends visual repre-
sentations, Before being able to delete or modify a constraint,
the user must figure out which constraints to alter. We have
developed methods for editing constraints which avoid this
problem by having the users edit constraints by referring to
the desired effects, not to the constraints themselves. Instead
of pointing at constraints, users directly manipulate objects
to show how they are to move. For example, constraint
maintcnance can be disabled so objects move freely. Con-
straints which are broken are clearly noted to the user, When
maintcnance is restarted, violated constraints are removed.
A variant is a “rip” command which allows the user to pull
part of an object free from its constraints.

Designing the semantics of the constraints properly can also
reduce problems in the visual language. For example, when
a group of points is connected together, an cquivalence class
is used rather than a large number of binary connection re-
lations. This is also significant since it removes the need to
remember which point is connected to which other point if
some are to be disconnected.

DRAWING WITH CONSTRAINTS

To cxplore the integration of constraints and direct manipula-
tion, we have builta drawing program called Briar®(3]. A di-
rect manipulationdrawing technique called Snap-Dragging(1)
is augmented to specify constraints. Differential constraint
techniques are used to maintain these relationships as the
user modifics the drawing. Augmented Snap-Dragging also
serves as the basis for a visual representation for the con-
straints,

Snap-Dragging enhances the usefulness of gravity. The cur-
sor snaps not only to the edges of objects, but also to inter-
esting points in the scene such as intersections and vertices
of objects. Relations other than contact are created in Snap-
Dragging through alignment objects: objects that are not part
of the drawing per se, but exist only to be snapped to. The
original Snap-Dragging work includes scveral types of align-
ment cbjects, each corresponding to types of relationships
which are uscful in drawings. The usefulness of alignment
objects is further enhanced by making them casy to place,

Snap-Dragging provides twooperations for positioning points
in two dimensions: snapping the cursor to a point, such
as a vertex, and snapping the cursor to an object’s edge or
curve, These operations correspond directly to Briar's two
basic constraints, “points-coincident” and “point-on-object”
respectively.  The two snapping operations combined with
alignment objects allow a user to establish a wide variety of
relationships. Similarly, the two basic constraints are com-
bined with alignment objects to enforce a similarly large set
of relationships. For example, a distance constraint can be
expressed using a fixed size circle.

2y 1s called Bnar because, hke the plant 1t 15 named for, things suck
together inside 1t
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Augmented Snap-Dragging also provides the basis for Briar's
visual representation of constraints. Constraints are dis-
played just as they are specified: using the twobasic elements
along with alignment objects. Although Briar can handle a
wide variety of relationships, users need not leam a large
number of constraint creation commands or display symbols.
Briar provides several methods for altering constraints by
direct manipulation of objects, including disabling constraint
maintenance and commands to “rip” parts of objects free of
their constraints,

Briar's display employs many mechanisms to convey its
state to the user. Objects light up when snapped to and
the cursor changes shape to indicate the type of snapping
operation, Newly cstablished relationships are shown in dis-
tinctive colors which signify whether or not they will become
constraints,

THREE DIMENSIONAL SYSTEMS

Extending a system like Briar 10 three dimensional modcling
poses a new set of challenges. For modeling tasks, the set of
possible spatial relationships between objects is much richer,
and more complex, than in 2D, However, this richness and
complexity is also a strong motivation for the development
of constrained interaction techniques for 3D. Direct manip-
ulation techniques to establish spatial relationships are not
as developed as their two dimensional counterparts. A more
pragmatic concern is that our reliance on feedback already
causes Briar to use almost all available perceptual cues, such
as texture, hue, brightness, size, and motion, leaving little for
the increased visual demands of 3D.

Techniques such as augmented Snap-Dragging, differential
constraints, and visual alteration of constraints make it pos-
sible to build systems which integrate constraints and direct
manipulation. Such systems can combine the power of repre-
senting geometric relationships with the flucncy and intuitive
interfaces which have made direct manipulation so success-
ful,
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Abstract

Interactive modeling systems that continually maintain
a physically-realistic representation of an object
combine advantages of interactive graphics and batch
simulations. In this paper 1 address two advantages of
incorporating physics into Sculpt, an interactive protein
modeling system.  First, time-consuming model
correction is avoided by maintaining a physically-valid
model throughout a modeling session,  Second,
additional cues about model properties can arise when a
chemist interactively guides a simulation rather than
views a cine loop from a pre-computed simulation. |
argue these benefits with examples from sessions with
Sculpr. A chemist can interactively move atoms while
Sculp: automatically maintains proper bond topology
and atom scparations. Sculpt models bonded and non-
bonded atom interactions for medium-size proteins (800
atoms) at 0.6 updates per second on a Silicon Graphics
240 using a constrained energy minimization method,

CR Categories and Subject Descriptors: 1.3.5
{Computer Graphicsj: Computational Geometry
and Object Modeling: 1.3.6 [Computer Graphics):
Methodology and Techniques; 1J.2 [Computer
Applications]: Physical Sciences.

Additional Keywords and Phrases: Physically-
based modeling, interactive modeling, constraint
systems, scientific visualization.

i. Introduction

Within the last ten years a trend in computer graphics has been
to increase scene realism by using physically-based models.
Animators use physically-based modeling to create realistic
detailed behavior. Mest ammations generated with physically-
based modeling, to date, requirzd minutes to hours of
computation for each frame. This large computation nme has
kept physically-based modeling out of interactive graphics
systems except with small, simple models. However, increased
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computer speeds now permit adding physically-based models to
interactive systems. I have picked a large modeling problem
with simple propertics to study issues that arise in modeling
physical properties in an interactive graphics system,

Protein modeling systems represent molecules containing one
hundred to several thousand atoms. The systems can be
classified as interactive or batch (though some interactive
systems have batch processing). Most interactive systems
maintain bonded properties such as fixed bond lengths and
angles by restricting operations to rotation of segments about
particular bonds. The performance of interactive systems is
only limited by the display capability of the graphics system
since the modeling operations are only rotations. Batch
simulations model variance in bond lengths and angles and
interactions among non-bonded atoms over relatively near and
far distances. Accurately modeling all these properties requires
batch computation, even for small proteins.

Today an interactive, physically-based modeling system,
called Sculpr, models non-bonded atom interactions for
medium-size proteins (800 atoms) on a Silicon Graphics 240 at
0.6 updates per second. Sculpr lets a chemist interactively
move atoms while automatically Keeping correct bonded
properties and non-bonded atom separations using a
constrained energy minimizer. Compared to many other
physically-based modeling systems in computer graphics,
Sculpr models simpler properties {c.g. angles versus volumes)
and minimizes static strain eneigies rather than functions of
object dynamics, However, sys.em performance now allows
investigation into issues that aise when physically-based
modeling is applied 10 complex real applications.

Chemists that collaborate on the project beheve interactive,
physically-based modeling will relieve many manual modeling
tasks, allowing more work 1n less time, and provide additional
cues about protein behavior.  In this paper 1 present two
improvements the system provides that result from modeling
physical properties interactively  First, the system removes
the often lubortous task of fixing a physically-invalid model
after a modehng session. Though interactive systems such as
Sybyl [15] mamntam fixed bond lengths and angles, they make
the chenust Keep non-bonded aioms at appropnate separations.
Second, the system provides a new medm tor exploring
ptotein properties by alluwing mteractive, guided simulation,
This should combine benefits of interactive graphies and Fuch
stimulations




2. Related work

Physically-based modeling frequently aids computer
animations by automating detailed motion planning and
complex object interactions. Miller generates realistic snake
motions by modeling muscle contractions with springs and
friction against surfaces [9]). Witkin models the energy and
momentum of a Luxo lamp jumping hurdles and ski jumps [18].
Terzopoulos models energy in clastically deformable objects
such as cloth to create animations of flags [14]. These
examples simulate the motion of objects by first stating
application-specific conditions about the objects and scene and
then solving Newton's equations of motion.

Similar applications use constraints to restrict the allowable
states of objects and express dependencics among objects.
Barzel uses constraints in animation to specify paths for
objects [4].  Witkin uses geometric constraints to assemble
models [16), and he describes a system that lets a user
interactively connect and manipulate objects such as a
mechanical assembly or tinker-toy [17]. Constraints maintain
constant volume in incompressible solids [12] and restrict
penetration when a ball strikes a trampoline [11].

3. Driving problem - protein modeling

A protein, to a first approximation, contains fixed bond
lengths, fixed bond angles, and some planar segments,
Figure 1-A shows three sequential segments in a protein with
vectors representing bonds between atoms and gray areas
denoting planar regions. The only degrees of freedom in the
figure are rotations about the N-C and C-C bonds that enter and
leave each planar segment. A lincar sequence of the segments
comprise the protein backbone. Attached to the atom between
each segment (C) are sidechains (not shown) with additional
fixed length and angle properties.  Superimposed onto this
geometric model are non-bonded attractions and repulsions,
Auractions hold nearby atoms together, while repulsions
maintain a minimal separation between all atom pains

Chemists often use brass models (Kendrew models) to study
geometric properties and relationships in o protein.  Brass
models contain segments shown in Figure 1-A connected with
rotational joints about the N-C uand C-C bonds. Mampulating
such a model with one’s hands wids undenstanding of
relationships.  However, the models hive two drawbacks
First, the model’s size becomes ditficult to hold and manpulate
when deahing with large molecules (e g. an B0O-atom brass
model of the protetn in Color Plate 1 1s 80 centimeters wide
when 2 cm of brass represents | Angstrom, a typical bond)
Second, brass mudels do not represent uttractive and repulsive
interactions among non-bonded atoms.

Chemusts use computers to model large proteins and non-
bonded atom nteracuions.  Interactive modehng systems
resemble brass models by allowing only rotanons about
parbcular bonds. The hmuung tactor i interacuve systems i
display rate of the graphics machime  Bawch simulations model
non-bonded atom interactions and more accurately model bond
lengths and angles (these do vary, though by only o few
percent).

Protein modeling provides a good dniving problem for research
in interactive physically-based modehing. First, the benefits
of interactive graphics and batch simulations are each well
established. Second, real users want such a system and will
provide valuable assistance in its development, Third, the size
of useful models requires improved algorithms for interactive
modeling on current machines. Fourth, many aspects of
protein modeling are similar to other problems. For example,
the nherent three-dimenstonal structure requires addressing
mechanical modeling 1ssues similar to those encountered in
articulated-figure motion and computer-aided design.  Fifth,
understanding the interplay of properties 1n proteins during the
modeling requires good visualization paradigms.

4. Sculpt's intertace and performance

Sculpr continually maintains reahstic protein properties as a
chemist moves an atom.  Sculpt lets a chemist move an atom
by first attaching a spring between the atom and the cursor and
then dragging the cursor in a desired direction. Throughout the
dragging process, Sculptr polls the cursor position and adds the
strain energy of that spring to the energy in the protein.
Sculpt then finds a local minimum of the total energy that also
maintains rigid bond lengths, angles, and planar segments,
Sculpr also tets & chemist insert a spring that continually pulls
an atom towands a given three-dimensional position.

The color plates show photographs of Sculpr sessions,  Depth-
cued vectors represent bonds between atoms; cyan denotes the
central bachbone, and tan denotes sidechains connected to the
backbone. Gold couls show springs attached by a chemist 1o
pull atoms toward positions denoted by the gold thumbtacks.
Color Plate 1 shows a model containing 760 atoms of a
medium-sized protein called Felix {8].  The model contains
2205 constraints (bond length, angle, und others) and
approximately 8005 energy functions (attraction, repulsion,
and others). The backbone i Cotor Plate 1 winds through tour
hehices (purple cyhnders highhight the two on the left). Cotor
Plate 2 shows a model composed of the 1wo helices
highhighted in Color Plate 1. The model contains 353 atoms,
1027 constraints, and approximately 3450 energy functions,
The text in Color Plate 2 names several of the sidechains,

Sculpr mamtans approximately 0.7 updates per second with
the model i Color Plate 1 and 1.5 updates per second with the
maodel m Color Plate 2, on a Siheon Graphies 230-GTX [2).
An update ncludes the following steps:  evaluate protein
properties (bond lengths, angles, attractions, and repulsions)
and thewr denvanves, mioumize the energ) and sainsty the
comstrants, update atom positons, and display the results,
Though this pertormance s twenty times o slow tor smooth
wteraction, our chemst collaborastors beheve the pertormance
already provides enough interactivity on medium-size proteins
that new, usetul fesearch can be accomphshed that could not
previoushy be undertahen  The system s desenbed i greater
detal i [ 13]

5. Maintaining a consistent model

Users of aateractive modchig systems (not vnly wolecular)
often unintennonally move objects ito ¢ contiguration that
violates requifed properties of the apphcanon--producing an
invahid model database For example moving an endpomnt so



that an originally constrained line is no longer horizontal;
moving a wall without adjusting those adjoining it; leaving
cables dangling in a car engine after moving the alternator;
moving atoms closer than electron shells allow.

Changing a computer object so that it mimics the properties of
its physical counterpart can be arbitrarily complex. Most
modeling applications leave this task to the user. For
example, moving a wall in an architectural model requires that a
user rejoin all the adjacent walls and then ensure those changes
did not invalidate the model. Some molecular modeling
systems let a user invoke a batch energy minimizer to move
atoms into a valid arrangement. However, such automated
post-processing methods can change the model differently than
the user intends.

An interactive modeling system that maintains a physically-
valid model throughout user modifications eliminates the
model re-idealization task. This section presents two protein-
modeling examples to illustrate complexities that can arise in
manual and automated methods for repairing the invalid
models.

5.1. A simple edit requiring complex repairs

A common operation in molecular modeling requires flipping a
planar segment (peptide) in the backbone, surrounded closely
by neighboring atoms, by 180 degrees. Figure ! shows two
stages of the flip operation. Figure 1-A shows the center
segment and its neighbors before a flip. Lines represent bonds
between atoms and hashed areas represent rigid planar
segments,  Each atom contains an electron shell that (10 a first
approximation) cannot intersect other electron shells,
Figure | represents the shells with circles (notice the circles
do not intersect in Figure 1-A). Most systems only allow
rotations about the C-C and C-N bonds so that bond lengths,
angles and planar groups do not change. This makes the flip
difficult by inself since one rotanon affects all the atoms further
along the chain. Figure 1-B shows the venter segment flipped
180 degrees after an appropriate sequence of rotations, The
model now requires repains because the circles overlap,

Manual correction, A chemist can manually adjust the
atom positons to remove the intersechons in Figure 1-B.
Moving an atom requires that a chemist choose appropriate
combinations of rotations so that vther segments do not move,
Muving one atom usually causes imterference with another,
which then reguires additional repairs.  Correctly futing the
thpped segment often causes small changes that propagate
through the entire protemn.  1n practice this problem s much
harder because ¢ chemust fits spheres rather than circdes and
approximates hon-bunded atom anteractions by getting the
spheres 1o touch.  Professc i Jane Richardson, & collaburator
trom Duke Umiversity’s Biochemustry Department,  usually
adjusts models manually atter operations such as this thp  Thas
example takes on the order of fifteen minutes.
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(A) Before thp of middie, planar segment about
C~C and N-C bonds

ha

(B Atter thip eleciron shells overlap

Figure 1: Modeling errors introduced by flipping
a rigid planar segment,

Bateh  minimization. A chemist can also use a baich
minimization pachage to remove the intersections.  Such
packages find a local minimum of the ensemble energy
associated with the overlapping shells. These work well it the
atom shells only slightly overlap. Overlaps greater than, say,
twenty percent contain very large strain energy that cause
nunimization pachages to make large changes 1o the model,
Batch routines often resolve such interactions by moving
atoms the chemist did not intend to change, Professor
Richardsun interleaves sume manual intersention with energy
minimization to avord these undesirable changes,

Interactive minimization, Pertorming this operaton in
Sculpt requires approximately thirty seconds (depending on the
size of the protein). A chemist tugs the atoms from one
orientaion o another while Sculpr continuously  adjusts
segments along the chan 1w accommodate the change
Throughout the uvperation, Sculpr maintans a vahd protein
mudel. Sculpr does nothing here that batch mimimization
systems cannot perform. The dfference s the small
munmzahon ume i Scudpt dlows the system to continuously
mimmize the energy rather than do 1t once atter the user
wnteracuon

§.2. A complex task requiring exorbitant re-
idealization

This example requires changing the onentation of two hehices
between Color Plate 2 and 3 by unwinding the lower hehy,
counter-clochwise by minety degrees, and winding the upper




helix, clockwise by ninety degrees, similar to unrolling a
scroll. The helical structure must remain after the operation.
The task first requires large structural changes to the model (to
twist the helices) and then local adjustments to remove
hundreds of contacts among the sidechains (*an vectors). Color
Plates 2 and 3 show the model before and after the operation.
Text is attached to nearby sidechains to emphasize the change
between the pictures; yellow indicates nearby sidechains
before, and white indicates nearby sidechains after the
operation.

Interactive minimization.  Professor Richardson
performed this task with Sculpt in approximately thirty
minutes. She spent most of the time turning the helices by
applying radial tugs to the atoms to get a uniform twist. (A
future version of the systems will include rigid segments to
reduce the time for this operation.) The system maintained
proper bond lengths and angles throughout the session. She
used the final ten minutes of the session arranging sidechains
to change the contacts among their atoms.

stanual solution. Solving this task manually, without
energy minimization, is not feasible. One can turn the helices
in two ways. The first way requires choosing the appropriate
rotation angies between segments.  This is an extremely
complex, inverse-kinematics problem involving hundreds of
joints, The second way involves breaking the connection
(backbone) between the two helices, rotating each helix, and
rejoining the connection. Rejoining the connection with
proper geometry is very difficult, though easier than the
inverse-kinematics problem. Once the two helices are turned, a
chemist must resolve hundreds of contar ‘s between sidechan
atoms, Professor Richardson attempted to solve this task
manually but quit after several frustrating days and was never
fully satisfied with the results.

Batch minimization. A chemist could specify target
positions for some atoms (if such end positions are known) and
invoke an energy minimization package. The minimizer
chooses a path to move the atoms along towards their targets,
Certain paths can tear the model apart in order to reach the
target (e.g. through the middle of a structure). Instead of
solving the problem with one munimization, a chemist may
choose subgoals along a path to the target and run
minimizauons for each subgoal. This approach works better
than the manual solution, but the turnaround time beiween
subgoal minimization limus the number of steps picked along
the path.  Continuously running a minimization as a chennst
moves atums to targets 1s the same as choosing an nfinite
sequence of subgoals and running batch mmmizations on
each.

6. Interactive, guided simulation

Interactive modeling of physical properties is essenually a
form of interacuve, gwded sumulation. Placing a user in the
computation-loop of a sumulation that once required hours or
days we hope will provide greater nsights to propernies and
relationships 1n a model. This secuon discusses benefits of
interacive simulations compared to batch simulation and
interactive  graphics  without simulattons and  discusses
complications of scientific visuahzation 1 nteractive
simulations
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6.1, Simulation

Simulations can illustrate molecular properties not easily
incorporated into brass models such as attractions and
repulsions between non-bonded atoms. Though a chemist
understands individual attractions and repulsions between two
atoms, comprehension of hundreds of simultaneous
interactions becomes very difficult. Simulations arc typically
used to examine specific atom interaciions in a olecule. A
simulation requires that a chemist choose model parameters,
run the simulation, and view the results in & cine loop. If the
results do not show the specific interaction, the steps are
repeated with new parameters. Simulations have uncovered
important molecular properties, but long turnaround times have
kept this from being a common exploration tool for most
researchers,

Sculpt lets a chemist explore non-bonded interaction while
interactively moving atoms. Professor Richardson believes
interactively exploring protein models with non-bonded
interactions will improve perception of subtle relationships
within proteins. In several sessions Professor Richardson has
seen unexpected reactions that, upon closer examination,
resulted from non-bonded interactions compeling against other
properties such as bond rotations.

Interactive modeling of physical properties augments benefits
from batch simulations with features from interactive graphics.
Today chemists use interactive graphics to study a static
structure or series of structures from pre-computed simulations.
Interactively controlling the view and display parameters
provides more cues about a molecule's structure and nature than
does viewing multiple, static images. Guiding an interactive
simulation while immediately viewing the results lets the user
remain continually engaged in the modeling process. [ believe
this provides greater situational awareness of complex
relationships within a model than viewing cine loops of
sitnulations,  Guiding an interactive simulation lets a user
stumble upon unexpected reactions in the model that may go
unnoticed in batch simulations (the Ahah! phenomenon). Also
more users will experiment with the models as turnaround time
is shortened.

