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INTRODUCTION

In a recent laboratory study of muzzie blast produced by a cannon (ref 1), it was found that the early
portion of the blast signature was predicted quite well by an inviscid code. However, at later times, a
secondary wave appeared upstream that was not present in the experiment. In this report, the
experimental and numerical data are compared to determine how long the solution remains valid. The
source of the wave is identified, and an explanation for its appearance is offered.

THE BLAST MODEL

Harten’s scheme (ref 2) is used with a time-splitting algorithm (ref 3) to solve the unsteady
axisymmetric Euler equations using the Abel equation of state. A species equation is added to handle the
different properties of propellant gas and air. The projectile equaiion of motion is included.

A uniform grid is used 50 calibers upstream and downstream from the muzzle and 60 calibers radially
outward from the axis. Beyond this region, a graduaily expanding grid is employed to limit memory while
permitting the calculation to continue. Four cells span the tube radius.

As the projectile accelerates in the tube, a shock forms ahead of it. The moving air column is called
the precursor flow and is included because it disturbs the quiescent environment prior to projectile exit.
The flow behind the projectile is calculated from the Pidduck-Kent limiting solution for an Abel gas (refs
4,5) when its base reaches the position listed in Table L.

TABLE I. STARTING DATA FOR THE SOLUTION

Projectile base position, cm (in.) 143.0 ( 56.3)
Projectile velocity, m/sec (ft/sec) 1045.0 (3428.5)
Projectile base pressure, atm 287.0
Propellant mass, gm (0z) 389 ( 137
Projectile mass, gm (0z) 98.0 ( 3.47)
Bore diameter, cm (in.) 2.0 (0.787)
Gun chamber volume, cm*(in.>) 41.7

Specific heat ratio 1.25
Molecular weight 22.8
Covolume, cm*/kg (in.>/Ibm) 982.0 (27.2)

The base pressure and projectile velocity are known at this instant from earlier experiments (ref 6). In
this manner, the information relating to the combustion, friction, and heat transfer processes is included in
the starting data. Prior to this time, analytical expressions for the projectile velocity and position are used
to drive the precursor flow. The resuits presented next were obtained with a 12-caliber extension attached
to the barrel to make them consistent with those in Reference 1.

RESULTS

Surface plots of the pressure and density fields are shown in Figure 1. The planar surface surrounding
the disturbance is atmospheric pressure. The tube and projectile are drawn with a ‘height’ of one
atmosphere. The maximum pressure plotted was four atmospheres, which accounts for the flat spot just
downstream of the muzzie. The spike at the right is due partly to the bluntness of the projectile in the
model. The asterisks indicate some of the pressure transducer locations in the experiment. Seven
transducers were placed at angles of 15, 30, 60, 90, 120, 150, and 165 degrees with respect to the line of
fire, along an arc 30 calibers from the muzzie.



A velocity plot showing every fourth vector is given in Figure 2. The plume boundary at this instant is
indicated by the heavy line. The small circles at the right are the gages at the 15- and 30-degree locations.

A shadowgraph of the flow field is shown in Figure 3. The semicircular objects in the upper right-
hand corner are the pressure transducer fixtures at the 30- and 60-degree locations. Also visible are the
circular striations of the large Fresnel lens used in the optical setup. The photo, taken in an earlier study
(ref 6), did not employ the extension used here. However, the added projectile travel has only a modest
effect on the flow field and does not diminish the value of the photo for the present discussion.

In the surface plots in Figure 1, the flow upstream consists of the weak precursor shock 'ps’ and the
main blast wave 'mb’, both of which are followed by mild expansions. The ’shock bottle’, which extends
from the muzzle exit to the Mach disk 'md’ and is enclosed by the barrel shock ’bs’, contains the strong
muzzie expaasion ‘'me’. The highest and lowest pressures in the exterior flow are found in this small
region. The reflected shock ’rs’ lies just above the triple point 'tp’. The positions of these structures in
the shadowgraph are reproduced quite well by the model.

The presence of the projectile produces some interesting perturbations in the flow field near the line of
fire. For example, the pressure jump across the main blast wave is a maximum just above the point where
it intersects the projectile bow shock 'pbs’. Below this point, the resistance offered by the atmosphere is
diminished because of the motion induced in it by the bow shock. As a result, the pressure falls to the
level prevailing in the projectile wake where the gas moves at higher velocities.

In the velocity plot, note that the plume at this instant extends to the projectile. When the projectile
emerges from the tube, the propeilant gas initially expands around it and moves about halfway down the
projectile body. Away from the axis, the plume is decelerated by the inertia of the atmosphere, but near
the axis, the projectile continually sets the air ahead of it into motion, and the plume makes further
progress downstream. When the projectile leaves the plume, a layer of propeilant gas expands into its
wake because the gas at its base moves at the projectile velocity. The layer appears as a channel along the
axis in the density plot and is faintly visible in the shadowgraph. Eventually, it mixes with the surrounding
air.

In the density plot of Figure 1, a thickening "th’ of the plume boundary 'pb’ occurs about halfway
between the muzzle and the Mach disk. This aiso occurs in the shadowgraph. The velocity piot reveals a
small recirculation zone that is actually the initial stage in the development of the vortex. The gas stream
inside the plume boundary remains supersonic after being processed by the weak barrel and reflected
shocks. A strong secondary shock ’ss’ brings the stream into mechanical equilibrium with the slower
moving air behind the main blast wave. The shock appears in the shadowgraph, just downstream from the
tripie point, and extends radially outward to coalesce with the main blast wave.

