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1 Introduction

The purpose of this paper is twofold. The first is to challenge the assump-
tions regarding knowledge completeness that planning agents are often taken
as possessing, and the solutions to the frame problem that depend upon
these assumptions. The second is to present preliminary ideas regarding an
approach to the frame problem that provides a more explicit formulation of
an agent’s uncertainty using statistically derived probabilities.

The frame problem, inferring what does not change as a result of an
agent’s actions, is an instance of the more general problem of predicting
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what is true of the future, based upon what is currently known (the pre-
diction problem). Previous attempts at solving the frame problem fall into
two broad, yet distinct, classes, neither of which is extensible to the pre-
diction problem. In one case, the agent’s lack of knowledge of change is
warrant for inferring that change has not occured. Unfortunately, this ap-
proach has promise only in worlds in which few changes occur beyond the
agent’s purview. Otherwise, the correspondence between the agent’s beliefs
and the world quickly diverges. In the other case, inferring non-occurence
of change is sanctioned only when it is known that every action which can
cause change did not occur. But for incompletely known worlds, few asser-
tions can meet this stringent criterion. Hence, the agent’s knowledge of what
is currently true quickly dissipates.

I propose! an alternative approach that seeks a middle ground between
the permissiveness of the first class, and the caution of the second. The
central idea is to consider that actions achieve goals relative to a context with
some likelthood of success. Due to errors in representation, in measurement,
and in motor control, actions are not guaranteed to have their intended effect.

Stated coarsely, one has knowledge of the form

%(inRoom(sv+ 1))|inRoom(s) A pushOut(s)) € [.9,.95].

That is, the proportion of times that an effect holds (e.g., that an object is in
the room) in a given state when in the previous state, a set of preconditions
holds (the object was just in the room) and an action occurs (the agent
attempts to push the object out of the room) is in the interval [.9,.95]. From
this general statistic over sets of previous times in which an object was in
the room, one can induce a probability about a particular time in which the
object is predicted to be in the room. This rule, then, encodes knowledge
that has typically been encapsulated in frame axioms. Further, this above
statistic also provides an approach for attacking the qualification problem.
Namely, that all qualifications not explicitly mentioned (such as that the
object might be glued to the floor, that the object might be slippery, etc.)
are summarized by the fact that these qualifications only defeat the success
of the action some small proportion of the time (e.g., in the above case, «31 .4 For 1]
between 5% and 10% of the time). e Rl “"’""g*
I 24 T JX3 —
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The novelty of this approach is its use of statistically based probabilities,
an application of Kyburg’s theory of probability, as described in [Kyburg,
1974). Kyburg’s theory provides not only a means for relating probabili-
ties to statistics, but also preferences rules for mediating between conflicting
statistics.

Although this work is still in its preliminary stages, this general approach
shows promise in providing

1. a uniform framework for the frame and the qualification problems,
2. extensibility to the prediction problem,

3. a means for an agent’s knowledge to slowly obsolesce, rather than being
either eternally perpetuated, or prematurely discarded,

4. sanction for inferring the truth of propositions whose truth was not
necessarily known in the previous instant,

5. the ability to encode knowledge of the form that certain kinds of events
occur with given frequencies.

The following section examines the frame problem and the previocus two
broad solution classes. Each of these classes, and their concommitant short-
comings are examined in some detail. Section 5 discusses the probabilistic
approach.

2 The Frame Problem

The first clear formalization of action reasoning in artificial intelligence [Mc-
Carthy and Hayes, 1981}, the situation calculus, involved using sets of time-
stamped sentences to represent states of the world. Each time stamp denotes
a situation, a snapshot of the world. Typical sentences are of the form “P is
true in situation S.” These sentences are viewed as encoding beliefs that an
agent might have about its world, which it could use to find plans of action
to satisfy its goals. Expressions such as “A is on B”, which in static theo-
ries would be truth-functional propositions, are called fluents in the situation
calculus, and denote functions from situations to truth values. A fluent and




a situation (“A is on B in S™) is called a proposition, and evaluates to either
true or false.

Representing actions amounts to writing down “laws of motion” [Hayes.
1981} of the form “If fluent P holds in situation S, then fluent Q will hold in
the situation resulting from applying action A.” For instance, one such law
of motion is “if there is nothing on the box now, and I am next to the box,
then I will be on the box after I climb onto it.” That is, these axioms relate
facts believed true at one time to facts believed to become true at the next
time as a result of the agent’s action. Leaving aside the problem of whether
we can provide sufficient antecedent conditions, (the qualification problem),
these laws of motion underspecify what is true in the resulting state, since
no axioms sanction inferring the truth of any propositions other than @ (and
perhaps those things implied by @). That is, from the law of motion above
I can neither infer that following the climb action A has remained the same
color, or that the box is still in the same room.

Providing a representation that sanctions these inferences is deceivingly
difficult. One could, of course, “list systematically all conceivable facts which
are not changed” [Hayes, 1971]. That is, one could have frame azioms stating
that for each proposition, whenever some non-affecting action occurs, that
proposition remains unchanged. But, as Hayes argues, “it is clearly going
to be impractical in any elaborate system. That is the frame problem”.
In other words, the problem is to specify the actions of an agent “in some
economical and principled way” [Hayes, 1987] such that all of the inferences
sanctioned by a complete set of frame azioms are likewise permitted under
the economical encoding,.

It is clear that these inferences cannot be ignored, since beliefs about
distant future states (such as that we are holding a banana after attempt-
ing to grab it) will depend crucially upon what we believe is true in the
proximal future (such as, that the bananas do not disappear as we approach
them). Without drawing such inferences, our knowledge about the world is
inadequate for planning even the simplest tasks.

The difficulty of this problem is evidenced by the number of researchers at-
tacking it, and the variety and ingenuity of approaches. These range from ex-
cplicitly encoding frame axioms in first-order logic and using theorem proving
in order to plan [Green, 1969, Kowalski, 1979], to embedding frame axioms
procedurally, or within some aspect of the representation [Fikes and Nilsson,
1971, Hewitt, 1972, Pednault, 1985], to monotonic approaches that use either
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domain-dependent “explanation closure axioms” {Haas, 1987, Schubert, 1989,
Weber, 1989}, that attempt to enumerate the complete set of actions which
can alter the truth value of a proposition, or equivalently that use complete
sets of independence assertions [Hayes, 1971, Georgeff, 1987, to (most pop-
ularly), the definition, development, and use of non-monotonic logics [Re-
iter, 1980, McCarthy, 1977, Lifschitz, 1987, Haugh, 1987, Shoham, 1986,
Kautz, 1986] that use unsound inferences to conclude that things do not
change unless there is explicit knowledge to the contrary.

