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1. THE DERIVATION OF THE IXNEARIZED GINZBURG-ILANDAU (GL) EQUATION
FROM FIRST PRINCIPLES

1.1. Related Publicaticns and Presentations

MONKEWITZ, PETER A., HUERRE, PATRICK & CHOMAZ, JEAN-MARC, Global linear
stability analysis of weakly nonparallel shear flows. Submitted to J. Fluid
Mech.

1.2. Introduction and Basic Equations

This part of the report addresses the extension of the concept of
absolute instability to nonparallel flows. As in the case of parallel flows,
in which an initial impulsive excitation leads to the ultimate dominance of
the most amplified Fourier or normal mode with zero group velocity (Briggs,
1964, Bers, 1983, evc.), we attempt to answer the question of the asymptotic
(in time) impulse response of a nonparallel flow and we will call the
equivalent of the "absolute" normal mode a linear "giobal" mode. The latter is
simply a time-harmonic solution of the homogeneous linearized disturbance
equations with homogeneous boundary conditions in space. Such solutions can in
general be obtained only numerically, especially if the basic fluow is strongly
nonparallel. Examples of such computations in shear flows have becn published
by Zebib (1987), Hannemann & Oertel (1989) and many others.

If the the mean flow is weakly nonparallel, i.e. evolves slowly on the
scale of a typical instability wave length, global modes become accassible to
WKBJ-type analyses. This involves the step from the "slowly diverging®
approach of Bouthier (1972) and Crighton & Gaster (1976), who trexst the
spatial evolution of a forced wave in an inhomogeneous mediwm ,the signaling
problem), to the problem of finding the unforced global modes whare the

streamwise direction also becomes an "eigenvalue direction".

In the following we treat the case of infinte or semi-infinite shes.
flows that contain regions of both absolute and convective instability by .
WKBJ analysis. In particular, the cross-stream structure ;{ the global podes
is taken into account and an explicit discussion of the zonnection betwes: the
properties of global modes and local absolute and convective inmstabilicy fu
given. This connecction, which is supported by several esamples (Monkewitz
1990), is put on firmer ground. We note, however, tha' the analysiy adwits
only "local feedback" by vorticity waves to drive globul modes. It is
therefore restricted to cases where long-range feedbasik s uegligible anc
important problems such as edge tones are not addressa:i. for which the orimary
driver of the instability is the acoustic feedback fros a downstxy.am print of
intense fluid-surface interaction to a trailing edge.

To study two-dimensional instability waves in & spatially inhom gsneous,
incompressible medium, we start from the equation fos the z-vorticity -V&¥ ,
where ¥ is the total stream function.

[3, + (3,13, - (8, 1)4,] V¥ = ®™! VXY (2.1)

Next, V¥ is decomposed into time-independent mean flow ¥ and a small
disturbance ¢’
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Ve pX,y) +9' 5 X=ex, (2.2)

At this point we assuwe that, in the terminology of the method of multiple
scales (cee e.g. Bender & Orszag, 1978), the mean flow ¥ depends only on the
"slow" coordinate X=ex. The parameter

€= Aty?(S'l(x)[dS/dx])t’p <« 1 (2.3)

characterizes the degree of spatial inhomogeneity of the basic flow by
providing a measure of the small change of the typical cross-stream length
scale §(x) over one typical instability wavelength A __. In the absence of
body forces, the assumption of a slow evolution of the mean flow immediately
restricts viscous effects to O(¢), or in terms of the Reynolds number X

R =¢R ; Re=0(1) . (2.4)

Intreduction of the deccmposition (2.2) and of (2.4) into the governing
equation (2.1) first leads to the boundary layer equation for the basic flow

(3,0 (3,9%) - (3,9)(33$) = R (39) (2.5a)
UX,y) = 8% i VX,y) ~ -3, = -¢ a9 (2.5b)

Linearizing around the basic flow and keeping only terms up to O(e) then
ylelds the following equation for the small disturbance ¥’

[(8, +UV a7 - (32W)3] ¥ +
(2.6)
e[Va 7 + (380)5, - RV g + 02191, 1¥' %) = S(x.y,¢t) ,

where 8 and the Laplacian v? have not yet been split into fast and slow
parts. The source § has been added for the study of the impulse response in
the next section, but the ultimate aim of the paper is the search for global
modes, i.e. homogeneous solutions of (2.6) with homogeneous boundary
conditions in space.

1.3. The WKBJ Approximation for the Green Function and its
Breakdown

Following Bouthier (1972), Crighton and Gaster (1976) and others, we use
the WKBJ approximation up to the level of "physical optics" (see e.g. Bender &
Orszag, 1978) to describe the evolution of a pulse on the weakly nonparallel
basic flow and identify the locations of its breakdown which are "turning
points" of the problem (see section 10 of Bender & Orszag, 1978).

To obtain the Green function G of (2.6), the source at x=x* and ,=y* is
specified as

S(X,y,t) = {5(x-x°) + 1[x(x-x*)1 16 (y-y*)6(t) . (3.1)

This form explicitly accounts for the non-analyticity of G on the imaginary
axis of the wavenumber plane when the lateral extent of the flow domain is
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infinite, as discussed in detail by Huerre & Monkewitz {1985). Next, we take
the Fourier transform of (2.6) in time according to

G(x,y.t) = (217  G(x,y,0) exp(-iwt) do |, (3.2)
L

where the contour L is taken parallel to the real w-axis and above all
singularities in order to obtain a causal solution (Briggs, 1964). Finally,
all x-derivatives in the disturbance equation (2.6) are transformed according
to the chain rule

3, + €d, , (3.3)

keeping in mind that J_ and 4, do not commute. Concentrating on a flow domain
of doubly-infinite screamwise extent, G is required to vanish at up- and
downstream infinity as well as on the lateral boundaries |y|=< . Hence,
following section 10.3 of Bender & Orszag (1978), the WKBJ approximation for
G can be written in the standard form away from the source at x=x"

A A A X
G* ~ (GE(X,y) + €Gj(X,y) + O(e?)) exp[ic"le‘ K(X'50) &X'}, (3.4)

where ¢ plays the role of the WKBJ-parameter. The superscripts "+" and "-"
denote the approximation downstream and upstream of the source, respectively.
The k*(X';w) are the corresponding local wavenumbers in the upper and lower
half k-plane, respectively, as shown on figure 2b of Huerre & Monkewitz
(1985). For simplicity we assume here that there is only a single pair of
eigenvalues k*.

Introducing the WKBJ-Ansatz (3.4) into the Fourier-transformed equation
(2.6) the stability problem reduces, at leading order in ¢, to a streamwise
succession of locally parallel problems which are governed by the homogeneous
Rayleigh equation. Its solution depends only parametrically on X through the
shape of the local mean velocity pxofile U(X,y) and yields k*(X;w) as well as
the local transverse structure of G, up to an unknown amplitude A (X). The
latter describes in essence the "transmission" of the insuability wave from
one locally parallel region to the next and will be determined at the next
order.

0(e®): Z(85iK5,w,%X) =0 ; |5(ly|==:X)| =0 (3.5a)
with GI(X,y) = AX(X) €5(7iX) . (3.5b)

The Rayleigh operator Z, which includes a list of all relevant parameters in
the argumcnt, is defined as (see also appendix A)

2(+1k,0,%) = [KU(Y;X) - 0][8] - K]+ - k[3U(yiX)]e . (3.6)
A At linear order in ¢, the following inhomogeneous Rayleigh equation'for

G: is obtained, where the derivatives of the operator Z are defined in
appendix A
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0(e'): Z(G};K%,0,X) = 1 D.AT L (65:K",0,X) +
F 4 +
+ iAo{z (ax¢°,k* w,X) +
+-8k.t (¢°,k*wX) +.L’(¢" k* w,X)} . (3.7)

It will prove useful to replace 3,4> by the expression (C.4) of appendix C
where the functions ¢§k etc., are egined by (C.5). In order to avoid secular
terms in the solution of (3.7), the solvability conditi.a (3.8) has to be
satisfied. After dividing by L (¢7;k*,w,X) and using (B.4) for 8,«*, the
condition reads

B,w* AT = -AT [ 186* + (V/,)uf, 8K+ wf ) . (3.8)

Sutwx) = 1 [L (¢5:K5,0,X) - L(85,:k50,X)] [L (7K 0,X)]),  (3.9a)

wp (0.x) = [2L, (43, 5K5,0,X) - L, (85:K%,0,%)] [L (85K 0, X)), (3.9b)

wp (wX) = L (6] ;K*,0,X) [L, (85K 0,X))7 . (3.9¢)
The L’s above are defined by (B.3) in appendix B and represent inner products

of the corresponding Z‘'s with the solution of the adjoint Rayleigh equation.
Equation (3.8) is now readily integrated to yield AO(X)

X (-6 + (Y,) of, A.KF + 1 uwp 30")(X';w)

AS(X) = AST exp[ if dX']
X® 8kw*(X';w) (3.10)

This brings the approximate description of the Green function away from the

source to the level oj "physical optics". What remains to be done is the

connection of G, and G! across the source. For .his the analysis of

Bender & Oxszag (}978) has to be generalized: instead of patching the two

solutions Go and Go which is only possible for ODE’s, we use in

essence the approach of Burr‘dgg and Weinberg (1977) in which the connection

is achieved by matching G and G to the local parallel Green function

at X*. The latter is obtained from the double Fourier transform 6 in time

t and space x at X=X which is given as equation (8) in Huerre & Monkewitz

(1985). Integration cf G with respect to k along the contours shown on

figure 2b of Huerre & Monkewitz (1985) yields, upon evaluating the residues at

k' and k™ respectively for any frequency on the contour L of (3.2),

n 2H(x-x*) ¢g(yiX®) ¢y (y*iX®) exp[ik'(w;X*)x)
G(x,y.w;X%) = - +
[K'(0;X*)U(X®,¥°) - w] 8,D[w,k*(0;X*)]

(3.11)
2H(x%-x) ¢,(y;X%) ¢,(y";X®) exp[ik (w;X*)x]

<+
[k (0;X)UX*,¥*) - w] 8,D[w,k (v;X")]

In this expression H is the Heaviside function and D the dispersion relation
associated with the local Rayleigh equation at X*. We note that in (3.11) the
contribution from the integration along the imaginary k-axis, which is a

branch cut of the dispersion relation, has been omitted under L:e assumption



that the long-time bszhavior is dominated by the discrete spectrum. Comparison
of (3.4), (3.5) and (3.10) with (3.11) finally yields

2 §2(y": %)
A - F . (3.12)
[k*(0; X)U(X*,y*) - @] 3,D[w,K*(w;X")]

We now turn to the discussion of the long-time behavior of G which runs
analogous to the discussion of absolute and convective instability in the
parallel case. The basic idea is that the leading-order timezasymptotic
behavior of G is determined by the uppermost singularity of G in the
w-plene, i.e. the singularity with the largest temporal growth rate, which

e " ed" as the w-contou owered . In the parallel case, the
singularities in the w-plene, which correspond to zeroes w(k) of the
dispersion relation D, can be moved by deforming the Fourier-inversion contour
in the k-plane until the latter is pinched between two branches k*(w) and
k" (w) (see Briggs, 1964, Bers, 1983, etc.). When this happens, the singularity
wmw(k ) becomes "pinned" at the absolute frequency w which corresponds to
the saddle point k  where the complex group velocity d,w is zero and the k-
contour is pinched.

ia the weakly nonparallel case we can argue in a completely analogous
manner: f G(X,w) becomes singular at a location ¥* from which the X-
integratio: contour cannot be moved, the corresponding pole w(X') becomes
"pinned". Again, the "pinned" pole with the largest temporal growth rate ,
determines the time-asymptotic behavior of G. From (3.10) it is seen that G,
in particular AO(X), becomes singular at the zeroes of 3,w(X,w). Such points
are in fact turning points X® where the WKBJ-approximation breaks down, which
is easily seen by noting the correspondence between A (X) and [Q(X)]'”‘ in
standard textbook notation (see chapter 10 of Bender & Orszag, 1978). In the
following, we have to distinguish between two types of pole "pinning":

The first is the exact analogue of the parallel case where the X-
integration contour is pinched between two branches X?(wlakw-O) on which the
group velocity is zero. The pinching occurs at the saddle pojnt, or second
order turning point X' where

3y, (X*)=0 , (3.13)

as shown on figure 1b. This is the case discussed in detail by Chomaz, Huerre
& Redekopp (1991), which arises when the absolute growth rate ugi(X) has a
maximum within the flow domain, and represents a generalization of
Pierrehumbert's (1984) frequency selection criterion to the complex X-plane.
The assumption that a maximum of w ,(X) exists within the flow domain is in
fact rather weak and corresponds to the existence of a maximum of the temporal
amplification rate and an associated saddle point of w(k) in parallel flows
(see Gaster,1968). In the following we make the same assumption and consider,
for simplicity, only one saddle (3.13) between regions of stable flow far
upstream and downstream,

The second possibility of pole "pinning" arises when the complex group

velocity first becomes zero at, say, the flow boundary X=0. In this case the
pole wo(X‘) is "pinned" because the X-integration contour has to start or end

at the boundary, as shown on figure lc. Hence we have



X=0 (3.14)

and in this case X® corresponds to a first order turning point. This is the
situation we will consider for the semi-infinite domain where the upstream

boundary at X=-0 dominates the evolution of the disturbance while we assume

that the flow is stable far downstream. The same situation has already been
considered in a model by Chomaz, Huerre & Redekopp (1988).

