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Abstract

Our decisions reflect uncertainty in various ways. We take account of
the uncertainty embodied in the roll of the die; we less often take account
of the uncertainty of our belief that the die is fair. We need to take
account of both uncertain knowledge and our knowledge of uncertainty.
"Evidence' itself has been regarded as uncertain. We argue that point-
valued probabilities are a poor representation of uncertainty; that we need
not be concerned with uncertain evidence; that interval-valued probabilities
that result from knowledge of convex sets of distribution functions in
reference classes (properly) include Shafer's mass functions as a special
case; that these probabilities yield a plausible non-monotonic form of
inference (uncertain inference, inductive inference, statistical inference);
and finally that this framework provides a very nearly classical decision
theory -- so far as it goes. It is unclear how global the principles (such
as minimax) that go beyond the principle of maximizing expected utility are.
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REPRESENTING KNOWLEDGE AND EVIDENCE FOR DECISION*

One purpose -- quite a few thinkers would say the main purpose -- of
seeking knowledge about the world is to enhance our ability to make sound
decisions. An item of knowledge that can make no conceivable difference
with regard to anything we might do would strike manv as frivolous. Whether
or not we want to be philosophical pragmatists in this strong sense with
regard to everything we might want to enquire about, it seems a perfectly
appropriate attitude to adopt toward artificial knowledge systems.

If it is granted that we are ultimately concerned with decisions, then
some constraints are imposed on our measures of uncertainty at the level of
decision making. If our measure of uncertainty is real valued, then it
isn't hard to show that it must satisfy the classical probability axioms.
For example, if an act has a real-valued utility U{E} 1if event E obtains,
and the same real-valued utility if the denial of E obtains (U(E) = U(-E))
then the expected utility of that act must be U(E), and that wmust be the
same as p*U(E) + g*U(-E), where p and g represent the uncertainty of E and
-E respectively. But then we must have p + g = 1.1

There are reasons for rejecting real-valuyed -- i.e., strictly
probabilistic -- measures of uncertalinty, though not all the reasons that
have been adduced for doing so are cogent. One is that these probabilities
seem to embody more knowledge than they should: for example, 1f your beliefs
are probabilistic, and you assign a probability of .1 to a drawn ball's
being purple (on no evidence), and a probability of .2 to a second ball's

being purple on the evidence that the first one is, and regard pairs of

balls as ”exchangeable”z, then you should be 99X sure a priori that in the

infinitely long run, no more than 11X of the balls will be purple. You know
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beyond a shadow of a doubt (with probability .99996) on no evidence at all
that no more than half will be purple. (Kyburg, 1968)

Peter Cheeseman (1985) has given a defense of classical probability,
and perhaps would not find even such results as the foregoing distasteful,
But it is hard to see how to defend the real-valued point of view from
charges of subjectivity. Cheeseman refers to an '"ideal' observer, but
offers us no guidance in how to approach ideality, nor any characterization
of how the ideal observer differs from the rest of us. It is therefore
quite unclear what the ideal observer offers us, other than moral support:
each of us is no doubt counvinced that the ideal observer assigas
probabilities just like himself. One man's subjectivity is another man's
rational insight.3 And there is clearly no guidance here for the
construction of programs that represent probabilities.

There are other ways of representing uncertainty than by real numbers
between 0 and 1. If these uncertainties are to be used in making decisions,
however, they must be compatible with classical point-valued probabilities.
My preference is for intervals, because they can be based on objective
knowledge of distributions, and because this compatibility is demonstrable,
(Kyburg, 1983)

In what follows, I will sketch the properties of interval-valued
epistemic probability, and exhibit a structure for knowledge representation
that allows for both uncertain inference from evidence and uncertain
knowledge as a basis for decision. We need both uncertain knowledge and

knowledge of uncertainty. Along the way I make some comparisons to other

! [ S

approaches.




1. Probabilitz.

Probability 1is 4 a function from statements and sets of statements to

closed subintervals of [O,ﬂ. The sets of statements represent hypothetical
bodies of knowledge. The idea behind Prob(s,R) = {2,3] 1s that someone
whose body of knowledge is K should, ought to, have a 'degree' of belief in
S characterized by the interval LE’SX' The cash value of having such a
‘degree' of belief is that he should not sell a ticket that returns to the
purchaser $1.00 for less than 100p cents, and he should not buy such a
ticket for more than 100q cents. The relation in question is construed as a
purely objective, logical relatiom.

