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1. THE DERIVATION OF THE LINE ZED GTAZBURG-XLANDAU (GL) EQUATION
FROM FIRST PRINCIPLES

1.1. Related Publications and Presentatiois

MONKMWITZ, PETER A., HUERRE, PATRICK & CHOMAZ, JEAN-MARC, Global linear
stability analysis of weakly nonparallel shear flows. Submitted to J. Fluid
Mech.

1.2. Introduction and Basic Equations

This part of the report addresses the extension of the concept of
absolute instability to nonparallel flows. As in the case of parallel flows,
in which an initial impulsive excitation leads to the ultimate dominance of
the most amplified Fourier or normal mode with zero group velocity (Briggs,
1964, Bers, 1983, ecc.), we attempt to answer the question of the asymptotic
(in time) impulse response of a nonparallel flow and we will call the
equivalent of the "absolute" normal mode a linear "global" mode. The latter is
simply a time-harmonic solution of the homogeneous linearized disturbance
equations with homogeneous boundary conditions in space. Such solutions can in
general be obtained only numerically, especially if the basic flow is strongly
nonparallel. Examples of such computations in shear flows have been published
by Zebib (1987), Hannemann & Oertel (1989) and many others.

If the the mean flow is weakly nonparallel, i.e. evolves slowly on the
scale of a typical instability wave length, global modes become accessible to
WKBJ-type analyses. This involves the step from the "slowly divurghng"
approach of Bouthier (1972) and Crighton & Gaster (1976), who treat the
spatial evolution of a forced wave in an inhomogeneous medium the signaling
problem), to the problem of finding the unforced global modes where the
streamwise direction also becomes an "eigenvalue direction".

In the following we treat the case of infinte or sem -i j ste '
flows that contain regions of both absolute and convective instability by z
WKBJ analysis. In particular, the cross-stream structure ;f the global urodes
is taken into account and an explicit discussion of the zonnection betweei the
properties of global modes and local absolute and convective instability IV
given. This connection, which is supported by several ex&gples (MoT1Bwitz
1990), is put on firmer ground. We note, however, that the analyz-l adwita
only "local feedback" by vorticity waves to drive global modes. It' Is
therefore restricted to cases where long-range feedbaj.cJ' tge1e71h] atc'
important problems such as edge tones are not addressed, for which %he pjrlmary
driver of the instability is the acoustic feedback fro& a downstr.aw po nt of
intense fluid-surface interaction to a trailing edge.

To study two-dimensional instability waves in a, spatially inhom'geneous,
incompressible medium, we start from the equation fbi" the z-vorticity -V 2
where T is tha total stream function.

[at + (ayk)ax - (8,!)a ] VZ _ M- 1 V2V" (2.1)

Next, T is decomposed into time-independent mean flow 0 and a small
disturbance 0'

I]
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I -M(x,y)+' ; X- ex. (2.2)

At this point we assume that, in the terminology of the method of multiple
scales (cee e.g. Bender & Orazag, 1978), the mean flow 0 depends only on the
"slow" coordinate X-ex. The parameter

e - )y'(6-1(x)[d6/dx] )tn<< . (2.3)

characterizes the degree of spatial inhomogeneity of the basic flow by
providing a measure of the small change of the typical cross-stream length
scale 6(x) over one typical instability wavelength A . In the absence of
body forces, the assumption of a slow evolution of taie mean flow immediately
restrlcts viscous effects to 0(e), or in terms of the Reynolds number X

XI _1 R-0(l) . (2.4)

Introduction of the decomposition (2.2) and of (2.4) into the governing
equation (2.1) first leads to the boundary layer equation for the basic flow

(aV-(~23 -0 ai)(8O - R (yo (2.5a)

U(X,y) - ayO ; V(X,y) - -axo - .e-1 a. (2.5b)

Linearizing around the basic flow and keeping only terms up to 0(e) then
yields the following equation for the small disturbance 0'

[(at + U 8)V2 _ (82U)a 1] +Y (2.6)
[Vj OYV2 + (aXaYU)a - R"' V2V9 0' + 0(,e210,1 12) - S(xyt)

where and the Laplacian V2 have not yet been split into fast and slow
parts. The source S has been added for the study of the impulse response in
the next section, but the ultimate aim of the paper is the search for global
modes, i.e. homogeneous solutions of (2.6) with homogeneous boundary
conditions in space.

1.3. The WKBJ Approximation for the Green Function and its
Breakdown

Following Bouthier (1972), Crighton and Gaster (1976) and others, we use
the WKBJ approximation up to the level of "physical optics" (see e.g. Bender &
Orszag, 1978) to describe the evolution of a pulse on the weakly nonparallel
basic flow and identify the locations of its breakdown which are "turning
points" of the problem (see section 10 of Bender & Orszag, 1978).

To obtain the Green function G of (2.6), the source at x-x' and ,-y' is
specified as

S(x,y,t) - 16(x-x') + i[ff(x-x")]_ 1)6(y-y')6(t) (3.1)

i This form explicitly accounts for the non-analyticity of G on the imaginary
axis of the wavenumber plane when the lateral extent of the flow domain isI

I
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infinite, as discussed in detail by Huerre & Monkewitz (1985). Next, we take
the Fourier transform of (2.6) in time according to

G(x,y,t) - (21r)" f G(x,y, w) exp(-iot) dw , (3.2)
L

where the contour L is taken parallel to the real w-axis and above all
singularities in order to obtain a causal solution (Briggs, 1964). Finally,
all x-derivatives in the disturbance equation (2.6) are transformed according
to the chain rule

3 - 81 + fax (3.3)

keeping in mind that 80 and B. do not commute. Concentrating on a flow domain
of doubly-infinite screamwise extent, G is required to vanish at up- and
downstream infinity as well as on the lateral boundaries jyj- . Hence,
following section 10.3 of Bender & Orszag (1978), the WKBJ approximation for
G can be written in the standard form away from the source at x-x*

- (G*(X,y) + eG*(X,y) + 0(e2)) exp[i'Xf k±(X';co) dX , (3.4)I x.

where e plays the role of the WKBJ-parameter. The superscripts "+" and "-"

denote the approximation downstream and upstream of the source, respectively.
The k±(X';w) are the corresponding local wavenumbers in the upper and lower
half k-plane, respectively, as shown on figure 2b of Huerre & Monkewitz
(1985). For simplicity we assume here that there is only a single pair of
eigenvalues k.

Introducing the WKBJ-Ansatz (3.4) into the Fourier-transformed equation
(2.6) the stability problem reduces, at leading order in c, to a streamwise
succession of locally parallel problems which are governed by the homogeneous
Rayleigh equation. Its solution depends only parametrically on X through the
shape of the local mean velocity profile U(X,y) and yields k*(X;co) as well as
the local transverse structure of Go up to an unknown amplitude A0(X). The
litter describes in essence the "transmission" of the insLability wave from
one locally parallel region to the next and will be determined at the next
order.

O(f0 ): t(W;kV,w,X) - 0 ; 1j;(y--;X)I - 0 , (3.5a)
A

with G'(X,y) - A'(X) 0(y;X) (3.5b)

The Rayleigh operator X, which includes a list of all relevant parameters in
I the argument, is defined as (see also appendix A)

X(.;k,c,X) - [kU(y;X) - u][82 - k21. - k[a U(y;X)]. (3.6)

I A At lineaz order in c, the following inhomogeneous Rayleigh equation for
G1 is obtained, where the derivatives of the operator X are defined in

i appendix A

I apedi



5

0 X~) L(el;k'wX) a I 8 'A k k(0*0; e X) +

+ i A±{L-k(aXO;k*,w.X) +

+ C + .t6(k;,cwX) }+.(3.7)
It will prove useful to replace a * by the expression (C.4) of appendix C
where the functions *etc. are Miened by (C.5). In order to avoid secular
terms in the solution of (3.7), the solvability conditiua (3.8) has to be

satisfied. After dividing by L,,(#:;k ,w,X) and using (B.4) for akw*, the

akW* aXAe -A iw + ( 1/ 2)w')k a~kt + -C akc t](38

Sccowx i [L (0*;kt ,co,X) -l(;k*,w,X)] L(;kiXr1
, (3.9a)

wk~(w~x) - 2lk(O* ;ke~c,X) IAk(*;kV,c,X)] [L(~k.,~ 1
, (3.9b)

w t wx)-L ~;k t w,X) [(;kwXf 1
.(3.9c)

The L's above are defined by (B.3) in appendix B and represent inner products
of the corresponding V's with the solution of the adjoint Rayleigh equation.
Equation (3.8) is now readily integrated to yield A0(X)

X [(-64) + ('2 WLak + i wLayet](XD;W) d'
I' B X3 a Ok (XM ;w 1 (3.10)

This brings the approximate description of the Green function away from the
source to the level of "physical optics". What remains to be done is the
connection of G- and G+ across the source. For Lhis the analysis of
Bender & Orszag (,1978) has to be generalized: instead of patching the two

solutions G- and G+, which is only possible for ODE's, we use in
essence the approach of Durridg@ and Weinberg (1977) in which the connection
is achieved by matching G- and G+ to the local parallel Green furIction

at X'. The latter is obtained from the double Fourier transform 0 in time
t and space x at X-X' wlich is given as equation (8) in Huerre & Monkewitz
(1985). Integration cf 0 with respect to k along the contours shown on
figure 2b of Huerre & Monkewitz (1985) yields, upon evaluating the residues at
V' and k- respectively for any frequency on the contour L of (3.2),

A 2H(x-xs) 0+(y;Xe) +(y;X ) exp[ik+(co;X*)x]
G(x,y,w;X") 0 0 +

[k+(Co;X3)U(X ,y*) w] a kD [w,kV(wo; X)

2H(xB-x) 00(y;X8 ) 00(y';X8 ) exp[ik-(w;X')x]

[k-(w;X3)U(X3,y5) - wI 8kD[w,k-(C;X3)]

In this expression H is the Heaviside function and D the dispersion relationI associated with the local Rayleigh equation at V8. We note that in (3.11) the
contribution from the integration along the imaginary k-axis, whnich is a
branch cut of the dispersion relation, has been omitted under L~ia assumption
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3 that the long-time behavior is dominated by the discrete spectrum. Comparison
of (3.4), (3.5) and (3.10) with (3.11) finally yields

Ago - 2 0 (3.12)

[k±(w;X5)U(X5,y8) - w a kD[w,k±(w;X*)]

We now turn to the discussion of the long-time behavior of G which runs
analogous to the discussion of absolute and convective instability in the
parallel case. The basic idea is that the leading-order timexasymptotic
behavior of G is determined by the uppermost singularity of G in the
w-plene, i.e. the singularity with the largest temporal growth rate, which
becomes "Pinned" as the w-contour is lowered . In the parallel case, the
singularities in the w-plane, which correspond to zeroes W(k) of theI dispersion relation D, can be moved by deforming the Fourier-inversion contour
in the k-plane until the latter is pinched between two branches k+(w) and
k-(w) (see Briggs, 1964, Bers, 1983, etc.). When this happens, the singularity
w _-c(k) becomes "pinned" at the absolute frequency w. which corresponds to
tie saddle point k. where the complex group velocity Okw is zero and the k-
contour is pinched.

In tho weakly nonparallel case we can argue in a completely analogous
manner: 'f G(X,w) becomes singular at a location Xt from which the X-
integratioi contour cannot be moved, the corresponding pole w(Xt) becomes
"pinned". Again, the "pinned" pole with the largest temporal growth rate A

determines the time-asymptotic behavior of G. From (3.10) it is seen that G,
in particular A0(X), becomes singular at the zeroes of akW(XW). Such points
are in fact turning points Xt where the WKBJ-approximation breaks down, which
is easily seen by noting the correspondence between Ao(%) and [Q(X)] 1/A in
standard textbook notation (see chapter 10 of Bender & Orszag, 1978). In the
following, we have to distinguish between two types of pole "pinning":

The first is the exact analogue of the parallel case where the X-
integration contour is pinched between two branches X=(oI8kw-0) on which the
group velocity is zero. The pinching occurs at the saddle Roint, or second
order turning point Xt where

I ixo(Xt)-0 ,(3.13)

as shown on figure lb. This is the case discussed in detail by Chomaz, Huerre
& Redekopp (1991), which arises when the absolute growth rate cooi(X) has a
maximum within the flow domain, and represents a generalization of
Pierrehumbert's (1984) frequency selection criterion to the complex X-plane.
The assumption that a maximum of wo (X) exists within the flow domain is in
fact rather weak and corresponds to the existence of a maximum of the temporal
amplification rate and an associated saddle point of w(k) in parallel flows
(see Gaster,1968). In the following we make the same assumption and consider,
for simplicity, only one saddle (3.13) between regions of stable flow far
upstream and downstream.

The second possibility of pole "pinning" arises when the complex group
velocity first becomes zero at, say, the flow boundary X-0. In this case the
pole wo(Xt) is "pinned" because the X-integration contour has to start or end
at the boundary, as shown on figure 1c. Hence we have
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Xt - 0 (3.14)

and in this case Xt corresponds to a first order turning point. This is the
situation we will consider for the semi-infinite domain where the upstream
boundary at X-0 dominates the evolution of the disturbance while we asume
that the flow is stable far downstream. The same situation has already been
considered in a model by Chomaz, Huerre & Redekopp (1988).