Although there are subtle differences between the various approaches,
there are two broad classes into which they can be grouped: the permissive
and conservative approaches. Each of these will be looked at in turn.

3 Permissive Approaches

The permissive class includes the explicit frame axiom, the procedural, and
the non-monotonic approaches. The intent is to represent the independence
of actions and world state, ([Hayes, 1987]):

If you pick up a cup from a table, lots of things don’t happen:
The cup doesn’t break, the table doesn’t move, the walls don’t
move, your hair doesn’t change color, and Jerry Fodor’s refriger-
ator door doesn’t move; or rather, if any of these things happen,
it’s not because of your picking up the cup. [emphasis added)

Despite this intent, these approaches say quite a different thing: they say
that the world is obliged to stay precisely as it is whenever an agent applies
an action, save for the known, local effects of that action. That is, rather
than expressing

(1) “action A does no’ affect P,”
the permissive approaches instead say
(2) “P does not change when A occurs.”

The first allows P to change or not, irrespective of the occurence of A, while
the second prohibits P’s change during A. The cup cannot break, the walls
cannot move, Pat’s hair color must remain unchanged, and Jerry Fodor’s re-
frigerator door does not move whenever I pick up my coffee cup, by definition,
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regardless of any efforts to the contrary by these other agents. Assertions of
type 2 allow the truth value of P to be known following A if it was known
previously, and is thus preferable to assertions of type 1 in terms of mini-
mizing knowledge loss. But these inferences are sanctioned by the stronger
axioms only under the following assumptions:

1. all change is precipitated by an acting agent,
2. all acts occurring in the world are known by the reasoning agent,

3. the relationship between an act and all of its consequences are known
by the reasoning agent.

And all permissive approaches embed these assumptions in some form.

Although Green [1969)] uses frame axioms that explicitly state assertion 2,
for every such P and A, most other permissive approaches involve an as-
sumption that relations persist over time, in the absence of knowledge to the
contrary. STRIPS [Fikes and Nilsson, 1971] persists all assertions in a knowl-
edge base not explicitly deleted by an action-denoting operator, Kautz {1986]
and Shoham [1986] persist the truth of assertions in chronological order until
there is a conflict with known future facts, and Lifschitz [1987], Haugh [1987],
and Weber [1988] persist assertions in the absence of contradicting causative
acts.

Regardless of the particular method, no permissive approach addresses
the intended issue that “most of the world carries on in just the same way
that it did before, or would have done” [Hayes, 1987], since most of the world
is not taken into account. To formalize reasoning about change in a world
brimming with multitudinous active agents is a difficult task; but to assume
the world acts lock-step and in full view of the agent, to whom all causation
is transparent, is to invite disaster. It is ironic, then, that inferences intended
to reflect that “[M]ost events ... make only small local changes in the world”
[Hayes, 1981], have precisely the opposite meaning.

The problems with assuming knowledge completeness stem both from the
existence of other active agents, and from the inherent inability of the agent
to develop a complete world model. Every kindergarten child knows that
blocks that have been stacked do not remain in that state for long, due to
the other children that might want to build structures of their own. Even
the child playing alone develops an understanding of the instabilities of block
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towers. We can well imagine a future Robot-Chaplin inadvertently knocking
over the stack of blocks it has just constructed with some attached projection
as it bends over to begin another task.

Further, the agent will be subject to errors both in its perceptions and
its motor control. There are inherent limitations in the measurements of
physical parameters, such as size, shape, and location. An agent might thus
traverse a path in the wrong direction, upsetting a predicted persistence in
the process. Similarly for the agent’s ability to finely control its own motor
behavior.

3.1 Consequences of the Completeness Assumption

My criticism thus far is that assumptions of completeness wll lead to incorrect
conclusions about any non-trivial real world domain. I will examine the
following consequences of embedding this assumption.

Permissive approaches

1. are not scalable to worlds in which there are many active agents, and
the agent has limited sensory bandwidth,

2. are difficult to assess since the relevant evidence is not explicit,

3. do not depreciate knowledge as it obsolesces, allowing for the propoga-
tion of error,

4. have been too constrained in the types of knowledge they encode.

3.1.1 Scalability

Implicit in the permissive approaches is the argument that solutions to simple
problems will first be obtained [Hayes, 1971]:

This approach to the frame problem makes few presupposi-
tions. The two most important are that the world is determinis-
tic, that is, changes do not occur spontaneously; and that there
is only a single agent in the universe.

and then extended to more complex domains [Haugh, 1987):




“Much work remains to extend the simple formulation pre-
sented here to handle ... more complex facts, ... multiple simul-
taneous events.”

until eventually, solutions to general problems will be obtained.

But this position is fatally flawed, since all permissive approaches rely
cructally on either explicit (and overly strong) frame axioms, or on complete-
ness assumptions as the means for drawing inferences about what relations
are unchanged in subsequent world states. Abandoning the completeness
assumptions is equivalent to abandoning the approaches built upon these
assumptions. For instance, if the agent is not assumed to know all acts that
occur, nor all consequences of each act, then the very essence of Lifschitz’s
solution [1987) that minimizes the causality and precondition predicates evap-
orates. The beauty and the substance of his solution is in formalizing this
very assumption.

3.1.2 Loss of Evidence

As Shoham points out, [1986], the permissive approaches, (particularly the
use of non-monotonic logic) follow the “what-you-don’t-know-won’t-hurt-you”
principle?.

To use the standard example from the literature, when we
prefer models in which birds can fly to those in which they can-
not, we do not have to specify the flying capabilities of most
birds; their ability to fly will follow “automatically.” The price
we pay is when reasoning about “abnormal” birds such as pen-
guins: if we do not specify their (nonexistent) flying capabilities
then we will erroneously infer that they can fly (whereas in an
ordinary monotonic logic, in the absence of explicit information
about it, we would neither infer that they can fly or that they
cannot). When the frequency of flying birds overwhelms the ex-
pected danger of making wrong predictions about penguins, we
assume that birds fly by default.

20ne might not think that the monotonic approaches [Green, 1969, Kowalski, 1979,
Fikes and Nilsson, 1971, Pednault, 1985} are subject to the same objections. But their
approaches seem to be the biggest casualties, since not only do they attempt to provide
a complete set of frame axioms, they do not admit the possibility that some of their
inferences might be defeasible, as do the non-monotonic approaches.
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Complete knowledge is therefore not required, according to Shoham; but
the consequences of lack of knowledge must not be too costly. Unfortunately,
none of the frequency statistics, nor the utility functions inherent in the
above argument are made explicit in any of the permissive approaches. The
evidence upon which the defaults are based is no longer part of the formal
theory. It is therefore difficult to determine when it is advisable to use these
strategies, and when a particular inference should be abandoned due to lack
of statistical support or an unacceptable risk of error.