Every probability can be based on knowledge of statistical
distributions or relative frequencies, since statements known to have the
same truth value receive the same probability, and every such equivalence
class of statements (we can show) contains scme statements of the
appropriate form. This statistical knowledge may be both uncertain and
approximate (we may be practically sure betweteen 302 and 407 of the balls
are black), but it is objective in the sense that any two people having the
same evidence should have the same knowledge.

Classical point-valued probabilities constitute a special case,
corresponding to the extreme hypothetical (and unrealistic) case in which X
embodies exact statistical knowledge.

The connection between statements and frequencies is given by & set of
formal procedures for finding the right reference class for a given
statement. The reference set may be multi-dimensional -- the set of uras,
each paired with the set of draws made from it. It may be only
"accidentally'" related to sentence -- as when we predict the act of someone

who makes a choice on the basis of a coin toss. What is the right reference




class for a given statement S depends (formally and objectively) on what is
in K, our body of knowledge. In some cases we can implement a procedure for
findir_ the right reference class. (Loui, forthcoming.2)

It is natural t> suppose that statistical knowledge in K is represented
by the attribution to each reference set of a convex set of distributions --
for example we have every reason in the world to suppose that heads among
coin-tosses in genera. is nearly binomial, with a parameter close to a half.
(We have no reason to suppose that the parameter has the real value
0.49999...). Or we may have good reason to believe that two quantities are
uncorrelated in their joint distribution. Or that we can rule out certain
classes of extreme distributions. We can know of a certain bent coin that
heads will be binomially distributed in sequences of its tosses, with a
parameter p at least equal to a half,

-

. . . 5
Henceforth, we assume convexity. Here are some immediate results:

(1) if Prob (§,K) = [E’ﬁx then Prob(-§,K) = [1-3,1-2].

(2) if - (S & T) is in K, and P(8) ={pl,q1] and B(I) =[p2,32] and
and P(T v S) = [2.3}, then there are numbers in [ 21,31] and [22,32] whose
sum 1§ 1n [Etﬂ\ . To see that ngg} can be a proper subset of
{Rl + p2,ql + 32], consider a die that you know to be biassed toward the one
at the expense of the two, or toward the two at the expense of the one.
Reasonable probability for the disjunction, "one or two' would be very close
to 1/3, even though the reasonable probabilities for the one and the two
would be significantly spread above and below 1/6.

(3) We can show that: given any finite set ot sentences, S1, and a body of
knowledge K, there exists a Bayesain function B, satisfying the classical

probability axioms, such that for every sentence $ in $i, B(S) € Prob(S,K).

(4) Let KE be the body of knowledge obtained from K when evidence E is




added to K. If I is among the finite set of sentences in question, then

there may be no Bayesian function B satiefying both B(S) € Prob(S,K) and

B(S/E) € Prob(S,KE): classical conditionalization is not the only way of

6

updating probabilities.
(5) There are non-trivial cases in which algorithms for computing

probabilities -- i.e., for picking the right reference class -~ have been

provided. (Loui, forthcoming.2)

2. Updating.

A problem that has attracted a lot of attention is the problem of
updating probabilities in the light of new evidence. A related problem is
that of dealing with ''uncertain' evidence.” The problem of uncertain
evidence can be avoided by mechanical procedures in two well known
formalisms., From a strictly Bayesian point of view, updating should take
place by Jeffrey's rule: P'(H) = P(H/EMP'(E) + P(H/-E)*P'(-E) (Jeffrey,
1965)., The rule is not uncontroversial (Levi, 1967), but in those cases
where 1t seems plausible, we can achieve the same result by conditioning on
a piece of 'certain" evidence that we expand our algebra to accommodate.
Similarly, 1t has been shown that the same trick will work with Glenn
Shafer's well known mathematical! theory of evidence (Shafer, 1976): we can
mechanically replace general combination of support functions, so long as
the evidence can be represented by a seperable support function, by Dempster
conditioning -- Shafer's analog to Bayesian conditionalization. (Kyburg,
forthcoming.l)

