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tions of the interaction of vortex rings and the flow past an impulsively started square
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Investigations on the flow past a cylinder executing rotary motions were made. The
objective of this part of the research was to implement a control scheme to take a basically

unstable flow situation and either render it effectively stable, at least for some time
inverval, or to exploit the nature of the instability for a particular desired purpose. We

initially intended to use adaptive feedback control to remove instabilities in'these flows.

Informal investigations had suggested that an artificial feedback path introduced into the

flow could provide a measure of control with rather modest control perturbations. In the
course of the present investigations, however, we discovered that the natural feedback
paths in wake flows, when combined with open loop forcing (albeit requiring larger control

inputs), provide considerable control authority over the flow struczure.
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Abstract

This is the final report of research on Unsteady and Separated Flows (AFOSR
Contract F49620-86-C-0134) conducted at the California Institute of Technology.
The overall objectives of this research were to

i. extend understanding of the physics and mechanisms of unsteady and sep-
arated flows, particularly of the role of large vortical structures, for various
boundary conditions (steady and time varying), and for three-dimensional,
as well as two-dimensional geometries;

ii. develop techniques to control such flows for desired effects; and

iii. seek ways of improving methods of computation for unsteady separated
flows.
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1. Introduction

Our work under the sponsorship of this contract on unsteady and separated
flows built on the study of large scale vortical structures that began at GALCIT.
When studying these flows, we note that they are dominated by large vortical
structures. These structures result from the basic underlying instabilities of shear in
flows. As a consequence, the interference or removal of instabilities might provide an
effective means of controlling the flow field. On the other hand, vortical structures
are useful in flows that rely on mixing and combustion. Control of large scale
structures in these flows can yield an unsteady flow that is m.re desirable than the
naturally occurring flow.

In the present investigations, simple geometries were studied. Experiments
and simulations examined the addition of unsteady motions, of flat plates inclined
normal to the flow, and circular cylinders, to the conventional steady motions of
these bodies. The simulations also investigated the (three-dimensional) interactions
of vortex rings and the startup flow of a square flat plate oriented normal to the
direction of motion (bluff body configuration).

Laboratory experiments and measurements on flow past flat plates nominally
normal to the direction of motion were performed. The objectives of this research
were to elucidate the dynamics of large vortical structure in globally steady and
unsteady separated flows, and to develop techniques to modify their behavior and
control them for desired effect. In-line accelerations and transverse oscillations
of flat plates were evaluated to modify the flow structure. These investigations
examined the behavior of the large vortical structures in the resulting unsteady and
separated flow, and the associated forces on the flat plate.

Vortex methods were used to study two- and three-dimensional flows. The
objectives of this research were to develop methods to examine the large-scale sep-
arated vortices in the wake of bluff bodies, study the influence of transient motions
of the body on these dynamics, and investigate control strategies to produce de-
sired effects. Two-dimensional simulations of the flow past a flat plate executing
unsteady motions were coordinated with laboratory experiments for the purpose
of elucidating the physics of natural and forced vortex shedding. Lateral, in-line,
and rotary motions of the plate were studied. Three-dimensional simulations of the
interaction of vortex rings and the flow past an impulsively started square plate
were also studied.

Investigations on the flow past a cylinder executing rotary motions were made.
The objective of this part of the research was to implement a control scheme to
take a basically unstable flow situation and either render it effectively stable, at
least for some time interval, or to exploit the nature of the instability for a par-
ticular desired purpose. We initially intended to use adaptive feedback control to
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remove instabilities in these flows. Informal investigations had suggested that an
artificial feedback path introduced into the flow could provide a measure of control
with rather modest control perturbations. In the course of the present investiga-
tions, however, we discovered that the natural feedback paths in wake flows, when
combined with open loop forcing (albeit requiring larger control inputs), provide
considerable control authority over the flow structure.

The technical discussion for this report is roughly divided into three parts which
describe, experiments with flat plates (fixed separation points) in Sec. 2; experi-
ments with circular cylinders (variable separation points) in Sec. 4; and additional
two- and three-dimensional numerical simulations in Sec. 3.
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2. Investigations of flow past a flat plate (experimental and numerical)

The Laboratory experiments and measurements on flow past flat plates nomi-
nally at 900 angle of attack were performed in the X-Y Tow Tank in close interaction
with corresponding numerical simulations. The findings may be briefly summarized
as follows:

a. In accelerated starts, the flat-plate motion, the forces and flow field mea-
surements in the Tow Tank during the start-up (acceleration) phase of the
plate motion agree well with those computed in an exactly two dimensional
simulation using vortex methods. This indicates that the laboratory flow
is nearly two dimensional during the initial acceleration phase and that
the numerical simulation represents the flow well.

b. After the acceleration period, the flow fields and forces in the still develop-
ing (transient) flows develop differently in the laboratory and in simulation.

c. After about fifty body chords of travel at constant velocity the flow reaches
the steady, vortex shedding state. The value of the mean drag coefficient
in our experiments (CD = 2), agrees well with previously known results.
The corresponding value from the simulation differ considerably (CD = 3.5
and Stroulial number, S = 0.13, respectively). These differences may be
attributable to the effects of three dimensionality in the laboratory flows.
These include effects of spanwise non-uniformities in the shedding which
develop from instabilities and imperfect boundary (end) conditions.

d. Experiments and numerical simulations of the flat plate in forced, periodic
plunging motion* at the natural Strouhal frequency have shown that, when
steady state was reached, tile difference between the estimated CD in tile
laboratory experiments (CD = 2.2), and simulations (CD = 2.9), was
narrowed. The decrease seen in the simulations must be connected with
changing phase relations in the vortex interactions with the plate; in the
experiment similar changes should be expected but the overriding effect is
probr.bly from a reduction of three-dinlensionality.

e. These investigations suggest that, in accelerating motion, it is tile vorticity
(of both signs) which is generated is well correlated along the entire span
of the flat plate. This may reduce tihe relative importance of small three
dimensional effects when compared with the larger two dimensional motion
introduced by the plate acceleration.

* Note that this motion involves unsteady lateral acceleration.



3. Numerical simulation of separated flows

In this work, numerous techniques have been developed which bring the vortex
method paradigm closer to modeling real separated flows in both two and three
dimensions. See Chua (1990).

In two dimensions, flow past a flat plate nominally at 900 angle of attack was
investigated. The objective of this study was to determine the effect of forced
oscillations in the motion of the plate on its time-dependent forces. Both lateral
(see Sec. 2) and rotational motions of the plate were also investigated.

In three dimensions, two problems involving strong interactions of vortex tubes
were carried out. In both cases, the models we developed successfully characterized
the complex motions an( structure of the vortex tubes, and the reconnection of
vortex lines. The two prototypical three dimensional flows which were investigated
are:

a. The interaction of vortex rings was studied. These results compared favor-
ably with the experimental data of Schatzle (1978), and other numerical
results.

b. The early stages of flow past an impulsively started square plate were also
studied.
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4. Active control of separated flows

The type of active control of the flow described in this facet of the investi-
gations relies on the forces between the cylinder and the surrounding flow. It is
this interaction that regulates the ejection of circulation into the separated flow
region and actuates the entire flow field. This is exemplified by the control of tle
structure demonstrated by the phase locked flows in Appendix A and Chs. 3 - 5 of
Appendix B as well as the up-stream influence characterized by tile lifting cylinder
flows described in Appendix B, Ch. 5. In addition, this type of control exploits
the natural tendency to have vortical structures in the flow. This is in contrast to
the more traditional control philosophy that unsteadiness is something that should
be canceled, e.g., Liepmann, et al. (1982), Liepmann & Nosenchuck (1982), and
Ffowcs-Williams & Zhao (1989).

The efficacy of oscillatory cylinder rotation as an actuation mechanism for
actively controlling the cylinder wake is examined in Appendix A and Appendix B,
Ch. 3. It is shown that considerable (ontrol can be exercised over the structure in the
wake with such forcing. In particular, a large increase, or decrease, in the resulting
displacement thickness, estimated cylinder drag, and associated mixing with the free
stream can be achieved, depending on the frequency and amplitude of oscillation.
Not surprisingly, these results show that working in a control domain in which
the structures shed are synchronous with the forcing provides the greatest control
authority over the wake structure. While these results were obtained for moderate
Reynolds numbers. i.e., Re - 10'. there are indications that the description of
the flow phenomena presented here is qualitatively the same over a large range of
Reynolds numbers. The streamline data in Appendix B, Ch. 4, show that under
control (forcing), the vortical structures are formed very close to the cylinder. This
is an indication that the formation of the wake structure, under control. has more to
do with the controlled ejection of circulation, and the associated forces on the body,
than with the stability characteristics of some generic unforced wake. This forced
shedding is in contrast to the natural (unforced) shedding of vortices, where the
structures form only after the vorticity has been shed into the wake, from more-or-
less steady separation points. Hence, it is possible that the stability characteristics
of the wake can play a more significant role in the unforced case than in the forced.
In addition, it is shown that under control, very little of the circulation introduced
at the cylinder wall appears in the wake. Evidently, most of the positive and
negative vorticity introduced into the boundary layer fluid combines before the
fluid is allowed to enter the wake.

A method for estimating the mean lift of a rotating cylinder is presented in
Appendix B, Ch. 5. Estimates based on this method compare favorably with similar
data published for steadily rotating cylinders. It is also demonstrated that the
addition of forced rotary oscillations to the steady rotation of the cylinder increases
the lift coefficient in the cases where the wake would normally be separated in the
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steadily rotating case, but decreases it otherwise.

This research is documented in more detail in Appendix A "Rotary oscillations
control of a cylinder wake" (Tokumaru & Dimotakis 1991), Appendix B "Active
Control of the Flow Past a Cylinder Executing Rotary Motions" (Tokumaru 1991).
Pre-print drafts of the papers "The mean lift of a rotating and oscillating cylinder"
(Appendix C), and "Streamline patterns in the neighborhood of a cylinder executing
rotary oscillations in a uniform flow" (Appendix D), by Tokumaru & Dimotakis are
also included.
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Rotary oscillation control of a cylinder wake

By P. T. TOKUMARU AND P. E. DIMOTAKIS
Graduate Aeronautical Laboratories. (California Institute of Technoh, yx- 301-46. IPasadlena.

CA 9112.5. USA

(Received 24 ,Julv 1989 and in revised form 19 .uv 1990)

Exploratory experiments have been performed on circular cylinders executing fo!-ced
rotary oscillations in a steady uniform flow. Flow visualization and wake profile
measurements at moderate Reynolds numbers have shown that a considerable
amount of control can be exerted over the structure of the wake by suchA means. In
particular. a large increase, or decrease, in the resulting (isplacemcnnt thickness.
estimated cylinder drag, and associated mixing with the free stream can be achieved.
depending on the frequency and amplitude of oscillation.

1. Introduction

It has long been appreciated that the dynamics of the flow over a bluff body are
dominated by large-scale vortical structures shed in its wake. \Weihs (1972) proposed
a methodology for predicting the structure of such a wake and found that it could
become wider. narrower, or remain the same, depending on the initial strength and
spacing of these vortices. His work was primarily aimed at describing the wake
behind an oscillating airfoil (e.g. Bratt 1953; Koochesfahani 1987). Nevertheless,
Weihs's results do suggest the potential for effective control of wakes in general.

The effects of periodic forcing on a wake were investigated by Roberts (1985), and
Roberts & Roshko (1985). They demonstrated that a significant amount of control
over the wake vortex structure and the associated mixing was possible, by pulsing
one stream relative to the other. Okajima, Takata & Asanuma (1975) examined the
forces acting on a rotationally oscillating cylinder for Reynolds numbers, based on
cylinder diameter. in the range

U .d
40 <Re= 6 x 10:'. (1)

where ', is the free-stream velocity far ahead of the cylinder, d is the cylinder
diameter. and v is the kinematic viscosity. His measurements were for a normalized
peak rotation rate.

S , d 1  (2)"1L= 2U.. "

of 0.2 to 1.0. and a forcing Strouhal number,

d (3)

ranging from 0.05 to 0.3, where 6, is the peak rotational rate of the cylinder, 1 is the
peak circumferential velocity, and f is the forcing frequency. He noted a



78 V '. 70'okumar, ,d P. E. E ifimofki.;

synchronization'similar to that observed. for examl)le. by Bisholp & Hassan (1964).
Koopman (1967). and more recently ()ngoren & Rockwell (1988(1. b). and bv
Williamson & Roshko (1988) for a cv inder in transverse and in-line oscillation. Both
Okajima el (l. and Bishop & Hassan reported a hysteresis in their measurements for
increasing and decreasing A"f. Investigations at comltaral)he forcing filequencies.
amplitudes and 16, were also performed by Vu, Mo & Vakili (1989). Taneda (1978)
demonstrate(l that in the range 30 < Re < 300, the 'dea(d water' regi(on )ehind a
cylinder can be removed for .Q sufficiently large (.Q1 > 7 to 27. depending on such
factors as the cylinder span and tank width). For somewhat larger Q1, the
streamlines converged downstream. Similar behaviour was also documented by
Williams & Amato (1988) using a line of unsteady pulsing jets embedded in the
trailing edge of the cylinder, at a comparable Reynolds number of 370.

In the work to be discussed here, we examined the efficacy of forced rotary
oscillations of a (fixed axis) cylinder at a moderate Reynolds number of 1.5 x 10W, for
the purpose of controlling the unsteady separated flow in its wake. The effect of the
cylinder oscillations on the structure of the wake was investigated using flow
visualization, as well as surveys of the resulting wakes using laser-Doppler velocity
measurements.

2. Experimental facility

The experiments documented here were performed in the 18 in. wide, by 19 in.
deep, low speed water channel. as well as the 20 x 20 in. free surface water channel
at GALCIT. A 4 in. diameter Plexiglas cylinder was supported 10 in. above the
bottom of the channel, using 0.5 in. thick Plexiglas fairings placed flush to the
sidewalls of the channel. Drive belts and pulleys were entirely enclosed in the fairings
and did not interfere with the flow. Rotation about the axis of the cylinder was
achieved using a high-performance servo-controlled motor. capable of tracking an
arbitrary command signal within the bandwidth and slewing rates that were
investigated. This command signal was generated by a function generator, or a
computer digital-to-analog converter output channel. Flow visualization was
accomplished by introducing dye upstream of the cylinder, or through small holes on
the cylinder surface at midspan. Streamwise mean and r.m.s. velocity profiles were
measured using a Bragg cell frequency-shifted laser-Doppler velocimeter.

3. Results and discussion

The cylinder was rotated sinusoidally in time at a forcing frequency ,f and a
normalized peak rotational rate of Q, (see (2)), i.e.

Od = Q() = Q2, sin (27ft). (4)
2U

Q was chosen such that the peak circumferential velocity of the cylinder would be
comparable with the velocity just outside the boundary layer of the cylinder
(approximately two times the free-stream velocity). We anticipated that amplitudes
of this magnitude or greater would be necessary to send the vorticity stored in the
boundary layer into the wake in a regulated manner. For these experiments,
we examined the control parameters Q, and Sf in the range 0 < .Q, 16 and
0.17 < S1 < 3.3. The free-stream velocity was approximately 15 cm/s. yielding a
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FIGURE 1. Rotating cylinder flow geometry.

Reynolds number based on cylinder diameter of Re = 1.5 x 10. In addition, wake
mean and r.m.s. velocity profiles were measured at a single streamwise station,
located 4.5 diameters downstream of the cylinder axis. See figure 1.

3.1. Di.splace'nent thickness and drag coefficient estimation

In order to provide a quantitative measure of the effects of forcing on the flow over
a cylinder and the resulting wake, the cylinder drag and wake displacement thickness
were estimated from wake streamwise mean and r.m.s. velocity profiles. For flow
that is two-dimensional, we can define the displacement thickness in terms of the
integral

8* = [ 1 u ( / ) ] d , .h-f l- J " (5)

In this expression, y z y/h is the normalized vertical (cross-stream) position, u(yq) is
the mean streamwisc ,-olocity, y and A are the vertical position and water channel
depth respectively, a- - 1- is the velocity in the (free-stream) region outside the
cylinder wake and water channel boundary layers. See figure 1. By analogy, we may
define the 'displaced area' for a three-dimensional flow. i.e.

