
DTIC
Ao-A25o 618 S ELE7T V-

MAY2 8

Mucit's Kyburgian Uncertain Inference Shell

User's Manual for version 1.00
Draft

BdIent Murtezaolu
mucit @cs.rochester.edu

August 15, 1990

92-13693I 1l1111l l11 l11111 Illli

REPORT DOCUMENTATION PAGE I 0704-0188
uunfrUis arfcdoal lefasmiln Is aee I* wwne how pw rueaiB.. I Iftdu*S k IN r Aml iq hnwudIhwvs =adi Welii data mources Wwi

811nf~h~dt needed a 'Ieln ! he mamw if 01o SWWO m--,udw& thbuqdeg SIlm "f pany atmepe@0 lthk d~m @0 Wmn@iui. Ipdud
Im=u bf Wded t Wunluulam H.auw s Saufim O wrtI1 hkrionU Cp&atm Wu Reparm 1215 Jua D"l Hi gIV. Suit 1204.A Alu. VA n2 sd 1

th NM nd Reguklaloiy Afa OfM d0 Uuuquue &Wd Bud@ei W1ukgton OC 0

1. AGENCY USE ONLY teave Ba*) I REPORT DATE 3. REPORT TYPE AND DATES COVERED

1990 Unknown

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Mucit's Kyburgian Uncertain Inference Shell User's Manual DAAB1O-86-C-0567
for version 1.00

8. AUTHOR(S)

Bulent Murtezaoglu

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

University of Rochester
Rochester, NY 14627

9. SPCNSORINGIMONrTORING AGENCY NAME(S) ANOADORESS(ES) 10. SPCNSORING/MONITORING AGENCY

REPORT NUMBER
U.S. Army CECOM Signals Warfare Directorate
Vint Hill Farms Station
Warrenton, VA 22186-5100 92-TRF-0023

1. SUPPLEMENTARY NOTES

12a. DISTRIBUTIONAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Statement A; Approved for public release; distribution
unlimited.

13.ABSTRACT (Maximum 200 words) MKUIS is a research tool desinged for investigating various

theoretical and practical issues concerning the statistical inference procedure
developed by Henry Kyburg [1]. A subset of the procedure, limited to the homogeneous
case, has been implemented in this version.

Since research about both the theoretical and the practical aspects of the systems is
active and evolving, more powerful versions of this program will eventually become

available.

1. SUBJECT TERMS 1S. NUMBER OF PAGES
23

Artificial Intelligence, Data Fusion, Uncertain
Inference

16. PRICE CODE

I 17. SECURITY CLASSIFICATION I 18. SECURITY CLASSIFICATION I 19. SECURIY CLASSIFICAT ION 20. LIMITATION OF ABSTRAC r
' OF REPORT I OF THIS PAGE I OFABSTRACTjUNCLASSIFIED I UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 ' -].) r 7" i" ,'i. '. t FI -,-1 . 2n r "

Introduction

MKUIS is a research tool designed for investigating various theoretical and
practical issues concerning the statistical inference procedure developed by Henry
Kyburg [1]. A subset of the procedure, limited to the homogeneous case, has
been implemented in this version.

Since research about both the theoretical and the practical aspects of the
system is active and evolving, more powerful versions of this program will even-
tually become available.

Files

You should have the following files to use the program:
mukuis.lisp
front-end .lisp
math .lisp
io.lisp
definitions.lisp
sets.lisp
methods.lisp
genss.lisp
select .lisp
process.lisp
cover.lisp
xp.lisp
compclass.lisp
An additional file called compile.lisp can be used to compile all of the nec-

essary program files.

The Syntax

A fully parenthesised prefix language has been implemented. Since the stan-
dard Common LISP function read is used as the input routine, minimal exposure
to LISP would be sufficient for feeling comfortable with the syntax.

The input to the system is always a list. Comments starting with a ";" are
allowed and disregarded both in the interactive mode and when input files are
used.

Startup and Exit . eu.A For

A session is started by loading the file mkuis.lisp into the Common LISP rt !L.;

interpreter. If for any reason the execution of the program is interrupted and .

2 '

*±, :,j'c1S 'L

& 1 ~ c*

the control returns to the lisp top level, invoking the function start-shell should
start the shell from scratch 1

Typing the command (bye) at the shell prompt causes the program to exit.