In both cases the global mode frequency is given, to leading order, by
w (X*) and global instability is determined by the sign of the leading order
global growth rate “%1<XF>' Hence it appears that the mean flow must contain a
region of absolute instability for a global mode to become temporally
amplified. This is confirmed by the detailed analysis, which also yields the
next approximation of the global mode frequency beyond a%(xf). The latter is
obtained as eigenvalues of the streamwise two-point boundary value problem and
are determined either by the connection of the upstream and downstream
solutions through the second order turning point (3.13), or by the connection
of the downstream solution through the first order turning point (3.14) to the
boundary.
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Figure 1. (a) Sketch of the Fourier inversion contour L in the complex w-
plane. (b) The WKBJ integration path M in the complex X-plane for the doubly-
infinite flow domain with images X' and X~ of L on which the group velocity is
zero. (c) Corresponding path N and X' for the semi-infinite case. The top row
(subscripts 1) shows the situation where L is above all singularities (0),
while the bottom row (subscripts 2) shows the points (¢) of the X-contour
where the breakdown of the WKBJ-approximation can no longer be avoided as L is
lowered.
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1.4. The Turning Point Region for the Doubly-Infinite Domain

In this section the ideas of Soward & Jones (1983), Huerre & Monkewitz
(1990) & Chomaz, Huerre and Redekopp (1791) on global modes in a doubly
infinite flow domain are applied to shear flows. In terms of application the
following analysis may not only be usefu. in truly infinite domains, typically
found in geophysical shear flows, but also in finite flow domains, as long as
the boundaries do not significantly influence the flow instability. The two-
dimensional bluff-body wake appears to be a case in point as suggested by
Monkewitz (1988) and the numerical experiment of Triantafyllou & Karniadakis
(1990) who cbtained essentially the same KArmin vortex street after
replacing the cylinder by an inflow boundary condition downstream of the
cylinder.

At the turning point defined by (3.13) the first-order equation (3.8)
for A7 becomes singular and one has to bring in the second derivative
e 32 g. Since X' is also a saddle point of the absolute growth rate w (X),
(u%-wo) behaves like (X-XF)Z. Hence X* is a second order turning point where
the second derivative of A} must be of the same order as (X-XF)ZA: (see
Bender & Orszag, 1978). This leads immediately to the rescaling

X = ¢ M2(x-x4) . (4.1)

In the inner turning point region, characterized by |X|<0(1l) , the
disturbance streamfunction is expanded accordingly:

P - [30 + ¢1/2 51 + 552 + 0(53/2)](i,y) X
(4.2)
exp[Le kE(X-X") - dwt]

where kb—k (X*) . By the same token the global frequency w; is expanded
arovund u%(x )-w:
t 12 = = 32
W =W, + € w0 + ew, + 0(ev'y , (4.3)

and the mean flow components are expanded in Taylor series around X'. In terms
of the inner variable (4.1) they are given by

UR,y) ~ UXhy) + V2 X[8,0(x%,y)) + e(X3/2) (320X, y)) + 0(?)
(b.4)
VX,y) ~ VXhy) + 0(el?)

Introducing the expansions (4.2) and (4.4) as well as the "slow"”
variable (4.1) (using the chain rule ax~ax+<”zai) into the governing
equation (2.6) yields, at leading order in ¢, the local Rayleigh equation at
Xt

0(e%): %4y =0 ; [$g(lyl==;X)] =0 , (4.5)

where ¢8(y) is the local eigenfunction and the short-hand notation I' (see
A.1), together with the corresponding integral L' (see B.3), is defined by

Z8(e) = Z(osk,08,XY) (4.6a)

L(e) = L(o;kE,05,XY) . (4.6b)
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Hence the leading order solution 56 in (4.2) is given by
3,&X.y) - 5,(® ¢ty : (4.7)
with the "free" amplitude A, (X) to be determined at higher order. At the
next order 0(e'/?) a solvabi&ity condition yilelds only
51 -0 . (4.8)

Rence we have to proceed to O(¢) to determine 3; and obtain the solvability
condition

2R, (W}, /2) + 1X 0A, wby + A [0, - 6u* - XP(u5,/2)] = 0,

(4.9)
with the abbreviations
wh = [2L5(85) - LL (8O ILEGED 1T (4.10a)
whe w (LG5 + Li(én) - L (D 1LEe 1™ (4.10b)
Sw® = 1[LE(8D) - LE(SLOIILID ) (4.10¢)
wh = [2LE(8%) - LL($D LD (4.10d)
vhere the L, etc. are defined analogous to (4.6b). Tie resulting amplitude

equation (4.9) is a linearized Ginzburg-Landau equation with variable
coefficients. The nomenclature (4.10) becomes immediately transparent when
equation (4.9) is tranformed to the spectral domain by

g = LeMA(k-kY) . (4.11)

Using (4.3) and (4.8) this yields the Taylor series representation of the
dispersion relation in the neighborhood of the turning point X*

€0, = w-w = e b0+ (0], /2) (k-kE)?

v b (k-kE) (X-X) + (wh,/2)(X-X%)? . (4.12)

Hence we have shown that the dispersion relation (4.12) which had been
postulated by Huerre & Monkewitz (1990) and Chomaz et al. (1991) is generic to
the turning point region of the WKBJ approximation and can be derived in a
rational fashion from the governing equations under rather weak assumptions.
The solution of (4.9) is now easily found by transforming it into the standard
Hermite equation. Setting

B (X) = exp[(1/2)K%, B¥) a(§) with € = (4wl /wf)* X, (4.13)
(4.9) becomes
8% + ol [0,-6 +(1/2)0p ke ) [0h 0l 172 - €%/6) = 0,

(4.14)
fa] (§o) = 0
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The boundary conditions are chosen such as to ensure the matching to the
subdominant WKBJ solutions both upstream and downstream of X* and restrict the
frequency correction w, to a set of discrete eigenvalues given by (4.15a)

with the corresponding global eigenfunctions given by (4.15b)

wy = 6u® - (1/2)up kS + (D) (i )R, (4.15a)
a (€) = exp[-£%/4] He (§) , (4.15b)

where the He ({) are Hermite polynomials as defined by Abramowitz and Stegun
(1965). We reiterate here that, according to the discussion leading to the
frequency selection criterion (3.13), the global mode (4.15) represents the
asymptotic solution for long times. The recent feat of Hunt & Crighton (1991)
who determined the exact Green function of (4.9) puts us into the unique
position of verifying this statement explicitly. If the limit t-+= is taken in
their expression (36)and (44) for the Green function, one indeed recovers the
most unstable global mode (4. 15) with n-O The higher modes are more stable
since the imaginary parts of w and w% . are ne gative, corresponding to a

high wave number "cutoff" and to stab1f§ty at IXI*w respectively. At this
point the solution of (2.6) in the inner or turning point region is complete.
Its matching to the WKBJ-"tails" presents no further problems and is described
in the preprint listed in section 1.1. To avoid misunderstandings it is worth
pointing out here that the notion of WKBJ-"tails" does not in any way imply
that the amplitude of the global mode should peak near the turning point which
acts as the "wave-maker" for the entire flow. Depending on the imaginary part
of k* and the downstream evolution of Im[k'] the wave "leaking" from the
"wave-maker" region can experience substantial spatial amplification.

1.5. The Turning Point Region for the Semi-Infinite Flow Domain

In this section the model investigated by Chomaz et al. (1988) is
reexamined In the context of the present rational asymptotic analysis starting
from the governing equation (2.6). The main assumption, besides the exclusion
of long-range feedback, is that the flow is most (absolutely) unstsble at the
boundary, i.e. that the location of the "wave maker" is given by (3.14).
Furthermore we will assume that awa(x‘)¢o , 1.e. that a%(X) has no saddle
point at the boundary X®=0, and that the global mode amplitude is zero at the
boundary.

The analysis is very similar to the one of section 1.4. and will be kept
as brief as possible. In the present case the absolute growth rare w o(X) 1is
assumed to be a linear function of (X X‘) and X* is a first order turning
point. Hence, the balance between aon and (X- X‘)A near X' leads to
the scaling

X w 23(x-xY . (5.1)
The disturbance stream function is expanded accordingly
' 1/3 2/3 4/3
P! - [50 + € 51 + € 62 + e&a + 0(e"")](X,y) %

(5.2)
exp[ie'lk:(X-X‘) - dwgt]
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where k;-kb(xf) and the global frequency is represented by

t 1/3 ~ 2/3 ~ ~ A/3
W = w, + € / w, ! € / w, + ew, + O(e /) . (5.3)

Analugous to (4.4), the mean flow is expanded around X'

U(X,y) ~ UGS y) + 2P R[3,U0(x%,y)] + 0(M?)
(5.4)
V(X,y) ~ V(X%,y) + 0(e?)

This, together with the transformation of x-derivatives according to
3 »ax+¢1’ax) yilelds, at leading order, the szame Rayleigh problem (4.5) at Xt
and the leading order inner solution is thus determined up to a free amplitude

Ky (%)
6 (R,y) = B (X) 45(n) . (5.5)
At the next order 0(e'’®) one again obtains

51 -0 . (5.6)

At order 0(:2”) one finds the solvability condition
3R, (w5 /2) + K (3, - Rwl) =0 (5.7
K (R=-¢2%%) = K (R+) = 0
The coefficient uik is thereby given by (4.10a) and
wy = - LE(0) [LE(0) 17 . (5.8)

The first boundary condition on the K; in (5.12) expresses the assumption

that the global-mode amplitude is zero at the upstreem flow boundary X=0,
while the second boundary condition requires the amplitude to wvanish far
downstream as before. Equation (5.7) is recognized as Airy‘s equation with the
solution

K, = AL((2up/wf ) (R - (@/00))) . (5.9)
The boundary condition &t X=0 then leads to the relation between 52 and X"
- (/i ) [€73%0 + (B, /05)) = -8, (5.10)

where the -a_  are the zeros of the Airy function Al (a°—2.338, 81-4.088.
etc.). With the location of the turning point given, to leading order, by
(3.14), i.e. coinciding with the boundary, we obtain

X-0 , (5.11a)

= o} Qu/ep )M a . (5.11b)

®
n

2n

The quantization of the global frequency is therefore of order ¢%/°, larger

than the 0(e) quantization (4.15a) in the doubly-infinite case. For the
matching to the WKBJ solution, it is more convenient to have 52-0. This
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can be achieved by moving the turning point, around which all quantities are
expanded, slightly away from the boundary. Setting 65-0 in (5.10) yields

52 -0 , (5.12a)

2/3 -1/3
X2 = 3 2w}/l )P a

n

(5.12b)

With the assumptions of a large-wave-number cutoff [i.e. Im(a&k)<0] and
maximum absolute growth rate at the boundary [i.e. Im(w’)(O] equation

(5.12b) places the "dominant oscillator™ close to the origin into the first
quadrant of the complex X-plane. This displacement reflects the fact, that a
finite region of absolute instability is required on the real X-axis near the
origin befare one can have global instability, as discussed in detail by
Chomaz et al. (1988) (see also figure lc).

In the Fourier-domain we again obtain the Taylor expansion of the
dispersion relaticn around X

€ By m ool = € b+ (0], /2) (k-kE)? + wf(X-XY)
(5.13)

+ (0, mkaf+w(kwxxr).

where it is understood that, for the n-th global mode, all constants are
evaluated at X"-X‘ , and where

why ™ [3LE(8Y,) + 3LE(4%) - 6LE(eL) - L& (8H)]LE(D]™ . 5109

In these expressions the results up to 0(e¢) have been incorporated which is
carried out in the preprint listed in section 1.1,

In the two generic cases analyzed in this paper, in which the global
instability is dominated either by a saddle point of the absolute frequency
w, (X) within the flow or by one streamwise boundary of the flow domain, we
have developed approximate expressions for the global-mode frequency W, its
growth rate w,, and its streamwise amplitude distribution in terms of local
stability properties alone. The complex frequency w; in particular can be
estimated very easily from the knowledge of the local absolute frequency W,
and absolute wave number k_ on the real x-axis, except for the nonparallel
frequency shift éw (equs. %.15a and 5. 13) of order O(e¢). All that is required
is the analytic continuation of w (X) k (X) and w_ (X;k ) from the real x-
axis, on which the mean-flow data are generally dé%ined to the respective
turning points X* (equs. 3.13 and 5.12b). Moreover we can conclude that, in
the context of the present analysis, global modes only become amplified if the
streamwise extent of absolute instability is sufficiently large: in the
doubly-infinite case the interval AX of absolute instability has to be at
least of order C(e!?) when X* is within ¢!/? of the real axis, and larger for
X* far from the real axis (see Hunt & Crighton, 1991). In the semi-infinite
case, on the other hand, global instability results whenever the interval of
absolute instability at the end grows to AX-O(e ) (see equ. 5.12b).

