
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A250 703
Ii N I 1 Pl11 1i 1 1 1j l l l 11SI STATEsi

DTI

THESIS 5

Adding Intelligence to the Composite Warfare
Commander - Distributed Dynamic

Decisionmaking (CWC-DDD) Paradigm

by

Brian Kenneth Wright

March 1992

Thesis Advisor: Kishore Sengupta

Approved for public release; distribution is unlimited.

92-129579 2 • 14 ' •{lllll~l1 1[illl
9 2 II IiI

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIB UTION/AVMALABII.IY OF REPORT

Approved for public release; distribution is unlimited.
2b. DCLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7&. NAME OF MON1TORING ORGANIZATION
Administrative Sciences Department (If Applicable) Naval Postgraduate School
Naval Postgraduate School AS

6c. ADDRESS (city, state, and ZIP code) 7b. ADDRESS (city, state, and ZIP code)

Monterey, CA 939,43-5000 Monterey, CA 93943-5000
8a. NAME OF FUNWD,,CiPONSORING 6b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If Applicable)

8c. ADDRESS (city, state, and ZIP code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM I PROJECT TASK WORK UNIT
EIlEENTNO. NO. NO. ACCESSIONNO.

11. TITLE (Include Security Classification)
ADDiNG INTELLIGENCE TO THE COMPOSITE WARFARE COMMANDER - DISTRIBUTED DYNAMIC
DECISIONMAKING (CWC-DDD) PARADIGM

12. PERSONAL AUTHOR(S)
Brian Kenneth Wright

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year, monthday) 15. PAGE C)UNT
Master's Thesis FROM 08/90 TO 03/92 March 1992 104

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse if necessary and identify by block nwnber)

FIELD GROUP SUBGROUP Decisionmaking, Distributed Decisonmaking, CWC, C Programming,

Sun Workstations, Sunview, War Games

19. ABSTRACT (Continue on reverse ýf necessary and identify by block number)
The Composite Warfare Commander - Distributed Dynamic Decisionmaking (CWC-DDD) paradigm is a tool for

experimentation and research into the area of command, control and communications (C3) team decisionmaking process in
simulated Navy engagement scenarios. It is implemented as a computer-driven interactive game among four person
hierarchical teams of decisionmakers on a network of worstations. The paradigm is a compromise between controllability and
realism of the experimental environment. The major drawback with the current implementation is the lack of responsiveness
of the tasks (attackers) to the actions of the assets (defenders) and the environmental conditions. This thesis details ways to
improve the responsiveness of the attackers and the realism of the paradigm by the implementation of a group of if-then
heuristics. The five proposed heuristics are designed to make the attackers attempt to evade the defenders while still actively
pursuing their mission to penetrate the center of the battle group. The heuristics are implemented in the RAINCOAT version
of the paradigm using the C programming language. The heuristics are validated by several military commanders for
adherence with the accepted baule doctrine of the Navy's Composite Warfare Command.

20 DIs1TRIBUION/AVALABMrrY OFABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

X UNCLASSIFIED/UNLIMITED [] SAME AS RPr.] DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE LNDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Dr. Kishore Sengupta 408)646-3212 AS/Se
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURIFY CLASSIFICATION OF THIS PAGE

All other editions am obsolete Unclassified

Imll 1 m ll al I i

Approved for public release; distribution is unlimited.

Adding Intelligence to the Composite Warfare Commander - Distributed
Dynamic Decisionmaking Paradigm

by

Brian Kenneth Wright
Lieutenant, United States Coast Guard

B.S., United States Coast Guard Academy, 1983

Submitted in partia' "ulfillment of the requirements

foi- the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
March 1992

Author: _____________

Brian Kenneth O ht

Approved by:
Kishore Szbp--',Thesiý Advisor

Carl R..Jones, Second Reader

David R. Whipple, Chairman, Departm Administrative
Sciences _

ABSTRACT

The Composite Warfare Commander - Distributed Dynamic Decisionmaking

(CWC-DDD) paradigm is a tool for experimentation and research into the area

of command, control and communications (C3) team decisionmaking process in

simulated Navy engagement scenarios. It is implemented as a computer-driven

interactive game among four person hierarchical teams of decisionmakers on a

network of workstations. The paradigm is a compromise between controllability

and realism of the experimental environment. The major drawback with the

current implementation is the lack of responsiveness of the tasks (attackers) to

the actions of the assets (defenders) and the environmental conditions. This

thesis details ways to improve the responsiveness of the attackers and the realism

of the paradigm by the implementation of a group of if-then heuristics. The five

proposed heuristics are designed to make the attackers attempt to evade the

defenders while still actively pursuing their mission to penetrate the center of the

battle group. The heuristics are implemented in the RAINCOAT version of the

paradigm using the C programming language. The heuristics are validated by

several military commanders for adherence with the accepted battle doctrine of

the Navy's Composite Warfare Command.

Aaoession Par

NTIS GRA&I
DTIC TAB 0
Unannounoed 0
Justificatlon

By
Distribution/

Availability Codes
SAvail andlor

Dlst Speocaliiifyi

TABLE OF CONTENTS

I. INTRODUCTION .. 1

A. PURPOSE OF THE RESEARCH ... 1

B. RESEARCH METHODOLOGY ... 1

C. POTENTIAL BENEFITS OF THE RESEARCH 2

D. HISTORY OF THE CWC-DDD PARADIGM 2

I1. THE CWC-DDD PARADIGM ... 5

A. INTRODUCTION .. 5

B. OVERVIEW OF THE CWC-DDD ENVIRONMENT 7

1. Independent Variables .. 7
a. Leader's Role in the Team .. 7
b. Information Structure .. 7
c. Level of Uncertainty ... 8

2. Objects Within the Environment .. 8
a. Platforms and Subplatforms .. 8
b. Tasks .. 12

3. Communication Between DMs .. 13

4. The Interactive Display .. 14

a. M ain D isplay .. 14
b. Communications Panel ... 17
c. Status Panel .. 17
d. Prom pt Panel ... 18

C. OVERVIEW OF THE CWC-DDD SOFTWARE 18

1. G lobal .. 20

a. Notifier-Based System .. 20
b. Global Control Flow .. 21
c. Real Time Control ... 21
d. Data Consistency .. 24
e. Data Collection and Analysis ... 25

iv

2. L ocal ... 25
a. Function of Local .. 25
b. Structure of Local .. 26
c. Command Processing By Local 28

3. U ser Interface .. 28

4. Scenario Generator .. 28

III. IMPROVING THE CWC-DDD PARADIGM 30

A. REALISM OF THE CWC-DDD PARADIGM 30

B. ADDING "INTELLIGENCE" TO THE CWC-DDD PARADIGM 31

C. THE WEAPONS RANGE HEURISTIC 31

1. The H euristic .. 31
2. Implementation of the Heuristic ... 32

a. Determining If a Task Is Within the Weapons Range of Any
A sset ... 32
b. Calculating the Evasive Maneuver 34
c. Global's Response .. 35

D. THE SECTOR CHANGE HEURISTIC ... 35

1. The H euristic .. 35
2. Implementation of the Heuristic ... 37

a. The sectorcheck Function ... 37
b. Maintaining the Asset and Task Counts 37
c. Calculating the Evasive Maneuver 39
d. Global's Response .. 40

E. RESOURCES ENROUTE HEURISTIC 41

1. The H euristic .. 41

2. Implementation of the Heuristic ... 41
a. The resources-onway Function 41
b. Determining the Resources Enroute a Threat 41
c. Determining If the Resources Enroute Are Sufficient 43
d. Calculating the Evasive Maneuver 43

E. GLOBAL'S RESPONSE ... 44

v

F. PART OF PRIMARY ATTACK HEURISTIC 44

1. The Heuristic .. 44

2. Implementation of the Heuristic ... 45

G. PART OF DIVERSIONARY ATTACK HEURISTIC 46

1. The Heuristic .. 46

2. Implementation of the Heuristic ... 46

H. VALIDATION AND TESTING OF THE HEURISTICS 47

1. U nit Testing .. 47

2. Integration Testing .. 48

3. Results of Testing .. 49

IV. CONCLUSIONS AND RECOMMENDATIONS 51

A . CONCLUSIONS ... 51

B. RECOMMENDATIONS ... 52

C. AREAS FOR FURTHER STUDY .. 52

1. Additional Testing of Heuristics Implemented 52

2. Development of Additional Heuristics 53

3. Conduct Additional Experiments With Military Subjects 53

4. Conversion to X Windows .. 53

REFERENCES ... 55

APPENDIX ... 57

A. CODE ADDED TO INCLUDE/COMMMSGS.H 57

B. CODE ADDED TO INCLUDE/DATASTRUC.H 58

C. CODE ADDED TO SRC/COMM/XDRSTRUCT.C 58

D. CODE ADDED TO SRC/GLOBAL/MAKEFILE 59

E. CODE ADDED TO SRC/GLOBAL/GET_- MSGFROMLOGF.C: 59

F. CODE ADDED TO SRC/GLOBAL/PROCESSGLOBALIO.C 60

G. CODE ADDED TO SRC/GLOBAL/READLOGF.C 61

H. CODE ADDED TO SRC/GLOBAL/RECCOMMAND.C 61

I. CODE ADDED TO SRC/GLOBAL/SENDMSGTOBUF.C 67

vi

J. CODE ADDED TO SRC/GLOBAL/TIMEEVENTS.C FUNCTION

"SENDMSGTOLOCAL" 67

K. CODE ADDED TO SRC/GLOBAL/WRITELOGF.C 68

L. CODE ADDED TO SRC/LOCAL/PROCESS.LOCALIO.C 69

M. CODE ADDED TO SRCiLOCALLIB/INITIALIZE.C 69

N. CODE ADDED TO SRC/LOCALLIB/RECEIVE.C 69

0. CODE ADDED TO
SRC/LOCALLIB/SENDMSG_TO_GLOBAL.C 70

P. CODE ADDED TO SRC/LOCAL_LIB/UPDATE.C 71

INITIAL DISTRIBUTION LIST .. 93

vii

LIST OF FIGURES

Figure 1 CWC-DDD Command Structure .. 6

Figure 2 Normal Distribution of the First Attribute 9

Figure 3 Preformatted Messages in the Paradigm 13

Figure 4 Sample Interactive Display Screen ... 15

Figure 5 Sample Icons and Alphanumeric Identifiers 16

Figure 6 CWC-DDD Composite Structure .. 19

Figure 7 Control Flow of Global .. 22

Figure 8 Information Flow of Global .. 23

Figure 9 Local Structure .. 27

Figure 10 Relationship Between Evasive Maneuver Quantities 36

Figure 11 Detection Ranges of C2 Asset and C2 Task 38

Figure 12 Relationship of Task Position and Destination Point 40

Figure 13 Illustration of Problem With Slope Comparison 42

viii

ACKNOWLEDGMENTS

I wish to thank Dr. Anlan Song and Dr. David Kleinman of the University of

Connecticut for the invaluable assistance they provided to me in my efforts to

modify the CWC-DDD paradigm source code.

ix

1. INTRODUCTION

A. PURPOSE OF THE RESEARCH

The Composite Warfare Commander - Distributed Dynamic Decisionmaking

(CWC-DDD) paradigm was developed as a tool for experimentation and research

into the area of command, control and communication (C3) team decisionmaking

processes in simulated combat situations. It has been used extensively in a series

of research projects commissioned by the Office of Naval Research. Since the

paradigm will be the basis for additional ex, eriments in this subject area, it is

important that the paradigm be examined from a variety of perspectives and

improvements made whenever possible. This research project was an

examination of the paradigm from the perspective of junior military officers.

B. RESEARCH METHODOLOGY

The research consisted of three primary phases. First, a series of 42

experimental scenarios were run using military officers from the Joint

Command, Control and Communication curriculum at the Naval Pos:graduate

School as subjects. Second, the strengths and weaknesses of the paradigm were

discussed with the subjects and several impartial observers through a

combination of informal discussions and written questionnaires. Third, a set of

heuristics that would "add intelligence" to the enemy in the paradigm were

developed and implemented where possible.

C. POTENTIAL BENEFITS OF THE RESEARCH

The CWC-DDD paradigm will continue to be used as a tool to research team

distributed dynamic decisionmaking processes. An improved paradigm will be

closer to the "real world" and, therefore, should result in experimental findings

tiat are more transferable to the real world. Additionally, the review of the

paradigm from a military perspective and the addition of intelligence heuristics

will serve as valuable feedback to the developers of the paradigm.

D. HISTORY OF THE CWC-DDD PARADIGM

Current Naval doctrine for the defense of a battle group is based upon the

doctrine of the Composite Warfare Command. Under this doctrine, several

warfare commanders, who may be geographically separated, are charged with

defending the battle group against a variety of air, surface, and subsurface

threats. They must coordinate their actions and pool their resources to be

successful in their defense of the battle group. (Shi, Luh and Kleinman, 1990, p.

48)

Generally, there are four warfare commanders. The Composite Warfare

Commander (CWC) has overall responsibility for the defense of the battle group.

To aid him in this, he has three subordinate warfare commanders. The first

subordinate warfare commander is the Anti-aircraft Warfare Commander

(AAWC). He is responsible for defense in the air arena. The second subordinate

warfare commander is the Anti-surface Warfare Commander (ASWC). He is

responsible for defense in the surface arena. The third subordinate warfare

commander is the Anti-submarine Warfare Commander (ASuWC). He is

responsible for defense in the subsurface arena.

2

The Navy has identified the issues of conflict resolution and resource

contention within the Composite Warfare Command doctrine as two of the more

serious problems facing the Naval Command and Control (C2) structure (Shi,

Luh and Kleinman, 1990, p. 48). In an effort to better understand the dynamics

of the distributed decisionmaking process, the Office of Naval Research (ONR)

contracted with the University of Connecticut (UCONN) and Alphatech, Inc., to

complete a study of this process. The objective of this initial study and the

follow-on studies was to not only develop a better understanding of this

decisionmaking process, but to arrive at methods to better train Naval

commanders.