Shell Variables

Shell variables are used to hold the values for various parameters needed by
the inference engine. The values of shell variables and switches are set using the
set command.

EG: (set confidence .9)
The shell variables used in this version are:

" Confidence The confidence level used to convert the sampling data to
confidence intervals. Its default value is 0.95. Whenever a new confi-
dence level is set, all the intervals corresponding to sampling data are
re-computed.

" Method This is the variable to set to change the method used to compute
the the reference class. Currently four values (1 to 4) are possible. A brief
description of each method is given below. The report accompanying this
manual should be consulted for detailed discussion of these methods. The
default method is 4.

- Method 1 All the non-trivial candidate inference structures includ-
ing all the XP style structures are found or constructed before looking
for conflicts among them and selecting the reference class. This is
the slowest of the methods and is intended for small (10-20 candidate
reference classes) knowledge bases. For big sets of possible reference
classes, it may be necessary to set the shell variable £p-limit to a
value that arbitrarily stops the search to ensure reasonable execution
times.

- Method 2 This is similar to method 1, but some attempt is made
to decrease the number of inference structures before the XP's are
constructed. An inference structure is excluded from the set of can-
didates before the XP's are constructed, if

* it conflicts with and is dominated by another or
* all the candidates it conflicts with are excluded by the first rule.

- Method 3 This is identical to method 3 except for an additional
rule for exclusion:

'It is possible to crash the input routine and get dropped into the lisp debugger by putting
commas etc. that read doesn't expect in you input. Restarting the shell might be necessary
in those cases. Anything else that invokes the debugger is probably an unknown bug.

3

An inference structure is excluded from the set of candidates if there's
a stronger (narrower interval) one that agrees with it.
This is the fastest method using XP's. It should be noted that, by
limiting the precision of the endpoints of intervals, the search time
can be bounded independent of the size of the set of possible inference
structures.

Method 4 This is the fastest of the methods. The computation
is identical to method 3 except instead of constructing the XP's, it
constructs the interval cover of the remaining candidates after some
are excluded by the above rules.

" Precision The number of decimal places taken as significant when testing
for conflicts. It is set to 4 by default.

" Trace This flag is used to tell the program to print tracing information like
lists of candidate reference classes and conflicts between them at various
stages of computation. The permissible values are on and off. The default
is on.

" Time When this flag is set, the program prints the timing information
about the execution of queries. This information is acquired by a call the
the LISP function time. The information printed may vary among LISP
implementations. The default is on.

" xp-limit Limits the number of XP style inference structures that the
program constructs. This limit depends on your LISP implementation
and your patience. For small data files, all the possible XP's will be
constructed in a reasonable amount of time, for large files this limit may
be reached before XP generation is completed. The default is 62350.

Data Input Commands

Three kinds of data may be input:

1. Interval data of the form

(% (< property > < set >) (p q))

Meaning that the proportion of the number of elements of the < set >
with < property > is known to be in the interval [p, q].

EG: (% (female human) (0.49 0.52))

Internally, % statements are interpreted as valid under any confidence
level, so it is a good idea to give the program sampling data rather than
probability data whenever possible. This shortcoming may be corrected
in future versions of the program.

4

2. Sampling data of the form

(s% (< property > < set >) (t s))

tell the program that out of t trials on members of < set > s members
have been discovered to have the < property >. Sampling data given by
s% statements are converted to interval data by approximating binomial
confidence intervals at the current level of confidence.

EG: (s% (male student) (4500 3000))

3. Subset relationship data of the form

(subs < set > (< set, > < set 2 > ... < set, >))

Meaning that < set, >, < set2 >,., < seth > are supersets of < set >.

EG: (subs cows (mammals animals))

The identical syntax is used for set membership statements:

(mem < object > (< set, > < set, > ... < setn >))

EG: (mem tweety (bird penguin))

Notation for Sets

Any legal lisp symbol or number except the reserved symbols I, XP, OR
may be used to denote sets. Set negation and unions are not permitted, set
intersections are permitted. An intersection of sets is denoted by the list

(I < set, > < set2 > ... < set, >)

Queries

The syntax for queries is:

(prob(< property >< object >))

to be read: "what is the probability of the < object > having the <
property >?."