The question naturally arises of how relevant our two generic cases are
to practical applications. It can be answered quite convincingly for the wake
behind a rectangular plate. Harnemann & Oertel (1989) provide in their figure
16 a comparison between the linear w, from their fully nonparallel numerical
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simulation and the local absolute frequency w (X), which clearly displays a
saddle at x=1 on ox very close to the real x-axis. Despite the proximity of
the trailing edge, it appears from this comparison that the linear global
mode, here the pascent KArman vortex street, is dominated by a "wave

maker" at x~1 ! Hence the doubly-infinite model of section 1l... will be used
in section 4 to interpret the wake control experiments,

1.6. Appendices
A. The Rayleigh operator and its derivatives

In the following the Rayleigh operator Z[¢;k,»,X] and its formal
derivatives with respect to the parameters k, w and X are compiled. In
addition, the operator Z which contains the nonparallel terms of the
disturbance equation (2.6) is listed as (A.8). In all the argument lists the
relevant parameters are given after a semi-colon. For the operators they
include the eigenvalue pair k and w associated with a parallel flow U(y;X)
that coincides with the local velocity profile 7(X,y) at X.

Z(+ik,0,X) = [KU(Y;X) - w][82 - K] - K[32U(y;X)]- (A.1)

L, (+ik,0,X) = 2kw o + U(y;X) (82 - 3K?). - [2U(y:iX)]. (4.2)
2,00 ik,0,%) = -[8% - k*). (A.3)
L(oik0,X = X[BU(y;X)](82 - k'] - k[8,02U(yiX)]- (A.4)
L, (o ik,w,X) = 2we - 6kU(y;X)e (A.5)
Zy(oik,0,X) = [8U(yiX)]187 - 3K%}- - [9,82U(yiX)]- (A.6)
Zo(oik,0,X) = k[8U(yiX)][82 - K*)+ - k([958 %U(y;X)]e (A.7)

Lo (*ik,w,X) = -6U(y;X)e (A.8)

2, (k0% = V(y;X)[8) - K9 )e + [8,0 U(yiX))3 e - RT[32 - K% (A.9)

B. The k-derivative of the Rayleigh eigenfunction
The derivative of the Rayleigh equation (B.1) with respect to the
wavenumber k, where £ is given by (A.l), leads to the inhomogeneous Rayleigh
equation (B.2).
L(¢yik,0,X) =0 5 |4,(Jy|+=iX)| =0 (B.1)
x(ak¢o;k:wrx) = -zk(¢o;k)wlx) - akw zu(¢o;k)wnx) (B.2)
The solvability of (B.2) requires that the right-hand side be orthogonal to

the homogeneous solution of the adjoint Rayleigh equation, 1i.e. to
$,(v:X) [KU(y;X)-w]™'. With the notation (B.3) for the inner product
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$,(y:X)
L(-kw“-f.t(-kwx)-——-—-—————-dy, (B.3)
¥y kU(y;X)-w

one obtains a convenient expression (B.4) for the complex group velocity a,w
In terms of the Rayleigh eigenfunction ¢,. -

80 + L (dgik,0,X) [L(5ik,0,X)] = 0 (B.4)

C. The X-derivative of the Rayleigh eigenfunction

In an analogous manner an expression for the X-derivative of ¢, 6 can be
obtained. Differentiation of (B.1) with respect to X 1leads to the
inhomogeneous Rayleigh equation (C.1).

z(ax¢g;kvwnx) - 'axk J:k(¢0;k,w,X) - axw zu(¢o;kowox) = -tx(¢°;k,(0,X) (C'l)
With the notation (B.3), the solvability condition reads

3k L (d,:k,0,%X) + 3w L (#5:k,0,X) + L($)ik,0,X) = 0 . (C.2)
Using the result (B.4), this can be recast in the form

~ 8k Q0 + B + Li(¢,:k,w,X) [L ($,:k,0,X)] =0 . (C.3)
For use in §3 we also list a particular solution of (C.1)

Oyby = -9k 4y - By by, - iy (C.4)
in which the functions by (y;X), etc. are particular solutions of the
inhomogeneous Rayleigh equations (C.5) which satisfy the same boundary
conditions as ¢0

L(,1k,0,0) = £,(5k,0.%) i 1y, (Iyls=iX)| = 0 . (€.5)

In addition we will also need the following "second-generation"™ forced
solution

L($yik,0,X) = £,(4,5k,0,%) i 14, (|y|*=iX)| = O, (C.6)

vhere ¢, 1is given by (C.5).
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2. SINGLE-INPUT SINGLE-OUTPUT CONTROL OF GLOBAL MODES: REDUCTION
OF THE PLANT MODEL TO A STUART-IANDAU (SL) EQUATION, THE
CONTROLLER DESIGN AWD ITS IMPLEMENTATION IN A HEATED 2-D JET

2.1. Related Publications and Presentations

HENRICH, EDWARD A., Control of limit cycle oscillations with applications in
fluid mechanics. Ph.D. Thesis, University of California, Los Angeles, 1991.

HENRICH, EDWARD A., MINGORI, TINO D.L. & MONKEWITZ, PETER A., Control of Hopf
bifurcations. Proc. of NATO ASI on Chaotic Dynamics: Theory and Practice,
Patras, Greece, July 1991,

GAMET, LIONEL, Control of a two-dimensional hot jet. DEA Thesis (ENSICA,
Toulouse) carried out at the University of California, Los Angeles, 1991.

MONKEWITZ, PETER A., GAMET, LIONEL, HENRICH, EDWARD A. & MINGORI, TINO D.L.,
Feedback control of a self-excited heated two-dimensional jet. Bull Am. Phys.
Soc. Vol. 36, p. 2629, 1991.

MONKEWITZ, PETER A., MINGORI, TINO D.L., HENRICH, EDWARD A. & YU, MING-HUEI,
Adaptive and nonadaptive feedback control of global instabilities. Proc. AFOSR
Contractors Meeting on Turbulence - Structure and Control, Coluwbus Ohio, pp.
103-106, April 1991,

HENRICH, EDWARD A., MINGORI, TINO D.L. & MONKEWITZ, PETER A., Control of
Pitchfork and Hopf bifurcations. Submitted to 1992 ACC.

HENRICH, EDWARD A., MINGORI, TINO D.L. & MONKEWITZ, PETER A., Contrel of limit
cycle oscillations with applications in fluid mechanics. To be submitted to
Int. J. Control, 1992,

2.2. Introduction and the Analysis of a Hopf Bifurcation by
Multiple Scales

Many systems in nature develop self-excited or limit cycle behavior when the most amplified global
mcde becomes temporally unstable. In fluid mechanics, two examples are a wake behind a cylinder
and a heated jet [1,2]. The goal of this research is to control the self-excited oscillations exhibited
by such systems or to induce them in globally stable systems.

For the control of flow oscillations, the primary task is the development of simplified model as the
underlying partial differential equations are too unwieldy. In Section 1 we have derived linearized
GL equations describing global modes in doubly- aad semi-infinite systems which can be extended
to the weakly nonlinear regime. When considering only a single gobla mode, the GL equation
can be reduced to a Stuart-Landau equation for its characteristic amplitude, which is an ordinary
differential equation in time. The latter can be viewed as describing the output of the probe &t
some fixed space location. The following development is carried out in this spirit and the resulting
mathematical model for control, not being specific to the wake or the hot jet, should be abie to
control limit cycles in a variety of physical systems.

A common bifurcation in fluid mechanics is the Hopf bifurcation of a steady state to a limit cycle.
In many cases, one bifurcates from the rero state to a non-sero steady-state to a limit cycle as a
parameter is increased These bifurcations are generally the first steps in the transition to chaos or
turbulence [3, 4] For a given physical system there are often design constraints which specify s fixed



region of parameter space in which one would like to operate. If this particular choice of parameters
exhibits some undesirable dynamic behavior (e.g. limit cycles or chaos) then the goal of the control
engineer is to suppress this behavior while still operating in the same parameter range. A distinction
is made between a ‘control parameter’ or ‘bifurcation parameter’ which is the parameter one uses
to study successive bifurcations and a ‘control force’ which is a prescribed function of time and
possibly space used to modify the system’s output. As an example, consider that one might desire
to suppress the Von Kérman vortex street in the wake behind a cylinder. The control parameter is
the Reynolds number which may be fixed at some supercritical value, where the wake is no longer
steady. The control force could be an induced acoustic field designed to eliminate flow cecillations.
This method uses the control force to stabilize the system in contrast to methods which modify the

bifurcation parameter until the state behaves as desired [5].

In an attempt to understand the underlying properties of control, the research reported bere
concentrates on the development of control laws for finite dimensional nonlinear systems which
undergo a Hopf bifurcation to a limit cycle. The relevance to fluid oscillations is that the finite
dimensional nonlinear system can be thought of as a finite difference or Galerkin approximation to
the Navier-Stokes equations. The Stuart-Landau equation is valid when the eigenvalues of these
approximations are well separated.

Using a multiple scale perturbation technique we derive a Stuart-Landau equation which governs
the effect of a linear regulator on a system undergoing a bifurcation. Often one does not know the
differential equations governing the system, but one does know that the system exhibits behavior
indicative of s Hopf bifurcation. In this case one still knows that asymptotically the dynamics are
governed by a Stuart-Landau equation, so that this simplified equation can be used as a generic
mode!. One can then estimate the parameters of the Stuart-Landau equation using e.perimental
data and then determine an appropriate control strategy based on this information.

The Hopf bifurcation is a branching of time-periodic solutions from an equilibrium solutior branch.
When the bifurcation is supercritical, as one increases a parameter y the equilibrium solution be-
comes unstable and a limit cycle is born. As one increases the countrol parameter further one sees more
and more complicated behavior. These successive bifurcations comprise the basis for several theories
for the transition to turbulence including period doubling, intermittency and quasi-periodicity (3, 4).
We now derive an amplitude equation for the Hopf bifurcation, the development follows that of (6).

For a physical system with a finite number of degrees of freedom, the dynamics may be described
by a set of first order ordinary differential equations in vector fo -

%f—t-) = F(X(t); ) (2.1)

where X € R" is the system state, F is a vector field and s € R is a control parameter in the oroblem.
Equation (2.1) is presumed to have an equilibrium solution Xo(p) which satisfies F(Xo(p); ) = 0.
We can then express (2.1) as a Taylor series about the equilibrium point Xo(u) so that

dx
E—:Lx-{-Mxx-}‘Nm-{--n (2.2)

where the expansion is in terms of x = X ~ Xy. For the Taylor series to be valid we need x to be
small, so thut the nonlinear terms in (2.2) are small compared to the linear terms, i.e. the system
is “weakly nonlineer”. The matrix L is the Jacobian whose ¢lements are given by

8
Lj = m(f‘;) Ix=xo (2.3)

The abbreviations Mxx and Nxxx denote vectors cortaining the quadratic and cubic terms in the
expansion. The jth component of these vectors is given by

(M), = 5 3 5%[2 6—‘}1(5 s Ixex, 24)
ok i

, 1 8 8 &
Nxxx), = 3 ; 5;?;[2 5};[5"; m(ﬂ)xm]nln 1x=Xo (2.5)

17
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We are interested in Hopf bifurcations, so we introduce some restrictions on the linear operator
L. The stability of the equilibrium solution X is determined by the eigenvalues of L. We assume
that L is stable for 4 < 0 and unstable for g > 0. By L unstable, we mean that at least one of the
eigenvalues, A, found by solving Lr = Ar has a real part greater than zero. We also assume that
these eigenvalues have nonzero transversal “velocity” when crossing the imaginary axis. That is

dRe(Mp))
du

which we will shortly see fixes the scaling for the slow time scale to be |u]¢.
We expand the linear operator in powers of p

Ju=0>0 (2:6)

L=IL®4 M JAO IS w? L@ 4... 2.7
similar expressions may be developed for M and N. The eigenvalues of L are expressed as
() = A0 4 2l 4 2P g (2.8)

The convantion that a superscript in parentheses denotes a perturbation and a subscript refers to
an index will be used throughout. The eigenvalues are complex in general and can be written as
A = o8 1 5™, Let x; and I; denote the right and left eigenvectors of L(®) so that

LO; = /\go)r,- (2.9)
;L = X0 (2.10)

For simple eigenvalues, the eigenvectors are orthogonal (1jxrs = 0 for j # &) and we can chooee to
pormalize such that I;r; = 1. We now define a small positive parameter ¢ such that g = €X' where
& = sgn(u). We can expand the state in powers of ¢ as

x=ex® 4 2x® 4 ... (2.1,

Note that the expansion starts with terms of vrder €. This follows from the assumption that che
system (2.1) is weakly nonlinear. For systems where this is not the case the equations (2.7s) are
not generally sclvable since the O(1) equation is also nonlinear. Also note that defining ¢ = /[g]
represents a balance of the relevant nonlinear terms and the linear damping or dedamping of the
critical modes.

