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Abstract. The paper addresses the performance of square elements of type

Q(p) and Q'(p). (The Q(p) resp. Q'(p) are elements of degree p analo-

gous to the well known 9 and 8 noded elements for p = 2.) The performance is

analyzed theoretically for the class of analytic functions. Numerical experi-

ments confirm the conclusions drawn from the theory. The computational com-

plexity of a solution algorithm is studied using timings of the computation on

an Alliant FX/8 computer. The data show that high order elements are

preferable.

1. Introduction.

The difference between the performance of the 8 noded and 9 noded quadri-

lateral element has been directly and indirectly addressed in various contexts

in the literature. The 8 noded element is sometimes called the serendipity

element. In the mathematical literature [i the 9 noded element is denoted as

the Q(2) element while the 8 noded element is denoted as the Q'(2) element.

Analogously, we can define elements Q(p) and Q'(p) for the general degree

p t 2. As we will see in Section 2, the Q'(p) element is the element with

minimal number of internal shape functions, while in Q(p) additional inter-

nal shapes are present. Of course, in general we can have less or more inter-

nal shape functions, in principle up to an infinite number of them. A natural

question arises about optimal selection of the number of internal shape func-

tions. This question is especially important in the context of the h-p ver-

sion of the finite element method and its adaptive features.

The performance of the Q(p) and Q'(p) elements (and others, which

differ by the number of the internal shape functions) can be compared from

various points of view. In [21, [31 we addressed in detail the differences

among various aspects of implementation on parallel computers. In [2], [4] we
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addressed the question of the performance of Iterative procedures. Here, In

this paper we will be interested primarily in the question of the approxima-

tion properties (in the H -seminorm) of the Q(p) and Q'(p) elements and

their computational effectivity for achieving prescribed accuracy.

The question of which element is preferable cannot be answered in general

(see Section 8). This question can be addressed only in relation to a class

of functions to be approximated. This class has to be adequate to the prob-

lems solved in practice. In this paper we consider the class of analytic

functions. This class is very natural for static structural mechanics prob-

lems where the solutions satisfy an elliptic differential equation with piece-

wise analytic right hand side and boundary conditions on a domain Q with

piecewise analytic boundary. The performance of the Q(p) and Q'(p) ele-

ments will be related to distance of the element to the boundary of the ana-

lyticity domain of the approximated function.

Obviously the Q'(p) element has a smaller number of the shape func-

tions. Hence, we can ask what is the smallest number X > 1 such that the

Q'(Rp) element yields a better approximation than the Q(p) element for a

particular approximated function (or class of functions). The number X can

be used as a natural comparison index. We can use this index together with

some other complexity indicator to assess the computational performance. For

example in [2], [31 we have used the value X =Vr2 when we analyzed the com-

plexity of parallel computations.

In this paper we will present a theoretical upper estimate for the index

X when the approximation is measured in the H -seminorm. Further, we will

present the results of various numerical experiments on a model example. In

additions, some comparisons between quadrilateral and triangular elements will

be given, as well the relation between the mesh sizes and the degree of ele-
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ments leading to the minimal computational cost for a given requested

accuracy.

2. The Q(p) and Q'(p) elements.

Denote by S = {IxI < 1/2, lYI < 1/21 the unit square and by r, i =
4

1,2,3,4 its sides, as indicated In Figure 2.1; let r = U r, = aa
-- 1=1

y

N 2  r2 N1

x

r4

N3  4

Figure 2.1. Scheme of the square domain.

In contrast to (1], we define the spaces Q(p) and Q'(p) via listing

the nodal, side and-internal shape functions as Introduced in [5].

ax) The Q(p) elements. Here we define

a) the nodal shape functions associated with the nodes NI:

N 1 : #1 (x,y) - (1/2+x)(1/2+y),

(2.1) N2 02 (x~y) - (1/2-x)(1/2ey),

N 3  03 (x,y) - (i/2+x)(1/2-y),

N: *4 (x,y) - (1/2-x)(i/2-y).
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b) the side shape functions associated with the sides rl:

r 1 : Olj (x.y) - P (y)(1/2+x), j = 2,...,p,

(2.2) r2 : 02,j(x'y) = P (x)(1/2+y), j = 2,3,...p,

r3 • 03,J(x'y) = P (y)(1/2-x), j = 2,3,...,p,

r 4 : 04,j (x,y) = P i(x)(1/2- y), i = 2.,...,p.