EG: (prob (flyer tweety))

Miscellaneous Commands

Clear: clears the knowledge base. All the sampling, interval, subset and
membership data are erased. This command is intended to enable the user to
experiment with different sets of evidence within the same session.

Reset: completely resets the shell. Does a clear and sets the shell variables
to their default values.

Load: loads an input file. The syntax is
(load "file-name")
If tracing is on, the input is echoed to the standard output as it is read from

the file. The prompt changes to loading ==> to avoid confusion.
Nesting of load commands is not allowed.

Suggestions

The code is written in standard Common LISP, so it can be compiled with
no problems. Compiling the code is strongly recommended. If your compiler
supports tail recursion elimination as an option, be sure to turn it on.

No session logging capability is built into the shell. For UNIX systems, I
recommend running the program from within GNU Emacs, using the Inferior
Lisp mode. The script utility of UNIX can also be used.

Reporting Bugs

All bug reports should be sent via e-mail to the author. Please describe the
problem in detail and make sufe that I can reproduce the erratic behaviour by
sending a script of the session starting from the beginning.

Acknowledgements

I want to thank my advisor Henry Kyburg for his patience. The syntax
of the language used in this implementation is heavily influenced by a similar
program. CCRC, written by Ron Loui.

6

Sample Data File

;tweety first

(reset)
(set timing off)
(s% (fly bird) (100000 90000))

(s% (fly penguin) (1000 1))
(subs penguin (bird))
(mem tweety (bird))

(prob (fly tweety))
(mem tweety (penguin))
(prob (fly tweety))
(set confidence .99) ;play with the confidence level
(prob (fly tweety))
(set confidence .51)

(prob (fly tweety))
(set trace off) ;trace demo

(prob (fly tweety))
(set timing on) ;timing demo

(prob (fly tweety))

;interesting cases of dominance
(reset) ;clean start

(set timing off)
(M (p a) (.1 .2))
(M (p b) (.3 .4))
(% (p c) (.15 .45))
(subs c (a))

(mem x (a b c))
(prob (p x))

(clear)

(M (p a) (.1 .2))

C' (p b) (.3 .4))
(M (p c) (.35 .45))
(subs - (b))

(mem x (a b c))
(prob (p x))
(clear)
(M (p a) (.1 .2))

(M (p b) (.3 .4))

(M (p (I a b)) (.3S .4S))
(mem x (a b))

(prob (p x))

;show methods
(clear)

(% (property setl) (.1 .2))

(% (property set2) (.5 .54))
(% (property set3) (.1 .53))

(% (property set4) (.1 .6))

(subs set2 (setl))
(mem object (seti set2 set3 set4))

(set trace on)
(set method 1)
(prob (property object))

(set method 2)
(prob (property object))
(set method 3)

(prob (property object))

(set method 4)
(prob (property object))

(set trace off)

(set method 1)
(prob (property object))
(set method 2)

(prob (property object))
(set method 3)
(prob (property object))
(set method 4)
(prob (property object))

8

Sample Session

A sample session using Sun Common Lisp and the sample data file:

> (load "mkuis")
;;; Loading binary file "kuis.sbin"
,;; Loading binary file "definitions.sbin"
;;; Loading binary file "io.sbin"

;;; Loading binary file "math.sbin"
;;; Loading binary file "front-end.sbin"

;;; Loading binary file "process.sbin"
;;; Loading binary file "sets.sbin"

;; Loading binary file "select.sbin"
;;; Loading binary file "methods.sbin"
;;; Loading binary file "genss.sbin"
;;; Loading binary file "compclass.sbin"
,;; Loading binary file "cover.sbin"

;;; Loading binary file "xp.sbin"

Mucit's Kyburgian Uncertain Inference Shell
Common Lisp Version 0.40 August 13, 1990

shell is reset

INF-SHELL==> (load "example")

LOADING ==>(RESET)

shell is reset
LOADING ==>(SET TIMING OFF)

LOADING ==>(S% (FLY BIRD) (100000 90000))
0 0.95confidence level % (FLY BIRD) in [0.89817 , 0.90181)

LOADING ==>(S% (FLY PENGUIN) (1000 1))
0 0.95confidence level % (FLY PENGUIN) in [0.00018 , 0.00548)