A* u(v, dy d'. (6)

where A is the test-section cross-sectional area, and z/b is the normalized
spanwise coordinate, with z the spanwise coordinate, and b the water channel span.
Continuity then yields for U., the free-stream velocity far ahead of the cylinder,

U = TAu( V, ) dV d . (7)

Using (6) and (7) we then find

- Uo(8)
A UO

This expression is useful in that it provides information about the flow over an entire
cross-section of the water channel, while requiring only the measurement of U) and
U.

In order to remove the contribution of the initial boundary layer (in the absence
of the cylinder) to leading behaviour, it is useful to compare L' (with the cylinder in
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FIGUtRE 2. Variation of i*/A with .Sf and QP

place) with the undisturbed flow velocity in the absence of the cylinder I at the

same streamwise location. This yields an expression for the approximate displaced
area of the wake:

i* C
0 (9)

A U"

Figure 2 depicts the variation ofJA/A with S, and 1. The dashed curve in this figure
denotes the J*/A level for the unforced case. The parameter space above this curve
represents an increase in A 5 /A over the unforced case. and below represents a
decrease. Note that the displacement area can be made substantially larger or
smaller b" varying the frequency and amplitude of oscillation. The minimum for
A*/A over the range shown occurs in the neighbourhood of S, 1. and Q, 3. and
is roughly half of the unforced case. Measurements for A*/A were taken in the range
0.17 < 8, < 3.3 in steps of about 0.17, and 0 < £Q2 < 16 in steps of 1. Each of the data
points presented in figures 2 and 3 were averaged over 2 minutes (approximately 40
natural unforced shedding cycles). Wake midspan velocity profiles were measured for
S, in the range of 0.15 to 1.4. holding Q, fixed at 2. Figure 3 compares the wake
profiles for several 8,. and Q1 = 2.

For finite test sections and flow that is two-dimensional in the mean. one can show
that the sectional drag coefficient can be estimated by the expression (e.g. Diinotakis
1978): [hYd I( " I fl U2V" )1

CD (1 (- */h)[f U' d/f - d +e . (10)

In this expression, u' and , are the streamwise and cross-stream r.m.s.. velocities and
8* is the displacement thickness defined in (5). The displacement thickness and drag
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coefficient estimates st In la rized in f-iguire 4 were calculated from mean inidspan

velocity profiles, using (5) and (10). neglecting the fluctuating terms. As can be seen.
there is a broad minimum ini ('D an( 6"*/h arouid ,'! = 1. The estimated C,) for the
unforced case is a factor of six greater than for this forced case. Similarly, there is a
factor of five reduction in S*/h. Note that the value of 8*/h for a particular S' and
-Q1 is generally less than the corres))nding value of A*/A, indicating that there is an
increase in 8*/h outside the midspan region. Note also that since C, increases with
8*/h it must also increase outside this midspan region. This spanwise variation in
*/h is due to the interaction of the sidewalls with the shed vortices. See Roberts

(1985). Roberts & Roshko (1985). Kooehesfahani (1987). and Kurosaka et al. (1988).
Another local minimuni exists near S/ z 0.2. The flow visualization in figure 5f
suggests that this corresponlds to a mode in which the cylinder releases two vortices
of opposite sign (luring each half-(\-eh]. When one of these two vortices shed from the
bottom appears on toll. a (lip is olbserved in the (orresponding velocity profile. See
the circles on figure 3.

We should mention that Okajima di al. (1975) observed a hysteresis with increasing
and decreasing s and Q, = 0.2. We also observed some hysteresis for small values of
Q, but none was discernible in experiments with 2 > 2.

Finally. we suspect that had it not been for the finite height of the test section. the
wake could have been made even larger by forcing at vSf < 0.2.

3.2. Flow risualization

A clear picture of the control that can be exercised over the separated flow in the
wake of the cylinder emerges from our flow visualization data. These demonstrate
the overall narrowing or widening of the wake, depending on the values of Sf and Q,
the control parameters. as well as the formation of distinct vortical structures in the
wake.

In figure 6 (plate 1). dye is introduced ahead of the cylinler by a comb of (ye



82 P)* J'. i6kumli~tq mitd P.* A'. /ioit4/a'j.

0.18 I

0 .16 -- - - -- - - - -- - - - - -_-- - - -

.1.4 - 0 0

0.12

0.10- 0
0

h 0.08 - 0

0.06- 0

0
o.04 - 0

0.02-2

0 0.2 0.4 0.6 0. H.0 1.2 1.4 1.6

S.

1.6 1

1.4 -- -- --- -- -- --- -- -- U nforced --- - - - - -- - - - -

1.0 -

0.6- 0

0.4- 0
0 0

0.2- 0 0

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

FwtRI,, 4. Cyvlinder wa kt- (IisJ)acelflent thickness anrag lnt uethcietit v'ariat ion with S

09 0

Fim-Ri, 5. Forced shedding of two sanie-sign vortices (luring a half forcing cycle.
-r) 

11



Journal of Fluid Mechanics, Vol. 224 Plate I

(a)

-:. ..... .- , .......

(b)-

FIGURE 6. Close up and full flow visualization views with and without active control.
(a) Unforced (non-rotating) cylinder in uniform flow; (b) S1 - 1, 92, z 3.
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(a)0

(b)

FiqutHF T. Forceed Mhe(I(ifg at fixed Sf I (Re =1.5 x 140). (a) Q = 8. (b) Q, 16. (C) Q2, =3:2.
(d) Q, 64.

iievtol's. In tile u11fn-ocedl case. figure 6((1). the (ly' e c-an be seen to lbe dlispersed1 and
mixed across the full height of the test section. within a few diameters dlownistream
of tile cylinder. In contrast, the dIYe marker in thle forced case corresponding(4 to thle
minimum wake widthI found in § 3.1. figure 6(b). occupies apjproximiatel 'v the samne
fraction ()f the test sect ion height onl leaving as it did upon entering.

Trhe data in figures 7 and 8 (recorded with dye issuing from the surfacWe of the
c, Ii uder) Illustrate how the wake niay be niadle wider or narrower b.- varing the
control parameters; S1 and Q2 \\eihs (1972) examined] this phenomenon liv
considering the mutual influence of thle vortices in thle wake and those being shed.
Although his analysis is highly idealized. considlering only point vortices in potential
flow, it dloes provide anl intuitive P~hysical argument for the various trajectories taken
by the vortices. AdIditional flow visualization (data (also recorded with dye issuing
from the surface of the cylinder). at, fixed Q, = 8 andl increasing SP. are dlepictedl in
figrures 1) and~ 10.



(a) 0

(b) 
0 o

(c)•

(d)

FIuRE 8. Mode II: wake structure is synchronized with the forcing frequency
(DI = 8. Rs, = 1.5 x 10). (a) Sf = 0.3. (b) Sf = 0.5. (c) S! = 0.7. (d) SN = 0.9.

Several qualitatively different vortex shedding modes were observed. They are

presented here as modes I to IV. in order of increasing frequency. In the forced mode

I (e.g. figure 5), the cylinder releases two vortices of the same sign per half-cycle. This

second vortex may be attributed to an additional separation caused by the most

recently generated vortex. In mode II (e.g. figure 8). the wake structure is
synchronized with the forced c.ylin(ler oscillation and persists beyond the end of the

test section. In mode Ill (e.g. figure 9). the near-wake structure is also synchronized,

but becomes unstable and evolves into a structure with a lower spatial frequency
some distance downstream of the cylinder. In mode IV (e.g. figure 10). the effect of

forcing is primarily observed in the shear layers separating from the cylinder. Note
that while the flow visualization photographs of the forced cylinder wake, at the

largest values of Sf (cf. figure 10. bottom), resemble those for the unforced case (cf.

figure 11). we find that A*/A in these forced cases is still noticeably less than in the

unforced case.



(a) 0

Fir; URE 9. Modle I I I transition from wa ~ke forc(ing to shear latver forcinog ( k = 8
Be =1.5 x 10'). (a) S1 = I. (b) f 1. 5.

FmiuRE 11). Mode IV: primarily shear layer foretog ( 2, S . Re =1.5 x 104).

FIGURE 1I. Natural (unforced) shedding, Flow visualizedI with dve issuint as for the daitai
figures 5, 7-1W.
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The transition between modes II and IN' occurs gradually through mode Ill.
Figures 8-10 demonstrate how the 'breakup' of the synchronized structure in this
mode moves toward the cylinder with increasing S until finally only the shear layers
are forced. This breakup in the flow structure in modes III and IV may be
attributable to the stability characteristics of the evolving mean velocity profiles (as
suggested by Cimbala, Nagib & Roshko 1988 for lower Reynolds number flows far
downstream), vortex coalescence, three-dimensional effects., or some combinati on
thereof.

Behaviour similar to modes I, II, and III was previously observed by Roberts
(1985). and Ro)erts & Roshko (1985) for the case of forcing the wake behind a
splitter plate. More generally, the bluff-body wake can be compared to a nonlinear
oscillator (e.g. Provansal, Mathis & Boyer 1987) which. wXhen forced, can reveal
synchroni zed or ph.se-locked regions in their parameter spaces, as well as regions
which may be periodic, quasi-periodic, chaotic. unstable. or even stable. See. for
example. (uckenheimer & Holmes (1983, Ch. 2). Note that both Taneda (1978). and
\Villiains & Aimato (1988) show stable (non-vortex-shedding) regions in their
frC(eley- am)lit ude parameter spaces.

FiV.ire 12 shows the var-ation of the normalized phase speed.

S-ASA - U

with Sf. A is the initial streamwise vortex spacing. measured from photographs like
those in figures 8-10. Note the rapid change in SA around Sf = 1. This change is
reminiscent of Tritton's (1959) high-speed and low-speed vortex shedding modes.
Our mode II resembles Tritton's high-speed mode and our mode III. his low-speed
mode.

Observations of unforced vortex shedding show that vorticity is introduced into
the flow from a more-or-less steady separation point, with the resulting vortical
structures forming in the wake of the cylinder. This is in (.oitrast to the forced



(b) uM

0)

FGVR E 1 :1. Nt-a r- uike ro-ion ioet shleddI 11P fi-m thIe uppe I lidl sliItfil e %%it h S] L I a m1
Q1 2. The sequene ((i 1) represelits onel fon-ilig periodI. The vvljmlerl ro)tationial vehnlt v Is'/.cr(

ini (a n d (1). ctivokwis.' In (1) J). andl cmiiftr'i I l)t X%.-;v if) (q! ) (dyve s inrdlced adiead (it
the~ (.Y litter).

SheddIing prloces. replresenltati ve of' modes 1- 111. whiuch Is charactcriZe(I by* an
uilstea(iv sepmailol p~oint *. he force(l she(Iming prlocess for ' f - 1 and( Q 2 is
illuistrated in ffigure 1:3. The shadIed areas in this figure dlenote fluid marked with dye
in~trodlucedl just ahead of the ten o~elock posit ion on the cylinder. This forcing
replaces the nat ural shedd ing inechanismn with one that gathers vortieit v close to the
cyl vinder surface. and then releases it into the flow as a ,vortex '. It is p~lusibleC that
this forcing mechanism wvill continue to operate for much higher Reynolds numbers.
i.e. at least as high as the (lrag-criti('al Reynolds num11ber. Re Recr > 10,5 and
possibly higher.

The results rep~orted here were recordled at modlerate Reynolds numbers. i.e. Re
1 .5 x 101. 11n an effort to assess ReYnolds-number effects. some flow visualization andl
wake measurements were also p~erformedl on a cylinder whose surface was roughened
by means of 0.017 in. (liameter glass heads. This roughness had no dliscernib~le efleet
oni the wake flow visualization or velocityv measurements. InI addition. some flow
visualization was also performedl on a smooth-surface cylinder, at a lower R-eynolds
ninibeII)r of .3. x 10". The resulting flows were found to; be very, similar. It mnay be
interesting to note. however, that the effects at the ig~.her forcing Strouhlal numbers
Were some11what less pronouncedl at this lower Heyvnolds uti mnber.

3.3. A nlote tiboid the' intierprtat~ioni of lirar .4(ibddy, iitbit

There hats been munch interest tin the uise of l inear stahi lit analyses to dlescrib~e
unforced bluff body' flows. See Koch (1985). lriattaf'Yllou & ( 'rYssost omid Is (1 986i).
Monkewitz & Nguyen \(-i 1987). 1Provamsal If t'f. (1987). ( hoiaz. H nerir & lHedekOpp
(1988). Monkewitz (1988). and Karniadakis & Triantaf 'vllou (1989). U.sing linear,
theory, it has been noted that the response to periodlic forcing of the absolutely'
unstable near-wake region of at bluff l)od 'v vI wil e overwhelmed by the 'Intrinsic'
vortex shedding mode observed in the absence of' external fimcino. See Huerre &
Monkewvitz (1985). Monkewvitz & Nguyen (1987). (homnaz et (11. (1988). and
Karniadakis & Triantafvllou (189). This argument is based on a linearized system
and suggests, that the periodic respo0nse wvill be overwhelmed because the transient
re1sponse grows ex ponent ially inI time while the f*)trcui( ugs ()IIv 1)rio(li, c in t imen. Sine

the syStemn cannot be considered Iinv~a r f'Or large excii l'si( ts from the *base' st ate.
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however. t his argru inent (.anl ()III v be relicol upJon for ilitin itesi ial focig lii it iiol's
ando short times. It is not surp)risin~g perhiaps. that this Int(r'pret at ion of the( results
of li near thlem Ivis rnot In accord with C XI )erinlenlts and Si in ulat ions whIiichi show that
fin it e- a pl it ide fo rcing"' of the wake of aitU lff 1 d ' ycall resuilt Iit aw~ake structutre
that I., svinlhrolons with the forcing". over1 at range( Of h1,1(1 ilig frequenicies and~
amplitudes. e~.K( oJ )an i (1967). I rovaii-al ct (it. ( 19 57). ad iKat ii adak is &
Triaiitaf vIrI ()II(1989).

IProvansal (t (it. (1987). exaniuliie'l the (non11lnear) Landau stabilitY im Mdel (Landau
1944: 'Stutart 1958, 1960) andl showed how it could1( be usedl to qtialitat ivel *v dlescrihe
the conidit ions necessary for synchronization at small but fin ite forcling am ilitudes.
adl Reynolds numbers in the vicinitY of the onse(t of vortex shedding. See also
Laniidaiui & f ,If.Ihi t z (1I987 . §§ 26. :30). E vident ly. \vh ile th11e ine (a r staitl it1 aais, ar id
hence the rnot ion of the bluff-bo1V wake as a globally unstab~le flow with at region of
absolute instability. is useful in describing the system d( lPItflic5. giveni aii a priori'
knowledge of the final averaged flow (Karniadakis & Triaritafyllou 1989). predict ioti
of tihe final d(lyriarri state. esp ecially in the pre'~sence~ of finite external forcing reqjuires
ad (illereilt aplj- )'(i(h.

4. Conclusions
In these exp~erimfenits. we examilnedl the efficacy of oscillatory cylinder rotation as

an act uiation mechanism for actively controlling the cylinder wake. W\e conclude that
it is indleedl possible to exercise considlerable control over the cylinder wake via
oscillatory' rotarY forcing. Not surprisingly, our experiments show that working in a
control dlomain in which the structures shed are synchronous with the forcing
provides the greatest control authority over the wake structure. In addition, while
these results wvere obtained for moderate Reynolds numbers. i.e. Re = 1.5 x 10W,
preliminary evidene suggests that the description of the flowv phenomena presented
here is qualitatively the same over a large range of Reynolds numbers. The similarity
of our results with those of others (e.g. Koopman 1967 : Roberts 1985: Roberts &
Roshko 198-5: Ongoren & Rockwell 1988a. b: Williams & Amato 1988. and
Karniadakis & Triantafyllou 1989), using various bluff bodies and forcing techniques.
supports the proposition that the mnechanismis 1)' which the (lynamics in the wake
(an be controlled are largely generic and have more to (10 with the ejection of
circulation into the flow, rathter t ha n wit h thle behavilour oft the flow observed ithe
absence of forcing.

Final]\v. we note, that the t 'ype of'active program mei conit rol lescril eol in this paper
relies on the regulated inject ion of circulation into the separated flow\ region. andl the
Subsequent large-scale vortical interactions. This type of control which exploits the
natural unsteadines.s- in the flowv instead1 of reacting to it is in contrast to the feed-
forward control employed by' Liepmarin. Brown & Nosenchutck (1982). and Liepnann
& Nosenchiuck (1982). and the feedback control employed by Ffowc-(s- \\'Iliris & Zhao
(1989). for example. W~e believe that to control hih enlsnme.fully
dlevelop~ed. separated turbulent flows, it may prove the more efficient anol effective
to programme the inevitable large-scale structures that dominate t hese flows, rat her
than to attempt to suppress them. The large redulctions iii the drag, coefficient and
the normalized wake displacement thickness that were achieved bY the s imp~le
control scheme employed here supports this approach.

