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Epistemological Relevance and Statistical Knowledge

1. Background.
2~ ~m ,ny years, at 1lea 't an-- r th - r. d ,a,.z ,,o

.I9), ,vriters hive lamented, and attempt-ed to compenisatC Dl t
for, the alleged fact that we often do not have adequate J
st~ati-!ca. knowledge for governing the uncertainty of be!ief, for
making uncertain inferences, and the like, It is hardly ever
spelled 0ut what "adequate statistical knowledge" would be, if we,o ad qu t stt, - t
-m t, and how adequate statistical knowledge could be used to
control and regulate epistemic uncertainty.

One response to the lack of adequate statistics has been to
search for non-statistical measures of uncertainty. The minimal *.

variant has been to propose "subjective probability" as a concept
to which we can turn when we lack statistics.

This proposal comes in widely differing flavors, based on
the dreadful ambiguity of "subjective". Sometimes this means
merely "indexed by a subject". In this sense there is no conflict
with statistical representations: the "subjectivity" involved just
represents the fact that statistical knowledge is related to a
knower. (This appears to be the sense of "subjective" employed
by Cheeseman (1987).)

At the other extreme, "subjective" may mean "arbitrary,"
"whimsical," "subject to no objective control or constrtaint. "
Those who think we must turn in this direction are influenced by
the feeling that in many cases there may be nothin better to
turn to

Other proposals concern non-probabilistic measures of
uncertainty: the certainty factors of Mycin (1984), the belief
functions of Shafer (1987), the fuzzy membership relation of
Zadeh (1986)

Our purpose here is not to evaluate these alternative
treatments of uncertainty, but rather to explore the question of
how far you can go on the basis of statistical knowledge that you
do have, And what considerations must be taken account of in
this attempt. Relatively few people have explored the question of
how far you can go using statistical knowledge. One writer who
has taken this question seriously is Bacchus (1988).

. econd question, in fact the one that Mcrhy and

Hayes had in mind, .s the question of using statistical knowledge
to pro'id- in underp rring for uncertain inference -- that is,



hat. i7 based on i,.con lt . ....... A. .
presupposition or the non-monc, tonri and default inds-r:4 sc.n

c. bt . vou cannot very ofr base such ir.fnrnccs-
..... wl. -dge ,In part this presuppo.i;.cr: is ,u : .. ...t .

t,-hng t,,.. "typicality" and "frcquenc', imTean , fo- t 'hing-
Be that as it may, in formalizing non-mon-,torin: iogcs rna riy
people seem to be led to considerations that (not surplningly . )
mirror considerations appropriate to the applic:ation of statistical
knowledge.

Thus Etherington (1987) introduces thrconcopt ;,

preference among models; Konolige (1987) defines a notion of
minimal extension, Touretzky (1986) gives a motric ,,-
inferential distance.

These metrics will be reflected in one of three principles
governing the relvance of statistical knowledge to be discussed
below. Our analysis of the ground-rules for the use of statistical
knowledge will throw light on the "cancellation principles" of
non-monotonic logic as well.

2. Assumptions.
The assumptions we make here are relatively few We

suppose that the knowledge base may have statistical knowledge
in it. This statistical knowledge may be construed in a number
of ways -- for example as statements concerning chances or
statements concerning frequencies in an arbitrarily long run, or
statements concerning frequencies summed over possible worlds.
We do suppose that these statements are general: that is that
they do not represent the fact that we have recorded a
frequency in a specific sample. We ma have done so; but we
also may have gotten our statistical knowledge frorm a handbook,
or a dependable colleague. In any event, the statistical
knowledge in our knowledge base is taken to be general scientific
knowledge relating properties; notationally, we will write "%(R, A)

Sp " to represent the fact that the long-run frequency ,4 's
among P 's is p.

Our second assumption is that statements fall into
equivalence classes with respect to the statistical information that
is epistemically most relevant to them. It is sometimes said that
we can't use statistical knowledge to determine the chance of
heads on the toss of a coin that is to be tossed once and then
destroyed, on the ground that we have no statistics about that

2



.. . , - .ot t- n is also tho -. t., : -

£ . .i . . re:.:t t of ,a modern coin, etc. The,':_ 4rc rn.r,.:
equi'al . ,,.. " r r-," ',,i "th next toss 01 this .oin .. ir , %, d
heads" I t~ i .-,,!" c ,ad... . .t- ,4hf,-r,--t.,, .. ..r-::,, r,.n,.e- classes 5:.ii--::.1,; ,

,_ ) "./ "th ...... '._ ,f _. s exhibits a rc-aive ti r. enc" o!

Scf ,:~then the 'hhanc a ht the long rur frequenc, is close
to th tin t'h sample is the same a.,the chare tha

the long run frequency Is close to .45.