LOADING ==>(SUBS PENGUIN (BIRD))
LOADING ==>(MEM TWEETY (BIRD))

LOADING ==>(PROB (FLY TWEETY))

Processing query :(PROB (FLY TWEETY)) Using Method 4

All supersets:
TWEETY

BIRD

9

All non-trivial candidates

<BIRD , [0.89817 , 0.90181]>

And the reference class is :
<BIRD , [0.89817 , 0.90181]>

LOADING ==>(MEM TWEETY (PENGUIN))

LOADING ==>(PROB (FLY TWEETY))

Processing query :(PROB (FLY TWEETY)) Using Method 4

All supersets:
TWEETY
PENGUIN

BIRD

All non-trivial candidates

<PENGUIN , [0.00018 , 0.00548]>

<BIRD , [0.89817 , 0.90181]>

conflict between

<PENGUIN , [0.00018 , 0.00548]>
<BIRD , [0.89817 , 0.90181]>

Winner by subset:

<PENGUIN , [0.00018 , 0.00548]>

Will combine the following

<PENGUIN , [0.00018 , 0.00548)>

And the reference class is :

<PENGUIN , [0.00018 , 0.00548]>

LOADING ==>(SET CONFIDENCE 0.99)

LOADING ==>(PROB (FLY TWEETY))

Processing query :(PROB (FLY TWEETY)) Using Method 4

All supersets:
TWEETY
PENGUIN
BIRD

All non-trivial candidates

10

<PENGUIN , [0.00012 , 0.00840]>

<BIRD , [0.89754 , 0.90241]>

conflict between
<PENGUIN , [0.00012 , 0.00840]>
<BIRD , [0.89754 , 0.90241)>

Winner by subset:
<PENGUIN , [0.00012 , 0.00840]>

Will combine the following

<PENGUIN , [0.00012 , 0.00840)>

And the reference class is :

<PENGUIN , [0.00012 , 0.00840]>

LOADING ==>(SET CONFIDENCE 0.51)
LOADING ==>(PROB (FLY TWEETY))

Processing query :(PROB (FLY TWEETY)) Using Method 4

All supersets:
TWEETY
PENGUIN
BIRD

All non-trivial candidates

<PENGUIN , [0.00060 , 0.00167]>

<BIRD , [0.89950 , 0.90049)>

conflict between

<PENGUIN , [0.00060 , 0.00167]>

<BIRD , [0.89950 , 0.90049]>

Winner by subset:

<PENGUIN , [0.00060 , 0.00167]>

Will combine the following

<PENGUIN , [0.00060 , 0.00167]>

And the reference class is :

<PENGUIN , [0.00060 , 0.00167]>
LOADING ==>(SET TRACE OFF)

Processing query :(PROB (FLY TWEETY)) Using Method 4

11

And the reference class is
<PENGUIN , [0.00060 , 0.00167]>

Processing query :(PROB (FLY TWEETY)) Using Method 4
And the reference class is :
<PENGUIN , [0.00060 , 0.00167]>
Elapsed Real Time = 0.05 seconds

Total Run Time = 0.06 seconds
User Run Time = 0.05 seconds

System Run Time = 0.01 seconds

Process Page Faults = 0
Dynamic Bytes Consed = 0

shell is reset
LOADING ==>(SET TIMING OFF)
LOADING ==>(% (P A) (0.1 0.2))
LOADING ==>((P B) (0.3 0.4))
LOADING ==>(% (P C) (0.15 0.45))
LOADING ==>(SUBS C (A))
LOADING ==>(MEM X (A B C))
LOADING ==>(PROB (P X))

Processing query :(PROB (P X)) Using Method 4
All supersets:

X
B
C
A

All non-trivial candidates

<B , [0.30000 , 0.400001>
<C , [0.15000 , 0.45000]>

<A [0.10000 , 0.20000]>

conflict between

<B , [0.30000 , 0.40000]>
<A , [0.10000 , 0.20000]>

No reflection

conflict between

<C , [0.15000 , 0.45000]>

<A , [0.10000 , 0.20000]>

12

Winner by subset:

