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Abstract

Our decisions reflect uncertainty in various ways. We take account of
the uncertainty embodied in the roll of the die; we less often take account
of the uncertainty of our belief that the die is fair. We need to take
account of both uncertain knowledge and our knowledge of uncertainty.
"Evidence" itself has been regarded as uncertain. We argue that point-
valued probabilities are a poor representation of uncertainty; that we need
not be concerned with uncertain evidence; that interval-valued probabilities
that result from knowledge of convex sets of distribution functions in
reference classes (properly) include Shafer's mass functions as a special
case; that these probabilities yield a plausible non-monotonic form of
inference (uncertain inference, inductive inference, statistical inference);
and finally that this framework provides a very nearly classical decision
theory -- so far as it goes. It is unclear how global the principles (such
as minimax) that go beyond the principle of maximizing expected utility are.
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REPRESENTING KNOWLEDGE AND EVIDENCE FOR DECISION*

One purpose -- quite a few thinkers would say the main purpose -- of

seeking knowledge about the world is to enhance our ability to make sound

decisions. An item of knowledge that can make no conceivable difference

with regard to anything we might do would strike many as frivolous. Whether

or not we want to be philosophical pragmatists in this strong sense with

regard to everything we might want to enquire about, it seems a perfectly

appropriate attitude to adopt toward artificial knowledge systems.

If it is granted that we are ultimately concerned with decisions, then

some constraints are imposed on our measures of uncertainty at the level of

decision making. If our measure of uncertainty is real valued, then it

isn't hard to show that it must satisfy the classical probability axioms.

For example, if an act has a real-valued utility U(E) if event E obtains,

and the same veal-valued utility if the denial of E obtains (U(E) = U(-E))

then the expected utility of that act must be U(E), and that must be the

same as p*U(E) + j*U(-E), where p and _ represent the uncertainty of E and

-E respectively. But then we must have p + a =

There are reasons for rejecting real-valued -- i.e., strictly

probabilistic -- measures of uncertainty, though not all the reasons that

have been adduced for doing so are cogent. One is that these probabilities

seem to embody more knowledge than they should: for example, if your beliefs

are probabilistic, and you assign a probability of .1 to a drawn ball's

being purple (on no evidence), and a probability of .2 to a second ball's

being purple on the evidence that the first one is, and regard pairs of

balls as "exchangeable" 2 , then you should be 99% sure a priori that in the

infinitely long run, no more than 11 of the balls wiJl be purple. You know
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beyond a shadow of a doubt (with probability .99996) on no evidence at all

that no more than half will be purple. (Kyburg, 1968)

Peter Cheeseman (1985) has given a defense of classical probability,

and perhaps would not find even such results as the foregoing distasteful.

But it is hard to see how to defend the real-valued point of view from

charges of subjectivity. Cheeseman refers to an "ideal" observer, but

offers us no guidance in how to approach ideality, nor any characterization

of how the ideal observer differs from the rest of us. It is therefore

quite unclear what the ideal observer offers us, other than moral support:

each of us is no doubt convinced that the ideal observer assigns

probabilities just like himself. One man's subjectivity is another man's

rational insight.3 And there is clearly no guidance here for the

construction of programs that represent probabilities.

There are other ways of representing uncertainty than by real numbers

between 0 and 1. If these uncertainties are to be used in making decisions,

however, they must be compatible with classical point-valued probabilities.

My preference is for intervals, because they can be based on objective

knowledge of distributions, and because this compatibility is demonstrable.

(Kyburg, 1983)

In what follows, I will sketch the properties of interval-valued

epistemic probability, and exhibit a structure for knowledge representation

that allows for both uncertain inference from evidence and uncertain

knowledge as a basis for decision. We need both uncertain knowledge and

knowledge of uncertainty. Along the way I make some comparisons to other

approaches. I -

RA
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I. Probability.

Probability is 4 a function from statements and sets of statements to

closed subintervals of [0,1]. The sets of statements represent hypothetical

bodies of knowledge. The idea behind Prob(S,K) - [T2,] is that someone

whose body of knowledge is K should, ought to, have a 'degree' of belief in

S characterized by the interval •,f. The cash value of having such a

'degree' of belief is that he should not sell a ticket that returns to the

purchaser $1.00 for less than 1002 cents, and he should not buy such a

ticket for more than 10 0_ cents. The relation in question is construed as a

purely objective, logical relation.