Since the real part of the critical eigenvalue is O(¢?) it is natural to introduce a second time
scale 7 =| u| v = €31. We treat the two time scales as independent variables so that the x{*)’s are
functions of two variables {7). The rule for calculating derivatives becomes

d 8 8
E—wﬁ«re’ﬁ; (2.12)

Inserting these expansions in s and ¢ into the Taylor expansion (2.2) and equating like powera of ¢
results in an infinite set of linear inhomogeneous partial differential equations of thae form

(3% ~ LO)x(®) = xH ' (2.13)
The first few F(*) are
Ole) : FO =0 (2.14)
0le): F) = M 0x(x) (2.15)
O(): F® = 2aMOxMx® 4 NOxMx()xl) - (& - ¥ LV)x() (2.16)

Note that the F(¥)% are functions of xU) with j < & 80 that they are known functions if we solve
the set of equations in order.

18
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The lowest order problem, O(e), is linear and homogeneous, and the higher order problems are
linear and inhomogeneous. The O(¢) equation is

%xm = LOx® (2.17)

which has the solution in terms of the eigenvectors
n
xM(t,7) = Zc,-(r)exg’”‘r,- (2.18)
=1

Since (2.17) is a partial differential equation, the solution is found in terms of an arbitrary function
of the slow time scale 7. For this reason, the coefficients, c;, are allowed to depend on the slow time
scale T = ¢3¢ in standard multiple scale fashion. The higher order problems determine conditions
on these arbitrary functions in order to make the solution x(!)(t,7) uniformly valid for times of
O(1/¢). One must impose “solvability” conditions so that the solution x()(t,7) does not involve
any “secular” terms (i.e. terms which become unbounded). Since the operator on the left hand side
of (2.13) is the same for each order, the solvability condition is that we must eliminate terms on the
right hand side of (2.13) which are marginally stable solutions of the homogeneous equation.

We number the two critical eigenvalues first so that M = X9 = i(® and rewrite (2.18) as
1 2

N
xV(t,7) = A(")e™ ey + A(r)e 5, + E cj(t)e "?"rj (2.19)
i=3

where A(r) = ¢;(7) = &;(7) will be the dependent variable in a complex amplitude equation. Since
the real part of the critical eigenvalues is O(e?) the slow temporal growth or decay is absorbed in
the slowly varying amplitude A(7).

The second equation, O(é?), is

8 3y _ 10 .
5 = LOX® 4 MO0z (2.20)

To solve the O(¢®) equation we note that since (?) is quadratic it acts like an input forcing at 2uw(®)
and D.C. as wel] as other nonsecular inputs. The solution is

x® = V, A23 L v _ A2~y |AR 4+ (2.21)

.where + -+ are terms which will not cause a secularity at O(¢e®). Substitution of (2.19) and (2.21)
into (2.20) and equating coefficients of A%, A? and |A|? and solving for V., V.. and V; we obtain

V=V ==[LO < 2O MO, (2.22)
Vo = 2L~ MOy 5, (2.23)

Now we concentrate on eliminating the secular terms at order €. To do this form 1, F)(t, 1) and
then set the coefficients of ¢ equal to sero, which gives the solvability condition at order

L[2AAMO% V, 4+ 2|AP AMOr,V,

+3NOrp 5, A%A - %A:, +XL®Ar) =0 (2:24)
This can be rewritten as an amplitude equation
dA
-;;:X/\(ll)A-g |APP A (2.25)

where
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AP =1, 1O, \2.26)
g= -211M (o)i'1V+ - 211 M (°)r1Vo - 311 N (°)r1r1i'1 (2.27)
Equation (2.25) is known as the Stuart-Landau equation'.

Example: Van der Pol Oscillator
To illustrate the method, we consider the Van der Pol equstion in dimensionless form

J+ P -py+y=0 (228)
Jf we take the state to be X = [y )7 then the vector field is
01 0
F(X;p)= [_1 p]x+[ —X"Xz] (2.29)
The equilibrium state is Xo = [0 0]7, so that the Jacobian is
01 00
L=[_1 0]+p[0 1]=L(°)+pL(‘) (2.30)

and the cubic term in the Taylor expansion is
1
(Nxyz); = “3'(‘“2!/121 + 2332 + 2141 22) (2.31)

The left and right eigenvectors for the critical eigenvalue A§°’- =iarel;=4{1 —dandr, =[14]7.
The perturbation in the eigenvalue is 4\9) =L, L0)ry = 1. The coefficient of the nonlinear term

in the Stuart-Landau equation is g = =3, NOryri§, = % The Stuart-Landau equation for this
example is

dA _1 1, 0
I = 3¥A- 54141 (2.32)

The initial condition for the Stuart-Landau equation is A(0) = 3 (y(0) - i§(0)). Figure 1 compares
the exact solution of the Van der Pol equation (by numerical integration) to the asymptotic sclutior
found by solving the Stuart-Landau equation. In this figure our amall parameter is ¢ = .5. The
important thing to note is that the short term prediction using this model is very good, and short
term prediction is all that is needed for control. D

2.3. The Linear Regulator and the Nonlinear Plant

This paper addresses the problem of controlling a system by external forcing when the control
parameter is fixed by some other design constraint. We assume that the plant (subscript p) is a single-
input single-output system with nonlinear dynamic equations which undergo a Hopf bifurcation at
k=0

R~ o
v=CpXp+ Dy (32)
X, € R¥» and p,u€ R (33)

The goal of the control syster: is to return the system to its equilibrium stute which has become
open jcop unstable for p > 0. 4 bstural choice for a control system is the linear regulator as
depicted n Figure 2. The differcuticl equations governing the control system are such that the
Lapla:# irapsform of 1he impulse ~ssponse of the linear compensator (subscript ¢) 8 KG(s).

e 80 .e.i023 governng the regulator are
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Phase plane for exact solution b) Phase plane for asymptotic solution ¢) Exact solution d) Difference
between exact and asymptotic solutions
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x. = A.x. + KB (3.4)
U= chc + KDc'e (3.5)
x. € RN ande,uc R (36)

Where e = r — y is the error signal, and the reference signal is the output which corresponds to the
equilibrium solution r = yo = CpXyo + D;:. The compensator is asymptotically stable, that is, the
eigenvalues of A, lie in the open left half plane
We may expand (3.1) in 2 Taylor series about its equiiibrium point X0 so that

dx

7&2 = Lpxp + MpXpXp + NpXpXpXp -+ -+ + Bpu (3.7)
where F(X,o; u) = 0 defines the equilibrium point and x, = X, — X, is the expansion variable.
The output equation becomes g = Cpx; + CpXp0 + Dp. Combining these two vector equations into
a composite equation we obtain

L,-KB,D.C, B,C. X, + Myx,x, + NpXpX,xp + <+ - (38)
--KBc A A, X, 0 .

which is in the standard form (2.2). We assume that the plant undergoes a Hopf bifurcation at
p# =0 and that we can expand
L= IO+ L . (39)

in the usual way. We assume that we chooee a small gain such that X C, ~ O(u) and so we rewrite
K =|p| k. The expansion for the composite system’s linear operator is

L=LO4puL® 4... (3.10)
where ©)
© | Lp” BpCe
L [ 0 A (3.11)
and 0
L) = [ Lp’ —sgu(p)sB, D.Cp 0 ] (3.12)
—sgn(u)xB.Cp 0

Order the plant’s eigenvalues such that the marginal eigenvalues are first and denote the plant’s
left and right eigenvectors by L, L$” = iw®l,, and L ry, = w®r,,. The right eigenvector for
the composite matrix L® isr) = [ r], On, ] and the left eigenvector is

We compute the perturbation in the critical eigenvalue as
AN = 3 L0y = 1, LMry, — sgn(p)l, BCripx[Ce(iw® — Ac)™ B, + D) (3.14)

We can rewrite (3.14) as
AP = 20 - X6, G ®) (3.15)

where z\(,;) is the uncontrolled perturbation in the critical eigenvalue, J), = 1), BCr,, is the recep-
tivity of the critica! mode and

KG(s) = K[Cc(s] — A)"'B. + D) (3.16)
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is the transfer function of the linear compensator. We see that, in the context of nmltiple scales, all
compensators with the same gain and phase at the critical frequency have the same effect on the
plant. Note that Jj, is what is known as a “modal inuence coefficient” in structural mechanics
or the “receptivity” in fluid mechanics corresponding to the critical mode. This complex constant
determines how the control input couples to the output. The goal of the control system is to force
“in phase” to enhance cscillation and “out of phase” to reduce cecillation. The coefficient Jyp tells
us which phase is “in” and which phase is “out”.

The nonlinear term in the Stuart-Landau equation is unchanged by the addition of this linear
compensator. The Landau constant remains g = g,. Tosee this, first compute VI =[ VI, On J7
and V3 = V'{, One J¥. Then

Hence, the Stuart-Landau equation for the regulated system is

i‘;—‘: = (O = TG @) A~ g, | A A (3.18)
The preservation of the nonlinear term is a consequence of choosing the compensator gain to be
O(p)-
Example: Van der Pol Oscillator with ¢ Linear Regulator
The equation for the Van der Pol oscillator with a control force is
i+ -mi+ty=u (3.19)
The Stuart-Landau equation for the regulated system is
dA 1 . . 1 .
7 = g (X HiKG)A-5 AP A (3.20)
The method of multiple scales predicts the closed loop system will be stable for Im(KG(i)) > 1.If
we consider derivative feedback so that
u(s) = KG(s)y(s) = Ksy(s) (3.21)
then we expect stability for K > y. It is easy to check that this is in fact the exact result. If we
consider a lead compensator so that
_(8+4)
G(s) = ) (3.22)
then the multiple scales method predicts closed loop stability for
k(b - a)
VI >1 (3.23)
For 4 > 0 the closed loop system is stable for
k(b - a) K-b
1 o T (3.249)
So the multiple scales stability result is correct to O(1).
For comparison, we consider the same plant and control and determine the center manifold
reduction and normal form [8). The dynamics are
p=0 (3.25)
y=v (3.26)
V= —y+pv—ylv+u (3.27)
U= —bu ~ kA pv ~ xXapy (3.28)
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where terms involving p are nonlinear since p is also a state variable. We have a three dimensional
center manifold. The center manifold is

_ 14ab b-
u=u(p,y,v)= ::Xb2+1py nXb,+1pv+ (3.29)
The dynamics on the center manifold are governed by the equatica
. KkX(b~a) cX(1+ ab)
SR L (ST Pl 1T, BT
Reducing this equation to normal form gives
dr _p kX(b-a)] 1
s (831

which is iderrical to the multiple scales result (A = re'!/(2¢),r = &1). D

By specifying the gain of the compensator to be O(u) we have derived an amplitude equation
which explicitly shows the effect of any linear compensator on a nonlinear system near a Hopf
bifurcation. The importance of this result goes beyond analyzing the effect of a control system on
the plant. Since any plant which exhibits the features of a Hopf bifurcation is asymptotic to the
solution of some Stuart-Landau equation, we can use the Stuart-Landau equation as a generic model
for a Hopf bifurcation even when the plant equations are unknown. We can assume the plant is the
Stuart-Landau equation and then try to estimate its coefficients. We may select several compensators
in order to estimate the coefficients A(‘) and Jy, through control induced transients. Once we have
accurate estimates for these parameters we mey specify the correct phase of the compensator at the
critical frequency. That is we can determine the best G(iw(®).

Using the same type of analysis we find that equation (3.18) holds for pitchfork bifurcations as
well if we set w(®) =0 [9, 10).