One advantage batch simulations, viewed with cine loops, have
over interactive simulation is the ability to replay the
simulation. Since a cine loop 13 a sequence of frames, a user
can easily move backwards in the sequence to study a particular
property.  Unless a system saves all user actions during an
interactive simulation, a user cannot readily return to a
previous state.  Like an on-going laboratory experniment, an
event cannot be repeated without re-running the experiment
from the beginning with the same steps.

6.2. Visualization of non-bonded forces

Near-neighbor interactions among ncn-bonded atoms play an
important role i protein conformations by holding those
atoms together at fixed distances A protein modeling system
should convey these anteractions to help a chenust tightly
packh the protem's intenior  These interacniens, untortunately,
are not as sunple to display as a bond (vector connecting
atoms)  Figure 2 plots the potenual energy of the van der
Waal interacthion between two atoms as a function of thewr




separation (1 Angstrom = 10-!0 meters). The plot shows a
maximum attractive (negative) energy, E,,, at a separation of
Rm. The energy decreases nonlinearly as the separation
ilicreases from E,,. The energy becomes repulsive, increasing
at a different nonlinear rate, as the separation decreases from
Fpy. Each atom in a protein, on average, interacts with ten
atoms within a six-Angstrom radius (the model in Color
Plare I contains 7,577 van der Waal interactions). A useful
visualization of a non-bonded interaction should convey the
type (attractive or repulsive), magnitude, and ideal separation,
m

Energy (kcal/mole)

. g g8
0. hwrgy(r)=ﬁm(-j—‘-‘2~ + 2-;%’1-)
0.3
a2
0.1 \ Rm

Separation (A)
0.1 Em
-0.2
Figure 2: Van der Waal potential energy between
two atoms.

Sculpt displays van der Waa! interactions that have an energy
magnitude greater than a user-defined threshold. A partial
spherical shell is placed around both of the interacting atoms
and aligned along a vector between them (see Color Plate 4).
Currently 2 shell with a solid angle of 0.4 ste~adians (1en
percent coverage® represents the weakest interaction,  Solid
angle increases with the magnitude of the interaction. Weak
interactions are represented by dot spheres, and strong
intzcactions are represented by wireframe spheres. A dot-
sphere indicates that an interac*i~n exists wia.out distracting
ihe user and consu.ning as much screep space as the wireframe
sphere. Blue denotes attraction, and red denotes repulsion,

Color Plate 4 illustrates this visualization on a small model.
The photograph shows a spring attached to a planar ring
(highlighted with « purple tube) that pulls one atom into
another. Notice the wireframe shells around the two atoms
labeied with text. The shells berd rather than intersect so that
the vector in the two shelis do not interfere visually.
Intersecting wireframe shetls are difficult 1o assoviate with
their respective atoms,

7. Adding physical modeling to interactive
graphics systems

The physically-based modeling module in Sculpr 1s inserted
in1d the control flow of an interactive graphics systems with
mino1 modifications. The white boxes wn Figur* 3 hs: the
sequence of actions in the interactive graphics system: the
system recelves a user action (e.g. mouse movement),
interprets it (move an atom by one Angstrom i a give
direction), apphes the change to the model database (change
the coordinates of atom), and displays the next frame. The
shaded box shows the additional step that modifies the user
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action according to properties o: the application (e.g. also
adjust distances to neighboring atoms).

Monitor user
P nterface

User
action
Interpret

action

¥

Modify to model
consistc:t wi‘l‘hezplicuion

v

Apply
action

Read current

Dusplay

Figure J; Steps in an interactive modeling system
for processing a user acticn,

The control-flow presented in the white boxes is similar to the
event loop of many graphics systems [7). The remainder of
this section discusses some implementation rssues addressed in
Sculpt that may be useful to others wishing to incorporate
physically-based modeling into interactive graphi's systems,

7.4. Constrained minimization

Sculpt implements the shaded boa in Figure 3 with a
constrained minimizer in the {ollowing manner. Scuipt
converts a user action inte a potential energy function (e.g. a
spring to pull atoms). Sculpt then finds a local miniraum of the
total system energy (from protein and user) that also satisfies
the sut of bond length and angie comstraints. Mathematically,
the minimizer solves the following problem:

Grven:
X model state (e.g. vector of atom positions)
Energy(x) sum of potential energies in mod=|

Constraint(x) vector of contramnt functions

Solve:
noammeze  Energy(x)
such that  Constraint(x) = 0.

The mummizer finds the solution wsing a method of Lagrange
multipliers as discussed in [6], |17] and |13}, The minimizer
Jetermines changes in atom positions.  The changes are sent to
the next module wn Figure 3 (Apply action) which then updates
the model database.

Other constrained-minumzation approaches fic within the
tramework of Figure 3. Within munimizes a potential cnergy
function [16] associated with the physwcal state of elasue
models. Amburn mimmizes costs assvciated with desiga goals
{3]. Phllips uses hinemaue comstraints to reduce allowable
jomnt movements 1n ¢n aroculated tigure while nummizing
costs assoctated the positiomng go..s (10}




7.2. Positioning

Direct versus indirect positioning, Directly moving
an object to a new location can violate constraints. For
example, moving one end of a fixed-length line segment
extends its length if the other end cannot move. Indirect
positioning by attaching a spring to an object and tugging the
other end avoids this problem. If no opposing force prevents
movement in the direction of the tug, the result is the same as
direct manipulation. However, if the object cannot move in the
direction of the tug, the indirection increases the potential
energy in the system (because the spring stretches) but does
not invalidate the model.

Tugging objects also lets a user move atoms from one local
minimum to another. Figure 4 shows an example where user
intervention overcomes a local energy minimum. Arrows show
the direction and strength of the attractions among atom 7 and
the fixed-position atoms F, and F3. Figure 4-A shows the
initial state with atom T attracked more by F; than F». The tug
in Figure 4-B (indicated with the dashed arrow) pulls the atom
towards F. Figure 4-C shows the final result.

T Tug

Fn/"&‘~-> F,
°

T
F,A/Cg

(A) Initial attractions

P

(B) Attractions with a user tug

)

:
!

T |
«*, F %
!

|

(C) Final attractions after tug

Figure 4: A user spring pulls atom T between
energy winima,

Which physics? Dynamics or statics.  Physically-
based modeliag, as it has most often been used in computer
graphics, aims to determine physically-realisic motons and
trajectories of objects with specific physical properties (e.g.
blowing flags [14] and jumpmng Luxo [18]). The approach
solves Newton's second law, F=ma, which gives the
acceleration of objects, and <« mbines this with an 1mnal
position and velocity to determare motions.

In this work, stable conformasices, not the trajectories of
reacning them, are the concern. Sculpt achieves this by
modeling potential energy rather than forces in a model. This
gives strains between objects that the systen minimuzes. The
objects never contain velocity information.  Minmuzing the
potential energy (strain) moves the objects but does not induce
momentum.  This techmque provides greater  oatrol over
object positions and tahes less compusation
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7.3. Approximating stiff model components with
constraints

Sculpt makes an approximation that dramatically improves
performance without appreciably decreasing accuracy.
Properties whose deformation requires very large strain
ensry+  celative to others in a model are replaced by rigid
constraints, For example, a bond length is constrained to its
ideal value since the potential energy increase for extending a
bond is five orders-of-magnitude larger than that associated
with a comparable increase in distance between two non-
bonded atoms.

Minimizing functions with similar potential energies, subject
to constraints, requires significantly less computation, in this
application, than minimizing all the energies without
constraints. Minimizing potential energy functions requires
time-steps small enough to model the stiffest properties
accurately. The time-step must decrease as the potential energy
separation among the functions increases. Minimizing all the
potential energy functions requires time-steps orders-of-
magnitude smuller and, therefore, requires orders-of-magnitude
more steps per screen update!

Is this approximation valid? Approximating bond-length,
potential energy functions with rigid constraints reduces the
accuracy of the physical model. However, the large potential
energy signifies that bond-length variability is orders-of-
magnitude smaller than the variability of other properties,
Since the bond lengths hardly change, constraining them for
increased performance is justified. Sculpr lets a chemist trade
performance for accuracy when desired, by modeling lengths
with potential energy functions.

An important principle influences this approximation—only
compute what is significant. Sculpt follows this by only
accurately modeling properties that can vary significantly and
constraining the others. This approach can prove useful in
other applications with wide variability in energy magnitudes.

8. Other applications

Removing model re-idealizanon and enhancing understanding
of model properties will most likely arise wn other interactive
applications that incorporate physically-based modeling. The
particular benefits and implementations are specific to the
applications, However, similanty between the control-flow in
Sculpr and other applications suggests that a generic,
physically-based modeling module may eventually be
developed. For now, the system development effort may be
overhill for simple modeling applications and only jusufied
for complex modeling applications. I conclude with two
example applications that can benefit from adding physically-
based modehing.

8.1. Architectural layout

Sumple changes 1n a modehng system tor architectural models
(e.g. bluepnnts) often require numerous operations  ror
example, narrowing a corridor reguires moving the corndor
walls and lengthening the walls that connect 10 1t A large
portion ot the etfort in the Building Walkthrough project | 1] at
the Universty of North Caroling at Chapel Hill 15 spent fixing



and maintaining databases of models (these databases contain
approximately 4,000 to 30,000 polygons). An automated
radiosity calculation followed by viewing uncovers modeling
errors, including walls not connected to ceilings and doors
outside the plane of their walls. Most of the errors arise from
previous database edits that left parts of the model
inconsistent.

Applying constrained minimization to this application reduces
these burdens. In the corridor example, constraints can require
that moving the corridor wall also moves the connecting walls,
Additional cost functions can increase as certain goals are not
miet such as rooms containing a certain area or being a given
distance from an exit.

Most interactive drafting and drawing systems ignore
application-specific properties to reduce computation and
broaden product applicability. They base operations (e.g.
move, stretch) on individual, geometric primitives (polygons,
lines, contro! points, etc.). Information regarding an object's
construction is usually discarded. For example, MacDraw 1
lets & user construct a line constrained to the horizontal, but
discards the horizontal requirement after construction {S]. The
package does not restrict the line to the horizontal if a user
later moves one of its endpoints. Keeping information about
an object’s structure and propertics allows a system to maintain
a consistent model throughout model editing.

Drafting

The immediate goal for future work is to place Sculpt in a
chemistry lab and gather results about its usefulness for
solving daily protein-modeling problems. This should offer
direction for future enhancements to the modeling and
visualization components of the system.

Future work

The visualization issues offer large scope for future research.
The near-neighbor visualization discussed in this paper is
adequate, though not great. I will continue to examine the near-
neighbor interactions. A much harder property to visualize is
long-distance, electrostatic interaction. These interactions can
extend between atoms on opposite sides of a molecule.
Visualizing these interactions will be hard.

Finally, 1 plan to apply the techniques described in this paper
to other applications. The input to the Sculpt system is a list
of points with a set of length and angle functions defined on
the points. Under one thousand lines of modeling code (out of
ten thousand) is specific to molecules. With this framework |
hope to examine interactive manipulation of skeleial figures
without significant system development,
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ABSTRACT

The 3D components of today’s user interfaces are still underdevel-
oped. Direct interaction with 3D objects has been limited thus far
to gestural picking, manipulation with linear transformations, and
simple camera motion. Further, there are no toolkits for building
3D userinterfaces. We present a system which allows experimenta-
tion with 3D widgets, encapsulated 3D geometry and behavior. Our
widgets are first-class objects in the same 3D environment used to
develop the application. This integration of widgets and application
objects provides a higher bandwidth between interface and applica-
tion than exists in more traditional Ul toolkit-based interfaces. We
hope to allow user-interface designers to build highly interactive
3D environments more casily than is possible with today's tools.

Keywords
User Interface Design, Widgets, 3D Interaction, Virtual Reality

1 introduction

Modem user-interface software is built using widgets, objects with
geometry and behavior used to contro] the application and its ob-
jects. However, most of today's user interfaces for 3D applications
take little advantage of the third dimension’s added power, predom-
inantly using 21 widge.s. Commercial modeling and visualization
systems typically prerunt une or . ore 3D views surrounded by a
large, hierarchical menu system, often with supporting dialog boxes
and sliders. The menu system is sometimes replaced or augmented
by another 2D interface widget such as a network or hierarchy ed-
itor. Direct interaction with the 3D world is lmited primarily to
interactive viewing, selection, translation, and rotation. 3D widgets
used in these interactions include a 31 cursor, gestural translation, a
virtual sphere, and direct manipulation of 3D spline points on paths
or patches. While today’s 3D applications clearly allow users to
be productive with the current interface technology, we believe that
they could be improved significantly by making greater use of 3D
in the interface itse'f.

In virtual-reality systems, 3D interaction is especially crucial.
However, the significant difficulties of 3D input and display have
led research in virtual worlds to concentrate far more on the de-
velopment of new devices and device-handling techniques than on
higher-level techniques for 3D interaction [19). Such interaction
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goes no further than a straightforward interpretation of device data,
such as using a Polhemus for a head tracker or a DataGlove for sim-
ple gestural recognition of commands such as select, translate and
rotate. Some virtual-reality systems make use of menus floating in
3-space with 3D icons instead of 2D pixmap icons [3]. Besides the
additional options for its position, however, such a menu provides
no more expressive power than its 2D equivalent.

There are many reasons for the underutilization of 3D, First, al-
most all interaction techniques must be created from scratch, since
essentially no toolkits of 3D interaction techniques exist, Secand,
such toolkits are difficult to develop until metaphors for 3D inter-
faces grow beyond their current infancy. Finally, we believe sucha
toolkit is intrinsically more difficult to create than its 2D counterpart
because of the inherent complexity of 3D interaction.

Widget toolkits are well known for 2D applications (e.g., the
Macintosh Programmer's Toolbox, OSF/Motif, X View) {17}, How-
ever, 3D graphics libraries such as PHIGS+ and SGI's GL provide
very little suppert for interaction beyond simple device handling.
The industry standard PHIGS+ provides only six widgets (pick, lo-
cator, stroke, choice, valuator, and string). Further, the application
programmer cannotchange their look or feel, and ali except 3D pick
cormrelation are low-level, providing little functionality beyond that
provided by a physical device. Thus, application developers are
left to implement basic interactive techniques such as virtual sphere
rotation themselves.

Most paradigms and metaphors for 3D interfaces are less de-
veloped than those for 2D interfaces. Some 3D metaphors are the
natural analogs of those femiliar in 2D, such as 3D menus and
rooms [14] [4]). However, research in 3D interfaces must develop
new metaphors and interaction techniques to take advantage of the
greater possibilities of 3D. The cone tree and perspective wall, de-
signed at Xerox PARC {22] {13}, demonstrate the potential of 3D
representation and interactive animation. .

User interfaces are inherently difficult to program {17]. 3D in-
terfaces complicate interface design and implementation, since the
interface must take into account such issues as a richer collection
of primitives, attributes, and rendering styles, multiple coordinate
systems, viewing projections, visibility determination, and lighting
and shading. Further, 3D environments allow many more degrees
of freedom than those easily specified with common interface hard-
ware hke mice. The interface can easily obscure itself, and 3D
interaction tasks can require great agility and manual dextenty. In-
deed, physical human factors are a central part of 3D interface
design, whereas 2D interface designers can assume that hardware
designers have handled the ergonomucs of device interaction.

Thus paper reports some first steps towards the goal of creating a
nichly interactive 3D application development environment. Aftera
more detailed discussion of the problems inherent 1n designing and
umplementing 3D widgets, we present a framework under develop-
ment for thewr implementation, design, and use. By working with
an 0. ;2ct-onented notion of a widget, we hope to provide a toolkit




of modifiable and reusable 3D interaction techniques.

2 Extending Widgets

There are several points to consider when designing an environ-
ment for developing 3D widgets. Most fundamentally, what is a
widget? How do existing notions of widgets derived from 2D envi-
ronments extend to 3D environments? Secondly, how should a 3D
application communicate with its 3D interface? Finally, what kinds
of primitives are needed v build 3D widgets? 2D environments,
like the X Window System, provide raster drawing primitives and
event-based callback mechanisms. What sorts of primitives should
a corresponding 3D environment provide?

2.1 Defining “widget”

We define a widget as an encapsulation of geomely and behavior
used to control or display information about application objects.
Although this definition is somewhat vague and general, it has the
advantage of covering all the areas of the interface literature we
have explored, from general constructs such as Gamet's Interaction
Objects [16] and the Interactive Objects of Xerox's 3D Rooms {21]
to very specifickinds of widgets such as those found in the X Toolkit
or the Macintosh Toolkit.

The extent to which a 2D widget should be classified as consisting
of behavior or of geometry varies widely. Some useful widgets are
primarily geometric, such as the dividing lines and frames that
serve to organize and partition an interface. Others, such as a
gestural rotation widget in an object-oriented drawing program,
have no inherent geometry. 3D widgets encompass a similar range
of geometry and behaviur. This makes our definition of the term
“widget” useful for understanding interface problems that are not
dimension-specific.

2.2 Comparing common 2D widgets and 3D
widgets

Despite their often complex appearance, most 2D widgets have very
simple behavior. They commonly have few degrees of freedom
(usually only one) and support only a small range of values within
a degree of freedom. Thus, while toggle buttons have bitmap icons
to represent different states, they represent only a single bit of
information, and similarly, sliders represent a single number within
arange, usually only a small integer range.

3D space inherently has more degrees of freedom than 2D space:
angid flying body has six degrees of freedom in 3D versus three
in 2D. 31 graphics hibraries are, in general, more capable of han-
dhing general transformations than thewr 2D counterparts. As noted,
common 2D widgets rarely take advantage of all the degrees of
freedom available to them. The use of multiple degrees of free-
dom to enhance interaction s thus largely unexplored potential,
even in 2D {23], and 3D, with its greater degrees of freedom, has
comespondingly greater potential. This potential must of course be
handled with restraint: while we would like to be able to use several
degrees of freedom simultancously, using too many may make the
widget too difficult to use. Rather, interface designers should be
able to specify any subset.

The user interacts with most widgets, whether 2D or 3D, through
manipulation nwvolving motion and sumple gestures that are n-
terpreted durectly, to produce, for example, a shiding button or a
popup window. However, the user can gamn more expressive power
through interaction techniques that interpret and process movements
and make possible more suphisticated interaction  For example, a
calligraphic drawing program can attach a pen to a cursor by means
«f a simulated spnng {9], a simple motwn-control technigue that
makes possible a whole new range of drawings not easily created
with a rigid pen-cursor linkage.

Both 2D and 3D widgets can benefit frum more sophisticated
reaction W user input Interactivn van potentially achieve substan
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tial gains by using such techniques as dynamic constraints, inverse
kinematics, and physical simulation as components of direct ma-
nipulation interfaces. These techniques currently appear only in
systems designed explicitly to present or use them, such as demos
or prototypes, butin the future, these techniques should be as acces-
sible as any other component in the widget designer’s repertoire [8].

2.3 Integrating the application and the user
interface

User interfaces were originally designed by application program-
mers using the same tools they used to build applications. This pro-
duced interfaces that were tightly integrated with the application.
Recently, however, interface design is more often done by specialists
using UI development tools [17]. While this separation produces
more consistent interfaces and more modular programs, it can also
produce interfaces that are not as helpful as they could be if they
were more specialized to the application — the interface designer
is not only aided but also limited by the toolkit and its metaphors.
In particular, as has been noted by those critiquing WIMP inter-
faces {8}, today's toolkits are not oriented towards highly interactive
applications.

Such highly interactive applications require a high bandwidth
between the application and the user interface, particularly for se-
mantic feedback {8). Prior Ul research indicates that this may be
best accomplished if the application and the interface are part of the
same development environment, with the same tools being used to
build both [18). Anirtegrated environment has additional software
engineering benefits. First, only a single paradigm must be leamed,
rather than one for the interface and another for the application.
Also, separate paradigms can be hard to integrate at several lev-
els: the conceptual level, the code implementation level, and the
compile-debug level. Advocating integration is not a call to abol-
ish modularity in application and interface design. Rather, it is a
suggestion that the principles of modularity can be pushed too far.
The reasons for separating the application from the user interface
are valid, but the benefits of a single developmentenvironment may
outweigh the benefits of using two, especially for 3D applications.

Consider the benefits of higher bandwidth between the applica-
tion and the interface. A menuselectionis arelatr  small amount
of input that specifies only an operation, operand, ., attribute, leav-
ing other parameters to be specified elsewhere (perhaps in another
menu or a dialog box). Gestural interfaces, on the other hand, allow
the user to specify operation, operand, and parameters in a single
action [23), providing a faster interface and commands that do not
depend on previous or further actions.

In addition to providing better input, a tighter integration between
application and interface lets the application provide semantic feed-
back while the user 1s interacting. Structured program editors have
provided this kind of functionality for many years through syntax
checkers that check for or prevent syntactic errors as the user types.
Similarly, some 2D graphical circuit design tools prevent the user
from making physically impossible or illogical connections.