Every probability can be based on knowledge of statistical

distributions or relative frequencies, since statements known to have the

same truth value receive the same probability, and every such equivalence

class of statements (we can show) contains some statements of the

appropriate form. This statistical knowledge may be both uncertain and

approximate (we may be practically sure betweteen 30% and 40% of the balls

are black), but it is objective in the sense that any two people having the

same evidence should have the same knowledge.

Classical point-valued probabilities constitute a special case,

corresponding to the extreme hypothetical (and unrealistic) case in which X

embodies exact statistical knowledge.

The connection between statements and frequencies is given by a set of

formal procedures for finding the right reference class for a given

statement. The reference set may be multi-dimensional -- the set of urns,

each paired with the set of draws made from it. It may be only

"accidentally" related to sentence -- as when we predict the act of someone

who makes a choice on the basis of a coin toss. What is the right reference
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class for a given statement S depends (formally and objectively) on vhat is

in K, our body of knowledge. In some cases we can implement a procedure for

findir. the right reference class. (Loui, forthcoming.2)

It is natural tD suppose that statistical knouledge in K ia represented

by the attribution to each reference set of a convex set of distributions --

for example we have every reason in the world to suppose that headn among

coin-tosses in generai is nearly binomial, with a parameter close to a half.

(We have no reason to suppose that the parameter has the real value

0.49999...). Or we may have good reason to believe that two quantities are

uncorrelated in their joint distribution. Or that we can rule out certain

classes of extreme distributions. We can know of a certain bent coin that

heads will be binomially distributed in sequences of its tosses, with a

parameter p at least equal to a half.

Henceforth, we assume convexity. Here are some izuediate results)

(1) if Prob (S,K) - [pa then Prob(-S,K) = {I-_,i-21.

(2) if - (S & T) is in K, and P(S) = [Rl,qIJ and P(T) [.22,_q2 and

and P(T v S) = V2,f' then there are numbers in [ 21,_ll and [22,_21 whose

sum is in ,_q• To see that L,' can be a proper subset of

tpl * 2 + consider a die that you know to be biassed toward the one

at the expense of the two, or toward the two at the expense of the one.

Reasonable probability for the disjunction, "one or two" would be very close

to 1/3, even though the reasonable probabilities for the one and the two

would be significantly spread above and below 1/6.

(3) We can show that: given any finite set ot sentences, Si, and a body of

knowledge K, there exists a Bayesain function B, satisfying the classical

probability axioms, such that for every sentence S in Si, B(S) q Prob(S,K).

(4) Let KE be the body of knowledge obtained from K when evidence E is
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added to K. If E is among the finite set of sentences in question, then

there may be no Bayesian function B satisfying both B(S) E Prob(S,K) and

B(S/E) 6 Prob(S,KE): classical conditionalization is not the only way of

updating probabilities.
6

(5) There are non-trivial cases in which algorithms for computing

probabilitiez -- i.e., for picking the right reference class -- have been

provided. (Loui, forthcoming.2)

2. Updating.

A problem that has attracted a lot of attention is the problem of

updating probabilities in the light of new evidence. A related problem is

that of dealing with "uncertain" evidence. 7 The problem of uncertain

evidence can be avoided by mechanical procedures in two well known

formalisms. From a strictly Bayesian point of view, updating should take

place by Jeffrey's rule: P'(H) - P(HiE)*P'(E) + P(H/-E)*P'(-E) (Jeffrey,

1965). The rule is not uncontroversial (Levi, 1967), but in those cases

where it seems plausible, we can achieve the same result by conditioning on

a piece of "certain" evidence that we expand our algebra to accommodate.

Similarly, it has been shown that the same trick will work with Glenn

Shafer's well known mathematical theory of evidence (Shafer, 1976): we can

mechanically replace general combination of support functions, so long as

the evidence can be represented by a seperable support function, by Dempster

conditioning -- Shafer's analog to Bayesian conditionalization. (Kyburg,

forthcoming.!)

