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ABSTRACT

Anaerobic degradation requires a diverse yet intervelated
group of organisms. These organisms exist in a synergistic
relationship that requires that a delicate balance be mairtained
for the system to functiou properly. Therefore, ananrobic
treatment systems are frequenc’y consid-red to be sorewhat
unreliable due to the sens.tivity o. methanogens to toxic
substances. Consiaerable reseai:™ nas heen done to determine
reliable methous o predictiny when this balance has been upset.

Formi: acid is a uommon . +--1mediate in anaerobic degradation
and half of &ll ‘tethancoen’ can utilize it as a substrate.
fiowever, most oi tlw resear % pesforread regarding its role in
anaerobic system. has “rrased ou -acural rather then engineered
environments. Further, many of the methods used to analyze for
formic acid require extensive pretreatment to remove interfering
substances and the use of unstable enzymatic solutions and are not
amenable to use as a proce~s monitoring method.

In this research an analytical m~thod which could be routinely
used for determininy formic acid was developed. This procedure was
utilized to examine the fluctuations of formic acid concentration
in anaerobic batch reactors which were fed substrates containing
various amounts of substances known to induce stress in these

systems. The results were examined to determine possible

correlation between these fluctuations and system performance;
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however, the health or inhibition of the experimental systems was : 1o

not conclusively established. Also several full scale and pilot ' ’

systems were analyzed for the presence of formic acid. {
Based on the results of this research it was concluded that

formic acid concentrations in system that were not subjected to i

stressful substances are very low. There was correlation between

system stress and formic acid accumulation in systems exposed to

toxic levels of ammonia. There was an indication that formic acid

increases were dependent on the type of toxicity induced. Finally,

when the system was stressed the concentration of formic acid

increased an order of magnitude over unstressed systems.
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I. INTRODUCTION

GENERAL

Anaerobic processes occur in nature in a variety of
environments. Anaerobic organisms have been found in such diverse
habitats as lakes, marshes, cattle and human intestines (Winfrey et
al., 1677; Strayer and Tiedije, 1978; Phelps and Zeikus, 1985; Jones
and Paynter, 1980; Beijer, 1952; Carroll and Hungate, 1955; Hungate
et al., 1970; Dakin et al., 1913; Miller and Wolin, 1981).
Anaerobic systems have been utilized to treat municipal and
industrial wastewaters since the 1890’s (McCarty 1985). Although
anaerobic treatment was recognized as a waste treatment process
long before aerobic treatment, it was not widely used. Some of the
products of anaerobic degradation are offensive volatile sulphur
compounds; such as hydrogen sulfide, suliur dioxide, methyl
mercaptan and dimethyl sulphide (Wheatland, 1981). These compounds
have been found to be harmful to human health by hindering oxygen
utilization at the cellular 1level (Kangus et al., 1984).
Additionally, their obnoxious odors caused anaerobic treatment to
be considered undesirable (McKinney 1986).

Anaerobic degradation involves the conversion of complex
organic matter to carbon dioxide (C0O,) and methane gas (CH;).
Methane fermentation is an important aspect of anaerobic processes
because the degradation of complex organic matter to CO, and CH,

results in a relatively low growth yield. Organic matter is

-
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stabilized (McKinney 1986), while most of the energy provided by
the substrate is retained as CH, (Bryant 1977).

Anaerobic degradation has typically been used to stabilize
primary sludges (Grady and Lim, 19&0); however, it has also been
applied to biological sludges from aerobic processes and mixtures
of sludges containing components of industrial wastes (Parkin and
Owen, 1986), including meat packing, brewing, pharmaceutical,
chemical, and food processing wastes (Grady and Lim, 1980). 1In
addition, with the increasing concern regarding the deleterious
effects of trihalomethanes in drinking water, researchers have
examined the possibility of utilizing anaerobic treatment to
degrade halogenated organic compounds. Bouwer et al. (1981) and
Bouwer and McCarty (1983), in studies of 1- and 2-carbon organic
compounds, found that, in low concentrations, trihalomethanes were
anaerobically degradable, while no aerobic degradation occurred.
Further, brominated halogens were found to be more readily degraded
than chlorinated ones.

There are several reactor configurations used to facilitate
anaerobic processes. Baffled, fixed bed and packed-bed reactors
are just a few of the systems available. The type of system used
depends upon the characteristics of the waste, the space available
for the system, and the desired objective of the treatment.

The advantages of using anaerobic treatment over aerobic
include (1) reduced electrical power requirement, (2) lower
microbial cell production, and (3) the use of biogases produced as

fuel. Since anaerobic processes by definition due not require O,,
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the electrical costs associated with generating and providing

sufficient 0, to an aerobic system are avoided. It has been
recognized that anaerobic processes are most efficient at
temperatures ranging from 30 °C to 55 °C; however, the power
required to generate this heat can be obtained by using the biogas
(CH, and C0,) produced as a fuel, thereby offsetting this operating
cost. In some instances the CH, and CO, produced are sold to local
utilities. Since aerobic reactions yield more energy than
anaerobic ones, more cell mass is produced (McKinney, 1986). The
disposal costs of excess cells produced by aerobic processes far
exceed that of anaer - .. svstems (Speece, 1983). The economic
advantages which are st significant are the decreased costs for
sludge disposal and electricity (Speece, 1983).

The disadvantages of anaerobic treatment include (1) an
delicate ecosystem, (2) long hydraulic retention time (HRT), and
(3) high capital costs. The interdependent relationships of
anaerobic organisms are inherently unstable and require constant
monitoring. Since anaerobic organisms have low growth rate, they
take longer to respond to upsets, therefore, longer hydraulic
retention times are required to allow for acclimation and recovery.
Further, anaerobic systems are most efficient at temperatures of 30
to 55 °C, high capital costs may be encountered due to the
requirement for heating the system. However, the operating costs
may be deferred by using the biogas produced as a fuel to heat

system. When considering the use of anaerobic treatment systens,
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if the waste is high strength, then the advantages typically

outweigh the disadvantages (Grady and Lim, 1980).

BIOCHEMISTRY

Anaerobic degradation requires a diverse yet interrelated
group of organisms. As illustrated in figure 1.1, it is a three-
stage operation; hydrolysis, acidogenesis, and methanogenesis
(Grady and Lim, 1980). Organic wastes contain various kinds of
lipids, carbohydrates, and proteins. First these organic
constituents are hydrolyzed and liquified by extracellular enzymes
into a soluble form that can pass through the bacterial cell wall,
There the fermentation process yields short-chain volatile acids.
Depending on the characteristic of the substrate, the overall rate
of stabilization to CH, can be limited by this stage of the
process.

Once soluble, acid-producing bacteria convert the material
into a variety of end products depending on various factors. Acid-
producers are composed of a very diverse group of organisms. The
results of their fermentations depend upon the species present and
the physical characteristics of the medium, such as pH and
temperature. The fermentation products include long-chain fatty
acids, short-chain volatile acids, amino acids, and sugars (McCarty
1986; Parkin and Owen, 1986; Grady and Lim, 1980). he resulting
end products of this phase are due to the combination of activity
by hydrogen-producing and acid-producing bacteria. When the

electrons are transferred to hydrogen ions, hydrogen (H,), CO,, and
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acetic and formic acids are the major end products (Grady and Lim,
1980). The last phase, methanogenesis, involves the formation of
CH, and CO, (Chung and Neethling, 1990; Grady and Lim, 1980).
Methanogenic bacteria can utilize H,/C0O,, acetate, formate, and a
few other substrates as sources of both carbon and energy, as
indicated in table 1.1 (Daniels, 1984).

Acetic acid is the most common intermediate produced in the
acid formation stage. In anaerobic digestors, it has been
established that approximately 70% of the CH, produced comes from
acetate (Baresi et al., 1978; Mah et al., 1978). Since acetic acid
is an important intermediate, it has been the subject of numerous
studies regarding anaerobic processes. Formic acid is also a
common intermediate in anaerobic systems (Hungate et al., 1970;
Zeikus, 1977; Daniels et al., 1984;), and as shown in table 1.2,
there are methanogens that utilize it as a substrate. However, it
is generally considered that the CH, derived from formate is minor,
and there have been relatively few studies regarding its role in
anaerobic systems. Thiele and Zeikus (1988) have examined the role

of formic acid in H, transfer between hydrogen producers and users.

OBJECTIVES OF RESEARCH

This research paper presents experimental data and results
from a study designed to asses the performance of anaerobic batch
reactors when subjected to shock or toxic loadings. The purpose of
this study is to determine if there is a correlation between (1) an

increase in formic acid concentration and system shock, and (2) the
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health of an anaerobic system and formic acid concentration. 1In
this research an analytical method was developed for determining
formic acid that was simple and straight forward enough to use on
a daily basis. This procedure was used to examine the fluctuations
of formic acid concentration in anaerobic batch reactors subjected
to stress, and examined the possible correlation between these
fluctuations and system performance. Additionally, the method was
used to determine the concentration of formic acid in some pilot

scale and full scale anaerobic systems.

“Table 1.1 - Energy metabolism of methanogenic bacteria
L}

Equation AGe 0G°
per reaction per CH,

(KJ) (KJ)
4H, + CO, - CH, + 2H,0. . . . . . . . -138.8 -138.8
4HCOOH — CH, + 3CO, + 2H,0. . . . . . =-119.5 -119.5
4CH,0H = 3CH, + CO, + 2H,0. . . . . . =310.5 -103.5
CHCOOH = CH, + CO, v &« « v o v « o . =27.6 -27.6
4CO + 2H20 -9 CH, + 3CO, « . . . . . . —185.6 -185.6
4CH,NH;* + 2H,0 = 3CH, + CO, + 4NH,"" -225.7 -75.2

“Daniels et al. 1984
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COMPLEX SOLUBLE AND
INSOLUBLE ORGANIC

hydrolysis extracellular enzymes
i
SIMPLE SOLUBLE
ORGANICS
acidogenesis acid-producing
bacteria
{ FORMIC ACID, hydrogenogenesis
| ACETIC ACID, OTHER
! COo,, H, PRODUCTS
H,-producing
bacteria
methanogenesis
‘L CH,~producing
bacteria
CH, and CO,

Pigure 1.1 - Multistage anaerobic process

“Grady and Lim, 1980
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Table 1.2 - Sole electron source for methanogenesis and growth

Species

Methanobacterium arbophilicium®
Methanobacterium formicium®
Methanobacterium mobile®
Methanobacterium thermoautotrophicum™
Methanococcus vannieli®

Methanosarcina barkeri®

Methanospirillum hungatei®
Methanobacterium bryantii®

Methanococcus thermolithotrophicus®

Substrate

H,

H,, HCOOH
H,, HCOOH
H,

H,, HCOOH
H,, CH,OH,
CH,NH,,
CH,COOH
H,, HCOOH
HZ

H,, HCOOH

%Daniels et al. 1984

8Zeikus 1977

-

o




e

II.

PROCESS INHIBITION

A discussion of anaerobic treatment processes typically
includes dialogue regarding the difficulties involved with
operation and control of these systems. Although there are
advantages with using anaerobic processes to treat wastes, the
sensitivity of the organisms that exist in this delicate ecosystem
has limited its use,

Of the organisms required to carryout the interrelated
anaerobic processes, methanogens are commonly regarded as the most
sensitive to toxicity. Studies have demonstrated that waste
constituents and environmental conditions can adversely affect the
balance of these delicate systems. Physical parameters such as pH,
temperature, organic and hydraulic loading increases, and the
induction of toxic materials can adversely affect CH, production.
A pH range of 6.5 to 7.6 is considered optimum for CH, production.
While the optimum temperature range varies from 30 to 38 °C in the
mesophilic range and from 50 to 60 °C in the thermophilic range
(Parkin and Owen, 1986). There are many ways to induce stress in
anaerobic systems; only a few will be discussed here.

Hickey and Switzenbaum (1991) studied a 10-day HRT reactor
subjected to a 2.65 fold organic lcading increase. They found that
the total gas production increased 220% during the first day,

stabilized over the next few days, then declined. The CH,
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concentration first increased then declined gradually over the
testing period of 11 days. Also as a part of their research, they
found that a hydraulic loading increase of two times the normal
rate caused an upset condition. Additionally, when the rate was
increased 4 fold, system performance declined.

The literature indicates that there is wide wvariation
regarding the levels of ammonia, ammonium ion, and total ammonia
that can be tolerated by anaerobic systems. While concentrations
of ammonia ranging from 50 to 200 mg/L have been considered
nutritionally beneficial (Bhattacharya and Parkin, 1989), ammonia
may induce severe toxicity in two ways, as the un-ionized ammonia
(NH;) or the ammonium ion (NH,”). Most researchers have found that
the un-ionized form is the most toxic (Parkin and Owen, 1986). The
toxicity associated with the ammonium ion is the same as with any
other cation. Values ranging from 40 to 100 mg/L of NH,, and 200
to 7000 mg/L of total ammonia nitrogen have been reported to be the
threshelds which marked the inhibition of CH, production (Heinrichs
et al., 1990; Bhattacharya and Parkin, 1989).

Bhattacharya and Parkin (1989) found that when ammonia was
applied in the toxic threshold as a slug dose, the bacteria had
minimal chance to acclimate. However, when ammonia concentration
was gradually increased, acclimation was possible. They found that
with a 15-day solids retention time (SRT), system failure occurred
with a continuous dose of 33 mg/L NH,. While a slug dose of 19
mg/L NH; was tolerated by the system. They also concluded, as did

Heinrichs et al. (1990), that toxicity levels were species related.
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That is, based on percentages of substrate removal, acetate-
utilizing organisms were much more sensitive to ammonia toxicity
then propionate users. Heinrichs et al. (1990) also determined
that systems supplemented with sulfate could tolerate higher
concentrations of un-ionized ammonia.

Depending on the SRT, formaldehyde concentrations of 200 to
400 mg/L is the threshold at which inhibition begins to occur in
anaerobic systems (Bhattacharya and Parkin, 1989). Some have shown
that slug dosages of 200 mg/L of chloroform could be tolerated in
acclimated systems (Yang et al., 1980). However, Hickey et al.
(1987) found that chloroform concentrations ¢f 1.0 mg/L completely
inhibited CH, production.