Existing Ul toolkits do allow callbacks to alter a widget based on
application feedback, but the mechanisms to do so are often clumsy
and hard to use. Our interfaces are constructed in an environment
called UGA [25] in which widgets can actively depend on the state
of other widgets, in the same way that any other objects (e.g., the
application's ubjects) in vur system can depend on each other. Oug
widgets are not external to the application model. They are first
tlass ubjects, indistingwishable from apphication objects. This pro-
vides the Ul designer with all of our system’s power for specifying
behaviur and geometry, and gives as hugh a bandwidth between ap-
pliation and mnterface as between apphication ubjetts themselves,
creating the pussibility of interfaces that are tghtly coupled with
the application, both for mput and for output.

We have advocated butk 7™ widgets and widgets that are tghtly
integrated with an applivaticae  The latter idea is the more powerful




of the two, since it can apply to all areas of interface design. In
the remainder of the paper, we consider tools applicable to inte-
grated widgets and then examine some case studies of integrated
3D widgets. ,.

3 Tools tor Designing and Implementing
Integrated Widgets

3D interfaces are presently too underdeveloped for us to specify a
comprehensive library of tools for building useful interfaces, We
have therefore devised an environment that provides a great degree
of flexibility to design new 3D widgets. It is often pointed out that
flexibility in a user-interface design environment is a double-edged
sword, allowing novel and useful interfaces as well as novel and
useless interfaces. Because of the undeveloped state of current
3D interfaces, however, we prefer to allow the possibility of some
poorly conceived designs rather than rule out unexplored possibili-
ties,

3.1 Dependencies and controllers

UGA supports the geometric componentsof widgets through its rich
modeling environme~it. The system supports the behavioral aspects
of widgets through one-way constraints called dependencies [25).
An object can be explicitly related to another object by using a
dependency. Since widgets are first-class objects in UGA, they can
use this dependency mechanism as easily as application objects can.
For example, a cube can become a simple slider by constraining it
to move only along its x axis, and a torus's inner radius can then
depend on the x position of the cube.

To provide multi-way constraints and cyclical constraint net-
works (18], we use controllers[25), objects whose primary purpose
is to control other objects. Thus, our dynamic constraint solver is
encapsulated as a controller. Additionally, we encapsulate physical
devices as controllers that filter and pass values to objects. Finally,
we can use controllers to encapsulate simulation methods, such as
inverse kinematics or collision detection. By employing controllers,
widgets can make use of general constramnts, hardware devices, and
simulation techniques.

3.2 A dialog model for sequencing

Some researchers choose to separate Ul design into two broad cat-
egories: data-oriented Ul design, usually supported through con-
straints, and dialog-oriented U] design [11). We find both models
useful. In addition to the data-oriented mechanisms of dependen-
cies and controllers, we provide a dialog model that uses augmented
transition networks (ATNs). We use ATNs because the sequencing
of an interface is explicitly declared and i1s more easily visualized
in a hierarchical ATN than n context-free grammars or event sys-
tems |7},

A simple transition network is a finite-state automaton (FSA).
A complex interface can be described as an FSA but the complex-
ity produces a combinatonal explosion of FSA states. Augmented
transiton networks handle some of the hmitations of simple FSAs
{allowing such behaviors as defimite loops without specifying inter-
mediate states) by adding vanables and conditional transition along
arcs based on the values 1n the variables. Recursive transition net-
works are used to provide hierarchy for ATNSs, by allowing control
in one ATN be suspended until a recursively invoked ATN reaches
its final state.

Normally, an ATN, even a recursive one, has only one cument
state. Therefore, some events that can happen at any iume, such as
an “abort” or “help” request, are especially cumbersome to specify,
requiring an additional arc from every state in the ATN By contrast,
eventsysiems have greater expressivenessthan ATNs [7), since they
can easily handle an “abort” or “help” event by sumply adding a new
event handler to process this event. This would seem to make event
systems a better choice. However, notions of current state, history.,

or context are more difficult to express in event systems. Considera
“help” event that should provide context-sensitive information. An
event model must provide a different event for each context. On
the other hand, an ATN can handle a uniform “help” event, with
arcs corresponding to context-dependent actions looping back to
each state or leading to one or more help states. We would like
a dialog model that combines the best features of both ATNs and
event handlers.

Thus, we modify the ATN model to allow possibly disconnected
components of the state graph and more than one active state {12).
We can now represent a set of event handlers as a group of discon-
nected states in an ATN, one state per event handler, each with a
single arc back to itself. The arc’s input tokens represent the corre-
sponding event handler's events, and the arc’s action represents the
handler routine. However, we can add explicit sequencing to this
ATN. For example, in our model, it is easy to specify the sequence
of events found in snap-dragging, described in Section 4.3, but rel-
atively cumbersome to specify in an event model, because of the
need to represent history.

Our dialog model also allows a clean separation of subparts of
the interface (i.e., individual widgets or groups of widgets). The
dialog specification of each subpart can be represented as a subgraph
of the ATN that describes the specification of the entire interface.
These subparts can run 1 parallel, corresponding to a situation in
which several widgets are logically operating at the same time. This
parallelism is very useful: we can, for example, use the mouse o
control both a 3D cursor and a higher-level widget, such as the rack
described in Section 4.5.

The components of this dialog model, such as the individual states
in the ATN, are first-class objects in our system. Since the dialog
model is embedded in the same environment as the application itself,
dependencies can be used to establish the connections between the
ATN and the application that allow each to modify the other.

3.3 Applying object construction techniques

The UGA system supports a rich set of modeling primitives and op-
erations, including constructive solid geometry (CSG), volumetric
sculpting, spline patch objects and deformations. Both geomet-
ric and non-geometric modeling techniques, such as hierarchical
grouping, can be applied to widget creation. Geometric techniques
are used to specify a widget's geomerry. Correspondingly, since
ATN states are first-class objects, they can be organized using non-
geometric object grouping techniques. Thus, both a widget's ge-
ometry and behavior are specified in the same unified framework,
the framework of the application objects it controls,

The underlying construction technique we use 1s delegation,
where one object (the ~hild) 1s created from a pre-existing object
(the parent) {24} [10]. If the parent object is changed, the child
changes as well. Since both the parent and its chuldren are objects
in the system, and any object can be a controller modifying other ob-
jects, one of the children can modify the parent object, and therefore
modufy itself and ali of its siblings. Delegation provides the ability
to change large portions of the interface at once. Furthermore, since
delegation relationships are maintained at run time, we can modify
the interface without recompiling. This allows rapid prototyping of
interface designs.

4 Examples of 3D Widgets in Qur System

Our user interface group has developed several simple 3D widgets
1 our framework. Some of these, such 4s the virtual sphere and the
cone tree, duplicate other researchers” widgets, others are expen-
thents with new paradigms for : 3D usermtertace. We present these
widgets below, explaining the design process we used i Lreating
them, and stress the progress made possible by repad prototyping




4.1 A virtual sphere

A virtual sphere rotation widget can be handled by a simple two-state
ATN (Figure 1). The ATN processes mouse motion, passing the
mouse positions to a function that maps the 2D mouse coordinates
into another object’s space, in this case producing a point on the
surface of a sphere. The deltas between a series of these projections
produce rotations. We can easily change the kind of object that
mouse coordinates are mapped to, so as to produce a “virtual cube”
or “virtual donut.” This sort of modification of the interface can be
done at run time.

while mouse not
. up, rotate
start rotation
on mouse down

Start State Rotate State

finish rotation
on mouse up

Figure 1: A two-state ATN for virtual sphere rotation

4.2 Handles

Object handlcs {6] are a 3D widget that contains more visual geom-
etry than the virtual sphere widget. We can build handles with an
arbitrarily complex appearance. Once they are built, we are free to
establish dependencies on them or use them as a controller. Color
Plate I shows various handles being used to translate, rotate and
scale an abject.

The same kind of constrained motion can be produced by hold-
ing down various modifier keys or different combinations of but-
tons [20). However, a user presented with such an interface has no
easy way to determune what the possible actions are. Handles allow
constrained motion through intuitive direct maripulation: when a
particular handle is sclected, motion is constrained along or around
the axis it describes, For example, clicking on an object-space
translation handle located along an object’s x axis limits translation
to the x axis.

The visual feedback of a widget can range from the direct move-.
ment of the selected object to more complex widgets, such as han-
dles that include numerical output and other quantitative indicators.
Because our system provides rich support for geometry, the same
set of primitives used for th2 application can be used to assemble
widgets and their visual feedback. The behavior of handles can
be produced without the corresponding geometry. An example is
the creation of “hot spots” on an object that may or may not have
a visual indication. The behavior of a virtual sphere can in tum
be augmanted with geometry — for instance, a sewni-transparent
sphere can be placed around the object during rotation to convey
the behavior of the widget to the user more effectively. The flexi-
bility of the system allows the widget designer and user to explore
a wide range of options.

4.3 Snapping

With a more intricate ATN (Figure 2) we can perform simple snap-
dragging {2]. A mouse’s coordinates are used to generate a ray
from the camera through the projection of the mouse’s position
onto the viewplane 'f this ray intersects an object, the ATN lets
the user choose a point on an object to snap to a point on another
object. Since this is done with ray intersection, the point to snap
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includes a complete Frenet frame [15) defined by the surface normal
and tangents. When the user releases the mouse button and clicks
again, the ATN begins checking to see if the ray specified by the
mouse intersects another object. If so, this new object becomes the
object to snap to. Again, the user can choose exactly which point
to use, including the entire Frenet frame. When the user has chosen
both points, the widget produces a transformation to align the two
frames, and applies it to the first object.

SnapPoint State ChooseGoal State
mouse motion, mouse motion,
update snap point rubber band

mouse up,
fix snap point

mouse down,
select 2nd object,
choose point

to snap to

mouse down,
select 1st object

mouse up

snap objects
Start State .

mouse motion,
update point to snap to

PerformSnap State
Figure 2: A four-state ATN for interxctive snapping

By changing the states in the ATN, the user can experiment with
different ways of specifying snap-dragging. Severaldifferent ATNs
for different snapping techniques can be concurrently developed
and experimented with, even at run time. For example, a user
could develop a more complex ATN to allow the specification of
the distance between the surfaces as well as the relative orientation
of the Frenet frames.

4.4 A color picker

Color spaces are inherently multidimensional. To illustrate these
spaces we can build a color picker in three dimensions and show
how changes in the values affect the output color. Color plate I
shows two interactive views of RGB color space and one interactive
view of HSV color space. One view of RGB space is built with three
sliders, each of which was specified using dependencies. Another
view is built using a cubical marker that can translate within the
bounds of a unit cube. Here, each axis of the cube’s position rep-
resents a component of the color value. Thus, all three components
can be specified simultaneously using 3D gestural translation The
third view is of HSV space. As in the RGB cube, the position of
the spherical marker in the center represents the three components
of the HSV color. The constraints on the sphere permit it to move
around in the cone that represents valid HSV color values.

All of the spaces are different visualizations of the same data,
kept consistent through the use of dependencies. Thus, a user can
choose a color in one view and see how that color is represented in
the other two. As the user interactively chooses a color, the other
two color representations update accordingly Users familiar wath
the RGB space can learn about the nature of HSV space by watching
the motion of the HSV indicator as they move the RGB dicator.




4.5 The rack

Recall that the ATN states are first-class objects and that our system
provides hierarchical grouping of objects. An ATN can pass control
to another ATN through dependencies and controller mechanisms.
Thus, pre-existing ATN's can be grouped together to form a more
complex, hierarchical ATN (see Figure 3) that controls the sequenc-
ing of the lower-level ATNs. In other words, we can build more
complex widgets out of pre-existing widgets.

To construct a more complex widget, we start with the simple
rotation and translation handle widgets discussed in Section 4.2,
By rearranging them and changing their connections, we combine
them to form a “rack” for specifying high-level deformations such
as twists, tapers and bends {1], shown in Color Plate IV.

Different handles specify the parameters to three deformations.
The distance between the two upright handles specifies the range
over which the deformation applies. The angle of the red handle
on the end indicates the amount of bend, and the angle of the pink
handle indicates the amount of twist, while the height of the blue
handle indicates the amount of taper. By reconfiguring the rack,
changing the number of handles and their respective behaviors, the
user can control how the deformation is specified. Specialized racks
that only bend, taper, or twist can be easily built. A new rack can be
designed to apply wave deformations, or to allow both geometric
transformations and nonlinear deformations at the same time.

Textual specification of a bend deformation requires four floating-
point values and two vectors. Therack specifies all of these visually.
The major axis of the rack specifies one vector, and the red handle
specifies another vector, detenmining the angle and direction in
which the object should bend. The floating-point values are all
specified by how much particular handles are moved.

roreddececs

vereuns one

Rotate widget used for bend

----- esveescessd

whi.'i::h'dget
subwi
did we pick?

Translate widget used for taper

Figure 3: Several ATNs can be combined to form 2 more complex
widget. This widget specifies high-level deformations.

The rack is a widget that provides a more meanungful interface 1o
complex deformations than a conventional widget such as a panel of
independentsliders. Sucha panel provides no semantic correlation:
the user must extrapolate a single deformation from multiple inde-
pendent slider positions. Thus, the rack serves to abstract out the
essential characteristics of a deformation. When handles are used to
translate an object in its own object space, the handles themselves
give the user feedback on the orientation of that space, which might
not be apparent from tne object itself. Similarly, an object being
deformed with the rack may be so geometrically complex that it has
no clear axis around which to twist, bendor taper The rack provides
this axis, along with immediate and understandable feedback about
ihe magnitude and effects of the deformations.
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4.6 The cone tree

More complicated metaphors for 3D interfaces can be constructed
and experimented with in our system. A large number of rotation
widgets can be assembled into a Xerox PARC-style cone tree. Here,
we use the cone tree to display the hierarchy of a 3D model (Color
Plate IIT). The cone tree is itself an object in the system and can be
freely manipulated as a whole.

The nature of this widget inherently requires motion contro! to
animate the rotation of the subtrees. When we modify the cone
tree, we can affect the underlying geometric hierarchy it represents.
Moving subtrees of the cone tree to other nodes in the tree affects
the hierarchy of the mode! that the cone tree represents. If we use
other tools to modify the hierarchy, the cone tree’s structure is also
updated.

Since the cone tree is itself a widget, we can combine it with
other widgets to make more intricate information browsers, much
as simple rotation and translation widgets were composed above to
make a deformation editor. We plan to explore using cone trees to
represent portions of a hypermedia graph that are primarily hierar-
chical but have some cross-links, e.g., a multimedia technical paper
with its various sections, subsections, references, and see-also’s.

5 Conclusions

5.1 Accomplishments

We have presented a concept of 3D widgets as first-class objects en-
capsulating behavior and geometry that can be treated as any other
objects in a 3D world, Their behaviors may be defined using com-
plex control methods and user input techniques. We have provided
a first implementation of these widgets within the UGA system.
Widgets can be rapidly prototyped, modified, and combined into
more complicated systems of widgets. Close integration with the
application allows rich forms of interaction and feedback in our 3D
applications.

5.2 Future work

Constructing 3D widgets is reasonably fast with our system. How-
ever, widget designers at present must be experts in the use of UGA.
We hope to make specifying 3D widgets even more natural and in-
tuitive than it is now, so that a far less technically expert designer
can implement 3D widgets. Part of the complexity stems from lim-
itations of dependencies. We might address these limitations with
a more generic constraint mode] at the basic system level, making
it easier to specify sume of the complex relationships of 3D wid-
gets. In addition, our system does not run as fast as we would
like, even on today’s high-end platforms. A large portion of time
is spent evaluating dependencies. Unfortunately, the addition of a
more generic constraint mode! is not hkely to help performance.
Thus, dependencies merit a close look, at both the conceptual and
the implementation level.

We would like to continue developing individual widgets and
explonng the potential of vanous techniques from the world of 3D
graphics in interface design. We want to investigate the use of
more sophisucated motion control, modeling and readering tech-
niques for 3D widgets. We can foresee widgets that will use
dynamic constrawmnts, physical sumulation, volumetnc techniques,
particle systems, and even radiosity. Our application framework
already includes many of these techniques, so it 1s simply a matter
of their imaginative apphication tn our system to make use of such
techniques in 3D interfaces.

In addition, we are in the process of constructing full 3D appli-
cations and interfaces with the system presented. We believe the
unusual nature of our widgets will provide some interesting avenues
of exploration. Since the widgets are as much a part of the apph-
cation as the application itself, 1t 1s straightforward to munipulate
widgets with widgets. In other words, a user interface can be built




by starting with simple widgets and u ing them to bootstrap more
complex ones.

Finally, we hope to develop a high-level UIDS (user interface
design system) {S] for our system. As previously noted, our system
currently has no tools for making high-level specifications of an
interface. Most commercial UIMSs, having been built on top of a
widget toolkit, focus on appearance and geometry of widgets. Some
rescarch-level UIDSs handie behavior and sequencing. A UIDS
suitable for our system would clearly have to be able to handle full
application behavior and would perhaps be an Application Design
System, a full-fledged programming environment for 3D interactive
applications.
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ABSTRACT

In a virtual world viewed with a head-mounted display, the user
may wish to perform certain actions under the control of &
manual input device, The most important of these actions are
flying through the world, scaling the world, and grabbing
objects, This paper shows how these actions can be preciscly
specified with frame-to-frame invariants, and how the code to
implement the actions can be derived from the invariants by
algebraic manipulation.

INTRODUCTION

Wearing a Head-Mounted Display (HMD) gives a human user
the sensation of being inside a three-dimensional, computer-
simulated world, Because the HMD replaces the sights and
sounds of the real world with a computer-gencrated virtual
vorld, this synthesized world is called virtual reality,

The virtual world surrounding the user is defined by a graphics
dutabase called a model, which gives the colors and coordinates
for cach of the polygons making up the virtual world. The
polygons making up the virtual world are normally grouped
into entitics called objects, cach of which has its own location
and orientation. The human being wearing the HMD is called
the user, and also has a location and orientation within the
virtwal world.

To wrn the data in the model into the illusion of a surrounding
virtual world, the HMD system requires certain hardware
components, The tracker measures the position and
oricntation of the uscr's head and hand. The graphics engine
generates the images seen by the user, which are then displayed
on the HMD, The manual input device allows the user to use
gestures of the hand to cause things to happen in the virtual
world,

BASIC ACTIONS

An action changes the state of the virual world or the user’s
viewpoint within it under control of a gesture of the hand, as
measured by the manual inpuat device. The hand gesture
wtiates and terminates the action, and the changing position

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed foi
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
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and orientation cf the hand during the gesture is also used to
control what happens as the action progresses,

The manual input device may be a hand-held manipulandum
with pushbuttons on it, or it may be an instrumented glove, In
cither case, the position and orientation of the input device
must be measured by the tracker to cnable manual control of
actions, The input device must also allow the user to signal to
the system to start and stop actions, and to sclect among
alternative actions.

Certain fundamental manually-controlled actiors may be
implemented for any virtual world. These actions involve
changing the location, oricntation or scale of either an object
or a user, as shown in Table 1.

User Object
Translate | fly through grab (and move) object
the world
Rotate 1ilt the world grab (and turn) object
Scale cxpand or shrink | scale object
the world

Table 1. Basic actions

Flying is defined here as an operation of translating in the
direction pointed by the hand-held input device, with steering
done by changing the hand orientation. This is different from
the type of flying available in a flight simulator, where the user
can not only translate but can also cause the virtual world to
rotate around him by banking. However, translation-only
flying is appropriate for a HMD because the user has the ability
to turn and look in any direction, and to point the input device
in any direction. We believe that keeping the orientation of
the virtual world locked to that of the real world helps the user
to navigate while flying through the virtual world.

Tilting the world is the ability to re-orient the virtual world
relative to the user's orientation; that is, to turn the
surrounding virtual world sideways. Ths is implemented by
rotating the user with respect to the virtual world, which is
subjectively perceived by the user as the eatire virtual world
rotating around him.

Scaling the world is the capability to shrink or expand the
world relative to the user, as occurs to Alice in Wonderland
when she drinks from the Little bottle or eats the little cake. By
setting up the action code properly, the user can shrink and
capand the world while manually steening the center of
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cxpansion. This cnables a powerful methed of travel in very
large virtual worlds: the user shrinks the world down until the
destination is within arm’s rcach and then expands the world,
continuously steering thn center of cxpansion so as to arrive at
the correctly-scaled destination,

Grabbing an object is picking up and moving a simulated
objcct that appears in the virtual world. By analogy with rcal-
vorld grabbing of objects, this includes the ability to rotate
e held object before releasing it

Scaling an object is just shrinking or expanding an individual
objcct alone.

