
AD-A250 620

EVIDENTIAL AND PRACTICAL CERTAINTY*
(area: B7)

by DTIC
Henry E. Kyburg, Jr. 1 ELFCTF

University of Rochester MAY 2 8 1992 1
kyburg@cs.rochester.edu

absract

It is argued that there are significant advantages to using a two-level
framework for knowledge representation. It allows both what corresponds to
default assumptions, based on high probability, and also it allows a way to abandon
those defaults under special circumstances. The basic mechanism for determining
membership in the lower level representation is a criterion of high probability
relative to the evidence embodied in the upper level. Probabilities are also defined,
in the same way, relative to the lower level, and these are the probabilities that are
used in the computation of decisions.

1. Introduction,
The search for an unquestionable basis as a foundation for knowledge has

been a philosophical grail at ieast since Descartes' Discourse on Method. While
philosophers have sought such a foundation, practical men, engineers, and
scientists have been quite content with some form of practical certainty. This desire
for practicality, for getting on with the job, also motivates some of the concern with
non-monotonic logic (McCarthy [1980], [1987], Reiter [1980], McDermott
[1980]). We will illustrate these practical concerns in two cases: measuring
distance and measuring frequency. We will then offer a proposal for a two-level
knowledge representation framework based on an epistemic notion of probability.
We will show that this accommodates the two examples; that it provides a natural
way of representing default reasoning; and that it provides for the simplest
applications of decision theory. Finally, we shall discuss some shortcomings, and
some directions for future research.

2. Measuring Distance.
Measurement provides a simple and clear illustration. To obtain the distance

between two points, we measure. There are a variety of techniques, appropriate to
a variety of contexts, for measuring the distance between two points. We apply
some appropriate method M and conclude that the distance is D ± A.

The claim that the distance between the two points in question is D ± A is
not "certain." It is, indeed, the sort of claim that might well be reported as an
observation (particularly if it is the result of averaging several distinct
measurements); but it is also a claim whose denial has a finite (and calculable!)
probability.
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We assume that A is chosen so that the claim in question meets whatever are the
conventional requirements for confidence in the context at hand. (Sometimes
measurements are reported in the form "D ± sd" where sd is the standard deviation
of the assumed distribution of error characteristic of the method M. This has the
advantage that, assuming the error distribution is roughly normal, the reader can
calculate his own interval for whatever degree of confidence he wishes.)

So the assertion that the distance is D ± A is accompanied by a certain
confidence. This confidence, clearly, comes from our knowledge of the
distribution of error that is characteristic of the method of measurement M.

In general, we suppose that the distribution of error characteristic of M is
approximately normal, and has a mean of close to 0, and a standard deviation of sd
. Note that we say "approximately;" it would be unreasonable to claim that we
knew the error distribution exactly. But more than this, if the error distribution
were really normally distributed, there would be a finite probability that that the
distance between the chosen points was in fact negative. (If our reading is 23 cra.,
and the standard deviation is 1 cm, a negative error of 24 standard deviations
would mean that the distance was negative.) 'The probability of this is too small to
take seriously," you say. Precisely. The normal distribution is too precise to take
seriously.

Very well, where does the approximate distribution come from? The full
answer to this is rather complicated (a discussion can be found in [1984], but for
present purposes, we can say is is just a distribution that we take for granted, in the
same sense that we take the results of our individual measurements for granted. I
assume that I have made one measurement (or a sequence of measurements). This
result is a numeral (or a sequence of numerals). I apply an assumed distribution of
error to those results, and infer, with practical certainty, that the distance in question
is D±A.

This situation is illustrated in figure 1. The knowledge of the distribution of
error, as well as the result of the individual measurement, appears in what I shall
call the evidenial corpus. Knowledge about the distance appears in the practical
corpus. What constitutes practical certainty will be dependent on context. What
appears in the evidential corpus may in turn be questioned: we can ask what
grounds we have for accepting the error distribution we do accept.