UCONN and Alphatech took a normative-descriptive approach to the

problem. First, they abstracted the "real world" problems to bring them into the

controlled laboratory environment where a variety of experimental conditions

could be manipulated individually. Second, they completed empirical and

analytical studies of human team decisionmaking in order to develop a model of

the distributed dynamic decisionmaking process. Most of their theoretical work

was based upon the five years of basic experimental research done by Dr. David

Kleinman on the more general Distributed Dynamic Decisionmaking (DDD)

paradigm. Most of the CWC-DDD software programming was done by Dr.

Anlan Song. (Kleinman and Song, 1990, p. 129)

The result of their efforts was the Composite Warfare Commander -

Distributed Dynamic Decisionmaking (CWC-DDD) paradigm. It was designed

to support the ongoing efforts to examine distributed decisionmaking issues in

four person hierarchical teams of naval commanders. The issues that can be

examined include planning, coordinating, and allocating resources in a relatively

3

realistic naval engagement. The paradigm was designed to have the flexibility to

examine the variety of ways which information processing and resource

allocation problems can be handled by teams under different environmental

constraints. (Kleinman and Song, 1990, p. 129)

4

II. THE CWC-DDD PARADIGM

A. INTRODUCTION

The Composite Warfare Commander - Distributed Dynamic Decisionmaking

(CWC-DDD) paradigm is implemented as a computer-driven interactive game

among several decisionmakers (DMs) on a network of Sun workstations. It

attempts to simulate "real world" Navy engagement scenarios faced by the

Composite Warfare Commander and his subordinates (Kleinman and Song, 1990,

p. 129).

The game is played a team of up to four members. One DM functions as

leader, and the other DMs function as his subordinates. The leader is responsible

for maintaining the global picture and coordinating the implementation of the

team's strategy. Each subordinate DM is responsible for exercising control of

his area of geographic responsibility. (Song, 1991, p. 1) Figure 1 shows a

graphical representation of the command structure.

Each DM sits at a workstation that provides an interactive display of the

current tactical situation and allows communication with the other DMs through

preformatted messages. The team faces a dynamic environment in which

neutrals, decoys and hostile contacts (tasks) arrive at random. Each task must

be processed within a finite window of opportunity. The DMs allocate their

limited resources to process the tasks according to the information they have

gathered. Processing includes detection, identification and prosecution of tasks.

The resources are located on platforms "owned" by the subordinate DMs. (Song,

1991, pp. 1-2)

5

Information

(.) * Tasking

- -

DM1 DM2

/ :ector I sctor 2

Figure 1 CWC-DDD Command Structure

6

B. OVERVIEW OF THE CWC-DDD ENVIRONMENT

1. Independent Variables

The RAINCOAT version of the CWC-DDD paradigm is designed to

allow manipulation of three independent variables of interest in the study of

distributed dynamic decisionmaking. The three are the role of the leader, the

information structure, and the level of uncertainty.

a. Leader's Role in the Team

The leader's role can be an active role or a passive role. In the

active role, the leader has direct control over resource coordination. He can

advise a subordinate to transfer platforms to another DM, or he can act

unilaterally and force platform transfers among his subordinates. In both cases

his actions would be based upon the combination of his assessment of the global

situation and the team's overall strategy. (Kleinman and Song, 1990, p. 132)

b. Information Structure

The information structure can be centralized, partially centralized,

or decentralized. In the centralized information structure case, all DMs will see

the same display of task position and attribute measurements. In the

decentralized information structure, each subordinate DM will see a display of

only those tasks within his area of responsibility. DM0 will see a display

combining the displays of the subordinate DMs. In the partially centralized

information structure case, it is possible to control what information is displayed

to each DM. For example, DM1 may see a display showing the positions and

attribute measurements of air tasks only, DM2 may see a display showing the

positions and attribute measurements of surface tasks only, and DM3 may see a

display showing the positions of subsurface tasks only (Song, 1991, p. 4).

7

c. Level of Uncertainty

During the game, the DMs identify each task by measuring the

attributes of the task. Each task is initially classified as a neutral or a threat. If

the task is determined to be a threat, the task is further classified as to threat

level. "Sensor noise" is added to the attribute measurements to make

identification more difficult. Attribute measurements (with sensor noise) are

grouped around a mean in a normal distribution. In the low uncertainty case, the

difference between the means of the attribute measurements is large enough to

minimize the overlap in the normal distributions caused by the sensor noise.

This makes identification easier relative to the high uncertainty case. In the high

uncertainty case, the difference between the means of the attribute measurements

is smaller and leads to a larger overlap in the normal distributions.

Identification in this case is more difficult relative to the low uncertainty case.

(Song, 1991, p. 3) Figure 2 is a graphical representation of the normal

distributions of the first attribute for neutrals and threats in high and low

uncertainty situations encountered in RAINCOAT.

2. Objects Within the Environment

a. Platforms and Subplatforms

Platforms and subplatforms correspond to ships, aircraft and

submarines working together as a battle group (Kleinman and Song, 1990, p.

130). The subordinate DMs use the platforms and subplatforms to detect and

identify tasks entering their geographic area of responsibility, and to prosecute

those tasks potentially threatening their commander at the battle group center.

8

1.0

A
t
t 0.8
r

b
u

t0.6
e

M
e
a
s 0.4
U
r
e
m
e 0.2
n
t
S

0.0
Neutral Low High

Uncertainty Uncertainty

E One Standard Deviation

W Two Standard Deviations

Figure 2 Normal Distribution of the First Attribute

9

(1) Platforms. Each platform may carry sensors, resources

(weapons), and subplatforms. The sensor, weapon and endurance features of

each platform class are preprogrammed by the experiment designer. These

parameters do not vary from platform to platform within the same class.

However, the experiment designer may vary the number of subplatforms a

platform may carry within a platform class. (Kleinman and Song, 1990, p. 130)

(2) Subplatforms. Subplatforms are located on their parent

platforms at the beginning of the game. Once the game has begun, each DM may

launch one or more subplatforms from his platforms. Each launched

subplatform becomes an independent platform after a preset launch delay.

Subplatforms can operate independently of their parent platforms for a limited

amount of time. Some subplatform types can return to their parent platforms

and be launched again after a "refueling" delay. This type of subplatform

corresponds to reusable items like helicopters. Other subplatform types cannot

be returned and simply disappear when their endurance runs out. This type of

subplatform corresponds to non-reusable items like sonobuoys. (Wu and Song,

1990, p. 10)

(3) Sensors. Each platform or subplatform may have three types

of sensors which provide information on air, surface, and subsurface tasks,

respectively. The combination of platform or subplatform class and sensor type

determine three ranges for each sensor. The outer sensor range is the detection

range. While a task is within this range, the task shows up as a unidentified

contact on the DM's display. The middle sensor range is the measurement range.

10

While the task is within this range, the DM may make a "noisy" measurement of

the attributes of the task. The inner sensor range is the classification range.

While a task is within this range, the task is classified as to its task class by the

sensor. (Wu and Song, 1990, p. 12)

(4) Resources (or weapons). There are three types of resources:

air resources, surface resources, and subsurface resources. Each platform and

subplatform class has a resource vector that determines the quantity of each

resource type onboard platforms of that class. The resource vector also

determines the effective range of each resource type for that class. If a platform

or subplatform class does not have a particular resource type, platforms or

subplatforms of that class cannot attack tasks in that arena. (Wu and Song, 1990,

p. 11)

(5) Platform and Subplatform Command and Control. Platforms

and subplatforms are controlled by the DM that "owns" them. Move, pursue,

attack, and transfer commands are issued through pull down menus. Status

information is obtained by double clicking on the platform or subplatform icon

to bring up the information window. This information window is also used to

display sensor and weapon range rings, and to launch subplatforms. Platforms

and subplatforms cannot be owned by more than one DM at a time. They can be

transferred from one subordinate DM to another with an attendant time delay.

(Kleinman and Song, 1990, p. 130)

II

b. Tasks

Tasks correspond to contacts that are potential threats to the battle

group. Tasks may be air tasks, surface tasks, or subsurface tasks. Tasks appear,

maneuver and disappear according to the experiment designer's preprogrammed

maneuvers (Kleinman and Song, 1990, p. 130). Tasks do not respond to the

actions of the platforms and subplatforms.

(1) Task Classes. Each task type can be further subdivided into

classes representing specific subtypes. For example, task type B may represent

all air contacts. Task classes BA, BD and BN then may represent MIG-23s,

robot decoy drones, and neutral merchant ships, respectively (Kleinman and

Song, 1990, p. 130). Decoy tasks do not attack the battle group, although they

may mimic a hostile in many respects. Neutral tasks do not pose a threat to the

battle group, but their transit path may make them appear to be potential threats.

The presence of decoys and neutrals will often cause a DM to tie up resources

needed to combat threats elsewhere.

(2) Task Characteristics. Each task has an attribute vector with

individual elements that correspond to characteristics of the task. The attribute

elements may represent vulnerability, strength, size, etc. The values of the

attribute elements for each task are randomly generated from a normal

probability distribution using a preprogrammed mean and standard deviation.

Each task class attribute element may have a unique mean and standard deviation.

The attribute vector is multiplied by the preprogrammed task class matrix to

determine the resources required to attack successfully a task. (Wu and Song,

1990, p. 14-15)

12

3. Communication Between DMs

Communication is essential to effective defense of the carrier battle

group. Team members are free to share their local information regarding tasks,

and to coordinate platform/subplatform ownership and task prosecution.

However, verbal exchanges are prohibited. All communication is through

preformatted messages. (Kleinman and Song, 1990, p. 130) Figure 3 shows the

preformatted messages (Song, 1991, p. 5).

Message Meaning

Request information ask another DM to send his information about a task
Request platform ask another DM to transfer ownership of a platform
Request action ask another DM to handle / attack a task
Transfer information transfer the information about a task to another DM
Transfer platform transfer ownership of platform to another DM
Transfer action advise another DM that you will handle/attack a task

Figure 3 Preformatted Messages in the Paradigm

Three limitations on communications can be introduced to simulate real

world conditions. First, a time delay in message transfer can be introduced to

simulate communications and data processing delays. Second, the number of

communications in a period can be specified to simulate a limited quantity or

limited availability of communications circuits. Third, the structure of the

communications network, or who can talk to who, can be specified to simulate

the command hierarchy. (Song, 1991, p. 5)

13

4. The Interactive Display

Each DM is provided with an interactive display. The screen is

composed of the main display, the status panel, the communication panel, and the

prompt panel (Kleinman and Song, 1990, p. 129). A sample screen is shown in

Figure 4.

a. Main Display

The main display consists of primarily of a circular display similar

to a radar scope. The center of the display represents the position of the carrier.

The grey band surrounding the center is the penetration zone (Kleinman and

Song, 1990, p. 129). The circles outside this grey band represent range rings.

The outermost circle represents the limit of the carrier's detection range. The

circular display is divided into twelve 30 degree sectors. Each subordinate DM

has responsibility for five of the sectors. This creates a one sector overlap with

each of the neighboring DMs.

Platforms, subplatforms, and detected tasks appear on this circular

display. The position of each is indicated by an icon. Above each icon is a short

alphanumeric descriptor that provides additional information about the object.

Platform and subplatform descriptors consist of a number designating the

owning DM, a letter indicating the platform or subplatform type, and a three

digit number that uniquely identifies this platform or subplatform within its

class. Task descriptors consist of a letter designating it as an air, surface, or

subsurface task. This is followed by a ? , N, L, M, or H indicat'ng unidentified,

neutral, low threat, medium threat, or high threat, respectively. The N, L, M,

14

i.i Tim: O:0

If

lrin Mo

0, |

0411

0 0S

Figure 4 Sample Interactive Display Screen

15

or H are assigned by the DMs based upon their threat assessments and may or

may not accurately reflect the true identity of the task. Figure 5 contains a

sample of the icon and alphanumeric designators that may appear.

3:A-004 A?-219-0

0/O
Type A Platform Unidentified Task

1:X-102 AH-228-2

x A/
Type X Subplatform High Threat Task

2:Y-108 AN-202-3

Y 7
Type Y Subplatform Neutral Task

Figure 5 Sample Icons and Alphanumeric Identifiers

16

Platforms initially appear at predetermined positions around the

center of the display. They may be repositioned before the start of the game.

Subplatforms are initially on their parent platform. They must be launched from

their parent platform after the start of the game to be used. Tasks arrive and

move according to a scenario preprogrammed by the experiment designer.

Those tasks that are identified as threats should be attacked before the task can

reach the penetration (Kleinman and Song, 1990, p. 129). Commands are issued

to objects on the main display using pull-down menus, pop-up windows, clicking,

or doubleclicking (Kleinman and Song, 1990, p.130).

b. Communications Panel

The communications panel is composed of an incoming and

outgoing window. The incoming window displays the messages received from

other DMs. These messages include task identification, task coordination, and

asset ownership messages. The outgoing window displays feedback information

when certain actions are taken or messages sent. This feedback information

includes subplatform launch, task coordination, and asset ownership

acknowledgements. (Kleinman and Song, 1990, p. 130)

c. Status Panel

The upper portion of the status panel is used to display the current

scenario time and team strength. The middle of the status panel contains four

buttons. Two of these buttons allow the DMs to zoom in or out as necessary to

17

get a clearer picture. The bottom of the status window consists of a time to go

bar which is used to keep the DMs advised of the status of resource transfers,

attacks, or other events that have built in delays. (Kleinman and Song, 1990, p.

130)

d. Prompt Panel

The prompt panel is used primarily to display error messages.

These error messages run the gamut from wasted attack to no more subplatforms

to be launched.