Here P (x) Is a polynomial of degree j such that Py (±1/2) = 0.

Specifically we use, P (x) 2 J Lj (t)dt, j = 2,3,... ,p where

L (t) is the Legendre polynomial of degree J. For more see e.g., [5].

c) The internal shape functions for the Q(p) element:

(2.3) pjj(x,y) = Pi(x) P (y) ij 2,... ,p.

The space of the Q(p) elements Is the span of its nodal, side and internal

shape functions.

9) The Q'(p) elements. Here the nodal and side shape functions are

the same as In the family Q(p) I.e., they are given by (2.1) and (2.2).

c') The internal shape functions for the Q'(p) element:

Pi,j(XY) = PI(x) Pj(y), i,J, a 2, i+j s p.

The space of the Q'(p) elements is the span of Its nodal, side and shape

functions.

The Q(p) and Q'(p) elements can be described by listing all of the

monomials belonging to their space. We can visualize them In the Pascal table

of Figure 2.2.
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Figure 2.2. The Pascal table for the Q~p) element.

Every bullet in the Pascal table depicts the term x~p J  The Q(p) element

is then associated with the set of the bullets in the diamond area shown in

Figure 2.2. The value of p is shown there too. Analogously we depict the

Pascal table for the Q'(p) element (see Figure 2.3).

0s.1 23 4

0 O v Ox.,.

Figure 2.3. The Pascal table for the Q'(P) element.

The Q'(p) space is the smallest space of polynomials including the polyno-

mials of total degree p and the side functions which are polynomials of

degree p on one side and zero on the three others.



It Is easy to compute the dimension of the spaces Q(p) and Q'(p). We

have

Dimension of Q(p) = (p+1)2

Dimension of Q'(p) = 4 for p = 1

8 for p - 2

4p + (p-2}(p-3) for p x 3
2

In the next section we will also employ the space Q(p,q) = Q'(p,q),

with

Q(p,q) = Q"(p) e Z(q)

Z(q) = span{Pi(x) P (y), 0 S i,j s q}

and

Q'(p,q) = Q"(p) * Z'(q)

Z'(q) - span{PI(x) P (Y), 0 S i+J S q}

where Q"(p) Is the span of the nodal and side functions only. We have

Q(pp) - Q(p) and Q'(p,p) = Q'(p). The spaces Z(q) and Z'(q) consist

only of Internal shape functions.

We also introduce

1
Q(p,M) - Q"(p) * H*(S) - Q'(p,m)

where H (S) Is the standard Sobolev space with zero traces on r.
0

3. The model problem.

Let x + iy - z e C, z0 M(1+1), a>I and

(3.1) w (a) (z) I + I a +

Sa 2_(z+zo)2 a 2+(z+zo) 2  a2_ a2+1]

(a)
The function (z) is a holomorphic function of the complex variable z
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on S - {IxI < 1/2, tYl < 1/2). Denote

(3.2) (a) = Rew (a) (a) =Im w(a)
Uo 0 0 0

then u (a) d v (a) are harmonic on S.
0 0

Let H (S) be the real (or complex) Sobolev space. For u,v e H (S)

let

(3.3) [u,v] = f (Vu -W) dxdy

(3.4) lu1 2 = SlVul2 dxdy

be the scalar product and seminorm In H1 (S). From the Cauchy-Riemann condi-

tion we have

I (a) I ( IV(a)
u I

and

(5(a)12 (a) 2 (a) 2
(3.5) Iwo I 1U0  I + Iv0  1

Let us consider the Neumann problem for the Laplace equation on S

(3.6) -Au - 0 on S

(3.7) 8u o
--n g on fl8n

(a) Beasthwhere g Is such that the solution of (3.6) and (3.7) Is u 0  .Beasth

solution u of (3.6) and (3.7) Is determired up to a constant, we will assume

that u(-1/2, 1/2) - u a)(-1/2, 1/2). Note that we are interested in the

seminorm 11, and hence this constant is not essential.