I In both cases the global mode frequency is given, to leading order, by
w (Xt ) and global instability is determined by the sign of the leading order
global growth rate wo (Xt). Hence it appears that the mean flow must contain a
region of absolute instability for a global mode to become temporally
amplified. This is confirmed by the detailed analysis, which also yields the
next approximation of the global mode frequency beyond w(Xt). The latter is
obtained as eigenvalues of the streanwise two-point boundary value problem and
are determined either by the connection of the upstream and downstream
solutions through the second order turning point (3.13), or by the connection
of the downstream solution through the first order turning point (3.14) to the
boundary.

(A X! (C)

I ,,
X r Xg.

. . .X , X

Xi XZ

I ~ Figure 1. (a) Sketch of the Fourier inversion contour L in the complex co-
plane. (b) The WK&J integration path H in the complex Xplane for the doubly-
infinite flow domain with images X4 and X- of L on which the group velocity isI zero. (c) Corresponding path N and X+ for the sem-infinite case. The top row
(subscripts 1) shows the situation where L is above all singularities (O),
while the bottom row (subscripts 2) shows the points (0) of the X-contourI where the breakdown of the WKBJ-approximation can no longer be avoided as L Is
lowered.

1
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1.4. The Turning Point Region for the Doubly-Infinite Domain

In this section the ideas of Soward & Jones (1983), Huerre & Monkewitz
(1990) & Chomaz, Huerre and Redekopp (1991) on global modes in a doubly
infinite flow domain are applied to shear flows. In terms of application the
following analysis may not only be useful In truly infinite domains, typically
found in geophysical shear flows, but also in finite flow domains, as long as
the boundaries do not significantly influence the flow instability. The two-
dimensional bluff-body wake appears to be a case in point as suggested by
Monkewitz (1988) and the numerical experiment of Triantafyllou & Karniadakis
(1990) who obtained essentially the same KbrmAn vortex street after
replacing the cylinder by an inflow boundary condition downstream of the
cylinder.

I At the turning point defined by (3.13) the first-order equation (3.8)
for A* becomes singular and one has to bring in the second derivative
2 . Since Xt is also a saddle point of the absolute growth rate w (X),
Ibehaves like (XXt)2. Hence X' is a second order turning point where
the second derivative of A* must be of the same order as (X-Xt)2A* (see
Bender & Orszag, 1978). This leads immediately to the rescaling

I X ~' 1 / 2 (X-Xt) . (4.1)

In the inner turning point region, characterized by IXIj0(1) , the
disturbance streamfunction is expanded accordingly:

- + 112 iI + 2 + ( 31 2 )](Ry) x (4.2)

exp[ic-lkt(X-Xt) - iwrt ]

where kt-k (Xt) . By the same token the global frequency w. is expanded0£ tI arund w0(X )-w0

Wo . + CI 2 + (W2 + O(f32) (4.3)

and the mean flow components are expanded in Taylor series around Xt. In terms
of the inner variable (4.1) they are given by

I U(X,y) _ U(Xt,y) + (12 X[a U(Xt y)] + c(R/2)[82U(Xt,y)] + 0(,E 12 )

3 V(X,y) - V(Xt,y) + 0((1 l 2) (4.4)

Introducing the expansions (4.2) and (4.4) as well as the "slow"
variable (4.1) (using the chain rule z-ax+c 112a,) into the governing
equation (2.6) yields, at leading order in c, the local Rayleigh equation at
X
t

o(6°): xt (ot) - 0 ; I 0(Iyl-;X)l - 0 (4.5)

I where O(y) is the local eigenfunction and the short-hand notation Xt (see
A.1), together with the corresponding integral Lt (see B.3), is defined by

Lt ( ) -h(.;ktwtX t )

Lt(') - L(";ktwtXt) (4.6b)* 0
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Hence the leading order solution t0 in (4.2) is given by

I 10(Xy) - 0(T) 0"(Y) (4.7)

with the "free" amplitude X (X) to be determined at higher order. At the
next order O(e I2) a solvability condition yields only

-0 (4.8)

IHence we have to proceed to O(e) to determine A. and obtain the solvability
condition

S( k/2) + iX 0  w x + A. w2 - 6wt - ( /2)3 0 0(4.9)

with the abbreviations

[k [ 2 (k) - ]L(0)I(t  , (4.lOa)

3x - [L(x) + L (4.[L1(0) }-b)

swt i[L(#0) " L(#)][L (#)] , (4.10c)

- Lt(0t))I Lt(0t) I (4.10d)

where the I, etc. are defined analogous to (4.6b). The resulting amplitude
equation (4.9) is a linearized Ginzburg-Landau equation with variable
coefficients. The nomenclature (4.10) becomes immediately transparent when
equation (4.9) is tranformed to the spectral domain by

ai - iC 1 2 (k-ko) . (4.11)

Using (4.3) and (4.8) this yields the Taylor series representation of the3 dispersion relation in the neighborhood of the turning point Xt

he W-Wo C 6W + (wkt/2)(k-kt)
t 2  0 o 0

I -, '(k-k t)(X-Xt) + (4t/2) (X-Xt)2  (4.12)

Hence we have shown that the dispersion relation (4.12) which had been
postulated by Huerre & Monkewitz (1990) and Chomaz et al. (1991) is generic to
the turning point region of the WKBJ approximation and can be derived in a

rational fashion from the governing equations under rather weak assumptions.
The solution of (4.9) is now easily found by transforming it into the standard
Hermite equation. Setting

3A 0(X) - exp[(i/2)kt 2] o( ) with - (4w:=/kk)/X , (4.13)

(4.9) becomes

3~a + at [- l6w2 6t+(i/2)ikktIt t 1-/2 - 2/4) - 0f W2 wik),Xx(4.14)

0
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The boundary conditions are chosen such as to ensure the matching to the
subdominant WKBJ solutions both upstream and downstream of Xt and restrict the
frequency correction w to a set of discrete eigenvalues given by (4.15a)
with the corresponding global eigenfunctions given by (4.15b)

- 6w - (1/2)wtkt + (n + -)(w w ) (4.15a)

I a(e) - exp[-C 2/4] Hen(f) , (4.15b)

where the He,(f) are Hermite polynomials as defined by Abramowitz and Stegun
(1965). We reiterate here that, according to the discussion leading to the
frequency selection criterion (3.13), the global mode (4.15) represents the
asymptotic solution for long times. The recent feat of Hunt & Crighton (1991)
who determined the exact Green function of (4.9) puts us into the unique
position of verifying this statement explicitly. If the limit t-ko is taken in
their expression (36)and (44) for the Green function, one indeed recovers the
most unstable global mode (4.15) with n-0. The higher modes are more stable
since the imaginary parts of wt and Wt are netive, corresponding to a
high wave number "cutoff" and to stabifity at IXha# respectively. At this
point the solution of (2.6) in the inner or turning point region is complete.
Its matching to the WKBJ-"tails" presents no further problems and is described
in the preprint listed in section 1.1. To avoid misunderstandings it is worth
pointing out here that the notion of WKBJ-"tails" does not in any way imply
that the amplitude of the global mode should peak near the turning point which
acts as the "wave-maker" for the entire flow. Depending on the imaginary part
of kt and the downstream evolution of Im[k +] the wave "leaking" from the
"wave-maker" region can experience substantial spatial amplification.

1.5. The Turning Point Region for the Semi-Infinite Flow Domain

I In this section the model investigated by Chomaz et al. (1988) is
reexamined In the context of the present rational asymptotic analysis starting
from the governing equation (2.6). The main assumption, besides the exclusion
of long-range feedback, is that the flow is most (absolutely) unstable at the
boundary, i.e. that the location of the "wave maker" is given by (3.14).
Furthermore we will assume that X o(Xt)dO , i.e. that wo0(X) has no saddle
point at the boundary Xt-0, and that the global mode amplitude is zero at the
boundary.

The analysis is very similar to the one of section 1.4. and will be kept
as brief as possible. In the present case the absolute growth race Wo(X) is
assumed to be a linear function of (X-Xt) and Xt is a first order turning
point. Hence, the balance between e2 A: and (X-Xt)A0 near Xt leads to

0the scaling

X - C-2/3(X-Xt) (5.1)

I The disturbance stream function is expanded accordingly

- + C [ 3o I , f /3 2 2 + C3 + O(C" 3 )](XY) X

(5.2)

exp[iC kt(X-Xt) - icGt ]  ,I
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3 where ktmk (Xt) and the global frequency is represented by

We Wt + C113 FO C213 W2 + C3 + °(EAI
3) (5.3)

Analugous to (4.4), the mean flow is expanded around Xt

U(X,y) - U(Xt,y) + C2/3 X[axU(X t y)] + O(C'/3)

(5.4)IV(X,y) _ V(Xt,y) + 0(C 213).

This, together with the transformation of x-derivatives according toI a-.4a+EI O ) yields, at leading order, the same Rayleigh problem (4.5) at Xt
and the leading order inner solution is thus determined up to a free amplitude
i0(X)

oo My) - A0(X) *0(Y) • (5.5)

At the next order O(e 11 3) one again obtains

S- 0 . (5.6)

3 At order 0(e213) one finds the solvability condition

8a (wt/2) + A0( 2 - X Wt) - 0 (5.7)

I A,(X--e'z/ 3Xt) - Xi(X.) - 0 .

The coefficient t is thereby given by (4.10a) and

- ( (00) ] (5.8)

The first boundary condition on the X. in (5.12) expresses the assumption
that the global-mode amplitude is zero at the upstream flow bomdary X-0,
while the second boundary condition requires the amplitude to vanish far
downstream as before. Equation (5.7) is recognized as Airy's equation with the
solution

A0 - Ai( (2 ct/Wt)113 [X _ (Z 2/ )) (5.9)

The boundary condition at X-0 then leads to the relation between r2 and Xt3 -(2t/ /3 [C'/3xt+ (rz/w)] - -a. , (5.10)

where the -a are the zeros of the Airy function Ai (a0-2.338, a1-4.088,
etc.). With te location of the turning point given, to leading order, by
(3.14), i.e. coinciding with the boundary, we obtain

X- 0 ,(5.11a)

I W wi - ( (2w/kkk) a. (5.11b)

The quantization of the global frequency is therefore of order f2/3, larger
than the 0(c) quantization (4.15a) in the doubly-infinite case. For the
matching to the WKBJ solution, it is more convenient to have 3 2-0. This'I
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can be achieved by moving the turning point, around which all quantities are
expanded, sLightly away from the boundary. Setting E-0 in (5.10) yields

E'2 - 0 ' (5.12a)
n - C a . (5.12b)

IWith the assumptions of a large-wave-number cutoff [i.e. Im(wt)<O] and
maximum absolute growth rate at the boundary [i.e. Im(w)<0] equation
(5.12b) pl.aces the "dominant oscillator" close to the origin into the first
quadrant of the complex X-plane. This displacement reflects the fact, that a
finite region of absolute instability is required on the real X-axis near the
origin before one can have global instability, as discussed in detail by
Chomaz et al. (1988) (see also figure 1c).

In the Fourier-domain we again obtain the Taylor expansion of the
dispersion relaticn around Xt

I~ ~ ~~r w3  -w - e 6wt + ( t /2) (k-kt)+ (XX)(.3

+ (+t /6)(k-kt)3 + t(k-k t)(X-X t ))

where it is understood that, for the n-th global mode, all constants are
evaluated at Xt-Xt , and where

VAk f3L (Okk) + 3L k(01k) - 6L (02k) - k (0 LW(0)1

(5.14)
In these expressions the results up to 0(e) have been incorporated which is
carried out in the preprint listed in section 1.1.

In the two generic cases analyzed in this paper, in which the global
instability is dominated either by a saddle point of the absolute frequency
w,(X) within the flow or by one streamwise boundary of the flow domain, we

have developed approximate expressions for the global-mode frequency Wr# its
growth rate w., and its streamwise amplitude distribution in terms of local
stability properties alone. The complex frequency w. in particular can be
estimated very easily from the knowledge of the local absolute frequency W0
and absolute wave number k on the real x-axis, except for the nonparallel
frequency shift 6w (equs. a.15a and 5.13) of order 0(c). All that is required
is the analytic continuation of wW(X), kO(X) and w (X;ko) from the real x-
axis, on which the mean-flow data are generally defined, to the respective
turning points Xt (equs. 3.13 and 5.12b). Moreover we can conclude that, in
the context of the present analysis, global modes only become amplified if the
streamwise extent of absolute instability is sufficiently large: in the
doubly-infinite case the interval AX of absolute instability has to be at
least of order O( 1 2) when Xt is within C1/2 of the real axis, and larger for
Xt far from the real axis (see Hunt & Crighton, 1991). In the semi-infinite
case, on the other hand, global instability results whenever the interval of
absolute instability at the end grows to AX-O( 2/3) (see equ. 5.12b).

The question naturally arises of how relevant our two generic cases are
to practical applications. It can be answered quite convincingly for the wake
behind a rectangular plate. Harnemann & Oertel (1989) provide in their figure
16 a comparison between the linear w. from their fully nonparallel numerical
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simulation and the local absolute frequency w 0(X), which clearly displays a
saddle at x--l on or very close to the real x-axis. Despite the proximity of
the trailing edge, it appears from this comparison that the linear global
mode, here the nascent K~rmAn vortex street, is dominated by a "waveImaker" at x--l I Hence the doubly-infinite model of section 1.',. will be used
in section 4 to interpret the wake control experiments.