One can certainly construct theories of action using the inference rules
of one’s favorite permissive approach, as well as statistics and cost functions
which appear to make the appropriate cost/benefit tradeoff. Likewise, one
can provide, for the same theory, a different set of statistic: and a cost func-
tion for which the tradeoff is poorly made. But when the statistics and cost
function are not part of the theory, then it is only our individual dispositions
that determines whether or not we believe the tradeoff has been appropriately
made. But, then, arguing that all rational agents with the same knowledge
should likewise have drawn the same inferences is impossible to defend.

3.1.3 Knowledge Obsolescense

Suppose that agent A knows fact P at time T. Further, suppose that A
knows of no acts occurring between time T and T + A that affect P. The
permissive approaches will, in general, persist the belief in P through an
inductive argument from T to T+ 1, T + 2, ..., T + A. For example,
Weber [1989] describes the battery paradoz, where the agent initially knows
that it’s car battery is charged, and persists this belief inductively in the
absence of knowledge to the contrary. Thus, the agent believes its battery is
always charged, contradicting our intuition that batteries eventually become
discharged?.

Accepting default conclusions as true, allows their use in subsequent in-
ferences; in doing so, however, beliefs become eternally perpetuated. Con-
versely, if one prohibits the chaining of defaults (or no defaults, as in the
conservative approaches), then one is only able to perform inference for at
most a single moment into the future.

INote that this is an instance of Kyburg’s lottery paradoz {1970], where the agent
believes of each individual ticket in a large lottery that it will not win the lottery, and also
that some ticket will win.




Instead, an agent’s commitment to its beliefs should weaken as its knowl-
edge obsolesces. This is not because we want the agent’s weakening beliefs
to proportionately correspond to a continuously changing physical parame-
ter (such as a battery’s charge). Rather, it is an acknowledgement of the
inherent limitations of the agent’s ability to know about the external world.
Commitment should reflect epistemic state, since, due to the agent’s lir..ited
perceptual and computational resources, it cannot reflect metaphysical state;
too many relations can change between the times when an agent is able to
attend to them.

Despite Hayes’s claim that “it should be clear that the underlying prob-
lem is not peculiar to the ‘logical language’ approach to model-building”
[Hayes, 1971], the problem of knowledge obsolescence does involve at least
the straightforward logical language approach. Since, if we wish to establish
some belief in a proposition that we cannot prove deductively, we are obliged
to either push its value up to true, or down to false. An agent must believe
either that the battery is still charged, or it is not charged. “I don’t know” is
anathema to a permissive-ist. And there is no middle ground with first-order
logic; the continuum between truth and falsity is the event horizon into which
knowledge irretrievably falls.

3.2 Constraints on Knowledge Encoding

Suppose that rather than reasoning about the persistence of a battery’s
charge, one wishes to reason about whether an object O known to be at
location L is still at L after time A has elapsed, and no disconfirming actions
are known to occur in this interval. Relevant to this reasoning task are the
following factors.

1. The type of object that O is (contrast a $100 bill and a used pair of
jockey shorts).

2. The type of location that L is (contrast a safe deposit box, and a subway
station).

3. The agent’s ability to know about what is occurring at or near L. That
is, would the agent know about a contravening event if such an event
occurred?
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4. The physical relationship between O and other objects of which the
agent might be unaware.

5. The length of A.

6. The rate at which other agents are likely to perceive, or know about O
at L.

7. The goals of other agents (with respect to O).

Each of these aspects might have a profound influence on our belief in the
given proposition. Altering each aspect in turn while holding the others fixed
gives vastly differing intuitions about the persistence of O at L. For instance,
suppose O is a $100 bill, the agent is nowhere near L, A is one year, and 10
other agents know about O being at L, all of whom would happily benefit
from ownership of O. Whether L is a bank vault, or the sidewalk in front of
Macy’s will likely determine O’s future.

If an agent actually knows nothing about the type of object or location
involved, the length of elapsed time, etc., then under such severe lack of
knowledge it is reasonable for the agent not to commit to the persistence
of O at L, unlike the permissive approaches. To expect a solution to the
persistence problem to yield consistently intuitive answers in the absence of
this information is an exercise in futility!. We are biased toward particular
outcomes (the gun remains loaded, the car starts, the dollar bill remains on
the sidewalk) largely because of shared, but hidden knowledge about common
situations. Unless this information is made explicit in a useable fashion, our
agents will be handcuffed, consistently defeating our intuitions.

Unfortunately, the knowledge encoded in the permissive approaches has
been limited to either ground facts (“A is on B at time T”, “The battery
is charged at time T + 1), or universally quantified truths (“All red blocks
are large,” “Two things can’t be at the same place at the same time”).
There appears no straightforward way to encode useful knowledge of the form
“batteries eventually wear out”, “A was on B yesterday”, “other children
tend to want to use large blue blocks about as frequently as I do”, “adding
anti-freeze to your car increases the likelihood that it will start in January
in Rochester.”

“This theme is taken up with considerably more energy by {Weber, 1989, Schubert,
1989, Loui, 1987a).
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Assuming that such knowledge is encoded, we would still require some
means for relating this knowledge to our commitment to the truth of particu-
lar assertions. For example, we will want to relate knowledge that “batteries
wear out” and “anti-freeze helps cars start ... ” to our commitment to the
assertion that “my car will start when I engage the ignition at time T.” [
will attempt to demonstrate how this statistical knowledge can be encoded
and related to the probabilities we attach to causal assertions following an
examination of the conservative approach.

4 The Conservative Approach

The conservative approaches have arisen from two separate motivations:
those concerned with abandoning domain-independent completeness assump-
tions in favor of monotonic “explanation-closure” axioms, and those con-
cerned with the explicit representation of multi-agency and concurrent ac-
tivity.

4.1 Explanation Closure

The first group [Schubert, 1989, Weber, 1989, Haas, 1987] takes a novel
approach to the frame problem: rather than encoding that “P does not
change when A occurs”, they instead encode

(3) “P changes between time T and T + 1, only when one of
actions A,,..., A, occurs at T'.”

