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1. Bac:ground. | o Tt ‘chc. "
For many years, at least since MeCarihy and Hayes T Taeay Jor ]
) 0 aBs Or‘
(19692 wrniters have lamented, and attempaea. to compernsate  Diat spootal
tor, the a}leged fact that we often do not have adequate P\\

statiztical knowledge for governing the uncertainty of behef, fOI’l
making uncertain inferences, and the like. [t is hardly ever
spelled out what "adequate statistical knowledge” would be, 1f we
nad 1t, and how adequate statistical knowledge could be used to
control and regulate epistemic uncertainty .

Orie response to the lack of adequate statistics has been to /
search for non-statistical measures of uncertainty. The minimal
variant has been to propose "subjective prebability” as a concept
to which we can turn when we lack statistics.

This proposal comes in widely differing flavors, based on
the dreadful ambiguity of "subjective”. Sometimes this means
merely “"indexed by a subject”. In this sense there is no conflict
with statistical representations: the "subjectivity” inveolved just
represents the fact that statistical knowledge is related to a
knower. (This appears to be the sense of “subjective” employed
by Cheeseman (1987) .)

At the other extreme, "subjective” may mean "arbitrary,"
"whimsical,” "subject to no objective control or constrtaint.”
Those who think we must turn in this direction are influenced by
the feeling that in many cases there may be nothing better to
turn to

Other proposals concern non-probabilistic measures of
uncertainty: the certainty factors of Mycin (1984), the belief
functions of Shafer (1987), the fuzzy membership relation of
Zadeh (1986).

Our purpose here is not to evaluate these alternative
treatments of uncertainty, but rather to explore the question of
how far you can go on the basis of statistical knowledge that you
do have, and what considerations must be taken account of in
this atternpt. Relatively few people have explored the question of
how far you can go using statistical knowledge. One writer who
has taken this question seriously is Bacchus (1988).

A second question, In fact the one that McCarthy and
Hayes had in mind, s the question of using statistical kriowledge
to provics an underpinning for uncertain inference -- that is,

—————t L
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. based on incomplete knowledgs A bailz

presupposition of the non-monotoris and default indus-rizz seems
te be that wou cannot wvery often base such nfersrce: v
tatistical knowledge I part this presupposition iz fxiil on the

tezling that "typicality” and "frequency” mean different things
Be that as it may, in formalizing non-monatonic logics
people seern to be led to considerations that (net surprisingly!)
mirror considerations appropriate to the application of =tatistical
knowledge.

Thus Etherington (1987) intreduces the concept of
preference among models; Konolige (1987) detf:
minimal extension; Teuretzky (1986) gives a mziric
inferential distance.

These metrics will be reflected in one of three principles
governing the relvance of statistical knowledge to be discussed
below. Our analysis of the ground-rules for the use of statistical
knowledge will throw light on the "cancellation principles” of
non—-monotonic logic as well.
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2. Assumptions.

The assumptions we make here are relatively few. We
suppose that the knowledge base may have statistical knowledge
in it. This statistical knowledge may be construed in a number
of ways —— for example as statements concerning chances or
statements concerning frequencies in an arbitrarily long run, or
statements concerning frequencies summed over possible worlds.
We do suppose that these statements are general: that is that
they do not represent the fact that we have recorded a
frequency in a specific sample. We may have derie so; but we
alsc may have gotten our statistical knowledge frorn a handbook,
or a dependable colleague. In any event, the statistical
knowledge in our knowledge base is taken to be general scientific
knowledge relating properties; notationally, we will write "B( R, 4
= p " to represent the fact that the long-run frequency 4 s
amoeng K's 15 p

Our second assumption 1s that statements fall inte
equivalence classes with respect to the statistical information that
15 epistemically most relevant to them. [t 1s sornetimes said that
we can't use statistical knowledge to deterrnine the charice of
heads on the toss of a coin that 15 to be tossed once and then
destroyed, on the ground that we have no statistics absut that

2




Bus the next toss of this com 1s alse the next tos: of a
1S con. the next toss of a modern coin, ete. Thers are rman's
equivalent was of phrasing "the next toss of this cein il land
heads” that wall lead to different reterence classes snrilarly, i
we rnow bt this sample of £ 75 exhibits a relative frequency of
'roor 4%, then the chance that the long rur frequency 1z close
to the {reguencey in the sample 1s the same a3 the chance that
the long run freguericy i3 close to .45,

We can cxpress this as a formal principle: f "5'= 77 s
in our l«:nowledge base, then the same statistical knowladge 1s

potentially relevant to Sand to 70

Our third assumption 1s the general one that our
rnowledge base can be expressed in a first order eztensional
language  (Of course this requires the inclusion of encugh first
order set theory to accommodate the statistics!) We take an
individual, however, to be arbitrarily complex: for example it
might be a trial of a complicated compound experiment.