We would like to t hank Hans H1orrnung, Toiny Le orardl. R~ichard M ike- Lye. Herb
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Gaebler. Harry Hamaguehi. and Pavel Svitek of GALCIT. as well as John Doyle of
the Dept. of Electrical Engineering at ('altech, for their hel ) and discussions. This
research was sponsored by the Air Force Office of Scientific Research. lUI- I AF()Sl

Grant No. F49620-86-C-0134.
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Abstract

Exploratory experiments have been performed on circular cylinders execut-

ing forced rotary motions in a steady uniform flow. These motions include harmonic

oscillations, steady rotation, and combinations of the two. Flow visualization and

laser-Doppler velocimetry measurements were used to characterize the wake struc-

ture, and to estimate the convection speed, spacing, and strength of the vortical

structures. Laser-Doppler velocimetry measurements were also made to estimate

the cylinder drag coefficient and wake displacement thickness. In addition, the peri-

odic flow close the cylinder and in the near wake region was mapped for a particular

forced case. The data show that a considerable amount of control can be exerted

over the flow by such means. In particular, a large increase, or decrease, in the

resulting displacement thickness, estimated cylinder drag, and associated mixing

with the free stream can be achieved, depending on the frequency and amplitude

of oscillation. In order to assess the effects of oscillatory forcing on a cylinder with

a net (mean) rotation rate, a novel method for estimating the steady lift forces was

employed. Using this method, it was also found that the addition of forced rotary

oscillations to the steady rotation of the cylinder helped to increase CL in the cases

where the wake would normally be separated in the steadily rotating case, and

decrease it otherwise. Results obtained for a steadily rotating cylinder (no forced

oscillations) compare favorably with sinilar data published in the literature.
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CHAPTER 1

Introduction

1.1 Preface

The title of the thesis, "Active Control of the Flow Past a Cylinder Executing

Rotary Motions," can mean different things to different people. In this case, it refers

to the flow past a circular cylinder in a water tunnel. This cylinder was bounded

at both ends and below by test section walls, and from above by the water tunnel

free surface. See Fig. 1.1. To control the structure of the flow, the cylinder was

programmed to execute rotary motions about its axis. This control strategy is called

"active," because energy must be (actively) supplied to execute these motions, cf.

"passive" controls, such as spoilers or riblets, which require no special input of

energy. Since no feedback was necessary (or used) the forcing was under "open-

loop," or "program" control.

In the past this has been called "forcing the flow," and if the flow responded

in a periodic way, terms like "resonance," "locking," and "synchronization" were

used. The notion of controlling unsteadiness was reserved for the elimination of

instabilities. The aim of the present investigations, however, is to program the in-

evitable vortical structures that dominate unsteady flow behind a circular cylinder.
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0U 0  _

FIG. 1.1 Configuration

1.2 Background

Traditionally, experiments involving a cylinder executing rotary motions in

a uniform flow have been performed with cylinder motions that are either harmonic

oscillations or steady rotation. It is believed that the present investigations are the

first to examine cylinder motions combining the two. Because of this, background

material for the oscillating and steadily rotating cases falls naturally into two parts

presented here as Secs. 1.2.2 "Rotary oscillations" and 1.2.3 "Steady rotation." Sec-

tion 1.2.1 introduces a class of forcing functions which includes (rotary) oscillations

plus net rotation of the cylinder.
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1.2.1 Forcing parameters

The motion of the cylinder in the present experiments can be described by

a single equation; i.e.,

= So + fP, sin(2irft), (1.2.1)

where

U0 0

is the normalized rotation rate of the cylinder, a is the cylinder radius, U 0 is the

free-stream velocity, t is the time, 6 is the angular velocity of the cylinder, f is

the forcing frequency, and, SIO and fl, are amplitudes of the steady and harmonic

components of the cylinder motion. The normalized forcing frequency is

S! = 2af (1.2.3)

U0 0 ,

i.e., the forcing Strouhal number.

Three forcing parameters are considered in the present experiments, flo, QI ,

and Sf. In addition, another important parameter is the Reynolds number,

Re - 2aU, (1.2.4)
V

where v is the kinematic viscosity.

Another dimensionless quantity which might have been used is the angular

position of the cylinder, 0(t). In the present experiments, however, Q(t) was used

in favor of 0(t) to provide consistent notation for the normalized mean (Q!o) and

harmonic (fl ) components of the rotation rate. Using angular position to describe

the motion of a cylinder with a net rotation rate is awkward. Note that with fS0 = 0

(no net rotation rate), Sf = 1, and fQ1 = 2, the amplitude of the oscillations in the

angular position of the cylinder is 61 - 36.50.
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1.2.2 Rotary oscillations

The dynamic behavior of the flow over a bluff body is dominated by large

scale vortical structures shed in its wake. Weihs (1972) proposed a methodology

for predicting the structure of such a wake and found that it could become wider,

narrower, or remain the same, depending on the initial strength and spacing of these

vortices. His work was primarily aimed at describing the wake behind an oscillating

airfoil (e.g., Bratt 1953, Koochesfahani 1987). Nevertheless, Weihs's results do

suggest the potential for effective control of wakes in general.

Okajima et al. (1975) examined the forces acting on a rotationally oscillating

cylinder, for Reynolds numbers based on cylinder diameter in the range of 40 <

Re < 6 x 10'. Their measurements were for a normalized peak rotation rate in

the range 0.2 < fQ, < 1.0, and a forcing Strouhal number in the range 0.05 <

S! < 0.3. They noted a "synchronization" similar to that observed, for example,

by Bishop & Hassan (1964), Koopman (1967), and, more recently, Ongoren &

Rockwell (1988a,b), and Williamson & Roshko (1988) for a cylinder in transverse

and in-line oscillation. Both Okajima and Bishop & Hassan reported a hysteresis

in their measurements for increasing and decreasing S1 . Investigations at similarly

low normalized forcing frequencies, amplitudes and Reynolds numbers were also

performed by Wu et a0. (1989). Taneda (1978) demonstrated that in the range

30 < Re < 300, the "dead water" region behind a cylinder can be removed for f~l

sufficiently large (Q,! > 7 to 27, depending on such factors as the cylinder span

and tank width). For somewhat larger fl vortex shedding was inhibited. Similar

behavior was also documented by Williams & Amato (1988) using a line of unsteady

pulsing jets embedded in the trailing edge of the cylinder, at a comparable Reynolds

number of 370.
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The present experiments covered in Chs. 3 and 4 were performed on circular

cylinders executing forced rotary oscillations in a uniform flow (no mean rotation

rate). The Reynolds numbers are higher than in previous investigations at Re =

1.5 x 104 in Ch. 3 and Re = 2.1 x 104 in Ch. 4. Okajima et al. approached these

Reynolds numbers (: 6 x 103 ), but their experiments examined perturbations of

the flow employing peak forcing amplitudes, f01, an order of magnitude lower than

in the present investigations.

In Ch. 3, flow visualization data were used to characterize the wake structure,

and to estimate the convection speed, spacing, and strength of the vortical struc-

tures. In addition, LDV measurements were made to estimate the cylinder drag

coefficient, and wake displacement thickness. The data show that a considerable

amount of control can be exerted over the wake flow by such means. In addition,

a large increase, or decrease, in the associated displacement thickness, estimated

cylinder drag, and mixing with the free stream was achieved, depending on the

frequency and amplitude of oscillation. See also Tokumaru & Dimotakis (1991).

Chapter 4 examines a particular case of a cylinder executing forced rotary

oscillations. An estimate of the unsteady, phase-averaged streamfunction was made.

It was found that the forced shedding mechanism gathers vorticity close to the

cylinder surface and then releases it into the flow. This is in contrast to natural

(unforced) shedding, where the vorticity is released into the flow from more-or-less

steady separation points, allowing the vortices to form in the wake. The speed

and strength of the forced vortical structures was estimated and it was found that

very little of the asymmetry (quantified by the circulation generated at the cylinder

surface) is found in the wake.
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1.2.3 Steady rotation

A rotating cylinder moving in a uniform stream experience a force normal

to the direction of motion. Goldstein (1938) makes several historical references for

both rotating spheres and cylinders and credits Magnus (1853) with the first labo-

ratory experiments examining the lift on a rotating cylinder. Early in this century,

experiments on a circular cylinder rotating about its axis in a uniform flow were

performed by Reid (1924), Prandtl (1925), Thom (1926, 1931), for example. Now,

on the verge of the 21st century researchers continue to find this flow interesting,

e.g., the experiments and simulations of Badar, et al. (1990) for the flow past a

cylinder impulsively started in both rotation and translation.

It can be shown that the mean lift coefficient of a 2-D body can be written

as

L r
CL - = Ua (1.2.5)

where p is the fluid density, U, is the free-stream velocity, a is the cylinder radius,

L is the lift per unit span, and r is the circulation taken round a contour enclosing

the lifting body. See for example Taylor (1925), Thwaites (1960, § V.9). That

this circulation could be measured around contours close to the cylinder was shown

experimentally by Thom (1931).

In the potential flow prototype of a rotating cylinder in a uniform free stream,

the rotation of the cylinder is modeled by placing a point vortex of strength F at

its center. When modeling a flow, I should be considered as a parameter to be ad-

justed so that the flow is properly represented; e.g., to satisfy the Kutta Condition.

Proposing that CL can be made arbitrarily large by arbitrarily increasing r is not

very helpful; r Is the mean lift; cf. Eq. 1.2.5.
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Prandtl (1925) argued that the maximum circulation, rmax, which could

be realized about the rotating cylinder was equal to the circulation at which the

upstream and downstream stagnation points join on the bottom of the cylinder.

From the potential flow analog of that case, a value of

rmax = 4rUoa (1.2.6)

is used. See also the discussion in Goldstein (1938 1, pp. 81-84). Beyond this point,

Prandtl argued that no circulation could be shed by the cylinder to infinity as it

is ramped up from rest to some constant rotation rate of flo > 4, fixing the total

circulation at infinity and the lift of the rotating cylinder thereby. If this argument

were correct, the maximum (steady state) lift coefficient that can be realized would

be given by,

CL,,,. = 47r : 12.6. (1.2.7)

It is not at all clear from the discussions in the literature, but Prandtl relates the

real and potential flow case of the rotating cylinder, not by matching the circulation

calculated by taking a contour round the cylinder at the surface, as one would

expect, but by matching the peak circumferential velocities in the two cases. Not

coincidently, this is also the choice that "looks right."

Chapter 5 examines the effect of cylinder rotation on the flow ahead of the

cylinder. In order to assess the effects of forcing, a novel method for describing

the flow ahead of the cylinder, in terms of the strength and position of a virtual

vortex, was employed. The strength of the virtual vortex was then related to the

lift coefficient of the cylinder. Results obtained for a steadily rotating cylinder (no

forced oscillations) compare favorably with similar data published in the literature.

It was also found that the addition of forced rotary oscillations to the steady rotation

of the cylinder helped to increase the lift coefficient in the cases where the wake

would normally be separated in the steadily rotating case, and decrease it otherwise.
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It is believed that this is the first investigation of the flow past a cylinder with both

net rotation and oscillations.

1.3 A note on the transport of vorticity about the cylinder

The concept of separation is useful because it gives an intuitive feel for the

transport of vorticity into a flow. For the generic case of flow about a bluff body

in steady uniform flow, the vorticity is shed into the wake from "slowly" moving

separation points. It might be appropriate to call this kind of separation quasi-

steady. In contrast, when a body is accelerated in rotation, or translation, as in the

present experiments, separations can appear, move, and disappear over length and

time scales comparable those of the body motion and the surrounding flow. In the

latter case it is even difficult to define "separation".

r

uO -2U.

FIG. 1.2 Flow past a cylinder.

An ad hoc approach is to examine the transport of vorticity close to the body.

In particular, for the case of a circular cylinder, the convective vorticity flux across
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a 6 = constant ray (traversing the boundary layer) can be written as

j = Z Wuedr, (1.3.1)

where 6 is the boundary layer thickness. In dimensionless form

6/a d 2 d (1.3.2)

If the vorticity in the boundary layer can be approximated by

OreW a r- (1.3.3)

then Eq. 1.3.2 can be approximated by

J ue(I/a) )2 2ue(1) 2

1 2 (ut (1.3.4)

Looking at the vorticity convected in the boundary layer at 0 = 90* gives

an indication of the vorticity convected into the (dead water) region behind the

cylinder. See Fig. 1.2.

Consider the case of a cylinder executing rotary oscillations with no mean

rotation rate. The potential flow model for the flow past a circular cylinder has

ue = -2Uoo at 900, (1.3.5)

which is close to the velocity outside the boundary layer in the real case. Using

Eqs. 1.3.5, 1.2.2, and 1.2.1 with Q! = 0 (no mean rotation rate) then yields for the

vorticity convected past the 90* point,

(0 = 90) z4 - f12 sin2 (2rft). (1.3.6)

2 o



- 1.10-

Hence any rotary oscillation of the cylinder will tend to decrease the convection of

vorticity past the 900 point. Note that when

, sin (2rft) = 4, (1.3.7)

(instantaneously) no vorticity is convected past the 90* point as would be the case

in potential flow. Equation 1.3.7 suggests that a value of

"1min = 2 (1.3.8)

may be needed to effectively control this flow.

If, on average, no vorticity is to be convected past the 90' point, then Q,

will satisfy

1, ;, 2V2 ; 2.8. (1.3.9)

It is shown (experimentally) in Ch. 3 that (Sf, 11,) ,z (1,3) marks the minimum

wake displacement thickness in the (S1 , Q I )-parameter space.



CHAPTER 2

Experimental facilities

2.1 Flow facility

The initial- phase of the current experiments, i.e., wake mean velocity mea-

surements and preliminary flow visualization, was carried out in the 18" wide by 19"

deep Low Speed Water Channel (LSWC) located in the basement of Guggenheim. *

Subsequent flow visualization and lift measurements were preformed in the 20" x 20"

Free Surface Water Tunnel (FSWT) in the Hydrodynamics Lab. See Ward (1976).

2.2 The cylinder apparatus

The cylinder support structure, Fig. 2.1, holds a cylinder 10" above the

bottom of the water channel, between 0.5" thick Plexiglas fairings placed flush to

the side walls of the channel. Power is transferred from the motor to the cylinder

using steel reinforced neoprene timing belts. They are entirely enclosed in the

fairings and do not interfere with the flow, cf. Figs. 2.1 and 2.2.

* Also known as "The Student Channel."
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When choosing a motor and cylinder diameter, the minimum design goal was

to be able to oscillate the cylinder with peak rotational rates greater than D, = 2

(as discussed in Sec. 1.3) and at Reynolds numbers around Re = 104. It was felt

that frequencies an order of magnitude faster than the natural (unforced) shedding

frequency would be fast enough (S! ; 2). In addition, a five times "engineering"

factor was used.

The cylinders were driven by a high performance JR16M4CH ServoDisct m

DC motor, from PMI Motion Technologies, capable of tracking an arbitrary com-

mand signal, within the bandwidth and slewing rates that were investigated. This

command signal was generated by a function generator, or a computer digital-to-

analog converter output channel. In addition, the angular position of the cylinder

could be monitored through a 13-bit M25 Series absolute position encoder from BEI

Motion Systems Co.

Cylinders with a radius ranging from 0.25" to 2" and span from 17" to

19" were used. Cylinders were made out of both anodized aluminum and Plexiglas.

Two 2" radius cylinders were used in the present experiments. One was made of

smooth anodized aluminum tubing. The other was made of machined Plexiglas

tubing equipped with ports so that dye could be introduced into the flow from the

cylinder surface. Additional flow visualization was accomplished by introducing dye

upstream of the cylinder, through hypodermic tubing.
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FIG. 2.1 The cylinder apparatus.
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FIG. 2.2 The cylinder drive mechanism.
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2.3 Measurement apparatus

Measurements were made using a number of laser Doppler velocimetry sys-

tems. More details are given in the "experimental setup" sections for each chapter.