For any a > 1, 0 uu 0  G H1 (S) for any multindexUO ax"IoqyU2

=( (al2) ' ' O, 42 & 0, integers, II1 a1 + a2. Nevertheless as

a-- 1, IDOu(a)--gu and hence u(a) becomes less smooth as a decreases.
0

The function u (a) Is analytic on 9 and its analyticity domain Is Q =
0
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R2\{z - ta - zO , ±ia - z o. This function is a typical representative of the

solutions of elliptic PDE problems in two dimensions. In practice such solu-

tions are analytic with singularities only at a finite number of points on the

boundary of the domain, e.g., where the boundary has corner or the boundary

condition type is changing.

We will be interested in the performance of the finite element method for

solving (3.6) and (3.7) where the exact solution is u (a) and the mesh con-
0

sists of squares with sides of length - (i.e., S is divided into I

squares).

Let

0'(p) = fu e Q'(p)I u is harmonic polynomial).

Obviously we have

(3.9) Q(p,W] Q (p)

(3.10) Q,'p) D (p).

We denote by u(a) (MO p ,  u (a) Q ' (p) ,0 u(a) [p,M),f}, u (a)c 'Cp),t)

u0  (Qp,) 0  u0 Qp, U U0

the finite element solution of (3.6) (3.7) using the respective Q(p) and

Q'(p) element etc. on the mesh consisting by t2 squares. The finite element

solution is the projection of u (a) on the ret of finite element functions.
0

We will impose the constraint at (-1/2, 1/2) that the finite element solution

coincides with the exact solution u (a) to get uniqueness. This constraint
0

does not influence the seminorm 1'I.

Denote

(a) (a)
(a) 1u 0  U 00

a- (a) I
u0

and analogously 1 (a)(Q('{p,) ,.(a)(Q (P,.), , n(a)(0(p),t). For any a >



I we have

(a) (a) (a) (a)

and

7(a) (Q(2p) ) s 71(a) (Q(p)e)

Let

(3.11) H(a) (p,t) - inf {r, > I1 T (a) (QCp},t) :S1 (a) (Q(p),0)

The Index X(a)(p,) Is a good characterization of the performance of the

Q(p) and Q(p) elements relative to the function u (a) (and mesh composed
0

by ? elements)

Let us further define

(3.12) 7r(a) (p,t) -Inf for, W>1 I n (a) (WOMpl :S 71 (a)(QMp,M), )1

Obviously Iap,) (a) (p,) and hence 7 (a)(p,) is an upper bound for

(a) (p,L).

If i - I we often will not write the Index f. For example, we will

write V (a)(Q(p)) Instead v (a)(Q(p),t), 7r(a)(p) Instead . (a) (p,i), etc.

4. Asymptotic estimate of 3r(a)(p), f 1.

Let

(a) . (a) / (a)
(4.1 A} I (- """ N 11/ lu

( ,SP1 (p) H (r,)

Here PI (p) is the set of all polynomials on r,, I - 1,2,3,4. of degree

p. By 1.1 1 Inf 101. AI(9) - (0 is harmonic on S andH1/2(r A
H (r,) **A1 (V)

-= on r I } we denote the standard H 1/2(r ) seminorm of the traces on
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I* Then by the extension theorem we have

(4.2) 71(a) (((p,.)) max A (a)(P))" p(a)(p).

1 sis4(

Further we have

(43)(a) (a) (a)
(4.3) lua Ina(i'(p)) s inf IWoa-wIwdC (p)

where Q (p) is the space of all complex polynomials of degree s p.