C. OVERVIEW OF THE CWC-DDD SOFTWARE

The CWC-DDD software consists of four primary parts: Global, Local, User

Interface, and Scenario Generator. Global is the runtime communications,

control and data processing center. Local is responsible for maintaining the

objects and processing commands. User Interface provides the screen displays

and accepts the team members' inputs. Scenario Generator is used by the

experimental designer to develop the experimental scenarios. (Song, 1991, p. 6)

Figure 6 is a graphic depiction of the CWC-DDD architecture (Kleinman and

Song, 1990, p. 134).

The system runs as five parallel processes on five workstations. Global runs

on one workstation. A copy of local runs on each of the four remaining

workstations. All command and control information traffic is carried across an

Ethernet using XDR protocol. Timing synchronization and data consistency

between the processes are the responsibility of Global. (Kleinman and Song,

1990, p. 134)

18

Experimental
Specification

Disk inl

Memory

Configuration Maneuver
Fil File

Globa

Figur 6O CW D Copst Strutur

19: ::

The system was written in the C programming language. The Global, Local

and User Interface consist of about 30,000 lines of the code (Song, 1991, p. 6).

The Scenario Generator consists of about 5,000 additional lines of code (Song,

1991, p. 22). The system utilizes the Sunview windowing system. The current

implementation of the paradigm is not portable to other Unix windowing

environments.

1. Global

a. Notifier-Based System

Global is a notification-based system. Procedures are registered

with the global notifier upon initialization. The global calls the appropriate

procedure based upon the socket input received from the locals and the timer

pulses received.

A notification-based system is different from the normal main

control loop of conventional programming. In conventional programming, the

main control loop resides in the application. The main control loop reads the

inputs sequentially, acts based upon these inputs, waits for time to expire, and

then begins the loop again. If no inputs are received, the main control loop will

continue to loop. The conventional main control loop is more appropriate for

process driven environments with fewer events or inputs.

In a notification-based system, the main control loop resides in the

notifier not the application. The notifier reads the events and "notifies" the

appropriate previously registered procedures based upon the events received. If

no events are received, the notifier will wait passively for an event to occur.

The notification-based system is more appropriate in complex event driven

environments.

20

b. Global Control Flow

Global has two handlers. The first handler is for the timer pulse

input and the second handler is for inputs from the Locals. Both handlers are

registered with the notifier before starting the real time loop. Once the real time

loop is started, the notifier will receive all incoming messages or events and call

the appropriate handler to process this message. When a timer pulse is received,

the notifier calls the timeevent processing procedure. This procedure first

sends the time to each Local, and then sends event information and actions to the

appropriate Local. When an input is received from a Local, the notifier calls the

local-input processing procedure to process the inputs from the locals. The

control flow of Global is shown in Figure 7 (Song, 1991, p. 13).

The Global acts as a clearinghouse for the system. It receives and

processes all the inputs from the Locals. In response to these inputs, it

generates messages to be sent to the Locals for action. Those messages that are

to be acted upon without delay are placed in a buffer. Those messages that are to

be executed after a time delay (i.e. communications delay) are placed in a linked

list. When the notifier receives the timer signal, it first sends the time to all the

Locals and then sends any messages in the buffer to the appropriate Local.

(Song, 1991, p. 12) The information flow of Global is shown in Figure 8 (Song,

1991, p. 14).

c. Real Time Control

The CWC-DDD paradigm is a real time simulation. The system

time is kept in Global. At a fixed time interval, a timer pulse is sent to the

notifier, which in turn sends the time on to each of the Locals. (Song, 1991, p.

15)

21

TimeI Pulse Input frown Locals

I NOTIFIER

process time-event process loca~iput

pisndckuprn message move evade
tmevntocommand command

process various commands
"according to message received

Figure 7 Control Flow of Global

22

ev Local

Gl.0nbal I dsende timedB

Initialization

file file

Generator

Figure 8 Information Flow of Global

23

In general, events in the real world do not happen instantaneously,

but occur after a certain time delay. In order to simulate this time delay, Global

maintains a future event linked list. This linked list is ordered by time of event

occurrence. As new events are generated, they are added to this linked list. At a

fixed time interval, Global checks the linked list and sends the events that should

be executed to the appropriate Local for action. When an event is sent to a Local

for action, it is deleted from the linked list. Additionally, the Global will delete

a future event from the linked list if a new input from a Local will cause the

event to no longer to occur. For example, when a task is destroyed all future

events for this task are removed from the linked list. (Song, 1991, p. 15)

The CWC-DDD paradigm actually maintains two future event

linked lists in Global. One linked list is for future asset events. It is initialized

by reading the configuration file. It is changed by the inputs received by Global

from the Locals. The other linked list is for future task events. It is initialized

by reading the maneuver file. It is changed only when a task is destroyed.

(Song, 1991, p. 15)

d. Data Consistency

The CWC-DDD paradigm uses a pseudo-distributed database. Each

Local receives a copy of the database at the beginning of the scenario. The

Locals update and change the data in their database based upon the actions of

their DM and messages received from Global. Every change or update made to

one Local database must be sent to the other Local databases so that their

information may be updated or changed also. Data inconsistency occurs when

two or more Locals attempt to change the same data in their database at the same

time. (Song, 1991, p. 16)

24

Global is tasked with maintaining certain central information lists

to overcome the potential problem of data inconsistency. These central lists

contain flags that are set when a related data item is being changed by a Local.

Every update or change to the database is sent to Global. Global checks its

central lists to see if this data item can be changed. If it can be changed, the

Global sends the change or update to all the Locals. If it cannot be changed,

Global refuses the update or change. The originating Local does not update its

database until it receives the return message from Global. (Song, 1991, p. 16)

e. Data Collection and Analysis

Global is also responsible for recording all properly executed

commands in a log file. At the end of each scenario, Global sorts and analyzes

the log file. The results of this analysis are output as an experimental report.

The log file may also be used to replay the scenario. (Song, 1991, p. 17)

2. Local

a. Function of Local

Local is responsible for processing the commands of its DM. DMs

issue commands using pull down menus and mouse clicks. The menu selections

and mouse clicks are read by the User Interface and passed to the Local for

processing. If the command is properly issued, the Local will process it and pass

it to the other Locals through Global. If the command is improperly issued, the

Local will have the User Interface display an error message in the prompt

window. (Song, 1991, p. 23)

Local also controls the display of the assets and tasks on the screen.

Before the start of the scenario, the DMs are allowed to position their platforms

in accordance with their strategy. These initial positions are passed to Global by

25

Local. Once the scenario has begun, as Local receives the time from Global it

updates the positions of the assets and tasks using the object's velocity and the

time passed. The new positions are then passed to User Interface for display of

the appropriate icon. (Song, 1991, p. 23)

b. Structure of Local

Local, like Global, is notifier-based. When a DM enters a

command, the workstation's notifier calls User Interface to get the input. User

Interface in turn calls process_command to take whatever action is required in

response to the command. When Local receives a message from Global, the

notifier of the workstation calls process-global message to process the message.

(Song, 1991, p. 24) The structure of Local is shown in Figure 9 (Song, 1991, p.

25).

Each Local consists of four modules: initialization, get-db,

process-global-.message, and processcommand. The initialization module is

responsible for registering the notifier handlers, making the socket connections

with Global, creating the Local database, and creating and initializing the display.

The getdb module is responsible for supplying the most current information

about objects from the Local database to User Interface. The

process.global-message module is called by the notifier to process the messages

received from Global. The process_command module is responsible for taking

the command information from User Interface, taking the appropriate action,

and sending a message to Global informing it what has happened and asking for

further instructions. (Song, 1991, p. 24)

26

LOCAL MAIN GL L TERMNALU

j I

Sprocess-global UE qEFC

S_message

"M' M M = I •process command

ge~bsendmessagejo

Ii-global

S9- 00b- Information Flow

SControl Flow

Figure 9 Local Structure

27

c. Command Processing By Local

Every command is processed in a two step process. When the

Local receives a command, the process_command module is called to do the

appropriate calculations. Information about the command and the results of the

calculations are then sent to Global for approval. The Local database remains

unchanged at this point. When Local receives authorization from Global through

the process-global-message module, it completes execution of the command.

Local now updates the database with the information in the message from Global.

(Song, 1991, p. 26)

3. User Interface

The User Interface has two major responsibilities. The first is to keep

the screen up to date with the progress of the scenario being played and to

display communication messages to the player. This is accomplished by

consulting the Local database during every time period and updating any screen

information that might have changed. The second responsibility is to allow the

player to enter commands that will alter the course of the scenario. This is

accomplished by processing the user input and sending the appropriate message

to the Local notifier. (Song, 1991, p. 28)

4. Scenario Generator

The main function of the Scenario Generator is to assist the experiment

designer in developing a scenario (Song, 1991, p. 18). It is used to configure the

assets, to define the task attributes, to design the task movements, and to specify

28

the environment the scenario will be run in. All of the experimental parameters

have default values which provide the designer with a reasonable set of initial

parameters. The designer need only specify those parameters that are unique to

his experiment. (Kleinman and Song, 1990, p. 132)

The interface between the Scenario Generator and the experimental

designer is a flexible experiment description language - XS language. Each XS

language statement consists of keywords and the associated values of the

parameters. Comments may be added to the XS source file to make the file even

more readable. (Kleinman and Song, 1990, p. 133)

The generation of a scenario is a two step process. First, the

experimental designer creates the XS source file which specifies the parameters

that are unique to his experiment. Second, t.is file is used as the input to the

Scenario Generator. The output is: 1) a MN file which contains all the task

maneuvers in chronological order; 2) a CF file which contains environmental as

well as the attributes of the assets and the tasks; and 3) a LS file that lists all the

experimental parameters, including the defaults that were used. If needed, either

the XS or LS file may be modified and used as the basis for arnother scenario.

(Song, 1991, p. 19)

29

III. IMPROVING THE CWC-DDD PARADIGM

A. REALISM OF THE CWC-DDD PARADIGM

The CWC-DDD paradigm was designed to simulate "real world" Naval

engagement scenarios. However, the "real world" is a complex place with

numerous environmental variables. Implementation of too many environmental

variables could greatly detract from the experimenter's ability to control the

experiments and produce meaningful results. Implementation of too few

environmental variables would result in a controllable experiment, however, if

the realism of the model is limited, the results will not be transferable to real

world situations. As with most models, a middle ground must be selented that

represents a compromise between controllability and realism. Does the current

version of the CWC-DDD paradigm represent an acceptable middle ground?

During August and September 1991, a group of 28 military officers were the

subject of multiple trials using the RAINCOAT version of the CWC-DDD

paradigm. At the conclusion of their trials, each subject was asked to provide

some brief comments on the realism of the paradigm based upon their field

experience. The responses collected were primarily anecdotal. The majority

did agree that the paradigm was a reasonable approximation the real world.

When asked for specific ways to improve the paradigm, most felt that the tasks

(enemy) needed to be responsive to the actions of the assets and the environment.

30

B. ADDING "INTELLIGENCE" TO THE CWC-DDD PARADIGM

Assets act as directed by their controlling player. Environmental conditions

change as the scenario progresses. There is no way to predict in advance how a

player will use his assets, or when a given set of environmental conditions will

exist. Yet the task must have the ability to evaluate the current situation and

select the correct response to the situation. The task must have a "rudimentary

intelligence" built into it to allow it to select the correct response.

One common way of adding intelligence is to develop a set of heuristics that

can be hard coded into the system. The heuristics are generally of the type "if x,

y and z are true, then do action A." The more complete the set of heuristics the

more "intelligent" the system component will seem.

For the CWC-DDD paradigm, a trial group of five heuristics were

developed. The conditions and the response for each heuristic were carefully

crafted so as to duplicate as closely as possible the real world conditions and

response. The set of heuristics was reviewed by several military officers for

adherence to generally accepted battle procedures prior to implementation. The

code for implementing the heuristics can be found in the appendix.

C. THE WEAPONS RANGE HEURISTIC

1. The Heuristic

If a threat comes within the weapons rar , of any asset, then the threat

shall change course at a random angle away from the asset.

31

2. Implementation of the Heuristic

a. Determining If a Task Is Within the Weapons Range of

Any Asset

In order to determine if a task is within the weapons range of an

asset, a four step evasion determination process is executed within Local. First,

the task type is determined to be air, surface, or subsurface. Second, the asset's

weapons range against that type of task is determined. Third, the distance

between the task and the asset is calculated using the distance formula. Fourth,

the distance and the weapons range are compared. If the distance is less than the

weapons range, a function to generate an evasive maneuver

(withinweapons-range) is called. This evasion determination process is

repeated for every task and asset pair.

The first three steps of the evasion determination process were

previously implemented as a for loop in the update_task_state function in the
"unintelligent" version of the paradigm. However, to properly implement the

heuristic, three additional checks must be made by the loop before

withinweapons-jange is called to generate an evasive maneuver.

In the real world, only threats would attempt to evade assets.

Neutral tasks would maintain their course and speed. The evasion determination

process above would cause evasive maneuvers to be generated for both threats

and neutrals. Neutral tasks are eliminated from consideration by using the

isthreat function to determine if a task is a threat. If the task is not a threat, the

distance between the task and the asset is not calculated and

withinweaponsjrange is not called for this task.

32

During execution of the paradigm, there are four Locals running.

Under the evasion determination process above, each Local would generate its

own evasive maneuver for each threat within an asset's weapons range. To

prevent this, DMO's Local is given responsibility for determining if an evasive

maneuver is required and calling withinweaponsjrange to calculate it. The

other Locals will encounter an if statement that will cause them to skip the

evasion determination process.

The function updatejtaskstate is called once a second for each task.

If allowed to run in this manner, withinweaponsjrange would calculate an

evasive maneuver for each threat within an asset's weapons range once a second.

The generation and sending of that many evasive maneuvers to Global quickly

overloads the network communications pathways and causes the paradigm to

abort execution. Additionally, it is unrealistic to expect an enemy task

commander to attempt a new evasive maneuver every second. It is more likely

that this enemy task commander will attempt one evasive maneuver and wait a

period of time to see if it will succeed.