<C , [0.15000 , 0.45000]>

Will comubine the following
<C ,[0.15000 , 0.45000]>

And the reference class is

<C ,[0.15000 , 0.45000]>

LOADING ==>(CLEAR)
LOADING =>%(P A) (0.1 0.2))
LOADING =>%(P B) (0.3 0.4))
LOADING =>%(P C) (0.35 0.45))

LOADING ==>(SUBS C (R))
LOADING ==>(MEM X (A B C))
LOADING ==>(PROB (1- X))

Processing query :(PROB (P W) Using Method 4
All supersets:
x
A
C
B

All non-trivial candidates
<A ,[0.10000 ,0.20000]>

<C (0.35000 ,0.45000]>

<B ,[0.30000 ,0.40000]>

conflict between
<A ,[0.10000 ,0.20000]>

<C ,[0.35000 ,0.45000]>

No reflection

conflict between
<A , 0.10000 ,0.20000]>

<B , 0.30000 ,0.40000]>

No reflection

conflict between

<C , [0.35000 , 0.45000]>

13

<B , [0.30000 , 0.40000)>

Winner by subset:
<C , [0.35000 , 0.45000)>

Will combine the following
<C ,[0.35000 ,0.450001>

<A ,[0.10000 ,0.20000)>

And the reference class is
<OR A C) , [0.10000 , 0.450001>

LOADING ==>(CLEAR)
LOADING =(%(P A) (0.1 0.2))
LOADING >Q.(P B) (0.3 0.4))
LOADING ~>((P (I A B)) (0.35 0.45))
LOADING ==>CMEM X (A B))
LOADING ==>(PROB (P X))

Processing query :(PROB (P W) Using Method 4
All supersets:
x
(I A B)

A
B

All non-trivial cane .tes
<I A B) , [0.35000 , 0.45000]>
<A ,[0.10000 ,0.20000)>

<B ,[0.30000 ,0.40000)>

conflict between

<(I A B) , [0.35000 , 0.45000]>
<A , [0.10000 , 0.20000)>

Winner by subset:
<(I A B) , [0.35000 ,0.45000]>

conflict between
<(I A B) , [0.35000 ,0.45000)>

<B , [0.30000 , 0.40000]>

Winner by subset:

<I A B) , [0.35000 , 0.45000)>

14

conflict between

<A , [0.10000 , 0.20000)>

<B [[0.30000 , 0.40000]>

No reflection

Will combine the following

<(I A B) , [0.35000 , 0.45000]>

And the reference class is :
<(I A B) , [0.35000 , 0.45000)>

LOADING ==>(CLEAR)
LOADING =>(% (PROPERTY SETI) (0.1 0.2))
LOADING ==>(% (PROPERTY SET2) (0.5 0.54))
LOADING ==>(% (PROPERTY SET3) (0.1 0.53))
LOADING ==>(% (PROPERTY SET4) (0.1 0.6))
LOADING ==>(SUBS SET2 (SETi))
LOADING ==>(MEM OBJECT (SET1 SET2 SET3 SET4))

LOADING ==>(SET TRACE ON)
LOADING ==>(SET METHOD 1)

LOADING ==>(PROB (PROPERTY OBJECT))

Processing query :(PROB (PROPERTY OBJECT)) Using Method I

All supersets:
OBJECT

SET2
SET1

SET3

SET4

All non-trivial candidates

<SET2 , [0.50000 , 0.54000)>

<SET1 , [0.10000 , 0.20000)>
<SET3 , [0.10000 , 0.53000)>

<SET4 , [0.10000 , 0.60000)>

4 is to combine

Creating 2 place XPs

5XP inference structures in this iteration
4 is to combine

Creating 3 place XPs
2XP inference structures in this iteration

15

XP generation finished. A total of 7 inference structures generated

All candidates
<SET2 , [0.50000 , 0.54000)>

<SETI , [0.10000 , 0.20000]>
<(XP SETI SET3) , [0.01220 , 0.21992]>

<(XP SETI SET4) , [0.01220 , 0.27273]>
<(XP SET4 SET3 SETi) , [0.00137 , 0.29720]>

<SET3 , [0.10000 , 0.53000]>
<(XP SET2 SET3) , [0.10000 , 0.56967]>
<SET4 , [0.10000 , 0.60000]>
<(XP SET2 SET4) , [0.10000 , 0.63780]>
<(XP SET3 SET4) , [0.01220 , 0.62846]>