These axioms are “explanation-closure” axioms, since they completely ac-
count for the causes of change for particular fluents. If the agent knows that
none of the A; occurred at T, then from axiom 3, one can deductively infer
the persistence of P. For instance, I might have an axiom saying that if I
have money in my pocket at time T', and I do not have money in my pocket
at T+ 1, then I must have intiated a purchase act at time T. If I know that
I did not purchase anything between T" and T + A, then I can deductively
infer that money is still in my pocket at T+ A.

The appeal of these approaches is their simplicity, that they don’t require
an axiom for each fluent/action pair (as with frame axioms), and that the
inferences they draw are purely deductive. Thus, they do not suffer from
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the permissive problems of drawing overly strong inferences. But their obvi-
ous limitations are severe, as noted by the researchers themselves [Schubert,
1989):

[With] external agencies of change ... both effect axioms and
explanation closure axioms may be invalidated. For example ...
if the money in my pocket may be arbitrarily lost or stolen, I
cannot assert an axiom that its depletion requires an expenditure.
... It would not help to include loss and theft among the possible
explanations for depletion of funds, since the occurrence of these
events cannot be ruled out ... ”

Unlike the permissive approaches, explanation closure does not depend
upon completeness assumptions. The deductive soundness of the theory re-
mains intact, regardless of the number of closure axioms that the agent is
fortunate enough to possess. But in large, multi-agented worlds, such ax-
ioms will be rare; those that exist will be constantly under the threat that
new causes for change will be discovered. In this sense, providing com-
plete explanation-closure axioms bears a striking similarity with providing
complete sets of antecedent conditions for laws of motion (the qualification
problem®). With few closure axioms, however, this approach is emasculated,
the agent being able to draw few conclusions about what relations persist in
future states.

4.2 Multiple Agency and Concurrency

As has been noted, the existence of outside agency causes considerable dif-
ficulty for solving the frame problem. As Rich Pelavin aptly points out
[Pelavin, 1988], in a situation-calculus language in which future states are
determined by function application on state-denoting terms, there is no way
to distinguish between “action A occurs at time T” and “action A occurs
at time T and no other actions occur.” Thus, the language itself is placing
unnecessary and severe constraints on the theory.

To overcome this problem, there has been a considerable amount of re-
search in developing representations that allow for the explicit represen-
tation of concurrent events and multi-agency {Allen, 1984, Pollack, 1985,

5As pointed out by Steve Whitehead, personal communication.
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McDermott, 1982, Pelavin and Allen, 1986, Georgeff, 1987]. However, even
in these representations, the frame problem persists. Being able to represent
that events A, through A, all occur at time T is not sufficient to infer that
some fluent P has not changed truth value. As Pelavin points out, sufficiency
is obtained only if

1. the agent knows all events that affect each proposition, and
2. the agent knows that no such events also occurred at time T'.

And, as noted earlier, agents are rarely fortunate enough to possess such
knowledge.

Equivalently, Georgeff {1987] formalizes this principle, using a situation-
calculus notation extended to account for concurrent actions. His “law of
persistence” states that P holds in a succeeding state only if every action
which occurs is independent of P. These more expressive representations
only highlight the problem that few inferences are possible without complete
information.

4.3 Knowledge Obsolescence

The arguments regarding the inadequacy of the permissive approaches to deal
effectively with knowledge obsolescence apply equally to the conservative
approaches. Whereas the permissive approaches never allow relations to
wither on the vine, under the conservative doctrine, all relations die aborning.
If there exists an explanation cic..re axiom (or set of independence axioms)
for a fluent, and all change causing events are known not to occur, then the
persistence is inferrable. But more likely, no such closure axioms exist, or
some causitive event cannot be definitively ruled out, in which case no belief
regarding the fluent is allowed. In the absence of knowledge completeness,
the conservative approaches are too weak for use in dynamic, multi-agented
domains.

5 Statistical Inference

Both of the solution classes that have been explored founder on the issue
of knowledge completeness, although in opposite ways. In the absence of
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completeness, the permissive approaches are led to incorrect conclusions,
while the conservative approaches are able to draw few, if any, conclusions.

An alternative approach is to allow agents to associate probabilities with
propositions indicating their commitment toward the truth of these propo-
sitions. This allows assertions to be believed with less than full acceptance,
enabling the agent’s commitment to degrade as its knowledge obsolesces.

Using probabilistic reasoning is not new in artificial intelligence, but has
rarely been explored for action reasoning (the exceptions being [Pearl, 1988,
Dean and Kanazawa, 1988]). The novelty of the approach to be presented
is that probabilities are not taken as subjective degrees of belief, but are
instead based upon the set of statistical assertions that the agent possesses.
It can thus be viewed as an application of Kyburg’s theory of statistical
epistemology as described in [Kyburg, 1974, Kyburg, 1983a, Kyburg, 1983b].
A brief description of using this theory for action reasoning is given here,
with a more detailed, formal version provided in both [Weber, 1989] and
[Tenenberg and Weber, 1990].

5.1 Kyburg’s probability theory

Kyburg’s theory relies upon the existence of a set of statistics that the agent
possesses in its rational corpus® regarding set proportions. For instance, the
agent will have sentences of the form “the proportion of birds that fly is in
the interval [.93,.95].” Note that both “birds” and “flyers” are taken as sets
of objects, and that proportion is taken simply as set proportion, or measure.
Suppose additionally the agent also knows “Tweety is a bird” (Tweety is an
element of the set of birds), and Tweety is a random element of the set of
birds, as far as the agent knows (of which more will be said below). Then
the agent can assign a probability interval [.93,.95] to the assertion “Tweety
flies.” That is, Tweety is an element of a set, the reference class, from which
the proportion of flyers is known, and this proportion can be taken as the
probability that Tweety is a flier.
- As an example of action reasoning using this framework, I will consider
the problem of inferring that my mug is in the lounge (mug-in-lounge) at
time t + A, given knowledge that it is in the lounge at some earlier time

%The set of statements that the agent accepts as practical certainties, which will be
treated as truths, including such things as axiomatic set theory and number theory, and
statistics that have a reliable basis.

15




t. Applying Kyburg’s theory to action reasoning requires some means for
relating set proportions to the propositions of interest. Intuitively, this will
be done by having frequency statements of the form “the proportion of times
(moments, worlds, instants) when P, A... A P, occurs (for some set of
fluents P.) in which the mug is still in the lounge after time A is in the
interval [p,q).”

I will use a first-order language with set theory and arithmetic, and will
take time points as a linearly ordered set isomorphic with the integers and
fluents to be sets of time points at the object level (rather than as set de-
noting, as in situation-calculus). That is, the fluent mug-in-lounge is the
set of worlds in which my mug is in the lounge. Expressing that my mug is
in the lounge at time t can be done with a simple set membership assertion
“t € mug-in~lounge”. In such a case, we say that t is a mug~in-lounge-
world.