This paper secks to answer the following question: How can the
basic actions of flying, grabbing, scaling and tilting in a HMD
system be specified and implemented?

PRIOR WORK

The first HMD was built in 1968 by Ivan Sutherland (8], but
since it had no manual input device other than a keyboard, it did
nat allow actions controlled by manual gestures, At the
University of Utah, a tracked manual input device called a
“wand” was added to the system [9], The tip of the wand was
tracked in position but not oricntation, The wand was used to
doform the surfaces of virtual objccts composed of curved
patches (2},

In 1985 at NASA Ames Rescarch Center, McGreovy and
Humphries built a HMD which was later improved by Fisher,
Robineit and others {3}, Under contract to NASA, VPL
Rescarch provided an insirumented glove, later named the
"DataGlove,” which served as a manual input device, The
position of the hand and head were tracked with a Polhemus

Space magnetic tracker. In 1986 using the glove input
device, Robinett implemented on this system the actions of
flying through the world, scaling the world, rotating the world,
and grabbing objects.

Some of these actions, particularly flying and grabbing
objects, have since been implemented on HMD systems at
several sites, VPL Rescarch began in 1989 selling
commercially a HMD system that used a glove to control the
actions of flying and grabbing {1]. At the University of North
Carolina {7][5), the actions of {lying, scaling and grabbing
were controlled with a hand-held manual input device with
pushbuttons on it which was made from a billiard ball,

COORDINATE SYSTEMS DIAGRAM FOR A HMD

Various coordinate systems co-exist within a HMD system. Al
of these coordinale systems exist simultancously, and although
over lime they may be moving with respect to one another, at
any given moment cach pair of them has a relative position and
orientation. The instantancous relationship between two
coordinate systems can be described with a transform that
converts the coordinates of a point described in one coordinate
system lo the coordinates that represent that same point in the
second coordinate system,

Although transforms cxist between any pair of coordinate
systems in the HMD system, certain pairs of coordinate
systems have relative positions that are ecither constant,
measured by the tracker, or are known for some other reason.
These ate the independent transforms, which are shown in
relation to one another in Figure 1. In this diagram, each node
stands for a coordinate system, and each edge linking two

nodes stands for a transform between those two coordinate
systems.

modificd when uscr flics, modified when

tilts, or scales world objccts arc moved
world /

room
objects
fixed offset
tracker
wolffmremrewe mieasured by tracker
hand
fixed offset

left eye right eye . .
perspective projection
\“m N
through eyepoint

virtual image of § virtual image of

left screen right screen
¢ optical magnification
and distortion
left screen right screen

Figure 1. Coordinate systems diagram for a single-user
HMD system

NOMENCLATURE FOR TRANSFORMS

We abbreviate the coordinate systems with the first letters of
their names, The World-Object transform may be written as
Two. Transform Two converts a point Pg in coordinate sysiem
O 10 a point Py in coordinate system W,

Pw = Two'Po

This notation is similar to that used in {4]. Notice that the
subscripis cancel nicely, as in [6]. Likewise, the composition
of the transform Tyo going from O to W with the transform
Trw going from W to R gives a transform Trg from O to R,
with the cancellation rule working here, too:

Trw - Two=Tro
The inverse of transform Tyg is written Tow.
SPECIFYING ACTIONS WITH INVARIANTS

An action in a virtual world is performed by activating the
input device, such as by pushing a button, and then moving the
input device to control the action as it progresses. As an
example, grabbing a simulated object requires, for cach frame
while the grab action is in progress, that a new position for the
object be computed based on the changing position of the
user’s hand.

It is possible to precisely define grabbing and other actions
with an invariant, which is an equation that describes the
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desired relationship among certain transforms involved in the
action. The invariant is typically stated as a relation between
certain transforms in the current display frame and certain
transforms in the previous frame, In the casc of grabbing, the
invariant to be maintained is that the Object-Hand transform be
cqual to its value in the previous frame while the grab action is
in progress; in other words, that the object remain fixed with
respect to the hand while it is being grabbed.

Starting from the invariant and a diagram of the coordinate
systems involved, a mathematical derivation can be perfomed
which produces a formula for updating the proper transform to
causc the desired action to occur. For grabbing, this would be
updating the Obicet-World transform to change the object’s
position and oricntation in the viral world,

Rigorously deriving the update formula from a simple invariant
is much easicr and more reliable than attempting to writc down
the update formula using the coordinate systems diagram and
informal reasoning, Also, the matching of adjacent subscripts
in the notation helps to check that the transforms are in correct
orler,

GRABBING AN OBJECT

Ta derive the update formula for grabbing, we first look at the
relevant part of the coordmate system diagram, shown in
Figure 2.

held fixed modificd by
during grab grab action
!
’ world

constint é

object

tracker

hand

for the grab action, the invariant
is to keep Lhis single transform
unchanged fram frame to frame

measured by
tracker

Figure 2. Coordinate systems diagram for grabbing an
object

A way of describing the action of grabbing is that the Object-
Hand wansform Ty remain unchanged from frame to frame,
which is expressed by the invariant

Ton' = Tey
where the aposioptic . Teyp” indicates a transform in the

current frame which 1s bemy updated, and no apostrophe means
the value of the transform from the previous frame

To move an individual object, the Objcct-World transform Tow
must be updated cach frame in a way that preserves the
invariant. To derive the update formula for grabbing, we start
with the invariant and decomposc the transforms on both sides
based on the relationships among the coordinate systems as
shown in the coordinate system diagram.

Tow'  Twr"* Trr" - Tri’ = Tow* Twr Trr* Tmnt

We then usc algebraic manipulations to isolate the desired
transform on the left side of the cquation, remembering that
these transforms arc not commutative,

Tow'* ng: “Ter' = Tow'Twr*Trr*Tm l.' Tir "
Tow'-Twr' = Tow: Twr* Tkr T Tirr" - Trw
Tow' = Tow*Twr Trr Trap Taer'  Tr*» Trw'

This is the update formula for grabbing, which updates the
Object-World transform bascd on its previous value, the current
and previous values of the Hand-Tracker transform (which
changes as the hand moves), and the values of the intervening
wransforms between Tracker and World, The effect of executing
this assignment each frame is to keep the object in a fixed
position and oricniation relative to the hand, even though the
hand is moving around within the virtual world.

Another action which can be implemented in a similar manner
is “grabbing the fabric of space.” In this case, the user can
grab and tilt the entire virtual world, rather than just a single
abject, by holding the World-Hand transform invariant while
the hand rotates.

FLYING

The action of Nying is translating the user through the virlual
world in the direction pointed by the manual input device. The
user steers by rotating the manual input device as the flight
proceeds. A metaphor fo - this type of flying is that the user
holds a rocket pistol in his hand, which drags him through the
virtual world when he squeeses the trigger,

The manual input device is considered to point in a particular
direction that is relative to its local coordinate system. This
may be thought of as a 3D vector in Hand coordinates, where
the vector's length specifies the flying speed and the vector’s
direction defines the direction the input device points. This
vector defines @ translation transform, Tyyyaasaent « Which
moves a point in Hand coordinates 1o a new position in Hand
coordinates. To implement flying, we first need 1o conven this
transformation to operate on points in Room coordinates,

Trusntack’ = Trit"* Tinnstswent” - Tk’
To make the user’s position change within the virtual world,
the World-Room transform must be modified each frame, so the
invariant for flying is
Twr' =Twr * TRuanstster’
which may be expanded to give the update formuta for flying,
Twr™ = Twr-Tre" Trt" - Tinanstaeett Tirr” - Tig’

SCALING THE WORLD

It 1s possible 1o shrink or expand the surrounding virtual world.
Thus 1s comprehensible and effective because the user has direct
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perception of the size of and distance to virtual objects through
stercopsis and hcad-motion parallax, and can therefore casily
perecive the concerted motions of the objects in the virtual
world cxpanding around a center of cxpansion, or shrinking
towards a center of contraction.

The type of scaling uscd is uniform scaling, in which all three
dimensions are always scaled by the same factor. There is
always a center of scaling when uniform scaling occurs, and for
the manually controlled action of scaling the world, it makes
sense 1o locate the center of scaling at the user's hand, When
cxpanding the world, the center of scaling is the point that
virtual objects move away from as expansion occurs, and so to
end up at a specific desired location within a formerly-tiny
virtual world, the center of scaling must be repeatedly sc-
ceniered on the desired location as it emerges during
cxpansion,

Implementing this action requires a derivation similar to that
used for Nlying. An incremental scaling transformation in Hand
coordinates, Tyjcatetre Will use the Hand origin as the center of
scaling. Below we give the invariant for sealing the work), and
the update formula derived from it

Twr' = Twr * TReeater”
Twr' = TwrToe' T’ Tttt T T

GENERAL FORM

Upon examining the invariants for flying and scaling, we sce a
strong similarity between them:  both invariants are of the
form:

Twr' = Twr * TRanmfonor’

In fact, these two invariants for updating Tyy are examples of a
more general technique for updating a transform between two
coordinate systems based on a transform that occurs in a third
coordinate system. The general form for updating the
transform Tap in terms of an action in coordinate system K is:

Tan’ = Tan Tk * Trarantornax * Trn'

where there may be an arbitrary number of coordinate systems
between B and K, and Ty is the product of the transforms that
g0 between the two coordinate systems,

Using this general form, scaling an object about the hand is
analogous to scaling the world about the hand:

Tow = Tow Twir" - Tireaar Tw'
CONCLUSIONS

The foregoing exumples of grabbing, flying and scaling show
how actions can be implemented that operate under continuous
manual control by the user. }or cach action, the relationship
between the motion of the hand and the transforms to be
modified was precisely specified with an invariant. These
invanants not only provided a concise and precise
speafication of each action, but also provided a staring point
for a formal deny ation that produced update eyuations which
could be used directly to implement the actions,

Using wnvariants and derivations 1o produce the code to
mplement grabbing, scahng and flying 1 greaty superior to
the method which 1s often used, namely, 1o st winite down 4

sequence of transforms that looks right based on the coordinate
system diagram. It is easy to get some of the transforms in the
wrong order. The notation used in this paper provides a check
against misordering the transforms by requiring adjacent
subscripts to match. The HMD software at UNC was
implemented using this notation and the formulas derived in
this paper, and serves as proof that they work.
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A Comparison of Head-tracked and Non-head-tracked
Steering Modes in the Targeting of
Radiotherapy Treatment Beams

James C. Chung
Department of Compuier Science
University of North Carolina at Chapel Hill'

ABSTRACT

A controlled experiment was conducted to compare head-tracked
and non -head-tracked steering modes in the performance of an
abstract beam-targeting task, Collected datarevealed a wide variety
of mods preferences among the subjects, Subject performance, as
measured by final score, task completion time and subject confi-
dence, differed very little between the head-tracked steering modes
taken as a group and the :ollective non-head-tracked modes, Some
significant differences were observed between individual steering
modes, both within and between the head-tracked and non-head-
tracked groups.

INTRODUCTION

Current research at the University of North Carolina at Chapel Hill
is investigating the possible benefits to be gained by applying head-
mounted display (HMD)technology toradiotherapy treatment plan-
ning (RTP). Use of ahead-mounteddisplay fortargeting of treetnent
beams suggests several pessible steering modes for exploring the
virtual world of the patient's anatomy. To determine which steering
mode is best suited to our application, a user study was conduced to
investigate the relative merits of the different steering modss.

Seven steering modes were used in an abstract beam-targeting task.
Four modes used head-tracking information, whil: the other three
modes did not. It was anticipated that head-tracking would provide
an advantage in beam targeting through more natural steering and
navigation that makes use of proprioceptive and v.stibular informa-
tion, which are absent in non-head-tracked methods,

Related work inmovementthrough a virtual world isdescribedin{1,
2, 3), but these studies do not deal with HMD's and head-tracking,

BEAMTARGETING

The key to successful beam targeting in radiation therapy treatment
}lanning is to orient and shape the beams so that the entire tumor is
covered by each beam while as little of the healthy surrounding tissue:
as possible is hit by the beams. Given the complex spatial arrange-
ment of a patient’s anatomy (tumors may be draped around healthy
organs or have lendrils snaking out into the healthy tissue), this is
usually not an easy task,

To evaluate the different steering modes, subjects were presented
with an abstract anatorny model, consisting of & mulu volored
spherical target (tunior eanalog ) embedded in acolleation of unigucly
Permission to copy vnthout fee all or part of this materia! is
granted provided that the copies are not made or distributed for
direct conmescial advantage *he ACM copyright notice and the
titla of the publica on and its date appear, and notice is given
that copying is by peimission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
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colored monochromatic spherical dodges (organ analogs). (Sce
Color Plate 1,) The subjects used each of the seven steering modes
to manipulate the direction in which a conical virtual beam passed
through the model. The beam was defined such that its source {cone
vertex) was always a fixed distance from the target, its central ray
(cone axis) passed throught the centerof the target, and i's divergence
was just large enough 1o encompass the target. TS subject was
instructed to find the beam dircection that afforded the smallest
volume of intersection between the conical beam: and the dodges, a
task analogous to a radiotherapist trying to avoid radiosensitive
organs with a treatment beam,

STEERING MODES

The term “'sicering mode" refers to the method used tochange one's
position or orientation in the virtual world. This is distinguished
from navigation, which refers to understanding one’s current posi-
tion and orientation relative to other objects in the virtual world.

Head-Tracked

These modes arclinked iomovementof the subject'shead and enable
the subjecttomakeuseof ve...'bular (inner car balance) and proprio-
ceptive (muscles, tendons, oints) sensus for navigation,

Walkaround (WLK). In Walkaround mcde, the subject physically
walks about in the viriual world containing the target/dodges model.
The dircction of the beani is defined by the vector from the subjects
eyes to the center of the target. To better examine the model and
targetthebeam from abcve and below, the subject is giventhe ability
to vertically translate the model using a 6-D mouse. No other
manipulation of the model is possible.

Walkaround/Rotation (WKR). Thisis the sarne as Walkaround mode,
wi.h the exception that the subject is able to also rotate the model
about any axis in 3-space through its centur by grabbing with the 6-
D mouse. (See 6-D Mouse section below.)

Orbital (OR3). In Orbital mode the subject is constrained to always
be looking at the center of the model from the beam source, Beam
direction coincides with gaze direction. Unlike the Walkuround
modes, Orbital mode uses only head orientation and ignores head
position. As the subject’s head turns, the model is observed to
transiate about the subject’s head at a constant distance. (Hence the
name Orbital.) Because the model undergess no rotation, i can be
viewed frum any direction with a turn of e subject’s head

Immersion {IMM). Ir Immersion mode the sub <ot views the model
lovking vutward frum the center of the target. Like Orbital mode,
{mmersion mode makes use of head onuntation vnly and ignores

‘CB#3175, Sisterson Hall, Chapel Hill, NC, 27599-3175,
chung@cs.unc.edu (919)962-1889
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head position. When the subject’s head tums, the subject’s view
sweeps across portions of the model from its fixed, central vantage
point. Thebeam direction is defined by the subject’s gaze direction,
and the task of finding the best beam orientation becomes one of
looking for the portion of the model with the biggest opening. Since
the beam passes completely through the model, the subject is given
the ability to reverse his gaze direction by holding down abuttonon
the 6-D mouse, and can thereby examine the complete prospective
beam path through thz model,

Non-Head-Tracked

Althoughthesemodes donotmakeuse of head-tracking information,
the subjects still viewed the model through the HMD so that image
quality was equalized over the seven modes. Theseth: ¢e modes all
nlace the subject’s cye at the heam source, looking in we direction of
the beam toward the target, and supnort exploration of prospective
beam orieatations by rotating the model in three-space.

Joystick (JOY). InJoystick mode themodel is rotated with avelocity-
control joystick. In addition to the left-right/forward-backward
movement ~f the joystick, the cap of the joystick turns clockwise and
counterclockwise to provide all three degrees of rotational freedom.

upaceball (SPC). In this mode the model is rotated with a Spaceball’,
an isometric, force-sensitive device that provides six degrees of
translational and rotational freedom. This mode, however, usss only
the three rotationa! » .grecs of freedom as a velocity control for
rotation of the model in three-space,

6.D Mouse (SDM). In 6-D Mouse moas the orientation of the model
is controlled with a custom-built, six degree-of-freedom mouse
(tracker sensor embedded in a pool ball with two buttons). When
either mouse button is held down, the sotational component of the
mouse movement isdirectly linked tomodel rotation, and the subject
sees the model rotate in the same manner as his hand.

BEAM'S-EYE VIEW

An important feature of a steering mode that may affect a subject’s
performance is whethes or not it provides a “beam’s-eye view."
Beam's-eye view isthe view seenby aneye coincident withthebeam
vertex and whose gaze vector coincides with the beam’s central axis,
With a beam’s-eye view it is very easy to determine which dodges
intersect the beam, for since the beam is defined to diverge just
enoughto exactly enclose the target, the sithouettes of those dodges
will overlap with the silhoue.ic of the target. Inthose modes thatdo
not provide a beam's-eye view, it is more difficult for the suviect to
udge which dodges are hi¢ by the beam.

Walkaround and \Valkaround/Rotate modes donot provide beam's-
eye views, because the suliject's head cannot be physically con-
strained to align with the beam source. Immersion made also does
not provide a beam's-eye view, since the subjeet’s eyepoint is con-
strained to stay at the target's center. The other four modes do
provide beam’s-cye views.

EXPERIMENTA! METHOD

The expei:ment was a one-factor within-subject investigation, with
steering mode as the independent vagiable. Dependent variables
measured were final score (volume of intessection between beam and
dodges),task completiontime, confidencein the final beam configu-
ration, and rank orderings of the seven modes by ese of use and by
preference.

Fourteen subjects were recruited from graduate students and staff
members of the Departirents of Computer Science, Radiation On-

*Spaceball™ is a register ed trademark of Spatial Systems, Inc.
13Space™ is a registered trademark of Polhemus Navigation Sci-
ences.

tRyePhone™ is a registersd wademark of VPL Research, Inc.

cology. and Radiology at UNC. Each subject underwent 7 sessions,
eauit of which used a different sscering mode, The order of the
steering modes used by each subject was varied according 1o a 7x7
latin square. Each session consisted of 3 practice trials followed by
3test trials, Each trial used a unique target/dodge model.

Ineach trial the subject explored prospective beam orientations until
the best one was found, at which time ths subject stopped the trial.
There wasno time limit, norany emphasison task completion time—
the subject was instructed to take as long asn~cessary to find the best
beam path. A virtual marker (arrow pointing inroughthe model) was
provided to the subject tousc as areference. At any time the subject
could issue a “mark” command, which aligned the marker with the
current beam direction, and the marker would remain fixed in the
model until a subsequent comy and was issued. The score and task
completion time for the trial were recorded, as well as the subject’s
rating or a scale of 1 (no confidence)-10 (total confidence) of how
confident he or she was that the best beam orientation had been
found.

Afterall sevensessions were completed, the subjectranked the seven
steering modes according to two criteria, ease-of-use of the steering
mode and preference for performing the beam targeting task.

Equipment used included a Polhemus 3Space! tracker on an
EycPhonet Model 2 head-mounted display, displaying images gen-
erated by UNC’s Pixel-Planes 4 graphics processor.

RESULTS

Figure 1 presents histograms showing for each steering mode, the
number of times it was ranked Ist, 2nd, ... 7th by case-of-use and by
preference, Theplot for Walkaround Mode shows thatmost subjects
found it to be one of . » more difficult steering modes to use. The
other three head-tracking modes have somewhat flat histograms,
suggesting no general consensus on how easy they were to use, Of
the non-head-tracking modes, the Joystick mode is widely consid-
ered an easy-to-use steering mode, Spaceball mode and 6-D Mouse
mode both tended to be on the difficult side.

The preference rankings show that Joystick mode was widely pre-
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subjects either loved it or hated it.

In order to factor out inter-model variability, each trial's score was
noralized by the median score across subjects for the particular
model used in that trial. Figure 2 shows the distribution of the
logarithms of the normalized scores grouped by steering mode, As
the best possible score is 0 (no intersection between beam and
dodges), the more negative values represent better performance.
Student's t-test reveals significant differences for the following
inter-mode comparisons: IMM-ORB (0=0.0007), IMM-SPC
(0=0.0069), SDM-ORB (a=0.0126), WKR-ORB (a=0.0187),IMM-
JOY (a=0.0197). Head-tracked modes (IMM, ORB, WKR, WLK)
taken as a group do not differ significantly from non-head-tracked
modes (JOY, SDM, SPC).

Figure 3 shows the distribution of the logarithms of the task comple-
tion times grouped by steering mode. No significant differences are
found in this data, neither between individual steering modes nor
bewween head-tracked and non-head-tracked modes,

Figure 4 presents the distribution of subject’s confidence rating
grouped by steering mode. The only significant effect found in this
datais the JOY-IMM comparison (0t=0.0375).