Finally, in c¢rder for statistics to be of interest, we suppose
that we may know some things about an individual without
knowing everything about it. Thus we might kriow of "the next
trial” that it is a trial consisting of selecting one of a number of
urns at random, and then selecting a coin at randorn from the
urn, and then tossing the coin 10 times. And then we might be
interested in whether the tenth toss landed heads on that trial,
or we rmight know the distribution of heads in the tosses, and we
might be interested in whether the urn was urn number 4, or
we might be interested in knowing sornething about the frequency
of two headed coins in the urn from which we got our sample.

3. Interference I.

We will be concerned with the way in which some items
of statistical knowledge can interfere with the epistermic relevance
of other items. The simplest and clearest cases can be borrowed
from non-monotonic logic.

If all we know of Tweety is that she is a bird, 1t 15
reasonable to believe that she can fly. [If we also know that she
IS a penguin, then it is reasonable to believe that she cannot fly,
since our rnowladge about the chances of a penguin fl',"r.;.-'
interferes with our knowledge about the chances of a bird f{lying.

16 {ac srn ar v sy ool e i, m T o
i fas we may” 1N our bl(.}‘.O‘dlum 1Znorance ;upp\,\;z‘; there 15




a rare kirnd of penguin that can fly, and if we know *hat Tweety
15 one of “hem, then this new knowledge interfers with our
eneral snviedge about penguins, and again we rma :UDDOSE
hat Tweety can fly

Thas relation has been noted by Etheringteon, Poslz,
Konolige, and others. [t corresponds to what Reichenbacih (1942)
had in mind when he said that we should base our posits
(degrees of belief) on the "narrowest” reference ciass coenzerning
which we have adequate statistics. ("Having adequate statistics”
does not mean having knowledge of a sample of the zlazz in
question,; 1t means having useful general knowledge about that
class, whatever it may be based on.)

A principle embodying this natural constraint must be
stated with somewhat more generality than is at first obvious,
howewer

Suppose (to move to an artificial example) we know of a
certain bail that it 1s a ball In certain room, and that we know
that fifty percent of the balls in that room are black. (A natural
way of designating it is by means of the definite description "the
ball next to be chosen.” We could also take the individual
concerned to be a choosing of a ball; the latter would be natural
if we were to consider repeated samplings from the room.)
Suppose we know also that that particular ball is also one in an
urn, in which 75% are black. The second piece of statistical
knowledge 1s clearly epistemically relevant and the first :s not.
This intuition 1s based on the fact that the set of balls in the urn
In the room 1s a subset of the set of balls in the room

But how about the one—membered subsets of the power
set of balls in the room? They are abstract objects, and so can't
be black, but they can have the property of having a black
member  And the ball iIn question is not a member of this
possible reference set, but of course its unit set is. And its unit
set will have a black member if and only if the ball in question
15 black So what? Well, the set of balls in the urn is not
(cannot be) a subset of the set of one membered subsets of the
set of balls in the room.

We could stipulate that all the sentences in question have
some specific canonical form; but we shall see shortly that that
1S not such a good idea. What we can do instead 15 to fzrmulate
our principle a bit rnore broadly




The Subset Prinaple Suppose that "zi1s a A7 15 1n our anowieige
base, and that "Z{5 (") = » " 1s 1 our knowledge basc  Suppo:s
that we know that a 15 a & if and onlv if 212 a 27 “hat 20 i
a B and that B(E5, &) = o0, where p= o5 Thiy tatistizal
bnowledge s epustenuczily wrrelevant it we know of o cinzet of

2 B", wuch that we know both 2 lsa & and %{Ff ) =

The subset principle is ong that has been frequenti
identified in the context of non-monotonic logic.

4. Interference II.

Here Is an example that calls for a second principie: A
before, suppose we have a roomful of urns, and that & designates
a ball In the room  Suppose we know that there are 190 balls in
the room, and that 50 are black. But suppose we alsc Lnow
that there are 10 urns, that 9 of them containing four tlack
balls and one white ball, and that the tenth contains thz
remainder of the balls. The relative frequency of black balls in
the first nine urns is .8, and the relative frequency of black balls

(_:)

in the tenth urn is 14/45 = .311.

Let us consider what StatIStICS are relevant to the
statement, "alis black.” If we know of aonly that it 's a ball in
the room, it is only the statistics about the frequency of black

balls in the room that are relevant. [f we know alse s.,mething
about how & came to be the designated ball, the other statistics
may also be relevant. For examplz, we might know that ais
the ball resulting from first choosing an urn at randorr;, and
then choosing a ball at random from the chosen urn. If that is
the case, the relevant statistics are those governing the
proportion of pairs consisting of an urn, and a ball drawn from
that urn, such that the second member of the pair is black. We
can easily calculate the proportion of pairs having this property
tobe 9 8+ 1 31... = 751 ..