In the LSWC a u-channel Bragg cell frequency-shifted He Ne based system was

used. Translation of the LDV (and measurement volume) was effected by a manual

x- y traverse system.

In the FSWT u, (u, v), and ve, Argon-ion based systems, derived from the

LDV system of Lang (1985) were used. All but the u in the (u, v) arrangement,

were Bragg cell frequency-shifted. Translation of the LDV was performed by a

digital x - y - z traverse, and rotation of the focal volume for the ve measurements

was effected by a rotatable dove prism.

The data were gathered using LSI-11 data acquisition computers, and then

transferred to DEC VAX, Apple Macintosh, and NeXT NeXTstation computers for

further reduction and presentation.



CHAPTER 3

Non-lifting cylinder

3.1 Preface

This chapter describes exploratory experiments, performed on circular cylin-

ders executing rotary oscillations, in a steady uniform flow. Flow visualization data

were used to characterize the wake structure and to estimate the convection speed,

spacing, and strength of the vortical structures. In addition, LDV measurements

were made to estimate the cylinder drag coefficient and wake displacement thick-

ness. The data show that a considerable amount of control can be exerted over the

flow by such means. In particular, a large increase, or decrease, in the resulting dis-

placement thickness, estimated cylinder drag, and associated mixing with the free

stream can be achieved, depending on the frequency and amplitude of oscillation.

See also Tokumaru & Dimotakis (1991).
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3.2 Experimental setup

For the experiments detailed in this chapter, S1O was set to zero and Q, was

chosen such that within the range of parameters examined, the peak circumferen-

tial velocity of the cylinder would be comparable to the velocity just outside the

boundary layer of the cylinder (approximately twice the free-stream velocity). It

was anticipated that amplitudes of this magnitude, or greater, would be necessary

to effect a significant change in the flow, as was discussed in Sec. 1.3.

The experiments presented in Secs. 3.3 and 3.4 examine the control parame-

ters Q, and Sj over a range of values. The free-stream velocity was approximately

15 cm/s, yielding a Reynolds number based on cylinder diameter of Re = 1.5 x 10.

In addition, wake mean and rms velocity profiles were measured at a single stream-

wise station, located 4.5 diameters downstream of the cylinder axis. The remaining

sections in this chapter touch on some other issues pertaining to the present exper-

iments.

The wake streamwise mean velocity measurements were performed in the

GALCIT 18" wide by 19" deep Low Speed Water Channel, using a He-Ne based

laser Doppler velocimeter (LDV). The cylinder used for the wake velocity measure-

ments is an anodized and machined aluminum tube, 4" in diameter, and mounted

and driven by the apparatus described in Ch. 2. The command signal for the

cylinder velocity was generated by a computer controlled function generator.

The (15 mW He-Ne) laser beam for the LDV velocity measurements was split

into two beams of nearly equal intensity using a cube beam splitter. The beams

were then Bragg cell frequency-shifted to accommodate flow reversals. The Bragg

cell offset between the two beams was 100 to 200 kHz for the data presented in
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this chapter. An achromat was used to focus the beams in a focal (measurement)

volume located in the midspan plane of the LSWC. The light scattered from the

focal volume was gathered by an achromat and focused on a photodiode with an

integral low noise pre-amplifier designed by Dan Lang. The signal from the pre-

amplifier was then band-pass filtered above and below the frequency corresponding

to the mean flow velocity. The band-pass range was chosen to pass instantaneous

velocity fluctuations. A tracking phase-locked loop designed by Dan Lang and Paul

Dimotakis was then used to lock a TTL square wave to the dominant frequency. The

TTL signal was then read by a counter-timer board on a data acquisition computer

and stored on disk for later processing. The transmitting and receiving hardware

was mounted on a manual x - z traverse (positioner).

Photographs were taken in the GALCIT 20" x 20" Free Surface Water Tunnel

(FSWT) using a 35mm camera. Red dye was used in all figures except for Fig. 3.1.

A blue filter was used (except for Fig. 3.1) to darken the red dye marker relative to

the white background. Illumination was provided from behind by a large (backlit)

white sheet of paper, suspended outside of the tunnel, behind the model. The

cylinder used for the flow visualization data is a machined Plexiglas tube, 4" in

diameter. Holes for introducing dye into the flow were drilled through the surface

at midspan. Additional flow visualization was accomplished by introducing dye

through hypodermic tubing into the flow ahead of the cylinder. The cylinder was

mounted and driven by the apparatus described in Ch. 2. The command signal for

the cylinder velocity was generated by a computer-controlled function generator.
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3.3 Flow visualization

A useful picture of the control that can be exercised over the separated

flow in the wake of the cylinder emerges from the flow visualization data. These

demonstrate the overall narrowing, or widening, as well as the formation of distinct

vortical structures in the wake, depending on the values of the control parameters

S1 and 01.

In Fig. 3.1, dye is introduced ahead of the cylinder by a comb of dye injectors.

In the unforced case (Fig. 3.1, top), the dye can be seen to be dispersed and mixed

across the full height of the test section, within a few diameters downstream of the

cylinder. In contrast, the dye marker in the forced case, corresponding to a reduced

wake width (Fig. 3.1, bottom), occupies approximately the same fraction of the test

section height on exit as it did entering.

The data in Fig. 3.2 and Fig. 3.5 (recorded with dye issuing from the surface

of the cylinder) illustrate how the wake may be made wider, or narrower, depending

on the control parameters S ! and f?. Weihs (1972) examined this phenomenon

by considering the mutual influence of the vortices in the wake and those being

shed. Although his analysis is highly idealized, considering only point vortices in

potential flow, it does provide a physical argument for the various trajectories taken

by the vortices. Additional flow visualization data (also recorded with dye issuing

from the surface of the cylinder), at fixed fZ1 = 8 and increasing S1 , are depicted

in Fig. 3.6 and Fig. 3.7.
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(b)

(d)

FIG. 3.2 Forced shedding at fixed Sj = 1 (Re = 1.5 x 10). (a) Ql = 8, (b)
P, = 16, (c) Il = 32, (d) S1 = 64.

3.3.1 Wake structure

Several, qualitatively different, vortex shedding modes were observed. They

are presented here in order of increasing frequency. Figure 3.3 locates the various

modes in the (Sf, Q, )-parameter space. In the dual mode (e.g., Fig. 3.4), the

cylinder releases two vortices of the same sign per half-cycle. This mode was not

easy to set up and should not be considered robust enough for use in active program

control.
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FIG. 3.3 Location of figures in the (Sf, 11 )-parameter space.

In the global mode (e.g., Fig. 3.5), the wake structure is synchronized with

the forced cylinder oscillation, and persists beyond the end of the test section.

This mode was relatively easy to set up because it occurred over a wide range of

forcing parameters. In the local mode (e.g., Fig. 3.6), the near wake structure is

synchronized, but becomes unstable and evolves into a structure with lower spatial

frequency some distance downstream of the cylinder. In the shear layer mode (e.g.,

Fig. 3.7), the wake structure is not synchronized with the forcing. The effect of

forcing is primarily observed in the shear layers separating from the cylinder. Note

that while the flow visualization photographs of the forced cylinder wake at the

largest values of Sf (cf. Fig. 3.7, bottom) resemble those for the unforced case (cf.

Fig. 3.8), it was found that the wake displacement thickness (Eq. 3.4.2) in these

forced cases is still noticeably less than in the unforced case.
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* 0

FIG. 3.4 Dual shedding: Forced shedding of two same sign vortices during a half
forcing cycle, S1 = 0.2, S11 = 2, Re = 1.5 x 104.

The transition between the global and shear layer modes occurs gradually

through the local mode. Figures 3.5 to 3.7 demonstrate how the "break-up" of the

synchronized structure in the local mode moves toward the cylinder with increasing

Sj. The shear layer mode is then found, at even higher S1 , when none of the

wake structure (save small perturbations of the separating shear layers) is shed syn-

chronously with the forcing. This "break-up" in the flow structure in the local and

shear layer modes may be attributable to the stability characteristics of the evolving

mean velocity profiles (as suggested by Cimbala, Nagib & Roshko 1988, for lower

Reynolds number flows, far downstream), vortex coalescence, three-dimensional ef-

fects, or some combination thereof.

Behavior similar to the dual, global, and local modes was previously observed

by Roberts (1985) and Roberts & Roshko (1985) for the case of a forced wake behind

a splitter plate, and Williamson & Roshko (1988) for a cylinder executing transverse

oscillations in a free stream, for example.
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(d)

FIG. 3.5 Global locking: Global wake structure is synchronized with the forcing
frequency. (a) Sf = 0.3, (b) S" = 0.5, (c) Sf = 0.7, (d) Sf = 0.9.

( = 8, Re = 1.5 x 104 ).

3.3.2 Speed and spacing of the vortical structures

Flow visualization techniques are usually considered only for qualitative anal-

ysis of flow fields. In the present experiments, however, estimation of the normalized

speed (celerity) of the vortical structures relative to the cylinder, u, =_ ff,, divided

by the free-stream velocity,

- U= -" = S(3.3.1)~UM 2a
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FIG. 3.6 Local locking: Local wake structure is synchronized with the forcing fre-
quency. (a) Sf = 1.1, (b) S, - 1.5, (., 8, Re - 1.5 x 104).

(a) 0

FIG. 3.7 Shear layer forcing: (a) S = 2.0, (b) Sf = 3.3. (Qi = 8, Re =

1.5 x 104).

was straightforward, since Sf was known a priori and the ratios of the vortex spac-

ing to the cylinder diameter, t,/2a and f./2a, could be obtained from photographs

like those in Figs. 3.5 to 3.7. See Fig. 3.9. This analysis assumes that the dye marks

the centers of the vortical structures. The normalized celerity, A,, is also estimated
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FIG. 3.8 Natural (unforced) shedding. Flow visualized with dye issuing as in
Fig. 3.2 - Fig. 3.8.

in Sec. 4.3, p. 4.18, for a particular forced case, using LDV measurements. While

A,, is the normalized celerity of the vortical structures, averaged over one forcing

cycle, it is also the spacing, normalized by the distance moved by the flow in one

forcing cycle. The normalized transverse spacing is analogously defined as

f Sf LY (3.3.2)

FIG. 3.9 Diagram of (f,)o, (&)i, (ty)o, and (4)i.
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Note that a negative value of A- is unphysical as it indicates vortical struc-

tures moving ahead of the cylinder. Similarly, a value of A, > 1 is also unlikely

for a wake, since it corresponds to vortical structures moving downstream faster

than the free-stream velocity ahead of the cylinder. In a finite test section, how-

ever, blockage effects result in a local free-stream velocity, U0 , measured above and

below the wake, that is somewhat higher than Uo,. Hence, it is not impossible for

A_ to be somewhat greater than 1.

Figures 3.10 and 3.11 shows the variation of A. and Ay with Sf, just behind

the cylinder. The spacing for the first two forcing periods, nearest the cylinder, are

shown. The squares in these figures denote the spacing for the first pair of vortical

structures, directly behind the cylinder. The circles denote the second pair. The

vertical lines mark the range. The dashed vertical lines indicate where there was a

rapid contraction of the spacing, because the vortical structures were being "rolled"

into larger lower spatial frequency structures. This rapid contraction is not evident

at the highest values of Sf, because the roll up does not occur until several more

forcing periods downstream of the cylinder.

Note the decrease in A, around Sf = 1. This change is reminiscent of Trit-

ton's (1959) high-speed and low-speed vortex shedding modes. In the global mode

the vortex structures move downstream quickly (cf. Tritton's high-speed mode) and

in the local mode the structures move downstream more slowly (cf. Tritton's low-

speed mode). It should be noted, however, that because of the finite test section

height, a larger wake displacement thickness, especially at the lower values of Sf,

can exaggerate the speed of the vortical structures relative to the cylinder. It is

tempting., anyway, to associate the instability in the wake structure observed above

S1 --- I with the decreased initial speed of the vortices.
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FIG. 3.10 Variation of initial A,, with Sf (fl, 8). Squares: A., for the first pair
of structures, circles, for second pair.

Figure 3.12 shows the variation of the spacing ratio,

A y ey

with S1 . The squares in Fig. 3.12 denote the initial spacing ratio, (Ay/A,:) 0 , the

circles, the spacing ratio one period farther downstream, (A,/A,) 1 " Weihs (1972)

suggested that, to first order behavior, the wake would become narrower, or wider,

depending on the initial spacing ratio. For the data in Fig. 3.12, the "neutral"

value of (AY/A,:) 0 , i.e., when (Ay/A,) 0 = (A./A,) 1 , which marks the switch from a

"widening" wake, (A,1/A,:) 0 < (Ay/A.,) 1 , to "narrowing" one, (A.,/A,) 0 > (AY/A,),

occurs around (Ay/A.) 0 = (Ay/A.) 1 = 0.41 (Sf - 0.6). Perhaps related to the
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FIG. 3.11 Variation of initial A, with Si (fl1 ,:, 8). Squares: A. for the first pair
of structures, circles, for second pair.

switch in (Ay/A,) 0 at Sj ; 0.6 is the coincidence of the value of the wake displace-

ment thickness for the forced case and the unforced case. See Fig. 3.17, at 91 = 8.

Around (Ay/A,) 0 = 0.85 (Sf : 1.2), the data indicate a switch back from "narrow-

ing" to "widening." This switch marks the center of the local mode, the division

between the global and the shear layer modes. Note that the terms "widening" and

"narrowing" refer to the ratio of the transverse and streamwise spacing of the vorti-

cal structures, not the absolute spacing. The spacing of the vortical structures was

also measured at a fixed z/a = 9, downstream of the cylinder. Figure 3.13 shows

the variation of the spacing of the structures, with Sf, for 11, = 8, and Fig. 3.14,

for Q, = 4. The spacing of the forced vortical structures is not shown in the figure,
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FIG. 3.12 Variation of initial ratio, Ay/A. with Sf (Qi ;z 8). Squares: Ay/A. for
first pair of structures, and, circles, for the second pair.

for the higher values of S1 , because they were not discernible at x/a - 9.

Note that within the spread of the data, A,, A,, and Ay/A-Z, at x/a - 9,

seem to be constant over most of the range shown. They do seem to be a function of

Q, though. This suggests that, for a given flI, the geometry of the wake structure is

similar over that range. Note that the vertical spacing AY is depressed at the lower

values of S1 . This is probably because of the finite test section height. In addition,

the scatter in the data, especially in the Q, = 4 case, may be attributable to the

subjective method of locating the centers of the vortical structures. For fl = 4,

the average values of A,., A., and A y/Az were 0.96, 0.28, and 0.3 respectively. For
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FIG. 3.13 Variation of A,, AY , and A./A, with S1 at z/a = 9 with Q, = 8.
Triangles: Az, squares: A., and diamonds A,/Az.

Q, = 8, they were, 0.89, 0.37, and 0.41. Note that, at the same value of III = 8, the

average value of A,/A 2 at x/a = 9 matches the "neutral" value of (AY/Az) 0 = 0.4

found earlier.
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FIG. 3.14 Variation of A, AY, and A,/A. with Sf at x/a = 9 with S11 = 4.
Triangles: A, squares: A,, and diamonds A/AZ.

3.3.3 A rough estimate of the vortex strength

A measure of the strength of the vortical structures in the wake can be

obtained from their speed and spacing. A vortex street will have a self-induced

velocity u, which will depend on the strength, F., and the streamwise and lateral

spacing of vortical structures, 1_ and t., and also on factors such as the presence

of the cylinder, finite test section height, finite core size of the vortical structures.

and viscous effects. See Goldstein (1938, §242-246) and Roshko (1954c) for similar

estimates of the strength of vortical structures in a bluff body wake.
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Using the potential flow model of a periodic vortex street,* of the strength

of the vortical structures in the wake, it can be seen (e.g., Goldstein 1938) that the

strength per unit streamwise spacing of the vortical structures in the wake can be

written as
rV = 2-1- cothh (3 33)

This expression is not valid at . - 0, because when the structures are lined up,

Us = 0 and r, can be any value. In addition, u, can be related to the velocity of

the ,ortical structures, uv, from Sec. 3.3.2, i.e.,

us = Uo-uv = Uo-f= •e (3.3.4)

Uo vaies with downstream position, and is not known a priori. Using continuity,

however, and neglecting the core size of the vortical structures, Uo can be written

in terms of, rv/t., U., and 4./h, i.e.,
U0 = U. + , (3.3.5)

4= h'

where h is the test section height. A little algebra, and the definitions for A, and

AY, then yield
= 2 AZ (3.3.6)

U.R. tanh (Lk) _21,

Note that the singularity in this expression is directly related to the fact that the

spet d of the vortex street is zero for the case e. = 0.