Hickey et al. (1987) also demonstrated that
bromoethanesulfonic acid dosages of 5 mM, and 150 mg/L of
trichloroacetic acid completely inhibited CH, production. 1In a
survey of biodegradability of organic chemiculs, Battersby and
Wilson (1989) found that at concentrations of 50 mg/L as carbon
mono-, di-, tri-, and pentachlorophenol, mono-, and dinitrophenol,
4-nonylphenol, and 2-phenylphenol inhibited CH, production.

Trace levels of metals such as nickel, cobalt, and molybdenum
are required nutrients for some methanogens (Mckinney, 1986);
however, Hickey et al. (1989) demonstrated that copper dosages of 25
to 150 mg/L, 100 to 900 mg/L of zinc, and 25 to 100 mg/L of
cadmium, caused inhibition of CH; production.

Methane inhibition negatively affects anaerobic process

efficiency diminishing the extent of substrate removal. System
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stress adversely affects anaerobic processes by altering the
systems kinetics (Parkin and Owen, 1986). If toxic compounds are
present in the waste treatment system using an anaerobic process,

the system may become upset and fail.

PROCESS INDICATORS

Failure or inhibition of anaerobic systems is marked by
decreasing pH, an increase in VOA concentraticns, and a decrease in
CH, production. Typical healthy systems have a pH around neutral,
bicarbonate alkalinity from 1000 to 5000 mg/L as CaCO,;, volatile
acid concentrations under 500 mg/L, and a biogas that is 55 to 75%
CH, {(Parkin and Owen, 1986). Monitoring of these parameters, is
the conventional means by which reactor efficiency is evaluated.
However, unless the problem deveiops slowly, by the time these
indicators are noted, the system is well on its way to failure
(Hickey and Switzenbaum, 1991), and may have to be restarted. Over
a long period of time the system may recover if the toxicant is
removed (Parkin and Owen, 1986).

Anaeropbic procisses are very sensitive and subject to rapid
failure. A readily detectable, early indicator of system stress is
needed in order to determine when a system is approaching failure.
Many studies have teen conducted towards this end, with several
studies focusing on the possibility of utilizing H, concentration
as a process indicator. The concentration of H, in the system
controls the proportion of intermediates produced. It must be

maintained at low concentration, partial pressure below 107°

12

.




D i TN [PUURE VI e ) = - - - < _— S,

atmospheres, to facilitate the production of H,, CO, and acetate
instead of other higher molecular weight intermediates such as
ethanol, lactate, propionate, etc. (Speece, 1983; Wise, 1981;
Bryant and Wolin, 1975). Hickey and Switzenbaum (1991) found that
increased loading, either organic or hydraulic, caused the
concentrations of H, and CO to increase earlier than conventional
indicators. They noted, however, that monitoring H, did not
indicate the stress induced on acetate-utilizing anaerobes; thereby
limiting the usefulness of this indicator. Harper and Pohland
(1986) concluded that certain treatment options could be employed
to control H, and volatile acids, thereby avoiding process
instability. However, in a study of carbohydrate wastewaters,
Harper (1989) found that H, concentration had no effect on
wastewater treatment efficiency. Mosey and Fernandes (1989) noted
that with automatic continuous monitoring, H, concentration could
be used to indicate the induction of a toxic substance. However,
with the more standard method of daily sampling, the chances of
missing the peak H, concentration triggered by a toxic substance
would be greatly increased.

Others have centered their research on enzyme related
indicators. This area of study focused on the fact that vafious
enzymatic reactions are required to carry out the degradation of
organic matter. Mackie and Bryant (1990) correlated the rate of
protein synthesis with cell growth and substrate degradation.
Their purpose was to mrnitor the growth of the complex anaerobic

population. Chung and Neethling (198¢) suggested that
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§ dehydrogenase activity, which 1is very sensitive to adverse '
environmental conditions, «c¢ould serve as an early warning
mechanism. Likewise, 2Zhenglan et al. (1990) observed increased
phosphatase activity in early stages of system failure. The
measurement of these enzymatic parameters involves extensive
laboratory procedures and are not suited for routine process

analysis required to be performed in daily plant operations. ?

FORMIC ACID

Biochemistry. Formic acid (or formate) has been found in many !

of the various habitats of anaerobic bacteria. Approximately half
of the genera of methanogens can utilize formate as both a carbon
and energy source (Daniels et al., 1984). Originally it was
believed that CH, production from formate involved the cleavage of '
formate to H, and CO, which were then used for methanogenesis;
however, it is now accepted that formate can be used directly
(Daniels et al., 1984). The enzymes that act on formic acid are
formic hydrogenlyase and formic dehydrogenase; see table 2.1 for

these reactions.

—




“rable 2.1 -~ Enzymes that act on formic acid

N g R ]

Enzyme Reaction
formic dehydrogenase HCOOH + ®X — XH, + CO,
formic hydrogenlyase HCOOH - H, + CO,

%Stephenson and Strickland, 1932

®X represents an intracellular hydrogen carrier
Woods (1936) found that under the appropriate conditions, formic
hydrogenlyase is reversible, acting to degrade as well as
synthesize formic acid. Formic acid can be produced by the
reduction of CO, with electrons donated in the reoxidation of NADH
to NAD' or FADH to FAD'" (Bryant and Wolin, 1975), or it can be
formed as an intermediate in the degradation of pyruvate (Bailey,
1986) .

Most studies regarding formic acid have observed its
contributions to CH, production in natural environments. Several
studies have found that the addition of formic acid/formate
stimulated CH, production. In studies of lake sedimepts, Strayer
and Tiedje (1978) found that addition of formate immediately
stimulated methanogenesis, while Winfrey et al. (1977) observed
that formate additions gave a more rapid increase in initial CH,
production than H,. Of the natural intermediates studied, Phelps
and Zeikus (1985) found formate to have the highest rate of
transformation to CH,. Jones and Paynter (1980), in an

investigation of marsh sediments, found that when adding CO,,
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acetate, or formate, the greatest stimulation of CH, production
occurred for formate.

Kinetic studies of formate metabolism indicated that when it
was added to anaerobic systems, it was rapidly depleted; in most
cases in a matter of minutes. 1In a study of whey waste, Chartrain
and Zeikus (1986) found that more than 95% of the formate added to
the system was removed within the first minute. The formate was
converted to CO,, with little attributing to CH, formation. Hungate
et al., (1970) found formate degradation occurring in the first
eight seconds, and determined a Michaelis constant, K, of 30
nmoles/g. In a study by Strayer and Tiedje (1978) the rate of
conversion was so rapid that they could not determine a K,.

Hungate et al., (1970) examined the probability that formate
may be a significant source of H, to be used for methanogenesis.
They found that in the bovine rumen of alfalfa-fed heifers,
approximately 18% of the CH, produced came from H, supplied by
formate. In another rumen oriented study, Beijer (1952) determined
that 1.0 mmole of formic acid yielded 0.2 mmole CH,.

CH, can be produced from formic acid in two ways. It can be
cleaved to CO, and H, which are used by methanogens to produce CH,,
or it can enter the methanogenic pathway directly at the formate
oxidation level (Daniels et al., 1984). Figure 2.2 indicates the ﬂ
major electron flow in methanogens.

As noted earlier, H, concentration must be controlled to allow
for anaerobic degradation to proceed to its final 1level.

Interspecies H, transfer has been found to be the route by which

e ————————-

16




o ey AR

I i e e e TR e, A v e

5
CO + H,0 < > co, + 2 H*
2E°
1 —>2n ———> NADPH
H, 1 3
—D2E" Fa20
A
NADP
2 H,0 => 2 OH + 2H’
Co,
?
2 —>
HCOOH 6E"
2 2E°
v
2 H' + CO, 4
CH, &————— CH,CoM
2E-
(F430)
ENZYMES
1 hydrogenase
2 formate dehydrogenase
3 NADP-F,,, oxidoreductase
4 methyl CoM reductase
5 CO dehydrogenase

“Figure 2.1 - Major methanogenic electron transfer reactions

“Daniels et al. 1984
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electrons flow between organisms in the synergistic relationship
between hydrogen producers and users. Thiele and Zeikug (1988)
concluded that interspecies formate transfer between acetogens and
methanogens links electron flow to CO, reduction to CH,.

Few studies have examined the role of formic acid in anaerobic
treatment systems. One such study was performed using a baffled
anaerobic reactor. Grobicki and Stuckey (1989) examined the
fluctuations of formate concentration under hydraulic shock-loading
conditions. Shock loadings were applied for the first 3 hours,
then was reduced to the normal loading. At the fourth hour,
formate levels reached maximum values of 2500 mg/L in the reactor
effluent. Formate concentration decreased until none was detected
after 11 hours. The system demonstrated a rapid recovery with 99%
COD removal. They concluded that formate production was important
to the stability of the anaerobic process.

Methods of detection. As the lowest molecular weight organic
acid, formic acid is difficult to detect and measure when it is in
a mixture of other organic compounds. Many of the procedures which
are used to analyze for formic acid involve oxidizing it to CO, or
reducing it to formaldehyde. Since the other higher molecular
weight organic acids can also be oxidized to CO, and reduced to
other possibly interfering substances, their presence could
adversely affect the detection of formic acid. 1In most cases it is
necessary to remove these higher molecular weight compounds, as
well as any CO, or formaldehyde, present in the sample before

analyzing for formic acid.
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A study to distinguish between three different enzymes that
act on formic acid or H,, hydrogenase, formic dehydrogenase and
formic hydrogenase (see table 2.1 for reactions) was performed by
Stephenson and Strickland (1932). They found that placing bacteria
possessing the enzyme formic hydrogenlyase in contact with formic
acid, in the presence of 0,, gives the following reactions:

HCOOH -» H, + CO,

HCOOH + %0, = CO, + H,0

H, + %0, = H,0 .
The CO, produced was measured using a manometer; the displacement
of air observed was a measure of the formic acid present in the
original sample. Escherichia coli, which produce formic
hydrogenlyase in the presence of formate, were cultivated and
placed in contact with known quantities of formate. The actual
production of H, observed was found to be between 97 and 106% of
theoretical values. While this method was not practical due to the
unstable nature of formic hydrogenlyase (Pickett et al., 1944).

Another of the earliest methods used to analyze for formic
acid was based on Stephenson’s and Strickland’s work. It involved
oxidizing a sample with mercuric chloride and measuring the
precipitate, calomel (mercurous chloride - Hg,Cl,). This procedure
required the extraction of formic acid from aqueous solutions.
Dakin et al. (1913) developed the following method to analyze for
formic acid in urine. First they used ether to extract formic
acid; they found that after four hours of extraction most of the

formic acid had been removed from solution. They then neutralized
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the acid by adding carbonate; this solution was acidified with
phosphoric acid then subjected to steam distillation. The dilute
formic acid solution was neutralized with an excess of caustic
soda. This solution was evaporated then neutralized with acetic
acid. At this point the formic acid solution was oxidized with
mercuric chloride. To assist this reaction, the mixture was heated
for six hours. Once formed, the precipitate was dried and weighed;
one gram calomel represented 0.0977 gram formic acid. This method
was found to be about 99.8% accurate for samples containing a total
quantity of formic acid around 47 mg. Due to the large amount of
formic acid required for this method (Woods, 1936), and the fact
that it was very time consuming, it was not appropriate for routine
analysis.

Pickett et al., (1944) developed another manometric method of
determining formic acid. They utilized ceric sulfate in the

presence of palladium to oxidize formic acid to CO,,

2H,ce(50,), + Heoon £ ce, (s0,), + 5H,S0, + €O,

the oxidation was faster than with mercuric chloride, and the
reagents were stated to be stable for six months. The procedure
requires H,S0,, ceric sulfate and palladinized asbestos. The sample
was first distilled to remove compounds such as cinnamic, glycolic
and levulinic acids which can be oxidized to formic acid by ceric
sulfate, thus interfering with the analysis. The distillate was

then neutralized, redissolved, redistilled then oxidized with ceric

20




[P S 3

[ER————E A

« ——— v

sulfate. The CO, produced in 20 to 30 minutes was measured using
a manometer, Although the reagents were more stable then the
formic hydrogenlyase, this method did not allow for direct analysis
of the sample due to possible interfering substances.

Grant (1948) evaluated the use of colormetric analysis for
formic acid reduced to formaldehyde. His work was based on
findings by MacFadyen (1945) who use chromotrophic acid to measure
concentrations of formaldehyde. MacFayden’s work was fashioned
after experiments by Boyd and Logan (1942). They oxidized amino
acids to formaldehyde then <colorimetrically analyzed the
formaldehyde using chromotrophic acid (1,8-dihydroxynaphthalene-
3,6-disulfonic acid). Grant’s procedure required the use of
chromotrophic acid and magnesium ribbon. A coil of magnesium
ribbon was added to a solution containing formic acid that was then
immersed in an ice bath. HC1l was added periodically, the
chromotrophic acid was added, then the mixture was heated for 30
minutes. After centrifugation, the supernatant was analyzed
spectrometrically. A calibration curve was established correlating
the colormetric response to known quantities of formic acid, from
0 to 15 pg. This method also required distillation of the sample
to remove interfering organic substances, formaldehyde present in
the sample may be removed by reaction with phenylhydrazine, and HCl
may be required to acidify the sample to pH 2 if carbonates are
present. With this method only 29% of the theoretical amount of

formaldehyde was recovered; this low recovery was due to the lack
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of complete conversion of formic acid to formaldehyde. Pickett et
al., (1954) also found the colormetric method to be unsatisfactory.