2.4. An Anmplitude Equation for Parameter Estimation

To control a given physical system, we intend to use a feedback control based on a set of measure-
ments which depend on the system state. A gereral nonlinear measurement equation y = H(X) can
be written as a Taylor series

y=H? 4 HOx+ HOxx + H®x0xx + - -- (4.1)
Since x i8 O(¢), the leading order contribution is the affine equation
y=CX+D (4.2)

The leading order effect of the measurement equation is to scale the system state and provide a
D.C. bias. If the systerm we are interested in contains a small parameter p = X'¢® and exhibits limit
cycles when p > 0, we detect € not by the size of the output, but by the slow time scale and by how
far the phase plane diagram of the limit cycle is “out-of-round”. In the limit as ¢ — 0 the output
is a sinnsoid. So that in terms of the physical observation, the term “weakly nonlinear™ implies the
system Las “almost sinusoidal” oscillations. The leading order asymptotic expression for x is

X ~ c[A('r)e"‘“(o)'r; +c.c) (43)
We define Y(7) = tle output “amplitude”
Y(r) = 2¢A(r)Cr: (44)
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From equations (4.2), (4.3) and (4.4) the leading order asymptotic expression for the output is

¥(t) ~ 2eRe[A(T)Cr164" "] 4 CXo + D = Re[Y (1)) + CXo + D (45)

Equation (4.4) relates the physical amplitude Y (7) to the amplitud - in the normalized Stuart-Landau
equation A(7). We are interested in real-time estimation, so we also return to the physical time
scale t = r/e?. Making the appropriate substitutions in the Stuart-Landau equation (3.18) leads to
an amplitude equatior for Y(t)

day

o= ALY —g|lYPY 4+ JU(Y) (4.6)
where
AL = 3 () (47
—213M(°)E,V+ - 211 M(o)nVQ - 311 N(o)nn il
= (4.8)
4 IC!‘] P
J = (Cpry)(11Bp) (4.9)

and U(t) = KG(iw(®)Y(t) for the linear regulator. Note that this iz an input-output description.
The coefficient J combines the effects of control and observation like a “modal influence coefficient”
used in model reduction.
The dimensional output y(2) is recovered from (4.5). The dimensional value of the control is
given by
u(t) = Re[U()e") : (4.10)

Notice that we have eliminated the unknown parameter «¢.
The complex amplitude equation which models Eopf bifurcations is

Y=AY-g|Y|PY (4.11)

where A = A9 without control and A = AL = AOL ~ JKG(iw(®) with feedback control. One
can demodulate the measured output y(t) using a Hilbert transform to get Y (2) (8, 11). We consider
parameter estimation for the Stuart-Landau equation with transient data. We use a Lyapunov
function & =|Y |? to develop a procedure for estimating the real parts of A% and g. From (4.11)
we have

E=2A.E-2,FE? (412)

If A > 0 and g, > 0 & stable limit cycle exists. If A, < 0 and g, > 0 then the Stuart-Landau
equation is globally asymptotically stable. We expect that a feedback which makes A, < 0 in the
closed loop should stabilize the system, that is it should eliminate limit cycle oscillations.

Since we are primarily interested in controlling the amplitude of the limit cycle, it is sufficient for
our purposes to 2stimate the coefficients A, and g,. The coefficients A; and g, can also be determined
(see [11)).

To estimate the parameters of (4.12), we can approximate the derivative in order to estimatc the
parameters of the Stuart-Landau equation. Using an Euler approximation to the time derivative
equation (4.12) becomes

E(k +1) = (14 2A.A)E(k) — (29, A)E(k)? (4.13)

The equilibrium solutions of equation (4.13) are E(oo) = 0 and E(o0) = A,/g, which is the same
as the equilibrium solutions of equation (4.12), independent of the sample time, A.

So we should be able to replace the continuous time Stuart-Landau equation (4 *1) by an ap-
proximate sampled data equation in the form
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E(k+1) = 6, E(K) + 6, E(k)? (4.14)

Since this equation is linear in the parameters we can derive a least squares estimator for the
parameter vector ©. As a cautionary note, we observe that we have replaced the well bebaved
continuous time logistic equation (4.12) with a discrete logistic equation or quadratic map (4.14),
which is known to eshibit chaos for a range of its parameters. For 0 < A, < f, that the dynamics
will asymptote to the fixed point E(oo) = A,/g,. That is, as long as the sampling rate, f, = 1/A,
is larger than the slow exponential growth rate, A,, there will be no periodic or chaotic solutions to
equation (4.13) [9).
From the batch form of the least squares problem

' E2 - E:‘ . [:; ] (4.15)

Engs Eny E}

[y

we could also derive a formula for the least squares parameter estimate.

E =|Y |? is known since we can find Y by using the Hilbert transform. The estimation procedure
works best when the initial conditions are small so that we have some data in the linear growth range.
In practice this might require several parameter excursions below the critical value of y to obtain
a steady state which is a fixed point. Then we could increase y above critical and get a transient
with some data in the linear range. In principle the system could be identified by using parameter
excursions, but for the hot jet this is impractical since we cannot instantaneously change the density
of the hot fluid. A more practical parameter estimation scheme is to use a feedback control system
to induce transients.

If we consider a closed loop contro! with a fixed gain the closed loop Stuart-Landau equation is

Y = (A% - JKG( )Y - g |YPY (4.16)
We can use the same procedure on the closed loop system as the uncontrolled system to find
ASL = AL — J K coa¢+ JiK sin ¢ (4.17)

and g,. Using “control induced transients” is a more practical approach to estimation. By selecting

several different gains and phases, we can use the data from each of these control induced transients
to determine the parameters A,, J, and J, by least squares.

1 —K;cosd, K,sin ¢, A?L A,C:f‘

. . . Jr - .

Ji

: (4.18)
Ak
Once we have estimated J the optirum choice for the gain is K = 4J where 7 is a real scalar and

the overbar denotes complex conjugate. This control will use the least amount of control energy for
a fixed amount of stabilization.

i -KN;os(ﬁN Knsingy

2.5. Simulation Results

We consider a nonlinear plant which undergoes a Bopf bifurcation to a limit cycle under the action
of a linear regulator. We study the effect of controller gain (for a fixed phase) on the amplitude of
the limit cycle oscillations. We also perform a computational experiment for fixed gain and vary the
phase of the controller.

Tirst we consider the “steady-state” solutions of equation (4.6). The term steady-state in this
context refers to a steady Fourier amplitude or constant “energy” E =|Y |? of the system For a
pitchfork bifurcation this is a steady-state in time. For a Hopf bifurcation this corresponds to a
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time-periodic state or limit cycle. We write KG(iw(®)) = K¢*® g0 that the gain of the compensator
is unity at the critical frequency (| G(iw(?) |= 1). When the system is in a lim t cycle, the steady
state solution of equation (4.16) yields

Y= \/AQL —J,K cos ¢+ J;K sin ¢
9r

(5.1)

We cannot uniquely determine the parameters AL, J,, J; and g, using steady-state data. If one
normalizes by the amplitnde without control, |Y [yc= /A9L/g,, the normalired amplitude,
1YI=IY | /1Y Inc, satisfies

1¥l= \/I—IJO'-[Kcos¢+ rJngsiné (5.2)

That is, we normalize the coefficients by the growth rate, A%, which cannot be determined by
steady-state measurements. The normalized amplitude exhibits the following dependence on the

controller gain and phase:
|YI= V1= K(acos$ — fsin g) (5.3)

where a and # depend on the plant parameters via equation (4.6). A qualitative prediction from
(5.3) is that for a fixed small gain, it is easier to reduce limit cycle oscillations than it is to enhance
them using harmonic forcing. This is verified by simulations in this section and by fluid experiments
in the next section. For large gains, on the other hand, one generally destabilizes another mode and
this relation no longer holds.

Example: Van der Pol Oscillator with a Linear Regulator Simulations
We now describe the nonlinear plant mode), the Van der Pol oscillator, in state space form.

Xp1 = Xp3 + Bpu
ng = -Xp‘ + ﬂx,z - X:IXP2 + szu (5'4)
V= Cp1Xp + CpaXpa

The linear regulator consist of a gain, a band pass filter and a lead compensator in series used
as a linear regulator, that is G(s) = B(s)L(s). The band pass filter has the transfer function

(5.5)

where the parameter c determines the bandwidth of the filter. The lead compensator has the transfer

function
L(s) = T (s 4 1/T)?
T (s+T)?

The maximum lead occurs at 1 rad/sec and its value is ZL(5) = 2tan~}(1(T - 1/T)). By changing
the sign of the gain we can obtain phase changes from —180 deg to +180deg by varying T. Note
that |G|= K and ¢ = LG = LL. -

The values used in the simulation are Byy = Gp3 =0, Bpa = Cpy = 1, ¢ = 5 and 5 = .1
Changing the values of B, and C, will only change J), 80 that the gain and phase of the compensator
would have to be adjusted accordingly. The results are the same, scaled in gain and shifted in phase.
For these particular values suppression of limit cycle cscillation occurs at 90 deg phase and gain
K = p. According to the asymptotic theory, the normalized amplitude should be given by

|y|=‘/l—§—sin¢ (5.7)

(5.6)
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The data from the simulations are depicied as circles in Figure 3 and the solid curve is the value
predicted by the Stuart-Landau equation for K = .1 = u. If one increases the gain K above u then
the limit cycle amplitude will be suppressed for a range of phases symmetric about 80deg. As one
varies the gain of the compensator with a phase of £90 deg the normalized amplitude behaves as
expected, see Figure 4.

An important result for the practitioner to be aware of is that using a band pass filter which is
too narrow, will violate the assumptions used in deriving the Stuart-Landau equation. Note that
G(i) is independent of the value of c. A narrow band pass filter results when ¢ becomes smaller.
As one decreases c the filter poles move toward the imaginary axis. When ¢ ~ O(y), then the filter
poles are of the same order as the critical poles of the plant, so that they would need to be accounted
for in the multiple scale analysis, leading to an additional amplitude equation. In practice, this is
realized as a degradation in performance. This is shown for the Van der Pol oscillator in Figure 5.
As the band pass filter becomes more narrow, the limit cycle amplitude is not suppressed as well,
and is no longer well predicted by the multiple scales theory (5.7).

We now consider control induced transients to estimate the growth rate A,. To simulate the
estimation of the parameters in the Stuart-Landau equation for an unknown plant, we pretend that
we do not know the form of the governing equation (5.4). We pick an arbitrary small gain and four
arbitrary phases for the compensator G(i). Here we use K = p = 0.1 and ¢ = 60, 120, 240 and 300

60°  120° 240° 300°

Least Squares ASL 0063 .0055 .0567 .0563
Estimate dr 1003 0839 .0741 .0733

Multiple Scales ASL 0067 .0067 .0933 .0933
Computation g, 1250 1250 .1250 -.1250

Table 1: Parameter estimates for closed loop Stuart-Landau equation

degrees. The uncontrolled system exhibits limit cycle oscillations of magnitude 0.6 for p = 0.1. At
time t = 0 the control is turned on. The results are shown in Figure 6. Using equation (4.15) we
determine the estimates of the coefficients for the closed loop Stuart-Landau equation, ASt and §,,
given in Table i.

We list the true values, AS L and g,, computed from the governing equation (5.4) for comparison.
As a general rule, the ratio of A% /g, is quite close to the true value ASL /g, since the estimates for
the limit cycle amplitude are good. The growth rates are more difficult to obtain.

Using the values in Table 1 we can use equation (4.18) to find the estimates of the coefficients
for the open loop Stuart-Landau equation, A, and J, as

A, =.0312
J = —.0021-i.2021 (5.8)

The values computed from the governing equation are

Ar = .05
J=00-1i05 (5.9)

From the estimated values of the parameters (5.8) the compensator that should give marginal sta-
bility has

- -

KG@i) = t’;lj‘ = —.0008 +i.1067 (5.10)
that is X = .1057 and ¢ = 90.405 deg as opposed to the exact values of K = .1 and ¢ = 90deg
Using this value for the compensator we obtain the first time series in Figure 7 The second tume
series is for the same phase but with a gain K = .12,
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Van der Pol with Lincar Regulator: Different Bandpass Filters
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Figure 5: The effect of bandpass filter pole location on suppression.
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Figure 7: After parameter estimation we may select a gain and phase which stabilizes the plant.

2.6. Experimental Results

To test the relevance of the control scheme to fluid flow oscillations an experimental apparatus
has been studied. The plani we desire to control is a heated two dimensional jet. The details of
the hot jet facility and some of its uncontrolled characteristics are discussed in [12). It has been
demonstrated that the hot jet exhibits self-excited oscillations when the ratio, S, of the jet density
to the ambient fluid density is below a critical value S, = .95. A linear statility analysis of this
flow is given in {12] and [2]. Above this ratio the flow is laminar when there is no noise present. As
the density ratio is decreased the steady laminar flow undergoes a Hopf bifurcation to a limit cycle.
The self-excited nature of the bot jet is similar to that of the von K&rman vortex street in the walke
behind a cylinder.

‘io verify that the hot jet exhibits imit cycle oscillations which are consistent with our assump-
tions, we measured the spectral peak for several different temperatures. The data presented in
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Figure 8 shows experimental data acquired on three different days ( o, x, and +) and the least
squares fit of the data to the equation for an imperfect bifurcation

(25) w1-m1vP =0 (6.11)

To implement the control we choose acoustic forcing which acts like a point actuator at the lip
of the jet according to Bechert [13, 14] and Crighton [15] who have shown that long acoustic waves
can be converted to short vorticity waves where the flow has a strong spatial inhomogeneity. The
control actuators consist of two 100 Watt woofers, one on each side of the jet approximately 1 meter
downstream of the jet exit. For commercial applications, one would likely use some form of vibrating
plate at the nozzle exit (for an example of such an actuator ese [16]). In order to demonstrate the
feasibility of the control systems considered here, the acoustic actuators are however effective and
much less expensive,

The single, point sensor is a hot wire probe. The anemometer is operated in constant current
mode such that the output of the measurement conditioning circuit is proportional to the fluctuating
component of the temperature, TV(x,,?). The controller consists of analog filters and an Intel 486
based personal computer. Rather than separately estimete the dynamics of the speakers, the time
delay associated with the speed of sound and the transfer functions of various filters, ali the dynamics
are lumped together and considered as part of the (unknown) plant. The problem is then reduced to
estimating the plant (i.e. the coefficients of the Stuart-Landau equation) and specifying the control
system gain and phase at the critical frequency.