Making predictions will involve reasoning about sets of the form

{t:t+ A € mug-in-lounge},

that is, the set of worlds such that my mug is in the lounge after time A.
Sets of this form will be abbreviated by mug-in-lounges (where A is an
integer constant). Under this notation,

{t : t € mug-in-lounge} = mug-in-loungey = mug-in-lounge

Assertions about set proportions will be denoted using a binary function
symbol “%”. For example, “%(A, B)” stands for “the proportion of B’s that
are A”. To avoid confusion about the ordering of the arguments, a vertical
bar will be used instead of a comma to indicate the similarity to conditional
probabilities: %(A|B).

Suppose that an agent has only the following statistical assertions:

%(mug-in-lounge, jmug-in-lounge) € [.9,.95], (1)
t € mug-in-lounge. (2)

These state that the proportion of worlds in which my mug is in the lounge
that are followed by worlds in which the mug is still in the lounge is in the
interval [.9,.95], and in world ¢, the mug is in the lounge. One can thus
associate a probability of [.9,.95] with the assertion ¢ € mug-in-lounge,;, or
equivalently ¢ + 1 € mug-in~lounge.
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The above statistic functions like a frame axiom: if my mug is in the
lounge at some time, then it will remain in the lounge at the next moment
with some high probability. The difference between the probability interval
of this statistic, and the interval [1,1], or certainty that the mug remains
in the lounge, reflects the fact that the frequency with which actions occur
in the world that result in the mug leaving the lounge occurs between 5%
and 10% of the time. That is, although there might be many agents that
can remove the mug, and many ways of doing so, the coarse statistic (1)
above concisely summarizes their combined influence. The agent thus need
not know about the activities of all agents, nor all laws of cause and effect.
The agent need only know the proportion of times in which such influences
defeat its intentions. These statistics are obtainable either through direct
observation, or through reporting by other agents.

This is similar to a default approach, where the agent believes P, since it
has no knowledge to the contrary; the agent does not need to have a complete
theory of the world. In this default case, however, the agent’s uncertainty
is not reflected in a probability between 0 and 1, but only in the ability to
completely abandon a belief when a proof to the contrary is obtained.

5.1.1 Competing Reference Classes

The complexity that arises in this framework is if the agent has conflicting
statistical knowledge. For example, suppose in addition to assertions 1 and
2 above, the agent knows

%(mug-in-lounge; |mug-in-lounge N holding-mug N leave-lounge)
€ [.0,.02].
There are thus competing reference classes
(mug-in-lounge versus mug-in-lounge N holding-mug N leave-lounge)
with competing reference intervals ([.9, .95] versus [.0,.02]) for the probability
of the assertion t + 1 € mug-in-lounge.
The problem of choosing between reference classes is addressed by Ky-
burg [Kyburg, 1983b]. I will not provide a complete explanation of his

theory” but will mention two of the criteria he provides for choosing be-
tween competing classes. Given two candidate reference sets X and Y, if

A full formal accounting can be found in [Kyburg, 1974, Kyburg, 1983b).
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the reference interval of one nests inside the other, choose the strongest
(nested) interval. If the intervals do not nest, and X is a subset of Y,
choose X as the reference set. This last criterion directs us to choose
the most specific reference class for which we have statistics, a familiar
principle in defeasible reasoning systems [Touretzky, 1984, Bacchus, 1988,
Loui, 1987b]. Thus, according to this principle, we would choose the refer-
ence class

mug-in-lounge N holding-mug N leave-lounge

over the class mug-in-lounge, and hence associate the interval [.0, .02] with
the probability of ¢ + 1 € mug~in-lounge.

Another way of viewing this problem is to recognize that ¢ is not a random
element of the set mug-in-lounge, relative to what the agent knows, since
there exists knowledge of a smaller set to which ¢ belongs for which there
is a different proportion of mug-in-lounge;-worlds. This notion of random-
ness is epistemological, since it depends upon the agent’s state of knowledge
regarding the sets to which particular worlds belong.

It is not guaranteed that one can attach a probability to every assertion.
There might be some such assertions for which there there is no way to
reconcile the different statistics, for example, if the agent knows

%(mug~in-lounge; |mug-in-lounge) = [.9,.95]

and
%(mug~in-lounge; |holding-mug) = [.1,.2],

but not
%(mug-in-lounge, |mug-in-lounge N holding-mug).
This is analogous to having competing default rules® of the form

“If my mug is in the lounge at time t then defeasibly it will be
there at ¢t +1”

(because of inertia) and

8In terms of Nute’s [1986] or Loui’s [1987b] default logic, but similarly for other non-
monotonic approaches.
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“If I am holding my mug at time ¢, then defeasibly it is not in
the lounge at time t + 17

(since I am rarely in the lounge), without having a specific default to cover
the situation in which I am holding the mug while being in the lounge.

The advantage of using the statistical approach is that beliefs are related
to measurements of the external world, compiled as frequency assertions.
The agent is thus able to refine its knowledge by tracking particular relations
in the world, for example, by seeking to determine a value for

%(mug~in-lounge, |mug-in-lounge N holding-mug).
Kyburg’s contribution is summarized nicely by Loui [Loui, 1987b):

Here is the achievement. Distinguish probability assertions,
Prob(“z € Z”) = [p, q]
from statements about specific frequencies in classes,
“P(Y,Z) = [p,q).”

Then provide rules for selecting among such frequency statements
in order to determine probability.

The contribution of the present paper is to cast action reasoning in Kyburg’s
theory, and to demonstrate that the frame problem reduces to the problem
of choosing the appropriate reference class. For each assertion whose truth
value we would like to know, (e.g., whether ¢ is a mug-in-lounge-world), we
obtain a probability by finding a dominating reference class from among our
statistical knowledge.

5.2 Yale Shooting Problem

One of the standard problems used to test solutions to the frame problem
is the Yale Shooting Problem. Despite the fact that this problem has no
correct answer, in the sense that an instance of the 16-puzzle might have a
solution, it nonetheless serves as a common foil against which to compare
competing theories and intuitions. It will be helpful to describe how the
statistical approach can be applied to this problem.
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At some starting time, to, Fred is alive (alive), and a gun is loaded®
(1loaded). After some time A has elapsed, the gun is fired at Fred. Fred dies
when fired upon with a loaded gun. The question for the theory to answer,
is whether Fred is alive or .ot after time ¢ + A.