Table 1 describes corn:lations between the dependent variables. Not
surprisingly, ease-of-use a.d preference rank are highly correlated.
Significant correlations are also found between subject confidence
and ease-of-use, preference, and elapsed time. Allthree correlations
are negative, indicating that a subjects’ confidence decreased when

oltel, Coott, 1 Ease of-Usa | Preference od tapsed
Signd, Prob]  Rank Rak . | Smae | Efbsed | Contence
EaspolUse] — 0872475 | 0050002 | oosgre3 | 019504
Rank =) (0.0000) (0.3845) (0.4241) (0 0008)
Protoronce | 0872475 - 0009285 | 007005 | -022578
Rank | {0000Q) =) 0870 | 0231 | (00001
Tog(
0050002 | 0009285 - 008343 | 02236
Nomoized | (03835) | (06740) =) 01260) | (0704)
fiodbs | 0oteres | ooroes | -00sses - 025299
Time) (04241 ©.2311 (0.1200) (=) (0 0000)
0.19508 | 022578 | 0223 | -025239 -
Confidence | oo008) | (00001) | ©708) | (00000) =)

Table 1. Correlation coefficients between cependent vanables, with
significancs probabili‘y.

using difficult steering modes or modes they did not like, or when
trials took a long time. Interestingly, score is not significantly
correlated with any of the other variables,

DISCUSSION

Trial Replay

In addition tothe statistical summaries presented above, asubjective
review of each trial was conducted by playing back log files in which
were recorded status information for the subject’s head, the model
and the beam at half-second intervals. By observing the trial replay
with the HMD, it was possible to study how the subject moved and
how the model was manipulated. The trial repiay also traced the
location of the beam source through the trial, quickly revealing which
beam directions were considered, and perhaps more important,
which directions were not considered.

In spite of being instructed to find the best possible beam direction,
subjects usually terminated the trial before considering all possibili-
ties. Presumably they were able to attain a good enough spatial
understanding of the model without having to inspect it from all
angles. Trials in which the model had been completely covered
usually were usually of extremely long duration, with subjectmove-
ment suggesting confusion and disorientation. In only a few cases
did subjects follow asystematic searchstrategy, and these systematic
searches would usually be abandoned after one candicate beam
direction had been found, For the most part, subjects followed what
mightbecalled a“greedy” steering strategy, moving about the model
inamanner based upon their current view of the model, and notupon
somepredefined plan. Asaresult,inmosttrials the traces of the beam
source showed large *holes" that were never considered. From just
watching the trial replay it is difficult 10 determine whether such
holes were areas that were deliberately skipped or accidentally
missed. Some of these areas corresponded to beam directions that
were obviously Fad, which might imply that those possibilities were
deliberately skipped. Otherholes contained prospective beam direc-
tions that were good enough to deserve consideration, implying that
these areas were accidentaily missed by the subject. Inmost cases the
beam directions that required the subject w look straight up or
straight down were not covered, as the HMD would exert very large
torques on the subject’s neck in these positions.

Most subjects relied very heavily on the marker to provide a refer-
ence point in the model  The marker served as a landmark that
facilitated quick movement between two diametrically opposed
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bean, directions, and was also typically used as a “best-beam-
direction-so-far” marker to which the subject would return for the
final solution after furtherexploration elsewherc. Many subjects ex-
pressed adesire to have more than one marker. Most subjects did not
makeuse of thecontext provided by dodges uniquely colored in HLS
space for reference. Only one subject, whose own research is con-
cemned wiih the use of color, found the colors useful-—so useful, in
fact, that the markers were never used.

Steering Mode Summarles

Immersion (IMM). Immersion mode produced significantly worse
scores than Orbital, Spaceball, and Joystick modes, and it appeared
tohaveinstilled less confidence in the subjects than the other modes.
This may be a result of the subjects’ being able to see only a small
portion of the model at any time, which, combined with the lack of
any head-motion parallax, could have hindered the subject’s devel-
opment of a complete mental picture of the model. In addition,
subjects were required to evaluate prospective beam orientations by
looking in one direction and then in the other direction, with no clear
indication of where the boundary of the beam was, Immersionmode
did, however, have the advantage of providing the ability for the
subject to use muscle memory in navigation. Even without a
complete global understanding of the model, subjects knew how they
had to orient their keads to get back to a particular beam direction.

Orbital (ORB). Despite the fact that there is no real-world metaphor
for this steering rnode, Orbital mode produced significantly better
scores than Immersion, 6-D Mouse, and Walk/Rotate modes. This
may have been due to the unique combination of several factors.
Orbital mode provides a beam's-cye view of the model, which at
once . .es the subject an external global view of the model and
allows the subject to easily deiermine which dodges intersected the
beam. Another contributing factor is the aid to navigation through
muscle memory provided by Orbital mode.

Walkaround (WLK). Walkaround mode produced the longest mean
task completion time, but was undistinguished in score and subject
confidence. The long task completion time is not surprising, given
the difficulty of walking about in the virtual world in a HMD that
seals off any view of the real world. Most subjects found this mode
very awkward and time consuming, and ranked Walkaround low in
ease of use and preference. Interestingly, this mode more than any
other was used for systematic searches. One subject repeatedly
circled around the model, inspecting the model at different heights
with each loop. Another subject opted 1o walk less and inspect the
model vertically at regular intervals around the model. Perhaps the
awkwardness of the mode instilled in these subjects a need for a
disciplined, efficient approach.

Walkaround/Rotation (WKR). Walk/Rotate mu:e did not perform
any better than Walkaround mode, but fared better in ease and
preference rankings. The model rotation capability was used to
different degrees by the different subjects. Most subjects walked
very little and spent most of their time standing still and rotating the
modelas in 6 D Mouse mode. Some trials showed norotation at all,
perhaps indicating areluctance in the subject to lose the navigativnal
advantage provided by a fixed model reference frame,

Joystick (JOY). Joystick mode ranked very high in case-of-use and
preference, probably because most of the subjeuts worked with
computers and were somew hat familiar with video games. Evenso,
performance with Joystick mode was not notable. Trial replay
revealed that most subjects used only principal axis rotations, i.e.
they rotated models mostly vertically and horizontally and very litle
diagonally. This was probably due o the mechanical action of the
joystick, which required slightly more effort 10 move diagonally.
The effect of this restriction is unclear, for while it forced subjecis to
decompose their movements into aseries uf principal ascs rutations,
itprovided aprecisionof movementnot available with the other non-

head-tracked modes.

6-D Mouse (SDM). Compared to subjects’ preference for Joystick
mode and dislike for Walkaround mode, response to 6-D Mouse
mode was relatively flat, Its performance was undistinguished from
theotheri.wodes. Trialreplays showed that this mode suffered greatly
from tracker latency, which greatly hindered both precise alignment
and movements large enough to require more than one grab-release
cycle. Consequently, beam source traces for 6-D Mouse mode were
characterized by a very jagged appearance with large direction
changes separating relatively small rotations.

Spaceball (SPC). The performance of Spaceball mode is reletively
undistinguished, butits preference rankings are weighted toward the
low end. Many subjects found the Spaceball fatiguing and difficult
to use for precise movements,

General Comments

Perhaps mostcompelling is the large inter-subject variance seen this
experiment, which may have masked significant differences be-
tween steering modes and between the collective head-tracked
modes and the non-head-tracked modes. Standardized tests of
spatial orientation and spatial visualization [4} may provide a nor-
malizing factor to reduce this variance.

Anotherinteresting observadonis the large variation seen in the pref-
erence andease-of-use histograms of the head-tracked modes, There
was no general consensus about which of the four modes was the
best, although Walkaround was genvially considered the worst. This
suggests that to be widely accepted, an HMD-based targeting tool
should have an adaptable user inte:face that leis users choose the
steering mode they want to use. One must also consider, however,
that a task so critical as targeting ol reatment bcams demands
optimal performance. Orbital mode provides better performance
than the other three, and will be ciuried over intothe nextexperiment,
involving true, anatomical beani-targeiing, Sincescorr isnotcorre-
lated with mode preference, it is expected that perfornance of users
who do not like Orbital mode ~ill nat suffer from having to use it.

CONCLUSIONS

Collected data show nosigr ificant difference be. .«..nhead-tracked
steeringmodes andnon-he..d tracxed steering rse. intheperforsy -
ance of an abstract beam tasgeting task, Orbita} me le provided the
bestoverall performance.. Immersionmodethe won . The threenon-
head-tracked modes wu..e not distinguished by p +.crmance.
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Interactive Manipulation and Display of

David Banks
Department of Computer Science
University of North Carolina at Chapel Hill

Two-Dimensional Surfaces in Four-Dimensional Space

Abstract

Surfaces in 4.space generally produce self-intersections when
projected to 3-space. The gecometry of the projected surface
changes as the surface rotates rigidly in 4-space. This paper
presents techniques for interacting with such a surface, for
recovering the geometry and depth information that the
projeciion destroys, for computing the intersectiors and the
surface when projected to 3-space, and for cor puting the
silhovettes and the surface when projected to the «<creen. These
techniques are part of an interactive system call.d Fourphront,
which uses Pixel-Planes § as the graphics engins.

1 Introduction

Versatile high-performance graphics machines let us
interactively manipulate surfaces in four dimensions. The
projective geometry and linear algebra required for the job are
well known {Semple), but surfaces in 4 space present challenges
in designing a user inwerface and a set of visualization cues. This
paper presents techniques to address these problems, using
Pixel-Planes 5 as the graphics platforni, In particular, we present
techniques for gathering 3D input to manipulate 2 surface in 4-
space, for providing visualization cues, and for applying 4D
depth cues. These techniques arc at the heart of an interactive
system called “Fourphront.”

Why study surfaces in 4-space? One reason is that topologists
have yet to classify all the 3-dimensional compact surfaces, but
have succeeded with the 2-dimensional surfaces (k-holed
donws and their non-orientable counterparts). Many of the 2-
dimensional surfaces require four dimensions in which to
imbed, and none of the compact 3-dimensional surfaces can
imbed in three dimensions of Euchdean space. It might be
enlightening to examine and compare surfaces that are
topologically equivalent and that inhabit four dimensions of
space. Do they look alike or not?

Permission to copy withcut fee ali or parx of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1992 ACM 0-89791-471-6/92/0003/0197...$1.50
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It is difficult even to illustrate the 3D classification problem
with genuine examples; these are volumes without boundaries,
residing in up to seven dimensions of space. Even the 2-
dimensional .urfaces may require four dimensions for their
imbedding. Interactive computer graphics can be of service by
providing a window on these surfaces in 4-space.

Object
space

4-D)

User % . Lighting

space space
3-D) Gp) W Sereen
(D)

Figure 1. A user in 3-space manipulates a surface in 4-space, which
projects to 3-spac and then onto the screen,

The three steps of our task (figure 1) are (§2) mapping input
from user space to object space, (§3 and §4) projecting from
object space to illumination space, and (§5) projecting from
illumination space to the screen.

2 Mapping User Input to World
Transformations

The illusion of reality is strongest when the user controls what
scene it is that he views, Dynamic control of the transformation
matrices requires an input device that offers a natural means for
producing the object’s motion. There are ten degrees of
freecdom that we wish 10 control for manipulating objects in 4-
space: four extents of translation n the axial directions (X, y, 2,
w), and six Euler angles of rotation withun the axial planes (xw,
YW, 2w, X2, yz, xy). The 4D rotations look very much like their
3D counterparts, although 1 becomes more appropriate 10
think of rotations occurning within a plane rather than
occurring about an axis (figure 2). In 3-space, rotations leave a
1-dimensional subspzace fixed; that subspace 1s the rotation axis.
In 4D, rotations leave a 2-dunensionul subspace fixed, while
permuting the points within the 2-dimensional rotation plane
and within the bundle of planes parallel 10 it In 2~—eral, the
rotation matrix A for the X,X, plane (¢ < ), contans the elements
au=a,=cost,a,=-a, = D& s 1, and the remaiming
clements a,; = & For a more thorough reatment on Euler
angles in 4-space, and how to speafy onentation, see
{Hoffman]. The challenge in assignmng the e degrees of
freedom in 4 space to input devices that exist physically i 3-
space is to promote kinesthetic sympathy: the similanty of
input-motion to object-motion [Gauch]
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Figure 2, These are three of the six axial planes in xyzw-space,
defined by the axis pairs xw, yw, and zw. The other three axial planes
(x2, yz, and xy) lie in the 3-dimensional xyz-subspace,

2.1 Mapping 2D Input to 3D Transformations

The fact that an input device is constrained within a physical 3-
dimensional world will impair kinesthetic sympathy. The
question is, how much? This problem is very familiar in a
different guise, namely, how to affect direct 3D maniputations
with a 2D locator such as a mouse, In this case there are six
degrees of freedom (three Euler angles and three orthogonal
translations) to associate with a 2-dimensional input space, The
popular techniques are to overload the input space, to partition
the input space, to discard a dimension of control, or to create a
cross-product of the input space by using multiple locators. The
following is a highly compressed review of these techniques.

2.1,1 Overloading the Input Mapping

We can overload the input space (x’, y*, 2*) by extracting X’ and
y’ components of the locator's velocity, and assigning the
magnitude of circular acceleration to the z* component
{Evans). Converting these components into translations in x, y,
and z preserves sympathy for X and y, and naturally suggests a
screw-translation for z. An important drawback to mapping the
input space this way is that the locator's velocity and
acceleration are not decoupled. If the user wants to change the
direction of the locator’s motion, that change necessarily
produces a circular acceleration and hence a z-translation in
world space (figure 3).

Figure 3. At the bottom point of this circular trajectory, the mouse's
velocity is purely horizontal, while its acceleration is purely vertical.

2.1.2 Partitioning the Input Space

We can partition the input space inio components, each of
which maps the locator motion to the object motion in a
different manner., The partition can be explicit, by determining
in which of several control areas a cursor lies [Chen]. The
partition can be implicit, by comparing the motion of the 2D
locator to the orientation of a 3D cursor that is projected to
input space [Nielson]. Whichever mapping is employed, the
user must be prepared to change his motion when the input
space switches context, and must be aware of which mapping is
being invoked.
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2.1.3 Discarding Input Mappings

There are several ways to discard a degree of control in order 1o
eliminate a dimension from the range of the input mapping.
For example, two angles determine a position on the unit 2-
sphere. Rather than specify three Euler angles, we can use the
locator’s velocity vector to determine a rotation of the unit 2-
sphere and hence of the 3-space it inhabits. Alternatively, we
can map the input space to the tangent space at a point on a
surface [Nielson, Bier, Hanrahan, Smith), in order to control the
motion of the object by controlling its motion within that
tangent plane. Of course the locator’s motion becomes less
sympathetic as the tangent plane deviates from the image plane.
A more abstract problem is that path-planning can become very
difficult when it requires a route through successive tangent
planes to reach a target orientation. A surface in 3-space that
isn't closed or that isn't everywhere differentiable may possess a
Gauss map that does not cover the unit sphere. Such a surface is
difficult or impossible to oricnt by controlling it through its
tangent or normal space.

2.1.4 Taking a Cross Product of the Input Space

Bz' using k locators, cach with n degrees of freedom, we permil
n* degrees of freedom in the input space. These can be realized
cither as k physical locators, as one logical locator with a k-wity
selector to map physical-to-logical, or as a hybrid of the two.
Thus, a single mouse button can select between two mappings
of the mouse position into the world {Chen).

2.2 Mapping Spaceballs and Joysticks to 4D
Transformations

What does the experience of mapping 2D input 1o 3D
manipulation suggest for mapping 3D input into 4D
manipulation? Consider cach of the four approaches outlined
above. (1) Overloading the input space can produce
transformations in 4-space as side effects of an attempted 3D
manipulation - side effects which novice users cannot casily
undo. (2) Micison's method for partitioning a locator’s 2-
dimensional space extends to 3D for translation, but it does not
lend itself to rotations. (3) There are problems with discarding
one or more dimensions of manipulation, First, mapping a
velocity vector in 3-space into rotations of the unit 3-sphere in
4-space is a promising idea, but it is difficult to restrict the
input so as lo rotate the projection of the object within its
projected 3D subspace. Second, the bigger the dimension of the
space, the less of it can be visited by excursions in a 2D tangent
plane to a point on a surface, so exploiting local surface
properties pays a much smaller dividend than it did in 3-space.
(4) Using multiple input devices can be inconvenient,
requiring ten sliders or dials, five mice, four 3D joysticks, or
two six-degree-of-freedom spaceballs.

What choice is best? There may be no single optimal technique,
but multiple input devices at least promise a great deal of
kinesthetic sympathy if their input space 1s 3-dimensional. The
relative novelty of interactive manipulation i1n 4-space is a
powerful motivation for designing a sympathetic interface. Not
many people have developed a sense of how surfaces look as
they rotate in 4-space. Consequently, we do well to
approximate that motion as closely as possible by the mouon
of the input device. Of the devices listed above, spaceballs and
Joysticks provide the most degrees of freedom. How then cun
we use them to create sympathetic motion in 4-space?



Translations and rotations within an input plane x’y’ can
sympathetically and uniquely map to motion within an image
plane defined by the xy plane in world space. But the
projection from 4-space to the screen will annihilate two
orthogonal directions z and w, together with the 2-
dimensional plane they define, This plane will apparently go
“into"” the screen at each point. Translation in the z or w
directions and rotation in the Xw, yw, Xz, or yz plancs thus
present a problem, If the input device moves toward the screen,
we can legitimately map that motion either to z or w, Either
choice preserves kinesthetic sympathy, but the map is not
unique. Rotation in the zw plane is also problematic. There is
no physical rotation of a 3D input device sympathetic to this
4D rotation, since (in our physical 3-space) such a rotation
would be confined to the 1-dimensional input space z’. The
sympathetic maps are tabulated below (figure 4).

S SRR S S L i T
&1 Xy'z Input Sgace ) xyzw World Space |-
si| Translation Direction Translation Direction
x' X
{
i Y, y
- 2 zorw
21 X'y’ Input Space —.  xyzw World Space
*I Rutation Plane Rotation Plane
xiy‘ xy
X'z’ XZ OF XW
) ye yzoryw
: ” w
N e e ot R T

Figure 4. The mappings of 3D input space to 4D world space that
promote kinesthetic sympathy.

Despite the ambiguities, there are slill reasonable ways 10
convert input from a spaceball or a jaystick into 4D
transformations. A spaceball offers six degrees of freedom: three
translations (x’,y’,2’) and three rotations (x'y’,x’2’,y’2*). To
extract ten degrees of freedom requires two spaceballs, cither
physically or logically,

The mapping from input space to object space can be defined as
follows. Spaceball; assigns (x’,y’,2') to (X.y.z) for calculating
translations and rotations, Spaceball, re-interprets the 2’
coordinate, assigning it to w instead of to z, Spaceball, also
makes the exception that rotations in its X'y’-plane map to
rotations in the world's zw-plane. This rotation is not
sympathetic, but, as pointed out above, no rotation in input-
space can be sympathetic to a zw rotation, Note that two
physical spaceballs compete to produce x and y translations
under this scheme; it is necessary then to squelch one
spaceball’s input to these translations. This makes the two-
spaceball solution somewhat unattractive,

3D joysticks that use twist (about the joystick axis) as the third
degree of freedom can map in a similar way to the spaceballs,
using two joysticks to mimic the mappings of a single
spaceball. The joystick rotates in each of three planes based at a
common origin. Two of the rotations {eel like translations for a
short interval: when the joystick is centered, a rotation in its
X'2’ or y'z* planes is momentarily a linear translation in the x°
or ¥ direction (figure 5). We exploit this duality to
sympathetically map these two motions into either rotation or
translation in 4-space. Twist is not kinesthetically sympathetic

to translation, but is at least sv¢zestive of forward motion that
results from rotating a sc.cw.

Figure 5. The 3D joysticx rotates in the x’z’, y'7’, and x’y’ planes,
which can produce a momentary translation in the x and the y
directions. In the input space coordinales, x’ is rightward, y' is forward,
and 2’ is vertical.

We need four (physical or logical) joysticks in order to supply
the ten degrees of frecdom necessary in 4-space. We can map
pairs of (logical) joysticks the same way we map the spaceballs,
Each pair allocates translations to one joystick and rotations to
the other. Since joysticks have a small range of motion, 1t is
wise to treat their input as velocity rather than position when
gross manipulations are desired.

The two mapping schemes arc summarized in the following
table (figure 6). The subscripts indicate which logical locator
supplies the input.