Perlin (1954) proposed the use of lead tetraacetate to oxidize
formic acid. Formic acid concentration was then determined by
titrating the reduced lead tetraacetate. The oxidizing reaction
was allowed to proceed for 20 to 30 minutes, then the stopping
solution, potassium iodide and sodium acetate, was added. Finally
the solution was titrated with thiosulfate. This procedure could
be modified to measure formic acid by manometrically determining
the CO, produced. For this analysis, a calibration curve relating
the quantity of formic acid with CO, produced must first be
established. For samples containing 1.05 to 32.3 mg formic acid,
recovery values ranged from 96.3 to 101% of theoretical wvalues.
The recovery attained by this analysis was satisfactory; however,
the considerable laboratory methods required for this analysis make
it undesirable for the purposes of this research.

Rabynowitz and Pricer (1957) developed an enzymatic method for
analyzing for formic acid which entailed a spectrophotometric
determination of N°-N®-imidazolinium (5-10-methenyl-tetrahydrofolic
acid). Formic acid was catalyzed by tetrahydrofolic formylase as

follows.

HCOOH + tetrahydrofolicacid+ATP~N'%-formylte trahydrofolic;cipd
+ATP+ P,

When treated with acid, N°- formyltetrahydrofolic acid was
converted to N*-N'°~imidazolinium which was analyzed at a wavelength

of 350 um. This method demonstrated 94 - 98% recovery of formic
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acid, and could be used to determine formic acid in biological
samples containing 0.02 to 0.2 pumole/mL of sample (or 0.92 to 9.2
: mg/L of formic acid). Not only is the sample preparation complex,
but the range of detection would require dilution of most samples
for wastewater treatment plants.

Asnis and Glick (1956) analyzed formic acid by developing an

alternate enzymatic procedure. They used an E. coli enzymatic

system in the presence of nitrate to oxidize formic acid as shown,

formic acid + KNo, -Particulate, o, , 4o . o,

enzymesystem

CO, is measured manometrically as previously described. E. coli
were cultivated, sonically treated, and centrifuged. The resultant
supernatant was further centrifuged and the resulting cell-free
sediment was resuspended, recentrifuged, and resuspended. This
suspension, containing the enzyme system, was then used to oxidize

formic acid. The procedure must be performed in an O, free

environment, as O, is a preferential electron acceptor over NO; .
This method was applied to samples containing 2.5 to 20 umole (0.12
to 0.92 mg) formate, with a recovery of 102.7%. The main
difficulty associated with this method was the unstable nature of
the enzyme system; its active life was less than 24 hours.

Gas chromatography, the technique typically used to analyze
for organic acids, is not successful when analyzing formic acid
using the standard flame ionization detector (FID). In 1976, Brown

and Moore dealt with issue by converting fon .c acid to |
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dimethlyformamide which is readily detectable with an FID. The
conversion of formic acid was accomplished by treating a sample
with diazomethane and dimethylamine; these substances were found to
be specific for formic acid. Bricknell and Finegold (1978)
improved Moore and Brown’s method by using a thermal conductivity
detector. The purpose of their assay was to develop a means of
detecting the presence of formic acid; this informatior is required
for the identification and classification of certain
microorganisms. Their procedure calls for methylation o9of the
sample followed by extraction with chloroform. The sample was then
chilled and centrifuged to ensure a homogenous mixture. A
calibration curve was established for concentrations from 1.0 to
10.0 pmole/mL formic acid. This procedure proved to be 50 to 60%
accurate.

Jorgensen (1981) developed a method of measuring formic acid
by distilling a sample, stripping the mixed gases which are sorbed
onto a porous medium coated with Ag,0. Ag,0 acts as an oxidizing
agent for formic acid. The formic acid was converted to CO, [and
H,] which was absorbed into a mixture of barium chloride and NaOH;
BaCO, was formed and titrated. This method demonstrated a 90%
recovery for concentrations from 0.513 to 5.125mM (23.6 to 235.8
mg/L). As described this method was time consuming with extensive
sample pretreatment required.

Guerrant et al., (1982) developed a method for analyzing
short-chain acids using high-performance liquid chromatography.

This nethod involved ether extraction of the sample. After a
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single extraction with ether, the recovery of formic acid was only
51%. High pressure liquid chromatography is the most current
method used to analyze for formic acid in bacterial cultures.

Ion chromatography can also be used to detect formic acid as
the formate ion in a mixture of organic acids. However, there was
no indication in the literature that is method was beinco used to
analyze formic acid in biological experiments.

These previously described methods were developed for various
reasons. For some analyses, the mere detection of formic acid in
a samples was sufficient. Due to the extensive pretreatment
required or the low reccvery obtained using these methods, they are
not suited for routine daily analysis of formic acid for reactor
monitoring purposes. For use as a routine process indicator at
wastewater treatment facilities employing anaerobic processes,
formic acid must be analyzed using a simple, relatively accurate

process requiring minimal sample preparation.
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III. ANALYTICAL METHODS AND MATERIALS

This research was conducted in two phases. In the first
phase, an analytical method was developed to analyze for formic
acid in effluent from anaerobic treatment systems using ion
chromatography. During the second phase, anaerobic batch systems
were subjected to toxic loadings then monitored over time periods
ranging from twelve hours to several days. The effect these
loadings had on various parameters, including formic acid

concentration, was monitored.

DEVELOPMENT OF FORMIC ACID ANALYTICAL METROD

As noted in the literature review, present methods for
detecting formic acid are time consuming, involve preparation of
unstable enzymatic solutions, extensive pretreatment procedures or
provide inadeguate recoveries. One of the objectives of this
research was to develop a reliable and simple method of analyzing
for formic acid.

An application note (AN 24) from the Dionex Corporation
entitled "Determination of Formaldehyde as Formate Ion" indicated
that Kim, Geraci, and Kupel (1978), vf the National Institute for
Qccupational Safety and Health, were using ion chromatography to
analyze for formaldehyde in ambient air. Appendix A provides a
copy of this note. For detection of formate they used an AS4A

separator column and an AG4A guard column. A 5mM Na,B,0,° 10H;0
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(bora.) solution was the eluent applied at a flowrate of 2.0
mL/min. From the note, at flow rates of 200 mL/min, recovery of
formaldehyde ranged from 59 to 122% with an average of 99%.

For the purposes of this research, the ion chromatograph used
consisted of a Dionex System 2000i/SP ion chromeatogr:ph equipped
with a model CDM-1 conductivity detector. The range of the
detector was 0.1 to 10,000 Hs, and the size of the sample injection
loop was 50 pL. The column configuration was an AG4A guard column
followed by an AS4A separator column. A 5 mM Na,B,0,° 10H,0 (borax)
solution was used as the eluant.

An investigation was conducted to determine what anions would

interfere with formic acid analysis. The chemicals tested, C1°,

Table 3.1 - Data from chromatographic analysis of chemicals that
have elution times similar to formic acid

COMPOUND CONCENTRATION RETENTION TIME
mg/L chart movement time

mm min

NaF 10 6.0 1.2
NaCl 100 10.5 2.1
CH,COOH 100 6.5 1.3
HCOOH 75 7.5 1.5

INSTRUMENT SETUP

Chart speed: 30cm/hr
Flowrate: 1.9mL/hr
Detector range: 100us

360us for HCOOH
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F-, and acetic acid, were chosen based on fact that they have a

similar elution time as formic acid. Analyses of individual and
mixed solutions was accomplished. Table 3.1 and Figure 3.1
presents the results of the chromatographs of the mixed samples.
To increase the separation between acetic and formic acids, the
flowrate was changed to 1.23 mL/min. Table 3.2 and figure 3.2
indicate the results of this change.

Table 3.2 - Data from chromatographic analysis of acetic and
formic acids

COMPOUND CONCENTRATION RETENTION TIME
mg/L chart movement time
mm min
CH,COOH 100 9.5 1.9
HCOOH 75 11.5 2.2

INSTRUMENT SETUP

Chart speed: 30 em/hr
Flowrate: 1.23 mL/min
Detector range: 100 ps

Next standards were prepared using 88% formic acid. A
calibration curve of instrument response, peak height, versus
formic acid concentration was established for concentrations

4 rangiang from 5 to 100 mg/L; figure 3.3 presents this information.

As can be seen, the curve 1is linear up to approximately 8 mg/L.

However, a plot of the natural log of the concentration versus the
natural log of the peak height gave a straight 1line. This

relationship is shown in figure 3.4. From this graph it is clear
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that the useful range is from 5 to 75 mg/L.

Recovery analysis was performed using reagent grade formic
acid and leachate from two established experimental landfill
columns, identified as columns 1 and 2. As shown in figure 3.5,
chromatographic analysis of unspiked anaerobic leachate samples
produced large peaks in a range that would interfere with formic
acid determination. However, due to the stability of the landfill
system producing the leachate it was unlikely that formic acid was
present. Formic acid in spiked samples was undetectable until the
formic acid exceed a concentration of 75 mg/L. Known leachate
constituents which could have caused the interferences were thought
to be either low mclecular weight acids or high concentrations of
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chloride ion. In an attempt to alleviate these interferences,
leachate samples were pretreated with Onguard pretreatment
cartridges, manufactured by the Dionex Corporation.

The first cartridge used was the "RP" cartridge. It contained
macroporous, divinylbenzene, reversed-phase packing and was
recommended for the removal of hydrophobic compounds including some
carboxylic acids. It contained no anion or cation exchange sites.
Use of this cartridge alone did not remove the interferences. Next
an "AG" cartridge was utilized to attempt to remove the interfering
substances. This cartridge contained a silver cation exchange

resin and was recommended for removal of Cl-, Br-, I°, Crof‘ as well
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as a number of other anions. 1Its capacity was stated to be 1.8 to
2.0 meqg/cartridge. Use of this pretreatment cartridge removed
enough of the interfering materials to allow the detection of 50
mg/L and 10 mg/L formic acid in spiked leachate samples of column
1 and 2, respectively. Greater removal of the interfering
substances was obtained by pretreating the samples with both the RP
and AG cartridges. 1In each case, the cartridges were prepared as
noted in the Onguard user information sheet. The procedure was as

follows:
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1) Filter 30 mL of leachate through a 0.45 um
membrane filter. If spiked sample was to be

analyzed, the sample was spiked after

filtration.

2) Pass 12 mL of filtered leachate through a RP
cartridge, allowing the first 3 mL to pass to
waste.

3) Pass the remaining 9 mL through an AG

cartridge, again wasting the first 3 mL.

This protocol was used to run reproducibility analysis on leachate
samples from both columns spiked with 10 mg/L formic acid. The
results of this analysis indicated recovery of formic acid ranging
from 109 to 157%, with an average of 132%. The average
concentration, based on instrument response and the calibration
curve generated previously, was 13.2 mg/L, with a standard
deviation of 1.2, less than a 10% error. Table 3.3 and figure 3.6
present these data. The reason the recovery was much greater than
100% was attributed to the fact that the calibration curve was
established using peak height values produced from samples cf
deionized water spiked with known concentrations of formic acid
which were not subjected to pretreatment with the RP and AG
cartridges. The calibration curve was reestablished using

standards that were subjected to the same pretreatment process as

the samples.
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Figure 3.6 - Ion chromatographic reproducibility analysis of

leachate from experimental landfill column 1, spiked with 10 mg/L
formic acid and pretreated with RP and AG cartridges

Chromatographs were run on samples of anaerobic leachate from
both columns, pretreated and untreated, unspiked and spiked with
formic acid. Samples of deionized water using the pretreatment
cartridges, unspiked and spiked with formic acid were also analyzed
to determine the baseline due to pretreatment. Individual
chromatographs of deionized water samples spiked with formic acid
that were untreated and pretreated prior to analysis were run. The
data indicated that the untreated sample gave a response of 4.3 cm,

the sample pretreated with both cartridges provided a peak height
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Table 3.3 -~ Data from ion chromatographic reproducibility
analysis of leachate from experimental landfill column 1, spiked

with 10 mg/L formic acid and pretreated with RP and AG cartridges
. - ]

COLUMN 1 RUN PK HT CALC CONC %
SAMPLE # # cm In(PK HT) 1ln(CONC) mg/L RECOVERY
1 1 4.5 1.50 2.46 11.7 117
2 4.4 1.48 2.43 11.3 113
3 4.4 1.48 2.43 11.3 113
4 4.6 1.53 2.49 12.1 121
5 4.7 1.55 2.5 12.5 125
2 6 4.8 1.57 2.56 12.9 129
7 5.0 1.61 2.62 13.7 137
8 5.6 1.61 2.62 13,7 137
9 4.3 1.46 2.39 10.9 109
10 4.6 1.53 2.49 12.1 121
*4 11 4.6 1.53 2.49 12.1 121
12 4.7 1.55 2.52 12.5 125
13 4.8 1.57 2.56 12.9 129
14 4.6 1.53 2.49 12.1 121
15 4.7 1.55 2.52 12.5 125
5 16 5.1 1.63 2.65 14.1 141
17 5.5 1.70 2.76 15.8 158
18 4.9 1.59 2.59 13.3 133
COLUMN 2
1 19 5.1 1.63 2.65 14.1 141
20 5.0 1.61 2.62 13.7 137
21 5.1 1.63 2.65 14.1 141
22 5.1 1.63 2.65 14.1 141
23 5.1 1.63 2.65 14.1 141
2 24 5.1 1.63 2.65 14.1 141
25 5.1 1.63 2.65 14.1 141
26 5.2 1.65 2.68 14.5 145
27 5.1 1.63 2.65 14.1 141
28 5.2 1.65 2.68 14.5 145

STANDARD DEVIATION 1.2
AVERAGE 13.2 132

*Sample 3 turned purple; unusable due to reduction
and precipitation of silver in cartridge.

of 5.5 cm, while the samples pretreated with only an RP or AG
cartridge gave responses of 5.2 and 3.5, respectively. It was

clear from these data that the RP cartridge increased instrument
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response; however, the cause was undetermined. These
chromatographs are presented in Appendix B. The results of these
analyses lead to the conclusion that using the AG cartridge alone
was the best method of pretreatment.

The next step of this phase involved determining the lowest
concentration that could be detected using the method developed.
A calibration curve for concentrations from 10 mg/L to 0.1 mg/L was

developed. Figure 3.7 displays this information.