The sensor was located at z/H = 1.4, y/H = 0.5 and z = 0 which is upstream of the initia! roll
up of the vortices. A probe placed in the shear layer at this location has a distinct spectral peak at
about 100Hz. As the probe is moved downstream inside the shear layer one enters a region of mode
switching in which the Fourier amplitudes at 50Hz and 100H z exchange energy in time. This is
believed to be a result of vortex pairing which is not completely fixed in space. Further downstream
the vortex has paired and the primary feature of the fiow is a large peak in the spectrum at 504z,
and a smaller peak at 1004 z.

We now consider the results of experiments on the hot jet with a feedback controller. We specify
the gain and phase of the controller at the critical frequency of the uncontrolled jet. The data
in this section are steady-state in the sense that the Fourier amplitudes of the critical frequency
(approximately 100H z) are steady, that is the measured output y(t) is time periodic.

Recall that the modei for the flow’s oscillations is the Stuart-Landau equation with a control
term added Y

Tﬂ-=A°Ly--g|}'|’Y+JU (6.12)

where U = Ke*Y = KG(iw!")Y for feedback control. Since the flow is spatially dependent, the
coefficients J and g will denend on the sensor location x,. Since A%% results from the real part of
the critical eigenvalue, it must be independent of the sensor location.

As discussed in Section 2.5, we can study the validity of the Stuart-Landau equation as a model
for the plant by examining steady-state data. The Fourier amplitudes are computed from the hot
wire output in constant current mode using a spectrum analyzer. A distinct spectral peak is present
for a density ratio of § < S = .95. At a density ratio of $ = .88 the effect of controller phase has
been tested and compared to the predictions of the Stuart-Landau mode! in Figure §. The probe
is located inside the shear layer and the amplitude in the figure is normalised by the open loop
amplitude. The solid curve is a least squares fit of the data to the Stuart-Lr  au model

|¥*= p1 + pacos ¢ + pssin g (6.13)

The model is successful at predicting the response of the hot jet to different linear regulators.
The eflect of controller gain is shown in Figure 10 for the same plant parameters as were used
to study the effect of controller phase The data is curve fit to the equation (6.11) for an imperfect
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bifurcation with S replaced by K and p, and p; consistent with the normalization of Y to ).
The effect of random disturbances and unmodeled dynamics prevent the oscillations from being
completely suppressed for any value of the controller gain. The dashed line is the least-squares fit
to the imperfect bifurcation and the solid line is the perfect bifurcation (i.e. p; = 0).

Another prediction of the multiple scales theory for small gain controllers is that the eigenfunction
for the least stable eigenvalue is the same with control as for the uncontrolled cas:. That is, the
spatial structure is the same with or without control. This is verified in Figure 1i. The figure depicts
a Schlieren image with and without control.

In order to estimate the growth rate A, in the Stuart-Landau equation we must perform transient
experiments comparable to Section2.5.To obtain time series suitable for estimation of the coefficients
in the Stuart-Landau equation we start with the controller turned on at phase which causes the
maximum amplification in Figure 9. At time ¢ = 0 a digital switch switches the phase by 180deg
(i.e. multiplies the control signal by —1). The resulting transient is shown in Figure 12. The first
time trace is raw data and the second time series is bandpass filtered and displays the amplitude
obtained using the Hilbert transform.

Fifty of these transients were obtained and averaged to obtain an average for the amplitude
|Y(2)| and the instantaneous frequency $ZY (t). The result is displayed in Figure 13. Note that the
frequency shifts and becomes somewhat erratic when the controller switches to the phase for reduced
oscillation. This inhibits our ability to completely suppress the flow oscillations. If we increase the
gein further we find that a different mode is destabilized: While the mode i 00H z is suppressed,
a mode at 1504z appears. This result is generic and has also been demonstrated for the wake in
[1]).

In summary, a procedure for determining the effect of a linear regulator on bifurcating solutions
of weakly nonlinear ordinary differential equations has been developed. Using this model one can
specify the gain and phase of a linear controller to stabilize the system. One may also specifly a
controller to modify the size of the limit cycle.

Often one does not know the differential equations governing the sysiem, but one does know that
the system exhibits behavior similar to a Hopf bifurcation. The Stuart-Landau equation can then be
used as a generic model for the system. One can then estimate the parameters of the Stuart-Landau
equalion using experimental data. Different controllers can be used to provide transient data for
estimation without the need to change the plant parameters for their generation. [9, 17, 18).

Simulations of the Van der Pol oscillator and experiments on a heated two dirnensional jet
demonstrate the usefulness of the Stuart-Landau equation for control and estimation. Work is still
underway to develop a fully adaptive control scheme using the Stuart-Landau equation as a reference
model.
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Figure 8: Hopf bifurcation for the heated two dimensional jet
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3. IMPLEMENTATION OF THE CONTROL IN THE WAKE OF A CYLINDER AT LOW
REYNOLDS NUMBER - THE SWITCHING BETWEEN DIFFERENT GLOBAL MODES

3.1. Related Publications and Presentations
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stability of spatially inhomogeneous shear flows, including the effect of
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proportional feedback control on tlie wake behind a cylinder. Paper in
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3.2. The Doubly-Infinite GL Model with Control

In the following we implement the controller, developed in Section 2, in
the doubly-infinite Ginzburg-Landau (GL) model of Section 1.4. which we are
using for a cylinder wake at low Reynolds number. Since the GL model retains
the streamwise structure of global modes, the locations x  and x_of the
single sensor and of the single actuator, respectively, have to be specified.
Furthermore, as it has been shown in Section 2, the controller gain and phase
are only relevant at the frequency of the critical (most amplified) mode.
Therefore it is possible to use a simple proportional feedback on equation
(4.9) of Section 1.

Reverting to unscaled physical coordinates, the GL equation for the
amplitude A of any physical quantity is rewritten as

2 2
8A - L,8A-L 3A-L A+N |AI°A=F(x,t) , (2.1)
where, using the notation (4.10) of Section 1, the coefficients are defined as
t t 2 .
Ly(x) = -1fw (x) + w” + (o, /2)ky(x)] . with
wy(x) = W& + (1/2) [}, - (i ?/wp)] (x-x*)? and

ko(x) = ko - (0], /wg) (x-x)

1

Li(x) = wp k(%)

Xk
Ly(x) = (w;,/2)
No(x) = n_+ n, ~ complex constant with n>0 . (2.2)

In equation (2.1) we have, in addition, introduced the standard nonlinear
term, which can b: obtained from a weakly nonlinear extension of the analysis
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of Section 1 (work in progress by LeDizes and Monkewitz), ¢nd a forcing term
F(x,t). To represent the controller designed in Section 2, the forcing term is
specified as

F(x,t) = gexp(ly) 6(x-x,) A(x,,t) , (2.3)

where g is the controller gain and vy the controller phase. We note that the
forcing term (2.3) preserves the eigenvalue character of the problem. At this
point we consider specifically the wake of a oblonr ->imorph (piezoceramic)
cylinder. By applying a voltage across electrodes . top and bottom of the
cylinder, it can be moved in the direction normal to the oncoming flow and is
used directly as an actuator in our setup. Hence x -O and (2.3) expresses the
fact that the sensor signal is amplified, phase- shifted and then fed directly
to the actuator after "mild" bandpass filtering. The latter had typical
cutoffs at 0.5 and 1.5 times the dominant Karman frequency, which was
sufficient to implement the control of Section 2 because the dominant spectral
peak in the low-Reynolds number wake is at least 20dB above all other spectral
features. The oblong cylinder of thickness D=0.69mm , a chord of T=1l.68mm and
a length of approximately 100D is shown schematically on Figure la, together
with the position of the hot wire sensor at x/D=10 and y/D=1. The cylinder was
mounted across the nozzle of a high quality jet facility as shown on the

photograph of Figure 1lb.
e
(a)

Figure 1. a) Schematic of the experimental arrangement with: , oblong
cylinder; HW, hot wire. b) View of the pimorph cylinder mounted on the nozzle

of the jet facility.
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Next, the global stability characteristics of the uncontrolled oblong
cylinder wake was determined by transient measurements analogous to the ones
of Raghu & Monkewitz (1991) in a hot jet (see also Schumm, 1991). The results
are shown on Figure 2 and the correlations for the global iinear growth rate,
the linear frequency and the saturation (limit cycle) frequency are given in
the caption.

12 - 7

(ol o -
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Figure 2. Experimentally determined global stability characteristics of the
bimorph cylinder wake. a) Linear growth rate o~=0'D°/v with curve fit
a~0.123(R-Rc) . b) 0, linear frequency f“n~anD2/u Yith fic

f -9.27+O.1&2(R-Rc) ; O, saturation frequency f:n-f;ubz/u with fic

lin
£ ,,=9.2740.177(R-R ) .
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From the results of Figure 2 and an estimate of the length of the

recirculation region in the near-wake coupled with local stability
calculations, the parameters (2.2) have been estimated as follows:

R, = 79.5

x* - (1.183 - 0.031i)

w: + 6w® = (0.708 + 0.0811) + (0.0015 + 0.011i)x(R-R))

k: = (1.452 - 0.8441) + (0.018 + 0.0191)x(R-R )

Wt = (0.00175 + 0.04791)

t
W = (0.107 - 0.0651)
n/n, - -1.8 (2.4)

The ratio n,/n_1is a universal constant for a given system and is directly
related to the nonlinear frequency shift. The value of n_, on the other hand,
can be chosen arbitrarily and is related to the normalization of the
amplitude. It is noted that the above parameters have not yet been obtained
from the solvability conditions developed in Section 1 due to a lack of
precise mean flow information, but represent an a priori estimate which has
not heen adjusted to fit the experiments.

With (2.4) the linear stability of time-harmonic solutions of equation
(2.1) with homogeneous boundary conditions at |x|+e and the control (2.3) can
be investigated. As long as all free (uncontrolled) global modes are damped
the control can only be used to destabilize the system for some phase and a
gain beyond a critical gain. The situation becomes more interesting, when the
first global mode (n~0 in equ. 4.15 of Section 1) becomes unstable. In this
case the controller with nonzero gain is needed to stabilize the fundamental
Karman mode in the wake. The linear stability boundaries for the wake
parameters (2.4) and supercritical Reymolds numbers are shown on Figure 3.

53 04 Y T T T T T

thar mode

0.0§ - unstable

unsl\-ab\e. 1

78 ' 81 g4 R

Figure 3. Stability boundaries predicted from the GL model with the parameters
given by (2.4).
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The lower stability boundary on Figure 3 represents the MINIMUM gain g
required to stabilize the Karman mode at the OPTIMUM controller phase. The
upper boundary, on the other hand, represents the MAXIMUM gain below which the
system can be stabilized for at least one controller phase. In other words,
beyond the upper boundary at least one (controlled) global mode is unstable at
ANY controller phase. A typical situation on the upper boundary is shown on
Figure 4: Although the n=0 (Karman) mode can be stabilized for a small
interval of controller phases around #, the range of phases for which a
"higher mode" is destabilized completely overlaps the stabilization interval
of the Karman mode. What becomes clear from the result of Figure 3 is that the
range c{ Reynolds numbers for which our controller is able to stabilize the
system is rather limited. The reason for this is that the controller is
designed to suppress only a single mode, namely the Karman mode, under the
assumption that all other modes are well damped (see Section 2), which is
clearly no longer the case in the GL system. The fact that the controller
still "works" close to the bifurcation is explained by the very small gain
required to stabilize the weakly amplified Karman mode.

0‘015-0

l ! ]
O ™ 21

Figure 4. Typical situation for the temporal amplification rate o versus phase
on the upper stability boundary of Figure 3. —-—, amplification rate of
uncontrolled Karman mode. U, regions of instability.

The situation becomes even clearer if equation (2.1) with the nonlinear tern
and the controller (2.3) is integrated numerically to yield the limit cycle
amplitude as a function of controller gain and phase. The resulting amplitudes
for a supercritical Reynolds number of 81 are shown on Figure 5a on which the
triangular region of stabilization in the gain-phase plane is clearly visible
Figure 5b shows the correspending limit cycle frequency which illustrates the
mode switching on the stability boundary.
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Figure 5. a) Perspective view of the controlled limit cycle amplitude versus
controller gain and phase. b) Perspective view of the difference between
controlled limit cycle frequency and uncontrolled linear frequency versus
controller gain and phase. R=81, % ~0, x~2 .