These two problems are overcome by having the threat execute one

evasive maneuver when it first enters an asset's weapons range. The threat will

not execute another evasive maneuver relative to that asset until it moves outside

that asset's weapons range and back in again. It will execute a second evasive

maneuver though, if it comes within the weapons range of another asset. This

reduces the number of evasive maneuvers being sent on the network to a

manageable number, and also adds the realism of an enemy task commander

waiting a period of time to see if his evasive maneuver will succeed.

33

ilii l nnnu nil• n ml ll EMi i

b. Calculating the Evasive Maneuver

The function within-weapons-range calculates the evasive

maneuver for the threat based upon the threat's position, the asset's position, and

the distance between them. This evasive maneuver is not immediately

implemented by the Local, but is sent to Global, and only implemented when

Global sends it back to each Local. The maneuver is routed through Global so

that all the Locals will receive the information and update their databases at the

same time.

Initially, withinweaponsjrange checks to see if the threat is within

the inner radius. The inner radius represents the range at which an asset's attack

cannot be completed prior to a threat being able to penetrate the penetration

zone. If a threat is at or inside the inner radius, the threat does not make any

type of evasive maneuver, but instead continues towards the penetration zone.

Next, withinweaponsjrange calculates the angle, the distance, and

the time for the evasive maneuver. The angle is calculated by taking the angle

formed by the positive x axis and a line connecting the threat and asset positions

and adding to it a random angle between -90' and 900. The distance is

calculated by multiplying the distance between the threat and asset positions by a

random number between 0 and 1. The time is calculated by dividing the distance

for the evasive maneuver by the maximum speed for this task. Fig ire 10 is a

graphical representation showing the relationships between the different

quantities.

34

Within-weapons-range now sends the evasive maneuver to Global

in the form of a taskevade_msg. The task_evadensg contains:

"* the threat's id,

"• the maximum speed of the task,

"• the x and y coordinates of the threat's position,

"• the x and y components of the threat's velocity during the evasive
maneuver,

"* the x and y coordinates of the endpoint of the evasive maneuver,

"* the time required to accomplish the evasive maneuver.

c. Global's Response

When Global receives a taskevade-msg from Local, it

immediately writes the message to the log file and places the message in the

buffer. At the end of the next time period Global will send the contents of the

buffer to each of the Locals for action.

Global will also create a TASK_CHANGE event to be added to the

task future events linked list. The TASKCHANGE event will be created so that

the threat is directed towards the next scheduled TASK.CHANGE event for this

threat. Global will check the velocity required to reach this next

TASKCHANGE event point on time. If the velocity exceeds the maximum

velocity of the threat, it will adjust the event times of all future events to reflect

the additional time required for the threat to reach the future event points.

D. THE SECTOR CHANGE HEURISTIC

1. The Heuristic

If the number of tasks is exceeded by the number of assets within one of

the twelve sectors, then the tasks within that sector shall change course for the

neighboring sector with the fewest assets.

35

Task Positive
Position x axis
(x, y)

d
Asset

Position

Task
Position Positive

(x, y) x axis

0

d* r 0+(9

SAsset(newx, newy) Position

Evasive Maneuver
Endpoint

0 = angle between line connecting task and asset positions and horizontal x axis
d = distance between task and asset positions
m = random number
d * rn = random distance for evasive maneuver
0 + (m * 90) = random angle for evasive maneuver
newx = x coordinate of maneuver endpoint
newy = y coordinate of maneuver endpoint

Figure 10 Relationship Between Evasive Maneuver Quantities

36

2. Implementation of the Heuristic

a. The sectorcheck Function

The sector_check function checks if the number of tasks within a

sector is exceeded by the number of assets. It is called by Local as part of the

update function. However, during the execution of the paradigm there are four

Locals running. To prevent each Local from performing the sectorcheck

function, DM0 is given responsibility for performing the sector checking. The

other Locals will encounter an if statement that will cause them to bypass

execution of sector_check.

b. Maintaining the Assei and Task Counts

The sector_check function requires a count of the number of assets

and tasks in each of the twelve sectors. Realistically, these counts would be

maintained by command and control (C2) task located just outside the detection

range of the central asset (the C2 asset). The detection range for this C2 task

would not be unlimited, but would be the same as the central asset's detection

range. The C2 task's detection range will prevent it from obtaining accurate

counts in all sectors.

For purposes of the sectorcheck function, the C2 task is located at

a point on the primary attack axis just outside the central asset's detection range.

This allows the C2 task to obtain maximum coverage of the primary attack and

surrounding sectors. Coverage is sacrificed in the area opposite the primary

attack axis. Figure 11 shows the relationship between the detection ranges.

37

C2
Task

Primary
attack
sector

Sb Central

C2 Asset

SC2 •Taskr 2A

Detection Range Limit Central C2 Asset
Detection Range Limit

Figure 11 Detection Ranges of C2 Asset and C2 Task

38

Counting the assets and tasks is accomplished by a simple three step

process. First, two arrays of 12 values each are created and initialized to zero.

Second, the distance between the C2 task position and the position of each asset is

calculated and compared to the detection range of the C2 task. If the C2 task can
"see" the asset, one is added to the asset count for that sector. The central asset is

ignored in this count since it is not in any sector. Third, the distance calculation

and comparison are done for each task. If the C2 task can "see" the task, one is

added to the task count for that sector.

c. Calculating the Evasive Maneuver

Calculating an evasive maneuver for a each evading task requires

the selection of a destination point in the appropriate adjoining sector. This is

accomplished by calculating the distance between the task's position and the

center of the display. This distance is then multiplied by a random number

between 0 and 1 to get the distance the destination point will be from the center.

The destination point is a point at this "random" distance from the center on a

line that bisects the appropriate adjoining sector. Figure 12 shows a graphical

depiction of the relationship between the task position and destination point.

Using this destination point and the task's position, the velocity and

the time required to move from the task's current position to the destination

point are calculated and sent to Global in the form of a task_evademsg. This

process is repeated for each task requiring an evasive maneuver.

39

d. Global's Response

When Global receives a taskevade-msg from Local, it

immediately writes the message to the log file and places the message in the

buffer. At the end of the next time period Global will send the contents of the

buffer to each of the Locals for action.

Global will also create a TASKCHANGE event to be added to the

task future events linked list. The TASKCHANGE event will be created so that

the threat is directed towards the next scheduled TASK_CHANGE event for this

threat. Global will check the velocity required to reach this next

TASKCHANGE event point on time. If the velocity exceeds the maximum

velocity of the threat, it will adjust the event times of all future events to reflect

the additional time required for the threat to reach the future event points.

Task
Position

d

Destination
Sd Point

r* d

Center of
Display

Figure 12 Relationship of Task Position and Destination Point

40

E. RESOURCES ENROUTE HEURISTIC

1. The Heuristic

If the courses of assets with sufficient resources to destroy a threat show

convergence on the threat, the threat shall change course at a random angle.

2. Implementation of the Heuristic

a. The resourcesonway Function

The resources-onway function determines if the resources enroute

to a threat are greater than or equal to the resources required to properly

destroy the threat. If they are, the function generates an evasive maneuver for

the threat.

During execution of the paradigm, there are four Locals running.

Without intervention, each Local would generate its own evasive maneuver for

each threat being faced with sufficient resources to destroy it. To prevent this,

DMI's Local is given responsibility for determining if an evasive maneuver is

required and calculating it. The other Locals will encounter an if statement that

will cause the call to resources_onway to be skipped.

b. Determining the Resources Enroute a Threat

The Local first determines which assets are enroute towards a

threat. This is accomplished by calcvlating the slope of the asset's velocity

vector. This slope is compared to the slope of a directed line segment connecting

the asset and task positions. The slopes are considered equal if they are within

plus or minus 5% of one another.

41

Comparing the slopes is not sufficient to determine if an asset is

enroute. Since the slopes being compared are the slopes of a vector and a

directed line segment, the signs of the x and y components must also be

compared. If the signs of the components are not compared, it is conceivable

that an asset could be determined to be enroute to a threat when in fact its

velocity is directing it on a course directly away from the threat rather then

towards the threat. Figure 13 illustrates this possibility. If the slopes and the

signs of the components are equal, the asset is considered enroute to the threat.

r + x direction

+ y direction

Threat

y Asset

x

yI

slope of directed line segment connecting asset TO task - (-y) / (-x)
slope of asset's velocity vector = y / x

Slope are same but are directed in opposite directions!

Figure 13 Illustration of Problem With Slope Comparison

Once it has been determined that an asset is enroute to a threat, the

amount of resources carried by that asset must be calculated. Each asset has an

array of three values that represent the strength coefficients for the weapons the

42

asset carries. Each asset class has an array of three values that represent the

strength of the weapons carried by that class of assets. Each asset can also be

designated to represent more than one real world asset (i.e. one asset in the

scenario represents a flight of 12 planes) each with their own weapons. The

resources enroute with that asset is then equal to the asset's strength coefficient

matrix multiplied by the class' weapons matrix multiplied by the number of real

world assets the asset represents. The total resources enroute is the sum of the

resources enroute for each of the assets enroute to the threat.

c. Determining If the Resources Enroute Are Sufficient

Each task has a resources required array associated with it. Each

of the three values in this array represent the resources of that type of weapon

required to properly destroy the task. Direct comparison of the elements of the

resources with the total resources enroute will determine if sufficient resources

are enroute.

In the RAINCOAT version of the paradigm the resources required

to properly destroy a threat is not based on the resources required array, but on

the threat class. A threat class of 1, requires 1 resource to properly destroy; a

threat class of 2 requires 2 resources; a threat class of 3 requires 3 resources.

Comparing this number with the first element of the total resources enroute

array will determine if sufficient resources are enroute. This RAINCOAT

method of comparing the resources available and the resources required was the

one implemented.

d. Calculating the Evasive Maneuver

The evasive maneuver is calculated in three steps. The angle for

the maneuver is calculated by adding a random angle between - 900 and 900 to

43

the angle the threat's velocity vector makes with the positive x axis. The distance

for the maneuver is a random number between 0 and 0.05. The time to

accomplish the maneuver is calculated by dividing the maneuver distance by the

maximum speed for this threat. This information is sent to Global in the form of

a taskevade.msg.

e. Global's Response

When Global receives a taskevade-msg from Local, it

immediately writes the message to the log file and places the message in the

buffer. At the end of the next time period Global will send the contents of the

buffer to each of the Locals for action.

Global will also create a TASKCHANGE event to be added to the

task future events linked list. The TASKCHANGE event will be created so that

the threat is directed towards the next scheduled TASKCHANGE event for this

threat. Global will check the velocity required to reach this next

TASKCHANGE event point on time. If the velocity exceeds the maximum

velocity of the threat, it will adjust the event times of all future events to reflect

the additional time required for the threat to reach the future event points.

F. PART OF PRIMARY ATTACK HEURISTIC

1. The Heuristic

If a threat is part of the primary attack and that threat succeeds in

reaching the first range ring outside the penetration zone (the range at which

diversionary attackers normally veer off), then the threat shall change course

directly for the penetration zone and accelerate to maximum speed.

44

2. Implementation of the Heuristic

The attempt-penetration function determines if a threat is in the

primary attack, and if the threat is within the inner radius. If the threat meets

both of these conditions, this function calculates the changes required to put the

threat on a course directly for the center of the penetration zone at maximum

speed. This message is sent to Global in the form of a taskchange.dir.msg.

Threats do not have a variable associated with them that will identify

them as part of the primary attack. However, all threats that are part of the

primary attack will center their attack around the primary attack axis.

Additionally, all threats that are not part of the primary attack will veer at or

before reaching the inner radius. One can reasonably assume then that any threat

on the primary attack axis and within the inner radius is part of the primary

attack.

When Global receives a taskchange-dir.msg from Local, it

immediately writes the message to the log file and places the message in the

buffer. At the end of the next time period Global will send the contents of the

buffer to each of the Locals for action. Global will also remove all future events

for this threat from the task future event list.

During execution of the paradigm, there are four Locals running.

Without intervention, each Local would generate its own change maneuver for

each threat that was part of the primary attack and within the inner radius. To

prevent this, DMI's Local is given responsibility for determining if an evasive

maneuver is required and calculating it. The other Locals will encounter an if

statement that will cause the call to resources on way to be skipped.

45

The attempt-penetration function is part of the update function. Update

is executed once a second, however, there is no need for attempt-penetration to

be executed once a second. It must be executed often enough to change the

courses of the appropriate threats quickly, but not so often as to overburden the

network with unnecessary taskschange-dir-msg. For this reason, a simple

counter loop has been implemented so that attempt-penetration is executed once

every five seconds.

G. PART OF DIVERSIONARY ATTACK HEURISTIC

1. The Heuristic

If a task is part of the diversionary attack and that task succeeds in

getting closer to the penetration zone than any asset other than the central asset,

then that task shall proceed to attempt to penetrate the penetration zone rather

than veering off.

2. Implementation of the Heuristic

The change-to_attacker function determines if a threat is in the

diversionary attack, and if the threat is inside all assets except for the central

asset. If the threat meets both of these conditions, this function calculates the

changes required to put the threat on a course directly for the center of the

penetration zone at maximum speed. This message is sent to Global in the form

of a task-change-dir_msg.

Threats do not have a variable associated with them that will identify

them as part of the diversionary attack. This function assumes that any threat

that is inside all the assets and is in the diversionary attack axis is part of the

diversionary attack.

46

When Global receives a taskchange-dir.msg from Local, it

immediately writes the message to the log file and places the message in the

buffer. At the end of the next time period Global will send the contents of the

buffer to each of the Locals for action. Global will also remove all future events

for this threat from the task future event list.

During execution of the paradigm, there are four Locals running.