Now we apply the classical theory of approximation of functions in

complex domain 16]. First we will consider the approximation on r . To this

end let

I-{z - x + ly, I s 1/2, y = 0} c C

and

aI.-{z e C, z E I}

The function

(4.4) o() (4 + ,- + iv

maps the 7 = { I I 1 > 1), i.e., the outside of the unit circle in the

C-plane) onto Q

Let V(z) be a holomorphic function in a domain 1) c C, I c V and

V(z) is real for z e I. Define *( ) - p(€( )). Then (C) is a

holomorphic function in an annulus

ER - {f I 1 < ICI < R1

for certain R which depends on the domain of analyticity 1) of the function

9. We assume that is the largest possible annulus, i.e., (C) is not

holomorphic in the annulus E+C for any c > 0.

From [61 §5.2, Theorem 3, we have for any c > 0 and k = 0,1
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'~ (102'1/2
(4.5) C (c)(R+c)-P inf I Pk'-w 2 dx s C2(c) (R-e-P1 PO (p) (fJI

where P C(p) Is the set of all complex polynomials on I of degree s p and

C(C), C2 (c) are constants independent of p.

Using the standard interpolation theory in Banach spaces (7] we get from

(4.5)

(4.6) CI (c)(R+c)-P s inf P-w 1 1/2 s C 2(c)(R-)-P
WGP (p) H )

Here J(x,Y)j ( J(x, y+1/2)I We note that if ((x) is real

on I then we can replace in (4.5) the space Pc (p) of complex polynomials

by the space P(p) of real polynomials.

For I = 1 let

w1 (z) - W (x+iy) - [w(x+iy) + w(1-x+iy)j,

then w (7) is a holomorphic function in a domain V 1 c C, r c ) and

w1 (Z) - u0 (z) for z * r1. Analogously we define wi (z) , i = 2.3,4. We

use now (4.6) for the functions wi(z) instead of v(z).

Relation (4.6) now leads in our particular case immediately to the

estimate

(4.7) C1 (c)(R (1)+€)-P A (a)(p) S C2 (c)(R(
1 )-c)-p

where

(4 .8) 1 min [l11Y ,1C2 1]

with

- (a - 1) + 1/2
1

O( ) " + i(a-1)

Then we get from (4.2) and (4.7)

(4.9) J(a) (p) a C(c)(R(1)+C)-p

11



Because for large we have

(4.10) 1

we get for large a

(4.11) 1(a) (Q(p,W)) a C1 (c(4a+ )- p

We will now consider the estimate for V(a)(,(p)). By the same argument

as above let 0() denote the conformal mapping of the outside of the unit

circle 7 onto the outside of S. Using the Schwarz Christoffel formula (see
[81,[9]) we get with i0 =vrO' I I = 1

-2 1/2 2 +2.1/2dz 0:2_Zo 0 +Zo0

(4.12) - = ( c )

with c - 0.591 obtained by numerical integration. The function e( ) now

plays the same role as the function O(C) in (4.4).

Let

(4.13) R (2 ) = min IC()l1
1:sis4

where

(1) a + z0

CC (2)) n -a + z0

00C (3)}= ia + z0

O( (4)) . -ia + z0

Then we get analogously as before

(4.14) v(a) (,(p) s C2 (1(R (2) C) - p .

Because for large we have

( 0.591

12



we get for large a

(4.15) (a)(,(p)) S C2 (c)(0.591-1a-) - 1 = C2 (e)(1.692a-c)
p

Remark 4.1. From the Lindelf principle, we always have R > R(2)

From (4.11), (4.15), and (3.12) we see that for large a,

(4.16) 31(a) (p) S

where

(4.17) (1.692a)P> C1 (C)

(4a)P

~ 1 nd hnce(a)
and hence for large a and p we get 1 w I and hence also H 1.

On the other hand it Is easy to see that for small a, R 1 - 1 =

O((a-1) 1/2) and R(2)_1 = O((a-1)2/3). Hence for small a P--*w and we can

expect that with decreasing a, H will grow. Of course always H s 2.

5. Numerical examples. Performance of the Q(p) and Q'(p) elements In the

p-version - I - 1.