<(XP SET4 SET3 SET2) , [0.01220 , 0.66507]>

Considering :
<SET2 , [0.50000 , 0.54000]>

Disagreement with:

<SETI , [0.10000 , 0.20000]>

Candidate survived

Disagreement with:
<(XP SETi SET3) , [0.01220 , 0.21992]>

Doesn't dominate

Considering :
<(XP SETi SET3) , [0.01220 , 0.21992]>

Disagreement with:
<SET2 , [0.50000 , 0.54000]>

Doesn't dominate

Considering :

<(XP SETI SET4) , [0.01220 , 0.27273]>

Disagreement with:

<SET2 , [0.50000 , 0.54000]>

Doesn't dominate

Considering :
<(XP SET4 SET3 SETI) , [0.00137 , 0.29720]>

16

Disagreement with:
<SET2 , [0.50000 ,0.540001>

Doesn't dominate

Considering:
<SET3 , [0.10000 ,0.530002>

Disagreement with:
<SET2 , [0.S0000 , 0.54000]>

Doesn't dominate

Considering:
<(XP SET2 SET3) , [0.10000 O .569672>

Disagreement with:
<(XP SETI SET3) , [0.01220 ,0.21992]>

Candidate survived
Disagreement with:

<(XP SETi SET4) , [.01220 ,0.272T33>

Doesn't dominate

Considering:
<SET4 , [0.10000 ,0.600002>

Disagreement with:

<(XP SETI SET3) ,[0.01220 ,0.219922>

Doesn't dominate

Considering:
<(XP SET2 SET4) ,[0.10000 ,0.63780]>

Disagreement with:
<(XP SETI SET3) .[0.01220 ,0.219922>

Doesn't dominate

Considering:

<(XP SET3 SET4) ,[0.01220 ,0.628461>

17

Disagreement with:
<(XP SET4 SET3 SET1) , 0.00137 ,0.29720]>

Doesn't dominate

Considering:
<(XP SET4 SET3 SET2) [0.01220 ,0.66507]>

Disagreement with:
<(XP SET4 SET3 SET1) ,[0.00137 ,0.29720]>

Candidate survived
And the reference class is
<(XP SET4 SET3 SET2) , [0.01220 ,0.66507]>

LOADING ==>(SET METHOD 2)
LOADING ==>(PROB (PROPERTY OBJECT))

Processing query :(PROB (PROPERTY OBJECT)) Using Method 2

All supersets:
OBJECT
SET2
SETI
SET3
SET4

All non-trivial candidates
<SET2 ,[0.50000 ,0.54000]>

<SET1 , [.10000 ,0.20000]>

<SET3 ,[0.10000 ,0.53000]>

<SET4 ,[0.10000 ,0.60000]>

conflict between
<SET2 *[0.50000 , .54000]>
<SET1 [0.10000 ,0.20000]>

Winner by subset:

<SET2 ,[0.50000 , .54000]>

conflict between
<SET2 ,[0.50000 ,0.54000]>

<SET3 ,[0.10000 ,0.53000]>

18

No reflection

After conflicts are resolved
<SET4 *[0.10000 ,0.600001>

<SET3 ,[0.10000 , .53000]>
<SET2 ,[0.50000 0.54000)>

3 is to combine
Creating 2 place XPs
3XP inference structures in this iteration

3 is to combine
Creating 3 place XPs
UXP inference structures in this iteration

XP generation finished. A total of 4 inference structures generated
All candidates with XP's
<SET2 ,[0.60000 ,0.64000)>

<SET3 ,[0.10000 ,0.53000)>

<(XP SET3 SET2) ,[0.10000 , 0.56967]>
<SET4 , [0.10000 ,0.60000)>

<(XP SET4 SET2) ,[0.10000 ,0.63780)>

<(XP SET4 SET3) ,[0.01220 ,0.62846)>

<(XP SET2 SET3 SET4) , [0.01220 ,0.66507]>

Considering:
<SET2 , [0.50000 , 0.54000)>

Disagreement with:
<SET3 , [0.10000 , .53000]>

Doesn't dominate

Considering:
<SET3 , [0.10000 , .53000)>

Disagreement with:
<SET2 , [0.50000 , 0.54000)>

Doesn't dominate

Considering:
<(XP SET3 SET2) , [0.10000 ,0.56967)>

And the reference class is
<(XP SET3 SET2) , [0.10000 ,0.56967)>

19

LOADING ==>(SET METHOD 3)
LOADING ==>(PROB (PROPERTY OBJECT))