Spaceball Joystick World
Translation Rotalion —=  Translation
Direction Plane Direction
x" xlo_/.li
yl yl'zll
z,’ XYy’ 2
X2. x2I,,2| x
)’2‘ )’2'72' y
2y XYy w
Spaceball Joystick World
Rotation Rotation —  Translation
Plane Plane Direction
X'y X3¥a' Xy
X'z X3ty X2
¥’y Y33 Y.
X2¥2 X3y W
XpZy Xy XwW
yo1p Yoty yw

Figure 6. The mappings of spaceball and joystick input that promote
kinesthetic sympathy in 4D world space,

It is inconvenient 1o re home the hands from one set of
joysticks to another in the midst of manipulauing an object,
Fourphront therefore uses only two physical joysticks, one for
cach hand, muliplexed as four logical ones. One physical
joystick functions as a logical pair that always maps (X°,y".2")
to (x.y.z). This physical joystick embodies logical joysticks 1
and 3 in the table above. The other physical joystick
(corresponding to logical joysticks 2 and 4 in the table) maps
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(x',y',z') to (x,y.w), with the same caveat that it
nonsympathetically maps rotations from the X'y’ input plane
to the zw world plane. A binary state variable (governed by a
joystick button) determines whether to produce translations or
rotations.

It is not uncommon to decouple the positioning and
oricntation operations in the input domain. Experience shows
that that users also decouple 4D manipulations (the ones that
involve the w-axis in world space) from 3D manipulations
[Hoffman)] in order to inspect the change that was made to the
3D projection moving the model in 4-space. So there is some
justification in this splitting of the joystick control into four
parts. The other natural decomposition would assign logical
joysticks 1 and 2 to one device, and joysticks 3 and 4 to the
other.

3 Projecting to 3D: Intersections,
Transparency, and Silhoueties

The same technique for projecting surfaces from 3-space to 2-
space applies to projection from 4-space to 3-space. A
persper \ve projection requires an cyc point eyey in 4-space. In
{non-homogenecous) normalized cye-space coordinates, the
point (¥, y, 2, w) projects to (x/w, y/w, 2/w) in the 3-dimensional
imzge volume, A second eye point eyey within that volume
determines a further projection to the final imsage plane (figure
7).

Figure 7. The (x y z w)-axes (left) project in the w-direction to the (xy
2)-axes (middle), which project in the z-direction (o the (x y)-axes of
the image plane,

The typical side-effect of projection is that the resulting surface
intersects itself in 3-space, even if it has no intersection in 4-
space. Why is that? The self-intersections arise when a ray from
eyeq strikes the surface twice, since buth of the intersection
points must map 1o a single point in 3-space. This is the usual
situation for a closed surface in 4-space, just as it is for a closed
curve in 3-space: the shadow of a “‘curvy” space curve exhibits
self-intersections through most of its orientations ,

A surface is imbedded if it has no self-intersections or
singularities. An imbedded surfaces locally looks like a
neighborhood in the plane - no creases, no crossings. If a
surface imbeds in three dimensions, there’s litde need (from the
standpoint of topology) to study it in four; thus the interesting
sutfaces are generally the ones that contain self-intersections
when projected to 3-space, because they fail to imbed there.
None of the one-sided surfaces imbed in 3-space. Happily, all
tf he topological surfaces have incarnations that imbed 1n 4-
SpliCC.

Typically a surface that we transform and rotate on our graphics
maclunes is the boundary of a sohd object, whether the object

be a house or a mountain range. Such a surface may be
geometrically complex, but it dutifully performs a crucial
topological service: it separates 3-space into an inside and an
outside. We can tour the surface from the inside (as with a
building walkthrough) or from the outside (as with a flight
simulation over rugged carth) until we have devcloped a
sufficiently complete mental model of it. We nced not cross the
surface to the other side,

By contrast, a self-intersecting surface separates 3-space into
any number of subsets. If the surface is opaque, some or most of
its pieces remain hidden during a tour of a particular volume
that it bounds. Rotating the surface in 4-space may reveal a
patch of surface that was previously hidden, but only at the
expense of another portion of the surface that is now obscured,
The fundamental problem of displaying such surfaces is that
they continually hide their gecometry from us. Three popular
ways to tackle this problem are to use ribboning, clipping, and
transparency. Overall, transparency is the most helpful, but it
has certain drawbacks which we repair in §5.

3.1 Ribboning

To reveal the geometry of a self-intersecting surface, we can
slice it into ribbons [Kogak]. The gaps between ribbons reveal
parts of the object that would otherwise be obscured. One
advantage of ribboning is that it can be performed once, at
mode! definition time, and then left alone. Some of the
drawbacks are that (1) any already-cxisting no i-ribboned
datasets must be remeshed and ribboned, (2) the high-frequency
edges of thin close ribbons attract the attention of the eye, at
the expense of the geometric content of the surface, and (3)
ribbons can produce distracting moiré patterns when they
overlap.

These drawbacks do not mean that ribboning is a clumsy
technique. On the contrary, for surfaces that can be foliated by
1-dimensional curves, ribboning is a very clegant means of
visualization. The compact surfaces that admit such a foliation
are the torus and the Klein bottle. Banchoff has made
productive use of this technique to illustrate the foliation of
the 3-sphere in 4-space by animating a ribboned torus that
follows a trajectory through the 3-sphere.

Surfaces with other topologies do not admit such a simple
ribboning. 'We can slice a surface along level cuis as it sits in 4-
space, but the cuts will sometimes produce x-shaped
neighborhoods in the ribbons. Morse theory determines
whether a surface can be successfully ribboned: the singularitivs
of a Morse function on a surface must all be degenerate vith the
topology of a circle [Milnor, Morse].

3.2 Clipping

Rather than pre-compute sections of the surface to be sliced
away, we can clip them out dynamically. The chief advaniages
are that (1) many graphics machines implement fast hither
clipping as part of their rendering pipeline; (2) no special
treatment is required for the representation of the model, and
(3) by clipping the surface as it moves, the user can inspact
views of it that a single static segmentation cannol anticipate.

There are drawbacks to clipping We usually think of clipping 4
surface against a plane. In fact, clipping is properly a geometric
intersection of a surface against a 3-dimensional volume whose
boundary is the clipping plane In 4 space a plane does not
bound a volume, just as a line does not bound an area in 3
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space. Instead, a 4-dimensional halfspace clips the surface, and
the boundary of the halfspace is a 3-dimensional flat, or
hyperplane. It is true that a user could interactively specify the
position and orientation of the 4D halfspace that does the
clipping, just as he can control the position and orientation of
the surface under scrutiny, But consider the problem of
providing visual feedback to show where that clipping volume
is. The shape of the clipped surface implicitly defines where the
boundary of the clipping volume is. In 3-space we can mentally
reconstruct the orientation of that volume from the clipped
edges it leaves behind, It is much harder to reconstruct the
oricntation of a clipping volume in 4-space based on the shape
of the region it clips away, We might indicate the orientation of
the 4D clipping halfspace by volume-rendering its boundary,
Unfortunately, that boundary will tend to hide the surface that
remains after clipping.

Recall that the immediate problem is to view the component
picces of a self-intersecting surface. In particular, to see beyond
a patch of surface that hides another patch behind it, “behind”
being in the z-direction of the 3-dimensional space to which
the surface has been projected. If this is truly the driving
problem, we can sufficiently address it by clipping in that 3-
dimensional space, and clipping strictly in the z-direction. This
amounts to nothing more than hither clipping. To summarize:
clipping in 4-space is mathematically easy but interactively
hard. For the purpose of revealing hidden interiors, however,
hither clipping suffices.

Figure 8 Clipping into a torus produces a figure-eight contour. Clipping
reveals internal geometry, but complex contours cun confuse the
shape.

Hither clipping has other problems. The shape of the surface
region that gets clipped away can be very complex. A simple
shape is one that is topologically equivalent (homeomorphic)
to a disk. In general it is easier to make sense of surfaces whose
clipped regions have simple shapes rather than complex shapes
[Francis], but intersections and saddle points on a surface cause
the clipped regions to look complex (figure 8). Sccondly, a
clipping plane cuts into a concave region of a surface only by
cutting into the neighboring regions as well. This is not
necessarily the effect a user wanis 1o achieve. Both of these
shorticomings can be remedied by using more exotic, custom-
shaped clipping volumes. Thirdly, clipping the fronimost
patches of a surface exposes some of the hindmost paiches,
which may be behind the center of rotation for the objects. The
visible part of the surface then seems 1o rotate in the direction
antisympathetic to the input motion. This shoricoming is
independent of the shape of the clipping volume.

3.3 Transparency

Ribboning and clipping simulate itransparency via a binary
classification. Both classify parts of the surface as completely
opaque and the other parts as completely transparent. Why not
us¢ Wansparency outright? Ideally a semi-transparent surface
presents all of its self-intersecing components on the screen so
that the shape of each layer is discernible. In practice the effect

is dramatic and helpful for many surfaces. But there are several
things that can hinder the uscfulness of transparency.

Disappearing intersections. The intersection of two opaque
surface patches A and B is readily apparent whenever their
colors differ. On one side of the intersection we have A atop B
(yielding A's color); on the other side B atop A (yiclding B's
color). As the patches become simultancously more transparent,
their colors blend and the interscction becomes less
distinguishable, Intersection curves figure prominently in the
study of nonimbedded surfaces, so it scems a shame to apply
transparency at their expense.

Disappearing silhouettes. A surface with many self-
interscctions may require a great deal of transparency to make
the decp layers visible, but then the outermost layer becomes
nearly invisible. In particular, it becomes difficult to sce the
outline, or silhouetic, of a very transparent surface, because the
silhouette includes the rim of the nearly-invisible outermost
layer,

Reduced performance. Rotations in 4-space change the
geometry of a surface’s 3D projection. Polygons that were
disjoint one frame ago now interpenctrate. Poly gons that were
on the outermost side trade places with polygons on the
innermost. Opaque polygons can be rendered in any order, se
long as only the nearest polygons (in screen depth) survive the
rendering process. On the other hand, transparent polygons can
be rendered from back to front or from front to back, but in any
case they must be rendered in sorted order, The dynamic 3D
geomelry caused by 4-space rotations prevents us from ordering
the model by a static data structure in 3-space, such as a binary
space partition (BSP) tree [Fuchs83). Does the BSP tree extend
to surfaces in 4-space? Alas it docs not; a polygon partitions 3-
space by the plane in which it lies. But a plane does not separate
4.space.

In short, to render transparent polygons we must be prepared 10
sort them dynamically, perhaps even splitting them 1o
eliminate interpenetrations. But that is computationally
expensive, and hence slow.

Loss of 3D depth cue. It is true that an opaque self-intersecting
surface hides parts of itself that we want to see, but that opacity
serves a positive purpose: to disambiguate 3D depth on a 2D
display. Obscuration is a powerful depth cue. A hidden
polygon is obviously farther away than the visible polygon
atop it. Transparency reduces or climmates this depth cue,
leaving us to rely on uther vues o recover 3D depth One
especially helpful cue is specular reflection.

Specular highlights reveal surface geometry in two ways The
shape of a surface is casy o see alung 1 sithuuetie, but s not su
apparant in the neighborhuods that are viewed head on Phung
highlights help exaggerate the curvature, thereby
distinguishing the shape of a neighborhoud. Where two
transluscent surface patches interpencirate, the Phong
highlights can disambiguate which surface is in front,
especially when we rock the surface back and forth. Moreover,
the highlights can disambiguate the different layers that
transparency reveals. The benefit diminishes, of course, as the
number of transparent layers inercases bt o he effect s
appreciable through three or four layers.

Transparency is an essennal wol for studyiay sutfuees
space, sinee it reveals the behavior of the patche s that intersat
each uther, and sinve any given surface 1 Lhely o aahjhut sol
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intersections when it is projected to 3-space. But transparency
comes with a price, It subdues intersections and silhouettes, It
makes rendering slower. It makes depth more ambiguous.

In order to redeem transparency as a tool for rendering surfaces
in 4.space, we can address these demerits in the following ways.
(1) Highlignt the intersection curves; (2) Highlight the
silhouette curves, (3) Order the polygons in sub-linear time, («)
Apply Phong shading to recover some scnse of 3D depth,

Finding the intersections and silhouettes could be slow, and
these curves will often change with every frame. In §5 we
discuss techniques for computing them after the second
projection, from 3-space to the screen, The algorithms exploit
the logic-enhanced memory on board Pixel-Planes §.
Fourphront uses these techniques in the presence of
ransparency and Phonyg shading by taking advantage of the
underlying algorithms on Pixel-Planes: multipass transparency
and deferred shading. In (back-to-{ront) multipass transparency,
the model is sent to the SIMD renderers multiple times, On cach
pass, a pixel processor retains the geometry of the backmost
polygon thuat it has not previously retained, then blends the
shaded result into a temporary frame buffer, This technique
requires two 2-buffer areas per pixel processor., Deferred shading
extracts the shading operation common to all primitives, and
posponed applying the operation until after all the primitives
have been z-buffered, Thus, only the nccessary state
information (e.g., color, reflectivity, normal, transparency) is
stored per pixel at the time the geometry of the primitive is
rendered.

4  Projecting to 3D: Depth Cues

There are several cues that lend a 3D effect to images on a
computer screen. Among them are obscuration, shadows,
illumination, perspective, parallax, stereopsis, focus, and
texture. These are natural cues that we use every day to derive a
3D model of our world from the 2D image of it on our retinas,

But now we confront a scrious problem, By projecting the
image of a surface in 4-space down to a 2-dimensional screen,
not only do we lose depth information in the z-direction, but
we lose it in the w-direction as well. What 4-dimensional depth
cue does our retina employ that we can now supply when we
render the surface? Evidently there is none. Since both the 2
and the w directions are perpendicular to the screen, we might
try applying some of the usual z-depth cues as w-depth cues.
This strategy risks ambiguating the two depths, of course. The
alternative is 1o invent w-depth cues that have no basis in our
physical experience. How do the usual ¢-depth cues extend to
four dimensions?

4.1 Obscuration and Shadows

We can drop down a dimension and liken the situation to
viewing 1.dimensional curves in 3-space, Space curves rarely
obscure or cast shadows on each other: only at isolated points,
in general, Similarly, surfaces in 4-space only obscure each
vther or cast shadows on each other along mere isolated curves
(tn general). The result is that these cues are not especially
helpful for recovering w-depth.

4.2 Hluminatlon
Again we consider the lower dimenswnal analug to our

prublemt. DMumination is ill-defined along a curve in 3 space,
sifive & spave cunve has an enure plane for its normal directions.
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The usual illumination equation does not apply. Several
researchers have observed that any surface with co-dimension 1
submits to ordinary lighting techniques, and have jumped
ahead to illuminating 3-dimensional surfaces in 4-space
[Burton, Carey]. Burton lets a polygon inherit the normal
vector of the 3-dimensional volume whose boundary includes
it, This is like illuminating a polygonal surface in 3-space, but
only displaying the result on the polygonal mesh, The problem
with non-orientable surfaces imbedded in 4-space is that they
do not bound any volume at all, Hansen inflates a surface to a
small 3-dimensional volume, like wrapping a tube around a
space curve, and then illuminates that bounding volume in 4-
space and volume-renders it [Hansen]). The images arc
satisfying, but the technique is fairly slow, since rendering
volumes is considerably slower than rendering polygons.

Illuminating surfaces in 4-space is thus an unresolved problem.
Fourphront postpones illumination until the surface is
projected into 3-space, so that shading looks familiar and
realistic on the projected surface, and so that this strong -
depth cue is preserved, This strategy is at least as old as 1880,
when it was uscd to shade polygonal faces as though they were
illuminated in 3.space [Stringham]. The obvious drawback
with this approach is that the shading in 3-space reveals more
about the shape of the projected surface than about the shape of
the surface as it lics in 4-space.

43 Perspective

A perspective projection from 3-space to 2-space behaves like
an orthogonal projection where 3-space is pre-warped: planes
parallel to the image plane are first shrunk or magnificd
according to their distance, A perspective prajection from 4-
space to 3-space has the same general effect. Volumes shrink
that are distant from, and parallel to, the volume of projection,
but volumes grow that are close to the center of projection eyey.
In particular, translating a neighborhood in the w-direction
causes its projection to shrink and approach the origin. This
behavior can disambiguate relative w-depth. The nearer
neighborhood changes size faster than the farther one.

4.4 Stereopsis and Parallax

Parallax and stercopsis are side-effects of perspective
projection, and they offer additional w-depth cueing
[Armstrong]. Consider the effect of wranslating the eye. Objects
at various depths in the world change their relative positions
when the eye shifts in the X or y directions. Bul which eye
position (eyey or eyes), and which depth (2 or w)?

Let us again drop down a dimension and examine the situation,
Consider & viewpoint eye; in 3-space, and the image plane to
which the world projects (figure 10). Within that plane there is
a second viewpoint eye; and an image line to which the scene
projects further. Two spheres A and B in the 3D world project w
two disks A’ and B’ in the image plane, and then to two
segments A" and B” in the image line. Suppose A” and B" are
only slightly separated. If eye; shifis to the right and A™ shifis
1o the right relative o B”, we conclude that A® is farther away
than B’. But that does not imply that the source objedt A s
farther from eye; than B. It can be the case that shifting eye; o
the right causes A” 1o shift left instead (relative to B”).
Translaling eye; and eye; together couple these behaviors. The
situation in 4-spuce is the same. We have a choice of where 10
apply a wanslation. Applying it before the progection frum 4
space tw 3 space produces nonintuilive mwhivn, due o the
parallax frum the w direction the projected ubject ©s nu lunger
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rigid under the expected isometries, although the source object,
of course, still is.

cye3
L
eyea
L
eye3

Figure 10, When there are two eye positions involved ir projecting an
image, either of them can produce parallax. In this figure, spheres A
and B project from 3-space onlo a 2-dimensional plane as disks. The
disks project to a 1-dimensional line as segments. By tilting the page
obliquely, you can see what the second eye sees. Moving an eye to the
right will make thefarther object seem to move to the right o the nearer
object. Which sphere looks closer? It depends on which eye does the
measuring. A is closer to eye3 than B is. But the projection of B is closer
1o eye; than the projection of A is.
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45 Textun.

The texture applied to a surface can be defined dynamically in
world space, so that as the surface moves in the w direction, >
texture changes. One of the simplest textures is color
modulated according to depth, This texture is well-known as
intensity depth cueing. In 3-space there is a convenient
metaphor for an intensity depth cue ~ the object looks as
though it were obscured by fog, and the fog's color prevails as
the object recedes. In practice, the 4D fog-metaphor is
considerably less convincing, perhaps because the usual 3D
interpretation is so much more natural.

Encoding w-depth by color is nonetheless a useful tool,
especially for locating leve! scts according to the color they
share. The idea is evidently pretty obvious, since there are very
old examples of its use [Hinton}. A more modern treatment of
the strategy might be to apply a dynamic texture to a surface,
where the texture continually flows in the w-direction
{Freeman, van Wijk].

46 Focus and Transparency

The human eye can focus at various depths., Neighborhoods of a
surface that lie within the focal plane in 3-space appear crisp.
Neighborhoods that are nearer or farther look increasingly
blurry, There are various techniques for producing this effeet
during rendering [Haeberli, Mitchell, Potmesil].

In 4-space we could define a focal volume at some particular
distance in w, Neighborhoods within this volume would
appear cczisp, while neighborhoods outside would be
progressively blurry, In general this is not a fast process, since
blurry polygons are cffectively semutransparent, and hence
incur some of the cost of computing transparency, But we can
approximate the effect cheaply by simply modulating
transparency by w-depth. If the focal volume is at the yon
distance, transparency will unambiguously determine w-depth,
Recall that neighborhoods near to eyey are generally large due
to perspective, and often enclose the far-.way neighborhoods
that have shrunk toward the origin. If the outermost patches of
a surface are opaque, they hide the interior geometry. This is the
motivation for choosing a focal volume at the yon, rather than
the hither, distance: it is more likely to reveal the interior of a
self-intersecting surface. Unforunately, the eye does not
resolve (ransparency with a great deal of resolution, so this
technique is best applied for gross classification of relative
distances in the w direction.

5§  Finding Silhouettes and Intersections
During Projection to 2D

This section describes a screen-oriented technique for locating
silhouctie curves and intersection curves, In §3 we described the
powerful advantage transparency gives for visualizing self-
intersecting surfaces, but noted that although wransparency lets
us see mosc layers of the surface, it strips those layers of some of
their geometnic content. In panticular, the intersections and
silhouetles are less apparent on transparent surfaces.