Figure 3.15 shows the variation of rv/Uc,,z with Sj. The dashed line in

the figure is a plot of Eq. 3.3.6 assuming constant A. and A,. The rise in F UoJt

at the lowest values of S1 could be an artifact of finite test section height effects,

represented by the the 4_/h term in Eq. 3.3.6. Similar plots for the Ql, = 4 case

were not interpretable, because the spread in the data was too large.

Using such a model can only yield a relative measure of the strength of the vortices in the wake.

See Sec. 4.3 for a better measure of the strength of the vortical structures, for a particular forced

case.
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FIG. 3.15 rIUt uvs. Sf . (Q, = 8).

Similar to r.,/Uoot, a measure of the strength of an individual vortical

structures can be written as

r. 4 Az - - (3.3.7)
Uoo"- 4 f/ tanh( ) h

Figure 3.16 shows the variation of r,/Uoa with S1 . The dashed line in the figure

is Eq. 3.3.7, assuming constant A. and A3 .

For 4 /h < 1, Eqs. 3.3.6 and 3.3.7 become

. = 2(1 - A,)coth A , (3.3.8)
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FIG. 3.16 Jv/U(00a vs. Sf. (111 8).

and

U ~ 4 ~ 1 - A ) coth (~!)(3.3-9)

Though not reay applicable to this idealized case, it was suggested by

lRoshko (1954c) that, for a real wake, the mean local velocity along the line of

vortex centers, Us, bf. s3ed to calculate the velocity of the vortex street relative to

the fluid, where

- 2 (3.3.10)

for the potential flow model discussed here. Using U, instead of u, in the preceding

analysis is equivalent to setting tanh (74I,,) = 1 in the Eqs. 3.3.6 to 3.3.9. This
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leads to simpler estimates,
rV

2(1 - A,) (3.3.11)

and
S ( 1 - A (3.3.12)

3.3.4 Ejection of circulation into the flow

The rate at which circulation is introduced into a flow about a body can be

written (e.g., Leonard 1987) as

dr1 = 2 Abody body , (3.3.13)dt flow

where Abody is the cross-sectional area of the body and body is the rotational

acceleration of the body. In words, net circulation is introduced into a flow from a

body only when it experiences rotary acceleration."

Integrating Eq. 3.3.13 with respect to time yields for the case of a circular

cylinder of radius a,

Arflow = - 27ra 2 A~body , (3.3.14)

where A denotes "change in." Hence, when a rotating cylinder goes from one

rotation rate to another, a net circulation will be ejected from the surface. In

dimensionless form this is
Ar

-07 = - 27r AQ (3.3.15)U. a

It is important to note that "flow" here refers to both the boundary layer and outer flows.

To accentuate this point recall that an impulsively started and lifting airfoil has no rotational

acceleration but ejects a starting vortex into the outer flow. There is no paradox because an

amount of circulation equal to that shed into the outer flow is trapped in the boundary layer

of the airfoil.
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If all of the circulation of a particular sign created during a forcing period and

due to the angular acceleration of the cylinder where put into alternating vortices

Eq. 3.3.15 would indicate a vortex strength of up to

r- = 4 r 111 (3.3.16)

For the present data Ql = 4 and 8. This yields values of

- 50; 100 (3.3.17)
Ua

which are much larger than those presented in Fig. 3.16. That the strength of

the vortical structures in Fig. 3.16 is only rough does not account for the large

discrepancy between the values in Fig. 3.16 and Eq. 3.3.17. A plausible explanation

for this discrepancy is that most of the vorticity generated at the cylinder surface is

reabsorbed, or is cancelled, combining with vorticity of the opposite sign, before the

vortical structure is shed into the wake. This is consistent with the observation that

the vortical structures for--i very close tc the cylinder and hence have time to absorb

both the positive and the negative circulation generated by the cylinder's rotational

acceleration. See Sec. 4.3 for a description of the flow close to the cylinder.

It is likely that the discrepancy will decrease at the lowest values of S f,

because the trend is for

a o-.- "S7 1  (3.3.18)

cf. Eq. 3.3.7. At the very lowest S , the shedding of vortices appear much like

alternating "starting vortices."
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3.4 Displacement thickness and drag coefficient estimation

In order to provide a more quantitative measure of the effects of forcing

on the cylinder and the resulting wake, the cylinder drag and wake displacement

thickness were estimated from wake streamwise mean and rms velocity profiles. For

flow that is two-dimensional, the displacement thickness is normally defined as

'* = f0[1- uq)]d r'U 0  (3.4.1)

In this expression, rl-- y/h is the normalized vertical (cross-stream) position, u(r)

is the mean streamwise velocity, y and h are the vertical position and water channel

depth respectively, and UO is the velocity in the (free-stream) region outside the

cylinder wake and water channel boundary layers. Recall U0 and U,, in Fig. 1.1.

By analogy, the "displaced area" for a three-dimensional flow, can be defined as

A* _ f[ /[ 1 - u ()" ) ] dod( ,(3.4.2)

where A is the test section cross-sectional area, and - z/b is the normalized

spanwise coordinate, with z the spanwise coordinate and b the water char.nel span.

Continuity then yields for Uo, the free-stream velocity far ahead of the cylinder,

U,, = fA u(ri,() d77d . (3.4.3)

Using Eq. 3.4.3 to simplify 3.4.2 then yields

U00  (3.4.4)
A U0

This expression is useful in that it provides information about the flow over an

entire cross-section of the water channel, while requiring only the measurement of

U0 and U0, (see Fig. 1.1).
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In order to remove the contribution of the initial boundary layer (in the

absence of the cylinder), to leading order, it is useful to compare Uo (with the

cylinder in place) with the undisturbed flow velocity in the absence of the cylinder,

UO, at the same streamwise location. This yields an expression for the approximate

displaced area by the wake; i.e.,

1- U 0  (3.4.5)

7= U0

Figure 3.17 depicts the variation of A*/A with Sf and Rl. The dashed curves in

this figure denote &*/A levels equal to, or less than, those corresponding to the

unforced case. The parameter space denoted by the solid lines represents an increase

in A*/A over the unforced case. The displacement area can be made substantially

larger, or smaller, depending on the frequency ai , ,rnplitude of oscillation. The

minimum for &*/A over the range shown occurs in tie neighborhood of Sj A 1,

and fQ, - 3, and is roughly half that of the unforced case. Measurements for A*/A

were taken in the range 0.17 < S! _ 3.3 in steps of about 0.17, and 0 < fli _<

16 in steps of 1. The data presented in Figs. 3.17 and 3.18 was averaged over

2 minutes (approximately 40 natural unforced shedding cycles). Wake midspan

velocity profiles were measured for Sf in the range of 0.15 to 1.4, holding R, fixed

at Q, = 2. Figure 3.18 compares the wake profiles for several values of Sf, at

i=2.

For a finite test section and flow that is two-dimensional in the mean over a

portion of the the span, it can be shown that the sectional drag coefficient can be

estimated by the expression (Dimotakis 1978):

CD~ 2 h/d I uj ) (1U - I'u2-+t 7 -)
(- 6-/h)l [o 0 \U_ U0 J_ ] 0  Ujd 2 (

(3.4.6)

In this expression, u' and v' are the streamwise and cross-stream rms velocities, and

V is the displacement thickness defined in Eq. 3.4.1. The displacement thickness
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FIG. 3.17 Variation of Z* /A with S and !Q. Dashed fines mark the region where

the wake displacement thickness is less than in the unforced case (note
the minimum around S/ = 1 and f91 = 3)1. Solid lines mark the region
where it is greater than or equal to the unforced case.

and drag coefficient estimates summarized in Figs. 3.19 and 3.20 were calculated

from midspan mean velocity profiles, using Eqs. 3.4.1 and 3.4.6, neglec'ting the

fluctuating terms, which are not only small, but very nearly cancel (Dimotakis

1978). As can be seen, there is a broad minimum in CD and P I/h around $! = 1.

The estimated CD for the unforced case is a factor of six greater than for this forced

case. Similarly, there is a factor of five reduction in P*/h. Note that the value of

Pl/h for a particular $I and Qt, is generally less than the corresponding vralue

of a*/A, indicating an increase in P'/h outside the midspan region. Since CD
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FIG. 3.18 Cylinder wake mean velocity profiles, measured at midspan (Qi = 2).
Squares: unforced, circles: S1 =z 0.2, and triangles: Sf : 1.

increases with b° /h it should also increase outside this midspan region. A spanwise

variation in b/h may be attributed to the interaction of the sidewalls with the shed

vortices. See Roberts (1985), Roberts & Roshko (1985), Koochesfahani (1987), and

Kurosaka et al. (1988).

Figure 3.21 shows the correlation between the calculated sectional drag coef-

ficients and sectional wake displacement thicknesses. The dashed line in that figure

denotes the approximate relationship (e.g., Batchelor 1970, §5.12),

6*CD - , (3.4.7)
a
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FIG. 3.19 Cylinder wake displacement thickness variation with S (21 = 2).

for wake profiles taken far downstream of the cylinder.

Another local minimum exists near Sf - 0.2. The flow visualization in

Fig. 3.4 suggests that this corresponds to the du'J mode in which the cylinder

releases two vortices of opposite sign during each half-cycle. When one of these two

vortices shed from the bottom appears on top, a dip is observed in the corresponding

velocity profile. See circles in Fig. 3.18. This phenomenon was only observed in a

small region of the ( S1 , II )-parameter space.
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FIG. 3.20 Drag coefficient variation with S1 (ll = 2).

3.5 A note on the interpretation of linear stability analyses

This section was originally written in response to a reviewer of the paper

"Rotary oscillation control of a cylinder wake," by Tokumaru & Dimotakis (1991).

It is included here as a point of interest.

There has been much interest in the use of linear stability analyses to describe

unforced bluff body flows. See Koch (1985), Triantafyllou et al. (1986), Monkewitz

& Nguyen (1987), Provansal et al. (1987), Chomaz et al. (1988), Monkewitz (1988),

and Karniadakis & Triantafyllou (1989). Using linear theory, it has been noted that

the response to periodic forcing of the absolutely unstable near wake region of a
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bluff body will be overwhelmed by the "intrinsic" vortex shedding mode observed

in the absence of external forcing. See Huerre & Monkewitz (1985), Monkewitz &

Nguyen (1987), Chomaz et al. (1988), and Karniadakis & Triantafyllou (1989). This

argument is based on a linearized model and suggests that the periodic response

will be overwhelmed because the transient response grows exponentially in time

while the forcing is only periodic in time. Since the system cannot be considered

linear for large excursions from the "base" state, however, this argument can only be

relied upon for infinitesimal forcing amplitudes and short times. It is not surprising,

perhaps, that this interpretation of the results of linear theory is not in accord with

experiments and simulations which show that finite amplitude forcing of the wake

of a bluff body can result in a wake structure that is synchronous with the forcing,
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over a range of forcing frequencies and amplitudes; e.g., Koopman (1967), Provansal

et al. (1987), and Karniadakis & Triantafyllou (1989).

Provansal et al. (1987), examined the (nonlinear) Landau stability model

(Landau 1944, Stuart 1958, 1960) and showed how it could be used to describe

qualitatively the conditions necessary for synchronization at small but finite forcing

amplitudes, at Reynolds numbers in the vicinity of the onset of vortex shedding.

See also Landau & Lifshitz (1987, §26 & §30). Evidently, while the linear stability

analysis, and hence the notion of the bluff body wake as a globally unstable flow with

a region of absolute instability, is useful in describing the system dynamics, given an

a priori knowledge of the final averaged flow (Karniadakis & Triantafyllou, 1989),

prediction of the final dynamic state, especially in the presence of finite external

forcing, requires a different approach.



CHAPTER 4

A particular forced case

In this chapter, a particular case of a cylinder executing forced rotary oscilla-

tions in a uniform stream is examined. An estimate of the unsteady, phase-ave: ged

streamfunction was made. The speed and strength of the shed vortical structures

was also estimated.

4.1 Experimental setup

The experiments documented here were performed in the 20" x 20" Free

Surface Water Tunnel at GALCIT. The cylinder used for the near wake velocity

measurements is an anodized and machined aluminum tube, 4" in diameter, and

mounted and driven by the apparatus described in Ch. 2. The command signal for

the cylinder velocity was generated by a computer controlled function generator.

The position of the cylinder output by the BEI 13-bit absolute position encoder was

read using the computer's parallel interface.

Velocities were measured using a one-channel, Bragg cell frequency-shifted

laser Doppler veloci-neter with a translatable (and rotatable) focal volume. A Lexel

Model 85 Argon-ion laser operating in single line mode (514.5 nm) at about 200 mW

was used for the LDV. The laser beam for the LDV velocity measurements was split

into two beams of nearly the same intensity using a cube beam splitter. The beams

were then Bragg cell frequency-shifted to allow for flow reversals. The Bragg cell
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offset between the two beams was 200 kHz for the data presented in this chapter. A

Dove prism was introduced in line after the Bragg cells for the purpose of rotating

the orientation of the measurement volume. An achromat was used to focus the

beams in a focal (measurement) volume located in the midspan plane of the water

tunnel. The light scattered from the focal volume was gathered by an achromat

and focused on a photodiode with an integral low noise pre-amplifier designed by

Dan Lang. The signal from the pre-amplifier was then band-pass filtered above and

below the frequency corresponding to the mean flow velocity. The band-pass range

was chosen to pass instantaneous velocity fluctuations. A tracking phase-locked

loop designed by Dan Lang and Paul Dimotakis was then used to lock a TTL

square wave to the dominant frequency. The TTL signal was read by a counter-

timer board on a data acquisition computer and stored on disk for later processing.

The transmitting and receiving hardware was mounted on a motor driven x - y - z

traverse (positioner).

4.2 Measurement details

For all the data presented in this chapter, S! = 0.94, SI = 2, and Re = 2.1 x

104. This Reynolds number was chosen to be higher than in Ch. 3 to shorten the

time scale of the flow dynamics, and hence also of the experiment. The tangential

velocity, vg(r, 6) was measured along eleven 0 = constant rays in the tpper half

plane, at 15 degree intervals. Along most of these rays, ve was measured in steps

br/a = 0.01, beginning near the cylinder surface, for 1.01 < r/a < 1.15, where r/a

is the normalized radial position. Then in steps of br/a = 0.025 for 1.15 < r/a <

1.25, steps of br/a = 0.05 for 1.25 < r/a < 1.5 and finally in steps of br/a = 0.25

for 1.5 < r/a < 2.5. Figure 4.1 shows the 9 = constant measurement rays. The

velocities at each location were measured at f bt = 0.02 time intervals. At each
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location, 41 forcing periods were averaged at constant forcing phase, yielding 50

realizations of the flow averaged at constant forcing phase. The velocity field in the

lower half plane was taken to be the same as that at the top, but a half forcing

period out of phase.

Before the velocity data were averaged at constant phase, they were

smoothed in time using a gaussian filter with a 3 dB cutoff around five times the

forcing frequency. No other explicit smoothing was performed, but, because of the

wide spacing of the 0 = constant rays, there was an implicit smoothing of data

interpolated in between.

•r

... .. .x

-2 .- 1 0 lo2

FIG. 4.1 Measurement locations.
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4.2.1 Streamfunction

Calculation of the stream function was straightforward. Given that the

stream function 'P is known at some point in the flow x 0 , and the velocity normal

to any path C connecting the two points x and xo, u, - u. n, is also known, the

(dimensionless) stream function O(x) can be calculated, for two-dimensional flows,

by the expression

= / -ua dE + b0 (xo/a) . (4.2.1)
U,,a JC U,, a

Further, since the stream function is constant along a solid boundary surface, it is

convenient to begin integrating from there, and to choose some constant t(xo/a) -

b0 on that surface. For the present experiments, Eq. 4.2.1 was written as
fr/o .ra

Ob(r/a) r/a) dr/a . (4.2.2)

It should be noted that for a number of the measurements, the boundary

layer near the wall could not be resolved with the present setup, because of large

gradients in the velocity, and difficulties in positioning the measurement volume.