Finally, the inference -- we shall take it to be a probabilistic inference -- that
leads to the inclusion of the sentence "the distance is D ± A" among our practical
certainties is not automatic. We may well have other information in our evidential
corpus that may undermine this sentence. (For example, that the distance has
already been measured to be D'; in that case what is practically certain should be
determined by both measurements.) We require that the measurement be a random
one in the appropriate epistemic sense.

3. Measuring Frequency.
Let us consider measuring the long run frequency of an event in a class of I? - ,or

events. (The frequency of survival for five years of patients exhibiting a certain .......

cluster of symptoms, for example.) A "measurement" is just the selection of a ':'

sample by a method M, and the observation of the relative frequency of the property. ,..J.
in question in that sample. t ; ;.
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THE EVIDENTIAL CORPUS

Data, statistical
generalizations, etc.

THE CORPUS OF PRACTICAL
CERTAINTIES

the length is D ± A
the proportion is F ± A

probabilities for data for planning
expected utility

calculations.

figure I



We do not conclude that the long run frequency is exactly the same as that in
our sample, but we take account of a theory of error about the representativeness of
samples to infer, with a certain degree of confidence, that the long run frequency
lies within a certain interval about our observed frequency.

As in the measurement of length, when things go right, we can become
practically certain that the long run frequency in question lies in the interval F ± A.
The error distribution characteristic of the method we have employed, like the error
distribution relevant to the measurement of length, is among our evidential
certainties. The data providing the observed frequencies is also represented at the
evidential level

Of course tings aren't automatic: we may have knowledge of a sample, and
knowledge of the error distribution of the method, and not have the claim that the
long run frequency is F ± A among our practical certainties. This would be the
case, for example, if we happened to have among our evidential certainties
knowledge of another sample relevant to the estimation of the frequency in
question.

A new feature of this example is that the statement about a long run
fiequency that appears in our practical corpus may play a different role than the
statement about the distance between the two points. If we wish to build a bridge
between the two points, we will use as a constraint on our engineering design: we
simply take it for granted - take it as practically certain - that the distance we must
span is in the interval.

But what may concern us in the second example is making a decision to
which whether or not the next item has or lacks the property in question is relevant.
Perhaps we are an insurance company being asked to quote a premium for five year
life insurance on one of the patients having the collection of symptoms at issue.

For making that quotation, what we need is the probability that a patient -
and quite possible, the probability that a particul patient -- will survive for five
years. For this purpose, what interests us is not F ± A itself, since we will not be
insuring the whole class of patients, but the probabilities that can be derived from
this knowledge.

In short, just as we can base probabilities on the evidential corpus, so we
can base probabilities on the practical corpus. And it is these latter probabilities that
we need to employ in determining expected utilities and in making decisions among
alternative courses of action.

4. A Two-Level Representation.
The Evidential Corpus: Let us take the evidential corpus to consist of a

finite set of axioms. These axioms may include both general and particular
statements. For example, we might include the general statement that the
distribution of errors generated by measurement method M is distributed nearly
normally, with a mean of approximately 0.0 and a standard deviation of
approximately sd. We might include a statement to the effect that three
measurements of the distance in question have been made, yielding the results 23.4,
23.8, 23.6. We might include the statement that a sample of size n has been
observed, and m of items observed have had the property in question. In general,
we include statements in the evidential corpus that no further observations, in the
context at hand, are going to impugn.
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The Practical Corpus: What goes into the practical corpus, in principle, are
exactly those statements whose probability relative to the evidential corpus exceeds
some number (the appropriate degree of confidence, a.k.a. practical certainty)
determined by the context.

Practically, this is an inappropriate standard in a number of respects. First,
logical and mathematical truths will have probability I relative to any evidential
corpus. But we cannot expect our practical corpus to contain them all.
Furthermore, we cannot even decide whether an arbitrary statement is a theorem.

Second, even if we disregard mathematical and logical statements, any
empirical statement may have an infinite number of distinct logically equivalent
forms. (These forms include, for example, S & T, for empirical statement S and
logical theorem T!)