If the gun has not been unloaded between ¢t and ¢ + A, then the answer
is that Fred dies. Unfortunately, we have no explicit knowledge as to what
events occur after ¢, other than the firing of the gun. It is important that
we separate out the issues of conversational implicature here, since, from
the story-telling point of view, it is reasonable to assume that I would have
mentioned if someone had unloaded the gun.

This problem clearly motivates the use of the conservative approach of
Schubert [1989] and Weber [1989], where we have axioms stating that guns
get unloaded only through an unload act. When the reasoning agent is the
same agent that is holding the gun and would know about all unloadings, we
can deductively infer that Fred dies.

Kautz [1986] and Shoham [1986] provide solutions whereby we prefer
interpretations in which all propositions persist as long as possible forward
in time. Fred thus dies, since this interpretation allows both alive and
loaded to persist right up until the gun is fired.

Lifschitz [1987] and Haugh [1987] present solutions preferring interpreta-
tions that minimize causitive acts. Thus, Fred dies again, since we know of
no act occurring that causes the gun to be unloaded.

However, all of these solutions strain our intuitions when we consider
increasingly large A’s ([Hanks and McDermott, 1986)):

If several years had elapsed between the WAIT and SHOT, for
example, it would be reasonable to assume that the gun was no
longer loaded.

In fact, for sufficiently large A, it would be unreasonable to conclude that the
gun remained loaded. And this intuition seems to be based upon an implicit
assumption that unloaded acts occur with some relative frequency, so that
the longer we wait, the likelier it is that one such act will occur.

This can be explicitly encoded in the statistical framework. Note, how-
ever, that the probabilities obtained will rely upon the particular statistics

9For simplicity, 1 will dispense with the loading act originally described as part of the
problem [Hanks and McDermott, 1986], and assume the gun has been successfully loaded.

20




in the knowledge base. Notationally, I will take to as the initial time point,
and ¢; as the :** subsequent time point. We first have that Fred is alive, the
gun is loaded, and a wait occurs, all at time to:

to € alive( loaded Nwait.

For simplicity, I will initially assume that the gun is fired at time t; (rather
than at some later time):
t; € shoot.

We would like to obtain a probability for the assertion “t; € alive.” That
is, is Fred alive after a WAIT act and a SHOOT?

There is a low likelihood that Fred is alive if he has just been shot with
a loaded gun:

%(alive;|shoot Nalive N loaded) € [0.1,0.3] (4)

It is not difficult to encode that guns tend to stay loaded, and that Fred
tends to remain alive from one moment to the next:

%(loaded, [1oaded) € [0.9,0.95] (5)
%(alive|alive) € [0.99,1.0] (6)

This approach appears to require explicit statistics for the likelihood of
persistence, for each separate proposition, rather than a general inference
mechanism (such as circumscription) that persists the entire set of proposi-
tions. Although this looks suspiciously like providing an entire set of frame
axioms, there are significant differences. First, the statistics can be based
upon observations of the reasoning agent. Second, the statistics can be sen-
sitive to context — that is, there can be different reference sets associated
with the same probability assertion. For instance, the statistic

%(1oaded; |1oaded N unload) € [0.0,0.05]

specifies a more finely grained context than the one above for predicting
whether the gun is loaded. And third, statistics can be provided for broad
reference classes, using the subset relation. For instance, suppose that our
language has sets denoting the fact that other people are alive (aliveBill,
aliveKaren, aliveJake). Then an abstract alive set (absAlive) can be
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defined which is the union of the specific alive propositions, and a general
statistic can be obtained in terms of this abstract proposition:

absAlive = aliveU aliveBill U aliveKarenU aliveJake
%(absAlive,|absAlive) € [0.95,0.98] (7

This general statistic reflects the likelihood that some random individual
(among Fred, Karen, Jake, and Bill) will be alive from one moment to the
next. It can be used, in the absence of other dominating statistics, to asso-
ciate a probability with any particular individual persisting to be alive at a
particular time.

Further, these statistics might be relative to larger intervals of time, rather
than simply from moment to moment. Although the temporal model in the
presented language is weak, one can still specify truth at some time during
an interval using set union. First, the symbol f; ; is defined as follows, where
f stands for some set of time points (such as alive, or loaded), and 1, j are
integers, with ¢ < j:

f.',j =f;Ufin U...Ufj_l Ufj.

Thus, alive, s is the set of time points in which Fred is alive in at least one
of the next five time points. Thus, we can now encode the statistic for the
proportion of time points in which some agent is alive, given that it was alive
sometime (we may not be sure precisely when) in the last 10,000 time points:

%(absAlive;goo1|absAliveg 10000) € [0.8,0.9]

Note that were an agent to compile this statistic, it would not require that
Fred, Bill, etc., all be monitored at each time instant. Instead, samples of
their aliveness taken at only a few points over an extended time interval
are all folded together. Thus, this very general statistic, taken over a very
large class of propositions, argues strongly against the requirement of specific
persistence statistics for every proposition.

Let us suppose, for simplicity, that we have only the statistics 5 and 6.
We can thus derive the following probabilities:

Prob(“t; € loaded”) € [0.9,0.95]
Prob(“t, € alive") € [0.99,0.1]
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Thus, there is a high likelihood that at time t,, Fred is still alive, and the gun
is still loaded. As stated earlier, the inference task is to associate a probability
with Fred’s being alive at time ¢;. Unfortunately, we have no appropriate
statistics upon which to base this probability, since using statistic 4 requires
that we be certain that both Fred is alive and the gun is loaded, and we have
only high probability of these assertions. We are thus not able, under the
given statistics, to associate any probability with the assertion “t; € alive.”

One possible approach to arriving at a probability for this assertion was
first was taken up by Dean and Kanazawa [1988], where, associated with each
proposition (such as alive), is a single probability function, usually expo-
nentially decreasing with time, indicating the likelihood of that proposition
remaining true. Actions are treated as special propositions for which partic-
ular action instances might have a probability function associated with this
action occuring at a particular time. A new probability function can then be
derived for a proposition, by convolving itz ~ssociated probability function
with the probability functions of any affecting actions. Thus, the probability
function for alive would be combined with t.e probability functions for the
occurence during a particular interval of both an unload (which may be un-
likely under our scenrio), and a shoot (which we take as certainly occuring
at time t;). In this fashion, Dean and Kanazawa obtain a new probability
function for alive conditioned upon the occurence of the shoot, and are thus
able to arrive at a probability for “t; € alive.”