This did not cause large errors in the calculation of 0, however, because the velocity

at the wall was known a priori. For the integration of Eq. 4.2.2, a (straight) line

was fit between the velocity at the wall, and the nearest measured velocity.

The forced shedding process for S! - 1 and 0 1 ; 2 is illustrated in Figs.

4.3 to 4.12. The illustrations on the top denote fluid marked with dye introduced

just ahead of the ten o'clock position on the cylinder. They were traced from a

video tape of the flow. The circles with the Q in them indicate the direction and

magnitude (arbitrary scale) of the rotation rate. The illustrations on the bottom
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show the stream lines calculated from data averaged at constant forcing phase. Brief

notes on the averaged constant-phase streamline data are contained in the captions

of the Figs. 4.2 - 4.12*. Figure 4.2 illustrates the average, over all forcing phases,

of the stream function.

The stream function data were first estimated by integrating along 0 =

constant rays. Between the measurement points, the streaxnfunction was estimated

using spline interpolation, first along the rays, and then between them. The stream-

line plots were generated using a contour plotting routine with points interpolated

on a 300 x 400 rectangular grid.

1.5

1.0

.5

.0
-1.5 -1.0 -.5 .0 .5 1.0 1.5 2.0

x

FIG. 4.2 Streamlines averaged over all phases. Note the delayed average separation
point and the small averaged "recirculation" region realized in this forcing
regime. This looks very much like the (unforced) time averaged flow
around the cylinder at higher Reynolds numbers (> 5 x 10'), which also
has a similar drag coefficient of about 0.2 to 0.3.

In Figs. 4.3 - 4.12, the flow visualization data are illustrated on the top and

the phase averaged stream line pattern calculated from ldv data are on the bottom.

The entire set of 50 phase averaged realizations of the flow is included in Appendix B.
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The dot in the figures mark the approximate cylinder position, the arrows, the

direction of rotation, and the shaded regions, the range of motion.

It appears that the forced shedding mechanism outlined here replaces the

natural shedding mechanism with one that gathers vorticity close to the cylinder

surface, and then releases a vortical structure into the flow. This would suggest

that the formation of vortical structures in the forced case is less affected by the

stability characteristics of the flow downstream of the cylinder. This is in contrast

to observations of unforced vortex shedding which show that vorticity is introduced

into the flow from more-or-less steady separation points, with the resulting vortical

structures forming in the wake of the cylinder.

When comparing the streamline patterns in this chapter and Appendix B

with simulations, several factors should be considered. As can be seen from Fig. 4.1,

the spatial resolution of the data for r/a > 1.5 corresponds to only a handful of

measurement locations per vortical structure in that region. The continuity of the

velocity field, however, diminishes this problem. As stated in Sec. 4.2, the data in

the lower half plane was taken to be the same as in the upper half plane, but a

half forcing cycle out of phase. Because of asymmetries in the flow, this match (at

y = 0) is not perfect and causes small "glitches" in the streamline pattern around

the joint between the upper and lower half planes. Comparing streamline patterns

a half period apart gives an indication of the asymmetry in the data. Because

the present data was measured at midspan, there is no out-of-plane velocity, in

the mean. This does not, however, remove three-dimensional effects like vortex

stretching and instantaneous out-of-plane flow.

Because of factors such as these, comparisons of the present data with sim-

ulations will not be perfect. It should be emphasized that the basic mechanisms
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gathering vorticity close to the cylinder (allowing it to mix and cancel) and then

ejecting it into the flow, should not be strongly affected by these factors. A simu-

lation that captures the behavior of the unsteady boundary layer in this flow will

likely have results similar to the present data.
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FIG. 4.3 ft =0.0. At this point, the cylinder has just finished shedding a vortex
(at z/a = 1.5), and the kernel (bump) of the next vortex to be shed can
be seen at about 45 degrees on the cylinder surface.
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FIG. 4.4 ft - 0.1. The bump has grown larger, note also the beginnings of a

second bump on the cylinder surface at about 90 degrees.
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FIG. 4.5 ft = 0.2. Figure 4.5. Both the main bump and secondary bump have
grown larger, and moved around the cylinder in the clockwise direction.
Note that there is also a large vortical structure being shed off the lower
surface at this time.
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FIG. 4.6 ft = 0.3. The bumps continue to grow. Note that the main bump seems
to be held in place relative to the cylinder surface, possibly by the flow
induced by the previously shed vortices. Note that the cylinder motion
is in the clockwise direction which, intuitively, would tend to have the
opposite effect.
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FiG. 4.7 ft =0.4. Again, the bumps continue to grow, but now are becoming
more rounded. The large bump almost looks as if it is being "pinched"
into the flow.
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FIG. 4.8 ft = 0.5. The presence of the secondary bump is less noticeable; most
likely it has been merged with the primary structure.
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FIG. 4.9 ft =0.6. The cylinder begins to move in the opposite direction to the
flow on that side. This appears to be when the vortex begins to be
released into the flow.
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FIG. 4.10 ft = 0.7. Note the beginnings of the next vortex to be shed.



- 4.16 -

1.5

1.0

.5

-- - - -- - -- -

-- -- -- -- - -- ---

~% -- - - - - - - - - -

-1.5

-1.5 -1.0 -. 5 .0 .5 1.0 1.5 2.0

FiG. 4.11 ft = 0.8. The main vortex begins to move off to the right. The next
vortex to be shed continues to be held in place both by the vortices
which have been shed, and the rotation of the cylinder.
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FIG. 4.12 ft =0.9. The main vortex~continues to move off to the right.
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4.3 Strength of shed vortices

Section 3.3.3 proposed a measure of the strength of the vortical structures

shed into the wake. In this section, another estimate for the circulation of the vor-

tical structures is made by measuring the circulation of the flow about the cylinder,

rc (r)I=- r ) v, (r,8) de

for varying phase, ft, and radius of integration, r. The associated dimensionless

quantity is

Figure 4.15 shows the variation of rc/Ua with ft and r/a.

The circulation in an annulus between two circles of radii r, and r2 can be

written as
r, 

2  
-) r cdri) (4.3.1)

Ua I r, U~,a Ua

Hence, an estimate for the strength of a vortical structure (residing in an annulus)

is -, = _____
I, c(rmx) rc(rmin) (4.3.2)

Ua Uoa ,max Ua Imn '

where rmax and rmin are chosen to maximize Eq. 4.3.2 in the wake. The data

in Fig. 4.13 is typical of the variation of rc/Uooa with radius of integration r/a

at a constant phase. Figure 4.14 is the streamline pattern related to the data in

Fig. 4.13. From data :ike Fig. 4.13, the estimated strength of the vortical structures

is
S1 (4.3.3)

Uooa

In addition, from the slope of the contours in Fig. 4.15,

d(r/a) 2 A
d(f t) - 5
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FIG. 4.13 Variation of the normalized circulation, rcU/Uoa, taken round contours
of varying radius, r/a (ft = 0.54). The rise in the curve between
r/a = 1.2 and 1.7 marks a patch of positive (clockwise) circulation

and the drop between r/a = 1.7 and 2.3 a negative (counter-clockwise)

patch. cf. Fig. 4.14.

it is found that the average (normalized) convection speed of the vortices in the

near wake, based on the slope of the r,/Uoa = 0 contour, is

Azz 0.6, for r > 1.2. (4.3.4)
a

The transverse spacing of the vortices was difficult to estimate but appeared to be

in the range

0.2 < AY < 0.3 , (4.3.5)
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FIG. 4.14 Streamline pattern associated with the data in Fig. 4.13 (ft - 0.54).

Interestingly, using the method of Sec. 3.3.3, p. 3.17, for the periodic vortex street

yielded estimates close to Eq. 4.3.3. Using Eq. 3.3.7, and A., and A. from Eqs.

4.3.4 and 4.3.5, yielded an estimate for the strength of the shed vortical structures,

1.1 < -r" < 1.4, (4.3.6)
Us a

and similarly for the simplified estimate, Eq. 3.3.12, which takes no account of the
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transverse spacing, a value
r, ;: 1.0. (4.3.7)
Uooa

What is remarkable is that very little of the circulation, calculated at the

cylinder surface, actually finds its way into the flow. If all of the circulation of a

particular sign created during a forcing period and due to the angular acceleration

of the cylinder where put into alternating vortices Eq. 3.3.16 would indicate a vortex

strength of up to
-- 4,r 9 i z- 25 (4.3.8)

Uooa

for the data in this chapter. For the forced case presented in this chapter, the

strength of the vortical structures shed into the wake is only about 4% of this

value.
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FIG. 4.15 r,/U,a vs. r/a and ft. The dashed lines denote net counter-clockwise
rotation; the solid lines, clockwise. The value r,/U,,a at contour level
'I' =0.6, '2' = 0.5, '3' = 0.4 .... down to, '13' = -0.6. Contour level
'7', solid line, marks the zero contour.



CHAPTER 5

Lifting cylinder

5.1 Preface

In this chapter, a novel method for estimating the lift on the cylinder is pre-

sented. The data calculated using this method compare favorably with similar data

published for steadily rotating cylinders. In addition, the effect of superimposing

forced rotary oscillations on the steady rotation of the cylinder is also presented;

i.e., a cylinder rotary motion of,

0(t) = U f [o + Q, sin(27rft), (5.1.1)
a

where 9 is the angular velocity of the cylinder, go and III are the normalized

amplitudes of the steady and oscillating components of the rotation, and f is the

forcing frequency.
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5.2 Experimental Setup

The experiments documented in this chapter were performed in the GALCIT

20" x 20" Free Surface Water Tunnel (cf. the LSWC used for the wake measurements

in Ch. 3).

The cylinder used for the near wake velocity measurements is machined Plex-

iglas cylinder, 1" in diameter ( AR = 18.7), and mounted and driven by the appara-

tus described in Ch. 2. The command signal for the cylinder velocity was generated

by a computer-controlled function generator. The position of the cylinder output

by the BEI 13-bit absolute position encoder was read using the computer's parallel

interface.

Velocities were measured using a two-channel (u, v), laser Doppler velocime-

ter. The optics, traverse and analog/digital LDV processor, outlined below, are

from Lang's (1985) thesis. The u-channel was only used to measure the free stream

velocity. The v-channel velocities were used to estimate the lift coefficient. The

v-channel was Bragg cell frequency-shifted. A Lexel Model 85 Argon-ion laser op-

erating in single line mode (514.5 nm) at about 200 mW was used for the LDV.

The laser beam for the LDV velocity measurements was split into four beams of

nearly equal intensity using two cube beam splitter in series mounted in series at

+450 and -45 ° respectively. The beams for the v-channel were then Bragg cell

frequency-shifted to allow for flow reversals. The Bragg cell offset between the two

beams was 300 kHz for the data presented in this chapter. Each of the four beams

was then aligned (to insure that they intersect in a single focal volume) by pass-

ing them through wedge prisms. An achromat was used to focus the beams in a

focal (measurement) volume located in the midspan plane of the FSWT. The light

scattered from the focal volume was gathered by an achromat and focused on a pho-
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todiode with an integral low noise pre-amplifier designed by Dan Lang. The signal

from the pre-amplifier was then band-pass filtered above and below the frequency

corresponding to the mean flow velocity to isolate the u-velocity and around the

Bragg offset to isolate the v-velocity. The band-pass ranges were chosen to pass

instantaneous velocity fluctuations and were non-overlapping.

For the data in Figs. 5.2, 5.3, and 5.4, the u- and v-channel outputs from

the band pass filters were then passed thorough a pair of transimpedance amplifiers

(Lang 1985) before being sent to the analog/digital LDV processor (Lang 1985).

The signals were then processed by an analog and digital LDV processor and the

velocity data was stored to disk using data acquisition software written by Dan

Lang. See Lang (1985) for a complete description of the analog/digital signal pro-

cessing hardware. Each data point in Fig. 5.2 is an average over about 10,000

(instantaneous) velocity measurements.

For the data in Figs. 5.5, 5.7, 5.8, and 5.9, a pair of tracking phase-locked

loops designed by Dan Lang and Paul Dimotakis were used to lock TTL square

waves to the dominant u- and v -ciannel frequencies from the band-pass filters.

The TTL signals were then read Ly a (multiple) counter-timer board on a data

acquisition computer and stored on disk for later processing.

Flow visualization was accomplished by introducing red dye into the flow

ahead of the cylinder through a hypodermic tube. A blue filter was used to darken

the red dye marker relative to the white background. Photographs were taken using

a 35mm camera. Illumination was provided from behind by a large (backlit) white

sheet of paper suspended, outside the water tunnel, behind the model.
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5.3 Lift estimation by the virtual vortex method

Since the cylinder in the present experiments experiences no net rotational

acceleration it cannot shed any (net) vorticity into the wake, in the mean. It follows

that the net circulation in the wake cannot contribute to r. As a consequence, the

vorticity contributing to r must be restricted to a relatively small neighborhood

around the cylinder. This suggests that the effect on the flow, some distance from

the lifting body, can be approximated, in a multipole expansion sense, by a single

virtual vortex of strength r. It is also reasonable to expect that this virtual vortex

resides somewhere within the cylinder boundaries.

Ideally, in an infinite domain, the velocity v(x, y = 0), a distance x upstream

of a vortex center is

r = r (5.3.1)

Using Eqs. 1.2.5 and 5.3.1, v can be written in terms of the lift coefficient, CL.

For the infinite domain case this can be written as

V(X) = CL X (5.3.2)
C.- 2vr a*

Because of the finite height of the test section, a proper account should

include spatially periodic image vortices located above and below the cylinder. See

Fig. 5.1. Equation 5.3.1 is then replaced by

V =- r-cschVTX-) , (5.3.3)

where h is the test section height and x0 is the streamwise position of the virtual
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FIG. 5.1 Diagram of periodic image vortices. Only the image vortices immediately
above and below are pictured. The shaded circle denotes the cylinder (not
to scale), and the smaller circles the virtual vortex and its images.

vortex.* Rearranging Eq. 5.3.3 yields,

2hv csch r-i) (5.3.4)

* A transverse displacement of the virtual vortex from the cylinder axis, Yo , is a higher order
effect.



- 5.6 -

I;

3/

N

-16 -14 -12 -10 -8 -6 -4 -20

(X-xo)/a

FIG. 5.2 Normalized transverse velocity ahead of a cylinder executing steady ro-
tation (01 - 0): 2hv/r us. (z - zo)/a, Re = 3.8 x 10'. Sl0 = 0.5 ( 0
), 1.5 ( 0 )2 ( A ), 2.5 ( + ), 3 ( --+ ), 4 ( o ), 5 ( * ), 6 ( A ),8
( I ), 10 ( - ), and 0?i = 0. The dashed line is csch(r(x - xo)/h).

or, using Eq. 1.2.5,

= CL csch 7wO\ (5.3.5)

2 h kh

The transverse velocity was measured at several locations ahead of the cylin-

der axis, for a range of 0.5 < 00 _5 10. The validity of Eq. 5.3.3 as a model for

the decrease in the velocity ahead of the cylinder is demonstrated in Fig. 5.2, a

plot of 2hv/r vs. (x - xo)/a. The parameters h, a, and x were known a priori

and v/Uoo was measured. r and Xo were determined using Eq. 5.3.5 and a version

of the Levenberg-Marquardt nonlinear least-squares fit routine from Press et al.

(1986). Figure 5.3 compares the data of Reid (1924) with CL determined from the
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FIG. 5.3 CL based on data fit in Fig. 5.2 Re =3.8 x10 3 , fI =0, AR =18.7 (0).
Data of Reid (1924) AR = 13.3, Re = 4.0 x 104 0 ), Re = 5.6 x 104

( A ) Re = 7.9 x 104 ( + ), Re = 1.2 x 10'(-~) Data of Prandtl
AR =4.7, Re =5.2 x10' -

nonlinear least squares curve-fit.

The curve-fit data also show that the centroid of the virtual vortex, xO, is

slightly ahead of the cylinder axis. See Fig. 5.4. The centroid appears to be slightly

ahead of the cylinder body, i.e., xo /a > 1, at the lowest value of Slo (=0.5). Ideally,

this should not occur. The velocities being measured in that case, however, are

small (0.004 < v/U. < 0.02) and errors of this order cause anomalies in the fit

parameters.
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FIG. 5.4 Centroid of the virtual vortex, ZO, based on the data fit in Fig. 5.2.

In the following sections, CL is estimated using a single velocity ahead of the

cylinder, and taking the centroid of the virtual vortex to be on the cylinder axis.