We can c:-:press this as a formal principle If ,5' T" IS
in our knowledge base, then the same statistical knowlzdge is
potentially relevant to Sand to 7

Our third assumption is the general one that our

knowledge base can be expressed in a first order extensional
language (Of course this requires the inclusion of enough first
order set theory to accommodate the statistics!) We takte an
individual, however, to be arbitrarily complex: for example it
might be a trial of a complicated compound experiment.

Finally, in order for statistics to be of interest, we suppose
that we may know some things about an individual without

knowing everything about it. Thus we might know of "the next
trial" that it is a trial consisting of selecting one of a number of
urns at random, and then selecting a coin at random from the
urn, and then tossing the coin 10 times. And then we might be
interested in whether the tenth toss landed heads on that trial,
or we might know the distribution of heads in the tosses, and we
might be interested in whether the urn was urn number 4, or
we might be interested in knowing something about the frequency
of two headed coins in the urn from which we got our sample.

3. Interference I.
We will be concerned with the way in which some items

of statistical knowledge can interfere with the epistemic relevance
of other items The simplest and clearest cases can be borrowed
from non-monotonic logic.

If all we know of Tweety is that she is a bird, it is
reasonable to believe that she can fly. If we also know that she
is a penguin, then it is reasonable to believe that she cannot fly,
since our .nwledge about the ,chances of a penguin filyiing,

interfEres with our- knowledge about the chances of a bird flying.
i.s we rmav in .,r biolcl igr-...c--i suppos.e) there is

3



a rar .. .v. J o penguin that can fly, and if we kn:w "a: T ....
is )ne ot t~hr1, then this new knowledge interfers with )ur

.eneral . ede about penguins, and again we rav-upos-
that Tw~ycan fl1y

Tis relation has been noted by Ether n-ton, Poc_-,
Konolige, and others It corresponds to what Peiche;nban h (19 4'?)
had in mind when he said that we should base our posits
(degrees of belief) on the "narrowest" reference class conoerning
which we have adequate statistics. ("Having adequate statistics"
does no: mean having knowledge of a sample of the lasin
question, it means having useful general knowledge about that
class, whatever it may be based on.)

A principle embodying this natural constraint m-.ust be
stated with somewhat more generality than is at first obvious,
however

Suppose (to move to an artificial example) we know of a
certain bail that it is a ball in certain room, and that we know
that fifty" percent of the balls in that room are black. (A natural
way of designating it is by means of the definite description "the
ball next to be chosen." We could also take the individual
concerned to be a choosing of a ball; the latter would be natural
if we were to consider repeated samplings from the room.)
Suppose we know also that that particular ball is also one in an
urn, in which 75% are black. The second piece of statistical
knowledge is clearly epistemically relevant and the first ,s not.
This intuition is based on the fact that the set of balls 11n the urn
in the room is a subset of the set of balls in the room

But how about the one-membered subsets of the power
set of balls in the room? They are abstract objects, and so can't
be black, but they can have the property of having a black
member And the ball in question is not a member of this
possible reference set, but of course its unit set is. And its unit
set will have a black member if and only if the ball in question
is black So what?' Well, the set of balls in the urn is not
(cannot be) a subset of the set of one membered subsets of the
set of balls in the room.

We could stipulate that all the sentences in question have
some specific canonical form; but we shall see shortly that that
is not such a good idea. What we can do instead is to formulate
our principle a bit more broadly

4



S t.bt rinciple that ,.qis a B Is in
tan, -ntha-,t i p is In our knowledC bs" Sup--

that we? 'Know that d s a Cif and onlv i f a - 7
a B , and that S(5', ") = , , -h rc , p Th:- itl:&

kncwl ,::,-. id-,, if wC? know //vf i ?C_:-t wf
,- , luh that .c know both a is a 2" and ,.5L ,

The subset principle is one that has been frequent!
identified in the context of non-monotonic logic.

4. Interference 1I.
Here is an example that calls for a second principle: A.s

before, suppose -we have a roomful of urns, and that a designates
a ball in the room• Suppose we know that there are 100 balls in
the room, and that 50 are black. But suppose we also kno-w
that there are 10 urns, that 9 of them containing four black
balls and one white ball, and that the tenth contains the
remainder of the balls. The relative frequency of black balls in
the first nine urns is .8, and the relative frequency of black balls
in the tenth urn is 14/45 .311.

Let us consider what statistics are relevant to the
statement, "a is black." If we know of a on!y that it ,s a ball in
the room, it is only the statistics about the frequency of black
balls in the room that are relevant. If we know also s'rnething
about how - came to be the designated ball, the other statistics

may also be relevant. For example, we might know that a is
the ball resulting from first choosing an urn at randon, and
then choosing a ball at random from the chosen urn. if that is
the case, the relevant statistics are those governing the
proportion of pairs consisting of an urn, and a ball drawn from
that urn, such that the second member of the pair is black. We
can easily calculate the proportion of pairs having this property
to be .9 8 + . .31... = .751.