In Figure 5.1 we show the graphs of v (a)(Q(p)) and -q(a)(Q,(p)) as

functions of a and p In the scale lg n(a) x p. This scale is associated

with the expected behavior -q(a) w (R(a))-p in which case we would get a

straight line. In Table 5.1 we give the values of R(i), I 1,2, with

(a)Q (p,C) (R(1 ))-  from (4.8) and with n(a)( ,(p)) u (R 2))-p from

(4.13).
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100 ___

50-

20- IQ ._S..oi._ a= 1.05

a= 1.05 .: a= 1.101 0 - %, , % " " )

5 a, 1.10

. , a= 1 . 1.1

. 2- \4- %
1-__, _ ,__% Q (p)0-0 Q, (p)

0.5l
I

0.2-

a= \ ,a= 1.50 %
1 - % - a= 1.500.1-a _

=2.0

0.05- 
a= 2.0

a= 2.0

0.02- a= 2.0

2 4 6 8 10 12 14 16

Degree p

Figure 5.1. Performance of the Q(p) and Q'(p) elements for various a.

Table 5.1. The rates R M i = 1,2

a R (1 ) R (2 )

1.05 1.39 1.13

1.10 1.60 1.25

1.50 2.81 1.86

2.00 3.97 2.38
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In Figure 5.1 we also show theoretical slopes for *(a)(Q(p,w)) and

(a&(p) which are expected approximations of the rates of 4(a) (Q(p))

and 7(a)(Q(p)) respectively. We see that in fact the theoretical slope of

S(a)(Q(pm)) is close to the one of (a)(Q(p}} (but Is slightly larger) and

the slope of V(a)(Q(p) is slightly larger than that of (a)( &(p) as

should be expected.

100-

S-xQ (p)

A a= 1.05
Sr I__ 

__20

S10--- -6 t
6C

2 3 4 6 8 10 14
Degree p

Figure 5.2a. Comparison of the performance of the Q(p) and Q'(p)

elements for a - 1.05.

Figure 5.2a shows the error n (a)(Qp)) and 71(a)(Q(p)) on a lg,7 x

lg p scale for a a 1.05. We see that the curves are nearly parallel and

71 (a) (Q'CPoCrp) ) ) = .4 (a ) (Q~p ) )

where for small p, o(p) w 1.8 and for larger p, a-(p) z 1.4. Figure 5.2b

shows the analogous graphs for a - 2.0. Here we see 1.3 < v(p) < 1.6. This

15



indicates, as the analyses support, that a decreases as a increases,

i.e., as the smoothness of the solution increases.

100•

1---- -. L I -~l

0.01 A - lo~~oo0 Q, (P)

2 3 4 5 6 789 1113
Degree p

Figure 5.2b. Comparison of the performance of the Q(p) and Q'(p)

elements for a - 2.

We have seen that the difference among the spaces Q(p). Q'(p), Q(p,q),

Q'(p,q) differ only in the different number of Internal shape functions. In

Figure S.3a,b we show the error (a)(Q(p,q)) and N(a)(Q(pq)) for q

S50-Q(,q
o--oQ'(p, q)

, 40- \-H----

' \ pz 5

S30--

20

2 3 4 5 6 7 8 9 10111213

- q -

Figure S.3a. Influence of the internal shape functions on the accuracy

for a - 1.1 and p - 5, for the Q(p) and Q'(p) elements.
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increasing.' p - 5,7 and a - 1.1. The value p - q is marked In the

figure. This value Is almost optimal for the Q element but is far from the

optimal for the Q' element. As a--+= the influence of the Internal shape

functions decreases.

5-

40-

30- a= i1.1l

20--- I 444 44

10-- -- I

2 3 4 5 6 7 8 9 101112
- q ---

Figure 5.3b. Influence of the internal shape functions on the accuracy

for a - 1.1 and p - 7 for the Q(p) and Q'(p) elements.