The relation between Shafer's theory and the system of probability just

outlined is interesting. Let 8 be a possibility space, with support

function s defined on it. Shafer also defines a plausibility function t:

for every subset S of 9, t(S) = I - s(Q - S). Of course subsets of a
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possibility $Pace correspond exactly to propositions, and we can construct a

convex set of probability functions over these propositions such that the

minimum and maximum probabilities assigned to a proposition are exactly the

support and plausibility of the corresponding subset of 0. (Kyburg,

forthcoming.1)

But the converse doesn't hold. Consider a compound experiment

consisting of either (1) tossing a fair coin twice, or (2) drawing a coin

from a beg containing 40% two-headed and 60% two-tailed coins and tossing it

twice. The two alternatives are performed in some unknown ratio £ Let A

be the event that the first toss lands heads, and B the event that the

second toss lands tails. The representation by a convex set of probability

functions is straight-forward:

f(Tr) - p/4 + oý6(1-p)

P(TH) - p/4

P(HT) - 2/4

I(Tr) - 1/4 + 0.4(0-2)

The convex set of probability measures over the sample space is just the

set of these values for £ t ý0,1ý. Let this set be SP. P*(S)- min P(s):e

SPP is not a support function, by theorem 2.1 of (Shafer, 1976). (Kyburg,

forthcoming.1)

Finally, let CP(e) be the set of probability functions resulting from

conditionalizing the members of P on e. That is, if p belongs to P, then the

function p(x/e) n p(x&e)/.(e) defined for every sentence x in the original

algebra will belong to CP(e). 8  CP(e) is a convex set of classical

probability functions. Let CPle be the corresponding lower-probability

function, and CPue the corresponding upper-probability functin. (Neither

are probability functions -- hence the hyphens are not accidental.) Let
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DPse be the support function obtained from the support function a

corresponding to P by Dempster conditioning -- i.e., Dempeter's rule of

combination applied to the case vhere e receives unit support. Let

DPpe be the corresponding plausiblity function. Then

CPle(s) < DPse(s) _ Pype(s) ý. CPue(s)

Inequality holds unless certain measures on subsets have the value 0. When

it comes to updating probabilities relative to evidence, Shafer's procedure

exaggerates the impact of evidence beyond its Bayesian import. (Kyburg,

forthcoming.1)

But we can also specify exactly the conditions under which this form of

updating agrees with convex Bayesian conditionalization. If these

conditions are satisfied, then it makes sense to follw the Dempster-Shafer

formalism, especially when it is computationally simpler.

Bayesian conditionalization is not always the right way of updating

probabilities, however. A situation in which Bayesian conditionalization

whould be given up appears in (Kyburg, forthcoming.2)

3. Uncertain Knowledge

One problem that Bayesian and other approaches to uncertainty have is

that there is no formal way of representing the acquisition of knowledge.

We can represent the having of knowledge (by the assignment of probability I

to the item), but since there is no way in which P(S/E) can be I unless P(S)

is already one, conditionalization doesn't get us knowledge. This has been

noticed, of course; Cheeseman (1985, p. 1008) simply says, "A reasonable

compromise is to treat propositions whose probability is close to 0 or I as

if they are known with certainty ....." But of course it is well known that

this cannot be done generally: the conjunction of a number of certainties is



a certainty, but the conjunction of a large enough number of "reasonable

certainties" in Cheeseman's sense is what he would have to consider an

impossibility.
9

McCarthy and Haves (1969) are seduced into following this primrose

path, when they suggest (p. 489) "If P1, 8,..., n Q is a possible

deduction, then probablk(!i),...,pro2bav(n) ± probably(&) is also a

possible deduction." This is clearly ruled out, on our scheme -- and even

acceptabl),..., acceptable(92) ' acceptable(G) is ruled out as a

consequent of the logical conditional. Many philooophers, of course, have

taken this for granted -- but if we are to formalize uncertain inference at

all, we must somehow accommodate sets of conflicting statements. Purely

probabilistic rules of inference do this easily.