FORMIC AC!D CALIBRATION CURVE

LOWER CONCENTRAT ICNS
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Figure 3.7 - Calibration curve for low concentrations of formic
acid

Since the equation generated from the linearized and reqular

calibration curves are very similar, the non linearized calibration
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curve was used for this analysis. Since leachate from column 1

contained more interfering substances than that from column 2,
column 1 leachate was spiked with various amounts of formic acid
for the detectibility analysis. The lowest detectible limit in
leachate was determined to be 5 mg/L. This information is

presented in table 3.4. This concentration is considered to be

Table 3.4 - Data from ion chromatographic analysis to determine

the lowest concentration of formic acid detectable
- ]

LOWEST DETECTIBLE CONCENTRATION

SPIKE PEARK HT CONC RECOVERY
mg/L cm mg/L %

19.0 10.3 7.98 80
5.0 4.4 3.26 65
1.0 ND ND ND
0.5 ND ND ND
6.1 ND ND ND

ND - not detectible

very conservative since anaerobic leachate was the substance
spiked. Analysis of effluent from bench scale and full scale
naerobic systems indicated that they contained fewer interfering
substances than the leachate. In reactor effluent it is probable
that the detection limit could be as low as 1 mg/L.

Tc see if formic acid could be detected in anaerobic systems,
samples were obtained from anaerobic digester effluents from the

Georgia Tech Research Institute (GTRI) test reactors and the Utoy
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Table 3.5 - Formic acid analysis of effluent from wvarious
anaerobic reactors
- ]

SOURCE PEAK HT CONC
cm mg/L
GTRT #4 2.0 16
Utoy 2.0 16
Entrenchment Creek 2.2 19

and Entrenchment Creek wastewater treatment facilities. The
effluent samples optained from GTRI were taken from four reactors.
Reactor 1 was a packed column used to treat blood wastes; reactor
4 was an empty bed column also treating blood wastes; reactors 10
and 11 were treating egg wastes and a mixture of wastes
respectively. The first chromatographic analyses were
inconclusive; there were peaks noted that could have been formic or
acetic acid. When samples were spiked with formic acid, the peaks
in question increased. However, since it was highly unlikely that
these samples contained formic acid and not acetic acid, it was
determined that the concentration of acetic acid in the samples
produced a peak that masked a possible formic acid peak. By
varying the recorder speed and the eluent flow, as demonstrated in
figure 3.8, reasonable separation of acetic and formic acids was
obtained. Using the amended instrument setup, formic acid was
detected in a sample of effluent from GTRI’s laboratory anaerobic
reactor 4, as well as in the samples obtained from the Utoy and
Entrenchment Creek anaerobic digester effluents. As indicated in
table 3.5, the concentration of formic acid was below 20 mg/L for

each of these reactors.
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Figure 3.8 - Acetic and formic acid elution peak separation at an
«luent flow of 0.22mL/min

The analytical procedure developed for the analysis of formic

acid in anaerobic effluents was as follows:

(1)

(3)

In the second phase of this research,

n

Filter sample with 0.45 um membrane filter
Pass 15 mL of sample through a prepared AG
Onguard cartridge, wasting the first 3 mL.
inject 1 mL of sample into the sample port of
the ion chromatograph set up as follows: '
Detector range: 100 us

Recorder speed: 30 cm/min

Flow: 0.22 mL/min (setting 1.0)

the procedure established

above was used to analyze for formic acid in the effluent samples
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of the batch reactors under study; minor adjustments were made as
necessary. Another calibration curve was generated with the
standard prepared using the method noted above; the results were
very similar to those of the first curve generated by using
standards of deionized water and formic acid without pretreatment.
Figure 3.9 displays these data. It is ©presumed that
reproducibility analysis would be more favorable with the AG
cartridge alone The calibration curve generated with the
pretreated standards was used in the analysis of formic acid in the
second phase of research.

The advantages associated with this procedure were: (1) the
pretreatment may not be required depending on the constituents
present in the sample; (2) if required, the pretreatment was
uncomplicated and not very time consuming, the only preparation
required of the AG cartridge is filtering 5 mL of deionized water
through it prior to passing the sample through; (3) after injecting
the sample into the chromatcgraph, data were automatically
registered on a strip chart recorder; and (4) the recovery analysis

roduced less than 10% error, which compares favorably with the
other methods described previously.

There were a few disadvantages noted with using this method of
analysis; (1) if the capacity of the pretreatment cartridge was
exceeded, the pretreated sample would not be useful for analysis;
(2) With the decrease in eluent flow from 1.3 mL/min to 0.22
mL/mia, the time to elute the formic acid peak increased from 2.5

min to 14 min; (3) if a large peak was encountered that eluted
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Figure 3.9 - Comparison of formic acid calibration curves

generated from untre:sted and pretreated standards

after formic acid, say phosphate, the time for the system to return
to baseline was extremely long at a flow of 0.22 mL/min. A dual
system that allows for switching from one flow and eluent to
another, c¢r a gradient pumping system, would have made the analysis
less time consuming. These types of ion chromatographs are
available. Finally, (4) if the concentration of acetic acid was
much greater than formic acid, on the order of 100:1, determining
the quantity of formic acid was not as precise as when the
concentration of acetic acid was not that much greater than formic
acid, on the order of 5:1.
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ANAEROBIC BATCH REACTOR SETUP AND OTHER ANALYSES

An 8 L anaerobic batch reactor was established to provide seed
for smaller (1 L) test reactors. The test reactors were exposed to
toxic loadings and their effluents were analyzed for various
process indicators. The 8 L reactor was seeded from a wastewater
treatment plant’s anaerobic digester. The reactor was started June
12, 1991 with 4 L of supernatant from the plant digester and 1 L of
substrate. See Table 3.6 for the contents of the seed reactor
substrate. The reactor was fed daily and gradually brought up to
a final working volume of 8 L on June 17, 1991. At this time the
substrate was increased to a dextrose concentration of 4000 mg/L to
allow for more gas production. The 8 L reactor was configured as
shown in figure 3.10. The temperature 1in the reactor was
maintained at 35 + 2 °C by using a heated water bath connected to
copper coils wrapped around the reactor, enclosed in insulation.
The reactor was fed once a day using the fill and draw method; 1 L
of effluent was drawn off, then one 1 L of substrate was fed to the
system. The reactor had an 8-day hydraulic retention time (HRT).

The 8 L reactor was fed and monitored for more than 40 days,
when the first test batch reactors (1 L) were started. All
parameters were measured using a sample of the effluent from the 8
L or 1 L reactors. As a minimum, every HRT, a sample of the
effluent from the 8 L reactor was analyzed for the following: pH,
chemical oxygen demand (COD), volatile organic acid (VOA)
concentration, and formic acid. Gas composition analysis was not

performed due to the fact that to test for gas leakage the reactor
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Table 3.6 — Seed reactor substrate

Substrate
Constituent Concentration
dextrose 4 g/L
NH,C1 0.5 g/L
KH,PO, 4.25 g/L
Na,HPO, 17.72 g/L
trace salt solution 2 mL/L

Trace Salt Solutiocn

Compound Quantity, grams*
Sodium citrate (Na,CcHs0,° 2H,0) 3.27

ZnCl, 4.74
Na,B40,* 10H,0 1.15
(NH,) (M0;0,,* 4H,0 2.08
FeCl,* 6H,0 34.38
CaCl,* 2H,0 2.04
CoCl," 6H,0 2.85

*compound were dissolived in 1L of deionized water

head space was filled with natural gas to test air tightness. This
procedure was performed several times throughout this phase of the
research. Under these circuﬁstance, gas composition analysis would
have been misleading. Formic acid was determined by the procedure
established in the first phase of this research, and pH was
measured using a pH meter.

Soluble COD was determined using manufacturer-prepared vials.
A calibration curve was generated using KPH standards from 180 to

900 mg/L. This curve was used to correlate absorbance at 600 nm
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Figure 3.10 - Experimental setup for seed batch reactor

with COD. Two milliliters of sample, filtered with a 0.45 Hum
membrane filter and diluted if necessary, was placed in a vial.
The vial was thoroughly shaken then heated for 2 hours. After
cooling, the absorbance at 600 nm was observed.

Volatile acids were determined using a Hewlett-Packard model
5830A gas chromatograph equipped with a flame ionization detector.
To prepare the standards, the following acids, in the approximate

amounts shown, were dissolve in 100 mL of methanol:
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8.5g acetic acid 1.0g i-valeric acid

4.0g propionic acid 3.0g valeric acid

1.0g i-butyric acid 8.0g hexanoic acid

10.0g butyric acid
For analysis of the standard, 100 ML of the stock solution was
diluted to 10ml with organic free water; 2 UL of benzyl alcohol, an
internal standard, was added. Five drops of H;PO, (concentrated)
were then added to the standard to ensure the pH was less then 4.
Samples were also prepared in 10 mL volumetric flasks with the
internal standard and H,PO, added. The standards and samples were
place into 5 mL sealed vials, ensuring no head space was present.
Due to the small volume of sample available for analysis, no
internal standard was used during testing. For analysis, 2 UL of
the sample was injected into the gas chromatograph. The instrument
parameters were as follows:

Injection temperature - 250 °C

Detector temperature - 300 °C

Initial oven temperature - 110 °C

Initial time - 2 min

Rate - 2 °C/min to 125 °C

Final oven temperature -~ 125 °C

Final time - 5 min

Carrier gas - helium

Flow - 10 mL/min
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The concentration of each acid was determined as follows:

RF = area acid in std X conc IS R
area IS (std) conc acid in std

where RF was the response factor, and IS was the internal standard.

conc acid in sample = area acid in sample X conc IS .
area IS (sample) RF acid

Without the internal standard,

conc acid in sample = _area acid in sample X conc acid in std
area acid in standard

The samples were analyzed immediately for pH. For the other
analyses, the samples were stored at 25°F until analyzed; if VOA
analysis was to be performed, the samples were stored with no head
space in the bottle. Appendix C provides data for the process
indicators monitored cduring the start-up phase of the research.

One-liter test reactors were used to analyze the effect of

toxic loadings. They were seeded with 0.5 L or 1 L of effluent

h

from the 8 L reactor at the time of feeding. To factor out the

¥

possible stress induced during transfer of effluent drawn from the
seed reactor to the test reactors, a control reactor was started
and monitored along with the reactors subject to toxic loadings.
In the first test, the test reactors were subjected to
increased organic loadings of dextrose 2, 3 and 5 times that of the
seed and control reactors. In the second test, chloroform was
added to the substrate of the test reactors. In the first test
reactor a concentration of 4 mg/L chloroform did not exhibit an
increase in formic acid production; therefore, the third and fourth

reactors were fed 20 and 100 mg/L chloroform, respectively. The
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from water bath

(four reactors connect in series to water bath)

Figure 3.11 - Test reactor configuration

third test involved ammonia toxicity. A HRT of 8 days is
relatively short for anaerobic systems; therefore, 50 mg/L NH, was
selected because it was at the lower end of the toxicity threshold
range of 40 to 100 mg/L. At a pH of 7, a concentration of 77.52
g/L (NH,),SO, would provide 50 mg/L NH3 in solution. Due to the
relatively short timeframe of the experiment, it was presumed that

the amount of NH;, stripped out of solution was negligible. The

48




————

control reactor, at a pH of 7, contained less than 0.1 mg/L NH,.
The set up of the 1 L reactors is shown in figure 3.11.
The control reactor was fed the same substrate as the 8 L

reactor for all analyses. The test reactors were fed the same

Table 3.7 — Test reactor substrates
]

ORGANIC LOADING

Test reactor Dextrose
1 8 g/L
2 12 g/L
3 20 g/L

CHLOROFORM TOXICITY

Test reactor Chloroform
1 4 mg/L
2 20 mg/L
3 100 mg/L

AMMONIA TOXICITY

Test reactor NH;

1 50 mg/L

substrate along with various toxic substances as ncted in table
3.7. The testing was performed as indicated in table 3.8. To
obtain samples, 20 mL of reactor contents was withdrawn then

replaced with 20 mL of deionized water. The dilution factor was
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not accounted for in the analysitc of the reactor samples, nor is it

reflected in the results presented in chapter 4. Assuming complete
mixing, the dilution after the completion of twelve samplings left
approximately 64% of the original sample in the reactor. Appendix
D contains a table that estimates the approximate percentage of
reactor volume not composed of deionized water, the percentage of
original, undiluted sample. This refilling of the reactor volume
was an attempt to maintain a constant liquid volume so the gas
burettes could be used to determine gas production. However, the
head space in the reactors was much greater than the reactor
contents, and due to fluctuations in the temperature of the reactor
and the laboratory, the gas burette readings were unreliable. For
ammonia analysis test number 4 the samples removed were not
replaced with deionized water in an attempt to obtain more accurate
COD data. The test reactors were analyzed for pH, soluble COD,
VOA’'s, formic acid and gas composition. The gas composition was
determined on a Fisher gas analyzer. Since the samples from the 1
I. reaccors indicated no CH; production, samples were analyzed on
VOA GC setup to determine if CH, was presen. .ince this instrument
was more sensitive to CH..

The results of analyses for all parameters are presented in

chapter 4. The raw data are contained in appendix D.
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Table 3.8 - Test conditions
]

TEST CONDITIONS

TEST # TOXIN DURATION SAMPLING
1 organic loading 12hrs every hr
2 chloroform 12hrs every hr
3 ammonia 12hrs every hr
4 ammonia i2hrs every hr
5 ammonia 24hrs every 4hrs
6 ammonia 120hrs every 12hrs
7 unknown 120hrs every l2hrs
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IV. RESULTS

The date from the results of the tox.city analyses are
provided for pH, COD, VOA, and formic acid. The data for all these
parameters are presented based on the substances added to produce

the shock or toxicity.

TEST 1 - SUBSTRATE CONCENTRATION INCREASE

As indicated earlier, to study the affect of increased
substrate concentration on anaerobic batch reactors, test reactors
were subjected to substrate concentrations (as dextrose) 2, 3, and
5 times that c¢f the control and seed reactors. The pH data are
presented in table 4.1. The buffer capacity of the system was
sufficient to mainta-n the pH around neutral for all tests. In the

substrate concentration test, the pH ranged from 6.93 to 7.11.