1.6. Appendices

A. The Rayleigh operator and its derivatives

In the following the Rayleigh operator .t[.;k,w,X] and its formal
derivatives with respect to the parameters k, w and X are compiled. InI addition, the operator . which contains the nonparallel terms of the
disturbance equation (2.6) is listed as (A.8). In all the argument lists the
relevant parameters are given after a semi-colon. For the operators they
int.lude the eigenvalue pair k and wo associated with a Rarlle flow U(y;X)
that coincides with the local velocity profile 'J(X,y) at X.

3 (.;k,w,X) _ fkU(y;X) -w[82 k k2]. - k[B2U(y;X)]. (A.1)

.tk(.;k,wo,X) - 2kw *+ U(y;X)[a2 3k 2]. _ [a2 U(Y;X)]. (A.2)

3 .(;k,w,,X) - -[O2 k k2]. (A.3)y

t(;w,) - k [ ayl(y; X)][ a2 - k2]- - k[ a~a2U(y;X)]. (A.4)

Ik t~.k,wc, X) - 2w *-6kU(y;X). (A.5)

3 £x(.;k~co,X) _ f8XU(y;X)H8[ - 3k 2]. _ [a~a2 U(y;X)]. (A.6)

.tx(-k~wX)- k[ a2U(y;X)][a2 k k2]. - k[ a~a 2U (y; X)] (A.7)

3kk £~ k, w,X) - -6U(y;X). (A.8)

X (.;k,w,X) - V(y;X)[a' - k2a~ + [a a u(y;x)]lay - R-'[a2 - k 2]7. (A.9)

B. The k-derivative of the Rayleigh eigenfunction

3 The derivative of the Rayleigh equation (B.1) with respect to the
wavenumber k, where X is given by (A.1), leads to the inhomogeneous Rayleigh
equation (B.2).

I (00;k~w,X) - 0 ; 0(y-X I - 0 (B.1)

3 t(a kO;k,w,X) - -'tk(O ;k,w,X) - Okw t.(OO;k,w,X) (B.2)

The solvability of (B.2) requires that the right-hand side be orthogonal to
the howogeneous solution of the adjoint Rayleigh equation, i.e. toI 40 (y;X) [kU(y;X)-w]11 . With the notation (B.3) for the inner product
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i ¢o(y;X)

L4( ;k,w:X) 2- X .t(-;k,w,X) dy , (B.3)I Y t t k1(y;X) -w

ona obtains a convenient expression (B.4) for the complex group velocity akw
in terms of the Rayleigh eigenfunction #0"

a k W + l (0 0;k,w,X) [LW(0 0 ;k,w,X)] -' - 0 (B.4)

C. The X-derivative of the Rayleigh eigenfunction

In an analogous manner an expression for the X-derivative of #0 can be
obtained. Differentiation of (B.l) with respect to X leads to the3 inhomogeneous Rayleigh equation (C.1).

.t(axoO;k,w,X) - -axktk(0o;k,w,X) - a0 Zc(#O;k,w,X) - tX(0 0;k,w,X) (C.1)

3 With the notation (B.3), the solvability condition reads

8xk k(o;k,w,X) + axw LW(0 0;k,w,X) + Lx(o;k,w,X) - 0 (C.2)

I Using the result (B.4), this can be recast in the form

-axk k w + 8e + IX 0 ;k,wX) [Lu(o;k,wX)]f1 - 0 . (C.3)

For use in §3 we also list a particular solution of (C.1)

I 0X o-"axk Olk - o 8xw 1.- ,X (C.4)

in which the functions #l(y;X), etc. are particular solutions of the
inhomogeneous Rayleigh equetions (C.5) which satisfy the same boundary
conditions as 0

X(o1t;k,oX) - £1 (S0 ;k.wX) ; jolt(y I-;X)I - 0 . (C.5)

In addition we will also need the following "second-generation" forced
solution

X (02k;k,Lw.X) - tk(#k;k,w,X) ; lozk(yl-;X) I - 0 , (C.6)

3 where olk is given by (C.5).
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2. SINGLE-INPUT SINGLE-OUTPUT CONTROL OF GLOBAL MODES: REDUCTTON
OF THE PLANT MODEL TO A STUART-LANDAU (SL) EQUATION, THE
CONTROLLER DESIGN AND ITS IMPLEMENTATION IN A HEATED 2-D JET

2.1. Related Publications and Presentations

HENRICH, EDWARD A., Control of limit cycle oscillations with applications in
fluid mechanics. Ph.D. Thesis, University of California, Los Angeles, 1991.

HENRICH, EDWARD A., MINGORI, TINO D.L. & MONKEWITZ, PETER A., Control of Hopf
bifurcations. Proc. of NATO ASI on Chaotic Dynamics: Theory and Practice,
Patras, Greece, July 1991.

GAMET, LIONEL, Control of a two-dimensional hot jet. DEA Thesis (ENSICA,
Toulouse) carried out at the University of California, Los Angeles, 1991.

MONKEWITZ, PETER A., GAMET, LIONEL, HENRICH, EDWARD A. & MINGORI, TINO D.L.,
Feedback control of a self-excited heated two-dimensional jet. Bull Am. Phys.
Soc. Vol. 36, p. 2629, 1991.

MONKEWITZ, PETER A., MINGORI, TINO D.L., HENRICH, EDWARD A. & YU, MING-HUEI,
Adaptive and nonadaptive feedback control of global instabilities. Proc. AFOSR
Contractors Meeting on Turbulence - Structure and Control, Columbus Ohio, pp.

103-106, April 1991.

I HENRICH, EDWARD A., MINGORI, TINO D.L. & MONKEWITZ, PETER A., Control of
Pitchfork and Hopf bifurcations. Submitted to 1992 ACC.

3 HENRICH, EDWARD A., MINGORI, TINO D.L. & MONKEWITZ, PETER A., Control of limit
cycle oscillations with applications in fluid mechanics. To be submitted to
Int. J. Control, 1992.

2.2. Introduction and the Analysis of a Hopf Bifurcation by3 Multiple Scales

Many systems in nature develop self-excited or limit cycle behavior when the most amplified global
mcle becomes temporally unstable. In flaid mechanics, two examples are a wake behind a cylinder
and a heated jet [1,2]. The goal of this research is to control the self-excited oscillations exhibited
by such systems or to induce them in globally stable systems.

For the control of flow oscillations, the primary task is the development of simplified model as the
underlying partial differential equations are too unwieldy. In Section 1 we have derived linearized
GL equations describing global modes in doubly- aad semi-infinite systems which can be extended
to the weakly nonlinear regime. When considering only a single gobla mode, the GL equation
can be reduced to a Stuart-Landau equation for its characteristic amplitude, which is an ordinary
differential equation in time. The latter can be viewed as describing the output of the probe at
some fixed space location. The following development is carried out in this spirit and the resulting
mathematical model for control, not being specific to the wake or the hot jet, should be able to
control limit cycles in a variety of physical systems.

A common bifurcation in fluid mechanics is the Hopf bifurcation of a steady state to a limit cycle.
In many cases, one bifurcates from the zero state to a non-sero steady-state to a limit cycle as a
parameter is increased These bifurcations are generally the first steps in the transition to chaos or
turbulence [3, 4] For a given physical system there are often design constraints which specify a fixedI

I
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region of parameter space in which one would like to operate. If this particular choice of parameters
exhibits some undesirable dynamic behavior (e.g. limit cycles or chaos) then the goal of the control
engineer is to suppress this behavior while still operating in the same parameter range. A distinction
is made between a 'control parameter' or 'bifurcation parameter' which is the parameter one uses
to study successive bifurcations and a 'control force' which is a prescribed function of time and
possibly space used to modify the system's output. As an example, consider that one might desire

to suppress the Von Krmin vortex street in the wake behind a cylinder. The control parameter is
the Reynolds number which may be fixed at some supercritical value, where the wake is no longer
steady. The control force could be an induced acoustic field designed to eliminate flow oscillations.
This method uses the control force to stabilize the system in contrast to methods which modify the
bifurcation parameter until the state behaves as desired [5].

In an attempt to understand the underlying properties of control, the research reported here
concentrates on the development of control laws for finite dimensional nonlinear systems which
undergo a flopf bifurcation to a limit cycle. The relevance to fluid oscillations is that the finite
dimensional nonlinear system can be thought of as a finite difference or Galerkin approximation to
the Navier-Stokes equations. The Stuart-Landau equation is valid when the eigenvalues of thesc
approximations are well separated.

Using a multiple scale perturbation technique we derive a Stuart-Landau equation which governs
the effect of a linear regulator on a system undergoing a bifurcation. Often one does not know the
differential equations governing the system, but one does know that the system exhibits behavior
indicative of a Hopf bifurcation. In this case one still knows that asymptotically the dynamict are
governed by a Stuart-Landau equation, so that this simplified equation can be used as a generic
model. One can then estimate the parameters of the Stuart-Landau equation using e..perimental
data and then determine an appropriate control strategy based on this information.

The Hopf bifurcation is a branching of time-periodic solutions from an equilibrium solution branch.
When the bifurcation is supercritical, as one increases a parameter p the equilibrium solution be-
comes unstable and a limit cycle is born. As one increases the control parameter further one sees more
and more complicated behavior. These successive bifurcations comprise the basis for several theories
for the transition to turbulence including period doubling, intermittency and quasi-periodicity [3, 4].

We now derive an amplitude equation for the Hopf bifurcation, the development follows that of (6].
For a physical system with a finite number of degrees of freedom, the dynamics may be described

by a set of first order ordinary differential equations in vector fo
dX(t)
di F(X(t);p) (2.1)

where X E R" is the system state, F is a vector field and p E R is a control parameter in the nroblem.
Equation (2.1) is presumed to have an equilibrium solution Xo(p) which satisfies F(Xo(p ;p) = 0.
We can then express (2.1) as a Taylor series about the equilibrium point Xo(p) so that

dx
-- = Lx + Mxx + Nxxx +... (2.2)

where the expansion is in terms of x = X - X. For the Taylor series to be valid we need x to be
small, so that the nonlinear terms in (2.2) are small compared to the linear terms, i.e. the system3 is "weakly nonlinear". The matrix L is the Jacobian whose elements are given by

a
L k= I-( j x=xo (2.3)

i The abbreviations Mxx and Nxxx denote vectors containing the quadratic and cubic terms in the
expansion. The jih component of these vectors is given by

|I
I(Mxx), =-(jx~x XX (2.4)

! k Mk I a

I 9[ 1 L(
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We are interested in Hopf bifurceions, so we introduce some restrictions on the linear operator
L. The stability of the equilibrium solution X0 is determined by the eigenvalues of L. We
that L is stable for p < 0 and unstable for p > 0. By L unstable, we mean that at least one of the
eigenvalues, A, found by solving Lr = Ar has a real part greater than zero. We also asume that
these eigenvalues have nonzero transversal "velocity" when crossing the imaginary axis. That is

dRe(A(p)) I,=o> 0 (2.6)

which we will shortly see fixes the scaling for the slow time scale to be Ip I t.
We expand the linear operator in powers of p

L = L(O) + pL(O) + p2L( 2) +.-. (2.7)

similar expressions may be developed for M and N. The eigenvalues of L are expressed as

I A, (,) = X(o) + .'(1) + .2%(2) + (2.8)

The convention that a superscript in parentheses denotes a perturbation and a subscript refers to
an index will be used throughout. The eigenvalues are complex in general and can be written as

(k) C + iw(). Let rj and I denote the right and left eigenvectors of LO0) so that

L(C0 r = Aj, (2.9)

1jLt 0) = A(0)1* (2.10)

For simple eigenvalues, the eigenvectors are orthogonal (ljrk = 0 for j $ k) and we can choose to
normalize such that ljrj = 1. We now define a small positive parameter e such that p = O3X where
X = sgn(p). We can expand the state in powers of c as

3 x = cx( 1 )+ C2X + (2.1 

Note that the expansion starts with terms of ord,-r e. This follows from the assumption that the
system (2.1) is weakly nonlinear. For systems where this is not the case the equations (2.'j) are
not generally sclvable since the 0(1) equation is also nonlinear. Also note that defining c =V
represents a balance of the relevant nonlinear terms and the linear damping or dedamping of the
critical modes.

Since the real part of the critical eigenvalue is 0(c 2) it is natural to introduce a second time
scale r =I p I = c2t. We treat the two time scales as independent variables so that the x(k)'s are
functions of two variab'ea [7]. The rule for calculating derivatives becomes

d- + (2.1)

Inserting these expansions in p and c into the Taylor expansion (2.2) and equating like powera or c3 results in an infinite set of linear inhomogeneous partial differential equations of the form

( _ L(O))x(k) = 7k) (2.13)

I The first few Y<1) are

0(c): Y) = 0 (2.14)
0(C2 ) -(2) = M(O)x(l)x(1) (2.15)
O(c3 ) : 3) = 2M(O)x()x(2) + N(O)x(1)x(I)x() - (. _ XL(1))x(1 ) (2.16)

Note that the YON)' we fdnctions of xU) with j <k so that they are known functions if we solve
the set of equations in order.

I
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I
The lowest order problem, 0(c), is linear and homogeneous, and the higher order problems are

linear and inhomogeneous. The 0(c) equation is

-x(1) = LOY* (2.17)

which has the solution in terms of the eigenvectors

X()tr FCr Ir (2.18)1 .1=1

Since (2.17) is a partial differential equation, the solution is found in terms of an arbitrary function
of the slow time scale r. For this reason, the coefficients, cj, are allowed to depend on the slow time
scale 7 = c2t in standard multiple scale fashion. The higher order problems determine conditions
on these arbitrary functions in order to make the solution x()(t, r) uniformly valid for times of
0(1/c). One must impose "solvability" conditions so that the solution x()(t,r) does not involve
any "secular" terms (i.e. terms which become unbounded). Since the operator on the left hand side
of (2.13) is the same for each order, the solvability condition is that we must eliminate terms on the
right hand side of (2.13) which are marginally stable solutions of the homogeneous equation.