Without intervention, each Local would generate its own change maneuver for

each threat that was part of the diversionary attack and inside all the assets. To

prevent this, DMI's Local is given responsibility for determining if an evasive

maneuver is required and calculating it. The other Locals will encounter an if

statement that will cause the call to resourceson.way to be skipped.

The changetoattacker function is part of the update function. Update

is executed once a second, however, there is no need for changetoattacker to

be executed once a second. It must be executed often enough to change the

courses of the appropriate threats quickly, but not so often as to overburden the

network with unnecessary taskchange-dir-msg. For this reason, a simple

counter loop has been implemented so that change_to_attacker is executed once

every five seconds.

H. VALIDATION AND TESTING OF THE HEURISTICS

1. Unit Testing

Each heuristic module was subjected to two types of unit testing prior to

its integration with the other heuristic models. The first test consisted of running

the modified paradigm and treating the heuristic module as a black box. The

inputs to this black box were a contrived set of actions by the DMs that would

cause the module to execute. The outputs expected from this black box were the

47

execution of evasive or course change maneuvers by the threats. For example,

with the weapons range heuristic DMs continually moved their subplatforms so

that the threats came within the weapons range of the subplatform. If the threat

executed an evasive maneuver, the test was considered successful.

The second test consisted of treating the heuristic module as a white

box. Print statements were placed before and after blocks of code within the

module. These print statements were used to print out the values of variables

under study or simply to indicate that a logical path in the code had been

executed. The variables values printed out before the blocks of code were

executed were used to predict the values of these variables after the code blocks

were executed. The logical path print statements were used to check the

conditions under which different code blocks were executed. The tests were

considered successful if the output values matched the values predicted from the

input values, and if the correct logical path was chosen for the input conditions.

2. Integration Testing

Integration testing consisted of running the modified CWC-DDD

paradigm under experimental conditions with students from the Joint Command,

Control and Communications curriculum as subjects. The subjects were

instructed to respond to the paradigm normally, but to report any anomalies in

the actions of the task if they occurred. At the conclusion of each run, the

subjects were questioned about the realism of the task actions. The tests were

considered a success if no anomalies were reported and the subjects felt the

actions were reasonably realistic.

48

3. Results of Testing

Extensive unit testing of all five modules was conducted by the

programmer. Several software errors were discovered and corrected in each

module. Unit testing was concluded when no errors were found in the last 10

manhours of testing.

Five experimental scenarios were run for the purpose of integration

testing. Software errors were discovered in each test and corrected prior to the

next integration test. Integration testing was limited to these five experimental

scenarios due to the limited availability of student teams.

At the conclusion of the testing process, at least one software error

remained uncorrected. This error consisted of a threat accelerating to a speed in

excess of its maximum speed and proceeding rapidly off the screen. This error

appeared to only occur when several threats and assets were clustered within a

small area. This was most likely an integration error caused by the generation of

several different taskevademsgs and taskchange..dir.msgs by the different

heuristic models in a period of seconds.

An evasion flag for each task was added to the heuristic modules in an

attempt to correct the apparent interaction problems. The task's evasion flag was

initially set to false. It was set to true when the heuristic module generates an

evasive or change maneuver for the task. Each heuristic module checked that the

flag was false before generating a maneuver for the task. The implementation of

the flag was expected to prevent the generation of more than one maneuver for a

task during each update loop or each second.

49

The implementation of the evasion flag did reduce the occurrences of

the reported software error. However, during the final integra{)fn testing trial

the error occurred once. The occurrence of the error was verified using the

built-in replay function of the paradigm.

50

IV. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The Composite Warfare Commander - Distributed Dynamic Decisionmaking

(CWC-DDD) paradigm is a valuable tool in the study of the distributed

decisionmaking processes. Its developers were quite successful in abstracting

many of the elements of "real world" Naval engagement scenarios into the

paradigm without losing too much realism. The current implementation of the

paradigm does represent an acceptable balance between controllability and

realism.

The current paradigm should not remain static. The addition of

"intelligence" heuristics can only improve the paradigm. Each heuristic added

serves to make the paradigm more realistic. The addition of each heuristic does

detract very slightly from the controllability of the experiment, but the benefits

are well worth the cost.

The addition of the five heuristics discussed in this paper have added to the

realism of the paradigm. Real world tasks do not blindly follow a

preprogrammed route to their objective. Real world tasks have certain

unpredictability to their actions. The paradigm's tasks should have the same

qualities. The five heuristics take some of the predictability out of the tasks, and

add to the dynamics of the situation.

51

B. RECOMMENDATIONS

The paradigm should continue to be used as a tool for studies of distributed
d

decisionmaking. The balance between realism and controllability guarantees

meaningful results from any properly designed experiments; meaningful results

that can have application to real world situations.

The composition of the subject teams for experiments with the paradigm

should be examined. To date, only one experiment utilizing military subjects has

been conducted. All other experiments using the paradigm have used college

students as subjects. The paradigm is being used primarily for the study of

distributed decisionmaking in a military environment. Few college students are

familiar with living and acting in a military environment. Additional

experiments should be conducted with military subjects.

The paradigm should continue to be improved through the addition of more

heuristics. Each heuristic represents an addition to the realism of the model. As

the realism is increased, the applicability of experimental results to the real

world can only increase.

C. AREAS FOR FURTHER STUDY

1. Additional Testing of Heuristizz, Implemented

The five heuristics implemented in the paradigm should be subjected to

a more rigorous testing program. This testing program should include the

development of a test harness that will allow more effective integration testing.

Given the number of software modules in the paradigm and the complexity of its

52

event driven environment, integration testing through exercising the paradigm

produces results that are difficult to analyze and even more difficult to discover

where the fault lies. A test harness would aid in isolating the errors and

providing meaningful results for analysis.

2. Development of Additional Heuristics

Additional heuristics should be developed and implemented. There are

numerous war game simulation programs in use at various military

environments. A survey of the heuristics used in these programs would likely

produce several more heuristics that could be implemented in the CWC-DDD

paradigm. Each heuristic should be independently reviewed by several military

commanders for validity prior to implementation.

3. Conduct Additional Experiments With Military Subjects

Additional experiments should be conducted with the CWC-DDD

paradigm, both the "unintelligent" and the "intelligent" version, using military

subjects. The results of experiments utilizing military subjects could be

compared with the results of identical experiments conducted with civilian

subjects. The comparison could provide some interesting information about the

differences, or lack of differences, in distributed decisionmaking in the military

and civilian populations.

4. Conversion to X Windows

Sun Windows or Sunview is Sun Microsystems' proprietary window

system for their workstations. X Windows is a windowing system designed to

run on most Unix based workstations. The paradigm currently runs only under

53

Sunview, therefore, its portability is limited to Sun or Sun compatible

workstations. Converting the paradigm to X Windows would allow it to be

ported to almost any Unix based workstation and would increased the availablilty

of the paradigm for experimentation.

54

REFERENCES

Darnell, Peter A. and Philip E. Margolis. 1991. C: A Software Engineering
Approach. New York: Springer-Verlag New York, Inc.

Kerighan, Brian W. and Dennis M. Ritchie. 1988. The C Programming
Language - Second Edition. Englewood Cliffs, New Jersey: Prentice
Hall.

Heslop, Brent D. and David Angell. 1990. Mastering SunOS. San Francisco:
SYBEX, Inc.

Kleinman, David L., Daniel Serfaty, and Peter Luh. 1984. A Research
Paradigm For Multi-Human Decision Making. In Proceedings of the 1984
American Control Conference in San Diego, California, June 6-8, 1984,
by the American Automatic Control Council. Piscataway, New Jersey:
IEEE Service Center.

Kleinman, David L. and Anlan Song. 1990. A Research Paradigm For Studying
Team Decisionmaking and Coordination. In Proceedings of the 1990
Symposium on Command and Control Research in Monterey, California,
June 12-14, 1990, by the Basic Research Group Technical Panel on C3 of
the Joint Directors of Laboratories and the National Defense University.
McLean, Virginia: Information Systems Division of Science Applications
International Corporation.

Press, William H., Brian P. Flannery, Saul A. Teukolsky, and Williamm T.
Vetterling. 1988. Numerical Recipes in C: The Art of Scientific
Computing. New York: Cambridge University Press.

Schildt, Herbert. 1991. C: The Pocket Reference. Berkeley, California:
McGraw-Hill, Inc.

Schildt, Herbert. 1990. Teach Yourself C. Berkeley, California: McGraw-Hill,
Inc.

55

Shi, Jian, Peter Luh, David L. Kleinman. 1990. A Normative-Descriptive Study
of Information and Command Strategy in Distributed Team Resource
Allocation Part 1: Experimental Design. In Proceedings of the 1990
Symposium on Command and Control Research in Monterey, California,
June 12-14, 1990, by the Basic Research Group Technical Panel on C3 of
the Joint Directors of Laboratories and the National Defense University.
McLean, Virginia: Information Systems Division of Science Applications
International Corporation.

Song, Anlan. 1991. CWC-DDD Software Document Part I: General
Description. Internal working document. Storrs, Connecticut: Electronic
Systems Engineering Department of the University of Connecticut.
Photocopied.

Wu, Lining, Anlan Song. March 1990. CWC-DDD Scenario Generator Users
Manual. Technical manual #90-1. Storrs, Connecticut: Electronic
Systems Engineering Department of the University of Connecticut.
Photocopied.

56

APPENDIX

ADDITIONS TO CWC-DDD CODE

Implementation of the heuristics detailed in Chapter 3 was accomplished by

the addition of the following code. The code in italics is previously existing code

and is included only a guide to the placement of the new code.

A. CODE ADDED TO INCLUDE/COMMMSGS.H

#define TASKPENETRATE 2018
/* Added for intelligence heuristics. */
#define TASKEVADE 2019

int flag;
) swat msg;

/* Added for intelligence heuristics. *//*
21) task evade
*/

struct TaskEvadet
int messagelid; /* identification */
int task id; /* task identification */
float max-v; /* task max velocity */
float x; /* task current x coord *1
float y; /* task current y coord */
float vx; /* task current x velocity */
float vy; /* task current y velocity */
float new-x; /* maneuver endpoint x coord *1
float newy; /* maneuver endpoint y coord */
double mantime; /* time to do maneuver */

) taskevademsg;

extern int xdr swat msgO;
/* Added for intelligence heuristics. */
extern int xdrtask_evade(;

57

B. CODE ADDED TO INCLUDE/DATASTRUC.H

asset state-type *pursued~by[NPLATFORM],.
1* Adlded for intelligence heuristics. */
asset~statejype *evading[NPLATFORM];
float assetLdist[NPLATIFORM];
int evade_ctr;
int evadeý-sector;
nt, evasion;

C. CODE ADDED TO SRC/COM.M/XDRSTRUCT.C

MODULE HISTORY :ORIGINAL
Anlan Song 08/06/89
MODIFIED
Brian Wright 02/05192

Hf !xdr_int(xdrs, &(ptr->flag))

fatal ("receive: cannot read data \n");
return(FALSE);

else return TRUE;

/* Added for intelligence heuristics. *

21) task evade

xdr -task-evade(xdrs,ptr)
XDR *xdrs;
struct TaskEvade *pti.;

if (!xdr - nt(xdrs,&(ptr->taskjid))
11 ! xdr.jloat(xdrs,&(ptr->max v))
I I !xdrjfloat(xdrs,&(ptr->x))
I I !xdrjloat(xdrs,&(ptr->y))
11 !xdr~joat(xdrs,&(ptr->vx))
11 !xdrjfloat(xdrs,&(ptr->vy))
11 !xdrjfloat(xdrs,&(ptr->new-..x))
11 ! xdr....float(xdrs,&(ptr->new..y))
11 ! xdr-double(xdrs,&(ptr->man time)))

58

fatal("receive: cannot read TaskEvade data \n");
return (FALSE);

else return TRUE;

D. CODE ADDED TO SRC/GLOBAL/MAKEFILE

LIBS = $(LLIBS) -lsuntool -isunwindow -lpixrect -1m

E. CODE ADDED TO SRC/GLOBAL/GETMSGFROMLOGF.C:

rec_position - process position message
recevade - process evade message
rectaskchg - process task change message

MODULE HISTORY ORIGINAL
Nick 07/12/89
Rewrite
Anlan Song 08/03/89
MODIFIED
Brian Wright 02/16/92

/* if (rec taskjpenetrate(dm) < 0)
fprintf(stderr, "error in task_penetrate! \n");

*/

break;
/* Next two cases added for intelligence heuristics. */
case TASKEVADE:

/* Skip task evade message, because locals will send this command
* to global when a task needs to evade. The evade message
* in log file is used only for data analysis, not for re-play.
*/

/* if (recevade(dm) < 0)
fprintf(stderr,"error in taskevade! \n");

*/

break;

59

case TASK_CHANGE:
/* Skip task change message, because locals will send this command
* to global when a task changes course. The change message
* in log file is used only for data analysis, not for re-play.
*/

/* if (rec_task_chg(dm) < 0)
fprintf'stderr,"error in taskschange! Nn");

*/
break;

F. CODE ADDED TO SRC/GLOBAL/PROCESSGLOBALIO.C

recassign task - process assign_task message
recevade - process evade message
rectask-chg - process task change message

MODULE HISTORY ORIGINAL
Nick 07/12/89

Rewrite
Anlan Song 08/03/89
MODIFIED
Brian Wright 02/16/92

fprintf(stderr, "error in rec swat! \n");
break;

/* Next two case added for intelligence heuristics. */
case TASKEVADE:

dm= (DMtype)find.object(readjfds, fd);
data (char *)&task evade msg;
receive-xdrdata(readObj, TYPESTRUCT, data,

(char *)xdr_taskevade);
if (rec_.evade(dm) < 0) fprintf(stderr,"error in rec evade! \n");
break;

case TASKCHANGE:
dm= (DMjtype)find-object(readjfds, fd);
data = (char *)&task change-dir_.msg;
receive xdrjdata(reaObj, TYPESTRUCT, data,