Table 4.1 ~ pH analysis of effluent from reactors fed various

concentrations of substrate
S T R R

suB TIME, HRS
CONC  SEED 1 2 3 4 5 6 7 g8 9 10 11 12

CONTROL 7.38 NA  NA 7.09 7.09 7.09 7.06 7.07 7.09 7.09 7.05 7.09 7.05

8 g/L 7.38 NA NA 7.08 7.07 7.11 7.10 7.05 7.0% 7.08 7.06 7.0¢ 7.08
iz g/L  6.93 7.0%3 7.02 7.00 7.02 6.96 7.02 7.02 6.96 6.97 6.99 6.93 7.01
20 gs/L 6.93 7.05 7.01 6.99 €.98 7.02 7.02 7.01 6.97 6.97 €.98 7.00 7.01

During this test, the change in COD was sporadic; however, the
overall trend indicated a slight decrease, as indicated in figure
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Figure 4.1 - COD analysis of effluent from reactors fed various
substrate concentraticns
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4.1. The change in COD noted was due primarily to the dilution of

the reactor contents with deionized water during sampling. A plot
of COD concentration which has been corrected for dilution of the
sample is provided in figure 4.2. As shown, the trends are similar
to that of the uncorrected graph. A plot ¢f the change in COD
versus time is shown in figure 4.3. The results were erratic, but
indicate that the overall change in COD was minimal in all
reactors. There was no significant change in COD versus time in
this test, and the remaining tests indicated only minor changes in
COD. Therefore, a plot of the change in COD versus time is not
provided for the remaining tests. Figures 4.4 and 4.5 are graphs
comparing COD due to volatile acids with the total COD for the
control reactor and the reactor fed substrate containing 20 g/L
dextrose. As shown the average percentage of COD due to VOA’s was
65 to 75%. The remaining tests proved that the percentage of COD
from VOA’s ranged from 54% to 94%, averaging around 80%. This data
is not presented for the remaining tests. Gas analyzer data showed
no indication of CH, production. However, analysis of gas phase
samples on the VOA GC setup indicated CH, was present in the
control reactor at the end of the test period of 12 hours. This
same analysis of the test reactor did not indicate the presence of
CH,. It was concluded that there was some CH, production in the
control reactor; however, it was very low. Therefore, the change
in COD was also very low. As noted in chapter 3, the gas volume

data was not useful.
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Appendix D provides the VOA concentrations, while figure 4.6
indicates the total VOA’s for the control and test reactors. The
concentration of total organic acids was dynamic for all reactors,
but generally the control reactor maintained the 1lowest
concentrations.

The formic acid analysis indicated the greatest concentration
increase for the test reactor containing 8 g/L of dextrose, but the
other test reactors contained considerably less formic acid then
the control reactor. The results of this analysis are shown in
figure 4.7. The separation between acetic and formic acid on the
ion chromatograph was good for the control reactor and the reactor
feed 8 g/L of dextrose. For the test reactors with 12 and 20 g/L
the separation between the acetic and formic peaks was not a
distinct. Figures 4.8 through 4.11 graphically display the
comparison between the concentrations of formic acid, acetic acid
and total VOA’s in the control and test reactors. For the 12 and
2C mg/L reactors, the acetic acid concentrations are slightly
higher than the control reactor, while the formic acid

concentrations were lower.

TEST 2 — CHLOROFORM TOXICITY

As indicated in table 3.7, the test reactors contained 4, 20
and 100 mg/L CHCl,. During this test pH range was very narrow,
from 6.89 to 7.10, as shown in table 4.2, The soluble COD
indicated a downward trend, as presented in figure 4.12. The gas

chromatographic analysis indicated some CH, was produced in all of
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Table 4.2 - pH analysis of effluent from reactors fed substrate
containing various concentrations of chloroform
. ]

CH,CL TIME, HRS
CONC SEED 1 2 3 4 5 6 7 8 9 10 11 12

CONTROL €.89 6.99 7.03 7.02 7.02 7.01 7.02 7.06 7.10 7.G67 7.05 7.07 7.05
4 mg/L 6 89 6.98 6.99 6.99 7.00 6.98 6.98 7.04 7.10 7.07 7.02 7.06 7.05
20 mg/L 6.89 6.96 7.03 7.02 7.04 7.04 7.04 7.05 7.00 NA 7.05 7.05 7.06
100 mg/L 6.89 6.93 €.95 7.03 7.02 7.00 7.00 7.03 6.98 NA 7.04 7.03 7.05

the reactors. As noted in chapter 3, no gas production or CH,
concentration data was obtained.

The VOA analyses indicated a slightly higher concentration in
the control than the test reactors; figure 4.13 presents these
data. The results from the formic acid analysis indicate a more
rapid decrease in formic acid concentration in the control reactor
than in the test reactors and a considerable increase in formic

acid in all reactors at the end of the test period, especially in

(@1
oy

e reactor fed 100 mg/L CHCl,. The large increase in formic acid
concentration at hour 12 followed the same pattern as the other
VOA’s in the control and 20 mg/L reactors. Figure 4.14 presents

the formic acid data, and figures 4.15 through 4.18 indicate the

relationship between formic and acetic acids and total VOA's.

TEST 3 - AMMONIA TOXICITY NUMBER 1
Four tests were run on reactors exposed to toxic dosages of
ammonia as indicated in table 3.11. All test reactors were feed 50

mg/L NH, as indicated in chapter 3. In test number 1, the

Yo

substrate was fed at the time the seed effluent was added to the 1
L reactoers. In tests number 2, 3 and 4 the 1 L reactors were
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Figure 4.12 - COD analysis of effluent from reactors fed
substrates containing various concentrations of chloroform
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Figure 4.15 - Comparison of HCOOH with VOA concentrations of
effluent from control reactor in chloroform toxicity analysis
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Figure 4.16 - Comparison of HCOOH with VOA concentrations of
effluent from reactor fed substraie containing 4 mg/L chloroform
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Figure 4.17 - Comparison of HCOOH with VOA concentrations of
effluent from reactor fed substrate containing 20 mg/L chloroform
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seeded, one hour later, at time zero, samples were obtained, then

the reactors were fed the appropriate substrate. As presented in
table 4.3, in the first analysis the pH for both the control and
test reactor ranged from 6.83 to 6.96. In figure 4.19 the COD
demonstrated a general downward trend.

The VOA concentration showed similar trends for both the test

Table 4.3 - pH analysis of effluent from reactors fed substrate
containing various concentrations of NH,, ammonia toxicity
analysis #1

. ]

NH, TIME, HRS
CONC  SEED 1 2 3 4 5 6 7 8 9 10 11 12

CONTRCL 6.88 6.95 6.94 6.92 6.92 6.95 6.95 6.96 NA 6.96 6.96 6.96 6.96
50 mg/L 6.88 6.86 6.83 6.86 6.84 6.86 6.84 6.87 NA 6.87 6.89 6.89 6.91

and control reactors, as shown in figure «.20. However, the formic
acid concentration was much greater in the test reactor. Again,
there w.s good separation between the formic and acetic acid peaks.
Figures 4.21, 4.22 and 4.z3 indicate the formic acid concentration
alone .u as compared with acetic in the control and test reactors.
The veolatile acid concentrations in the control reactor showed more
activity then the test reactor. The VOA and formic acid analysis
indicated nigh concentrations of each from the seed reactor that
were quickly reduced. The formic acid concentration followed the
same general trend as that in the test reactor, only at lower

1

levels.
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TEST 4 — AMMONIA TOXICITY NUMBER 2

Analysis #2 for ammonia toxicity was a repetition of the first
ammonia toxicity test. This test was repeated since it appeared to
give the greatest difference in formic acid concentraticn between
the control and test reactors. The samples obtain were analyzed
for pH and formic acid .nly. These results are indicated in table
4.4 and fiqure 4.24. Although the concentration of formic acid was
not as great was with ammonia test #1, the results of test number

two fcllowed the same pattern.

TEST 5 - AMMONIA TOXICITY NUMBER 3
Analysis #3 for ammonia toxicity involved the analysis of a

test reactor only over a 24-hour period as compared to the previous

Table 4.4 - pH analysis of effluent from reactors fed substrate
containing various concentrations of NH,, ammonia toxicity
analysis #2

SUs TIME, HRS
CONC SEED 1 2 3 4 5 6 7 8 ) 10 11 12

CONTROL 6.90 6.89 6.85 6.87 6.88 6.87 6.83 6.90 6.90 6.87 6.88 6.89 6.90
50 mg/L 6.90 6.79 6.80 6.83 6.81 6.81 6.72 6.78 6.80 6.78 6.80 6.83 6.77

L]
12-hour periods. The samples were analyzed for all the parameters.
The pH varied from 6.79 to €.96, as indicated in table 4.5, while
the COD was sporadic, as demonstrated in figure 4.25. There was an
indication c¢f some CH, production.

The VOA analysis indicated very little change, as demonstrated
in figure 4.26. The separation between the acetic and formic acid
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Table 4.5 - pH analysis of effluent from reactor fed substrate
containing 50 mg/L NH;, ammonia toxicity analysis #3

NH. TIME, HRS
CONC 0 1 4 8 12 16 20 24

50 mg/iL 6.79 6.81 6£.84 6.6 6.80 6.83 6.84 6.87

peaks was very good. Figures 4.27 and 4.28 indicate the
concentration of formic acid, and compare it to acetic acid., It is

apparent that the formic acid concentration is cyclic.

In ammonlia toxicity analysis #4 all parameters were &again

pericd. As with ail the other tests, the pH remained relatively
. s "
uncnanged; see cable 4.¢.
. - PR -1 -~ ' 3 = = H - v
“he CCIZ data with the exception of 2 or 3 data points were

relatively conszant over the 120-hour period; see figure 4.2

Table 4.6 — pH analysis of effluent from reactors fed substrats
containing various concentrations of NH,, ammonia toxicity
analysis #4

L

HN. TIME, HRS

CONC < : 2 24 3¢ 48 60 72 84 3¢ .o~
CIONTRCL &.81 €,78 6.80 6.83 6.88 6.87 6.86 6.87 6.8> » =+ -
°C mgrsi 6.81 6.7z 6.7Z 6.74 6.79 6.78 6.79 6.7%9 £.7 7 + =

irn chapter 3, gas compositv:izir 1. -

g2
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Figure 4.26 - VOA analysis of effluent from reactor fed substrate
containing 50 mg/L NH,, ammonia toxicity analysis #3
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Yigure 4.27 - Formic acid analysis of effluent from reactor fed
substrate containing 50 mg/L NH,, ammonia toxicity analysis #3
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Figure 4.28 - Comparison of HCOOER with VOA concentrations of
effluent from reactor fed substrate containing 50 mg/L MH,,
ammonia toxicity analysis #3
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reliable, and was not taken during the course of this test. The
VOA analysis indicated a constant slightly decreasing trend, shown
in figure 4.30. The formic acid concentration again appeared to be
cyclic. Figures 4.31 through 4.33 indicate the trends of formic
and acetic acids. The concentration of formic acid remained higher
in the samples from the test reactor than those from the control
reactor, indicating that the seed reactor was stressed, causing the

concentration of formic acid to be higher in both reactors then in

previous tests.

TEST 7 —~ SEED REACTOR DURING UPSET

During the last ammonia test, it was noted that the seed
reactor’s formic acid concentration had drastically increased. A
gas composition analysis indicated the headspace contained
approximately 30% N,, a sign of possible 0, inhibition due to air
in the reactor. Since the seed reactor was stressed it was
monitored for a period of 6 days. During the upset test period,
the pH ranged from 6.6 to 6.72, as shown in table 4.7. The COD

analysis showed a decrease in COD towards the end of the test

Table 4.7 - pR analysis of effluent from seed reactor during
upset period

SAMPLE NUMBER
1 2 3 4 5 6 7 8 9 10 11 12

6.71 6.72 6.72 6.70 NA 6.67 6.70 6.67 6.68 6.66 6.69 6.67
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Figure 4.33 - Comparison of HCOOH with VOA concentrations of
effluent from reactor fed substrate containing 50 mg/L NH,,
ammonia toxicity analysis #4
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period, indicating the reactor was becoming more stable. This
findings are shown in figure 4.34.

Figure 4.35 indicates the total VOA trend, while figures 4.36
and 4.37 present the results of the formic acid analysis and
compare it to the total VOA and acetic acid concentrations. The

formic acid concentration, although cyclic, was decreasing, another

indication that the system was recovering.
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V. CONCLUSIONS

FINDINGS

(1) Based on the results presented in chapters 3 and 4 it is
concluded that formic acid can be determined using the method
developed in this research with very little pretreatment.

(2) As noted in the data from the seed reactor and other
reactors, in systems which are not operating under the stress of
the toxins addressed in this research, formic acid, when present
will be at low levels, less than 50 mg/L.

(3) The concentration of formic acid increased when the
systems were subjected to toxic levels of ammonia, and possibly
under conditions of 0, toxicity.

(4) Formic acid concentration did not in general increase
when subjected to chloroform or increased substrate concentrations.
This factor appears to indicate that formic acid increases are
subject to the type of toxicity induced.

(5) 1In stressed anaerobic batch systems, within the timeframe
of the sampling formic acid concentrations increased to over 400

mg/L, an order of magnitude higher than the unstressed systehs.

AREAS OF FUTURE RESEARCH

While there appeared to be a correlation between formic acid
and VOA concentration, there were insufficient data collected in

this research to determine if it could be detected sooner than
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other indicators. Increasing the number of samples ana}yzed by
decreasing the time between samples for formic acid will allow for
a more definitive determination.

Since landfills employ anaerobic degradation, analyzing
leachate could provide more insight into the stability or state of
stabilization of these systems. It has been determined that formic
acid could be detected when spiked in landfill leachate, but no
determination was made as to whether formic acid would be a

significant intermediate in these systems.