We number the two critical eigenvalues first so that A(O) _o = iw(o) and rewrite (2.18) as

x(')(, .) = A(r)e+w(+)tr+ (2.19)

where A(r) = ci(") = E2(r) will be the dependent variable in a complex amplitude equation. Since
the real part of the critical eigenvalues is 0(c0) the slow temporal growth or decay is absorbed in
the slowly varying amplitude A(r).

The second equation, 0(0), is

I --'(2) = L(°)x(2) + M(°)x(lx(l) (2.20)

To solve the 0(c2) equation we note that since y(2) is quadratic it acts like an input forcing at 2w(O)
and D.C. as well as other nonsecular inputs. The solution is

P ) = V+A2 e2 w ) t + V-.42e - 2i (° )t + Vo IA 12 +... (2.21)

where +... are terms which will not cause a secularity at 0(c3 ). Substitution of (2.19) and (2.21)
into (2.20) and equating coefficients of A2, A2 and IA12 and solving for V+, V. and Vo we obtain

V+ = V_ = -[L (° ) - 2iw(0)]-1 M(0 )rjr (2.22)

Vo = -2[L(°)] 1-M(°)rii'i (2.23)

Now we concentrate on eliminating the secular terms at order 0. Tb do this form l 1 I.V)(t,r) and

then set the coefficients of e 0(°)t equal to zero, which gives the solvability condition at order

l[2AA2 M(0) V+ + 2 JA 12 AM(°)r 1Vo

+3N(0)rjr1 j1A 2A - a+Arl + XL(1 )Ar] = 0 (2.24)

This can be rewritten as an amplitude equation

dA
rTerXA(1)A gA 2 A (225)

* where
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U A 1 = 11LO2.26)

g = -21 1M(°0 iV+ - 211M(0)rVo - 311N(0)rlrj1  (2.27)

m Equation (2.25) is known as the Stuart-Landau equation.
Example: Van der Pol Oscillator
To illustrate the method, we consider the Van der Pol equation in dimensionless form

P + (V - PV + Y = 0 (2.28)

Jf we take the state to be X = [y j]T then the vector field is

F(X;)= 1 (229)

m The equilibrium state is Xo = [0 0]T, so that the Jacobian is

lL=[ O 1 ] + p[O O] = L (° ) + p L M)  (2.30)

and the cubic term in the Taylor expansion is

(Nxyz)2 = -I(X2pIZI + XIY 2ZI + XzIIZ2) (2.31)

The left and right eigenvectors for the critical eigenvalue A(°) = i are 11 = 1[1 - t] and r, = [I ST.
The perturbation in the eigenvalue is A1) = lL(1 )r = i. The coefficient of the nonlinear term
in the Stuart-Landau equation is g = -3l 1N(0)rjrfj = . The Stuart-Landa equation for this3 example is dA 1A 1I 2

dT = iA - 2A JA (232)

The initial condition for the Stuart-Landau equation is A(0) = -(y(O) - i(0)). Figure 1 compares
the exact solution of the Van der Pol equation (by numerical integration) to the asymptotic solution
found by solving the Stuart-Landau equation. In this figure our small parameter is c = .5. The
important thing to note is that the short term prediction using this model is very good, and short
term prediction is all that is needed for control. 0

2.3. The Linear Regulator and the Nonlinear Plant

This paper addresses the problem of controlling a system by external forcing when the control
parameter is fixed by some other design constraint. We assume that the plant (subscript p) is a single-
input single-output system with nonlinear dynamic equations which undergo a Hopf bifurcation at

dX = F(X;p)+ Bu, (3.1)

1 = CpXp + Dp 
(3.2)

Xp E RN#. and p,. u R (:3.)

m The goal of the control system i to return the system to its equilibrium state which has become
open lkcop unstable for p > 0, A nrtural choice for a control system is the linear regulator as
depicted m Fi-'ur '. The differcatial equations governing the control syt~tem ae such that the
Laplwie 'rawform of "t. impulse -sponse of the linear compensator (subscript c) is KG(s).

'he eq ;on goveraawi the reghator are

I
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Figure 1: Comparison of Exact and Asymptotic solutions of the Van der Pol equation for .5 a)

Phase plane for exact solution b) Phase plane for asymptotic solution c) Exact solution d) Difference
i between exact and asymptotic solutions

I

x, = CpX, + )

Figure 2: Block diagram of the control system
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Iic = Acx, + KBe (3.4)
U = C.x + KD=,e (3.5)

XI RN and e,PE RE (3.6)

Where e = r - y is the error signal, and the reference signal is the output which corresponds to the
equilibrium solution r = yo = CpXpo +.i D . The compensator is asymptotically stable, that is, the
eigenvalues of A, lie in the open left half plane.

We may expand (3.1) in a Taylor series about its equilibrium point Xpo so that

dt = Lpx= + +N,xp xx,,x +.+ Bu (3.7)dt-

where F(Xpo; p) = 0 defines the equilibrium point and xp --- Xp - Xp0 is the expansion variable.
The output equation becomes y = Cpxp + CpYo0 + Dp. Combining these two vector equations into
a composite equation we obtain

d x., - KEDCp BpC, + ] (3.8)I dt X,] -KB0 Cp A, XJ+ 0 ] (8

which is in the standard form (2.2). We assume that the plant undergoes a Hopf bifurcation at
p =0 and that we can expand

Lp -p+ 0 )+."" (3.9)

in the usual way. We assume that we choose a small gain such that KCp, O(p) and so we rewrite

K =1l, I x. The expansion for the composite system's linear operator is

U w here L = L ( )  + jp L (1) + ... (3.10)

L() 0) Bp C,]1 (3.11)I--
and [ J,) - sgn(u)x,~BDC, 0 )(.2

LM P -sgn(p)xB,.Cp 01(.2Io
Order the plant's eigenvalues such that the marginal eigenvalues are first and denote the plant's

left and right eigenvectors by 11 L() - iu() 1_ and L°)rp = i,)(°)rl,. The right eigenvector for

I the composite matrix L0 ) is r, = [ rTp ON, IT and the left eigenvector is

11 = [ lp lipBpC[iw() - A]- 1 ] (3.13)

We compute the perturbation in the critical eigenvalue as

A(') = lL(')r, = I,pL(,)rip - sgn(p)lpBCr,i[C,(L( 0) - A,)-B, + D] (3.14)

I We can rewrite (3.14) as
A(') = )A') cJG(i(0 )) (3.15)

where A ) is the umcontrolled perturbation in the critical eigenvalue, J1. = IBCr 1 , is the recep-
tivity of the critics! mode and

KG(s) = K[C0 (sI - A)-B, + Dj] (3.16)

I
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is the transfer function of the linear compensator. We see that, in the context of multiple scales, all
compensators with the same gain and phase at the critical frequency have the same effect on the
plant. Note that J1. is what is known as a "modal influence coefficient" in structural mechanics
or the "receptivity" in fluid mechanics corresponding to'the critical mode. This complex constant
determines how the control input couples to the output. The goal of the control system is to force
"in phase" to enhance oscillation and "out of phase" to reduce oscillation. The coefficient J1. tells
us which phase is "in" and which phase is "out".

The nonlinear term in the Stuart-Landau equation is unchanged by the addition of this linear
compensator. The Landau constant remains g = 9,. To see this, first compute VT = [ V+, 0j T
and VTo = [ n ON, ]T. Then

g = -2 1jpM(°)ijV+, - 2 1,M(')r1,Vo. - 31=g,N(°)rjprrj, = op (3.17)

Hence, the Stuart-Landau equation for the regulated system is

= - JI,,G(iw(°)))A- g, IAI2 A (3.18)r 1

The preservation of the nonlinear term is a consequence of choosing the compensator gain to be
0(p).

Example: Van der Pol Oscillator with a Linear Regulator
The equation for the Van der Pol oscillator with a control force is

+ (Y2 - P)y + Y = u (3.19)

The Stuart-Landau equation for the regulated system is
idA I I

d= (X + iKG(i))A - lAl 2 A (3.20)

The method of multiple scales predicts the closed loop system will be ctable forlm(KG(i)) > lI.If
we consider derivative feedback so that

u(s) = KG(s)y(s) = K,.(s) (3.21)

then we expect stability ior K > is It is easy to check that this is in fact the exact result. If we
consider a lead compensator so that

(s + a) (3.22)

thn the multiple scales method predicts closed loop stability for

C(b- a) >(I b2+----- > I(3.23)
bV + 1

For p > 0 the closed loop system is stable for

I (b - a) Pc - b

So the multiple scales stability result is correct to 0(1).
For comparison, we consider the same plant and control and determine the cente manifold

reduction and normal form [8]. The dynamics are

Ia=0 (3.25)
= (326)

- + PV - V -t- U (3.27)
6s = -bu - KXpv - %Xapy (3.28)
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I where terms involving p are nonlinear since p is also a state variable. We have a three dimensional
center manifold. The center manifold is

I=~p YV)=_ + ab •Y _ -r a

u ~ ~ ~ 2 1 +~p j1 K~~y AX 2PV +... (3.29)

The dynamics on the center manifold are governed by the equatirn[ ~X(b -a)- ] [ PX(1 + ab)]

i +"=-'[ I b2 +- (3.30)

Reducing this equation to normal form gives

. = L b2 +1 I - (.31)

which is idevrical to the multiple scales result (A = re"#/(2e),r = c2 i). 1
By specifying the gain of the compensator to be 0(p) we have derived an amplitude eruation

which explicitly shows the effect of any linear compensator on a nonlinear system near a Hopf
bifurcation. The importance of this result goes beyond analyzing the effect of a control system on
the plant. Since any plant which exhibits the features of a Hopf bifurcation is asymptotic to the
solution of some Stuart-Landau equation, we can use the Stuart-Landau equation as a generic model
for a Hopf bifurcation even when the plant equations are unknown. We can assume the plant is the
Stuart-Landau equation and then try to estimate its coefficients. We may select several compensators
in order to estimate the coefficients 4 ) and JI, through control induced transients. Once we haveI accurate estimates for these parameters we may specify the correct phase of the compensator at the
critical frequency. That is we can determine the best G(iw(°)).

Using the same type of analysis we find that equation (3.18) holds for pitchfork bifurcations as
well if we set w(°) = 0 [9, 10].

2.4. An Amplitude Equation for Parameter Estiuation

To control a given physical system, we intend to use a feedback control based on a set of measure-
ments which depend on the system state. A general nonlinear measurement equation y = H(X) can
be written as a Taylor series

y= H ( 0) + H ( 1)x + H(2)xx + H~3~rxx +"" (4.1)

Since x is 0(c), the leading order contribution is the affine equation

= CX + D (4.2)

The leading order effect of the measurement equation is to scale the system state and provide a
D.C. bias. If the system we are interested in contains a small parameter p = Xc2 and exhibits limit
cycles when p > 0, we detect c not by the size of the output, but by the slow time scale and by how
far the phase plane diagram of the limit cycle is "out-of-round". In the limit as ( -. 0 the output
is a sinusoid. So that in terms of the physical observation, the term "weakly nonlinear" implies the
system i.as "almost einusoidal" oscillations. The leading order asymptotic expression for x is

3 x - [A(r)e '0°'r, + c.c.] (4.3)

We define Y(T) 8> the output "amplitude"

I Y(r) - 2cA(r)Cr, (4.4)

I
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I From equations (4.2), (4.3) and (4.4) the leading order asymptotic expression for the output is

y(t) 2cRe[A(,)Crce"' ° ] + CXo + D =. y( )eW(°)] + CX0 + D (4.5)

Equation (4.4) relates the physical amplitude Y(r) to the amplitu- in the normalized Stuart-Landau

equation A(r). We are interested in real-time estimation, so we also return to the physical time
scale t - "/E2. Making the appropriate substitutions in the Stuart-Landau equation (3.18) leads to
an amplitude equation for Y(t)

q--t" -g IY Y + JU(t) (4.6)

where

A AOL -'X() (4-7)
-2 1 jM( 0)%iV+ - 211M(0)rVo - 31 N(0 )rrj 1  (4.8)I g = ~ ~4 Cr 1 2 48

4 = (C,rz)(IiB,) 
(4.9)

wad U(t) = KG(iw(°))Y(t) for the linear regulator. Note that this is an input-output description.
The coefficient J combines the effects of control and obeervation like a "modal influence coefficient"
used in model reduction.

The dimensional output yll) is recovered from (4.5). The dimensional value of the control isI given by u(t) = RC[U(i)e w0) ] 1 
(4.10)

Notice that we have eliminated the unknown parameter e.
The complex amplitude equation which models Hopf bifurcations is

Y = AY - g IY I2 Y (4.11)

I where A = AOL without control and A = ACL = AOL - JKG(iw(°)) with feedback control. One
can demodulate the measured output y(i) using a Hilbert transform to get Y(t) [9. 11]. We consider
parameter estimation for the Stuart-Landau equation with transient data. We use a Lyapunov
function E =IY 12 to develop a procedure for estimating the real parts of AOL and g. From (4.11)
we have

k = 2A,.E - 29,E 2  (4.12)

If A, > 0 and g > 0 a stable limit cycle exists. If A < 0 and g, > 0 then the Stuart-Landau
equation is globally asymptotically stabe. We expect that a feedback which makes A, < 0 in the
closed loop should stabilize the system, that is it should eliminate limit cycle oscillations.