But why, under these circumstances, should we regard
the statistics concerning balls in the room to be episternically
irrelevant? The interfering set i1sn't a subset of its competitor.
(Note that .751. .. cannot, mathematically, be the relative
frequency in any subset of the st of balls in the room!}

But we can find a relationship: there 1s a possikiz
reference class that matches the competitor, of which the correct

S
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et —— namely, the cross product o1 the set
2t urns and the set of balls.  This construction: iz partizoarly
important In the context of (so-called) Bavyesian iriterercz, the
rnodel we Just looked at corresponds to a non-sarnpling fize in
which we have a prior probability of .9 combined with =
conditional probability of 8, and a prior probability of
combined with a conditional probabihity of 311 We therefere
cail the rule the Bayesian Principle:

o
oK
[
i

=y

yeslan Principle:  Suppose that "<z, b>15 a £7 12 in our
knowledge base, and that "B{Z ) = p " 1s 1n our ¥nowizdge

se.  Suppose that we know that a ' 1s a £ if and only if al
a £ that a'isa £', and that B(F',C") = p = » This
statistical knowledge s episternucally irrelevant \f we know of a
cross product of £’ with A" and a corresponding subset " and
2 " such that

(.l)'

(1) <a',a"> is known to be in &' X A",
(2) <a',a"> isin C" if and only if ais in C,
(3) B(B' X B", C") =
and for some £* known to be a subset of ' X £B",
(4) B(B*,C) =

To see how this works in our illustrative example, let [/be
the set of urns, Bthe set of balls, £the set of pairs
corresponding to the experimental set—up, with <x; 1> in £ just
In case .v1s an urn and yis a ball in that urn. Our target
property 1s the set of pairs Cin which the second rnember is
black. The proportion i1s just what we calculated befere .751. . .

To show that a ', and the statistical knowledge that the
proportion of balls in B that are black is .50, 1s nef epistemically
relevant, we observe that <a ', > is known to be a member of
B X ¢/ where wuis the (unknown) urn selected, that the
proportion of AX (/in Cis 0.50, but that there is a subszet of A
X /' -- namely Fitself —— in which the proportion of members of
Cis the same as that in £

The Bayesian principle is followed in constructing
representations of uncertainty, particularly in cases in which
uncertainties are modified by new evidence, but | have not
noticed it in discussions of non—-monotonic inference. [t should
be, of course.

Almost all (species of) mammals give birth to their young

6
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reason to think it grves birth o its yoiomg live, =i el o
N P gt ~ - PO ~ A -1 ~y s m ey
mammais don't give birth at o a (The analogous pomn® wth
~ ; c erme S U A X F T s AT ST
respect to birds was poanted sut by Nutter (1987 0 Srren an
. .. PR i o - -~ s P P - P PO .
arbitrar, ndrnidual fernale mammal, we have reassn o thu

marnrnals are such that when ther temales reproduce, they Zo
that way. (&lmost all the reproductive balls in & P
urns are white, though 1t i1s not the case that almost a!
in an urn are reproductive ! We accommodate the cusviviparous
. . \
\

platypus by noting that its species

e
i
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-

5. Interference III.

The final principle of relevance we need for dealing with
statistical knowledge is in a seuse the dual of our first principle,
the subset principle. Suppose that you are sampling from a
population A with a view to making an inference about the
proportion of B's there are in £ [t 15 a general set theoretical
fact that we will not explore more deeply that almost all subsets
of a given set reflect within narrow limits the composition of the
parent set

Putting flesh on this observation, we might note that
(using a crude approximation), whatever the proportion of A2's
that are £'s, the proportion of 10,000 member subsets of £ that
have a proportion of £A's within 04 of the actual propertion 1s at
least 975,

Suppose you look at 10,000 A's and find that 5000 of
them are B's. Quite clearly, at a level of confidence ¢f 975,
one ought to suppose that between .46 and .54 of the /s are
B's.

Of course we might have various bits of knowledge that
are relevant to this fact that fall under the first twe categories.
For example, it may be that we know that our sample 1s not a
random one, because we know that it was drawn In a special
way that produces representative sarnples only rarely. Or we
may know that we are sampling from a collection of pcpulations
iIn which we know something about the distribution of the
relative frequency of £F's

But let us assume that neither of these are the case --
that 1s, that neither the subset principle nor the Bayesian
principle apply. So we may say that the chances are at least




ton of 53 15 betweern 45 and &4

179 that the pro

But new note: We also have cbeerved a subset o0 2090 ot
which 100% were B s So why do we not imter (by a orocieely
parallel argument) that the chances are nearly 0.0 tha: the
proportior. of £'3 1s between .46 and 547 [t 15 bacaus: the
larger sample 1s epistemically relevant relatise to the smaller
one, while the smaller sample 1s not relevant relative tz the
larger one. A principle that captures this intuition 1s

'Ci

n

The Supersample Principle: Suppose that we know that 2, 15 a

member of A7 and that we are interested in the chance that a,

is @ (e.g.. "representative within €"). Suppcse that ais known
to be a member of A that ais a &' if and only if 4,15 « and

that B(F71 @) = p= p' = B(R Q') are all known Then our
statistical knowledge about A is eprsterrucally irrelevan: i there s
a parallel structure to our original one that is such that we also
know that ais a subset of a,, .