ENGINEERING SIGRIFI liwid

Once establ>. ~1 by further research that formic acid
concentration can be used to predict pending system upset, daily
monitoring for formic acid could be accomplished as easily as any
other parameter measured. A baseline concentration of formic acid
in the system would first have to be established then monitored
daily thereafter.

As with H, concentration, the concentration of formic acid
appears to be cyclic. The pattern would have to be established for
a specific treatment system then samples taken at relatively the

same "time" in tae cycle for comparison.

99

e

e —————




VI. REFERENCES

Asnis, R. E. and Glick, M. C. (1956) The microdetermination of
formate produced from pyruvate by cell-free extracts of escherichia
coli. J. Biol. Chem., 220, 691-697.

Bailey, J. E. (1986) Biochemical engineering fundamentals,
McGraw-Hill, USA.

Baresi, L., Mah, R. A., Ward, D. M. and Kaplan, I. R. (1978)
Methanogenesis frcm acetate: enrichment studies. Appli. Environ.
Microbiol., 36, 186-197.

Battersby, N. S. and Wilson, V. (1989) Survey of the anaerobic
biodegradation potential of organic chemicals in digesting sludge.
Appli. Environ. Microbiol., 55, 433-439.

Beijer, W. H. (1952) Methane fermentation in the rumen of
cattle. Nature, 170, 576-577.

Bhattacharya, S. K. and Parkin, G. F. (1989) The effect of
ammonia on methane fermentation processes. Jd. Water Pollut.
Control Fed., 61, 55-59.

Bouwer, E. J. and McCarty, P. L. (1983) Transformations of 1-
and 2-carbon halogenated aliphatic organic compounds under
methanogenic conditions. Appli. Environ. Microbiol., 48, 1286-
1294,

Bouwer, E. J., Rittmann, B. E. and McCarty, P. L. (1981)
Anaerobic degradation of halogenated 1- and 2-carbon organic
compounds. Environ. Sci. Technol., 15, 596-599.

Boyd, M. J. and Logan, M. A. (1942) Colorimetric determination
of serine. J. Biol. Chem., 146, 279-287.

Bricknell, K. S. and Finegold, S. M. (1978) Improved method
for assays of formic acid by gas-liquid chromatography. _.
Chromatogr., 151, 374-378.

Brown, B. P. and Moore, W. V. (1976) Gas chromatographic
detection of small amounts of formic acid as dimethylformaldehyde.
J. Chromatogr., 128, 178-179.

Bryant, M. P., Campbell, L. L., Reddy, C. A. and Crabill, M.
R. (1977) Growth of desulfovibrio in lactate or ethanol media low
in sulfate in association with H,-utilizing methanogenic bacteria.
Appli. Environ. Microbiol., 33, 1162-1169.

100

o R I -




VN

i "'».h&

S, Jre——

-

R TR 3k G WA =S S T T T IEs T o [ ————

Bryant, M. P. and Wolin, M. J. (1975) Rumen bacteria and their

metabolic interactions. Pro. First Intersec. Cong. Int. Assoc.
Microbio. Soc., 2, 297-306.

Carroll, E. J. and Hungate, R. E. (1955) Formate dissimilation
and methane production in bovine rumen contents. Arch. Biochem.
Biophys., 56, 525-536.

Chartrain, M. and Zeikus, J. G. (1986) Microbial ecophysiology
of whey biomethanation: intermediary metabolism of lactose
degradation in continuous culture.

Chung, Y-C and Neethling, J. B. (1989) Viability of anaerobic
digester sludge. J. Envir. Engrq., 116, 330-342.

Chung, Y-C and Neethling, J. B. (1989) Microbial activity
measurements for anaerobic sludge digestion. J. Water Pollut.

Dakin, H. D., Janney, N. W. and Wakeman, A. J. (1913) J. Biol.
Chem., 14, 341-353.

Daniels, L., Sparling, R. and Sprott, G. D. (1984) The
bioenergetics of methanogenesis. Biochim. Biophy. Acta, 768, 113-
163.

Grady, C. P. L. and Lim, H. C. (1980) Biological wastewater
treatment, Marcel Dekker, Inc. New York, New York.

Grant, W. M. (1948) Colorimetric microdetermination of formic
acid based on reduction to formaldehyde. Anal. Chem., 20, 267-269.

Grobicki, A. and Stuckey, D. C. (1989) The role of formate in
the anaerobic baffled reactor. Wat. Res., 23, 1599-1602.

Guerrant, G. 0., Lambert, M. A., and Moss, C. W. (1982) Jd.
Clin. Microbiol., 16 (2), 355-360.

Harper, S. R. and Pohland, F. G. (1986) Recent developments in
hydrogen management during anaerobic biological wastewater
treatment. Biotech. Bioengrg., 28, 585-602.

Heinrichs, D. M., Poggi-Varaldo, H. M. and Oleszkiewicz, J. A.
(1990) Effects of ammonia on anaerobic digestion of simple organic
substrates. J. Envir. Engrg., 116, 698-710.

Hickey, R. F., Vahderwielen, J. and Switzenbaum, M. S. (1989)
The effect of heavy metals on methane production and hydrogen and
carbon monoxide levels during batch anaerobic sludge digestion.
Wat. Res., 23, 1989.

101

JUR—— ]

. e . ——

— -

- —————— ——




e e - ———

- e———

Hickey, R. F., Vahderwielen, J. and Switzenbaum, M. S. (1987)
The effects of organic toxicants on methane production and hydrogen
gas levels during the anaerobic digestion of waste activated
sludge. Wat. Res., 21, 1987.

Hickey, R. F. and Switzenbaum, M. S. (1991) The response and
utility of hydrogen and carbon monoxide as process indicators of
anaerobic digesters subject to organic and hydraulic overloads. J.
Water Pollut. Control Fed., 63, 129-140.

Hickey, R. F. and Switzenbaum, M. S. (1989) Thermodynamics of
volatile fatty acid accumulation in anaerobic digesters subject to
increases in hydraulic and organic loading. J. Water Pollut.
Control Fed., 63, 129-140.

Hungate, R. E., Smith, W., Bauchop, T., Yu, I. and Rabinowitz,
J. C. (1970) Formate as an intermediate in the bovine rumen
fermentation. J. Bacteriol., 102, 389-397.

Jones, W. J. and Paynter, M. J. B. (1980) Populations of
methane-producing bacteria and in vitro methanogenesis in salt

march and estuarine sediments. Appli. Environ. Microbiol., 39, 864-
871.

Jorgensen, M. H. (1981) Formic acid determination in a mixture
of volatile acids. Biotech. Let., 3, 503-506.

Kangus, J., Jappinen P. and Savolainen H. (1984) Exposure to
hydrogen sulphide, mercaptans and sulfur dioxide in pulp industry.
M' Indo H!go AS§QC. i.' ‘5' 787-7900

MacFadyen, D. A. (1945) Estimation of formaldehyde in
biological mixtures. J. Biol. Chem., 107, 107-133.

Mackie, R. I. and Bryant, M, P. (1290) Efficiency of bacterial
protein synthesis during anaerobic degradation of cattle waste.
Appli. Environ. Microbiol., 56, 87-92.

McCarty, P. L. (1985) Historical trends in the anaerobic
treatment of dilute wastes. Anaerobic treatment of sewage Proc.

Seminar/Workshop, Amherst, MA (Jun 27-28, 1985).

Mckinney, R. E. (1986) Emerging biological treatment methods:
aerobic and anaerobic. Civ. Engrq. Prac., 79-99.

Mah, R. A., Smith, M. R. and Baresi, L. (1978) Studies on a
acetate-fermenting strain of Methanosaricina. Appli. Environ.

Microbiol., 38, 1174-1184.

102




Miller, T. L. and Wolin, M. J. (1981) Fermentation by the
human large intestine microbial community in an in vitro
semicont inuous culture system. Appli. Environ. Microbiol., 42, 400-
407.

Mosey, F. E. and Fernandes, X. A. (1989) Patterns of hydrogen
in biogas from the anaerobic digestion of milk-sugars. Wat. Sci.
Tech., 21, 187-196.

Parkin, G. F. and Owen, W. F. (1986) Fundamentals of anaerobic
digestion of wastewater sludges. J. Envir. Engrg., 112, 867-920.

Perlin, A. S. (1954) Determination of fcrmic acid by oxidation
with lead tetraacetate. Anal. Chem., 26, 1053-1054.

Phelps, T. J. and Zeikus, J. G, (1985) Effect of fall turnover
on terminal carbon metabolism in lake Mendota sediments. Appli.
Environ. Microbiol., 50, 1285-1291.

Pickett, M. J., Ley, H. L. and Zygmuntowicz, N. S. (1944)
Manometric determination of formic acid. J. Biol. Chem., 156, 303-
315.

Rabynowitz, J. C. and Pricer, W. E. (1957) An enzymatic method
for the determination of formic acid. J. Biol. Chem., 299, 321-328.

Speece, R. E. (1983) Anaerobic biotechnology for industrial
wastewater treatment. Environ. Sci. Technol., 17, 416-427.

Stephenson, M. and Strickland, L. H. (1932) Hydrogenlyases.
Bacterial enzymes liberating molecular hydrogen. Biochem. J., 26,
712-724,

Strayer, R. F. and Tiedje, J. M. (1973) Kinetic parameters of
the conversion of methane precursors to methane in a hypereutrophic
lake sediment. Appli. Environ. Microbiol., 36, 330-340.

Thiele, J. H. and Zeikus, J. G. (1988) Control of interspecies
electron flow during anaerobic digestion: significance of formate
transfer versus hydrogen transfer during syntropic methanogenesis
in flocs. Appli. Environ. Microbiol., 54, 20-29.

Thiele, J. H. and Zeikus, J. G. (1988) The anion-exchange
substrate shuttle process: a new approach to two-stage
biomethanation of organic and toxic wastes. Biotech. Bigenagrq.,
31, 521-535.

Wheatland, A. B. (1981) Minimizing the environmental impact of
sewage works, Wat. Sci. Tech., 13, 179-190.

103

@ r————————




- e ‘r' — T T

aal

[P

Winfrey, M. R., Nelson, D. R., Klevickis, S. C. and Zeikus, J.
G. (1977) Association of hydrogen metabolism with methanogenesis in
lake Mendota sediments. Appli. Environ. Microbiol., 33, 312-318.

e —————————

Wise, D. L. (1981) Fuel gas production from biomass, CRC
Press, Inc. Boca Raton, Florida.

Woods, D. D. (1936) Hydrogenlyases. The synthesis of formic
acid by bacteria. Biochem. J., 30, 515-527.
Zhenglan etal 1990

Yang, J., Speece, R. E., Parkin, G. F., Gossett, J. and
Kocher, W. (1980) The response of methane fermentation to cyanide
and chloroform. Prog. Wat. Tech., 12, 977-989.

Zeikus, J. G. (1977) The biology of methanogenic bacteria.
Bacteriol. Rev., 41, 514-541.

Zhenglan, W., Yue, G. and Lanying, L. (1990) A study of
phosphatase activity in anaerobic sludge digestion. Wat. Res., 24,
917-921.

104




1"

APPENDIX A
DIONEX APPLICATION NOTE (AN 24)

105




b

¥

]

CLETE

DioNEX
AN 23

Application ~

Determination of Formaldehyde as Formate Ion

INTRODUCTION

An analvtical method combining formiaidehyde
collect:on on oxidizar impregnated charcoal with
subseatient IC analysis of e formaldehyde as
tamate iog iy been develuped,

Fomuldehyde s a seasory irritant and 2aa also
fonn a saspected carcinogesn. his-chisromethyi
eelter, when reseied with i 1CH in puntid dir. Because
fomukdehade 15 comnton o chemuczl industry work
enviranments. OSTIA has set exposune sizndasds 0

wnsune the siateey of warkess.,

eviously, 3 reiiable method for formaidenvde
monitring was not avaslabie. Problents were
cigoumtered (i) in e sampling procedure as
ipvicss used wers made of 3lass and wvers sus-
ceptible 10 hrenkage andd 12V in the farmaidehyde
determtinstzon begsuse of 1 favk of sensitivity
witit fonner mesds (e.g.. gas polsrogmany),

The foilowing metnod 0 determine formaidenyde

in ambient e was sdspied Srom the menod

deveioped at the Naucnai institute for Cesupationai
Safety and Hezith.!

PRUCEDURE

Air samples were passed through a solid sorbent
tube (4 mm i.d. x 7 ¢m long) containing 150 mg
of impregnated charcoal (Bamebey-Cheney Co.,
Columibus, QH, No, $80-20, M-2820) at $0-200
cc/min. for 3-3 hours, The charcoal was removed
10 3 wbe contgining 15.0 mL o€ 0.1% H,0, and
shaken for one hour, then sonicated for 30 minutes,
The solution was {ilicred through 2 0.45 it mem.
beane tiler, then injesied into an lon Chrmato.
griph,

I

'
Determenaiion of Formaie after Cuidation of Farmaider

Sevacator Calumm: lonP3c ASIA

Guard Calumn: lonPac AG3A

St Smuts 20, 10K 3

Fow Rate: 3 mlmn.