The relation between Shafer's theory and the system of probability just
outlined is interesting, Let 8 be a possibility space, with support
function s defined on it. Shafer also defines a plausibility function t:

for every subset $ of 8, t(8) = 1 - s(@ - S). Of course subsets of a




possibility space correspond exactly to propositions, and wve can construct &
convex set of probability functions over these propositions such that the
minimum and maximum probabilities assigned to a proposition are exactly the
support and plausibility of the corresponding subset of 0. (Kyburg,
forthcoming.l)

But the converse doesn't hold. Consider a compound experiment
consisting of either (1) tossing a fair coin twice, or (2) drawing a coin
from a bag containing 402 two-headed and 60 two-tailed coins and tossing it
twice. The two alternatives are performed in some unknown ratio p. Let A
be the event that the first toss lands heads, and B the event that the

second toss lands tails. The representation by a convex set of probability

functions is straight-forward:

P(TT) = p/4 + 0.6(1-p)

(

)
1=

) = pl4
(

I*o
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) = p/b

(TT)

o
e

p/4 + 0.4(1-p)

The counvex set of probability measures over the sample space 1s just the

set of these values for p ¢ YO,ll. Let this set be SP. P*(S) = min {g(§){26
§g}is not a support function, by theorem 2.1 of (Shafer, 1976). (Kyburg,
forthcoming.l)

Finally, let CP(e) be the set of probability functions resulting from
conditionalizing the members of P on e. That is, 1f p belongs to P, then the
function p(x/e) = p(x&e)/p(e) defined for every sentence x in the original
algebra will belong to QB(SLS CP(e) is a convex set of classical
probability functions. Let CPle be the corresponding lower-probability
function, and CPue the corresponding upper-probability functin., (Neither

are probability functions -- hence the hyphens are not accidental.) Let




DPse be the support function obtained from the support function g
corresponding to P by Dempeter conditioning -~ i.e., Dempster's rule of
combination applied to the case wvhere e receives unit support. Let
DPpe be the corresponding plausiblity function. Then

CPle(s) < DPse(s) < DPpe(s) < CPue(s)

Inequality holds unless certain measures on subsets have the value O. When
i1t comes to updating probabilities relative to evidence, Shafer's procedure
exaggerates the impact of evidence beyond its Bayesian import. (Kyburg,
forthcoming.l)

But we can also specify exactly the conditions under which this form of
updating agrees with convex Bayesian conditionalization. If these
conditions are satisfied, then it makes sense to follw the Dempster-Shafer
formalism, especially when it is computationally asimpler.

Bayesian conditionalization is not always the right way of updating
probabilities, however. A situation in which Bayesian conditionalization

whould be given up appears in (Kyburg, forthcoming.2)

3. Uncertain Knowledge

One problem that Bayeslian and other approaches to uncertainty have is
that there is no formal way of representing the acquisition of knowledge.
We can represent the having of knowledge (by the assignment of probability 1
to the item), but since there is no way in which P(S/E) can be | unless P(S)
is already one, conditionalization doesn't get us knowledge. This has been
noticed, of course; Cheeseman (1985, p. 1008) simply says, "A reasonable
compromise is to treat propositions whose probability is close to 0 or 1 as
if they are known with certainty..."" But of course it is well known that

this cannot be done gererally: the conjunction of a number of certainties is




a certainty, but the conjunction of a large enough anumber of "reasonable

certainties” in Cheeseman's sense is what he would have to consider an

imponnibili:y.9

McCarthy and Haves (1969) are seduced into following this primrose
path, when thev suggest (p. 489) "If 91,92“",95 b © is a possible
deduction, then probably(@1),...,probably(8n) | probably(8) is also a
possible deduction.” This is clearly ruled out, on our scheme -- and even
acceptable(§l),..., acceptadble(B2) nCCegtable(Q) is ruled out as a
consequent of the logical conditional. Many philosophers, of course, have
taken this for granted -- but if we are to formalize uncertain inference at
all, we must somehow accommodate sets of conflicting statements., Purely
probabilistic rules of inference do this easily,

We can accommodate Cheeseman's intuition that we should accept what is
practically certain by considering two seis of sentences in the
representation of knowledge. One of them we will call the evidential
corpus, and denote by Ke; the other we will call the corpus of practical

certainties, and denote by Kp.