Processing queil :(PROB (PROPERTY OBJECT)) Using Method 3
All supersets:
OBJECT
SET2

SET1
SET3
SET4

All non-trivial candidates

<SET2 ,[0.50000 ,0.54000)>

<SET1 [0.10000 ,0.20000)>

<SET3 *[0.10000 ,0.53000)>

<SET4 ,[0.10000 ,0.600003>

conflict between

<SET2 .[0.50000 0.54000)>
<SET1 ,[0.10000 ,0.20000]>

Winn~er by subset:
<SET2 ,[0.S0000 ,0.54000)>

conflict between

<SET2 ,[0.50000 ,0.54000)>

<SET3 ,[0.10000 O .53000)>

No reflection

After conflicts are resolved
<SET4 ,[0.10000 *0.60000)>

<SET3 ,[0.10000 ,0.53000)>

<SET2 ,[0.50000 ,0.54000)>

Will combine the following

<SET2 *[0.50000 ,0.54000)>

<SET3 ,[0.10000 ,0.53000)>

2 inference structures to combine
Creating 2 place XPs
1XP inference structures in this iteration
XP generation finished. A total of 1 inference structures generated

20

Considering
<(XP SET2 SET3) , [0.10000 ,0.569671>

And the reference class is
<(XP SET2 SET3) , [0.10000 ,0.56967)>

LOADING ==>(SET METHOD 4)
LOADING ==>(PROB (PROPERTY OBJECT))

Processing query :(PROB (PROPERTY OBJECT)) Using Method 4
All supersets:

OBJECT
SET2
SET 1
SET3
SET4

All non-trivial candidates
<SET2 ,[0.50000 ,0.54000]>

<SETI * 0.10000 ,0.20000)>

<SET3 ,[0.10000 ,0.530002>

<SET4 ,[0.10000 ,0.600001>

conflict between
<SET2 ,[0.50000 ,0.54000)>

<SETi [0.10000 ,0.20000)>

Winner by subset:
<SET2 (0.50000 ,0.54000)>

conflict between
<SET2 ,[0.50000 ,0.54000)>

<SET3 ,[0.10000 , .53000))

No reflection

Will combine the following
<SET4 ,[0.10000 ,0.600003>

<SET3 ,[0.10000 , .53000)>

<SET2 ,[0.50000 0.54000]>

And the reference class is:
<(OR SET2 SET3) , [0.10000 , 0.54000)>

LOADING ==>(SET TRACE OFF)

21

Processing query :(PROB (PROPERTY OBJECT)) Using Method 1
4 is to combine
Creating 2 place XPs
SXP inference structures in this iteration
4 is to combine
Creating 3 place XPs
2XP inference structures in this iteration

XP generation finished. A total of 7 inference structures generated
And the reference class is :
<(XP SET4 SET3 SET2) , [0.01220 , 0.66507)>

Processing query :(PROB (PROPERTY OBJECT)) Using Method 2

3 is to combine
Creating 2 place XPs
3XP inference structures in this iteration
3 is to combine
Creating 3 place XPs
1XP inference structures in this iteration

XP generation finished. A total of 4 inference structures generated
And the reference class is

<(XP SET3 SET2) , [0.10000 , 0.56967)>

Processing query :(PROB (PROPERTY OBJECT)) Using Method 3
2 inference structures to combine
Creating 2 place XPs

1XP inference structures in this iteration
XP generation finished. A total of I inference structures generated
And the reference class is :

<(XP SET2 SET3) , [0.10000 , 0.56967]>

Processing query :(PROB (PROPERTY OBJECT)) Using Method 4
And the reference class is :
<(OR SET2 SET3) , [0.10000 , 0.54000)>
eof reached

INF-SHELL==> (bye)
Bye.
#P"/home/castor/u6/mucit/statinf/mkuis.sbin"

22

References

[1] Henry E. Kyburg. The reference class. Philosophy of Science. (30). 1983.

23