But why, under these circumstances, should we regard
the statistics concerning balls in the room to be episternically
irrelevant? The interfering set isn't a subset of its competitor.
(Note that .751 ... cannot, mathematically, be the relative
frequency in any subset of the st of balls in the room')

But we can find a relationship there is a possi.:_-
reference, class that matches thc competitor, of which "correct

5



... ubse -- the cross product -I

•; urns and the set of balls. This constructio ;. 'I!
important in the context of (so-called) Bayesian r .-:, h
•nodel we jlut looked at corresponds to a nor-sarnPiin, M-5C i
which we have .a prior probability of .9 combined with
conditional probability of .8, and a prior probability of I
combined with a conditional probability of 311. We thereforc
,-all the rule the Bayesian Principle:

The EBayesian Principle: Suppose that a, b.> is a 5. i 'n our
knowledge base, and that "1( C) =p is in our kro,-!.ge
base Suppose that we know that a' is a C' if and only if a is
a C that a' is a B', and that %(B', C') =' 'p h 1
statistical knowledge is epister.cal.y irrelevant if we know of a
cross product of B' with B" and a corresponding subset C" and
a " such that

(1) <a ',a"> is known to be in B' X B '

(2) <a ,a"> is in C" if and only if a is in C,
(3) 1(B' X B ", C") = p ',

and for some B known to be a subset of B' B"
(4) 7( C) =

To see how this works in our illustrative example, let LUbe
the set of urns, B the set of balls, Ethe set of pairs
corresponding to the experimental set-up, with <.;.i> in E just
in case x is an urn and y is a ball in that urn. Our target
property is the set of pairs Cin which the second member is
black. The proportion is just what we calculated before .751...

To show that a ', and the statistical knowledge that the
proportion of balls in B that are black is .50, is not epistemically
relevant, we observe that <a ', u > is known to be a member of
B X [, where u is the (unknown) urn selected, that the
proportion of BX £'in Cis 0.50, but that there is a subset of B
X U-- namely Eitself -- in which the proportion of members of
6is the same as that in E

The Bayesian principle is followed in constructing
representations of uncertainty, particularly in cases in which
uncertainties are modified by new evidence, but I have not
noticed it in discussions of non-monotonic inference. It should
be, of course

Almost all (species of) mammals give birth to their young

6



r,(:t;on tc thiri,: it gr.- . -",, ,, t .  ..t s
m , am a L : J ;n t g iv e b ,:t .J .. , a na1  .. ..H

respect to birds was J. 1, Y. N t, (,9 ' .. .
.a r b it r a rw ., id m. . .. .. . fe r m a l e r ~a *a , w h a ;. ( e t n : h r k ,

wll ~give C-Irth to its youn .. e Ast all spei--

mammals are such that when tIeir ternales reproduc.'_2 " . o
it that wa,. (Almost all the r-productive balls in almost All thc
urns are white, though it is not the case that almost all the balls
in an urn are -eprodu,t- ti-e WA accomrn-c.ate the -:vipar2u
platypus by noting that its spec:es (Its urn) is unusual

5. Interference III.
The final principle of relevance we need for dealing with

statistical knowledge is in a 5eCiw the dual of our first principle,
the subset principle. Suppose that you are sampling from a
population P with a view to making an inference about the
proportion of 3's there are in P It is a general set theoretical
fact that we will not explore more deeply that almost all subsets
of a given set reflect within narrow limits the composition of the
parent set

Putting flesh on this observation, we might note that
(using a crude approximation), whatever the proportion of P's
that are 3's, the proportion of 10,000 member subsets of P that
have a proportion of 5's within 04 of the actual proportion is at
least .975.

Suppose you look at 10,000 P's and find that 5000 of
them are B's. Quite clearly, at a level of confidence of .975,
one ought to suppose that between .46 and .54 of the P's are
3's.

Of course we might have various bits of knowledge that
are relevant to this fact that fall under the first two categories.
For example, it may be that we know that our sample is not a
random one, because we know that it was drawn in a special
way that produces representative samples only rarely Or we

may know that we are sampling from a collection of populations
in which we know something about the distribution of the
relative frequency of "'s

But let us assume that neither of these are the case --

that is, that neither the subset principle nor the Bayesian
principle apply. So we may say that the chances are at least

-7



,7. that th proportion of 5 s iz, btee n- d

But now note: We also have cbservd a suset .:,: . o....
wirch 100% were B's So wh do vie not inter (by, -ac.,_..-
p.trallel argument) that the chances are ncari, 0.0 tha" the

proportior. o - 's is between 46 and 5 is u
lrger sample is epistemically relevant relat.'e to the srr.mler
one, while the smaller sample is not relevant relative t the

larger one. A principle that captures this intuition is

The Supersample Principle- Suppose that we know that a is a

member of 9 and that we are interested in the chance that t2

is 0(e.g., "representative within E"). Suppose that a is known
to be a member of R, that a is a 0' if and only if a- 1s 0, and

that %(PF, ) = p p %(R, 0') are all known Then our
statistical knowledge about R is J,,,-tcaI/v.r , e-ai:'t :f there is

a parallel structure to our original one that is such that we also
know that a is a subset of an

It is my belief that these three principtes are all the
principles we need to determine the epistemic relevance o:
statistical knowledge in the case in which we either have exact
knowledge or none at all.