Although Dean and Kanazawa’s approach is in the same spirit as the
current one described, and has some elegant features, it suffers from the
problems of unmotivated probability functions, allowing conditioning only
on action occurence, and conflating probabilities with statistics. Given the
continuous probability functions that they propose, it will likely be difficult
and costly for agents to obtain the statistics necessary to assure reliability.
Further, if there is no a priori knowledge of the occurence of an unload,
then an unjustified randomness assumption is made that ¢; is a random
time point with respect to the occurence of unloadings, even though the
agent might know otherwise-such as that it is holding the gun, and there
are no other agents. This assumption is required because probability curves
for a proposition are not sensitive to context, except what is provided by
the occurence of actions. That is, these probabilities cannot be conditioned
upon a broad range of other knowledge that the agent might possess. If such
context-sensitive probabilities were allowed, then Dean and Kanazawa would

23




be obliged to provide a mechanism for adjudicating between the competing
probabilities.

These drawbacks arise largely because probabilities and statistics are con-
flated; it is not clear how these probabilities might be derived from a set of
observed statistics. The advantage of the approach I have presented is that,
under Kyburg’s theory, probabilities over instances (of set membership, such
as “t € alive”) are distinguished from statistics, which are proportions over
sets of instances (such as %(alive;|alive) € [0.99,1.0]). Probability is thus
defined relative to a body of knowledge, including statistical knowledge, with
the central problem being that of obtaining the dominating reference class
among competing statistics.

Statistics 5 and 6 above allow us to derive a probability close to 1 that
at time t,, the gun remains loaded, and Fred is alive. But at what point
are these probabilities sufficiently close to truth that they should be added
to the rational corpus, making them available for further inference? And
should this threshhold be held fixed, so that the reasoning agent is unable
to change it under reasoning tasks having different criticalities and risks? If
so, then under a sufficiently low acceptance threshhold, statistic 4 can be
used to conclude that Fred dies at ¢z, since 4 has a more specific reference
class than 6. This then becomes a statistical translation of Loui’s defeasible
logic approach to the Yale Shooting Problem {Loui, 1987a]. But one of the
significant advantages of the statistical approach is the fiexibility of having
access to the underlying numerical values. It is difficult to imagine domains in
which the tradeoffs are so predictable that we would want a fixed threshhold.
At the very least, it seems premature to exclude the possibility of change, to
make changing the level of acceptance dependent upon human intervention.

This does not rule out that under different statistics, we can derive a high
probability that Fred dies. One such statistic would say, “The frequency with
which Fred dies!® is very high, given that a few moments prior, the gun is
loaded, and then a shoot takes place.” This is encoded as

%(alivez|shoot; NaliveN loaded) € [0.12,0.2). (8)

to is an element of the reference set of this statistic, and hence we can derive
a probability for Fred being alive at time ¢,.

100r, as we stated earlier, we might phrase this in terms of the frequency with which
people in general die, since Fred can only die once, presumably.
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And as before, we can consider statistics over larger temporal intervals, so
that if our WAIT period is longer than a few moments, we can derive different
probabilities. For instance, we might have that “The frequency with which
Fred dies is moderate, given that just prior the gun is fired, and sometime in
the last 100 moments, the gun is loaded, and Fred is alive,”

%(alive;o1|shootigo N aliveg 00 N loadedy 100) € [0.4,0.6).

Or, “The frequency with which Fred dies is low, given that just prior the gun
is fired, and sometime in the last 10,000 moments, the gun is loaded, and
Fred is alive,”

%(alive;ooo1|shootioeo N aliveg 10000 N Loadeds 10000) € [0.8,0.95].

We can see, then, that with an impoverished set of statistics, there is little
that one can conclude about the persistence of Fred’s life. But that with
a richer set, one can draw various conclusions about the likelihood of Fred
dying, which takes inte account the length of the WAIT.

5.3 Implications of the Statistical Approach

I know that my mug is in the lounge at time t. Is it there after I open
the refriferator? Lifschitz, a prototypical permissive-ist says that refrigera-
tor openings do not cause mugs to change locations, and to assume nothing
else has occurred which might move the mug. Schubert, a conservative-
ist says that mugs move only when a pickup occurs, and by representa-
tional constraints, the refrigerator door is the only action that occurred,
anywhere, at time t''. The statistical approach says that in the absence
of mug pickups, mugs change location infrequently. Rather than assuming
that no unknown mug pickups occur, I instead weaken my commitment to
“t+1 € mug-in-lounge” by the frequency with which mug pickups have
occurred in the past.

There are several implications of the statistical approach that I will briefly
explore.

UGchubert does allow for more than one action to occur, but all such actions are known
by the agent.
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5.3.1 Incremental Prediction

In the traditional approaches examined earlier, the paradigm is one in which a
number of propositions are known by the agent, and knowledge is propogated
forward incrementally a moment at a time. If the truth value of a fluent is
not known with regard to a particular time, then a truth value for this fluent
regarding subsequent times is likewise not known. For example, if I do not
know whether my mug is in the lounge at time t, then I will likewise know
nothing about my mug being in the loung at time ¢+ 1, (and by induction. all
future times'?). Knowledge is therefore carefully preserved from one moment
to the next, since once it is lost, this knowledge is irretrievable.

The statistical approach provides much greater flexibility. We accord full
belief to the assertion that “my mug was in the lounge yesterday at noon,”
since that is when I last saw it, but not to the assertion “the mug is in
the lounge now.” The relevant statistics are of the form “the frequency with
which mugs change location from one day to the next is in the interval [z, y].”
We do not require statistics that chart the moment to moment persistence of
relations in the world; for relations that change infrequently, coarse statistics
(“80% of the stacked blocks will remain as I have configured them one hour
from now, “95% of the buildings in this neighborhood will be standing in 10
years”) are more economical. Further, the coarser the statistic, the greater
the cardinality of the associated reference set, and the greater number of
worlds in which this statistic can serve as a basis for a probability statement.
Thus, coarse statistics are more widely applicable. In addition, these coarse
statistics appear much easier for an autonomous agent to acquire, since the
agent is able to monitor only a limited part of its environment from one
moment to the next. In fact, the agent can use these statistics to determine
those highly dynamic relations which require careful, frequent monitoring.

Knowledge is allowed to obsolesce, but not necessarily in a smoothly con-
tinuous fashion, as is the case with [Dean and Kanazawa, 1988]. Rather, the
decay function will have large plateuas, and deep drops, perhaps occasional
bumps, depending upon the rate at which the agent measures the particular
relations.

This style of representation, then, gives rise to a lazier method for de-
termining beliefs: rather than propogating each proposition in the agent’s

13 Assuming that we do not have any knowledge gathering actions, as in [Feldman and
Sproull, 1977).
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knowledge base at each moment, one reasons about propositions only when
needed. Thus, if [ know my mug is in the lounge at noon yesterday, I need
not concern myself with the location of my mug until such time as I need the

mug. I am thus saved the computational expense of propogating irrelevant
beliefs.