Suspresser: AMAS

injeciion Volume: KRut
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1. Fuerice
2 Actats
3, Forrate "
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CONIITIONS .
Eluant: SmMNaB80,
10 11,0 (Borax)
flow Rate: . 2.0 mL/imia,
Guarnd Coltunn: lonPac® AGIA
Separators lonPze® ASIA
Suppressor: AMMS
Injection Volume: LIRS
DISCUSSION

The table below listy the recovery of atandands
colleeted at 200 cc/min, Average recovery was
9% with 895 RSD. A wpical chiromiatogeam is
shown on the previous page. Generated samples
were stored up 1o aine days without refrigeration
oF protection froum i witBous foss of
tomuhdehs e,

v Y3ta 1ot Fr s.
Catlected 3t 200 coomin,
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CONCLUSIOY

In addition o formate ion de:ermination in
eollected air samples, IC can also determine
formaldehyde after this irritant is oxidized 0
formate. A method for formaldehyde collecsic
and oxidatioa has been developed in NIOSH
laboratories.
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“Samgpling and Anzlysis of Formaldehvde in :
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Education and Weifare, NIOSH, Cincinnai,
45226, Cez. 1973,
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1
2
3
4
S
6
7
8
9

Deionized
Deionized
Deionized
Deionized
Deionized
Deionized
Deionized
Column
Column
Column
Column
Column
Column
Column
Colunn
Column
Column
Column

rAlsemem 1
UVJ-UMH.L -

cartridge

e S B Y SY SN N

INDIVIDUAL CHROMATOGRAPHIC ANALYSES

water treated with AG cartridge

water treated with RP cartridge

water treated with RP and AG cartridges

water prespiked with 10mg/L HCOOH

water prespiked with 10mg/L HCOOH AG cartridge .
water prespiked with 10mg/L HCOOH RP cartridge

water prespiked with 10mg/L HCOOH RP and AG cartridges

leachate
leachate
leachate
leachate
leachate
leachate
leachate
leachate
leachate
leachate
leachate

leachate

S

no pretreatment
no pretreatment

treated
treated
treated
treated
treated
treated
treated
treated
treated

with
with
with
with
with
with
with
with
with

treated w

AG
RP
RP
AG
RP
RP

or spiking

or spiking
cartridge
cartridge

and AG cartridges
cartridge
cartridge

and AG cartridges

10mg/L HCOOH
10mg/L HCOOH and RP cartridge
10mg/L HCOOH and AG cartridge

3 =

- —ad
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10mg/L HCCOE and RP and
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SEED REACTOR DATA
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oteD HeACTOH UATA

'
]

'

COD, mg/L
DATE 6-24-91  07-01-91 07-08-91 07-11-91  07-17-91
CoD 3529.10 448130 2618.76 2898.84  2912.84
VOA ANALYSIS
DATE 6-24-91  07-01-91 07-08-91 07-11-91 07-17-91
ACID
ACETIC 0 321.1 416.3 5161  1532.6
PROPIONIC  583.7 475.9 138.7 166.1  1461.94
I-BUTYRIC 0 0 0 7.2 13.04
BUTYRIC 177.9 165.9 386.5 4941  3364.82
I\VALERIC 0.00 0.00 0.00 5.80 7.96
VALERIC 18430  386.20 47570 49240  382.21
HEXANOIC 0.00 0.00 35.40 62.80 49.84
TOTAL 70298 1047.25 1090.42 1318.11 5276.33
AS CH3COOH
FORMIC ACID CONCENTRATION
. ' .
ATE 62491 7191 7891 71191 7-26.91  7-27-91  7-28.91
,mgl  21.08 24.12 26.77 2208 . 28.12 35.71 38.38

07-21-91

07-19-91

3388.96  3122.90

07-19-91  07-21-91
1632.67 844.29
1828.76 996.22
7.97 11.58
233.63 237.43
6.42 9.03
236.54 246.74
27.02 33.34
3337.07  1989.51
8-2-91 8-7-91
27.89 21.96

124

8-16-91
24930

8-14-91.
77.22



DATE
METER
GAS, L

DATE
METER
GAS, L

DATE
METER
GAS, L

DATE
METER
GAS, L

DATE
METER
GAS, L

DATE
METER
GAS, L

06/18/91
7771

06/25/91
7788
0.81

07/02/91
7795
0.81

07/09/91
7799.5
0.405

07/16/91
7804
0.405

07/23/91
7810
0.81

06/19/91
7774
2.43

06/26/91
7788
0

07/03/91
7795
0

07/10/91
7800
0.405

07/17/91
7804
0

07/24/91
7810
0

GAS PRODUCTICN

SEED REACTOR
06/20/91  06/21/91
7779 7782
4.05 2.43
06/27/91  06/28/91
7789 7790
0.81 0.81
07/04/91  07/05/91
7796 7796
0.81 0
07/11/81  07/12/91
7801 7301
0.81 0
07/18/91  07/19/91
7805 7807
0.81 1.62
125

06/22/91
7783
0.81

06/29/91
7791
0.81

07/06/91
7797
0.81

07/13/91
7802
0.81

07/25/31
7807
0

06/23/91
7786
2.43

06/30/91
7792
0.81

07/07/91
7798
0.81

07/14/91
7803
0.81

07/21/91
7807
0

06/24/91
7757
0.81

07/01/91
7794
1.62

07/08/91
7799
0.81

07/15/91
7803.5
0.405

07/22/91
7809
0
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PERCENT REACTOR CONTENTS REMAINING

% Remaining
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REACTOR
CONTROL
_ AgL
N 1291

2091

REACTOR
CONTROL
4mgL
20mgL
100mgL

REACTOR

CONTROL

TME
CO0, moiL

TIME
CONTROL
TEST

. DATE
TIME
SAMPLE #

CONC.mgrL

——h
.

SEED
2660.88
2660.88
2856 93
2856.93

SEED
2492.83
249283
2842 82
2842 82

SEED

0211
0.211

3465.51

1970.58
3087.34

8-20-91

3322.90

FEED
4173 26
6609.88

12533.68
20725.76

FEED
3277.03
322t1.02
3529.10
3622.30

FEED

0.150
0.144

1972.83

3031.50

8-20-91
1928

3256.50

1
2940.95
3277.03

NA
4649.38

2772.90
3193.01
3094.12
3006.35

0.117
0.217

2334.22

12
2707.64
2495.46

8-21.91
0720

3269.78

2
296895
2716.89

-3557.10

4063.23

2
2436 82
2744 90
2128.70
241,79

0.217
0.207

8
3921.17

24
2819.32
440.62

82191
1915

2738.53

OHGANIC LOADING

3 4 5 6
271683 271689 232479  2604.76
2716.89 267287 2492.63 235280
3473.08  3417.07 4769.42  3165.00
394920 3865.18 3501.09  3305.04

CHLOROFORM TOXICITY

3 4 5 6
2716689 243682 2380.80 2380.80
260486 2716.89 229678 2268.78
296247 279791 2666.26  2556.55
265529 272111 2501.70  2457.82

AMMONIA TOXICITY #1

3 4 5 6
0207 0192  0.198 0.188
0.197  0.194 0.183 0.182
AMMONIA TOXICITY #3
12 16 20 24
327695 3119.84 313555 3182.69
AMMONIA TOXICITY #4
36 48 60 72
323252 332186 335538  3098.51
331069 3053.84 317668 3455.87
SFED REACTOR COD ANALYSIS
DURING 8-20-91 TO 8-25-91
82291 82201 82391 82391
0715 1945 0720 1955
5 6 7 s
337603 3283.06 1649.47  1795.57

7
3767.06
2506.74
282892
3249.02

7
2716.89

. 2352.80.
-2534.61

2326.17

0.186
0.171

84
3433.54
3388.87

8-24-91

1676.04

8
3655.03
2590.76
3235.95
3501.50

2352.60
2660.88
2142.64
2100.63

0.178
0.168

96
2651.80
3277.19

8-24-91
1700
1o

1622.91

9
3949.10
2394.71
2852.37
3324.46

9
2240.67
2030.62
2114.64
2058.62

0.170
0.163

108
3299.52
3333.03

6-25-91
0700
"

1689.32

10
1414.46
2478.73
2311.38
3383.47

10
2492.73
1988.60
2030.62
2016.61

10

0.159
0.156

120
3087.24
3098.51

8-25-91
1830
12

1755.72
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ORGANIC LOADING TESTS

CONTROL REACTIOR
SAMPLE CONCENTRATNION ;

1

ACID SEED 1 2 3 4 \ 5 6 7 8 9 10 1 12
ACEIIC 2060.35 767.77 1004.38 1447.02 542.95 506.01 644,53 549.32 556.33 636.25 541.68 672.56 556.82
PROPIONIC 129158 558.20 866.16 1250.57 42522 373.26 540.18 476.78 415.06 497.08 467.02 499.07 531.93
1BUTYRIC 10.93 3.50 8.30 7.58 422 0.00 0.00 539 335 4.37 568 0.00 7.38
BUIYRIC 197 .51 82.93 136.14 190.46 6551 59.02 87.35 79.06 59.85° 77.54 76.98 76.02 100.02
I VALERIC 12.39 4.17 0.00 12.62 0.00 3.70 451 9.84 0.00 0.00 0.00 5.90 6.88
VALERIC 157.35 '66.50 111.92 15130 5438 45.69 72.68 69.26 48.06 64.26 65.05 63.60 86.65
HEXANOIC 13.96 0.00 8.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TJOTAL 3356.75 1320.86 1875.31 2692.44 967.26 877.95 1187.73  1040.00 964.22 113294 101497 116993 1116.36
AS CHICOOH

TEST REACTOR (T - 8gnl)
SAMPLE CONCENTHATION

ACID SEED 1 2 3 4 5 6 7 8 9 10 11 12
ACETC 2060.35 94387 874.13  1698.91% 892.29 588.17 607.28 528.94 478.94 1126.66 479.90 1003.42 648.56
PROPIONIC  1291.58 754.48 75150 1458.00 753.49 486.73 449 11 387.99 374.06 855.15 409.09 755.28 481.21
BUTYRIC 10.93 524 8.89 9.61 10.20 4.22 0.00 0.00 0.00 0.00 4.22 6.70 0.00
BUTYRIC 197.5¢ 111.26 124.25 278.64 137.38 76.57 67.03 57.38 58.33 144.02 68.14 113.61 69.55
FVALERIC 12.39 4.17 8.34 12.97 9.96 0.00 359 0.00 0.00 9.61 0.00 533 0.00
VALERIC 157.35 86.51 97.70 173.15 110.34 63.86 54 .65 47.67 51.35 113.37 60.31 91.78 52.51
HEXANOIC 13.96 10.02 0.00 16.23 6.80 4.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TOTAL 3358.75 1693.58 163661 . 318548 1678.13 1077.88 1051.38 910.67 852.21 2071.64 89641 175496 1117.04
AS CHICOOH
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ACHD SEED

ACETIC 634.89
PROPIONIC  479.50
LBUTYRIC 587
BUTYRIC 133.99
LVALERIC 0.00
VALERC 70.27
HEXANOIC 6.45
TOTAL 1163.70
AS CHICOOH

ACD SEED
ACETIC 634.89
PROPIONIC 47950
BuUTYRIC 587
BUTYRIC 133.99
LVALERIC 0.00
VALERIC 70.27
HEXANOIC 6.45
TOTAL 11683.70
AS CHICOOH

NA

NA
NA
NA
NA

2

1240.91
904.86
5.74
233.33
8.33
11024
¢.00

2207.33

1085.38
787.83
71.24
204.08
781
99.32
0.00

1931.26

3

803.78
527.76
4.10
128.46
2.60
60.21
0.00

1359.02

3

813.81
539.15
4.24
135.06
4.48
65.92
0.00

1387.35

4

839.02
838.18
15.03
278.62
16.25
159.16
15.24

1829.90

4

893.09
665.49
7.38
181.43
7.08
92.24
0.00

1619.84

VOLATILE ACID ANALYSIS
ORGANIC LOADING 1ES1S

T1EST REACTOR (TA - 12g/1)
SAMPLE CONCENIRATION

5 6 7
687.74 731.79 906.15
417.38 572.97 682.40
105.34 9.15 - 11.07
103.93 175.64 207.31

0.00 9.38 1188
50.78 98.82 114,96
0.00 0.00 . 0.00
1198.70 1386.00 1682.95
TEST TEACTOR (183 - 20g1)
SAMPLE CONCENIRAIION

5 8 7
794 67 872.25 991.51
562.71 514.08 71659

6.01 7.51 10.52
146.79 154.61 208.53
438 8.13 10.73
73.62 85.79 113.22
0.00 8.34 7.12
140088 1259.16 1798.48

703.23
493.94
5.60
136.68
0.00
72.75
0.00

1243.53

992.12
692.66
533
175.77
8.15
84.79
0.00

1730.70

o

927.72
563.28
6.01
140.86
427
70.14
0.00

1528.35

507.00
329.80
342
86.94

44.20
0.00

863.97

10

527.96
32182
0.00
81.55
0.00
41.09
0.00

868.67

10

1023.41
739.20
7.92
196.66
8.65
98.08
0.00

1825.03

1!

707.18
492.04
5.19
129.81
0.00
66.79
0.00

1237.47

12

657.67
409.02
© 0.00
106.22
427
55.12
0.00

1096.66

12

625.16
501.73
8.61
153.80
8.96
86.90
0.00

1199.09
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ACID SEED
ACETIC 1073.47
PROPIONIC 80533
LBUTYRIC 12.98
'BUTYRIC 314.28
LVALERIC 13.65
VALERIC 135.11
HEXANOIC 0.00
TOTAL 2037.08
AS CH3COOH

ACID SEED
ACETIC 1073.47

PROPIONIC 80533
BUTYRIC 12.98
BUTYRIC 31428
1-VALERIC 13.65
VALERIC 135.11
HEXANOIC 0.00

TOTAL 2037.08
AS CHOCOOH

L 1Y .