We will accept sentences into Kp if and only if their probability
relative to Ke is greater than p. The conjunction of two statements that
appear in Kp will also appear in Kp only 1f the conjunction itself is
probable enough relative to Ke. Thus Kp will not be deductively closed,
though we can prove that if a statement S appears in Kp, and § entails T, T
will also appear there. This reflects a natural feature of human inference:
we must have reason, not only to accept each premise in a complex argument,

but to accept the conjunction of the premises, in order to be confident of

the conclusion,




Uncertain inference: S € Kp iff
u PYOb(_S_‘ES) 22-

It is relative to Kp, the practical corpus, that we make our
(practical) decisions. It is thus the (convex sets of) distributions --
including conditional distributions -~ embodied in that set of statements
that we use in our decision theory.

But there are questions. What is the value of p that we are taking as
practical certainty? How do statements get in Ke? What is the decision
theory that goes with this kind of structure?

Let us first consider the value of p. Suppose the widest range of
stakes we can come up with is 99:1. For example, Sam and Sally are going to
bet on some event, each has $100, and neither has any change., Then a
probability value falling outside the range of [.Olp9§1 would be useless as
a betting guide. A probability less than .0l would (in this context) amount
to a practical impossibility; one greater than .99 would amount to a
practical certainty.

The range of stakes can determine the level of "practical certainty" p.
What counts as practical certainty depends om context, but in an explicit
way: it depends on what's at stake. This idea is developed in (Kyburg,

forthcoming.2).

How do statements qualify as evidence in Ke? Not by being 'certain."




10

It can be argued that anything that was really incorrigible would have to be
devoid of empirical content.}0 (The wvorry about uncertain evidence is not
misplaced; it's just misconstrued.) One typical form of evidence statement
is this: "The length of x is d + r meters." Whatever our readings,

these

statements are not ''certain" -- they admit of error. The same is true of
all ordinary observation statements.

So a statement gets into Ke by having a low probability of being in
error; equally, by having a high probability (at least e) of being
veridical. How high? In virtue of the fact that conjunctions of pairs of
statements in Ke appear in Kp, it seems plausible to take e = (2)1/2. For &
aumber of technical reasons (Kyburg, 1984) it turns out to be best to
construe the corpus containing the theory of arror as metalicguistic, This
is as one might think: after all, the theory of error concerns the relation
between readings -- e.g. numerals written in laboratory books -- and values:
the real quantities characterizing things in the real world. For present
purposes we need note only that this 1s not the begining of an infinite

regress. We can maintain objectivity; we caa avoid "presuppositions' and

other unjustified assumptions,

4, Decision.

It has been objected (Seidenteld, 1679) that there 1s no decision
theory that is tailored to Shafer's theory o’ evidential support. Indeed,
it is pretty clear that support functions alone would conflict with expected
utility. On the other hand, the reduction to coanvex sets of distributions
does show that we can have very nearly a normal decision theory using
Shafer's system. In computing the value of an act, we aeed tc consider not

only the support assigned to various states of affairs (corresponding to

lower probabilities), but also the plausibilities -- corresponding to upper
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probabilities.)

This is true for the more general convex set representation: We can
construct an interval of expected utility for each act. A natural
reinterpretation of the principle of dominance would take an alternative al
to dominate an alternative a2 whenever, for every possible frequency
distribution, the expectation of al is greater than the expectation of a2.