(char *)xdr task change);
if (rec-taskchg(dm) < 0)

fprintf(stderr,"error in rectask chg! Nn");
break;

60

G. CODE ADDED TO SRC/GLOBAL/READLOGF.C

MODULE HISTORY ORIGINAL
Anlan Song 08/06/89
MODIFIED
Brian Wright 02/05/92

& (taskjpenetrate.flag));
break;

/* Next two cases added for intelligence heuristics. *
case TASK_ýEVADE:

fscanf(logfp," %d %f %f %f %f %f %f %f VW'n,
&(task~evade msg.task id),
&(task-evade msg.max..y),
&(task -evade msg.x),
&(task__vade_ msg.y),
&(task~evade msg.vx),
&(task~evade _msg.vy),
&(task-evade msg.new-x),
&(tasksjvade msg.new..y),
&(task....evade msg.man-time));

break;
case TASKCHANGE:

fscanf(logfp," %d %f %f %f %A~n",
&(task-changeý_dir-msg.task number),
&(task-change...dir...msg.x),
&(taskschange...dir -msg.y),
&(taskschange...dir...msg.vx),
&(taskschange-dir...msg.vy));

break;

H. CODE ADDED TO SRC/GLOBAL/RECCOMMAND.C

#define DISAPPEARDELA Y 15
#include <stdio.h>
#include <math.h>

61

settaskevent(currenttime +DISAPPEAR_DELAY, ptrl);
return 0;}

function "recevade"

FUNCTION : This function processes evade message.
PARAMETERS : dm - dm identification
RETURN
LOCAL VARIABLES dummy-list - temporary list to hold

modified events
prtsk, nevent
ptrevt, dummy - pointers to events
eptrl, eptr2 - pointers to TaskChange

info
eve_bufl
eve_buf2 - temporary pointers to

certain TaskChange info
old-eventtime
eventtime - time of an event
leg-time
aleg-time - time to complete a

maneuver
delta_t. - difference between

original event time and
new event time

x_dist
y-dist - x and y components of

distance
leg-dist - distance of maneuver
v - speed required to

accomplish maneuver
SUBROUTINES CALLED send_msgtto_buf - send message to

the send out buffer
write_logf - write log file
addct - set event
removect - remove event
del-assetevent - delete future event

related to a certain
asset

62

CALLED BY .processilocal-input

MODULE HISTORY ORIGINAL
Brian Wright 01/30/92 *

rec-evade(dm)
DM-type din;

OBJ dummy-jist;
event -struct *prtsk, *ptrevt, *nevent, *dummjy;
struct TaskChange *eptrl, *eptr2;
struct EveBuf f
int message -id;
mnt objjid;
) *evebuf 1, *eve-buf2;

double event._ime, legjtime, alegjtime, deltat, old_eventjtime;
double x-dist, y-dist, temp, leg-dist;
float v;

if (mode ==0) writejogf(dm, TASKEVADE);
send-msgjto..buf (TASK_EVADE);

/* Create dummy list. */
dummyjist = create-sequenceO;

/* Find first TASK_CHANGE event in future event stack, if any, involving
this task. */

for(prtsk = (event...struct *)first-ct(task _event); prtsk;
prtsk = (event..struct *)next Ct(task event))

eve-buf 1 = (struct EveBuf *)(prtsk-.>eventptr);
if (eve...buf I ->obj-id == task-evade-msg.taskjid &&

eve -bu~l->messagejid == TASKCHANGE)

eptrl = (struct TaskChange *)(prtsk..>eventptr);
old -event-time = prtsk->time;
break;

/* Calculate event time for new TASKCHANGE event. ~

event-time = current-time + task-evade...msg.manjtime;

63

/* Calculate time interval between new TASKCHANGE event and
TASK_CHANGE event found in future event stack. */

leg-time = oldevent_time - eventtime;

/* Calculate distance between new TASK_CHANGE event point and
point of TASK_CHANGE event found in future event stack. */

x.dist = (double)(eptrl->x - task_evadermsg.new-x);
y_dist = (double)(eptrl->y - taskevadermsg.new_.y);
temp = xjdist*x dist + yOdist*y-dist;
leg-dist = sqrt(temp);

/* Calculate velocity needed to reach TASKCHANGE event found in
future event stack on time. */

v = (float)leg.dist / (float)legtime;

/* Create new TASKCHANGE event for future event list. */
eptr2 = (struct TaskChange *)Calloc(1, sizeof(task change-dir msg));
eptr2->messagejid = TASKCHANGE;
eptr2->tasknumber = taskevademsg.task-id;
eptr2->x = taskevademsg.newx;
eptr2->y = task-evade-msg.new.y;

/* Check to see if v is less than max-v for task. */
if (v <= task_evademsg.maxv)
(
/* Calculate components of v for TASKCHANGE event. */
eptr2->vx = v * (float)(x.dist / legdist);
eptr2->vy = v * (float)(ydist / leg._dist);I

else
{
/* Calculate components of maxv for TASKCHANGE event. */
eptr2->vx = (taskevademsg.max-v) * (float)(x_dist / legdist);
eptr2->vy = (task evade_msg.max.v) * (float)(y.dist / legdist);

/* Calculate time required to cover leg at maxv for task. */
aleg-time = leg-dist / (doubie)task,.evade msg.max_v;

/* Calculate extra time needed to reach position for next event
involving this task. */

deltat = alegjtime - (old-event_time - event-ime);

64

/* Create new event and put in dummy list. *
nevent = (event_ýstruct *)Ca~lloc(l, sizeof(event-struct));
nevent->time = event-time;
nevent->eventptr = (char *)eptr2;
add-ct(dummyjist, nevent);

/* Find all future events for this task. *
for(ptrevt = (event -struct *)first ct(task event); ptrevt;

ptrevt = (event-struct *)next ct(task event))

eve_bufl = (struct EveBuf *)(ptrevt..>eventptr);
if (eve-buf2->objjid == taský_evade_msg.taskjid)

nevent = (event...struct *)Ca~llo(y.(, sizeof(event...struct));

/* Change event time if needed. */
if (v > task-evade-msg.max....v) nevent->time = ptrevt->time + delta...t;
if (v <= task_evade...msg.max..y) nevent->time = ptrevt->time;
nevent->eventptr = ptrevt->eventptr;

1* Insert new event in dummyjlist. *
add~ct(dummnyiist, nevent);

1* Remove old task events from task future event list. *
remove-ct(task-event, ptrevt);

/* Put all events in dummy-list in task future event list. ~
for(dummy = (event-struct *)first -ct(dummy-list); dummy;

dummy = (event-struct *)next_ ct(dummy list))

if (dummy->time > current_time)
set-task-event(dummy->time, dummy->event-ptr);

remove-ct(dummy~jist, dummy);

return;

65

/* function "rec_task-chg"

FUNCTION : This function processes task change message.
PARAMETERS : dm - dm identification
RETURN
LOCAL VARIABLES : ptrevt - pointer to the event

evebuf - pointer to event info
SUBROUTINES CALLED : send_msg_to_buf- send message to

the send out buffer.
write-logf - write log file
removect - delete event related to

a certain asset
CALLED BY : process localinput
MODULE HISTORY : ORIGINAL

Brian Wright 02/05/92 */

rectask_chg(dm)
DM[ype din;
{
event-struct *ptrevt;
struct EveBuf {
int messageid;
int obj id;

} *evebuf;
if (mode == 0) write logf(dm, TASK_CHANGE);
sendmsgjto.buf(TASKCHANGE);
for(ptrevt = (event_struct *)firstct(task event); ptrevt;

ptrevt = (eventstruct *)next ct(task event)){
eve_buf = (struct EveBuf *)(ptrevt->eventptr);
if (eve.buf->objid == taskschange-dirmsg.tasknumber &&

eve-buf->messagejid == TASKCHANGE)
I

removect(task event, ptrevt);
free((char *)ptrevt->eventptr);
free((char *)ptrevt);

)

return;

66

1. CODE ADDED TO SRC/GLOBAL/SENDMSG TOBUF.C

MODULE HISTORY ORIGINAL
Anlan Song 08/06/89
MODIFIED
Brian Wright 01/15/92

ptrbuf = (struct Buff *)msgptr,. ptrbuf->message_id = ASSIGNTASK;
add_ct(ourput-msg, msgptr);
break;

/* Added for intelligence heuristics. *
case TASKEVADE:

msgptr = (char *)Calloc(1, sizeof(task-..evade mnsg));
bcopy((char *)&task evade-msg, msgptr, sizeof(task-evade.msg));
ptrbuf = (struct Buff *)msgptl.; ptrbuf->mnessagejid = TASKEVADE;
add -ct(output-msg, msgptr);
break;

J. CODE ADDED TO SRC/GLOBAL/TIME-EVENTS.C FUNCTION
"SENDMSGTOLOCAL"

MODULE HISTORY ORIGINAL
Anlan Song 08/06/89
MODIFIED
Brian Wright 01/15/92

send-xdr msg and-data(writeObj, ASSIGNTASK, TYPESTRUCT,
data, (char *%xdrý_assign task) ;

/* Added for intelligence heuristics. *
case TASK_EVADE:

for(dm = (int)DMO; dm < (int)DM LAST; dm++)f
writeObj = get-object-at(fd to_xclrs,

get-object-at-index(writejfds, din));
if (writeObj) /* if this player is in... */

send-xdr...msg-and-data(writeObj, TASK_EVADE, TYPESTRUCT,
data, (char *)xdr-task-evade);

break;

67

K. CODE ADDED TO SRC/GLOBAL/WRITELOGF.C

MODULE HISTORY ORIGINAL
Anlan Song 08/06/89
MODIFIED
Brian Wright 01/15/92

task gPenet rate flag);
break;

/* Next two cases added for intelligence heuristics. *
case TASK_EVADE:

fprintf(logfp,"%d %d %lf\.n %d %f %f %f %f %f %f %f %f\n",
din, TASK-EVADE, current_time,
task evade- msg.task id,
task-evade_msg.max v,
task_evade,_msg.x,
task_ePvade,_msg.y,
task_evade_msg.vx,
task-evade-msg.vy,
task_jevade_msg.new -x,
task_evade,_msg.new-y,
task-evade~msg.man...time);

break;
case TASK_CHANGE:

fprintf(logfp,"%d %d %lf\n %d %f %f %f %f\n",
din, TASKCHANGE, current_time,
taskschange~dir -msg.task-nuinber,
task-change-dir...insg.x,
task -change-dw..msg.y,
task_change~dirjnsg.vx,
task-changejiirmsg.vy);

break;

68

L. CODE ADDED TO SRC/LOCAL/PROCESSLOCAL IO.C

receiveassign-task(&assigntask);
break;

/* Added for intelligence heuristics. */
case TASKEVADE:

data = (char *)&task-evademsg;
receive_xdrAdata(readObj, TYPESTRUCT, data,

(char *)xdrtask_evade);
taskevade(&taskevademsg);
break;

M. CODE ADDED TO SRC/LOCALLIB/INITIALIZE.C

task statesli].fusionconfidence = 0.0;
/* Added for intelligence heuristics. */
task-states[i].evadectr = -1;
task.states[i].evade_sector = -1;
task states[i].evasion = FALSE;

N. CODE ADDED TO SRC/LOCALLIB/RECEIVE.C

printf("task destroyed id=%dn ",task- > id);
/* displaytbinfo(ptr- >score); */

}

/* function "task_evade"

FUNCTION : evade an asset
INPUT VARIABLES
OUTPUT VARIABLES : Update the position and velocity of the task

based upon the taskevademsg.
LOCAL VARIABLES : x, y - x and y coordinates of

task position
taskid - id of task
task - pointer to task

SUBROUTINES CALLED :
CALLED BY : receive.c
MODULE HISTORY : ORIGINAL

Brian Wright 01/15/92 */

69

task-evade()

extern OBI tasks;
task-state-type *task;
int task~id;
float x, y;

/* Find the task in the task sequence. *
task -id = task-evademrsg.taskjid;
for(task = (task...state-Aype *)first ct(tasks); task;

task = (task~state - ype *)next -ct(tasks))
if (task->id == task-id) break;

if (!task)[
fprintf(stderr, "task_ýevade,...sg: task %d not exist!\n", taskjid);
return(1);

/* Update the coordinates and velocity of the task. *
task->x = task -evade-msg.x;
task->y = task-evade...msg.y;
task->vx =task-evademrsg.vx;
task->vy =task-evade.....sg.vy;
task_id = task->id;
x = task->x;
y = task->y;
printf("task_evade: task %d\.t x %N~ y %A~n", task id, x, y);
return;

0. CODE ADDED TO
SRC/LOCALLIB/SEND MSG TOGLOBAL.C

1* send message to global *1
/* MODIFIED Brian Wright 2/16/92 *

70

sendxdrmsgand_data(writeObj, SWAT_MSG, TYPESTRUCT,
data, (char *)xdrswatmsg);

break;
/* The next two cases were added as part of the intelligence heuristics

for the tasks. */
case TASKEVADE:

data = (char *)&task-evademsg;
sendxdrmsg-and-data(writeObj, TASKEVADE, TYPESTRUCT,

data, (char *)xdrtaskevade);
break;

case TASKCHANGE:
data = (char *)&task change-dir msg;
sendxdrmsg.anddata(writeObj, TASKCHANGE, TYPESTRUCT,

data, (char *)xdr task-change);
break;

P. CODE ADDED TO SRC/LOCAL LIB/UPDATE.C

is set wherever there is a communication from one DM to another.

The following 5 heuristics were added to introduce a rudimentary
intelligence to the actions of the tasks.

- The function checks to see if the number of tasks within a sector
is exceeded by the number of assets. The counts are maintained by
an enemy command and control task located on the primary attack
axis just outside DMO's central platform's detection range. The C2
task has a detection range of 0.5. If the number of tasks is
exceeded by the number of assets, a course change to the
neighboring sector with the smaller number of assets is generated
for each task.