Since we are primarily interested in controlling th% amplitude of the limit cycle, it is sufficient for
our purposes to estimate the coefficients A, and g,. The coefficients A, and g, can Llso be determined
(see (11]).

To estimate the parameters of (4.12), we can approximate the derivative in order to estimatc the
parameters of the Stuart-Landau equation. Using an Euler approximation to the time derivative
equation (4.12) becomes

3 E(k + 1) = (I + 2A,.A)E(k) - (29 ,.A)E(k) 2  (4.13)

The equilibrium solutions of equation (4.13) are E(oo) = 0 and E(oo) = A,/g, which is the same
as the equilibrium solutions of equation (4.12), independent of the sample time, A.

So we should be able to replace the continuous time Stuart-Landau equation (4 '1) by an ap-
proximate sampled data equation in the form

I



1 26

E(k + 1) = 01E(k) + 02E(k)2  (4.14)

Since this equation is linear in the parameters we can derive a least squares estimator for the
parameter vector 0. As a cautionary note, we observe that we have replaced the well behaved
continuous time logistic equation (4.12) with a discrete logistic equation or quadratic map (4.14),
which is known to e,4hibit chaos for a range of its parameters. For 0 < A, < f, that the dynamics
will asymptote to the fixed point E(oo) = Ag,.. That is, as long as the sampling rate, f0 = 1/A,
is larger than the slow exponential growth rate, A., there will be no periodic or chaotic solutions to

equation (4.13) [9].
From the batch form of the least squares problem

E21 E, E,2 e1

* 2 O02 (4.15)

we could also derive a formula for the least squares parameter estimate.
E =Iy 12 is known since we can find Y by using the Hilbert transform. The estimation procedure

works best when the initial conditions are small so that we have some data in the linear growth range.
In practice this might require several parameter excursions below the critical value of p to obtain
a steady state which is a fixed point. Then we could increase p above critical and get a transient
with some data in the linear range. In principle the system could be identified by using parameter
excursions, but for the hot jet this is impractical since we cannot instantaneously change the density
of the hot fluid. A more practical parameter estimation scheme is to use a feedback control system
to induce transients.

If we consider a closed loop control with a fixed gain the closed loop Stuart-Landau equation is

3 = (AOL - JKG(iw(o)))Y - g IY I' Y (4.16)

We can use the same procedure on the closed loop system as the uncontrolled system to find
A4 L = 1L - J, K o .-+ JiK sin 0 (4.17)

and g,. Using "control induced transients" is a more practical approach to estimation. By selecting
several different gains and phases, we can use the data from each of these control induced transients3 to determine the parameters A,, J, and J, by least squares.

[1 -KI coos0 1  K1 sin 0 f
• : •J , =. ( 4 .1 8 )

I l --KNcos0N KN in N ] [ 1 (41

Once we have estimated J the optimum choice for the gain is K - 7j where 7 is a real scalar and
the overbar denotes complex conjugate. This control will use the least amount of wontrol energy for
a fixed amount of stabilization.

2.5. Simulation Results

We consider a nonlinear plant which undergoes a Hopf bifurcation to a limit cycle under the action
of a linear regulatoi. We study the effect of controller gain (for a fixed phase) on the amphtude of
the limit cycle oscillations. We also perform a computational experiment for fixed gain and vary the
phase of the controller.

'irst we consider the "steady-state" solutions of equation (4.6). The term steady-state in this
context refers to a steady Fourier amplitude or constant "energy" E =1 Y I' of the system For a
pitchfork bifurcation this is a steady-state in time. For a Hopf bifurcation this corresponds to a

I
I
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time-periodic state or limit cycle. We write KG(i.(0 )) = Ke' * so that the gain of the compensatoris unity at the critical frequency (I G(iw(°)) J= 1). When the system is in a lir ,t cycle, the steadystate solution of equation (4.16) yields

IYI= A ' L - Jr Kcos  +JiKsin (5.1)

We cannot uniquely determine the parameters )L,j j,, Ji and , using steady-state data. If one
normalizes by the amplitide without control, I Y INC= VAL/gr, the normalized amplitude,
IY I= IY I / IY IN c , Satisfies lY l - - K + - K s (5.2)

Vy g4L cos+L

3 That is, we normalize the coefficients by the growth rate, AgL, which cannot be determined by
steady-state measurements. The normalized amplitude exhibits the following dependence on the
controller gain and phase: lY I- v/ - K ( a - # i ) (5.3)

where a and 0 depend on the plant parameters via equation (4.6). A qualitative prediction from
(5.3) is that for a fixed small gain, it is easier to reduce limit cycle oscillations than it is to enhance
them using harmonic forcing. This is verified by simulations in this section and by fluid experiments
in the next section. For large gains, on the other hand, one generally destabilizes another mode and
this relation no longer holds.

Example: Van der Pol Oscillator with a Linear Regulator Simulations
We now describe the nonlinear plant model, the Von der Pol oscillator, in state space form.

4 = Xp2 + Bpu
P2 = -XPI + p2 - X2lXp 2 + Bp2U (5.4)

Y = CPIXPI + Cp2Xp2

The linear regulator consist of a gain, a band pass filter and a lead compensator in series used
as a linear regulator, that is G(s) = B(s)L(s). The band pass filter has the transfer function

B(s) = c+ (5.5)
82 + CS +1

where the parameter c determines the bandwidth of the filter. The lead compensator has the transfer
function

L(s) = 2( 8 +  /(5.6)
(s + T)2

The maximum lead occurs at 1 rad/sec and its value is LL(i) = 2tan-1 (!(T- 1/T)). By changing
the sign of the gain we can obtain phase changes from -180deg to +180deg by varying T. Note
that IGI= K and 0 = LG = LL.

The values used in the simulation are B, = Cp2 = 0, Bp2 = Cp1 = 1, c = .5 and p = .1.
Changing the values of B. and C will only change Ji so that the gain and phase of the compensator
would have to be adjusted accordingly. The results are the same, scaled in gain and shifted in phase.
For these particular values suppression of limit cycle oscillation occurs at 90 deg phase and gain
K = p. According to the asymptotic theory, the normalized ampltude should be given by

i YI= FI--- i (5.7)
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The data from the simulations are depicted as circles in Figure 3 and the solid curve is the value
predicted by the Stuart-Landau equation for K = .1 = p. If one increases the gain K above p then
the limit cycle amplitude will be suppressed for a range of phases symmetric about 90 deg. As one

m varies the gain of the compensator with a phase of ±90 deg the normalized amplitude behaves as
expected, see Figure 4.

An important result for the practitioner to be aware of is that using a band pass filter which is
too narrow, will violate the assumptions used in deriving the Stuart-Landau equation. Note that
G(i) is independent of the value of c. A narrow band pass filter results when c becomes smaller.
As one decreases c the filter poles move toward the imaginary axis. When c - O(p), then the filter
poles are of the same order as the critical poles of the plant, so that they would need to be accounted
for in the multiple scale analysis, leading to an additional amplitude equation. In practice, thUi is
realized as a degradation in performance. This is shown for the Van der Pol oscillator in Figure 5.
As the band pass filter becomes more narrow, the limit cycle amplitude is not suppressed as well,
and is no longer well predicted by the multiple scales theory (5.7).

We now consider control induced transients to estimate the growth rate A. To simulate the
estimation of the parameters in the Stuart-Landau equation for an unknown plant, we pretend that
we do not know the form of the governing equation (5.4). We pick an arbitrary small gain and four
arbitrary phases for the compensator G(i). Here we use K = p = 0.1 and = 60, 120, 240 and 300

60* 1200 240* 3000

Least Squares A.L .0063 .0055 .0567 .0563
Estimate & .1003 .0839 .0741 .0733

m Multiple Scales Af L .0067 .0067 .0933 .0933
Computation g, .1250 .1250 .1250 . .1250

3 Table 1: Parameter estimates for closed loop Stuart-Landau equation

degrees. The uncontrolled system exhibits limit cycle oscillations of magnitude 0.6 for p = 0.1. At
time t = 0 the control is turned on. The results are shown in Figure 6. Using equation 4.15) we
determine the estimates of the coefficients for the closed loop Stuart-Landau equation, i,., and
given in Table 1.

We list the true values, AfCL and g., computed from the governing equation (5.4) for comparison.
As a general rule, the ratio of AfL/g is quite close to the true value AL/g. since the estimates for
the limit cycle amplitude are good. The growth rates are more difficult to obtain.

Using the values in Table 1 we can use equation (4.18) to find the estimates of the coefficients
for the open loop Stuart-Landau equation, Ar and J, as

A, = .0312
m =-.0021 - i.2921 (5.8)

The values computed from the governing equation are

I~A, = .05
J = 0.0 - io.5 (5.9)

m From the estimated values of the parameters (5.8) the compensator that should give marginal sta-
bility has

KG(i) J = -. 0008 + i.1067 (5.10)

that is K = .1067 and P = 90.409deg as opposed to the exact values of K = .1 and @ = 90deg
Using this value for the compensator we obtain the first time series in Figure 7 The second tme
series is for the same phase but with a gain K = .12.
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Figure 3: The effect of controllci phase on the Van der Pol oscilator.

Van der Pol with Linear Regulator

I2
1.8

I9 ere
1.4
1.2

Gain of Conroiler
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Van der Pol with Linear Regulator* Different Bandpass; Filtrs
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Figure 5: The effect of bandpaaa filter pole location on suppression.
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Figure 7: After parameter estimation we may select a gain and phase which stabilizes the plant.

I
I
I

2.6. Experimental Results

To test the relevance of the control scheme to fluid flow oscillations an experimental apparatus
has been studied. The plan, we desire to control is a heated two dimensional jet. The details o;
the hot jet facility and some of its uncontrolled characteristics are discused in [12]. It has been
demonstrated that the hot jet exhibits self-excited oscillations when the ratio, S, of the jet density
to the ambient fluid density is below a critical value S, s .95. A linear stability analysis of this
flow is given in [12] and (2]. Above this ratio the flow is laminar when there is no noise present. As
the density ratio is decreased the steady laminar flow undergoes a Hopf bifurcation to a limit cycle.
The self-excited nature of the hot jet is similar to that of the von Kirmin vortex street in the wake
behind a cylinder.

'o verify that the hot jet exhibits limit cycle oscillations which are consistent with our assump-
tions, we measured the spectral peak for several different temperatures. The data presented inI

I
I
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I Figure 8 shows experimental data acquired on three different days ( o, x, and +) and the least
squares fit of the data to the equation for an imperfect bifurcation

(- S) I -P, IYr -P2 = 0  (6.11)

To implement the control we choose acoustic forcing which acts like a point actuator at the lip
of the jet according to Bechert [13, 14] and Crighton [15] who have shown that long acoustic waves
can be converted to short vorticity waves where the flow has a strong spatial inhomogeneity. The
control actuators consist of two 100 Watt woofers, one on each side of the jet approximately 1 meter
downstream of the jet exit. For commercial applications, one would likely use some form of vibratingplate at the nozzle exit (for an example of such an actuator see [16]). In order to demonstrate thefeasibility of the control systems considered here, the acoustic actuators are however effective and

much less expensive.
The single, point sensor is a hot wire probe. The anemometer is operated in constant current

mode such that the output of the measurement conditioning circuit is proportional to the fluctuating
component of the temperature, 7V(x., t). The controller consists of analog filters and an Intel 486
based personal computer. Rather than separately estimate the dynamics of the speakers, the time
delay associated with the speed of sound and the transfer functions of various filters, al the dynamics
are lumped together and considered as part of the (unknown) plant. The problem is then reduced to
estimating the plant (i.e. the coefficients of the Stuart-Landau equation) and specifying the control
system gain and phase at the critical frequency.

The sensor was located at z/H = 1.4, y/H j 0.5 and z = 0 which is upstream of the initial roll
up of the vortices. A probe placed in the shear layer at this location has a distinct spectral peak at
about 100Hz. As the probe is moved downstream inside the shear layer one enters a region of mode
switching in which the Fourier amplitudes at 50Hz and 100Hz exchange energy in time. This is
believed to be a result of vortex pairing which is not completely fixed in space. Further downstream
the vortex has paired and the primary feature of the flow is a large peak in the spectrum at 50Hz,
and a smaller peak at 100Hz.

We now consider the results of experiments on the hot jet with a feedback controller. We specify
the gain and phase of the controller at the critical frequency of the uncontrolled jet. The data
in this section are steady-state in the sense that the Fourier amplitudes of the critical frequency
(approximately 100Hz) are steady, that is the measured output y(t) is time periodic.

Recall that the mode; for the flow's oscillations is the Stuart-Landau equation with a control
term added dY =A l. Y  12 y + jU 5.2

gI=YA2 Y+J-U (6.12)
where U = Ke'Y = KG(iw(°))Y for feedback control. Since the flow is spatially dependent, thecoefficients J and g will depend on the sensor location x,. Since AOL results from the real part ofthe critical eigenvalue, it must be independent of the sensor location.