This eliminates some alternatives, but in general there will be a
number of courses of action that are not eliminated. What we do here is
another matter, one which is certainly worthy of further study.11 But it
seems natural that minimax and miaimax regret strategies are appropriat -
candidates for consideration under some conditions. There may well be
others, such a satisficing. And it may even be that the guidance provided
by the motto: eliminate dominated alternatives, is as far as rationality

alone takes us, Further pruning may depend on constraints that are local to

the individual decision problems.12

S. The Structure of Knowledge.

Were we to deal explicitly with our theory of error and its source, we
would have a complex structure consisting of four sets of sentences in two
distinct 1anguages.l3 But for ordinary decision theoretic purposes there
are just two sets of statements with which we need to be concerned Kp and
Ke. Evidence enters RKe when it is dependable enough, and Re in turn
determines the practical certainties of Kp. This renders the process of
uncertain inference by which any statement gets into Kp automatically non-
monotonic. As the contents of the evidential corpus Ke changes, Kp may
change, contract, or expand. What is practically certain at one point may
cease to be practically certain in the light of new evidence, and in fact in

the light of new evidence may become evidently false.l4
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Another feature of the relation between the evidential corpus and the
practical corpus is that sentences in the evidential corpus are inherited by
the practical corpus. The practical corpus is thus 4«n expansion of the
evidential corpus; but it is crucial to keep the two corpora distinct. If a
sentence were to be added to the evidential corpus when it got a high
probability relative to the evidential corpus, it could never be eliminated:
it would henceforth always have probability one relative to that evidential
corpus. The separation of the practical and evidential corpus is required to
preserve the non-monotonicity of uncertain inference.

The decision maker need be concerned directly only with the contents of
Kp -- that is what determines the (objective, frequency-based) probability
of the alternatives he must choose between. But he may be led to worry
about the contents of Rp. What is there depends on the weight of the
combined evidence concerning it. This evidence is embodied in Ke and the
mode of combination flows from the definition of probability.

The scheme outlined does not give us a complete decision theory such as
we wouid get from a subjective Bayesian approach, but it may take us as far
as rationality can take us. The role of epistemological probability in
decision theory is supported by the theorem that for any finite set of
sentences there is a Bayesiau belief function that fits the epistemological

probability intervals. Thus uncertain knowledge and knowledge of

uncertainty both find their place.
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1. It is this line of attack that lies behind the subjectivist approach to
probability establiched independently by F. P. Ramsey (1930) and Bruno
de Finetti (1937) and rendered respectable by L. J. Savage (1954).

2. If "Pi" is "Draw number i yields a purple ball,” this is just to say
that for i == j Prob(Pi) and Prob(Pi & Pj) do not depend on the values
of 1 and j.

=, There is a tradition, represented by H. Jeffreys (1939), R. Carnap
{1950), and wmost recently E, T. Jaynes (1982), according to which the
subjectivity of precise probability assignments can be eliminated by
finrding general principles for assigning probabilities to the
statements of a given language. But as Seidenfeld (forthcoming) has
shown, there are serious difficulties with the Maximum Entropy program
even beyond the fact that this approach just pushes the arbitrariness

into the choice of a language or classification.

4. Of course this is just one opinion among many as to what probability
"is". But I would hardly hold it if I did not think it correct.
5. ‘roofs may be found in (Ryburg, 1961), (Kyburg, 1974) and (Kyburg,

1983).

6. Counterillustration may be found in (Kyburg, forthcoming.3).

7. Simply as examples: (Duda, Hart, and Nilsson, 1976), (Garvey, Lowrance,
and Fishler 1981), (Pearl, 1985), (Lowrence, 1982), Quinlan, 1982).

8. We assume p(e) > 0 for every p € P; we also assume that there is a
support function s matching P.

9. This is the lottery paradox, first appearing in (Kyburg, 1961).

10. One normally believes one's own eyes, but one knows that hallucinations
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12,

130
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do occur, It is hard to imagine any observational statements whose

veridicality could not be impugned by some imaginable course of

subsequent observations. Perhaps this is not true of phenomenological

reports: 'Red patch here now." But I suspect these have no useful

content.

See Levi (1980) for a highly developed form of this approach.

Or pernhaps this whole approach is wrong-hnaded, For the development of

an alternative, see (Loui, forthcoming.l).

Viz.: the practical corpus Kp, the evidential corpus Ke, the evidential
metacorpus MKe, and the a priori metacorpus MKa containing
observational records and linguistic conventions.

Note that in a stirict sense, Kp need not even be consistent -- that is,

its deductive closure may be inconsistent in the ordinary sense. This

is illustrated by the lottery alluded to.
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