3.3. The Experimental Verification of the Model Predictions

The model predictions of Section 3.2. have been tested in the cylinder
wake of Figure 1. First it was confirmed that the subcritical system could be
destabilized by the controller. This is illustrated in Figure 6 by the
transient of the sensor signal after closing the feedback loop. The processing
of the transient shown on Figure 6 b&c is described in detail in Raghu and
Monkewitz (1991) (see also Schumm, 1991) and yields the global linear growth
rate as well as the linear and the saturation frequencles. In an analogous
manner it is shown on Figure 7 that the unstable Karman vortex street can be
stabilized by our controller. In this latter case it is noted that the problem
of extraneous noise has become much more severe and starts to push the data
reduction scheme to its limits. It appears that this problem with the signal-
to-noise ratio 1s pervasive in all self-excited OPEN flows.
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Figure 6. For caption see next page.
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Figure 6. a) Transient from subcritical (stable) state to a limit cycle afrer
closing the feedback loop (linear scale on top and logarithmic scale on
bottom). R=79.2, gain g~0.01 . b) Instantaneous growth rate of transient éa
versus amplitude squared A, yielding o0=0.2 . c) Instantaneous frequency of
transient 6a versus A%, yielding £, «8.48 and f  -8.62 .
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Figure 7. a) Transient from supercritical (unstable) state to a noisy stable
state after closing the feedback loop (linear scale on top and logarithmic
scale on bottom). R=83.8, gain g=0.003 . b) Instantaneous growth rate of
transient 7a versus amplitude squared A4, yielding o=-1 . c¢) Instantaneous
frequency of transient 7a versus A?, yielding f,,,~9.6 and £ =10 .

The stability properties of the wake have been systematically explored
at several supercritical Reynolds numbers. The procedure was first to find the
optimal phase for suppression of the Karman mode, and then to increase the
gain at that fixed optimal phase, while recording the spectrum of the sensor
signal on an HP spectrum analyzer. An example of the results for R=83.8 is
shown on Figure 8. The bottom part of the figure shows the magnitude of the
dominant spectral peak u'  of the sensor signal. To provide a direct
physical interpretation of gain, it is defined as
g—v (cylinder)/u’ (sensor) , where v’ is the transverse velocity
amplitude of the bimorph cylinder which was estimated optically. The
bifurcation values g of the gain were determined ky ficting the experimental
data with the steady-state limit cycle amplitude of a NOISY system. Denoting
the amplitude of the sensor signal by |A| , the latter is given by

olal, - v|A]} +a = C with o = u(g-g) , ' (3.1)

where a represents the external noise. Hence we determine at each Reynolds
nunber the parameters p, v, g and a by least-square fitting to the
experimental results. The location of the first bifurcation at gy ~1.3 10™> has
been verified by transient measurements like the ones shown on Figures 6 and
7, which allowed to measure the linear growth rate o directly as shown in the
top part of Figure 8. This figure clearly demonstrates the existence of & gain
window from g, to g, =8.1 10"% where another globa: mode is destabilized by
the controller, and qualitatively confirms the GL model predictions.
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Figure 8. Spectral peak of streamwise velocity fluctuations at x/D=10, y/D=1
versus gain g=v’ s(cylinder)/u' s(sensor). O, Karman mode at 320 Hz;

—, equation (3.T3; - —, equ. (5?1) with a=0; ¢, "higher mode" at 298 Hz.
-—, equ. (3.1).

Furthermore, the triangular shape of the region of stability in the
gain-phase plane (see Figure 5) has been verified near the critical Reynolds
number. The result ic plotted on Figure 9 where the stability boundaries
represent the destabilization of "higher" modes since the Xarman mode is
marginally stable for the experimental conditions shown.
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Figure 9. Experimental stability boundary as a function of controller gain for
different sensor locations (phases). ) is the Karman wave length. R=79.3 = Rc.

Finally, all the exrziimental results for the stability boundaries are
compiled in the last rigure 10 which has to bte compared to Figure 3 obtained
from the GL model. Although the qualitative agreement is excellent, we note
that the experimental Reynolds number range from 79.5 to about 90, over which
wake oscillations can be suppressed, is approximately twice as large as the
theoretically predicted range on Figure 3. This is due to the fact that the
parameters (2.4) have been estimated in a rather crude manner and that no
attempt has been made to fine-tune ther for a quantitative match.
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Figure 10. Experimental stability boundary of the controlled weke in the gain-
Reynolds number plane. O, gain g=v'(cylincar)/u’(sensor) (left gain scale)
at which Karman mode is suppressed; O, gair g at which "higher mode" is
destabilized; W, amplifier gain (right gair scale) at which "higher mode" is
destabilized.
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Abatract. The b1ty of spatially-developing free shear flows 1s studied, shich are taken to b emal iy diwrging
Ve soed tuo-dimensiona) tise-periodic perturbations of such flows, which vanish st infinity 1A all spice diracitons and are
termed global wodes. Of particuler interest are flow conditions ot ehich the first of these glowe) modes Decemes limsarly
wnstadle, t.e. self-axcited Assuming that the Mopf Bifurcation at this point ts supercritics) ond thet the weel norperelle)
and nonlinear affacts ars of equs) teportance, the spatie-tampors) evolvtion of the plebel-ande amplitude 13 founc to be
poernad by 8 G1n2burg-Landey quation with varisdle cosfficients The veafulness of the mode! 13 damonatreted By Comperison
with cxparimnts 1n which the vortes shedding behing ¢ cylinder 1s wodified By fined-gain feeach Contro), ehich 15 saptly

trcerporated into the 6inzburg-landes egquation

1. Introduction

The stability of spatially developing free shear flows, such as jets and wakes, s
studied under the assumption that the basic flow is two-dimensional and fincompressidle,
and that 1ts streamwise Jevelopment, characterized for instance by its width 4, i3
*slow” on the scale of a typical fnstability wavelength A, that s ¢ » (2/8)x(dé/dx) << 1.
This means that the basic flow depends only on the transverse coordinate y and the
rescaled “slow® streamwise coordinate

X - ex . 1)

Furthermore, the non-parallelism of the flow is assumed to be mainly due to pressure or
body forces such that, in the case of viscous flows, the Reynolds number is not directly
related to «. Under the additional eassumptions of an tnfinite flow domain without
internal boundarfes and locally stable flow far up- and downstream, the linesr global
wodes have been studied by Chomaz, Huerre § Redekopp [1990a], Huerre & Nonkewitz [1950)

EUROPEAN JOURNAL OF MECHANICS. B FLUIDS vOL 10 N 2-sUppL, 1991
0997-7546 91 295685260 € Gauthier-Villars
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and Moniewitz [1990], where global modes are understood to be time-periodic perturbations
of the basic flow which vanish a. infinity in ail space directions. The above authors
have shown formally that in flows without solid boundaries the global modes are “driven®
by a "wave-maker" centered around X,, which is in general complex and defined by

dw 6w

; (kX)) =0, ; (kX)) =0 w =w(k) . )
In words, X, is a saddle point of the local absolute frequency w, (X) (the frequency of the
mode with zero group velocity) obtained from linear parallel stability analyses of the
Tocal velocity profile at each X. In physical terms the global response is driven by the
"local oscillator® at X, with frequency w, which has the "most compatible neighbors®
oscillating at the same frequency (to linear order in X-X.). The linear analysis (a paper
on the full derivation from the governing equations by Monkewitz, Huerre & Chomaz is in
preparation) shows that, far from X, global mode shapes can be described by WKB
approximations [see for instance Crighton & Gaster, 1976). The connection of the WKB
solutions «cross X, which is 3 second order turning point of the problem, is shown to be
described by a linearized complex Ginzburg-landau (LCGL) equation, valid in an 0(c*?)
neighborhood of X . The resulting eigen-frequencies of the low-order global modes are
found to be within 0(¢) of w,, which means that the flow must contain an interval of
absolute instability on the real X-axis in order to become self-excited, i.e. to support
time-amplified global modes.

In this paper, we extend the linear global-mode analysis to the weakly nonlinear
regime. Since marginal instability of a global wode, which is a prerequisite for a weakly
nonlinear approach, is generally reached far from the traditiona) parallel-flow stability
boundary, this represents » nontrivial extension of Stuart's parallel theory [see e.g.
Stuart, 1971]. So far, nonlinear effects on global modes have been studied by adding a
cubic nonlinearity to the LCGL equation in an ad hoc fashion [Chomaz, Huerre & Redekopp,
1990b]. More vecently, in an effort parallel to ours, LeDizes and Huerre [LeDizes, 1990)
have formally analyzed several situations with different relative importance of
nonparallel and nonlinear effects. In the following, we concentrate on the case in which
the spatio-temporal evolution of global modes is equally affected by nonlinear and
nonparallel effects in the neighborhood of the "wave maker® at X,.

2. The Ginzburg-Landau Equation Goveming the Evolution of Gioba! Modes

In this section we sketch the derivation of the nonlinear CG6L equation in the
reglon around X . As in the linear analysis [see e.g. H # N, 1990}, the x-coordinate and
time are rescaled according to
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€= Mxex, ) = XX, ) . (3a)
T e et . (3b)

For the present nonlinear analysis the reference location x, s conveniently replaced by
its real part x, . (see equation 5). The slow time T characterizes the evolution of a
localized initial impulse into a linear global mode. If we wish the nonlinear saturation
of a global mode to take place on the same time scale (assuming the Hopf bifurcation to
be supercritical), the maximum amplitude of the disturbance must be of order 0(c!’?) and
the stream function may be expanded in powers of ¢/%:

e v (yX) + e ey s S s 0(d) %)

As usua), the degree of supercriticality, i.e. the temporal growth rate w,,» has to
be of order O(¢). The new feature is that nonlinear effects are concentrated around the
location of maximum amplitude of the linear global mode. Henc., one has to distinguish
between 2 maximum amplitude outside an O(<*/?) neighborhood of X, anc a maximum within.
In the first case the amplitude at X {s exponentially small and the “wave maker® region
remains linear. Focussing on the second possibility, we show that {t leads to the C(GL
equation for the global-mode amplitude. To ensyre that the maximum amplitude is reached
within 0(<*/?) of X, one has to 1imit the spatial growth rate k, , to O(¢''?). Finally, for
the maxinum amplitude to be of the same order as f[e |(X)), X, must be within O(¢) of the
real X-axis. In summary, we have

x,, = o) . (5)

Vet unm ' k._‘ - ¢”’n‘_‘ . X._‘ - n-.x VR
For ¢<0(1), the mean flow is expanded around L
w2 &, 6! az"’ 32
V(Y. X) = Wy X, )+ e ;;—(y.x‘ﬁ) + e ;— ;;;—(y.xh,) + 0(e”) (6)

and the amplitude expansion (4) is introduced into the Euler or Navier-Stokes equatfons.
At order 0(c)?) the linear, parallel stability problem for the mean velocity profile at
X, yields

¥ - AT 0<y;x”) E(x,t) exp{-u“( + n“'r] + c.c. ,

)
E(x,t) » exp(ik (x-% ) - o €] ,

ar ..z 6.7
where c.c. stands for complex conjugate. As there is only a slight flow divergence within
€s0(1), the transverse structure of ¥ {is frozen and given by the linear eigenfunction
e(y.X, ). At higher order, sol.ability conditions are enforced, noting that secular terms
have to be suppressed already at O(¢) because of the nonparaliel basic flow. This yields
at 0(¢>?) the CGL equation with j-th degree pclynomials @ (¢) as coefficients.

2
A %A A -2(s, € - B, T)

=Gt 0 ({) =+ Q) At e ' IAA - F(E,T) (8)
aT a¢t LY
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The forcing function F(¢,T) has heen added here for later reference. The linearized
version of (8) with F-0 yields a spectrum of closely-spaced global eigen-frequencies
Vg = @, .+ ¢[10,  + 0" +n0"") with quantization at O(c) ! The associated linear global

modes are products of a Gaussian and Hermite polynomials of degree n [H & M, 1990].

Before closing this discussion, a comment on the solution far away from X, is in
order. For |X-X [=0(1) the global mode amplitude is exponentially small compared to its
maximum, There, v, takes the form of linear WKB approximations [C & 6, 1976)

1
et o ) AMX,T) 64 (yiX) oxp[—lk’(X)dX - m._,:] . (9)
[4
where o, and '1‘ are the subdominant solutions far up- and downstream of X, respectively
[H & M, 1990]). The amplitudes A*(X,T) are govirned by first-order PDE's and have to be
matched to the spatio-temporal amplitude A(¢,T) obtained from (8). This reveals the only
*blemish® of the present analysis as this matching cannot be carried out amalytically. It
can be argued though, that the #* only play the role of “passive tails".