5.3.2 Independence

Encoding that “most of the world carries on in just the same way that ... it
would have done” [Hayes, 1987] had I not performed action A, is equivalent
to saying that some relations are independent of A. Traditional approaches
based on completeness assumptions are, by definition, inadequate for en-
coding independence. But the present approach provides a precise, formal
account of independence in terms of standard statistical independence. That
the persistence of mug-in-lounge is independent of what I had for breakfast,

or whether it is raining outside, is implicitly encoded whenever the following
hold:

%(mug-in-lounge; |mug-in-lounge N omelet) =
%(mug-in-lounge;|mug-in~lounge)

%(mug~-in-lounge;|mug~in-lounge N raining) =
%(mug-in-lounge;|mug-in-lounge).

5.3.3 The Qualification Problem

The qualification problem is that of expressing sufficient preconditions guar-
anteeing that an effect will hold as a result of some action. For instance, if
I wish to remove my mug from the lounge, then a Remove act is guaranteed
to have the intended effect (of having the mug out of the lounge) only if the
door to the lounge is not locked from the outside, the mug is not glued to the
coffee table, the mug is not sitting on a button which will cause it to explode
when lifted, etc. As with the frame problem, one does not want actually to
explicitly mention all of the possible defeating conditions; the more remote
and ludicrous the defeater (the mug is filled with matter from a neutron
star), the less inclined one is to consider and axiomitize it.

Although it is beyond the scope of this paper to engage in a detailed dis-
cussion of both the statistical and previous approaches to the qualification
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problem, a brief presentation should provide an indication of how the quali-
fication yields to the statistical approack. A full discussion can be found in
[Tenenberg and Weber, 1990].

The central intuition of the current approach is that a statistic involving
a particular reference set

(e.g. %(mug-in-lounge,|mug-in-lounge) € {.9,.95])

summarizes the frequency with which all defeaters (exeptions) occur, without
the need to either consider or even know what these defeaters are'3.
Suppose one could specify a reference set S of the form S = PLNP;... P,

for some sufficiently large n such that there exists a statistic
%(mug-in-lounge,|S) € [1.0,1.0]).

If world ¢ is an S-world, it is guaranteed that : +1 is a mug-in-lounge-world.
Either no such finite S exists, or its description (in terms of the number of
intersected sets P;) is impractically large. In either case, a reasoning agent
will be obliged to reason with smaller reference class descriptions, containing
only a few of the P,. Ideally, one would like to disregard those P; which change
the reference interval only slightly, either because they occur so infrequently
(e.g., mugs glued to the coffee table), or they exert relatively little influence
(e.g., the lounge door is locked from the outside, but there exists another
exit to the room). One is thus trading off the accuracy of more finely grained
statistics against the cost of maintaining, and reasoning with these statistics.
One would prefer the ~zonomy of short descriptions while sacrificing only a
small amount of certainty. Rather than having the axiom writer make this
a fixed, a priori tradeoff, as with previous approaches to the qualification
problem {McCarthy, 1977, Lifschitz, 1987, Ginsberg, 1987], access to the
underlying statistics allows the reasoning agent to make this tradeoff on-line,
adjusting it when necessary to match the criticality of the reasoning task.

131n fairness, whether defeaters need to be considered depends upon whether the agent
possesses any statistics regarding defeaters (mugs glued to coffee tables, locked lounge
doors), and how the agent is computing reference classes. Under current implementations
of Kyburg’s theory [Loui, 1987b, Weber, 1989), defeaters might be considered if such
statistics exist for them.
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5.4 Computing Reference Classes

Abandoning the completeness assumptions does not come without costs.
These costs will likely be related to the computational requirements of de-
termining the appropriate reference class for the probability assertions of
interest. There is, however, considerable cause for optimism.

The first of these causes pertains to the comments about coarse statistics
in the previous sections. An agent that is responsible for managing a statis-
tical knowledge base will be inherently limited in the quantity of statistics
that it can collect, store, and access. Recall, however, that our theory does
not require the agent to have a precise probability function over all of the
sentences in its language. Thus, the computational requirements might not
be as great as is often suspected when using probabilities. What remains
a fruitful area of future investigation, however, is to explore strategies for
explicitly reasoning about the tradeoffs in collecting and keeping knowledge
at different levels of generality.

Secondly, there have been several serious attempts at automating Ky-
burg’s probability theory. Loui {1987b] was able to achieve good results for
a restricted language. Kyburg and Murtezaoglu have recently implemented
a version that uses several heuristics to prune the set of candidate reference
classes. And Weber [1989)], offers an implementation for computing reference
classes that provides an anytime algorithm (one that provides an approxi-
mation to the answer when interrupted at any time during its execution)
by considering coarse-grained reference classes before more specific reference
classes.

6 Conclusion

The frame problem involves formal attempts to capture inferences that an
agent might make concerning those states of the world that it believes con-
tinue to remain unchanged after some period of time has expired. Previ-
ous solutions have fallen into two different classes, which I have termed the
permissive and conservative approaches. Unfortunately, both classes rely
crucially upon assumptions of knowledge completeness. In complex, multi-
agented worlds, such assumptions are untenable.

Alternatively, I have proposed an approach that associates statistically
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founded probabilities with temporally scoped assertions. To suggest the
use of statistical knowledge for action reasoning is not to trivialize the con-
comitant technical problems, in particular, computing reference classes, and
trading off the management of statistics at different levels of granularity.
However, there are several significant benefits to this approach not found
previously:

1.

predictions about the future do not depend upon knowing the truth
value of particular fluents at the previous moment. In other words,
moment to moment persistence is not the only type of reasoning avail-
able to the agent,

. coarse statistical information is useful,

. knowledge can decay as time passes,

predictions about the future do not depend on specific known events,
just that certain types of events occur with certain frequency.

commitment to beliefs are related to the agent’s statistical beliefs, and
hence suggests a means for the agent to acquire its own evidence for
accepting assertions about the world.

“A does not affect P” can be represented by statistical independence,
which encodes the fact that “most of the world carries on in just the
same way that it did before, or would have done” [Hayes, 1987].

this framework provides a uniform approach to the frame and qualifi-
cation problem

. by not relinquishing the underlying numerical values, decisions can be

made on-line regarding what is an acceptable level of risk.

These benefits indicate the statistical approach’s broad applicability, and
argues strongly for it’s receipt of serious consideration as both a theoretical
and a practical model for reasoning about action and prediction.
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