6. Performance of the Q(p) and Q'(p) elements in the h-p version - I > 1.

In Section 5 we analyzed the case when t - 1, i.e., the domain S on

which the problem (3.)-(3.7) has been solved was not partitioned. Let us

assume now that t > 1, i.e., S is divided into ? squares. We can now

expect that the error can be essentially estimated element by element. It

has been seen that the approximation was governed in the case t = 1 by the

parameter a with a-1 being the ratio of the distance of the singularity to

the boundary and size of the element. (Note that S is unit square.) Denote

by n (a)( ) the error when ? elements are used. Then for t not too large,

17



the error Is governed by the "worst" element, i.e., the one closest to the

singularity. Then we can approximately expect

(6.1) (a) M (1)

where by -o (a)( ) we denote the relative error when ? elements are used.

In Figure 6.1a.b we show the error V (a) (Q(p),) and 1(a)(Q,(p),e) for

a = 1.05. In addition, we show in the figure the error I; (Q(p),1) for

a (a-1)1 + 1. We see that (6.1) nearly holds. For other values of a the

results are similar.

100

0

• Element Q

20

10

5 " :: . /=j1 /
, an 1.10 a- 1.05

0.5" = .
0. 8a= 1.05

0.2 L\\V/8 -

0.1 2 8 a- 1.0.05
a= 1.05a= 1.5

0.05

2 4 6 8 10 12 14

Degree p

Figure 6.1a. Comparison of the performance of the Q(p) element for

different a and f leading approximately to the same accuracy.
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5.- -=
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2. 4 6- 8. 10=1 14 016

De.ee-

Figue 6ib.Comarion o th peforanc of he '(p elmen
for different a and £ lead~~~~Intoapoiteyheamacuc.

In1- 8iue62w hwl()Qpq,) fr a=11 n aiu

q and . Thevalue V,(a(Q(P)U- l?()(Q(PP),)a mak.0W5eeta

for~ 1thechraterdos0ot0hage
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100- ____

a= 1.1

50- 5

20

~/=2

2 3 4 5 6 7 8 9 104 12 13

Degree q

Figure 6.2. Performance of the Q(p,q) element for a = 1.1 and p = .

7. Comparison of the performance of the triangular elements and Q(p)

elements.

So far we have discussed square elements. Analogously, the triangular

elements of degree p can be constructed (see [5]). Here the space T(p) of

the triangular element consists of all polynomials of degree s p.

Let us consider once more a square element. Dividing It into two

triangles by the diagonal and using T(p) elements we can understand this as

a composite element which has the same degrees of freedom as the element

Q(p).

20



We can also enrich the space T(p) by internal functions as in the case

of square elements. The analysis of the kind we have made in Section 4 can

here be used, too.

Based on this analysis we can expect that the performance of the Q(p)

element is better than of T(p) and the performance of Q(p) improves with

increasing p and the smoothness of the approximated function. These

conclusions are in agreement with numerical tests. In Figure 7.1 we show

(a) (T~p},t) and 71(a)(Q(p),t) for a = 1.05 and various p and t.

100 1
a= 1.05

50

220

",'.\ \\ ,b 2 2
t210 ~~T =

2 ,F: -

0.5 If= 8

0.2 - T (P) ,-\ =8

2 4 6 8

Degree p

Figure 7.1. Comparison of the performance

of the square and triangular element.
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8. Additional considerations.

It Is obvious that In general it Is Impossi.ble to prefer either element

Q(p) or Q'(p). The preference depends strongly on the class of solutions

under consideration. To illustrate this let us be Interested for simplicity

In the best approximations of u on S In the L2-norm Instead of the H (S)

seminorm, I.e., let us consider

in" f (U-w)2 dxdy

S

where the infimum is taken over all functions of Q(p) resp. Q'(p). In this

case we will consider shape functions of the form L ix )Lj(y) where L (x)