We can estimate the amount of computation required for
calculating the geometry of these curves and for rendering
semi-transparent surfaces. The conclusion is that even for a
modest-sized polygonal mudel, the burden on the traditional
front end of a graphics system becomes too great.
Programmable SIMD renderers let us shifi some of the
computation away from the math processors on Pixel-Planes 5,
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which makes it possible to display silhouettes and intersection
curves of a dynamic 3D (projected) surface at interactive rates,
5.1 Calculating In 3-space

Consider the ask of manipulating a surface composed of n =
2000 triangles (this is a skimpy polygon budget to spend on
self-intersecting surfaces). The cost of transforming and
ordering these semi-transparent triangles, along with
calculating their silhouettes and intersections, is substantial,
Depending on the particulars of the algorithms we employ, we
can casily spend O(n log n) floating-point operations sorting
the polygens (as required for transparency) and computing
their intersections, Since the geometry is dynamic in 3-space as
the surface rotates in 4-space, this cost is charged per frame. The
transformations and projections from 4.space to the screen can
take another 250n floating-point operations, So we easily face
over 1.5 million floating-point operations for this meager data
set. These estimates disregard all other necessary operations; the
front-end system must sustain well over 30 MFLOPS in order to
calculate the intersecting geomeltry at interactive speeds of
20hz, By using multiple CPUs to achieve this speed, we incur
substantial communication cost or memory contention. In
eithier case, the time complexity is super-linear in the number of
polygons, The conclusion: avoid sorting and avoid
analytically computing the intersections in 3-space.

Pixel-Planes 5 offers programmable SIMD logic-enhanced
frame-buffers (the renderers) that can offload much of the
burden from the geomelry processors [Ellsworth, Fuchs89]. In
particular, we can use the SIMD renderers to orde the
polygons, to find the silhouettes, and to find the interscctions.
For the case of 2000 triangles, the renderars can relicve the
geometry processors of over half their floating-point burden
and reduce their communication cost,

5.2 Silhouette Curves

Analytic Solution. There are several ways o define a
silhouctte. In common usage, a silhouette is the boundary of
the projection of a surface onto the image plane. But a more
gencrous definition counts any point on a differentiable
surface as a silhouette (or contour) point if the eye vector lies
within the tangent plane to the surface at that point. The second
choice is preferable for self-intersecting surfaces, since we wish
to highlight the silhouettes of the component patches that nest
inside a transparent image. A simple way 1o find a silhouelte
(whose transverse is non-inflecting) is to locate every edge that
is shared by two polygons, one facing forward and the other
facing backward from the eye. But if the polygon data is
distributed among many processors, the processor that owns a
given polygon will not necessarily hold the neighboring ones,
even for & mesh that is static in 3-space. Note too that this
technique only identifies silhouettes along mesh boundaries of
a polygonal representation of the model, and not in the
polygons' interiors,

We can analytically compute the silhouette for surface patches
that are defined parametrically [Schweitzer, Lane], but this does
not tahe advantage of the SIMD renderers of Pixel-Planes.

Screen-based Solution. Consider a screen-oriented approach
to finding silhoueties. As a routine step in Phong-shading, the
Pixel-Planes renderers hold the information necessary to locale
stlhouettes, namely, the interpolated suiface normals and the
eye vector. Each rendeter covers a region on the screen and
holds hundreds of bits of information per pixel in the region.
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These pixels are operated on in SIMD fashion. If the normal 10 a
point on a polygon is orthogonal to the eye vector, the point
lies on a silhouette curve.

We can use the renderers to perform a dot product between the
normal vector and the cye vector at cvery pixel, which
identifies the silhouette if the dot product is zero. (If the eye is
sufficiently far away, the projection is nearly orthogonal, and it
suffices to test just the z-component of the normal.) This yields,
at best, a 1-pixel-thick line on a curved surface; at worst, it
misscs most pixels on the silhouette because of the imperfect
sampling of the normal vector. We might treat a pixel as a
sithouette point if the dot product is within some threshold € of
zero, thereby enlarging the silhouctte’s thickness on the screen
(figure 11),

But thresholding has problems. As € gets large, false sithouettes
appear wherever the surface is sufficiently edge-on to the eye,
and the silhouette becomes much fatter in some places than in
others, The false silhoucttes are inherent to thresholding since,
for example, a planar section of the surface, and containing the
eye, may have an inflection whose tangent lies arbitrarily close
to the cye vector. The inflection point will appear as a
silhouette point, even though there may be no silhouette in its
vicinity.

eye

Figure 11, The surface normal is nearly orthogonal to the eye vector in
the vicinity of a silhouette curve.

The reason that the thresholded silhouetic has varying
thickness is that the curvature of the surface may vary from
place i place. A silhouette point with a large magnitude of
normal curvature in the silhouette’s transverse direction will
witness its normal vector changing direction quickly along a
path toward the eye. A large value of € may still produce a thin
silhouette region. Meanwhile, a sithouetie point with a small
magnitude of normal curvature in the transverse direction will
witness ils normal vector changing direction slowly along a
path toward the eye. The same value of € produces a thick
silhouette, since there are points over a large area (even as seen
from the eye) whose normals are nearly perpendicular to the eye
vector.

Note that silhouettes need not be computed when a polygon
first enters the pixel's memory. We need only look for
silhoueltes on visible polygon fragments that ultimately
survive ¢ buffering. We defer shading uniil after the polygons
have been ransformed and their z-buffered geometry
(including normal) has been stored in the pixel memory. Thus
we incur the expense of silhouette computation only once per
frame (or, for multipass transparency, only once per pass), rather
than once per polygon.

Having found a sithoueute, what do we do with it? The question
concerns visualization in its abstract sense How can we
effectively map the internal state at a pixel onto the available



dimension of output {e.g., red, green, and blue)? A simple
solution is to map silh-uettes to a particular color that is
known to be absent elsewhere in the rendered surface. Such a
color may not, of course, exist. But assigning a constant color
on the silhouette of a smoothly shaded surface is often, in
practice, a sufficient visualization, In the case of a transparent
image, it can also be effective to assign complete opacity to a
silhouatte in order to make it stand out, In fact, we can relax the
binary classification of silhouttes in favor of a real-valued
measure of “silhouetteness.” If the intrinsic opacity of the
surface at a point is @, let the effective opacity he 1-(1-a)/d,
where d is the dot product of the eye vector and the normal
vector, Surfaces then become increasingly opaque near their
silhouettes, which mimics the natural behavior of transparent
laminas, Viewed away from the normal by an angle whose
cosine is d, a lamina of width w intercepts a ray through a
distance wid,

53 Intersection Curvos

If the projected surface in 3-space were static, we could
analytically compute the intersection curves [Baraff, Moore]
once and for all, Since transformations in 4-space make its 3-
space projection change shape dynamically, we recompute it
each frame. This can be accomplished easily within the SIMD
renderers, The straightforward approach to finding intersections
is to modify the usual 2-buffer algorithm, We test the z-value of
cach incoming polygon at each pixel against the contents of
the 2-buffer, retaining the polygon's state information if the
polygon is closer, If the new value matches the z-buffer, we
count it as an intersection, If we have flagged an intersection
and then a closer polygon comes along, we unset the
intersection flag. The result is that all the frontmost
intersections will be flagged.

The proof of coirectness is casy. Let (P;} be the set of polygons
that cover 8 pixel, indexed by the order in which they arrive,
and let Pj and Py (j<k) be two of them that participate in the
front-most intersection at that pixel. The z-buffer must contain
2; after P; is processed. Since P; is frontmost at the pixel, the z-
buffer sli’ll contains 2; when Py is processed, thereby sctting the
intersection flag. Since Py is frontmost at the pixel, the flag will
not be unset. At the end of the pass, we have found an
intersection. By piggy-backing on the multipass algorithm for
transparency, we can find all the interior intersections, since
they will be frontmost intersections at some particular pass.

Two polygons that shire an edge formally intersect each other
along it. Polygons whose edges pass through pixel centers will
“intersect” at those pixels. These are spurious intersections, and
not the kind of intersection we are trying to show. We could be
careful not to scan-convert pixels more than once on the
common boundary of adjacent polygons. This technique
presents a problem for a machine like Pixel-Planes, which is
suited to rendering entire polygons as primitives, without
maintaining connectivity information. But in fact the pixel
alrcady holds sufficient information to eliminate spurious
intersections: surface normals. The intersections we wish to
highlight are those of polygons diving through each other,
whose normals are different where they interpenetrate. Since the
SIMD renderers interpolate vertex normals, that information is
available per pixel. We can thus modify the z-compasison,
requiring that the dot product of the new normal with the old
normal be less than unity in magnitude.

Exact matching against the z-buffer can identify at best a 1-
pixel-wide intersection curve. At worst it misses much of the
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curve due to imperfect sampling (just as is the case with
sithouette curves). We remedy this problem by thresholding. If
the incoming pixel is within € of the z-buffer value, we
consider it an intersection point. This introduces the same
artifact of variable-width curves on the screen, If two polygons
intersect cach other at a shallow angle, their scparation remains
sraall over a large arca of the screen, and the curve that satisfics
[Znew = Zo1al < € 1s many pixels wide. If they intersect each other
at a steep angle, a short excursion to neighboring pixels will
find them separated far apart, We can use the interpulated
normals of the polygons at pixels near the intersection in order
to approximate a fixed-width intersection curve, But note that
the added computation is charged per polygon, and cannot be
deferred 1o end-of-pass unless we retain the geometric state of
both polygons. Also note that most implementations of the 2-
buffer algorithm interpolate reciprocal-z across the polygon,
Over small extents or for large original values of 2,
thresholding produces nearly the same bchavior even when
using the reciprocal, But for locating intersections across large
ranges, it is wise to recover the true depth,

Figure 12, At their common intersection, two polygans share z-values.
The z-values are within some threshold of each other along a thickened
intersection curve,

Another artifact of thresholding is that the thickencd
intersection curve gets trimmed near silhouettes, since the
depth-comparison is strictly within the z-direc'ioa rather than
the normal directions of the participating polygons. This
artifact is hard 1o overcome without using pixel-to-pixel
communication,

6  Future Work

There are several research areas that this project has identified. A
hemi-3-sphere can be mapped to the input space of a spaceball,
How effective are the induced rotations in 4.space, and can the
user produce the rigid motion within the 3-space to which a
surface projects? Surfaces can be clipped in 4-space against
volumes with 3-dimensional boundaries. Are there effective
ways to shape, to position, and to display the volume or its
boundary interactively? Is there an effective algorithm (like
the BSP wee) for precomputing the rendering order for
polygons projected from 4-space 10 the screen? Is there a speedy
and natral way to illuminate surfaces in 4-space? What is the
best interface for producing uncoupled parallax in either 4-
space or the 3-space to which it projects? In what ways cun
texture be used as a w-depth cue? A quadric approximation to a
surface contains curvature information, which can improve
both the silhouette and intersection calculation for fixed-width
curves, What are fast ways to produce thi- second-degree
approximation and fast ways o use it on a per-pixel basis? Our
consideration of silliouettes was motivated by the loss of
geometric content that transparency produces. Hence we
discussed silhouettes as seen by eye;. What useful information
do eye, silhouettes add to a surface?




7 Conclusions

The shape of surfaces in 4.space can be difficult to comprehend.
Interactive computer graphics provides an excelient tool for
making the suzfaces seem more real, since we can manipulate
them ourselves, The effort is full of trade-offs. In order to
control all the degrees of freedom in 4-space, we need multiple
input devices in 3-cpace, We can apply transparency in order to
reveal the interior of a self-intersecting projection, but then we
lose the intersections and the silhouettes. We can then highlight
those special curves, but at the expense of the system’s
performance or memory, We can steal some of the usual z-depth
cues and use them as w-depth cues, but that tends to make z-
depth more ambiguous again.

This paper has focused on shortcomings of the various
techniques in order to encourage other people to enter the fray
and invent solutions. Until the advent of the powerful graphics
cemputers we have today, mathematicians could only imagine
interacting in four dimeasions. Experience with Fourphront
demonstrates that the effort can pay off, that we can open a
window on the truly “virtual world” of four dimensions. The
collateral spinoffs are algorithms that can be of service to the
more pedestrian problems in three dimensions,
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10 lilustrations

The surfaces in the color plate section were rendered on Pixel-
Planes 5. Each surface was transformed, illuminated, and
rendered on S in 0.2 seconds or less, and each has between <%
and 10k polygons. There are two light sources: one slightly left
of the cye, and one above and to the right of the eye.
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Abstract

We briefly discuss hyperbolic geometry, one of the most
useful and important kinds of non-Euclidean geometry.
Rigid motions of hyperbolic space may be represented
by 4 x 4 homogeneous transformations in exactly the
same way as rigid motions of Euclidean space. This is a
happy situation for those of us interested in visualizing
what life in hyperbolic space might be like, because it
means we can use existing graphics hardware and soft-
ware libraries to animate scenes in hyperbolic space.
We present formulas for computing reflections, trans-
lations, and rotations in hyperbolic space. These are
a bit more complicated than the corresponding formu-
las for Euclidean geometrv, which emphasizes our need
for graphics libraries which allow completely arbitrary
4 x 4 transformations.

The use of 4 x 4 transformations to represent isome-
tries of hyperbolic space is not new; it has been used
since the discovery of non-Euclidean geometry in the
19-century. The new part of our work is the application
of this theory to real-time 3D computer graphics tech-
nology, vthich for the first time ever is allowing mathe-
maticians to interactively explore hyperbolic geometry.
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Introduction

The use of 4 x 4 matrices to represent affine transfor-
mations of Euclidean 3-space is well-known in computer
graphics. Most graphics languages include provisions
for specifying 4 x 4 transformations, and most interac-
tive graphics workstations have the ability to multiply
4 x 4 matrices in hardware. These capabilities were de-
signed with Euclidean geometry in mind, because we
think of the space in which we live as Euclidean 3-space.

There are, however, alternate systems of geometry
which are of interest in mathematics and physics re-
search and education. One of the most important of
these is hyperbolic geometry. Hyperbolic space arises
naturally, even more so than Euclidean geometry, in
the study and classification of 3-manifolds. It is also
frequently taught in introductory geometry courses be-
cause it is in some sense the simplest and most ele-
gant type of non-Euclidean geometry. Learning hyper-
bolic geometry forces one to challenge many assump-
tions which are usually taken for granted, in the process
strengthening one’s geometric reasoning skills.

The “space” of hyperbolic geometry consists of the
interior of the unit ball in R?; the boundary of the ball,
the unit sphere, is “at infinity”. Distance is redefined
to approach infinity as we move closer to this sphere.
From a hyperbolic point of view, therefore, we can never
actually reach the boundary sphere. We can think of
hyperbolic space as consisting of points, lines, planes,
surfaces, etc, just as in Euclidean space. In hyperbolic
space, however, some of the rules of geometry are dif-
ferent. Specifically, Euclid’s fifth postulate is not valid:
in the hyperbolic plane there are many lines through a
given point which do not intersect a given line. Another
non-Euclidean property is that the sum of the angles in
a planar polygun is always less than 180 degrees. It
is possible, for example, to have a “regular right pen-
tagon” (all five sides are equal and all five angles are 90
degrees). Figure 1 shows a tesselation (tiling) of hyper-




Figure 1: Tiling of the hyperbolic plane by regular right
pentagons. All angles in this picture are right angles in
the hyperbolic metric, and all pentagons are congruent.

bolic 2-space by such pentagons.

These diflerences between Euclidean and hyperbolic
space mean that the intuition which we have from liv-
ing in what we perceive as essentially Euclidean 3-space
is of little value, and may actually hinder us, in an ef-
fort to understand hyperbolic geometry. It would be
extremely useful, therefore, for researchers and geome-
try students alike, to be able to experience some of what
life in hyperbolic space might be like.

Fortunately, since the transformations of hyperbolic
3-space can be represented as 4 x 4 matrices in much
the same way as with Euclidean transformations, we can
use the matrix capabilities of many graphics languages
and hardware systems to create images and to animate
motions in hyperbolic space. We must, however, be
able to use completely arbitrary 4 x 4 transformations,
because the matrices which arise in hyperbolic geometry
are different from those of Euclidean geometry.

Hyperbolic Space

In the following discussion we think of vectors as column
ay
a2
as

a4
and its transpose a’ the 1 x 4 matrix (a; a; a3 ag).
Thus ab is the usual dot product of a and b, and ab
is a 4 x 4 matrix, sometimes called the outer product of
a with b.

vectors; 30 a € R* represents the 4 x 1 matrix
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In computer graphics points in Euclidean 3-space
are commenly represented by homogeneous coordi-
nates — i.e. vectors in R*, where any two vectors
which are scalar multiples of each other are consid-
2red to represent the same point. The 3-dimensional
coordinates (a;,az,a3) of a point in R3 are called
its affine coordinates. We can convert affine co-
ordinates to homogeneous coordinates by appending
a ] as the 4-th coordinate to obtain (ay,as,as,1),
and we can convert arbitrary homogeneous coordinates
(ay,a2,a3,a4) to aftine coordinates by normalizing to
obtain (a;/a4,a2/a4,a3/a4) (assuming a4 # 0). The
advantage of homogeneous coordinates is that rigid
Euclidean motion (isometries), as well as perspective
projections, can be represented by multiplication by
4 x 4 matrices. The isometries of R correspond to
the semidirect product of the 3-dimensional orthogonal
group O(3) with the 3-dimensional translation group.
Recall that an orthogonal matrix M is one which pre-
serves the inner product of vectors: Ma-Mb = a-b.
The inner product in this case is

a b= ayb; + azbs + asbs,

where we assume that a and b are normalized.
Using other inner products yields non-Euclidean ge-
ometries. The inner product

(a,b), = a1y + azb; + asbs + a4ds.
yields spherical geometry, and
(a,b);. = ayby + azby 4 aabs — agds.

yields hyperbolic geometry. Our treatment of hyper-
bolic geometry is in terms of (., )»; analogous deriva-
tions using {-,-), instead would yield the correspond-
ing formulas for spherical geometry. Note that the Eu-
clidean inner product, by ignoring the 4-th coordinate,
can be seen as a bridge between these two inner prod-
ucts.

(',')n is called the Minkowski inner product. The
Minkowski inner product can also be described as fol-
lows. Let

13,1 —

OO e

0
1
0

o -0 0

0
0
0
0 0 -1

Then (a,b), = aTI3!b. The group of 4 x 4 matrices
which preserve the Minkowski inner product is denoted
0(3,1).

Now consider the vectors V. = {a € R* || /a,a), <
0}. The set V. forms a solid cone along the 4-th axis
with vertex at the onigin. Hyperbolic 3-space, denoted
H3, is the projectivization of V_, with the metric n-
duced by the Minkowski inner product, vectors in V_



correspond to the homogeneous coordinates of points in
H3. Each point in H3 is represented by a unique vector
with 4-th coordinate 1, which can be obtained from any
vector in V. by normalization, just as in the Euclidean
case. (Thefact that the vector lies in V.. guarantees that
the 4-th coordinate is nonzero.) This gives a model of
H? consisting of those points of V. with 4-th coordi-
nate 1; this is the same as the interior of the unit ball
in 3-space. Hyperbolic space thus consists only of the
points inside this ball.

Two-dimensional hyperbolic space, also called the hy-
perbolic plane, consists consists of the interior of the
unit disk. Although the discussion below is in terms of
hyperbolic 3-space, it extends straight{rrwardly to any
dimension. In particular, the illustrations and examples
we give are all in two-dimensions (the 3-rd coordinate
is 0) to simplify the computations and the figures.

The geodesics (straight lines) in this model of hyper-
bolic space are the same as the Euclidean straight lines
passing through the unit ball, except that we only con-
sider the part of the line inside the ball. Similarly, the
hyperbolic planes in H3 are the same as the Euclidean
planes.

The hyperbolic distance between two points a and b
with homogeneous coordinates a and b is given by

dhYP(a, b) = 2 cosh™? \/E-,%’:—:’%%mf (1)

A simple calculation shows that this formulais invariant
under multiplication of a and b by scalars, and hence
depends only on a and b. It is also easy to verify that
if a remains fixed and we let b approach the boundary
of the unit ball, then dhy P(a, b) approaches infinity.

The model of hyperbolic space that we are using here
is called the projective model, or the Klein model, af-
ter vhe 19-th century mathematician who popularized
it. A more familiar mode] is the conformal model, also
known as the Poincare inodel. In the conformal model,
geodesics are arcs of circles perpendicular to the bound-
ary sphere (or circle, in two dimensions). Each model of
hyperbolic space has its advantages and disadvantages.
The projective model seems better suited for visualiza-
tion and computer graphics, because geodesics appear
“straight” and the isometries can be represented by pro-
jective linear transformations.