6. Inexact Knowledge.
By providing a new characterization of "difference" among

statistical statements, we can easily generalize the above
considerations to the general situation. Let two statistical
statements "%(A, B) E [p, ]" differfrom "%( '-D) E [," just in
case neither of [p, d nor [r s] is included in the other Then we
shall say that one item of statistical knowledge is irrelevant to
another if

(a) it differs, but is rendered irrelevant by one of the
three principles expounded above, or

(b) it is less exact than the other
Note that a consequence of thus liberalizing the notion of

statistical knowledge is that we now aalways have statistical
knowledge, even if it is only of the form, "%(A, B) E [0,1]" In
general, (b) leads us away frct, statistical knowledge of this form
to more substantive statistical knowledze

0



7. Computation.
T Kr ,bject of proY i'.' such .... ( c..r a... . . - ti,, s of

::vAFCC and urlvne~ ~ be~ rvd
*.1-ithrn < c.i-.?.i.putin; the Y C", t ,-,:t.?~-..' class unde
cic ,. - . ,conditiors ., with given (plausible)

., r-. . know edge. S in -- s is o ,:,h . potential reference
p) ro ifcrate indi, r':w, ,a.. not achieved that
nt - d providing an algorithrn is not part of the present

. ..,,.- hl.s., it sho,1i e'..- cla.  h e we can go from
. 'urther det.ails are provided in Kybuiz (198 ) and Loui

As an illustration of the mechanism ,e can employ, we
.an consider the following construction. Let an erenC
.rrus're for a statement S relative to a body of knowledge be

• quintuple <a, L , , >, where "- is a C" is known to be
.quivalent ,o - the statement ,,hose episterruc status interests
Us, 2 is a 2" is known, and "%( C) [, " represents the
strongest information we have about B and C

Consider the set Iof all inference structures for S.: This
set is non-empty, since <., {a f, L 0, I> is a member of it,
whatever else we may know. We perform pass number one: if
an inference structure differs from an earlier inference structure

ii.e., neither [p,q] nor [p',q'] is included in the other) then
delete the irrelevant inference structure, if any; otherwise delete
both. The result is a set of inference structures that do not
differ from one another. They can be partially ordered by
inclusion, where we say that one inference structure <a, B, C,
p, q> is included in another <a', B', C', p', q'> when [p,q] is a
subinterval of [p',q'].

We then perform a second pass, reflecting our concern for
information, by deleting any inference structure that properly
includes another inference structure in the sequence. The result
is a set of inference structures -- it may well contain more than
one, and, according to the details of our procedure, may contain
an infinite number -- that are all equally strong. This
determines both: the epistemic probability of the statement in
question; and its inductive acceptability -- i e. , acceptability for
non-monotonic logic -- as reflected by the lower bound of its
epistemic probability.

0



8. Conclusions: We arrive at several c,,,.*Isiors

4) If we accept the *qu-.alnce conJion that
staterrents connnected in our knc wledge base by a b.ond',tional
should have the same probability-, -- then nnny rnor-t statements
than might at first have been thought can have probabilities
based on statistical background knowledge.

(2) This has a profound bearing on the representation of

uncertainty in our bodies of knowledge. If we suppose that
.subjective" confidence in the strong sense of "subjective" is
acceptable as a measure of uncertainty only when statistical
information is not available, then there are far fewer situations
in which purely subjective uncertainties are called for than some
people have suggested.

(3) Given the equivalence condition, there may be many
potential reference sets for a given equivalence class of

statements. We therefore need a way of adjudicating our choice
among these reference sets.

(4) There are three ways in which conflict between two
potential reference classes can be resolved to the benefit of one of
them. Only one of these ways seems to have worked its way
into the literature on non-monotonic logic. All three should be

taken account of.

(5) These three resolutions reflect the three principles:
the Subset Principle, the Bayesian Principle, and the Superset
Principle. (In fact the subset principle is reducible to the
Bayesian principle (see Kyburg 1983).)

(6) The results of this analysis can be used to implement

probabilistic non-monotonic acceptance as well as to determine
rationally allowable distributions of uncertainty.

Henry E Kyburg, Jr. University of Rochester
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