Is the normalized Legendre polynomial of degree J . Then we can write

(8.1) u0 - Z cijLi(x)L (x)

i,J-1

and

(8.2) rn J (uo-w)2 dxdy - 2

wGQ(p) S ,Jp

(8.3) inf" (uo-W)2 dxdy = 2

wE'Q'(p) i+J>p

In Figure 8.1 we depict the pairs (i,J) in the upper quarter plane by

bullets; then the error of Q(p) resp. Q'(p) Is the sum of the squares of

all coefficients cIj associated with the bullets outside the bquare resp.

triangle shown in Figure 8.1. Hence the performance of the element depends on

the distribution of c j for the approximated functions resp. class of

functions under consideration. If for small (1,J) the coefficients are

decaying slowly and are approximately of the same magnitude then the
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Figure 8.1. Schematic comparison of the Q~p) and Q'(p) element.

coefficient M introduced in (3.11) will have approximately the value -/2.

We have roughly seen this in our numerical experiments with a = 1.05.

We remark that It Is easy to Introduce a class of functions for which

either Q(p) or Q'(p) elements are preferable for this class.

Although we addressed for simplicity the L2-norm, the same conclusions

are the same for the H -seminorm.

9. Optimal relation between p and t.

The optimal relation between p and L can be based on various

criteria. In Figure 9.1 we show the relation between the number of degrees of

freedom for which ,(a)(Q(p),I) - c, a - 1.05, for various p and c. With

this criterion, we see that use of higher p is preferable.

In general, of course, cost is not proportional to the number of degrees

N. We can also determine optimality in terms of the computational complexity

(cost) needed to solve the problem (3.6) (3.7) with an accuracy c. To

address this question, we examine the CPU times required to achieve a

specified accuracy for the Implementation of a finite element solver described
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Figure 9.1. Number of degrees of freedom leading to the same

accuracy for the element Q(p,f).

in [31. The algorithm used treats the unknowns associated with internal shape

functions in a manner akin to domain decomposition, in which these unknowns

are decoupled from the system using static condensation. The resulting global

Interface problem is then solved Iteratively using a preconditioned conjugate

gradient algorithm, with the preconditioner derived from the portion of the

global stiffness matrix associated with the nodal points, I.e., p - 1. See

[4) for an analysis of this preconditioner. The implementation was made on an

eight processor Alliant FX/8 parallel computer, with optinns to run on fewer
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than eight processors also available. Further details about the algorithm and

its Implementation, as well as a detailed study of performance character-

istics, can be found In [3].

Our concern is the cost, In CPU time, required to achieve a specified

accuracy. The computations reported here correspond to choosing values of t

and p that produce a given accuracy and then solving the model problem

(3.6)-(3.7) with zero right hand side. In all cases, the conjugate gradient

iteration started with a random Initial guess with entries between 0 and 1,

and the stopping criterion was that the relative error in the energy norm be

less than 0.5 x 10- 3 . (This Is smaller than accuracy considered.) All

computations were performed using double precision FORTRAN.

Table 9.1 shows the CPU time In seconds on one processor for various t

that produces solution with accuracy of order 5% In the finite element

solution for a - 1.05. Both Q(p) and Q'(p) elements are considered.

Table 9.1. CPU times for various combinations of t and p to achieve

approximately 5% accuracy for a = 1.05.

Q(p) Q'(p)

t p Error % time t p Error % time

1 13 5.8 1.16 2 14 7.0 2.35

2 9 5.1 1.41 4 10 4.5 3.26

2 10 3.0 1.96 8 7 3.5 5.00

4 6 5.8 1.75 16 4 5.0 6.58

4 7 2.4 2.58

8 4 5.8 2.58

8 5 1.6 4.14

16 3 3.2 5.73 f I

Table 9.2 shows the analogous timings required for accuracy of order 0.1%.
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Table 9.2 CPU times for various combinations of t and p to achieve

approximately 0.1% accuracy for a = 1.05.