In addition, the other parameters were set at z/a = 10, h/a = 40, x/h = 0.25 and

a/h = 0.025.
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5.4 Steady rotation: fl, = 0.

Figure 5.5 shows the lift calculated using Eq. 5.3.5 with xo = 0 and v/Uo

measured at x/a = 10. The published data of Prandtl (1925) and Reid (1924) are

shown for reference. Note tlat the present data seem to overestimate CL at the

lowest values of fo 0 This may partially be attributable to the fact that the origin

of the virtual vortex is not on the cylinder axis. However, the fact that the data

of Prandtl (1925) and Reid (1924) show a negative CL, at the lowest values of SIO,

suggests that the lower Reynolds number in the present experiments may also be

a factor. Note that Tritton (1977) reports that a sphere also experiences a lift in

the "wrong" direction at low rotation rates and higher Re because of a turbulent

separation on the side of the sphere moving opposite to the flow. As can be seen

from the data, Fig. 5.5, larger cylinder aspect ratios (AR) yield larger maximum

lift coefficients ( CL,,,,. ). Compare the data in the present experiments employing a

cylinder with a larger AR = 18.7 with the data of Reid ( AR = 13.3) and Prandtl

AR = 4.7).

Recall that Goldstein (1938), in an interpretation of an intuitive argument

given by Prandtl (1925), suggested that CLm,. = 4 7r ; 12.6. The present data

which show the estimated CL exceeding 47r casts doubt on this proposed upper

limit. Note that the value of CL measured at the highest value of f90 exceed

" CL. " by almost 25%. In addition, the trend suggests that the estimated CL

can be made even larger by increasing Do beyond 12.

It should be noted that in real flow, diffusion and unsteady flow processes

can transport vorticity away from the cylinder at start-up, weakening Prandtl's

proposed CLm.. (Eq. 1.2.7). A more plausible explanation is that three-dimensional

(end) effects will tend to reduce the mean spanwise lift measured at a particular
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FIG. 5.5 Comparison with published data of CL us. RO for steadily rotating cylin-
ders whose ends are flush with the test section walls. Present data (circles)
Re = 4.2 x 103 , (squares) Re = 6.8 x 103, AR = 18.7, in water. Data of
Reid, (dots) Re = 4.0 x 104 < Re < 1.2 x 105, AR = 13.3, in air. Data
of Prandtl (dashes), Re = 5.2 x 10, AR = 4.7, in air.

rotation rate to below that which could be attained in a two-dimensional flow.

Thorn (1926) showed that the sectional lift coefficient decreased toward the ends of

a rotating cylinder. It is interesting that Goldstein also relates how Prandtl, in one

of his experiments, associated the limiting of CL,,,.. (= 4) with a separation of the

flow from the side walls of the test section. To remedy this situation, Prandtl added

co-rotating end disks to the cylinder and then observed an increased CL,,a (= 10).

No further note was made of the end effects for that configuration.
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5.5 Rotation with forced oscillations: 11 0 0, Sf = 0.7.

For the data presented in this section, the forcing Strouhal number,

2af
U 0 0 ,

was fixed at a value of 0.7, while the steady and fluctuating components of the

rotary motion were varied.

18

16

14

12 -
0

10 0 13+

U 0

8 0

6

4 0

+

2 + 0
+ 0° 0

+ 0

0 a
I p p

0 2 4 6 8 10 12

0

FIG. 5.7 Comparison of CL vs. Qo data for several amplitudes of oscillations,
with constant forcing frequency and Reynolds number (Sf = 0.7, Re =

6.8 x 10'). Squares: Q, = 0, crosses: 1.2, and diamonds: 2.3.
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FIG. 5.6 Flow visualization for various mean rotation rates (flo0). With oscillations

(left, Q21 = 2.1, Sf = 0.7), and without (right, Q21 = 0), cf. stars and

circles in Fig. 5.8. From top to bottom, the mean (normalized) rotation

rate is 020 -" 0, 1, 2, 3, 4. and 5. Re = 4.1 X 103 . Note that the picture

on the top right corner is the unforced (non-rotating) case.
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FIG. 5.8 Comparison of CL vs. f20 data for the steady case and an oscillating
case, at two Reynolds numbers. Steady rotation: (circles) Re = 4.2 x 10',
11 = 0, (squares) Re = 6.8 x 10', 11, = 0. Net rotation with oscillations.
(stars) Re = 4.2 x 103, 1 = 2.1, Sf = 0.7, (diamonds) Re = 6.8 x 103
1 = 2.3, Sf = 0.7.

It was found that forced rotary oscillations increased CL for 0 < 110 < 2.5

and decreased it for 2.5 < 00 < 4.5. See Fig. 5.7. It is no coincidence that for

the steadily rotating case, S11 = 0, the cylinder has noticeable vortex shedding for

120 < 2.5, and none for DOb > 2.5. Flow visualization (Fig. 5.6) shows that for

12 o < 2.5, forced oscillations of the cylinder help close the wake, creating a flow

that, on average, is closer to potential. In contrast, for 2.5 < SLO < 4.5, where

the wake would normally close with steady rotation alone, oscillations hinder this

effect. The data for the three cases presented in Fig. 5.7 coincide for Qb0 > 4.5, i.e.,
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the oscillations of the cylinder have little effect on the lift beyond this point.

There is a cross-over region of the CL vs. 110 curve at Q0 between 2 and

4. The data in Figs. 5.7 and Fig. 5.8 suggest that CL in that region is not a

strong function of the forcing amplitude or the Reynolds number. While there is an

indication in Fig. 5.6 (c) that the forced oscillation frequency (Sf ) and the natural

shedding frequency ( Sn ) are close below the cross-over region ( 1o < 2.5), estimates

of CL varied little with Sf in that region. See Fig. 5.9 (squares).

As can be seen in Fig. 5.8, the data for Re = 4.2 x 10', and Re - 6.8 x 10'

are close, except for a slightly delayed break in the lift curve around 11 = 4.5 for

Re = 4.2 x 103. This is possibly due to a delayed boundary layer separation from

the test section w-ills in the latter case.
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FIG. 5.9 The effect on CL of varying Sf. Circles: 00 = 0.3, squares: flo = 1.4
(Re = 6.8 x 10', fl - 2.3).



CHAPTER 6

Conclusions

The type of active program control of the flow described in the present ex-

periments relies on the forces between the cylinder and the surrounding flow. It

is this interaction that regulates the ejection of circulation into the separated flow

region and actuates the entire flow field. This is exemplified by the control of the

wake structure demonstrated in Chs. 3 - 5 as well as the up-stream influence char-

acterized in Ch. 5. In addition, the way this type of control exploits the natural

tendency to have vortical structures in the flow is in contrast to the more traditional

control philosophy that unsteadiness is something that should be canceled, e.g., the

feed-forward control employed by Liepmann, Brown & Nosenchuck (1982) and Liep-

mann & Nosenchuck (1982), and the feedback control employed by Ffowcs-Williams

& Zhao (1989).

In Ch. 3, the efficacy of oscillatory cylinder rotation as an actuation mech-

anism for actively controlling the cylinder wake was examined. It was found that

considerable control could be exercised over the structure in the wake with such

forcing. In particular, a large increase, or decrease, in the resulting displacement

thickness, estimated cylinder drag, and associated mixing with the free stream can

be achieved, depending on the frequency and amplitude of oscillation. Not sur-

prisingly, the present results show that working in a control domain in which the

structures shed are synchronous with the forcing provides the greatest control au-

thority over the wake structure. In addition, while these results were obtained for
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moderate Reynolds numbers, i. e. Re - 10 4 , there are indications that the descrip-

tion of the flow phenomena presented here is qualitatively the same over a large

range of Reynolds numbers. The streamline data in Ch. 4 show that under control

(forcing), the vortical structures are formed very close to the cylinder. This is an

indication that the formation of the wake structure, under control, has more to do

with the controlled ejection of circulation, and the associated forces on the body,

than with the stability characteristics of some generic unforced wake. This forced

shedding is in contrast to the natural (unforced) shedding of vortices, where the

structures form only after the vorticity has been shed into the wake, from more-or-

less steady separation points. Hence, it is possible that the stability characteristics

of the wake can play a more significant role in the unforced case than in the forced.

In addition, it is shown that under control, very little of the circulation introduced

at the cylinder wall appears in the wake. Evidently, most of the positive and nega-

tive vorticity introduced into the boundary layer fluid combines before the fluid is

allowed to enter the wake.

The virtual vortex method explored in Ch. 5 was found to be successful in

characterizing flow ahead of the cylinder. In addition, the method yields estimates

for CL which which agree with the data published by Thom (1924) for lift coeffi-

cients greater than 2, i.e., QO > 1. While the method seems to overestimate CL

at the smaller values of fl0 < 1, it is not certain whether this is due to a fail-

ure in the method, a difference in Re between the experiments, or a pronounced

variation of the sectional lift coefficient along the cylinder span (Thorn 1926). The

CL calculated at the larger values of Qo were also found to be greater than in the

published data, but this was probably due to the larger aspect ratio of the cylinder

in the present experiments. In addition, the maximum (obtainable) lift coefficient

proposed by Prandtl (1925), was exceeded in the present experiments, possibly be-

cause Prandtl's arguments neglected unsteady effects. Finally, it was found that the
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addition of forced rotary oscillations to the steady rotation of the cylinder increased

CL in cases where the wake would normally be separated (in the steadily rotating

case), but decreased it otherwise.



APPENDIX A

Forces on a body

This appendix was extracted form notes collected over the course of the

present investigations. This particular segment of the notes was chosen because it

lends support to the "virtual vortex method" used in Ch. 5. In addition, it shows

how the unsteady circulation around the body is related to the unsteady forces.

A.1 Forces in three-dimensional flow

The unsteady force on a body moving through an incompressible flow (For

steady case see Milne-Thomson 1968, p. 672), can be written as

FB = -p- udV + [-pn-pu(u.n)+pwxn]dS, (A.1.1)
dt J+1,1

where, V is a volume surrounding, but not including, the body, a is the surface

enclosing V and the body, p is the fluid density, u is the velocity, p is the pressure,

p is the viscosity, w -V x u is the vorticity, and n is the outward normal to the

surface a. See Fig. A.1.

If #3, the Bernoulli constant, is defined as
1 1

P +4p(u.u)- Poo- P(UocUoo.), (A.1.2)

Eq. A.1.1 can be rewritten as

FB = p'i udV + - +n+-p(u.u)n-pu(u.n)+uwxn dS.

(A.1.3)



FIG. A.1 3-D Geometry.

Note that the nonlinear terms in Eq. A.1.3 can be written (Milne-Thomson 1968,

p.68) as

ju(u n) dS -L1(u -u) ndS =JwxudV +Ju(V -u) dV . (A. 1.4)

Then, noting also that the last term in Eq. AAA. is zero in incompressible flow, we

have

FB = d4JudV + L[-On +pw x njdS + pJu xwdV . (A.1.5)

In order to extract the "classic" Lift = pucr from the momentum equation,

it is useful to subtract the free-stream velocity, U,, from the velocity field. Let

U0=U - U". (A. 1.6)
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Noting that

W = Vxu = VX(uo+Uo) = Vxuo (A.1.7)

and also that the vector circulation may be defined as

r =fVwdV = vVxuodV, (A.1.8)

the last term in Eq. A.1.5 can be written as

V uxwdV = v (Uo + uo) x w dV

= U. xJVwdV + fvuOxwdV (A. 1.9)

= U,.xr + JVuO x(Vxuo) dV.

It is desirable to write the force in terms of surface integrals, so note that

re-applying the identity (Eq. A.1.4) to uo, with V- uO 0, yields for the last term

in Eq. A.1.9

uo x(Vxuo) dV = -Uo(uo-n) dS + (o-uo) ndS. (A.1.10)

For ease of notation define the surface integral
f 0 (1o _o ( o o dS

=- - n a - - (A.1.11)

such that Eq. A.1.10 can be written as

VuO x(Vx uo)dV = -pU2baE (A.I.12)

where 2 b a * is the frontal area of the body. This then yields for the force on a

body in incompressible flow,

FB = -p- d uodV + [-On+uw x n]dS + pUM xr + pU ba2

(A.1.13)

For the case of a circular cylinder, a is the radius and b is the span.
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FIG. A.2 2-D Geometry.

A.2 Forces in two-dimensional flow

Writing this for two-dimensional flow,

yields the force per unit span,

FB/b = -p-d udA nl-p,.e e d+P2a2DdijfA Jc 0

(A.2.2)

where A is the two-dimensional cross-sectional area of the volume V, C is the

boundary of A (See Fig. A.2), and

) dl 1 -\ u - (A..3

E 2 2.D 1I!-- UO) dl n -u jC, d-- n- A23
CU U. a 2 U.I a
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In terms of the force coefficient,

FB
CF_-- U2ab

_ a d UdA fn_ dl (A.2.4)

Uoo dt AUMo 2  CpUo a a
r 2! wa dl

-Uo. e + - e. x n - + E2-D "
UOa Rec 'U- a

A.3 Lift coefficient

Calculating the lift coefficient,

CL CF 2 _D - e.

a d v dA ( n__ dl

-UodI jU 0 
2 

- p U2 a  '  a (A.3.1)
r 2 f wa dl.e , - E2_ v ' e .

-Uoa+RWe' JU,,. a

and following G. I. Taylor (1925), the #3 integral is eliminated by traversing the

wake vertically, so that (n . e,) = 0 (recall that, by construction, /3 - 0 outside

the wake). Then

a d v dA r 2 f wa dy E2D e. (A.3.2)
U,-= I dt Um- a2  Uooa + J Uo a

where

Re - 2apU,,.

is the Reynolds number.

Averaging Eq. A.3.2 yields

r 2 ( Lya) - Y2-D e. (A.3.3)
-U.-a R e a-ke U,
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Because r tends to a constant outside a small neighborhood of the body (e.g.,

Thorn 1931) and CL is a property of the body, it is apparent that

2e / . a - 2-e - const.,ReJake \Ua

and since E approaches zero for large contours, it is proposed that

2 f Od\ ) y 2 Au
Re Jke d Re U.

for any contour about the body that traverses the wake vertically, where Au is the

velocity jump across the wake at a large distance from the body. Equation A.3.3

can then be written as

CL = Ua 0 Re J (A.3.4)

For even moderate Re, the second term in Eq. A.3.4 may be neglected, since

Au/U, will also tend to be small.



APPENDIX B

Streamlines averaged at constant forcing phase.

Forcing function:
(t) a -1i sin 7rSf U-)

U. a

where 01 = 2, S1 = 0.94, and Re = 2.1 x 104 for the present experiments. In the

figures, a negative rotation is in the clockwise direction. See Ch. 4 for a description

of these data.

1.5

1.0

.5

.0
-1.5 -1.0 -.5 .0 .5 1.0 1.5 2.0
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FIG. B. 1 Ti me- averaged streamlines.
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FIG. B.2 Streamlines for flow averaged at constant phase. Sequence on left: 0.00
ft < 0.08, right: 0.10 ft < 0.18.
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FIG. B.3 Streamlines for flow averaged at constant phase. Sequence on left: 0.20 <
ft < 0.28, right: 0.30 < ft < 0.38.
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FIG. B.6 Streamlines for flow averaged at constant phase. Sequence on left: 0.80

ft < 0.88, right: 0.90 ft < 0.98.
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The mean lift of a
rotating and oscillating cylinder

By P. T. TOKUMARU AND P. E. DIMOTAKIS

Graduate Aeronautical Laboratories, California Institute of Technology 301-46,

Pasadena, CA 91125 USA

A method for estimating the mean lift of a rotating cylinder is presented.

Estimates based on this method compare favorably with similar data published for

steadily rotating cylinders. It was also found that the addition of forced rotary

oscillations to the steady rotation of the cylinder increases the lift coefficient in the

cases where the wake would normally be separated in the steadily rotating case, but

decreases it otherwise.

1. Introduction

A rotating cylinder moving in a uniform stream experiences a force normal
to the direction of motion. Goldstein (1938) makes several historical references

for both rotating spheres and cylinders, crediting Magnus (1853) with the first

laboratory experiments examining the lift on a rotating cylinder. Early in this

century, experiments on a circular cylinder rotating about its axis in a uniform flow

were performed by Reid (1924), Prandtl (1925), Thom (1926, 1931), for example.