759.23
434.10
0.00
152.01
0.00
62.09
0.00

1251.38

1145.92

2

940.09
§93.72
6.75
213,67
5.77
88.66
0.00

1627.31

2

978.82
701.94
10.91
27785
11.82
122.06
0.00

1823.59

3

812.53
501.01
" 0.00
185.13
7.60
76.97
0.00

1394.73

3

889.71
606.41
935
233.54
9.85
99.74
0.00

1611.46

4

1024 25
922.42
18.18
41583
2252
192.65
16.39

2203.12

4

732.15
473.60
0.00
178.35
5.21
77.58
0.00

1286.45

CONITROL REACTOR

CHLOROFORM TOXICY TESTS

SAMPLE CONCENTHATION

5

830.59
623.14
10.73
259.87
10.70
116.59
0.00

1595.22

6

760.69
614.07
1212
267.29
12.67
122.66
0.00

1528.70

6

566.44
361.75
0.00
137.51
5.07
58.90
0.00

991.14

7

573.43
374.05
5.19
147.44
4.22
66.19
0.00

1022.20

7

684.97
41093
0.00
148.23
0.00
61.33
0.00

1155.30

8

639.25
441.76
5.37
179.61
0.00
79.09
0.00

1170.08

1EST REACTOR (T - 4mgil)
SAMPLE CONCENTRATION

615.97
412.94
485
158.64
436
66.95
0.00

1103.60

9
" 662.84
500.21
9.18
216.04
11.12
99.28
0.00

1286.91

9

745.26
498.79
6.41
198.22
7.04
88.05
0.00

1345.13

-10

730.11
538.50
9.00
223.45
9.99
98.53
0.00

1389.05

10

506.74
295.25
0.00
104.71¢
0.00
44.94
0.00

843.95

11

578.09
376.06
0.00
148.55
0.00
65.73
0.00

1022.95

1

766.22
563.89
0.00
229.28
10.13
103.84
0.00

1446.80

12

1277.04
900.05
7.27
360.48
15.90
194.62
0.00

238139

621.48
368.60
0.00
131.99
0.00
54 80
0.00

1042.58
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commpt o

ACID

ACETIC
PROPIONIC
LBUTYRIC
BUTYRIC
I-VALERIC
VALERIC.
HEXANOIC

TOTAL

AS CH3COOH

ACID
ACETIC

PROPIONIC

1BUTYRIC
BUTYRIC
IVALERIC
VALERIC
HEXANOIC

TOTAL

AS CHICOOH

SEED

1520.02
71487
10.51
362.04
10.25
196.72
87.93

2520.88

SEED

1520.02
71487
10.51
362.04
10.25
1986.72
87.93

2520.68

1

653.65

348.99
5.39
199.84
4.80
117.67
57.38

1178.26

709.80
376.50
7.14
225.25
7.3
138.25
70.85

1295.79

2

677.16
42195
8.76
270.06
10.69
172.51
90.78

1364.11

2

739.13
345.85
4.99
187.99
3.82
108.35
53.44

1244.74

3

758.77
322.34
3.50
162.71
0.00
90.19
40.95

1207.69

676.89
286.29

142.00
0.00
78.45
34.49

-1069.82

4

861.67
524.00
11.73
-346.53
13.85
22529
121.55

1734.34

4

72612
307.89
0.00
154.25
3.82
84.50
38.87

1152.99

C. .

A0FC

Ooxic

318

1EST HEACTOR (TA - 20mg/t )
SAMPLE CONCENIRAITION

5

684.36
270.62
0.00
133.79
0.00
74.57
36.79

1057.90

8

692.30
281.94
3.37
140.18
0.00
77.96
36.57

1083.63

7

737.47
318.16
0.00
156.85
000
84.01
38.87

1171.91

TEST REACTOR (18 - 100mg/L)
SAMPLE CONCENIRATION

5

78421
351.2%
3.91
184.60
6.54
106.05
52.12

1290.73

6

683.53
324.96
4.58
180.43
0.00
109.07
55.74

1166.14

7

73857
316.77
3.64
160.37
0.00
85.10
41.50

1178.76

8

778.96
355.43
3.50
185.90
0.00
103.75
47.63

1281.95

713.40
337.49
4.58
185.38
425
109.92
53.87

1211.59

9

649.22
349.86
6.20
2:18.73
7.20
137.16
73.80

1209.35

610.77
301.27
0.00
177.57
4.80
109.20
54.97

1071.60

10

637.88
324.26
431
199.84
6.11
123.12
64.17

1149.20

10

630.14
247.81
0.00
121.55
0.00
66.10
30.55

968.62

11

6551.03
230.57
0.00
118.16
0.00
67.07
30.99

874.02

1

733.59
376.85
472
220.43
480
135.83
70.52

1311.85

12

660.01
343 .41
6.07
20219
0.00
122.63
G62.52

1184.93

12

510.09
212.11
0.00
108.13
0.00
60.65
28.14

806.02
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ACID SEED
ACETIC 1906.88
PROPIOMNIC 51557
BUTYRIC = 1282
BUTYRIC 763.65
I-YALERIC 10.05
VALERIC C 2113
HEXANOIC 150.70
TOTAL 3101.30
AS CH3COOH

ACID SEED
ACETIC 1906.88

PROPIOMIC 51557
BUTYNIC 12.82
BUTYRIC 763.65
LVALERIC 10.05
VALERIC 27731
HEXANOIC 150.70

TOTAL 3101.30
AS CHICOOH

1928.56
40499
0.00
489 60
6.44
152.14
75.16

272290

1654.57
490.80
15.29
772.19
16.30
286.97
161.35

2851.28

2

1612.25 .
394.57
8.88
54299
8.53
189.21
94.33

247356

2

1433 46
31667
0.00
41547
0.00
139.33
71.09

2092.22

3

1345.66
283.63
0.00
375.00
0.00
126.74
63.53

1938.73

3

1499.05
313.79
6.90
394.99
0.00
131.24
65.28

- 2138.46

AMMONIA TOXICY 1EST #1

CONTROL. REACTOR

SAMPLE CONCENITRATION

il

4 5 6 7
1469.43 1446.69 1327.14 1448.27
359.75 38273 29333 266.40
937 11.84 0.00 000
51520 58127 387.19 32087
0.00 . 0.00 0.00 0.00
185.17 216.86 13393 104.72
98.59 124.36 69.93 0.00
2278.70  2353.28 1943.92 1944.65

1EST REACTOR (T - 50mgA)

SAMPLE CONCENTRATION

4 g 8 7
1102.34 156845 1368.10 1202.31
277.53 360.47 277.89 242.70
0.00 0.00 0.00 0.00
399.87 446.93 339.40 301.37
0.00 0.00 0.00 0.00
142.70 81.35 108.09 93.71
78.26 67.02 49.01 42.03
172442  2267.96 1914.08 1681.44

8

1782.57
390.27
0.00

48423

0.00
156.63
76.32

2560.77

116581
238.40
0.00
302.10
0.00
104.50
44.74

1649.69

A

1548.78
380.93
12.58
502.52
6.82
175.51
80.39

2357.67

1109.22
286.87
0.00
515.44
0.00
184.27
93.75

1850.13

10

1833.88
417.55
0.00
553.72
0.00
180.23
87.17

2701.08

11

1673.08
37483
0.00
463.51
0.00
147.19
68.18

2414.87

11

1497 .47
333.54
0.00
415.96
0.00
134.61
62.95

2163.26

12

1421.83
305.18
0.00
364.52
0.00
113.71
54.24

2012.74

12

1067.96
20357
0.00
309.90
0.00
102.02
55.01

1532.78
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ACID '

ACETIC
PROPIONIC
I-BUTYRIC
BUTYRIC
I-VALERIC
VALERIC
HEXANOIC

TOTAL
AS CH3COOH

0

608.34
120.42
5.1
283.37
3.09
40.12
93.45

976.42

VO ik T AT oIS
AMMONIA TOXICY TEST #3

TEST REACTOR
1 4 8 12

72817 451,14 549.65 451.14
152.21 148.55 116.30 107.84

6.85 0.00 7.14 7.14
353.00 381.50 294.46 292.44
0.00 4.18 3.46 5.55
51.18 56.30 41.86 47.30

115.64 137.36 101.13 121.42

1186.86 938.33 928.55 836.74

16

588.25
116.99
5.02
258.91
0.00
29.14
80.29

921.73

20

600.41
142.04
7.53
366.93
6.27
56.06
137.67

1078.75

\

24

484.62
98.69
3.86
225.93
2.46
32.69
79.10

782.91
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ACID

ACETIC
PROPIONIC
1-BUTYRIC
BUTYRIC
I-VALERIC
VALERIC
HEXANOIC

TOTAL
AS CH3COOH

ACID

ACETIC
PROPIONIC
I-BUTYRIC
BUIYRIC
I-VALERIC
VALERIC
HEXANOIC

TOTAL
AS CH3COOH

0

1090.93
188.02
495
421.55
0.00
49.72
109.10

1619.85

0

785.30
139.48
5.16
376.43
0.00
48.60
115.74

1247.02

\

\

1056.64
212.08
0.00
471.18
0.00
58.99
142.05

1658.03

740.08
120.03
0.00
292.63
0.00
35.43
75.38

1096.76

12

720.79
122.97
6.24
279.20
0.00
33.95
77.80

1075.32

12

897.40
154.45
484
392.22
J3.62
47.30
113.50

1382.01

24

826.88
155.43
6.13
372.45
4.00
46.56
106.95

1296.09

24

718.43
129.68
5.05
342 .48
362
44.89
115.40

1148.76

36

T 721.22
146.61
570
37310
8.29
48.70
123.59

1195.81

36

961.48
171.93
6.02
423.48
J3.14
52.13
124.63

1490.70

AUV LY

AMMONIA TOXICY TEST # 4

PR T A RV T R T TR

CONITROL RIEACTOR

SAMPLE CONCENTRATION

418

716.29
131.22
398
324 .86
0.00
41.65
103.50

1124.92

48

715.13
12087
3.66
303.48
0.00
38.31
95.39

1094.72

60

662.71
117.09
0.00
286.83
3.14
36 27
85.56

1020.65

60

1107.22
196.14
763
486.97
3191
62.89
138.43

1730.84

72

842.31
161.16
6.02
428.21
0.00
52.03
119.97

1361.71

TEST REACTOR (T - 50mgiL)
SAMI'LE CONCEN IRATION

72

690.14
116.95
3.44
304.02
257
35.90
86.42

1061.93

84

671.28
123.25
484
308.42
3.05
38.77
90.65

1056.28

84

761.51
142.97
591
379.97
0.00
49.16
117.90

1230.44

96

668.28
147.87
8.28
410.80
7.33
56.58
131.18

1179.36

96

740.94
132.76
484
336.03
4.48
43.41
100.13

1160.95

108

706.64
128.85
495
316.16
3.62
39.14
82.28

1097.76

108

692.50
127.31
527
330.23
0.00
42.20
102.69

1102.51

120

809.73
130.94
495
290.59
0.00
32.83
66.24

1170.98

120

884.96
170.25
720
436.91
514
57.78
136.53

1433.45
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DATE
TIME
SAMPLE #
ACID

ACETIC
PROPIONIC
1BUTYRIC
BUIYRIC
I-VALERIC
VALERIC
HEXANOIC

TOTAL
AS CH3COOH

8-20-91
0800
A

1151.28
92.53
0.00
182.61
8.46
23.00
51.21

1395.80

8-20-91
1928

893.99
66.49
1.83
126.55
0.00
16.15
34.59

1062.83

N 8-21-91
0720
3

1028.42
72.40
2.00
136.93
0.00
15.93
34.73

1209.19

1169.75
86.93
0.00
13527
0.00
16.08
35.66

1360.36

VO' T AL
L e ACTUN BURING UG T

Gt

8-22-91
0715

[$3}

1502.73
175.76
3z
260.91
0.00
31.33
66.66

18/8.21

8.22-91
1945

1698.79
204.42
0.00
230.93
0.00
26.95
55.67

2066.63

TUHALY

8 23-91%
0720

1357.71
162.88
0.00
194 36
0.00
21.45
48.69

1660.09

1073.38
159.07
0.00
172.39
0.00
20.66
44.56

1355.10

8-24-91
0800

1412.05
216.21
0.00
163.35
0.00
18.08
36.94

1728.47

8-24-91
1700
1Q

79.26
7.98
0.00
3.23
0.00
0.00
0.00

87.94

8-25-91
0700
11

1314.17
313.25
4.3
172.26
3.89
24.93
44.14

1728.34

8:25.91
1930
12

1380.53
369.84
0.00
165.41
442
20.77
46.04

1831.64
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FUIRIIG AU AL T 0D

ORGANIC LOADING

SAMPLE 1 . 2 3 4 8 12
CONTROL 68.62 65.32 7885 - 4112 88.58 38.38

' 8ol NA 49.73 108.49 52.73 44.78 58.91
C 129 NA 43.93 4393 - 1698 15.00 19.05
209'L 28.12 28.12 NA . 2574 19.05 16.98

CHLOROFORM TOXICITY

SAMPLE 0 1 5 10 12
Omg/L 35.71 43.93 16.98 13.11 3.1
4mgh. 35.71 25.74 21.20 23.43 46.80
20mgn. 38.38 33.11 30.58 13.11 49.73

100mg/L 38.38 28.12 19.05 19.05 62.09

AMMONIA TOXICITY TEST #1
SAMPLE 0 1 5 10 12

CONIROL 154.44 2313 29.83 25.25 14.47
Somgit 154.44 158.88 73.46 43.37 58.70

T g .

——

137



SAMPLE . 0
CONIROL | 58.21
somg/L 64.33
SAMPLE , 0
CONC,mgL 77.22
SAMPLE 0
CONTROL 249.30
S50mg/L 158.88
SAMPLE # - 1
DATE 8-20-91
TME 0800
PEAKHT 144
CONC.mg/L 353.30

IV

AMMONIA TOXICITY TEST #2

1 5 10 12
4297 32 66 20.56 17.86
72.83 62.27 31.04 26.36

AMMONIA TOXICITY TEST #2
1 4 8 12
23599 330.74

62.27 58.21

AMMONIA TOXICITY TEST #4

1 12 24 36
206.99 194.54 179.37 226.17
142.03 136.56 173.43 191.47

16 20 24
11547 167.55 173.43
48 60 72
194.54 173 41 256.05
182.97 156.02 222.93

BASE REACTOR DATA DURING UPSET FROM 8-20-91 10 8-25-91

2 3 4 5
8-20-91 8-21-91 8-21-91 8-22-91
1928 0720 1915 0715
135 125 16.1 16.2
319.66 283.70 420.03 424.08

6 7 8
8-22 91 8 2391 8-23-91
1945 0720 1955
1.1 9.7 132
235.99 191.47 308.71

84

24595
203.85

8-24-91
0800

12.1
269.75

96

206.99
167.55

10
8-24-91
1700

127
290.77

108 120

242 61 219.71
203.85 173.43
1 12

8-25-91 8-25-91
G700 1930

12 115
266.30 249.30
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