Q(p) Q'(p)

t p Error % time p Error % time

4 13 0.12 17.87 4 14 0.09 8.96

8 8 0.16 14.68 8 9 0.10 9.33

8 9 0.04 21.07 16 6 0.09 13.92

16 6 0.06 26.10 _ I I_ I

We see that for a = 1.05 for both 5% accuracy and 0.1% accuracy the lowest

cost occurs for smallest t and large p. This is still more pronounced for

a larger. For 5% accuracy the Q(p) element Is less expensive than the

Q'(p) element. In contrast the Q'(p) element was less expensive when 0.1%

accuracy is required. This Is consistent with the results of the analysis

made in Section 4.

As discussed in [3] many factors contribute to the cost of the finite

element solver, but cost tends to be dominated by the construction and

condensation of the local stiffness matrices. For the data In Tables 9.1 and

9.2 there is one local matrix for each of 2 elements. For our particular

model problems the local stiffness matrices for all elements are the same, so

that considerable saving can be achieved by using one local matrix for all the

elements. An estimate for the cost of implementing the solver this way is

obtained from:

time using 1 local matrix

- total time - (time for ? local matrix computations)

+ (time for local matrix computations)/e2
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(Here in the local matrix computation both the construction and condensation

is included.)

These timings, for 5% accuracy and 0.1% accuracy, are presented In

Tables 9.3 and 9.4 respectively (for one processor computations). There Is In

general a dramatic drop In the total cost required by the finite element

solver. The optimal combination Is also tilted to high degrees. The

comparison between the Q(p) and Q'(p) elements is consistent with the

observations above. The Q(p) element is more efficient when low accuracy is

obtained and Q'(p) is more efficient when high accuracy is required or the

solution is smoother. The character of the optimal combination of f and p

seen here is In agreement with the results of an analysis of a computational

model in [101.

Table 9.3. CPU times for various combinations of 1 and p to achieve
approximately 5% accuracy for a = 1.05 and

one local stiffness matrix computation.

Q(p) Q'(p)

L p Error % time f p Error % time

1 13 5.8 1.16 2 14 7.0 0.92

2 9 5.1 0.55 4 10 4.5 0.94

2 10 3.0 0.74 8 7 3.5 1.69

4 6 5.8 0.58 16 4 5.0 3.07

4 7 2.4 0.70

8 4 5.8 1.02

8 5 1.6 1.26

16 3 3.2 2.61
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Table 9.4. CPU times for various combinations of 1 and p to achieve
approximately 0.1X accuracy for a - 1.05 and

one local stiffness matrix computation.

Q(p) Q'(p)

f p Error % time p Error X time

4 13 0.12 2.64 4 14 0.09 1.91

8 8 0.16 2.68 8 9 0.10 2.47

8 9 0.04 3.34 16 6 0.09 5.14

16 6 0.06 6.51 1 ___1__

Finally as observed in [31 the element oriented computations required by

the solver used (with repeated stiffness matrix as In Table 9.1) allows a

large amount of natural parallelism In the solution process. In Table 9.5 we

show the CPJ times and speedups for several choices of t and p on multiple

processors of the Alliant FX/8 In comparison with computations reported in

Table 9.1. We see typical speedups on eight processors between five and six.

Table 9.5 CPU times and speedups on multiple processors
for various combinations of t and p that
produce approximately 5% error for a - 1.05.

no. of Q(p) Q'(p)

processors L p time speed up I p time speed up

8 4 7 0.51 5.06 4 10 0.59 5.53

8 8 5 0.76 5.45 8 7 0.87 5.45

8 16 3 1.15 4.98 16 4 1.24 5.31

4 2 10 0.62 3.17 2 14 0.71 3.31

Parallel efficiency Is affected by such factors as the number of elements, the

amount of work required per element and the storage requirements of the local
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computations. For the data of Table 9.5, the largest speedup appear when

-t 8. This is a consequence of the fact that there is considerable overhead

for the relatively small number elements when t - 4 and for the small amount

of work per element when f - 16. See [3] for a detailed study of such

effects on parallel implementation.

The implementation we have used is not adaptive and hence the timing for

the prescribed accuracy is not completely realistic because this accuracy is

not known In advance. We can consider for example the p-adaptivity for

given mesh where p is increased adaptively. Various aspects of such

adaptive approaches will be discussed elsewhere.
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