- The function checks to see if there are sufficient resources
enroute a task to properly destroy it. If there are, an evasive
maneuver is generated for the task.

- The function checks to see if the task is within the weapons range
of any asset. If it is, an evasive maneuver is generated for the task.

The function checks to see if a primary attack task is within the
inner radius. If it is, it accelerates to maxv and turns directly for
the center.

71

The function checks to see if a diversionary attack task is inside
all the assets. If it is, it turns towards the center at maxv and
becomes an attacker rather than veering off.

equal to pursue_parameter.
attpenet-parameter

- a design parameter that is constant. After every
atLpenet-parameter times certain functions are
called.

att_penet_loopnumber
- is incremented every time update is called until
equal to att-penet-parameter.

penetrated inside the (penetration) zone.
attempt-penetration

- it is called to change the course of a primary attack
task directly for the center when it reaches the inner
radius

changejto._,attacker
- it is called to change the course of a diversionary
attacker for the center rather than veering off if it
gets inside all assets

sector_check
- it is called to generate evasive maneuvers for tasks
when they are outnumbered in their sector

resourceson way
- it is called to generate an evasive maneuver for a
task when sufficient resources are enroute to properly
destroy it

MODULE HISTORY ORIGINAL
Paiman Nodoushani 08/11/89
MODIFIED
Brian Wright 02/16/92

72

int pursuefig;
static int att-penet-loop-num=l;
static int att-penet parameter=4;
int att-penet-flg;

pursue loopnumber+ +;}
/* set atLpenet-flg */
if (att-penetjloopnum == att penet_parameter){

att-penet.flg = TRUE;
att-penet loop-num = 1;

} else [
att-penet flg = FALSE;
att-penet-loop-num++;

/* Update all tasks. */
/* Check if any tasks are outnumbered in their sector. */
if (thisdm == DM0) sector_check();

updateresponsibilit. '(taskptr);;
/* Execute these actions only once every five seconds, if task

is a threat, and if an evasive maneuver is not pending. */
if (att-penet-flg && isthreat(taskptr)){

if(task-ptr->state != DESTROYED &&
task-ptr->state != DISAPPEARED &&
thisdm == DM1){

/* Check to see if there are sufficient resources enroute to
properly destroy this task. */

if (!task-ptr->evasion) resources onway(task_ptr);

/* If this task is part of the primary attack and has reached the
inner radius, have it turn for the center at max-v.

if (!task_ptr->evasion) attempt-penetration(task-ptr);

/* If this task is part of the diversionary attack and is inside
all of the assets, have it turn towards the center and attack. */

if (!task_ptr->evasion) change_to_attacker(task_ptr);
I

task-ptr->evasion = FALSE;

73

int acquire_ctr = 0;
int type;
int evaded fig = 0;

int i, indexl, index2, index3;

task_ptr- >acquiredby!acquirectr] = asset_ptr;
acquire_ctr++;}

if(is threat(task.ptr)) /* Execute for threats only. */
(

/* If the task is within the weapon range of a platform and the task
is not already evading this asset, have DM0 calculate an evasive
maneuver for this task */

if (distance <= asset_ptr->assetclass->weaponjrangeltype] &&
this_dm == DM0)I

for(indexl = 0; indexl <= task.ptr->evadesctr; indexl++)
if (task-ptr->evading[indexl] == asseLptr) evaded_flg = 1;

if (evadedcflg != 1)
{

/* Update list of assets being evaded by this task. */
task-ptr->evade ctr++;
task-ptr->evading[task_ptr->evade ctr] = asset_ptr;
task-ptr->asset-dist[task_ptr->evade ctr] = distance;

/* Generate evasive maneuver for this task if no other evasive
maneuvers are pending for this task. */

if (!taskptr->evasion)
withinweaponsjrange(task-ptr, asset-ptr, distance);

74

/* Update list of assets being evaded by this task. */
if (distance > asset-ptr->asset class->weaponjrange[type] &&

thisdm == DM0){
for(index2 = 0; index2 <= task_ptr->evadesctr; index2++)

if (task-ptr->evading[index2] == asset-ptr)
{

for(index3 = index2; index3 <= task-ptr->evade_ctr-1; index3++)
=

taskptr->evading[index3] = taskptr->evading[index3+ 1];task~ptr->asset dist[index3] = task...ptr->asset__dist[index3+l];

task-ptr->evading[task_ptr->evade ctr] = NULL;
task_ptr->asset_dist[task_ptr->evade ctrI = 0;
task_ptr->evade_ctr--;I

}
}

}

if (task_ptr- >penetrateflag = = PENETRATING)
task_ptr- >penetrate_flag = PENETRA TED),-}

/* function "within_weapons-range"

FUNCTION : This function calculates an evasive maneuver
for a threat that has been found to be inside
the weapons range of an asset but is outside
the inner radius.

INPUT VARIABLES : tptr - pointer to task being
checked

aptr - pointer to asset being
evaded

d - distance between task
and asset

OUTPUT VARIABLES The function generates a task_evade.msg for
the task that meets the conditions above, and
sends the message to global for action.

75

GLOBAL VARIABLES : tasks
platforms - sequences containing the

pointers to tasks and assets
LOCAL VARIABLES : dtcx, dtcy

dx, dy - x and y components of
distance between two
points

dtc - distance between two
points

angle
rangle - angle between course

line and x axis
test_val - random number used to

determine whether course
change should be + or -

rdist - distance for evasive
maneuver

man_time - time to do evasive
maneuver

CALLED BY : update_taskstate
SUBROUTINES CALLED : unirand - calculates uniformly

distributed random
number

penetrationr - calculates inner radius
MODULE HISTORY : ORIGINAL

Brian Wright 1/15/92

withinweaponsjrange(tptr, aptr, d)
taskstatejtype *tptr;
assetstatetype *aptr;
float d;
{

double unirando, penetration ro;
double dx, dy, angle, rangle, test_val;
double dtcx, dtcy, tctemp, dtc;
double rdist, temp, man_time;

/* If within inner radius, do not do evasive maneuver. */
dtcx = (double)(0.5 - tptr->x);
dtcy = (double)(0.5 - tptr->y);
tctemp = dtcx*dtcx + dtcy*dtcy;
dtc = sqrt(tctemp);
if (dtc <= penetrationjro) return;

76

/* Calculate angle between positive horizontal axis and line
connecting task and asset positions. */

dx = (double)(aptr->x - tptr->x);
dy = (double)(aptr->y - tptr->y);
angle = atan2(dy, dx);

/* Calculate random angle for task to change course relative to
the asset. */

testval = unirando;
if(testval <= 0.5)

rangle = (unirand(* 1.570796327) + angle;
else

rangle = (unirando * -1.570796327) + angle;

/* Check if random angle greater than 360 degrees or less
than 0 degrees. */

if (rangle >= 6.283185307) rangle = rangle - 6.283185307;
if (rangle < 0.0) rangle = rangle + 6.283185307;

/* Calculate random distance for evasive maneuver. */
rdist = unirando * (double)d;

/* Calculate time to accomplish evasive maneuver. */
man-time = rdist / (double)(tptr->taskclass->max-v);

/* Send information to global for processing. */
task evade msg.task_id = tptr->id;
task_evade_.msg.max-v = tptr->taskclass->maxv;
task._evade.msg.x = tptr->x + (tptr->vx * constants.renewinterval);
taskevade-msg.y = tptr->y + (tptr->vy * constants.renewinterval);
taskevade -msg.vx = (tptr->task class->maxv) * (float)cos(rangle);
taskevade.msg.vy = (tptr->taskclass->max_v) * (float)sin(rangle);
taskevade.msg.new.x = (float)(rdist * cos(rangle)) + tptr->x;
task__evade -msg.new-y = (float)(rdist * sin(rangle)) + tptr->y;
taskevade-msg.mantime = mantime;
send-msgjto-global(TASKEVADE);
tptr->evasion = TRUE;
return;

7

77

/* function "attemptpenetration"

FUNCTION This function determines if a task is in the
primary attack and if the task is within the
first circle drawn outside the penetration
zone (the inner radius). If it is, the task
turns for the center at maximum velocity.

INPUT VARIABLES tptr - pointer to task being
checked

OUTPUT VARIABLES The function generates a
taskchange.dir ..msg for the task that meets
the conditions above and sends the message
to global for action.

GLOBAL VARIABLES constants.pri-att - primary attack sector
LOCAL VARIABLES insector - sector task is currently in

dx, dy - x and y components of
distance between two
points

d - distance between two
points

CALLED BY update
SUBROUTINES CALLED : xy2sector - determines which sector

task is in
penetrationr - determines inner radius

MODULE HISTORY : ORIGINAL
Brian Wright 2/05/92

attempt-penetration(tptr)
task_state.type *tptr;I
mtin _sector;
double dx, dy, temp, d;
double penetration-ro;

/* Determine which sector the task is in. */
insector = xy2sector(tptr->x, tptr->y);

/* Determine if the task is in the primary attack axis sector. */
if(in-sector == constants.pri-att)

78

/* Calculate distance between task position and center. */
dx = (double)(0.5 - tptr->x);
dy = (double)(0.5 - tptr->y);
temp = dx*dx + dy*dy;
d = sqrt(temp);

/* If task is within inner radius, have task turn directly for
penetration zone. */

if (d <= penetrationro)

taskchange..dir msg.message-id = TASKCHANGE;
taskchange dir.msg.tasknumber = tptr->id;

taskchange dir.msg.x = tptr->x + (tptr->vx *
constants.renewinterval);

task_change-dir.msg.y = tptr->y + (tptr->vy *
constants.renewinterval);

taskchange-dir.msg.vx = tptr->task_class->maxv * (float)(dx / d);
taskchange dir msg.vy = tptr->task_class->maxv * (float)(dy / d);
send_msgjto-global(TASKCHANGE);
tptr->evasion = TRUE;

return;

/* function "change toattacker"

FUNCTION This function determines if a task is in the
diversionary attack and if there are any assets
closer to the center than the task. If there
are none, the task becomes an attacker and
turns for the center at maximum velocity.

INPUT VARIABLES : tptr - pointer to task being
checked

OUTPUT VARIABLES : The function generates a
taskchange.dir...msg for the task that meets
the conditions above and sends the message
to global for action.

GLOBAL VARIABLES : constants.divatt - diversionary attack sector
platforms - sequence containing the

pointers to assets

79

LOCAL VARIABLES in-sector - sector task is currently in
adx, ady
tdx, tdy - x and y components of

distance between two
points

ad, td - distance between two
points

asset-ptr - pointer to asset
chgjflg - flag used to determine

whether taskchangedir
_.msg should be sent

CALLED BY : update
SUBROUTINES CALLED : xy2sector - detemines which sector

task is in
MODULE HISTORY : ORIGINAL

Brian Wright 2/05/92 */

changejto attacker(tptr)
taskstate-type *tptr;{
assetstatejtype *asset-ptr;
int chgflg = TRUE;
int in_sector;
double tdx, tdy, ttemp, td;
double adx, ady, atemp, ad;

/* Determine which sector the task is in. */
insector = xy2sector(tptr->x, tptr->y);

/* Determine if the task is in the diversionary attack axis sector. */
if(in sector == constants.div-att)
{
/* Calculate distance between task position and center. */
tdx = (double)(0.5 - tptr->x);
tdy = (double)(0.5 - tptr->y);
ttemp = tdx*tdx + tdy*tdy;
td = sqrt(ttemp);

/* Determine if there are any assets closer to the center than
this task. */

for(asset-ptr = (asset state-type *)first ct(platforms); asset-ptr;
asset-ptr = (asset statejype *)next-ct(platforms))

8

80

if (assetptr->x != 0.5 && asset-ptr->y != 0.5)
=

adx = (double)(0.5 - asset-ptr->x);
ady =(double)(0.5 - asset~ptr->y);

atemp = adx*adx + ady*ady;
ad = sqrt(atemp);
if (ad <= td) chgjflg = FALSE;}

/* If there are no assets closer to the center than this task,
change the course of the task towards the center. */

if (chgflg)

task_changedir msg.messagejid = TASK_CHANGE;
taskchange.dir.msg.task_number = tptr->id;
task_changejdir-msg.x = tptr->x + (tptr->vx *

constants.renewinterval);
task change-dir.msg.y = tptr->y + (tptr->vy *

constants.renewinterval);
taskchange-dir.msg.vx = tptr->taskclass->max_v * (float)(tdx / td);
taskchange__ dir -msg.vy = tptr->taskclass->max_v * (float)(tdy / td);
send-msgjto_global(TASKCHANGE);
tptr->evasion = TRUE;)

}
return;

/* function "sectorcheck"

FUNCTION : This function counts the number of assets in
each sector visible to a task command and
control platform located on the primary
attack axis just outside of DMO's central
platform's detection range. The detection
range of this enemy C2 platform is a circle
of radius 0.5. If the number of assets
detected within a sector exceeds the number
of tasks within that sector, the tasks will
change course to the neighboring sector with
the fewer detected assets.

81

INPUT VARIABLES
OUTPUT VARIABLES The function generates task_evade-msg for

each task that requires a course change
under the conditions above. The message is
sent to global for action.