We can accommodate Cheeseman's intuition that we should accept what is

practically certain by considering two seLs of sentences in the

representation of knowledge. One of them we will call the evidential

corpus, and denote by Ke; the other we will call the corpus of practical

certainties, and denote by Kp.

We will accept sentences into E2 if and only if their probability

relative to Ke is greater than 2. The conjunction of two statements that

appear in KE will also appear in E2 only if the conjunction itself is

probable enough relative to Ke. Thus 1p will not be deductively closed,

though we can prove that if a statement S appears in !2, and S entails T, T

will also appear there. This reflects a natural feature of human inference:

we must have reason, not only to accept each premise in a complex argument,

but to accept the conjunction of the premises, in order to be confident of

the conclusion.



9

We have a picture that looks like this:

* Ke *
* *

Uncertain inference: S • Kiff
Prob(S,Ke) >

* _ *

It is relative to K, the practical corpus, that we make our

(practical) decisions. It is thus the (convex sets of) distributions --

including conditional distributions -- embodied in that set of statements

that we use in our decision theory.

But there are questions. What is the value of 1 that we are taking as

practical certainty? How do statements get in Ke? What is the decision

theory that goes with this kind of structure?

Let u• first consider the value of '. Suppose the widest range of

stakes we can come up with is 99:1. For example, Sam and Sally are going to

bet on some event, each has $l00, and neither has any change. Then a

probability value falling outside the range of t.01,.991 would be useless as

a betting guide. A probability less than .01 would (in this context) amount

to a practical impossibility; one greater than .99 would amount to a

practical certainty.

The range of stakes can determine the level of "practical certainty" 2.

What counts as practical certainty depends on context, but in an explicit

way: it depends on what's at stake. This idea is developed in (Kyburg,

forthcoming.2),

How do statements qualify as evidene in Ke? Not by being "certain."
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It ctn be argued that anything that was really incorrigible would have to be

devoid of empirical content. 1 0 (The worry about uncertain evidence is not

misplaced; it's just misconstrued.) One typical form of evidence statement

is this: "The length of x is d + r meters." Whatever our readings, these

statements are not "certain" -- they admit of error. The same is true of

all ordinary observation statements.

So a statement gets into Ke by having a low probability of being in

error; equally, by having a high probability (at least e) of being

veridical. How high? In virtue of the fact that conjunctions of pairs of

statements in Ke appear in Kp, it seems plausible to take e - (2)1/2. For a

number of technical reasons (Kyburg, 1984) it turns out to be best to

construe the corpus containing the theory of error as metalinguistic. This

is as one might think: after all, the theory of error concerns the relation

between readings -- e.g. numerals written in laboratory books -- and values:

the real quantities characterizing things in the real world. For present

purposes we need note only that this is not the begining of an infinite

regress. We can maintain objectivity; we can avoid "presuppositions" and

other unjustified assumptions.

4. Decision.

It han been objected (Seidenteld, 1979) that there is no decision

theory that is tailored to Shafer's theory (.' evidential support. Indeed,

it is pretty clear that support functions alone would conflict with expected

utility. On the other hand, the reduction to convex sets of distributions

does show that we can have very nearly a normal decision theory using

Shafer's system. In computing the value of an act, we ieed to consider not

only the support assigned to various states of affairs (corresponding to

lower probabilities), but also the plausibilities -- corresponding to upper
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probabilities.)

This is true for the more general convex set representation: We can

construct an interval of expected utility for each act. A natural

reinterpretation of the p-inciple of dominance would take an alternative al

to dominate an alternative a2 whenever, for every possible frequency

distribution, the expectation of Al is greater than the expectation of a2.