Matrix Formulas

The isometries of H3 correspond to the matrices in
0O(3,1), just as the isometries of Euclidean 3-space cor-
respond to the matrices in O(4). We now present for-
mulas for computing the matrices of rigid motions in
hyperbolic space.
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Figure 2: Hyperbolic Reflections. Triangle abe is the
reflection of triangle a’d’c’ in point p. The two triangles
are congruent in hyperbolic space, and hence would ap-
pear to be of equal size to an observer inside the space.

Reflections

One of the simplest types of isometries is a reflection. If
p represents the homogeneous coordinates of a point p in
143, then the 4 x 4 matrix for the hyperbolic reflection
inpis

eDYP = 1 2ppTI% /(p, p). @

This same formula may be used to obtain the matrix
for the reflection in a plane as well. In this case, p
represents the homogeneous coordinates of the plane.

Note: (2) can also be used to give the raatrix for a
Euclidean reflection, by replacing I*! with I and the
Minkowski inner product with the dot product.

To use (2) in an example, let p = (0.5,0.0,0), and
consider the triangle with vertices ¢ = (0.2,0.0,0.0),
b = (~0.5,-0.5,0.0), and ¢ = (-0.5,0.5,0.0) — see
Figure 2. Then we can use the homogeneous coordinates

0.5
p= 0 to obtain
0
1
1666 0 0 -1.333
p 0 0 1 0
1333 0 0 -1.666

To transform a point, say a, by this reflection, we multi-




0.2

g by this matrix
1

ply its homogeneous coordinates

-1
8 and then normalize to obtain the
-14
point @’ = (0.714,0,0). Transforming b and c similarly
gives &' = (0.929,0.214,0), and ¢’ = (0.929, -0.214,0).
Although the two triangles in 2 look very different
from a Euclidean point of view, they are congruent in
hyperbolic space. One may verify this by using (1) to
compute the hyperbolic lengths of the triangles’ edges.
For example dhyp(a,b) = dhyp(a',b') = 2.074. (Be
sure to use homogeneous coordinates in (1)!)

to obtain

Translations

We can now define hyperbolic translations in terins of
reflections. Just as in Euclidean space, the translation
which takes a point a to a point b is the composition of
the reflection in a with the reflection in the midpoint m
of a and b:

h
TP = hYP . hyp (3)

The homogeneous coordinates m of the hyperbolic mid-
point are given by the formula

m = a\/(b,b)s(a,b)) + by/(a,a)s(a,b)y, (4)

where a and b are homogeneous coordinates for a and
b, respectively.

As &n example, consider the triangle from Figure 2
again. And let b’ = {0.3,-0.7,0). We compute the

matrix of translation T{'.{‘p . Using the homogeneous

-0.1
coordinates for b and b’ in (4) gives m = _06733
1.212
for the midpoint. Using (2) and (3) then gives
1.676 0.814 0 1.572
-1.369 0636 0 -1.130 (5)
0 0 1 0
1.919 0257 0 2.179

The images of a, b, and ¢ under this transformation
are a’ = (0.744, -0.548,0), ¥’ = (0.3,-0.7,0), and ¢’ =
{(0.846,-0.095,0); see Figure 3.

To continue this example, we can translate b’ again
by (5) and obtain §” = (0.585,-0.771,0), which lies
on the line containing b and ¥'. The points b, ¥, and
b" lie at equally spaced intervals along this line in the
hyperbolic metric.

An important fact about hyperbolic translations is
that each has a unique axis This is different from Eu-
clidean translations, where 1t 1s only the direction of the
axis that matters, not the particuis- choice of axis,
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Figure 3: Hyperbolic Translation. Triangle a'b’c’ is ob-
tained by translating triangle abe along line ! from b to
b'; the two triangles are congruent in hyperbolic space.

Rotations

A rotation of H® about an axis ! through the origin is
the same as the Euclidean rotation about the same axis,
since this rotation preserves the unit ball. To compute
the matrix of rotation about an axis not passing through
the origin, we first translate | the origin, do the rotation
there, ~n thea translate [ back to its original position.
The ¢crice. “these three transformations gives
a rotation about v.ix ui. inal axis. In order for the angles
to work out right, we must translate along the unique
line through the origin perpendicular to { If lp is the
point of [ closest to the origin, this is the translation

Specifically, suppose a and b are points in H3 and we
wish to rotate through an angle of 6 about the line {
through a and b. The point Iy of { closest to the origin
is given by

a-(a—10)
(a—b) (a=10)

b-(b-a)

b b-a) (b-a)"

b+

= (6)

Note that in (6) a and b are the affine (not homoge-

neous) coordinates of points in H3, and - is the usual
dot product. The desired hyperbolic rotation is then
hyp hyp\-1 peuc b

RYP = (1)) RYY T (7)

where Rﬁf{f is the Euclidean rotation of R? through aun

angle of 8 about an axis in the direction of v, where



Figure 4: Hyperbolic Rotations. Triangle a'd'¢’ is
obtained by rotating triangle abc about the point p
through and angle of /3 radians. The other four tri-
angles are nbtained by additions rotations through the
same angle. All six triangles are congruent in hyperbolic
space.

u = (a —b)/|la — b]| is a unit vector in the direction of
1. REY is given by ((3], p. 73)

ud +¢(1 - ud)

wugey +uss  ud+c(l-ud) wugusey —uys

U U3l — U8 uUgusc) + U8 u?, +¢(1 - u§)
0 0 0

Uy UqzC) — Y38 U UICY + ugs

[~

where ¢ = cos(0), s = sin(f), and ¢) = 1 - cos(f).

To give anotiter example using the above triangle, we
compute the rotation about the line | through the points
p = (0.5,0,0) and ¢ = (0.5,0,1). This line is perpen-
dicular to the z-y plane (in bcth the Euclidean and hy-
perbolic metrics) and hence this rotation preserves the
z-y plane,

The point ly from (6) is, of course, just p. Using
u =(0,0,1) in (7) we obtain

0333 -1 0 0333
L. 05 0 -05
0 0 1 o0 |° (8)

~0333 —05 0 1.167

The images of a, b, and ¢ by this transformation are
then @’ = (0.364, ~0.273,0), 6' = (0.421, -0.789,0), and
¢ = (—0.308,-0.692,0). Figure 4 shows the resulting
triangle, as well as the next five images under the trans-
formation (8).

Figure 5: Scene from the video Not Knot. This scene
shows a tesselation of hyperbolic space by regular right
dodecahedra — analogous to a tesselation of Euclidean
space by cubes.

Applications

Three recent projects at the Geometry Center have ap-
plied these ideas. One is the video Not Knot [1]. This
video. whose purpose is to illustrate some of the basic
concepts of knot theory and the theory of 3-manifolds,
includes a fly-through scene of hyperbolic 3-space; see
Figure 5. During this fly-through one easily notices that
apparent size changes more rapidly in hyperbolic space
than in Euclidean space. Angles appear to change as
we move closer to them. In fact, however, they are not
changing — what changes is our perception of them.

Another project which has used 4 x 4 matrix tech-
nology in this way is a flight simulator for hyperbolic
space written by Linus Upson, a Princeton University
undergraduate working as a research assistant during
the summer of 1991, Patterned after the popular SG!
flight simulator, Upson’s program allows one to navigate
through a scene in hyperbolic space; see Figure /ref-
fig:hfly. The program is excellent for conveying a sense
of how angles and distances seem to change with motion.
The intuition which one gains from this experience is
L.ard to pinpoint but extremely valuable in understand-
ing hyperbolic geometry.

The third Geometry Center project using hyper-
bolic transformations is a general graphics library which
we call the “Object Criented Graphics Language”
(OOGL), begun by Pat Hanrahan in the summer of
1989. This library provides a general framework in
which geometric objects and the actions which oper-
ate on them may be specified arbitrarily. This makes
it easy to define and manipulate objects in hyperbolic
space. The interactive viewing program which accom-
panies OOGL (MinneView) has a “hyperbolic mode”
in which the translations and rotations controlled by
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Figure 6: Hyperbolic space flight simulator. This scene
shows the view from the cockpit of an airplane flying
over a hyperbolic plane in hyperbolic 3-space. The plane
is tesselated with regular right pentagons — it is essen-
tially a copy of Figure 1.

mouse motions are hyperbolic rather than Euclidean. A
version of this program for SGI IRIS workstations may
be obtained on the Internet via anonymous ftp from
host geom.umn.edu (IP address 128.101.25.31).
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Human Engineering the User Interface to Spaceland

Stuart Card, Xerox Palo Alto Research Center

As we spread our wings inan attempt to escape user
interface Flatland, it is useful to set current work on
interactive 3D systems in the context of work on human-
computer interaction generally.

Taking the long view, we can see the history of
human-computer interface design as a set of inventions
having different relative impact. In fact, it is interesting
to plot these on a sort of seismic scale of innovation
according to how much they shake the status quo. 3D
animated interactive graphical user interfaces look like
they will belong onthe highend of this scale. We canlook
inmore detail at where we are by plotting the work of this
conference against a characterization of work in human-
computer interaction broadly defined. Such an analysis
reveals work mainly on the computationa! side, with
some attention to applications. In the end, computer
systemstobe successfulinvolve arrangingafitamongthe
system, the context of use, and human characteristics. It

is work on the fit to human characteristics that is most
lacking. Technology often develops through a cycle of
point designs, abstraction, characterization, and articula-
tion of design principles (not necessarily in that order).
While much of the progress in interactive 3D interfaces
will continue to be the result of intuitive and analogical
pointdesign, it is my contention that we can already begin
to pursue the abstraction and characterization of parts of
the design space.

I will give examples of abstractions that attempt to
relate the missing human characteristic point of the
system-usc-human triangle. These will include percep-
tual, motor, and cognitive interactions and also the char-
acteristicsof the task environment, Such abstractions can
be used in design as "tools for thought” to speed the
identification of intcresting parts of the vast ncw user
interface Spaceland now open for exploration.
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Funkhouser, Séquin, and Teller, “Management of Large Amounts of Data in Interactive Building Walkthroughs”

I. The sixth floor of the building model (242,668 faces). IV. Another typical observer viewpoint. Visible
The eye-to-cell visibility set (30,265 faces) for a objects are rendered using the highest level of
typical observer viewpoint is outlined in blue. detail for every object (23,468 faces are drawn).

1. Cell-to-cell visibility and polyhedral hounds V. Same viewpoint as in Plate 1V, Detail has
on the visible portions of reached cells for the bezn reduced for objects that appear small 1o
cell containing vhe observer of Plate | the observer (7,055 faces are drawn).

A

I Eye-to-object visibility for the observer VI Same viewpomt as i Plate [V Shading represeuts
of Plate | Wirefranie objects are inadent upon the level of detal dhiosen tor cack objectin Plate V
vistbl cells but not i the potentiatly visible set Darker shades represent higher levels of detail




Plate 2 Simple solids illuminated, ! light,

el

Plate § Room scene withuui play pen illuminaied, 2 hghts. Plate 6 Room scene illuminated, 2 hghs.

Chin and Feiner, “Fast Object-Precision Shadow Generation for Area Light Sources Using BSP Trees”
220




Figure 1: A sample trial from Experiment 1: Effect of Figure 2: Shadow sharpness levels used in Experiments 1
shadow sharpness on the perception of object size and po- and 3, The sharpness levels are (from left to right): no
sition, shadows, hard shadows, and soft shadow.

Figure 3: .A sample trial from Experiment 2: Effect of Figure 4: Shadow shape levels used in Experiment 2, The
shadow shape on the perception of object size and posi- shape levels are (from left to right): no shadows, true
tion. shadows, and bounding volume shadows.

Figure S: A sample trial from Experiment 3: Effect of Figure 6: An example of the detrimental effect of soft

shadow sharpness on the perception of object shape. shadows in experiment 3. The ball and pear slapes (left
and right objects in cach image pair respectively) are dis-
tinguished by the tapered end of the pear shape when hard
shadows are present. The feature is obscured under soft
shadows (the pair of images to the right) causing confusion
between the two shapes.

Wanger, “The Effect of Shadow Quality on the Perception of Spatial Relationships in Computer Generated Imagery”
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Color Plate 1: Color detail of MusicWorld. “Device Synchronization Using an Optimal Linear Filter”
Martin Fricdmann, Thad Stamer & Alex Pentland.
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Gish and Tanner, "Hardware Antialiasing of Lincs and Polygons".

PLATE 1: Front-to-back antialiased rendering witout sub-pixel bit masks.

223




128x128x124 CT-study of a child.
Data is courtesy of Dr. Frans Zonneveld,
Philips Medical Systems, The Netherlands.

Neumann, “Interactive Volume Rendering on a Multicomputer”
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Photo 5 - Environment Mapped Teapot3

(1] 640x512 resolution one sample/pirel

(2] 1280x1024 resolution one sample/pixel
{3] 1280x1024 resolution 56 samples/pixel
Permission granted to reproduce these pictures.

Rhoades, Turk, Bell, State, Neumann, and Varshney, “Real-Time Procedural Textures”

225




Color Plate 1 Color Plate 2

A ree trunk being extruded. A palm branch is being marked for
The user is roughly five times copying using a rubber banding box.
tatler than the houscs.

Color Plate 3 Color Plate 4

The branch has been copied four times, The user is now normal size.
Part of a wolbox menu is visible. The airplane is the cursor, which indicates
The red ring is the “magic carpet”, that the “{lying” 100l is being used.

showing the track r range.

Butterworth, Davidson, Hench, and Olano, “3DM. A Three Dimensional Madeler Using o Head-Mounted Display ™
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. DAl SO o E R B B SN v Sem ey e R T B ) onrmeny rendered Mage 3358 a0iatrm B mmay e o

Plate 1: Tlds shows the screen presented to the uscr in the Volume Seedlings systenms. The slicer/isusurface futerface is i
the upper left. The purple outline indicates the shicing plane. The red arcas of the dsusurface indicates arcas v or near the
shiving plane. Arcas behind the slicing plane are rendering using “screen dout” transparancey. Seeds can be deposited v the
slicing plane which will then effect the subsequent rendering of the volume in the upper right.

Cohen, Painter, Mehta, and Ma, “Volume Seedlings”

227




AT o T
™

Platc 1: (upper left) Helo-
cow stalking a M-106 Sclf-
propelled mortar,

Plate 2: (upper right) Results
of collision between a M-35
2 172 1on truck traveling at
medium speed and a trec,

Plaic 3: (middic left) The
Helo-cow’s round ncarly im-
pacts with an M-2FAADS
tank.

Plate 4: (bottom left) Multi-
ple formations of tanks and
aircraft on tracks gencrated
by NPSNET-MES. V-22
Ospreys and AH-1T Cobras
provide close air support.

Zyda, Pratt, Monahan, and Wilson,
“NPSNET: Constructing a 3D
Virtual World”
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Plate 1: Protein with 760 atoms. Plate 2: Two helices before rotations,

Plate 4: Non-bonded interactions represented Plate 3: Two hehees after 1otations
with partial wireframe spheres.

Surles, Interactive Mudeling Enhanced with Constraints and Physies—With Applications i Molecular Muodelm”

229




Color Plate 1. Object handles are used to constrain geo-
metric transformations to a single plane or axis. Handles can
be applied to any geometric object in the scene, in this case,
a model of a pocket knife. Dragging one of the spheres at
the end of a handle can translate, rotate or scale the knife
depending on which mouse button was pressed. First, the
knife is translated along its x axis (a). Next, the knife is
rotated around a single axis (b). The direction of the user’s
initial gesture determines which of the two axes perpendicu-
lar to the handle is used as the axis of rotation. Finally, the
knife is scaled along one axis (¢).

Color Plate II. Three interdependent color picker widgets
demonstrate the relationships between color spaces. Sliders
are on the bottom, an HSV cone and RGB color cube are on
top. Changing any widget determines the color of the pocket
knife’s case as well as the values of the other widgets,

Color Plate IIL. An implementation of Xerox PARC’s cone
iree is used to visualize the geometric hierarchy of a pocket
knife (a). Nodes represent hierarchical compenents of the
knife’s geometry. Clicking on a node imtiates two behaviors
(b), one that rotates the node to the front, another that high-
lights and animates the corresponding element of the knife’s
geomelry, in this case, the large blade.

Conner, Snibbe, Herndon, Robbins, Zeleznik, and van Dam, “Three-Dimensional Widgets”
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Color Plate IV. The rack widget is used to perform deformations on any geometric object, here a cube (a), Drag-
ging the blue handle downward tapers the cube (b). Deformations are applied to the region of the cube between
the blue and pink bars. Rotating the pink handle twists the cube about the gold bar (¢); pulling the red handle
upward bends the cube (d). Finally, below, we deform a geometric model of a pocket knife using the rack (e).

IVe

Conner, Snibbe, Herndon, Robbins, Zeleznik, and van Dam, “Three-Dimensional Widgets”
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Color Plate 1, One of the models usedin the abstract beam targeting lask. Thewhite lines, whichware
notdisplayed to the subject, represent the double cone of HLS color space, inwhich the dodge balls are
randomly distributed and colored according to thelr positionin HLS space, The multi-colored target ball
Is at the center of the double cone,

Chung, “A Comparison of Head-tracked and Non-head-tracked Steering Modes in the Targeting of Radiotherapy
Treatment Beams”



A 1opological sphere knotted in 4.space. The hither clipping
plane in 3-space reveals some of the intemal geometric
complexity of the surface.

The knotted sphere sliced into ribbons, The inter-ribbon gaps are
semi-lransparent 1o suggest the contnuity of the geomelry, Note
the moiré pattems emerging in the middle.

Torus imbedded in 4-space as (cos s, sin 8, cos ¢, sin 1), The inner
core of the torus is fanther in w than the outer core, hance its color
is more amber, and iis size is diminished by perspective.

Opacity increasing in the w-direction. The opague interivr
reinforces the interpretation that she inner pun of the tonis is
farther away in w than the outer pan.

Klemn bottle unbedded in 4-space, with culur growing more amber
«a the w-direction. The surfave sclt-ntersects in 3-space (blach
line) but not in 4-space, as revealed by the diffenng woluns un
cither side of the intersecuion curve.

Turus viewed from s dfforcut cye pont By shuftig the cye tothe
nghtin 4 space, we see fanhor nu?hbulhuud; shuft night /elatise

to nearer iughbuthowds Thus the fanthor, innee core of the o
shides right compared to the owter vore

Banks, “Interavtive Manipulauon and Display of Two-Dimensional Surfaces in Four Dimensivnal Spave”
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A projective plane that sell-intersects in 4-space, The upper pan
of the venical self-imersection persists under all rotations in
4.space.

Rotated view of the projective plane. ‘The intersection curve has a
tenninus at the top of the figure and another terminus midway
down he surface, which the frontmosi neighborhood hides.

Hither clipping the opaque projective plane reveals the bottom of
the black interscction curve. ‘The vurve is thinner where the
intersccting patches dive steeply through cach other.

Clipping to reveal intemal silthoucties. Their width varies with the
surface’s curvature. There is a false silhouette where the bottom of
the surface inflects in the eye plane across the curve.

Proiecuve plane rendered with transparency. The intenur pants of
the suiface are visible, showing the lower terminus of the
wtersection curve. But the mntersection curve is less prominent,

Prujevt. ¢ plane rendered with transparency, silhouettes, and
intersections.

Banks, “Interacuve Manipulation and Display of Two-Dimensional Surfaces in Four-Dimensional Space”
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Future Conference Dates

SIGGRAPH '92
July 26-31, 1992
Chicago, Hlinois

Maxine Brown
(312) 996-3002

SIGGRAPH '93 SIGGRAPH *94
August 2.6, 1993 July 25-29, 1994
Anaheim, Califorma  Orlando, Florida

Robert L. Judd
(508) 667.7356

Mark Resch
(408) 745.6270 x263

SIGGRAPH Email Communication

To reach key SIGGRAPH people through an electronic mal
forwarding service, address mail to Surname @siggraph,org where
sumame is replaced by the person’s sumame and capitalization 1s not
mp- nant. For example, to reach Jim Thomas, the chair, address manl 1o
Tt an@wiggraph.org

1he following groups can be reached by typing Group @siggraph.org
-EC
-CPC
- EC+CPC
- EducationCommittee
- LocalGroupsSteermgCommuttee
- SIGGRAPHY1
- SIGGRAPHY2

Intormation about the following topies can be obtaned by addressing
mail 10 Topic@siggraph.org
- FocusGroup
- Membershiplnfo
« Registrationlnto
- LocalGroupsinfo
« Educationinfo
- Careendnfo
- Artisinlnfo
+ Publicitylnfo
» WorkshopaInfo
+ SmallConferencesinto
- ConferencePlanminglnto
« P++licPalicyinfo
- VideoReviewlnfo
- Publicationsinfo
- Grandnio
- Exhibiorinfo

Into@wggraph org can be used 10 make comnients or request
infonnation showt topies other thun those covered above
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