[t 15 my beliet that these three principles are ail the
principles we need to determine the epistemic relevance of
statistical knowledge in the case in which we either have exact
knowledge or none at all.

6. Inexact Knowledge.

By providing a new characterization of "difference” among
statistical statements, we can easily generalize the above
considerations to the general situation. Let twc statistica
statements "%(4, B) € [p ¢" differ from "B(5 D) € [~ sj just in
case neither of [p ¢] nor {7 g is included 1n the other Then we
shall say that one item of statistical knowledge 1s irrelevant to
another 1if

(a) 1t differs, but is rendered irrelevant by one of the
three principles expounded abowve, or

{b) it 15 less exact than the other

Note that a consequence of thus liberalizing the notion of
statistical knowledge is that we now aalways have statistical
knowledge, even if it 1s only of the form, "B(A4 £) ¢ [0,1]" In
general, (b) leads us away fro 2 statistical knowledge of this form
to more substantive statistical knowledge

Co




7. Computation.

The aobjgect of providing such

(@)
L)

varzvance and irrelevance s to bo rol
21 v tor computing the ralevant raferan I
specific epztenuis conditions —— 1 ¢, with given (plausible)
sackeround knowledge.,  Since fas is obwnicus! potential reference
oo zan proliferate indetimitely, we have not achieved that

Mewvertheless, it should be clear where we can go from
Further details are provided in Fburz (1982) and Low

As an illustration of the mechanism we can employ, we
can consider the following construction. Let an nference
structure for a staternent S relative to a body of knowledge be
a quintupls <a 8 ¢ p ¢ >, where "a215 a2 " is known to be
cquivalent o 5 the staternent whose episternic status interests
us, "als a 2" is known, and "B(A ) = [5 ¢" represents the
strongest information we have about Band &

Consider the set /of all inference structures for S This
set is non—empty, since <&, {a}, & 0, 1> is a member of it,
whatever else we may know. We perform pass number one: if
an inference structure differs from an earlier inference structure
(i.e., neither [p,q] nor [p',q'] is included in the other) then
delete the irrelevant inference structure, if any; otherwise delete
both.  The result is a set of inference structures that do not
differ from one another. They can be partially ordered by
inclusion, where we say that one inference structure <a, B, C,
P, G> is included in another <a’, B', C', p', ¢'> when [p,q] is a
subinterval of [p',q'].

We then perform a second pass, reflecting our concern for
information, by deleting any inference structure that properly
includes another inference structure in the sequence. The result
15 a set of inference structures —- it may well contain more than
one, and, according to the details of our procedure, may contain
an infinite number ~- that are all equally strong. This
determines both: the epistemic probability of the statement in
question; and its inductive acceptability —- 1 ¢, acceptability for
non-mornotonic logic —- as reflected by the lower bound of its

epistemic probability




8. Conclusions: We arrive at several conclusions

(1) If we accept the equivalence condition --- thxat
staterncents cennnected in our knawledge base by a biconditional
should havz the same probability -- then rmany rner2 :tatements

than might at first have been thought can have probabilities
based on statistical background knewledge.

(2) This has a prefound bearing on the representation of
uncertainty in our bodies of knowledgz If we suppose that
“subjective” confidence in the strong sense of "subjective” 1s
acceptable as a measure of uncertainty only when statistical
information is not available, then there are far fewer situations
in which purely subjective uncertainties are called for than some
people have suggested.

(3) Given the equivalence condition, there may be many
potential reference sets for a given equivalence class of
statements. We therefore need a way of adjudicating cur choice
among these reference sets.

(4) There are three ways in which conflict between two
potential reference classes can be resolved to the benefit of one of
them. Only one of these ways seems to have worked its way
into the literature on non—monotonic logic. All three should be
taken account of.

(5) These three resolutions reflect the three principles:
the Subset Principle, the Bayesian Principle, and the Superset
Principle. (In fact the subset principle is reducible to the
Bayesian principle (see Kyburg 1983).)

(6) The results of this analysis can be used to implement
probabilistic non—-monotonic acceptance as well as to determine
rationally allowable distributions of uncertainty.

Henry E Kyburg, Jr. University of Rochester
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