The density plots in Figure 4 show the continuation of the vortex formation process. Part of the
secondary shock diffracts around the front of the plume and travels downstream to overtake the main blast
wave. [In response to the siower moving air behind the main blast wave, the shock and the supersonic
stream follow a counter-clockwise path upstream, as shown in the velocity plot in Figure 5. Upon reaching
the plume boundary, the shock increases the pressure on the downstream side of the barrel shock, causing
a contraction of the shock bottle, then travels upstream to undergo a Mach reflection off the tube. The
stream curls up into the vortex. Shadowgraphs of these events are not available, therefore, the pressure
histories will have to suffice to confirm what part of this scenario is real.

The experimental pressure histories are shown in Figure 6a. The computed histories for the flow
described above are shown in Figure 6b. The Fresnel lens used in the optical setup was removed when
the histories were recorded to avoid reflecting the main blast wave back into the flow field. Zero time
corresponds to the instant the projectile base leaves the barrel.
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At the upstream locations, the traces start with the arrival of the weak precursor shock 'ps’, as
indicated at the top of Figure 6. This is followed by the main blast wave 'mb’ and an expansion wave 'ew’
that reduces the pressure to sub-atmospheric levels. Forward of the muzzle, the main blast wave overtakes
the precursor shock before the gages are reached, as shown in the surface plots. The arrival times and
early portions of the computed traces show satisfactory agreement with the experiment.

The secondary shock ’ss’ arrives at the 30-degree location first (Figure 4b), the 15- and 60-degree
locations next (Figure 4c), then the 90-degree location (Figure 4d). The experimental and computed
histories show satisfactory agreement up to this point in time, as indicated by the letters ’ss’ in Figure 6.
At later times, however, the computed shock undergoes a Mach reflection at the tube surface, which
accounts for its strength at the upstream locations. Nothing of comparable strength appears in the
experimental traces. An explanation is offered in the next section.

DISCUSSION

The solution was obtained with a second-order solver designed to capture shocks and contact surfaces.
However, the blast problem also contains slip surfaces. Consider the velocity plot in Figure 5. One slip
surface separates the high speed plume flow from the slower moving air at the plume boundary. A second
slip surface develops in the plume interior, downstream of the triple point, and separates the high velocity
stream processed by the reflected shock from the slower moving gas processed by the Mach disk. In an
inviscid flow, the tangential velocity component and dessity are discontinuous across a slip surface. The
model tries to replicate this, but the surface is smeared by *numerical viscosity’ and, more importantly, the
distributions of velocity and density are incorrectly predicted. The high velocity gas stream retains too
much kinetic energy as it moves through the flow field, and a strong secondary shock is needed to bring
the stream into mechanical equilibrium with the surrounding flow. In the laboratory, dissipative processes
at the stream boundaries convert the excess energy to internal energy before the secondary shock is
reached.

This explanation can be tested very simply. Knowing that first-order solvers are more dissipative at
contact surfaces, a second solution was obtained with the calculation in the neighborhood of the high
velocity stream limited to this order. The solution was started with the data in Figure 1 where the stream
can easily be identified. The results are shown in the density and velocity plots of Figures 7 and 8. The
added dissipation produces a more lethargic stream that curls up earlier to form the vortex and a
secondary shock that is weaker everywhere, as indicated by the pressure histories in Figure 6c. The flow
in the laboratory lies somewhere between the two solutions. To obtain closer agreement, dissipation must
be added more realistically, for example, by solving the Navier-Stokes equations with a turbulence model,
at least within the plume. The boundary layer in the tube may also represent an important source of
vorticity in the shear layer. Finer grids and increased cpu time are implied.

A related study was made by Cooke and Fansler (ref 7) where the muzzle flow exhausted into a
cylindrical muffler. The calculated pressure histories contained oscillations that were not present in the
experiment. Identifying their source was difficult because the flow includes reflected waves. The
authors suggested that a more realistic treatment of the shear layer might be required, and the present
discussion would appear to support their view.

The fascinating transient inviscid flow studies of extragalactic jets made by Norman, Smarr, Winkler
and Smith (ref 8) are computationally related. Although the jet-to-ambient pressure ratio of the blast
problem is higher by two orders of magnitude, the dynamics and structures are quite similar.




CONCLUSIONS

The early portion of the blast signature is predicted satisfactorily because the flow following projectile
exit is inertia-dominated. However, as the flow develops, dissipation in the shear layer becomes important,
and a more realistic model is needed to properly account for its effects. While this represents a practical
limit to an inviscid calculation near the muzzle, the solution farther away remains valid until the secondary
wave arrives. In Reference 1, the model showed good agreement with experimental data out to 50
calibers, including cases where a muzzie brake was used.
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Figure 4. Density piots obtained with second-order solver
showing formation of secondary wave.
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Figure 5. Velocity vectors for density plot in Figure 4c.
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Figure 7. Density plots obtained using first-order solver
in shear layer. Note weaker secondary wave.
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Figure 8. Velocity vectors for density plot in
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