Third, even if we look only at "purely" empirical statements (however they
may be defined) there will be a great many of them.

We therefore construe the practical corpus as a Va1 set of statements.
Formally, it is the set of all those statements whose probability relative to the
evidential corpus exceeds the canonical value p ; practically, we need only be able to
tell, of any given statement S, whether or not it belongs to the practical corpus. We
can do this if, for any given statement S, we can tell what its probability is, relative
to the evidential corpus.

What logical structure can we attribute to these corpora? Since everything
that gets into the practical corpus gets there by being probable relative to the
evidential corpus, we cannot expect the conjunction of two statements that appear in
the practical corpus to appear in the practical corpus. It follows that the practical
corpus cannot be deductively closed.

We do have the following theorem, though: If S is in the practical corpus,
and S entails T, then T will also be in the practical corpus [1961, 1974]. There is,
of course, no reason that conjunctions cannot sometimes be probable enough to get
into the practical corpus, and if they do, their consequences do, too. This reveals
something important about argument: What we demand of an argument in order to
be rationally persuaded of its conclusion is not merely that it be valid, and not
merely that each premise be acceptable; we demand also that the =juncn of the
premises be acceptable.

Since we may suppose that in another context our evidential corpus may be
construed as a practical corpus justified by a yet more demanding evidential corpus,
these same properties should be attributed to the evidential corpus: deductive
closure under single premises, failure of deductive closure in general.

5. Poaiiy
Epistemic probability represents a relation between a statement (whose

probability we're after) and a set of statements (representing a body of evidence). It
is interval valued (probability greater than p is to mean lower probability greater
than p ). It is objective: two entities with the same evidence will assign the same
probability. It is based on knowledge of frequencies: a probability can have the
value (p,q] only if the body of evidence contains relevant statistical knowledge
mentioning the same interval. All statements known to be equivalent in truth-value
have the same probability. Three principles, a subset principle, a supersample
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principle, and a cross product principle, are required to eliminate conflicting
reference classes. A further principle, the strength principle is required to pick out
the reference class about which we have the most precise (useful) information. (For
details, see [1961, 1974, 1983].)

Subjective probability is different from epistemological probability. For one
thing, it can vary from agent to agent independently of differences in evidence. For
another, it supposes that the result of observation (or measurement) is a full
probability distribution. Thus when I observe the value 23.4 in measuring the
distance between the two points in question, the result according to the
subjectivistic view is not D ± A, but rather an entire normal distribution with mean
D and variance characteristic of the method of measurement. It is this distribution
we are to use in designing our bridge.

The subjective view may be viable in simple cases. One may conjecture that
it becomes hopelessly complex in any real world situation.

6. Accommodating the examples.
Distance: In our evidential corpus we have the statistical information that

method M is subject to errors distributed approximately normally with mean 0.00
and standard deviation 0.05. We make a measurement yielding the value 23.40.
Three standard deviations is taken to yield a practical certainty.

Case I. This is the only measurement we have of the distance, and we
know of nothing peculiar about it. It is an epistemologically random member of the
set of possible measurements, with respect to yielding any given amount of error,
relative to what we know. We may be practically certain that the length is between
23.25 and 23.55.

Case U. We also have the results of another measurement by the same
method, 23.50. It follows from our knowledge about error that the distribution of
error among the averages of Dairs of measurements is approximately Normal with
mean 0.00 and variance .051f2; if the pair of observations is epistemologically
randot, then we may be practically certain that the distance is in the interval 23.45
+.15/-42.

Case LU. We happen to be evidentially certain that the distance between the
prints is 23.00. Then none of the observations is epistemologically random and we
should be practically certain than the distance is 23.00, regardless of what we know
about errors of measurement

Frequency. We know that almost all (where "almost all" corresponds to
practical certainty) n-membered subsets of the set of A' s reflect, within an amount
d, the proportion of B' s among A' s in general. (In fact this is a set theoretic
truth, and should be included in all evidential corpora, though it may not be the
most relevant statistical knowledge in these cases.) We know that m of our sample
were B' s.