As discussed in Section 2.5, we can study the validity of the Sturt-Landau equation as a model
for the plant by examining steady-state data. The Fourier amplitudes are computed from the hot
wire output in constant current mode using a spectrum analyzer. A distinct spectral peak is present
for a density ratio of S < Sc s .95. At a density ratio of S = .88 the effect of controller phase has
been tested and compared to the predictions of the Stuart-Landau model in Figure 9. The probeis located inside the shear layer and the amplitude in the figure is normalized by the open loopamplitude. The solid curve is a least squares fit of the data to the Stuart-Lr au model

ly 12[= P, + p2 Coo0 + 1)3 in 0(.3IY~p+p~c6~+psin#(6.13)

The model is successful at predicting the response of the hot jet to different linear regulators.
The effect of controller gain is shown in Figure 10 for the same plant parameters as were used

to study the effect of controller phase The data is curve fit to the equation (6.11) for an imperfect
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bifurcation with S replaced by K and P1 and p2 consistent with the normalization of Y to y.
The effect of random disturbances and unmodeled dynamics prevent the oscillations from being
completely suppressed for any value of the controller gain. The dashed line is the least-squares fit
to the imperfect bifurcation and the solid line is the perfect bifurcation (i.e. p - 0).

Another prediction of the multiple scales theory for small gain controllers is that the, eigenfunction
for the least stable eigenvlue is the same with control as for the uncontrolled cas-,. That is, the
spatial structure is the same with or without control. This is verified in Figure 11. The figure depicts
a Schlieren image with and without control.

In order to estimate the growth rate A, in the Stuart-Landau equation we must perform transient
experiments comparable to Section2.5.To obtain time series suitable for estimation of the coefficients
in the Stuart-Landau equation we start with the controller turned on at phase which causes the
maximum amplification in Figure 9. At time t = 0 a digital switch switches the phase by 180 deg
(i.e. multiplies the control signal by -1). The resulting transient is shown in Figure 12. The first
time trace is raw data and the second time series is bandpass filtered and displays the amplitude
obtained using the Hilbert transform.

Fifty of these transients were obtained and averaged to obtain an average for the amplitude
IY(t)I and the instantaneous frequency dLY(t). The result is displayed in Figure 13. Note that the
frequency shifts and becomes somewhat erratic when the controller switches to the phase for reduced
oscillation. This inhibits our ability to completely suppress the flow oscillations. If we increase the
gain furtber we find that a different mode is destabilized: While the mode at 100Hz is suppressed,
a mode at 15OHz appears. This result is generic and has also been demonstrated for the wake in

I in summary, a procedure for determining the effect of a linear regulator on bifurcating solutions
of weakly nonlinear ordinary differential equations has been developed. Using this model one can
specify the gain and phase of a linear controller to stabilize the system. One may also specify a
controller to modify the size of the limit cycle.

Often one does not know the differential equations governing the system, but one does know that
the system exhibits behavior similar to a Hopf bifurcation. The Stuart-Landau equation can then be
used as a generic model for the system. One can then estimate the parameters of the Stuart-Landau
equation using experimental data. Different controllers can be used to provide transient data for
estimation without the need to change the plant parameters for their generation. [9, 17, 18].

Simulations of the Van der Pol oscillator and experiments on a heated two dimensional jet
demonstrate the usefulness of the Stuart-Landau equation for control and estimation. Work is still
underway to develop a fully adaptive control scheme using the Stuart-Landau equation as a reference
model.
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2.4 Experimental Data
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Figure 12: Raw transient and bandpass filtered transient.
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3. IMPLEMENTATION OF THE CONTROL IN THE WAKE OF A CYLINDER AT LOW
REYNOLDS NUMBER - THE SWITCHING BETWEEN DIFFERENT GLOBAL MODES

3.1. Related Publications and Presentations

MONKEWITZ, PETER A., BERGER, EBERHARD & SCHUMM, MICHAEL, The nonlinear
stability of spatially inhomogeneous shear flows, including the effect of
feedback. Eur. J. Mech. B/Fluids Vol. 10 No. 2 - Suppl., pp. 295-300, 1991.

HENRICH, EDWARD A., MONKEWITZ, PETER A., SCHUMM, MICHAEL & BERGER, EBERHARD,
The effect of proportional feedback control on the wake behind a c-.inder.
Bull Am. Phys. Soc. Vol. 35, p. 2326, 1990.

LEE, CHRIS, Feedback control of global oscillations in a bluff-body wake. M.S.
Thesis in preparation, University of California, Los Angeles, 1992.

MONKEWITZ, PETER A., SCHUMM, MICHAEL & BERGER, EBERHARD, The effect of
proportional feedback control on ti'e wake behind a cylinder. Paper in
preparation.

3.2. The Doubly-Infinite GL Model with Control

In the following we implement the controller, developed in Section 2, inI the doubly-infinite Ginzburg-Landau (GL) model of Section 1.4. which we are
using for a cylinder wake at low Reynolds number. Since the GL model retains
the streamwise structure of global modes, the locations x and x of the
single sensor and of the single actuator, respectively, have to te specified.
Furthermore, as it has been shown in Section 2, the controller gain and phase
are only relevant at the frequency of the critical (most amp).ified) mode.

Therefore it is possible to use a simple proportional feedback on equation
j (4.9) of Section 1.

Reverting to unscaled physical coordinates, the GL equation for the5 amplitude A of any physical quantity is rewritten as

atA - L, a2A - L1 aA - L0 A + No IAI 2A - F(x,t) , (2.1)

where, using the notation (4.10) of Section 1, the coefficients are defined as

L0(x) - -i[o 0 (x) + 6swt + (cot/2)ko(x)] , with

3%(x) - w+ (1/2)[w _ (t2/wt )I (x-x t ) 2 and

ki(x) - kt t t (x-xt)

L,(x) - wt ko(x)
L2 (x) (/2)

N0(x) - nr + n, complex constant with nr>O (2.2)

I In equation (2.1) we have, in addition, introduced the standard nonlinear
term, which can b- obtained from a weakly nonlinear extension of the analysisU
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of Section 1 (work in progress by LeDizes and Monkewitz), end a forcing term
F(x,t). To represent the controller designed in Section 2, the forcing term is
specified as

I F(x,t) - g exp(iy) 6(x-xa) A(x3,t) , (2.3)

where g is the controller gain and 7 the controller phase. We note that the
forcing term (2.3) preserves the eigenvalue character of the problem. At this
point we consider specifically the wake of a oblong limorph (piezoceramic)
cylinder. By applying a voltage across electrodes .top and bottom of the3 cylinder, it can be moved in the direction normal to the onciming flow and is
used directly as an actuator in our setup. Hence x-0 and (2.3) expresses the
fact that the sensor signal is amplified, phase-shifted and then fed directly
to the actuator after "mild" bandpass filtering. The latter had typical
cutoffs at 0.5 and 1.5 times the dominant Karman frequency, which was
sufficient to implement the control of Section 2 because the dominant spectral

peak in the low-Reynolds number wake is at least 20dB above all other spectral
features. The oblong cylinder of thickness D-0.69mm , a chord of T-l.68mm andIp
a length of approximately 100D is shown schematically on Figare la, together
with the position of the hot wire sensor at x/D-10 and y/D-l. The cylinder was
mounted across the nozzle of a high quality jet facility as shown on the
photograph of Figure lb.

HW
U )
Ix

IC

Ii

I

Figure 1. a) Schematic of the experimental arrangement with: C, oblong
cylinder; HW, hot wire. b) View of the Dimorph cylinder mounted on the nozzle
of the jet facility.I

U
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Next, the global stability characteristics of the uncontrolled oblong
cylinder wake was determined by transient measurements analogous to the ones
of Raghu & Monkewitz (1991) in a hot jet (see also Schumm, 1991). The results
are shown on Figure 2 and the correlations for the global linear growth rate,
the linear frequency and the saturation (limit cycle) frequency are given in
the caption.

* a , , ,

I
Igo go

12

I

i to

I

80 o R

3 Figure 2. Experimentally determined global stability characteristics of the
bimorph cylinder wake. a) Linear growth rate o-o*D 1v with curve fit
a-0.123(R-Rc) . b) 0, linear frequency f.-f * D2/v with fitSlin lin *f, 21Vwt i
fln-9.27+0.142(R-Rc) ; 0, saturation frequency f -f D2/ with fit
f' t-9.27+0.177(R-R )I

|a a
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From the results of Figure 2 and an estimate of the length of the

recirculation region in the near-wake coupled with local stability
calculations, the parameters (2.2) have been estimated as follows:

RC - 79.5

xt  - (1.183 - 0.0311)

0w + 6wt - (0.708 + 0.0811) + (0.0015 + 0.011i)x(R-R)

kt  - (1.452 - 0.844i) + (0.018 + 0.0191)x(R-R=)
I - (0.00175 + 0.04791)

Xt= - (0.107 - 0.0651)

n/n - -1.8 (2.4)

The ratio n±/nI is a universal constant for a given system and is directly
related to the nonlinear frequency shift. The value of n , on the other hand,
can be chosen arbitrarily and is related to the normalization of the
amplitude. It is noted that the above parameters have not yet been obtained
from the solvability conditions developed in Section I due to a lack of
precise mean flow information, but represent an a priori estimate which has
not heen adjusted to fit the experiments.

With (2.4) the linear stability of time-harmonic solutions of equation
(2.1) with homogeneous boundary conditions at IxI- and the control (2.3) can
be investigated. As long as all free (uncontrolled) global modes are damped
the control can only be used to destabilize the system for some phase and a
gain beyond a critical gain. The situation becomes more interesting, when the
first global mode (n-0 in equ. 4.15 of Section 1) becomes unstable. In this
case the controller with nonzero gain is needed to stabilize the fundamental
Karman mode in the wake. The linear stability boundaries for the wake3parameters (2.4) and supercritical Reynolds numbers are shown on Figure 3.

i .5 0,i. , , , , ,

I

I Iab L e

78 1 81 84 P,R

IFigure 3. Stability boundaries predicted from the CL model with the parameters
given by (2.4).

I

I
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The lower stability boundary on Figure 3 represents the MINIMUM gain g
required to stabilize the Karman mode at the OPTIMUM controller phase. The
upper boundary, on the other hand, represents the MAXIMUM gain below which the
system can be stabilized for at least one controller phase. In other words,
beyond the upper boundary at least one (controlled) global mode is unstable at
ANY controller phase. A typical situation on the upper boundary is shown on
Figure 4: Although the n-0 (Karman) mode can be stabilized for a small
interval of controller phases around w, the range of phases for which a
"higher mode" is destabilized completely overlaps the stabilization interval
of the Karman mode. What becomes clear from the result of Figure 3 is that the
range of Reynolds numbers for which our controller is able to stabilize the
system is rather limited. The reason for this is that the controller is
designed to suppress only a single mode, namely the Karman mode, under the
assumption that all other modes are well damped (see Section 2), which is
clearly no longer the case in the GL system. The fact that the controller
still "works" close to the bifurcation is explained by the very small gain
required to stabilize the weakly amplified Karman mode.

I __ __ _ __ __ __ _

I moote

* .. 4 . / I

I Figure 4. Typical situation for the temporal amplification rate o versus phase

on the upper stability boundary of Figure 3. --- , amplification rate of
i uncontrolled Karman mode. U, regions of instability.

The situation becomes even clearer if equation (2.1) with the nonlinear term
J and the controller (2.3) is integrated numerically to yield the limit cycle

amplitude as a function of controller gain and phase. The resulting amplitudes

for a supercritical Reynolds number of 81 are shown on Figure 5a on which the
I triangular region of stabilization in the gain-phase plane is clearly visible

Figure 5b shows the corresponding limit cycle frequency which illustrates the

mode switching on the stability boundary.
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II
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00.

,-0
i4)*0

Figure 5. a) Perspective view of the controlled limit cycle amplitude versus
I controller gain and phase. b) Perspective view of the difference between

controlled limit cycle frequency and uncontrolled linear frequency versus

controller gain and phase. R-81, xf-0, x -2
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3.3. The Experimental Verification of the Model Predictions

The model predictions of Section 3.2. have been tested in the cylinder
wake of Figure 1. First it was confirmed that the subcritical system could be
destabilized by the controller. This is illustrated in Figure 6 by the
transient of the sensor signal after closing the feedback loop. The processing
of the transient shown on Figure 6 b&c is described in detail in Raghu and
Monkewitz (1991) (see also Schumm, 1991) and yields the global linear growth
rate as well as the linear and the saturation frequencies. In an analogous
manner it is shown on Figure 7 that the unstable Karman vortex street can be
stabilized by our controller. In this latter case it is noted that the problem

of extraneous noise has become much more severe and starts to push the data
reduction scheme to its limits. It appears that this problem with the signal-
to-noise ratio is pervasive in all self-excited OPEN flows.

I
I
I
I
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Figure 6. For caption see next page.