3. Application to Proportiona! Feedback Control of Vortex Shedding Behind a Cylinder

TJo {ilustrate the predictive power of the CGL model we present a comparison with
feedback experiments in the cylinder wake, which will remain qualitative in this paper.
As in most practical setups, one actuator and one sensor, typically located downstream of
the actuator, are specified. For simplicity we assume that both are within an 0((*/3) of
X,, that the sensor or probe measures directly A(E=£,.T), and th-t the actuator acts at a
point ¢, and, in the transverse direction, just forces the eigenfunction oy:X, ). Such a
proportional or constant-gain feedback is represented in equation (8) by the forcing term

F((.T) ~ g expliy] §(£-€) AL~ TY . (10)

The feedback gain g and the phase shift y incorporate fin practice both the (complex)
electronic gain and the °receptivity® of the flow to the actuator. It is noted in passing
that this model applies to physical setups with arbitrary lead- or lag compensators, as
only their gain and phase shift at the *carrier frequency® v, , dre relevant. This model
{equations 8 and 10) in its linear form 'ias already been studied by Monkewitr [1989]) and
has shown interesting generic behavior: When all global modes are linearly stable at zero
gain, feedback destabilizes the system beyond a critical gain, which increases as the
system becomes more stable. The main point is that it is zlways a higher mode o (n>0)
and not the least stable mode o, that is destabilized by feedback. Therefore, in the
situation of an n-0 mode which is unstable at zero gain, one finds a “gain window® where
g is sufficient to suppress the growth of the n«0 mode (at, say, the optimum phase angle
v), but is sti11 below the critical value at which higher modes are destadbilized. This
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window narrows as the degree of supercriticality (e.g. the Reynolds number) is increased
and control is typically lost not far beyond critical conditions.

To test these results, experiments have been conducted in the wake of a cylinder, a
flow which satisfies the model assumptions quite closely [see e.g. Monkewitz, 1988], A
*Bimorph-transducer® of thickness D=0.69mm, chord T«1.68mm and a length of approximately
100D, already described by Rerger [1967] [see also Berger & Schusm, 1988], served as
cylinder (see figure 1). By applying a voltage between electrodes on top and bottom, the
cylinder was oscillated in the transverse bending mode and served as actuator. The probe
was a constant temperature hotwire Jocated at x/D=]10 and y/D=]. Its signal was
linearized, passed through an amplifier/phase shifter and fed to the Bimorph-transducer.

U y l‘%
’ X
— —
—
ct

Figure 1.  Schematic of the experiments) arrangement with C , oblong cylinder , W , hot wire

For the experiments we focussed attention on the suppression of Karman vortex
shedding, {i.e. on the supercritical regtme with Reynolds number Re>Re , where
Re.,*79.5 for this oblong cylinder [B & S, 1988]). In the course of the study, the main
qualitative predictions of the model were confirmed: First, we found at slightly
supercritical Reynolds numbers a gain window in which the fundamental Karwman mode could
be suppressed. The result for Re~83.8 §s shown on figure 2. The bottom part of the figure
shows the the magnitude of the main peak u'_ in the streamwise velocity spectrum, as
measured by the hotwire probe, versus gain. To provide a direct physical interpretation
of the gain, it is defined as gev'_ (cylinder)/u’_ (probe), where v’ _ 1is the transverse
velocity amplitude of the Bimorph transducer, which was measured optically. The phase
shift y was held constant at {ts optimal value. The bifurcation values g,  were
determined by fitting the data with the steady-state limit-cycle amplitude jA] at =<,
obtained from (8) and defined by

olA]l - viAP +a =0 o= p(gg,) (11)

To account for the external noise (freestream turbulence) that keeps exciting the Karman
mode beyond its neutral point, a forcing term o has been added to the other fitting
parameters u, » and g, fn (11). The locatton of the first bifurcation at g «1.3 107
has in addition been verified by transient experiments in which the global linear growth
or decay rate o was determined directly. The figure clearly shows the gain window
extending from g, to g,«8.1 107> where another global mode fs destabilized, as
qualitatively predicted by the model. In addition, we also confirmed the second wain
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g X 103
Figure 2. spectra) pesk of strasmeise velocity at x/0:.0,

y/Del versus gain gev'(cylinder)/u’(probe) O , Karman motle
at 0K, , equ (11}, = =, equ (11} with aed
0 , “higher mode™ at 298 Hz ; ~+— , equ {11)

prediction that control is lost
relatively close to Re_, , by showing
that suppression of vortex shedding in
our setup 1s only possible between
Re_ .. and Re~90.

crit

4. Conclusions and Acknowledgements

This study demonstrates that a
relatively simple weakly nonlinear
model of wake oscillations is capable
of capturing the rather complex
dynamics resulting from the addition of
feedback. The next step will be a
quantitative comparison between the
model, with  coefficients  either
determined from stability calculations
or  measured, and the present
experiments. Further ahead, the success
of Ffowcs Williams and Zhao [1989] in
suppressing Karman vortex shedding at
eight times Re_ ., , where the situation
s greatly complicated by turbulence,
awaits explanation.
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Control of Hopf Bifurcations

Edward A. Henrich, D. L. Mingori and P. A. Monkewitz
University of California, Los Angeles

1 Introduction

|
I Many systems in nature exhibit self-excited oscillations or limit cycle behavior. The
bifurcation from a steady-state to a limit cycle is generally the first step in the tran-
sition to chaos or turbulence. For a given physical system there are often design
I constraints which specify a fixed region of parameter space in which one would like
to operate. If this particular choice of parameters exhibits some undesirable dynamic
behavior (e.g. limit cycles or chaos) then the goal of the control engineer is to sup-
I press this behavior while still operating in the same parameter range. A distinction is
made between a ‘control parameter’ or ‘bifurcation parameter’ which is the parameter
l one uses to study successive bifurcations and a ‘control force’ which is a prescribed
function of time used to modify the system’s output. As an example, consider that
one might desire to suppress the Von Karman vortex street in the wake behind a
l cylinder. The control parameter is the Reynolds number which may be fixed at some
supercritical value, where at the desired operating speed the wake is no longer lam-
inar. The control force could be an induced sound field designed to eliminate flow
' oscillations. This method uses the control force to stabilize the system in contrast to

methods which modify the control parameter until the state behaves as desired [1).

2 Control System Analysis

For a physical system with a finite number of degrees of freedom, the dynamics may
be described by a set of first order ordinary differential equations. Written in vector
form

dX(t)

5 = F(X(t); u) + Bu(t) (2.1)

y=CX+D (2.2)
X e R and p,u,y€ R (2.3)

where X is the system state, F is the vector field, u is the control force, y is the
measured output and u is a control parameter in the problem. Equation (2.1) is
presumed to have an equilibrium solution Xo(u) which satic.ies F(Xo(p); p) = 0. For
g > 0 we assume the system undergoes a Hopf bifurcation to a limit cycle. The
goal of the control system is to return the system to its equilibrium state, which is

unstable for ¢ > 0.




r(t) 4+ ¢(t) | Linear Compensator w(t) | Noolinear Plant ¥t)
= X =F(X;u)+B«
A u(s) =144G(s)e(s) | y=cx 40

Figure 1: Block diagram of the control system

One method for controlling a set of ordinary differential equations which depend
on a control parameter p is to let the value of the control parameter be governed by
a differential equation. The time derivative  depends on the state of the system and
a gain specified by the designer. If the gain can be chosen such that y drops below
the critical value, then the n 4+ 1 dimensional system will be stable. This procedure
is described in [1].

The goal of this research is io control the system by external forcing when the
control parameter is fixed by some other design constraint. The control system which
is studied is the linear regulator as depicted in Figure 1. The differential equations
governing the control system are such that the Laplace transform of the impulse
response of the linear compensator is pG(s).

The action of the control system is studied by using a multiple scale perturbation
technique [2, 3]. We consider the case where the real part of the critical eigenvalue
is O(€?). In this case it is natural to introduce a second time scale 7 = €*t, where
p = €*sgn(u). We treat the two time scales as independent variables so by the chain
rule the derivative becomes

d 8 ,0

-a—a-a—t'-{'c-a—; (2.4)

We use this formula and expand (2.1) in a Taylor series in X — X, and pu. Upon
equating terms multiplied by like powers of ¢ we obtain a sequence of inhomogeneous
partial differential equations. The elimination of secular terms leads to a solvability
condition which governs the slow time evolution of the amplitude of the limit cycle
oscillations. The solution on the center manifold is

X(1) ~ Xo+ €A(T)e™'r + €A(1)e™“'F (2.5)

where w, is the imaginary part of the critical eigenvalue and r is the ccrresponding
right eigenvector. The solvability condition can be written as an amplitude equation
dA

= = (sgn(s)A = 1BCr Gliwc))A - 3 | A" A (2.6)




where ) is determined by the real part of the eigenvalue of the Jacobian of F, § is de-
termined by the nonlinearities, and the receptivity IBCr is determined by the manner
in which the control force couples to the measured output (1 is the left eigenvector
of the marginal mode). In fluid mechanics this type of equation is known as wLc
Stuart-Landau equation.

An important thing to note in equation (2.6) is that the stability of the fixed
point X is governed by the control system only near the critical frequency w,. In
particular, the entire class of control systems with the same gain and phase at the
critical frequency are equivalent. The particular gain and phase required of the control
system at the critical frequency is determined by the stability of the uncontrolled plant
(i.e. A) and its receptivity from measured output to control force (i.e. 1BCr).

3 Estimation and Control

The results of the previous section demonstrate the effect of a linear regulator on
a nonlinear plant which undergoes a Hopf bifurcation to a limit cycle. In deriving
the result, we assumed that the system equations (2.1) were known. If the system
equations were known, we would likely use one of the standard control design methods
for nonlinear plants (e.g., describing functions or Lyapunov’s direct method). The
more interesting situation is when the model for the system dynamics is unknown,
but what is known is that the system exhibits limit cycle behavior. In this case,
it is useful to think of the Stuart-Landau equation (2.6) as a generic model for the
dynamics which are asymptotic to the center manifold. In many physical applications
the measurement consists of a time history of a single variable. In these cases, the
state X(t), A(7) ard the eigenvector r may all be unknown. This difficulty is easily
overcome. Defining Y (t) = 2¢A(7)Cr, the leading order asymptotic expression for

the output is _
y(1) = Re[Y(1)e"*']+ CXo+ D (3.1)

(see (2.2) and (2.5)). Returning to the physical variables, one obtains an amplitude
equation which is useful for describing the measured output of an experiment in terms
of a dynamical system on the center manifold

dY

- = p(sgn(p)A = 1BCr G(iw))Y —g |[Y P Y (3.2)
or dY
== (A=JG(w))Y —g|YPY (3.3)

where A, J and ¢ are unknown complex constants.

To estimate these constants from experimental data one needs a method for ob-
taining Y(t). One way to obtain the amplitude signal Y(¢t) would be to create a 90
degree phase shifted version of the output y(¢) as §. The modulus of the complex
signal §(t) = y(t) + i5(t) is |§(t) |=| Y(t)|. We define an analytic signal as a complex




signal of a real variable whose real and imaginary parts are Hilbert pairs [4]. This
analytic signal is just an extension of the ‘rotating vector’ or ‘phasor’ used in circuit
analysis and systems engineering. The Hilbert transform is

PV / ”’(’ g = t*y(t) (3.4)

where * denotes convolution in time. Defined this way the Hilbert transform of a real
time signal is a real time signal. Taking the Fourier transform of (3.4) we have

F{H{y}} = ~isgn(w)F{y} (3.5)

which shows that the Hilbert transform is indeed a 90 degree phase shifter. From
(3.5) we find that the Fourier transform of the analytic signal is

2F{y} w>0
Flg}=4 Fly} w=0 (3.6)
0 w<0

Hence we can obtain the analytic signal §(t) by using (3.6) and an inverse Fourier

transform
(1) = FH{(1 + sgn(w))F{v}} (3.7)

We use the analytic signal to find the ‘envelope’ of the output and its ‘instantaneous
phase or frequency’. The envelope is just |§| and the instantaneous phase is £§. So
we can identify our complex amplitude as

Y(t) =|j|e*® (3.8)

where ¢ = (§ — w©t. The Hilbert transform represents a means of obtaining the
demodulated output Y(t) from the output y(t) off-line. Equation (3.3) is solvable
for Y(t) as an analytic function in terms of the coefficients A, J and g so there are
several means to estimate the parameters of the Stuart-Landau equation once we have
obtained Y'(t) from y(t) using the Hilbert transform.

The estimation and control scheme may be demonstrated using the Van der Pol
oscillator as a model plant. The plant is

J+ (P -pity=u (3.9)

The plant equation and the differential equations for the linear regulator are inte-
grated using a fixed step fourth order Runge-Kutta algorithm. We use several test
values of G(iw,) to identify the system parameters A, J and g. Once the parameters
have been estimated, we use this model of the dynamics on the center manifold to
select the optimum values for the controller gain and phase. The results of the final
controller are depicted in Figure 2. The solid curve is the measured output y(t) and
the dashed curve is the control force u(t).
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Figure 2: Stabilization of limit cycle oscillations

4 Conclusions

A procedure for finding a model for data which lies on the center manifold has been
developed. Using this model one can specify the gain and phase of a linear controller
to stabilize the system. One may also specify a controller to modify the size of the
limit cycle.

Previous work with wakes and jets have shown the Stuart-Landau equation to
be a good model for the dynamics on the center manifold [5). We are currently
investigating the results of this paper using a heated two dimensional jet experiment.

The research described in this article was performed under AFOSR contract §9-
0421.
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