Case L This is the only sample we have, and we have no other knowledge
bearing on the frequency of B' s among A' s. We may be practically certain that in
the long run m/n ± d of the A's are B' s.

Case 11. This is merely part of a larger sample. The supersample principle
referred to dictates that we base our inference on the larger sample.

Case I. We have theoretical grounds, in our evidential corpus, for
supposing that the long run frequency in question isf. In that case the sample is
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not epistemically random for determining the long run frequency, and we should be
practically certain that the long run frequency isf.

7. Dfaults.
Suppose that our evidential corpus contains the information that almost all

(i.e., a fraction corresponding to practical certainty) birds fly, and that Tweety is a
bird.

It follows that if Tweety is an epistemologically random member of the set
of birds, we can be practically certain that Tweety flies. That Tweety flies is among
our practical certainties.

Add to the evidence that Tweety is an emu, and suppose that we know
almost no emus fly. The corresponding set of practical certainties will (ceteris
paribus) contain the statement that Tweety does not fly. Add the fact that flemus
fly, and that Tweety is a flemu: the set of practical certainties will include the
statement that Tweety flies after all.

To be sure, these defaults are based on frequencies (or hypothetical
frequencies) rather than "typicality." It seems likely that hypothetical frequencies
can take care of "typicalities," if any, that do not correspond to actual frequencies.

Sometimes we get cancellation; this is a consequence of our rules of
randomness. Represent the generalities of the Nixon Diamond by statistical
staements in the evidential corpus. Add to the evidential corpus the statement that
Nixon is a Republican; we become practically certain that he is not a pacifist. Add
instead that he is a quaker. We become practically certain that he is a pacifist. Add
both statements to the evidential corpus. We conclude that we are practically certain
of nothing about Nixon's attitude twoard war.

8. Den
In general, particularly when the relevant probabilities are not extreme, we

are (or should be) less interested in knowing what default we should adopt than in
getting even a vague idea of the probabilities involved. If there is something
serious hinging on whether an arbitrary bird named Tweety can fly, I am likely to
be more interested in the proportion of birds that can fly - even a vague proportion
- than I am in the question of whether "most" birds fly or whether birds "typically"
fly. In extreme cases (like the two illustrative examples), it seems plausible to
suppose that we can achieve practical certainty. I do not think that in most contexts
I would be "practically certain" that a random republican would be a non-pacifist, or
that a random quaker would be a pacifist, or that a random bird would fly. Before
betting on any of these propositions, I would have to know what odds I was being
offered.

But this is just to say that what concerns me are probabilities evaluated
relative to my corpus of practical certainties. These probabilities, however, require
uncertain knowledge for their evaluation. That is provided for by the two-level
system outlined.

In view of the fact that probabilities, relative to the corpus of practical
certainties are interval valued, decision theory becomes complicated. It no longer
suffices (as it does on the subjective view) simply to "maximize expected utility."
Like probabilities themselves, expected utilities will be interval valued. It is easy to
rule out alternatives that are dominated; it is not clear what the next step should be.
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9. Future Concerns.
We need an algorithm for computing probabilities relative to a body of

knowledge. (See Loui [1985].)
It would be nice to know that the practical corpus can be finitely axiomatized

so long as the evidential corpus can be.
Computing probabilities is expensive in time and space, so it would be nice

to be able to have criteria for determining what parts of a body of knowledge are
n relevant to the computation of a probability.

A decision theory that is designed to deal with interval expectations would
be useful.

Principles for determining the level of practical certainty (the corresponding
confidence) are desirable. (See [ 1988].)

It would be useful to unpack in more detail the implications for default
inference of this two-tier system of evidential and practical certainties.

* Research on which this work was based was partially supported by the U.

S. Army Signals Warfare Center.
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