This eliminates some alternatives, but in general there will be a

number of courses of action that are not eliminated. What we do here is

another matter, one which is certainly worthy of further study. 1 1  But it

seems natural that minimax and miiimax regret strategies are appropriac

candidates for consideration under some conditions. There may well be

others, such a satisficing. And it may even be that the guidance provided

by the motto: eliminate dominated alternatives, is as far as rationality

alone takes us. Further pruning may depend on constraints that are local to

the individual decision problems.
1 2

5. The Structure of Knowledge.

Were we to deal explicitly with our theory of error and its source, we

would have a complex structure consisting of four sets of sentences in two

distinct languages.13 But for ordinary decision theoretic purposes there

are just two sets of statements with which we need to be concerned Kp and

Ke. Evidence enters Ke when it is dependable enough, and Ke in turn

determines the practical certainties of EK. This renders the process of

uncertain inference by which any statement gets into !2 automatically non-

monotonic. As the contents of the evidential corpus Ke changes, ER may

change, contract, or expand. What is practically certain at one point may

cease to be practically certain in the light of new evidence, and in fact in

the light of new evidence may become evidently false. 1 4
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Another feature of the relation between the evidential corpus and the

practical corpus is that sentences in the evidential corpus are inherited by

the practical corpus. The practical corpus is thus dn expansion of the

evidential corpus; but it is crucial to keep the two corpora distinct. If a

sentence were to be added to the evidential corpus when it got a high

probability relative to the evidential corpus, it could never be eliminated:

it would henceforth always have probability one relative to that evidential

corpus. The separation of the practical and evidential corpus is required to

preserve the non-monotonicity of uncertain inference.

The decision maker need be concerned directly only with the contents of

Kp -- that is what determines the (objective, frequency-based) probability

of the alternatives he must choose between. But he may be led to worry

about the contents of Kp. What is there depends on the weight of the

combined evidence concerning it. This evidence is embodied in Ke and the

mode of combination flows from the definition of probability.

The scheme outlined does not give us a complete decision theory such as

we would get from a subjective Bayesian approach, but it may take us as far

as rationality can take us. The role of epistemological probability in

decision theory is supported by the theorem that for any finite set of

sentences there is a Bayesiau belief function that fits the epistemological

probability intervals. Thus uncertain knowledge and knowledge of

uncertainty both find their place.
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1. It is this line of attack that lies behind the subjectivist approach to

probability establiched independently by F. P. Ramsey (1930) and Bruno

de Finetti (1937) and rendered respectable by L. J. Savage (1954).

2. If "Pi" is "Draw number i yields a purple ball," this is just to say

that for i • j Prob(Pi) and Prob(Pi & P_) do not depend on the values

of i and

"There is a tradition, represented by H. Jeffreys (1939), R. Carnap

(1950), and most recently E. T. Jaynes (1982), according to which the

subjectivity of precise probability assignments can be eliminated by

firding general principles for assigning probabilities to the

statements of a given language. But as Seidenfeld (forthcoming) has

shown, there are serious difficulties with the Maximum Entropy program

even beyond the fact that this approach just pushes the arbitrariness

into the choice of a language or classification.

4. Of course this is just one opinion among many as to what probability

"is". Buc I would hardly hold it if I did not think it correct.

5. .)ofs may be found in (Kyburg, 1961), (Kyburg, 1974) and (Kyburg,

1983).

6. Counterillustration may be found in (Kyburg, forthcoming.3).

7. Simply as examples: (Duda, Hart, and Nilsson, 1976), (Garvey, Lowrance,

and Fishier 1981), (Pearl, 1985), (Lowrence, 1982), Quinlan, 1982).

8. We assume p(e) > 0 for every p 4 P; we also assume that there is a

support function s matching P.

9. This is the lottery paradox, first appearing in (Kyburg, 1961).

10. One normally believes one's own eyes, but one knows that hallucinations
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do occur. It is hard to imagine any observational statements whose

veridicality could not be impugned by some imaginable course of

subsequent observations. Perhaps this is not true of phenomenological

reports: 'Red patch here now." But I suspect these have no useful

content.

11. See Levi (1980) for a highly developed form of this approach.

12. Or perhaps this whole approach is wrong-hiaded. For the developmeut of

an alternative, see (Loui, forthcoming.1).

13. Viz.: the practical corpus !p, the evidential corpus Ke, the evidential

metacorpus MKe, and the a priori metacorpus MKa containing

observational records and linguistic conventions.

14. Note that in a strict sense, Kp need not even be consistent -- that is,

its deductive closure may be inconsistent in the ordinary sense. This

is illustrated by the lottery alluded to.
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