U



45

I

.4-ii 6.I. (b)
.3

.2

I

8.: /2 ' .' 7 '

8.1

0 IAI

8.6-

I Figure 6. a) Transient from subcritical (stable) state to a limit cycle after

closing the feedback loop (linear scale on top and logarithmic scale on

I bottom). R-79.2, gain g-0.01 . b) Instantaneous growth rate of transient 6a

versus amplitude squared A 2 , yielding a-0.2 . c) Instantaneous frequency of
transient 6a versus A2, yielding fl1-8.48 and f,,t-8.62
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It

I
I

I

Figure '. a) Transient from supercritical (unstable) state to a noisy stable
state after closing the feedback loop (linear scale on top and logarithmic
scale on bottom). R-83.8, gain g-0.003 . b) Instantaneous growth rate of
transient 7a versus amplitude squared A", yielding o--I . c) Instantaneous
frequency of transient 7a versus A2, yielding f1 n-9.6 and f..t-lO

The stability properties of the wake have been systematically explored
at several supercritical Reynolds numbers. The procedure was first to find the
optimal phase for suppression of the Karman mode, and then to increase the
gain at that fixed optimal phase, while recording the spectrum of the sensor
signal on an HP spectrum analyzer. An example of the results for R-83.8 is
shown on Figure 8. The bottom part of the figure shows the magnitude of the
dominant spectral peak u' of the sensor signal. To provide a direct
physical interpretation of gain, it is defined as
g-v' #(cylinder)/u' M(sensor) , where v' rM is the transverse velocity
amplitude of the bimorph cylinder which was estimated optically. The
bifurcation values g. of the gain were determined hy ficting the experimental
data with the steady-state limit cycle amplitude of a NOISY system. Denoting3 the amplitude of the sensor signal by IAI., the latter is given by

aIAl - PIAII + a - C with a - p(g-g,) , (3.1)

where a represents the external noise. Hence we determine at each Reynolds
number the parameters p, v, gc and a by least-square fitting to the
experimental results. The location of the first bifurcation at g1,-

1.3 i01 has
been verified by transient measurements like the ones shown on Figures 6 and
7, which allowed to measure the linear growth rate a directly as shown in the
top part of Figure 8. This figure clearly demonstrates the existence of a gain
window from glc to g2c-

8 .1 10-3 where another globai mode is destabilized by
the controller, and qualitatively confirms the GL model predictions.

I
I



48

I

CYD2  I
*V 0-

-2
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* 0.05
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1 0.01

1 00g x 103  10

3 Figure 8. Spectral peak of streamwise velocity fluctuations at x/D-10, y/D-l
versus gain g-v' 3(cylinder)/u' (sensor). 0, Karman mode at 320 Hz;
-, equation (3.T; - -, equ. (1.) with cr-0; 0. "higher mode" at 298 Hz.3 -.- , tqu. (3.1).

I Furthermore, the triangular shape of the region of stability in the
gain-phase plane (see Figure 5) has been verified near the critical Reynolds
number. The result is plotted on Figure 9 where the stability boundaries
represent the destabilization of 'higher" modes since the karman mode is3 marginally stable for the experimental conditions shown.

I
I
I
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Figure 9. Experimental stability boundary as a function of controller gain for

different sensor locations (phases). A is the Karman wave length. R-79.3R.

U Finally, all t±" er!-zLzmental results for the stability boundaries are

compiled in the last .gure 10 which has to be compared to Figure 3 obtained
from the GL model. Although the qualitative agreement is excellent, we note

i that the experimental Reynolds number range from 79.5 to about 90, over which
wake oscill.ations can be suppressed, is approx'imately twice as large as the
theoretically predicted range on Figure 3. This is due to the fact that the
parameters (2.4) have been estimated in a rather crude manner and that no

I attempt has been made to fine-tune them for a quantitative match.

I | 'A I~ j'"f' fe

3 00 erI '°°.

I

X XSTB L E X

9 tR Io

Figure 10. Experimental stability boundar) of the controlled w rke in the gain-
Reynolds number plane. 0, gain g-v'(cylin>er)/u'(sensor) (left gain scale)
at which Karman mode is suppressed; 0, gai g at which "higher mode" is
tdestabilszed; , amplifier gain (right gair scale) at which "higher mode" is

destabilized.
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We "gl two-ditorglcal tim-perlodtc perturbationse of such flows. which vanish at Infinity 1; all sowc direttion W4~ bpi

taed flobal woose. Of particular In~terest art flow conditions at which thew first otf thee 11a41 safts beon lisoopiyIuns~table. I.e. self-excited Assuming that the bepf bifurcation at this point Iso aeqrcritcat and that the "Oak iseprglleli

and nonlinear effects ars of eq"a tsportence. the aepatio-tooprsl evolution of the @label-d ofltt is to Vmiw to be

"ndby a wanbarg-Laindeo aqutton with variable coefficients The wisfulhoms of tie sode) to baootrtd sy coa'IsoI ~ ~l paibtits In vhlich the vortexshooeeing behind a cyliner to vedifiod by tloIme-an foo~ca central. which to easily
shoporated inito the 6iflibwrg-Lehda. aquationi

1 1. Introduction

The stability of spatially developing free shear flows, such as jets and wakes, is
studied under the assumption that the basic flow is two-dimensional and incompressible,
and that its streamise ievelopment, characterized for instance by its width ial, is
Oslow" on the scale of a typical instability wavelength i, that ts a a(,%/5)x(4/dx) << 1.
This means that the basic flow depends only on the transverse coordinate y and the

rescaled 'slow* streamwise coordinate

X -tX . (1)

Furthermore, the non-parallelism of the flow is assumed to be mainly due to pressure or
body forces such that, in the case of viscous flows, the Reynolds number is not directly
related to t. Under the additional &ssumptions of an infinite flow domain without
Internal boundaries and locally stilble flow far up- and downstream, the line,.r global
modes have been studied by Chomaz, Huerre & Redekopp [1990a], Nuerre & Nonkewitz 19901

U EUROPEAN. JOURNAL OF MECHANIC5 b FLUIDS VOL 10 N' 2-SUPPL . 1991
0997.q(%691 2956 S 260 C Gauthier-V'illars
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I
and Mon'ewitz [1990], where global modes are understood to be time-periodic perturbations
of the basic flow which vanish aL infinity in all space directions. The above authors
have shown formally that in flows without solid boundaries the global modes are 'driven'
by a "wave-maker" centered around X,, which is in general complex and defined by

-o(k ,) - 0 , - (k,.X.) - 0 ; w - w(k) . (2)
k wX

In words, X, is a saddle point of the local absolute frequency W (X) (the frequency of the
mode with zero group velocity) obtained from linear parallel stability analyses of the

local velocity profile at each X. In physical terms the global response is driven by the

'local oscillator* at X, with frequency w. which has the 'most compatible neighbors'
oscillating at the same frequency (to linear order in X-X,). The linear analysis (a paper
on the full derivation from the governing equations by Monkewitz, Huerre & Chomaz is in
preparation) shows that, far from X,, global mode shapes can be described by WKB
approximatVins (see for instance Crighton & Gaster, 1976]. The connection of the WKB
solutions dcross X,, which is a second order turning point of the problem, is shown to be

described by a linearized complex Ginzburg-Landau (LCGL) equation, valid in an 0((11 )

neighborhood of X,. The resulting eigen-frequencies of the low-order global modes are

found to be within 0(t) of w., which means that the flow must contain an interval of
absolute instability on the real X-axis in order to become self-excited, i.e. to support

time-amplified global modes.

In this paper, we extend the linear global-mode analysis to the weakly nonlinear
regime. Since marginal instability of a global -ode, which is a prerequisite for a weakly

nonlinear approach, is generally reached far from the traditional parallel-flow stability

boundary, this represents P nontrivial extension of Stuart's parallel theory [see e.g.
Stuart, 1971]. So far, nonlinear effects on global modes have been studied by adding a

cubic nonlinearity to the LCGL equation in an ad hoc fashion [Chomaz, Huerre & Redekopp,
1990b]. More recently, in an effort parallel to ours, LeDizes and Huerre (LeDizes, 1990]
have formally analyzed several situations with different relative importance of
nonparallel and nonlinear effects. In the following, we concentrate on the case in which

the spatio-temporal evolution of global modes is equally affected by nonlinear and
nonparallel effects in the neighborhood of the 'wave maker' at X,.

1 2. The Olnzburg-Landau Equation Governing the Evolution of Global Modes

In this section we sketch the derivation of the nonlinear CGL equation in the

region around X,. As in the linear analysis [see e.g. H # H, 1990], the x-coordinate and
time are rescaled according to

I
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:12 (x-x.) - c 112(X-X .,) .(3a)

T - t. (3b)

For the present nonlinear analysis the reference location x is conveniently replaced by
its real part x.. (see equation 5). The slow time T characterizes the evolution of a
localized initial impulse into a linear global mode. If we wish the nonlinear saturation
of a global mode to take place on the same time scale (assuming the Hopf bifurcation to
be supercritical), the maximum amplitude of the disturbance must be of order 0(,112) and
the stream function may be expanded in powers of ,':

9 - *o(YX) + 1/2# + q*2 + 1311#3 + 0(d) . (4)

As usual, the degree of supercriticality, i.e. the temporal growth rate W.., has to

be of order 0(i). The new feature is that nonlinear effects ar concentrated around the

location of maximum amplitude of the linear global mode. Henci., one has to distinguish

between a maximum amplitude outside an 0(el"z) neighborhood of X,, and a maximum within.
In the first case the amplitude at X, is exponentially small and the "wave maker' region

remains linear. Focussing on the second possibility, we show that it leads to the CGL

equation for the global-mode amplitude. To ensure that the maximum amplitude is reached

within 0(,111) of X,, one has to limit the spatial growth rate I,., to 0(,112). Finally, for

the maximum amplitude to be of the same order as IJ*1 (X,), X, must be within 0(t) of the

real X-axis. In summary, we have

+ , . - -d 1  , , X.., - 0(1) (5)

For (O(I), the mean flow is expanded around X..r

It(y.X) - *.(y.X ,) + ,1.Z1 -(y.X ) 4 - -(y.X ) 0(,
312
) . (6)

ax ? 2 ax,

and the amplitude expansion (4) is introduced into the Euler or Navier-Stokes eqtlations.

At order 0(4"') the linear, parallel stability problem for the mean velocity profile at

X,., yields

#I - A(C.T) 0(y;X ,) E(xt) expl-i,( # O,,T1 * c.c..

E(xt) - exp(1k,.,(x-%,.,) -. io., ) )

where c.c. stands for complex conjugate. As there is only a slight flow divergence within

(sO(l), the transverse structure of * Is frozen and given by the linear eigenfunction

At higher order, sol~ability conditions are enforced, noting that secular terms

have to be suppressed already at 0(t) because of the nonparallel basic flow. This yields

at 0(,SIz) the CGL equation with J-th degree pclynomials ((() as coefficients.

IA a'A - . .T)

+ 0 - 6M(() - + 12(f) A + n IAIA - F(C.T) (8)
o a at

t
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I
The forcing function F((,T) has been added here for later reference. The linearized

version of (8) with F-0 yields a spectrum of closely-spaced global elgen-frequencies

w. - a.r+ I(i,, + a' + n"] with quantization at 0(e) I The associated linear global
modes are products of a Gaussian and Hermite polynomials of degree n [H & H, 1990].

Before closing this discussion, a coment on the solution far away from X, is in
order. For IX-X,-O(1) the global mode amplitude is exponentially small compared to its
maximum. There, 9, takes the form of linear WKB approximations [C & G, 1976]

ml *1 - d/
2p(e) A'(XT) .(y;X) .xp [ k ()dX iw,.t] (9)

where *,- and #,* are the subdominant solutions far up- and downstream of X,, respectively

[H & M, 1990]. The amplitudes Aa(X,T) are governed by first-order POE's and have to be
matched to the spatio-temporal amplitude A(fT) obtained from (8). This reveals the only

'blemish' of the present analysis as this matching cannot be carried out analytically. It

can be argued though, that the *t* only play the role of *passive tails'.

3. Application to Proportional Feedback Control of Vortex Shedding Behind a Cylinder

To illustrate the predictive power of the CGL model we present a comparison with

feedback experiments in the cylinder wake, which will remain qualitative in this paper.
As in most practical setups, one actuator and one sensor, typically located downstream of

the actuator, are specified. For simplicity we assume that both are within an 0(,111) of

X,, that the sensor or probe measures directly A((-(,T), and th't the actuator acts at a

point f, and, in the transverse direction, Just forces the eigenfunction #(y;x.,). Such a

proportional or constant-gain feedback is represented i'i equation (8) by the forcing term

F((,T) - g expli] 6((-(t) A((-( ,T) . (10)

The feedback gain Z and the phase shift - incorporate in practice both the (complex)

electronic gain and the 'receptivity* of the flow to the actuator. It is noted in p sslng

that this model applies to physical setups with arbitrary lead- or lag compensators, as

only their gain and phase shift at the 'carrier frequency * are relevant. This model

(equations 8 and 10) in its linear form 'ias already been studied by Monkewitz [1989] and

has shown interesting generic behavior: When all global modes are linearly stable at zero

gain, feedback destabilizes the system beyond a critical gain, which increases as the
system becomes more stable. The main point is that it is always a higher mode ,. (n>O)

and not the least stable mode w. that is destabilized by feedback. Therefore, in the

situation of an n-0 mode which is unstable at zero gain, one finds a 'gain window* where

& is sufficient to suppress the growth of the n-0 mode (at, say, the optimum phase angle

7), but is still below the critical value at which higher modes are destabilized. This

1
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3N window narrows as the degree of supercriticallty (e.g. the Reynolds number) is increased

and control is typically lost not far beyond critical conditions.

3 To test these results, experiments have been conducted in the wake of a cylinder, a

flow which satisfies the model assumptions quite closely [see e.g. Honkewitz, 1988]. A

'Bimorph-transducer" of thickness D-0.69mm, chord T-l.68mm and a length of approximately

l 1001, already described by P-rger [1967] [see also Berger & Schum, 1988], served as

cylinder (see figure 1). By applying a voltage between electrodes on top and bottom, the

cylinder was oscillated in the transverse bending mode and served as actuator. The probe

was a constant temperature hotwire located at x/D-1O and y/D-1. Its signal was

linearized, passed through an implifier/phase shifter and fed to the Bimorph-transducer.