GLOBAL VARIABLES tasks
platforms - sequences containing the

pointers to the tasks and
assets

LOCAL VARIABLES numx
numy - arrays with the x and y

coordinates for the
position of the enemy
command and control
platform for each sector

asset-count
taskcount - arrays of counts of

number of assets and tasks
in each sector

sector - sector task or asset is
currently in

dx, dy - x and y components of
distance between two
points

d - distance between two
points

tcdist - distance between task
and center

nc_dist - distance between new
point and center

tndist - distance between new
point and task position

thetal
theta2 - angles between course

line and x axis
man-time - time required for evasive

maneuver
asset-ptr
tkptr
task-ptr - pointers to task or asset
new_x
new-y - coordinates of new

destination point

82

CALLED BY : update
SUBROUTINES CALLED : unirand - calculates uniformly

distributed random
number

xy2sector - determines what sector
object is in

MODULE HISTORY ORIGINAL
Brian Wright 2/15/92 */

sectorcheckOI
static float numx[12] = {0.750000, 0.933013, 1.005000, 0.933013,

0.760000, 0.500000, 0.230000, 0.056987,
-0.015000, 0.056987, 0.240000, 0.500000);

static float numy[12] = {0.066987, 0.250000, 0.500000, 0.760000,
0.943013, 1.000000, 0.943013, 0.760000,
0.500000, 0.230000, 0.059987, 0.000000);

int asset_count/12], taskcount[12];
int i, sector;
float newx, newy;
double dx, dy, temp, d;
double tcdist, nc -dist, tndist;
double thetal, theta2, mantime;
assetstatetype *assetptr;
taskstatetype *task-ptr, *tkdptr;
double unirando;

/* Initialize asset and task counts for each sector to 0. There are 12
sectors, numbered from 0 to 11.

for(i = 0; i < 12; i++)

asset_count[iI = 0;
taskcount[i] = 0;)

/* Count number of assets in each sector visible to an enemy command
and control platform. The detection range of this enemy platform
is a circle of radius 0.5. The enemy platform is located at a point
on the primary attack axis just outside of DMO's central platform's
detection range. Ignore asset in center since it is not in a specific
sector. */

for(asset.ptr = (assetstate_type *)first ct(platforms); asset-ptr;
asset.ptr = (asset statetype *)next-ct(platforms))

83

if (asset ptr->x != 0.5 && asset_ptr->y != 0.5)
{
dx = numx[constants.pri_att- 11 - asset ptr->x;
dy = numy[constants.pri~att-1] - asset~ptr->y;

temp = dx*dx + dy*dy;
d = sqrt(temp);
if (d <= 0.5){

sector = xy2sector(asset-ptr->x, asset-ptr->y);
asset.count[sector- 1 I++;

/* Count number of tasks in each sector visible to an enemy command
and control platform. The detection range of this enemy platform
is a circle of radius 0.5. The enemy platform is located at a point
on the primary attack axis just outside of DMO's central platform's
detection range. */

for(task ptr = (task state_type *)first ct(tasks); taskptr;
task-ptr = (task-statejtype *)next-ct(tasks))
=

dx = numx[constants.pri-att-1] - task.ptr->x;
dy = numy[constants.pri~att-1] - task~ptr->y;

temp = dx*dx + dy*dy;
d = sqrt(temp);
if (d <= 0.5)(

sector = xy2sector(task-ptr->x, task-ptr->y);
taskcount[lsector- 1]++;

/* For each task in a sector where the number of assets exceeds the
number of tasks, generate a course change to the adjoining sector
with the fewest assets. */

for(tkptr = (taskstatetype *)first ct(tasks); tkptr;
tk.ptr = (task.statetype *)next-ct(tasks))

I
/* Generate evasive maneuvers only for tasks that are threats and do not

already have an evasive maneuver pending for them. */
if(is-threat(tkptr) && !tkptr->evasion)

84

(
sector = xy2sector(tk-ptr->x, tk.ptr->y);
if (tkptr->evadesector == sector) return;

if (asset-count[sector- 1] > taskcount[sector- 1])
f

/* Record current sector to prevent multiple evasions
in sam., sector. */

tk.ptr->evade-sector = sector;

/* Find distance between task and center of display. */
dx = (double)(0.5 - tk_ptr->x);
dy = (double)(0.5 - tkptr->y);
temp = dx*dx + dy*dy;
tcdist = sqrt(temp);

/* Determine the coordinates of a point in the appropriate
adjoining sector that is at a distance (from the center of the
display) less than the current distance from the center. */

ncdist = tcdist * unirando;
if (asset-count[sector-2] < assetcount[sector])

thetal = 0.523598775 * (double)(sector - 2) - 1.04719755 1;
else

thetal = 0.523598775 * (double)(sector) - 1.047197551;
if (thetal > 3.141592654) thetal -= 6.283185307;
new x = (float)(nc-dist * cos(thetal)) + 0.5;
new y = (float)(nc-dist * sin(thetal)) + 0.5;

/* Calculate distance between current position of task and new
point. Also calculate angle with positive x axis for this course
line and time required to accomplish this maneuver at maxv for
this task. */

dx = (double)(new_x - tkptr->x);
dy = (double)(new-y - tk-ptr->y);
temp = dx*dx + dy*dy;
tndist = sqrt(temp);
theta2 = atan2(dy, dx);
mantime = tndist / (double)(tkptr->task-class->maxv);

85

/* Send information to global. /
taskevade_msg.taskid = tk_ptr->id;
taskevademsg.maxv.= tk-ptr->task class->rnax_v;
taskevade.msg.x = tkptr->x + (tk-ptr->vx *

constants .renewinterval);
taskevade-msg.y = tk.ptr->y + (tk.ptr->vy *

constants.renewinterval);
taskevademsg.vx = (tk ptr->task class->maxv) * (float)cos(theta2);
taskevademsg.vy = (tk ptr->task class->maxv) * (float)sin(theta2);
task_evade_msg.newx = new_x;
task evademsg.new-y = new-y;
taskevademsg.mantime = man_time;
send msgjto-global(TASKEVADE);
tk.ptr->evasion = TRUE;

I
I

return;

/* function "resources on way"

FUNCTION This function determines if the resources
enroute to a task are >= to the resources
needed to properly attack the task. If they
are, an evasive maneuver is generated for
the task. The evasive maneuver will be at an
angle of + or - 90 degrees from the current
course heading, for a distance between 0 and
0.1, and at maximum velocity for this task.

INPUT VARIABLES tptr - pointer to task of
concern

OUTPUT VARIABLES The function generates a taskevademsg
that is sent to global for action.

GLOBAL VARIABLES platforms - sequence containing the
pointers to the assets

LOCAL VARIABLES velslope - slope of asset velocity
vector

a_tojtslope - slope of directed line
segment from the asset to
the task

86

xrun, yfiise - x and y components of
a to t slope

xrun-sign
yrise-sign
vx-sign
vy-sign - signs of appropriate x

and y components of
slopes (needed because
program involves directed
line segments not lines)

lowerlimit
upper~jimit - limits of range that

a_to_t_slope must fall in
for the resources of asset
to be considered enroute

angle - angle task course line
makes with x axis

rangle - random angle for evasive
course change

rdist - distance for evasive
maneuver

manjime - time evasive maneuver
will take at max_v

testval - random number used to
determine whether evasive
maneuver angle should be
+ or -

totalweaponstrength - array to hold
values of resources
enroute a task

res-required - amount of resources
required to properly
destroy a task

asset_ptr
tptr - pointer to task or asset

CALLED BY : update
SUBROUTINES CALLED : unirand - calculates uniformly

distributed random
number

MODULE HISTORY : ORIGINAL
Brian Wright 2/15/92 */

87

resources -on -way(tptr)
task_state-type *tptr;

asset~state-type *assetptr;
double vel~siope, atjo-tslope, yrise, xrun;
double yrise...sign, xrun...sign, vy...sign, vx..sign;
double lowerjlim-it, upper-limidt, angle;
double rangle, rdist, man_time, test..yal;
double unirandO;
float total -weapon...strength[NRESIJ;
int i, res-s.equired;

/* Initialize array to zero. ~
for(i = 0; i < dimensions.nres; i++)
total_weapon...strength[iI = 0;

for(asset-ptr = (asset state-type *)first ct(platforms); asset...ptr;
asset-ptr = (asset-state-type *)next-ct(platforms))

/* Calculate slope of velocity vector of the asset and the signs
of the components of the slope. */

vel~slope = (double)(asset~ptr->vy Iasset~ptr->vx);
vy....sign = (double)(asset-ptr->vy) Ifabs((double)(asset..ptr->vy));
vx-sign = (double)(asse(_pt~r->vx) /fabs((double)(asseL-ptr->vx));

/* Calculate slope of a directed line segment connecting the asset
and task positions. Calculate the signs of the components of
the slope. */

yrise = (double)(tptr->y - asset...ptr->y);
xrun =(double)(tptr->x - asset~ptr->x);
a-to-t-slope =yrisel/xrun;
yrise...sign = yrise /fabs(yrise);
xrun...sign = xrun Ifabs(xrun);

/* Determine if the slopes of the velocity vector and the directed
line segment are within 5% of each other. Determine if the signs
of the components are equal. If both are, add the weapon strength
of the asset to the total weapon strength that is enroute
to the task. */

lower-limit = vel-slope - (0.05 *veLslope);

upperjimit = vel-slope + (0.05 *vel-slope);

if (ato...t..slope >= lower-limit && a_to_t_slope <= upperjimit)

88

if (yrise...sign == vy...sign && xrun-sign == vx...sign)

for(i = 0; i < dimensions.nres; i++)

total-weapon-strength[iI += asset-ptr->strengthscoefll
asset...ptr->asset class->weapon...strength[i]*
asset-ptr->number-of..pltfm,

/* Determine if the total resources enroute to the task are equal to
or greater than the resources required to properly destroy it.
If they are, initiate an evasive maneuver. */

if (tptr->task-clas- ->class-id == 1) resjrequired = 1;
else if (tptr->taskJlass->class-id 2) res,_equired = 2;
else if (tptr->task class->class -id 3) resjyequired = 3;
if (total weapon...strengthllO] >= resjyequired)

/* Calculate random angle for task to change course. ~
angle = atan2((double)(tptr->vy), (double)(tptr->vx));
test -Val = unirando;
if (test-val <= 0.5)

rangle = (unirando * 1.570796327) + angle;
else

rangle = (unirando * -1.570796327) + angle;

/* Calculate random distance for evasive maneuver. ~
rdist = unirando * 0.05;

1* Calculate time to accomplish random maneuver. ~
man-time = rdist / (double)(tptr->task class->max..y);

/* Send information to global for processing. *
task -evade -msg.task-id =tptr->id;

task-evade-msg.max..y tptr->task-class->max-v;
task-evade-msg.x = tptr->x + (tptr->vx * constants.renew-interval);
task -evade-msg.y = tptr->y + (tptr->vy * constants.renew -interval);
task_evade_msg.vx = (tptr->tasksliass->max..y) * (float)cos(rangle);
task evade-msg.vy = (tptr->taskclass->max..y) * (float)sin(rangle);
task~evade-msg.new...x = (float)(rdist * cos(rangle)) + tptr->x;

89

taskevade msg.newy = (float)(rdist * sin(rangle)) + tptr->y;
task_evade msg.man_time = man_time;
sendmsg_to_global(TASK_EVADE);
tptr->evasion = TRUE;

return;

/* function "unirand"

FUNCTION This function is called to generate a
uniformly distributed random number
between 0 and 1.

INPUT VARIABLES
OUTPUT VARIABLES : The function is set equal to the random

number.
LOCAL VARIABLES : seed - the input value for

library function srandom0
seedbuf - a variable used to force

calling of library function
srandom() initially

a - the random number
CALLED BY : within-weapons._range, sector-check,

resources onway
SUBROUTINES CALLED : srandom, random
MODULE HISTORY : ORIGINAL

Brian Wright 1/10/92 */1***** *** ******* ***** ****** **** ***** ** ** ***** *** **** **** ****

double unirand0
{
double a;
static int seed = 1;
static int seedbuf = 0;

90

if (seedbuf == 0){
srandom(seed);
seedbuf ++;}

a = random() / 2147483647.0;
seed ++;
return(a);

1* function "penetrationr"

FUNCTION This function is called to determine the
radius of the first circle drawn on the screen
outside the penetration zone (the inner
radius).

INPUT VARIABLES
OUTPUT VARIABLES The function is set equal to the inner radius.
LOCAL VARIABLES sectors - local copy of the

environment variable
NUMOFCIRCLES

checkenv - a flag variable to stop
program from checking
environment variable
NUMOF_CIRCLES more
than once

horizontalr - half the width of a
rectangular penetration
zone

vertical_r - half the height of a
rectangular penetration
zone

penetjr - larger of horizontal_r
and vertical_r

r - radius of penetration
zone

CALLED BY withinweaponsjrange, attempt-penetration
SUBROUTINES CALLED
MODULE HISTORY ORIGINAL

Brian Wright 2/16/92 */

91

double penetrationjr0
I
double r;
static int sectors = 4;
static int checkenv = 1;
float horizontal_r, vertical-r, penet-r;

/* Determine type of penetration zone and appropriate radius. */
if (penetrate zone.flag == RECTANGLE)I
/* Rectangular penetration zone case */
horizontal-r = penetratezone.w / 2.0;
verticalr = penetratezone.h / 2.0;
if (horizontalr >= verticalr) penetjr = horizontal-r;
if (vertical_r > horizontal-r) penet-r = vertical-r;

} else {
/* Circular penetration zone case */
penetr = penetrate-zone.r;}

/* Calculate radius of first circle drawn outside penetration
zone (inner radius). */

if(checkenv) /* Only check environment once! */
{
if(getenv("NUMOFCIRCLES"))

sectors = atoi(getenv("NUMOF_CIRCLES"));
checkenv = 0;}

r = (double)(0.5 - penet-r) / (double)sectors + (double)penet-r;
return(r);

92

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5000

3. Commandant (G-TPR-2) 2
U. S. Coast Guard
2100 2nd Street SW
Washington, D. C. 20593-0001

4. Kishore Sengupta, Code AS/Se I
Naval Postgraduate School
Monterey, California 93943-5000

5. Carl R. Jones, Code AS/Js I
Naval Postgraduate School
Monterey, California 93943-5000

6. Tung X. Bui, Code AS/Bd I
Naval Postgraduate School
Monterey, California 93943-5000

7. LT Brian Wright, USCG I
Superintendent (db)
U. S. Coast Guard Academy
15 Mohegan Avenue
New London, Connecticut 06320-4195

93