I. y l

Figure 1. Sc ,tic of the experimntal arra -i9 nt wtth C . oblong cylinder . . hot wire

For the experiments we focussed attention on the suppression of Kaman vortex

shedding, i.e. on the supercritical regime with Reynolds number Re>RCerit , where

Re,,,,.79.5 for this oblong cylinder [B & S.' 1988]. In the course of the study, the main

qualitative predictions of the model were confirmed: First, we found at slightly

supercritical Reynolds numbers a gain window in which the fundamental Karman mode could

be suppressed. The result for Re-83.8 is shown on figure 2. The bottom part of the figure

shows the the magnitude of the main peak u', in the streamwise velocity spectrum, as

measured by the hotwire probe, versus gain. To provide a direct physical interpretation

of the gain, it is defined as g-v'r ,(cylinder)/u',,(probe), where v'r" is the transverse

velocity amplitude of the Bimorph transducer, which was measured optically. The phase

shift y was held constant at its optimal value. The bifurcation values g,,, were

determined by fitting the data with the steady-state limit-cycle amplitude IAI at

obtained from (8) and defined by

OJAi - bialO + a - 0 ; - . ()

To account for the external noise (freestream turbulence) that keeps exciting the Karman

mode beyond its neutral point, a forcing term a has been added to the other fitting

parameters p, v and g,,,t in (11). The location of the first bifurcation at g 1 .3 10"3

has in addition been verified by transient experiw~nts in which the global linear growth

or decay rate o was determined directly. The figure clearly shows the gain window

extending from g, to gz.8.1 10 where another global mode is destabilized, as

qualitatively predicted by the model. In addition, we also confirmed the second uin

E
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UI prediction that control i s lost
0 D relatively close to Rec,,, , by showing

that suppression of vortex shedding in
-1 our setup is only possible between

-2 Re,,,t and Re-90.

4. Conclusions and Acknowiodgemwt

Litm This study demonstrates that aI . relatively simple weakly nonlinear
0.05 1model of wake oscillations is capable

/of capturing the rather complex
/ dynamics resulting from the addition of

feedback. The next step will be a
quantitative comparison between the

model, with coefficients either

0.01 determined from stability calculations
or measured, and the present

0 5 10experiments. Further ahead, the success
g X 103of Ffowcs Williams and Zhao 11989] in

Figure 2. Spectral peak of striamse velocity At xio..o, suppressing Karman vortex shedding at

y/D-I versus gain g. '(cyl tnder)/u*(probe) 0 . Karian male eight times Re,,,,, where the situation

at 320z. - .*equ (1l.1) . equ (11) with ca.O is greatly complicated by turbulence,
0 .* higher mode" at 298 Hzit - equ (11 awaits explanation.

The support by AFOSR Grant 89-0421,

the A. von Humboldt Foundation And ONR Grant N00014-90-J-1313 is grietefully acknowledged.

Referenes

URGE6R. 1.. 1 967, Suppressoon of nor's, shedding and turbulence bwhind oscillating cylIndlers.
Pfiys. fluids Suppi 10, SIM-SI93

BURG.ER, SCwJ9. MI. IM95. tersuchungen der lnstabilitaetsmchanismen io Machlauf non ZylIndern,
Contract Report * 20343/18-1. Tecncal 1.1iversity Berlin

CiOMA2 J.H.. HUM31. P., RtDOK.$. t.6 *19906. A froquency selection criterion In spatially dovelopin4 flows,I Stud A;,. ith.. in press
CMotO.Z, .m , SRE, P , REC.K0PP. L.6 * (990. The efwt of niolin~arity And forcing on global sodas, Ptoc Cont liev.

Trends in honitnear Dyi' and Pattern-forning Pht-4mana (P Coullet, P It..rre. Ids ). Plenwi. New. Vort/too~n

Cft(GI4OI, D 6 , WIER1(. M.. 1976. Stability of slowly diverging jet flow, J Fluid hoh 77. 397-413
FFWC WILLIAJIS, 3.1 , ZitO. S C., 1989. The actine control of vortex sheding, J Fivitts and Structurs) 3.122-I?I IBJERRE. P., MoMEWiIlZ. P.A .(990. Local and global Instabilities In spatially delopirh flows.

Ann Rev Fluid Plach 22. M7-537.
LE D(2(5, 5.. 1990. Effatts non lineaires 5cr do% ecouloomts faiblawl, dinerlients, 0 1 A o Macarique de Parts 6
HDAKEIZ, P.A , 1968. The absolute and connecti..- nature of instability Is tno-disonnitesal a"es at low Reynolds iuoer.I Phys. Fluids 31, 9"9-1006
"eMwIV(Z, P.A..* 1989, Feedback control of global oscillations In fluid systmss, AIMA piler 1 69-0991

POREft.W1Z, P.A . 1990. The role of absolute and connective Instability in predicting the behavior of fluid systwin.

Esr 3 Match O/Fluids 9. 395-4133 STWAT, i T , 1971. konlinear stability theory, Ann Rev Fluid Koch 3. 147-370

I It KONl k\ Ai( RNNL O iL tH %\R b I i t' W', 10'\



II
Proc. of NATO ASI on Chaotic Dynamics: Theory and Practice, Patras, Greece,

i July 1991.

Control of Hopf Bifurcations

Edward A. Henrich, D. L. Mingori and P. A. Monkewitz

University of California, Los Angeles

I I Introduction

Many systems in nature exhibit self-excited oscillations or limit cycle behavior. The
bifurcation from a steady-state to a limit cycle is generally the first step in the tran-
sition to chaos or turbulence. For a given physical system there are often design
constraints which specify a fixed region of parameter space in which one would like
to operate. If this particular choice of parameters exhibits some undesirable dynamic
behavior (e.g. limit cycles or chaos) then the goal of the control engineer is to sup-
press this behavior while still operating in the same parameter range. A distinction is
made between a 'control parameter' or 'bifurcation parameter' which is the parameter
one uses to study successive bifurcations and a 'control force' which is a prescribed
function of time used to modify the system's output. As an example, consider that
one might desire to suppress the Von Krmin vortex street in the wake behind a
cylinder. The control parameter is the Reynolds number which may be fixed at some
supercritical value, where at the desired operating speed the wake is no longer lam-
inar. The control force could be an induced sound field designed to eliminate flow3 oscillations. This method uses the control force to stabilize the system in contrast to
methods which modify the control parameter until the state behaves as desired [1].

* 2 Control System Analysis

3 For a physical system with a finite number of degrees of freedom, the dynamics may
be described by a set of first order ordinary differential equations. Written in vectorform

= F(X(t); ) + Bu(t) (2.1)
di

Sy= CX + D (2.2)
X E R" and p,u,y E R (2.3)

3 where X is the system state, F is the vector field, u is the control force, y is the
measured output and p is a control parameter in the problem. Equation (2.1) is
presumed to have an equilibrium solution Xo(p) which sati,..es F(Xo(p); P) = 0. For
u > 0 we assume the system undergoes a Hopf bifurcation to a limit cycle. The
goal of the control system is to return the system to its equilibrium state, which is3 unstable for p > 0.
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Figure 1: Block diagram of the control system

One method for controlling a set of ordinary differential equations which depend
on a control parameter p is to let the value of the control parameter be governed by
a differential equation. The time derivative A depends on the state of the system and
a gain specified by the designer. If the gain can be chosen such that p drops below
the critical value, then the n + 1 dimensional system will be stable. This procedure
is described in [1].

The goal of this research is io control the system by external forcing when the
control parameter is fixed by some other design constraint. The control system which
is studied is the linear regulator as depicted in Figure 1. The differential equations
governing the control system are such that the Laplace transform of the impulse
response of the linear compensator is pG(s).

The action of the control system is studied by using a multiple scale perturbation
technique [2, 3]. We consider the case where the real part of the critical elgenvalue
is 0(c2). In this case it is natural to introduce a second time scale r = j 2 , where
P = C2sgn(p). We treat the two time scales as independent variables so by the chain
rule the derivative becomes d 8 2a

T- + (2.4)
We use this formula and expand (2.1) in a Taylor series in X - Xo and p. Upon
equating terms multiplied by like powers of e we obtain a sequence of inhomogeneous
partial differential equations. The elimination of secular terms leads to a solvability
condition which governs the slow time evolution of the amplitude of the limit cycle
oscillations. The solution on the center manifold is

X(i) - Xo + cA(r)ei"r + cA(7)e"wc'F (2.5)

where w, is the imaginary part of the critical eigenvaue and r is the corresponding
right eigenvector. The solvability condition can be written as an amplitude equation

dA
- = (sgn(u)A - IBCr G(iw,))A - § IA 12 A (2.6)

2



I [where A is determined by the real part of the eigenvalue of the Jacobian of F, § is de-
termined by the nonlinearities, and the receptivity IBCr is determined by the manner
in which the control force couples to the measured output (I is the left eigenvector
of the marginal mode). In fluid mechanics this type of equation is known as t',z
Stuart-Landau equation.

An important thing to note in equation (2.6) is that the stability of the fixed
point X0 is governed by the control system only near the critical frequency W,. In
particular, the entire class of control systems with the same gain and phase at the
critical frequency are equivalent. The particular gain and phase required of the control
system at the critical frequency is determined by the stability of the uncontrolled plant
(i.e. A) and its receptivity from measured output to control force (i.e. IBCr).

3 Estimation and Control
I The results of the previous section demonstrate the effect of a linear regulator on

a nonlinear plant which undergoes a Hopf bifurcation to a limit cycle. In deriving
Sthe result, we assumed that the system equations (2.1) were known. If the system

equations were known, we would likely use one of the standard control design methods
for nonlinear plants (e.g., describing functions or Lyapunov's direct method). The
more interesting situation is when the model for the system dynamics is unknown,
but what is known is that the system exhibits limit cycle behavior. In this case,
it is useful to think of the Stuart-Landau equation (2.6) as a generic model for the
dynamics which are asymptotic to the center manifold. In many physical applications
the measurement consists of a time history of a single variable. In these cases, the
state X(t), A(r) an'd the eigenvector r may all be unknown. This difficulty is easily
overcome. Defining Y(t) =_ 2cA(r)Cr, the leading order asymptotic expression for
the output is

y(f) = Re[Y(t)ewc t + CXo + D (3.1)
(see (2.2) and (2.5)). Returning to the physical variables, one obtains an amplitude
equation which is useful for describing the measured output of an experiment in terms
of a dynamical system on the center manifold

dY
t-T = p(sgn(p)A - lBCr G(iw,))Y - 9 IY I' Y (3.2)

or

odt = (A - J G(iw,))Y - gIYI1 Y (3.3)

where A, J and g are unknown complex constants.
To estimate these constants from experimental data one needs a method for ob-

taining Y(t). One way to obtain the amplitude signal Y(t) would be to create a 90
degree phase shifted version of the output y(t) as Y. The modulus of the complex

i signal (t) = y(t)+ i-(t) is 1 (t)1=IY(t) . \Ve define an analytic signal as a complex

I3



signal of a real variable whose real and imaginary parts are Hilbert pairs [4]. This
analytic signal is just an extension of the 'rotating vector' or 'phasor' used in circuit
analysis and systems engineering. The Hibert transform is

I = -y = --P.V.Ldr *y(t) (3.4)

where * denotes convolution in time. Defined this way the Hilbert transform of a real
I time signal is a real time signal. Taking the Fourier transform of (3.4) we have

-F{l{y } = -i sgn(w)7{y) (3.5)

1 which shows that the Hilbert transform is indeed a 90 degree phase shifter. From
(3.5) we find that the Fourier transform of the analytic signal is

S{2.F{y} w> o
= = o (3.6)

i0 <O0

Hence we can obtain the analytic signal g(t) by using (3.6) and an inverse Fourier
transform

I (t) = .Y {(I + sgn(w)) '{y (3.7)

We use the analytic signal to find the 'envelope' of the output and its 'instantaneous
phase or frequency'. The envelope is just 1 1 I and the instantaneous phase is L. So
we can identify our complex amplitude as

Y(t) =1I e'" (3.8)

where 9 = J w0 t. The Hilbert transform represents a means of obtaining the
demodulated output Y(t) from the output y(t) off-line. Equation (3.3) is solvable
for Y(t) as an analytic function in terms of the coefficients A, J and g so there are
several means to estimate the parameters of the Stuart-Landau equation once we have
obtained Y(t) from y(t) using the Hilbert transform.

The estimation and control scheme may be demonstrated using the Van der Pol
oscillator as a model plant. The plant is

+(yP) + y= U (3.9)

The plant equation and the differential equations for the linear regulator are inte-
grated using a fixed step fourth order Runge-Kutta algorithm. We use several test
values of G(iw,) to identify the system parameters A, J and g. Once the parameters

I have been estimated, we use this model of the dynamics on the center manifold to
select the optimum values for the controller gain and phase. The results of the final
controller are depicted in Figure 2. The solid curve is the measured output y(t) and

I the dashed curve is the control force u(t).
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I Figure 2: Stabilization of limit cycle oscillations

3I 4 Conclusions

A procedure for finding a model for data which lies on the center manifold has been
developed. Using this model one can specify the gain and phase of a linear controller
to stabilize the system. One may also specify a controller to modify the size of the
limit cycle.3 Previous work with wakes and jets have shown the Stuart-Landau equation to
be a good model for the dynamics on the center manifold [5]. We are currently
investigating the results of this paper using a heated two dimensional jet experiment.

The research described in this article was performed under AFOSR contract 89-
0421.
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