Their measurements were for Reynolds numbers in the range,

4 x < Re 2aU, < 1.2x105 , (1)
V

where a is the cylinder radius, U. is the free stream velocity, and v is the kine-

matic viscosity. More recently, experiments and simulations have been performed

at low Reynolds numbers by Badar, et al. (1989), Ingham & Tang (1990), and
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Tang & Inghan (1991), for the steady flow past a rotating cylinder, and at higher

Reynolds numbers of 103 and 10' by Badar, et al. (1990) for the flow past a cylinder

impulsively started in both rotation and translation.

As is well known, the mean lift coefficient of a cyi'.nder can be written as
L F

CL -- pU2a U~a ' (2)

where p is the fluid density, L is the lift per unit span, and F is the mean

circulation taken around a contour enclosing the lifting body. See for example Taylor

(1925), Thwaites (1960, V.9). That this circulation could be measured around

contours close to the cylinder was shown experimentally by Thom (1931).

In the potential flow prototype of a rotating cylinder in a uniform free stream,

the rotation of the cylinder is modeled by a point vortex of strength P at its center.

When modeling a flow, r should be considered as a parameter to be adjusted so that

the flow is properly represented; e.g., to satisfy the Kutta Condition. Proposing

that CL can be made arbitrarily large by arbitrarily increasing F is not helpful; F

is the mean lift (cf. Eq. 2).

Prandtl (1925) argued that the maximum circulation, Fmax , which could be

realized about the rotating cyliuder was equal to the circulation at which the up-

stream and downstream stagnation points join on the bottom of the cylinder. From

the potential flow analog of that case, that corresponds to a value of

F,,,x = 47rU..a. (3)

See also the discussion in Goldstein (1938 I, pp. 81-84). Beyond this point, Prandtl

argued that no circulation could be shed by the cylinder to infinity, as it is ramped

up from rest to a constant rotation rate, fixing the total circulation at infinity, and

the lift of the rotating cylinder thereby. If this argument were correct, the maximum

steady-state lift coefficient that can be realized would be given by,

CL.., = 4,r - 12.6 . (4)

Note that Prandtl relates the real and potential flow case of the rotating cylinder not

by matching the circulation calculated by taking a contour around the cylinder at

the surface, as one would expect. but by matching the peak circumferential velocities

in the two cases.

16 April 1992
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The present experiments examine the effect of cylinder rotation on the flow

ahead of the cylinder. In order to assess the effects of forcing, the flow ahead of the

cylinder was described in terms of the strength and position of a virtual vortex. The

strength of the virtual vortex was then related to the lift coefficient of the cylinder.

Results obtained for a steadily rotating cylinder (no forced oscillations) compare

favorably with similar data published in the literature. It was also found that the

addition of forced rotary oscillations to the steady rotation of the cylinder helped

increase the lift coefficient, in cases where the wake would normally be separated

in the steadily rotating case, and decrease it otherwise. It is believed that this is

the first investigation of the flow past a cylinder with both net rotation and forced

oscillations.

2. Experimental setup

The present experiments were performed in the GALCIT 20" x 20" Free

Surface Water Tunnel (see Ward 1976). A machined Plexiglas cylinder, 1" in

diameter and an aspect ratio of 18.7 was supported 10" above the bottom of the

water channel, between 0.5" thick Plexiglas fairings placed flush to the side walls

of the channel. Power was transferred from the motor to the cylinder using steel

reinforced neoprene timing belts. These were entirely enclosed in the fairings and

did not interfere with the flow. The cylinder was driven by a high performance

DC motor from PMI Motion Technologies (JR16M4CH ServodiskTM), capable of

tracking an arbitrary command signal within the bandwidth and slewing rates that

were investigated. The command signal for the cylinder angular velocity was gen-

erated by a computer-controlled function generator. The angular position of the

cylinder was measured using a BEI Motion Systems Co. 13-bit absolute position

encoder connected to the motor driveshaft.

Velocities were measured using a two-channel (u, v), laser Doppler velocime-

ter. The optics. traverse and analog/digital LDV processor, outlined below, are

* The setup of the present experiments is similar to that used in Tokumaru & Dimotakis (1991),

and Tokurnaru (1991).
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as were employed by Lang (1985). The u-channel was only used to measure the

free stream velocity. The v-channel velocities were used to estimate the lift coeffi-

cient. A Lexel Model 85 Argon-ion laser operating in single-line mode (514.5 nm)

at about 200 mW was used for the LDV. The laser beam for the LDV velocity mea-

surements was split into four beams of nearly equal intensity using two cube beam

splitters in series, at +45 ° and -45O, respectively. The beams for the v-channel

were then Bragg-cell frequency-shifted to accommodate flow reversals. The Bragg-

cell frequency offset between the two beams was 300 kHz for the present data. For

alignment, to insure that the beams intersected in a single probe volume, each of

the four beams was passed through wedge prisms. An achromat was used to focus

the beams in a focal (measurement) volume located in the midspan plane of the

FSWT. Light scattered from the focal volume was gathered by two achromats, in

series, and focused on a photodiode with an integral low noise pre-amuplifier. The

signal from the pre-amplifier was then band-pass filtered above and below the fre-

quency corresponding to the mean flow velocity to isolate the u-velocity and around

the Bragg offset to isolate the v-velocity. The band-pass ranges were chosen to pass

instantaneous velocity fluctuations and were non-overlapping.

For the data in Figs. 2 - 4. the signals from the band-pass filters were processed

by an LDV signal processor (Lang 1985) and the velocity data were stored on disk.

Each data point in Fig. 2 is an average over about 10,000 (instantaneous) velocity

measurements. For the data in Fig. 6, a pair of tracking phase-locked loops was

used to lock TTL square waves to the dominant u- and v-channel frequencies from

the band-pass filters. The TTL signals were then read by a (multiple) counter-timer

board on a data acquisition computer and stored on disk for later processing.

Flow visualization was accomplished by introducing red dye into the flow

ahead of the cylinder through a hyl)odermic tube. A blue filter was used to darken

the red dye marker relative to the white background. Photographs were taken using

a 35 mm camera. Illumination was provided from behind by a large (backlit) white

sheet of paper suspended, outside the water tunnel, behind the model.

16 April 1992
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3. Cylinder motion

The angular motion of the cylinder in the present experiments can be de-

scribed by a single equation; i.e.,

0 = Qo + Q, sin(27rft) , (5)

where
Q - a ( 6 )

is the normalized rotation rate of the cylinder, a is the cylinder radius, U. is the

free-stream velocity, t is the time, b is the angular velocity of the cylinder, f is

the forcing frequency, and, Q0 and Q, are amplitudes of the steady and harmonic

components of the cylinder motion. The normalized forcing frequency is

Sf= 2af (7)

U. 0

i.e., the forcing Strouhal number. The Reynolds numbers in the present experiments

are Re = 3.8 x 103 and 6.8 x 103 .

4. Lift estimation by the virtual vortex method

The cylinder in the present experiments experiences no net rotational acceler-

ation after it's initial start-up. Hence, once steady state flow has been established,

it can not shed any additional vorticity into the wake, in the mean. It follows

that, some time after start-up, the circulation in the wake cannot contribute to the

mean circulation, F, taken around the cylinder. As a consequence, the vorticity

contributing to r must be restricted to a relatively small neighborhood around the

cylinder. This suggests that the effect on the flow, some distance from the lift-

ing body, can be approximated, in a multipole expansion sense, by a single virtual

vortex of strength F.

Ideally, in an infinite domain, the transverse velocity v(x, y = 0), a distance

x upstream of a vortex center is

v(Xy=0) (8)
27r x
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FIG. 1 Diagram of periodic image vortices. Only the image vortices immediately

above and below are pictured. The shaded circle denotes tile cylinder (not
to scale), and the smaller circles the virtual vortex and its images.

Using Eqs. 2 and 8, v call be written in terms of the lift coefficient, CL. For the

infinite domain case this can be written as

v(X, y = 0) CL X
2= r (9)U,, 27r a

Because of the finite height of the test section, however, a proper account should

include spatially periodic image vortices located above and below the cylinder. See

Fig. 1. Equation 8 is then replaced by

v(x,y=0) =- 2 csch 7r XXO), (10)

where h is the test section height and x0 is the streamwise position of the virtual

vortex. Rearranging Eq. 10 yields.,

2v(x0y O) =-csch (7r 1 0)

or, using Eq. 2.
v(x,y =0) a CL csch r X(12)

U 2h

16 April 1992
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/
3/

CO -16 -14 -12 -10 -8 -6 -4 -2

(x-xo)/a

FIG. 2 Normalized transverse velocity ahead of a cylinder executing steady rotation
(Qj = 0): 2hv/r vs. (x-xo)/a, Re =3.8 x 10 3 . o = 0.5 ( 01 ), 1.5 (
O ),2 ( i ), 2.5 ( + ), 3 ( -, ), 4( ), 5 ( * ), 6 ( A ), 8 ( ), 10 (
- ), and , = 0. The dashed line is csch(7r(x - xo)/h).

A more general form of Eq. 12 which allows for both a streamwise (x0) and trans-

verse (Yo) displacement of the virtual vortex is

a= CL [ cos(IrY) sinh(rz-o) 1 (13)
U11 2h sil2 (ir Y) +sinh 2 (7r (13)

Note that when measuring v along the x (y = 0) axis, a transverse displacement

of the virtual vortex from that axis, Yo, is a higher order effect than a streamwise

displacement, xo, i.e.,

v a CL csch 7r + (14)

Uoo 2h (I J It -
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12 -0
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6- 0
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oo
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FIG. 3 CL based on data fit in Fig. 2 Re = 3.8 x 103, Q1 = 0, At 18.7 (0).
Data of Reid (1924) At = 13.3, Re = 4.0 x 104 ( Q ), Re = 5.6 x 104 (
A ), Re = 7.9 x 104 ( + ), Re = 1.2 x 105 ( -- ). Data of Prandtl (1925)
A= 4.7, Re = 5.2 x 104 ( -

5. Steady rotation: Q,? = 0.

To test the utility of Eqs. 10 - 12, the transverse velocity was measured at six

locations ahead of the cylinder axis, for a range of 0.5 < Do _< 10 (Re = 3.8 x 103).
The validity of this model for the transverse (v) velocity ahead of the cylinder is

demonstrated in Fig. 2, a plot of 2hv/F vs. (x - xo)/a. The parameters h, a,

and x were known a priori (h/a = 40), and v/Uoo was measured. r and x0 were

determined using Eq. 11 and a version of the Levenberg-Marquardt nonlinear least-

squares fit routine from Press et al. (1986). Figure 3 compares the results of Reid

(1924) and Prandtl (1925) with CL determined from this nonlinear least squares

curve-fit.

16 April 1992
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FIG. 4 Centroid of the virtual vortex, x0 , based on the data fit in Fig. 2.

It may appear that the present results measured at Re = 3.8 x 103 overes-

timate CL at the lowest values of QZ0. In fact, the results of Prandtl (1925) and

Reid (1924), at Re > 4 x 104, show a negative CL at the lowest values of DO. Ex-

periments at much lower Re (Re < 100, Badar, et al. 1989, Tang & Ingham 1990)

yield a CL somewhat higher than the present experiments. Tritton (1977) reports

that a sphere also experiences a lift in the "wrong" direction at low rotation rates

and higher Re because of a turbulent separation on the side of the sphere moving

opposite to the flow. This suggests that the discrepancy at low 0 may well be

attributable to Reynolds number effects.

As can be seen from Fig. 3, larger cylinder aspect ratios (At) yield larger

maximum lift coefficients (CL..K ). Compare the results in the present experiments

employing a cylinder with a larger A = 18.7 with those of Reid (Al = 13.3) and

Prandtl (AR = 4.7).
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The curve-fit results also show that the centroid of the virtual vortex, x0 , is

slightly ahead of the cylinder axis. See Fig. 4. In fact, this centroid appears to

be slightly upstream of the cylinder body, i.e., xo/a > 1, at the lowest value of

0 0 (=0.5). This may counter intuition, as very little of the vorticity in the flow is

situated upstream of the cylinder. As can be secn from Fig. 5 and Eq. 14, allowing

for a virtual origin away from the cylinder axis is a higher order correction.

16 A
14 *

12 *

6

4

2

4A

t0

0 2 4 6 8 10

no

FIG. 5 Lift estimates holding the virtual origin coincident with the cylinder axis,
A 's, and allowing it to vary, * 's.

Recall that Goldstein (1938). in an interpretation of an intuitive argument

given by Prandtl (1925), suggested that CL... = 4 7r -_ 12.6. The present results,

that show the estimated CL exceeding 47r, cast doubt on this proposed upper limit.

Note that the value of CL mneasuired at the highest value of Q1o exceeds "CL-ax "

by more than 20%. In addition. the trend suggests that the estimated CL can be

made larger by further increasing Q1o. or AR. or both.

16 April 1992
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Diffusion and unsteady flow processes can transport vorticity away from the

cylinder at start-up, weakening Prandtl's proposed CL... (Eq. 4). A more plausible
explanation is that three-dimensional (end) effects will tend to reduce the mean

spanwise lift measured at a particular rotation rate to below that which could be

attained in purely two-dimensional flow. Thorn (1926) showed that the sectional

lift coefficient decreased toward the ends of a rotating cylinder. It is interesting
that Goldstein also relates how Prandtl, in one of his experiments, associated the

limiting of CL..x (= 4) with a separation of the flow from the side walls of the
test section. To remedy this situation, Prandtl added co-rotating end-disks to the

cylinder and then observed an increased CL..x (= 10). No further discussion of

end-effects for that configuration was included.

6. Rotation with forced oscillations: Q, i 0, Sf = 0.7.

For the data presented in this section, the forcing Strouhal number, Sf, is
fixed at 0.7, while the steady and fluctuating components of the rotary motion are
varied. The Reynolds number is somewhat higher than in the previous section at

6.8 x 103 . CL is estimated using Eq. 12 and the mean velocity at a single point
ahead of the cylinder, v(x/a = 10). Because xo/x < 1, the centroid of the virtual

vortex is taken to be on the cylinder axis, i.e., xo/h ,z 0. See Eq. 14. In addition,

the ratio of the cylinder radius to the water tunnel depth is a/h = 0.025.

It was found that forced rotary oscillations increased CL for 0 < Q0 < 2.5

and decreased it for 2.5 < Q10 < 4.5. See Fig. 6. For the steadily rotating case,

Q, = 0, the cylinder has noticeable vortex shedding for fQ0 < 2.5, and none for

90 > 2.5.

Flow visualization (cf. Figs. 7 - 9) reveals that, for Ql0 < 2.5, forced oscilla-
tions of the cylinder help close the wake, creating a flow that, on average, is closer

to potential (the forced oscillations may also decrease spanwise variations in the

flow). In contrast, for 2.5 < 0 < 4.5, where the wake would normally close with

steady rotation alone, oscillations have the opposite effect. The data for the three

cases presented in Fig. 6 coincide for f 0 > 4.5, i.e., the oscillations of the cylinder
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FIG. 6 Comparison of CL vs. Q0 data for several amplitudes of oscillations, with
constant forcing frequency and Reynolds number (S1 = 0.7, Re = 6.8 x
103). 0: QI = 0, A: 1.2. and 0 : 2.3.

have little effect on the lift beyond this point. There is also a cross-over region of

the CL vs. 00 curve at 0 between 2 and 4, where CL does not appear to be a

strong function of the forcing amplitude.

7. Streak flow visualization and streamline patterns

For the photographs in Figs. 7 - 9. dye was introduced upstream of the cylin-

der near the mean "stagnation" streamline. The overlays on the right side of the

figures depict the streamline patterns calculated from a potential flow model (with

the cylinder bounded from above and below as in the photographs) using the lift

coefficients calculated from the present experiments. As can be seen, the stagnation

streakline in the photographs can be approximated by the stagnation stream line

16 April 1992
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*SS

FIG. 7 Top: stationary cylinder, (Po,91,Sf) =(0,0,0), CL =0.0. Bottom:
oscillation with zero mean rotation rate, (no, Q 1, Sf) (0, 2.1, 0.7), CL=
0.0.

FIG. 8 Top: steady rotation, (floj Q 1 , Sf) =(0.5, 0, 0), CL =0.6. Bottom: os.
cillation with same mean rotation rate as "Top:", (QO, Q1, Sf) = (0.5,2.1,0.7),
CL = 2.0.

in the potential flow case.
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FIG. 9 Top: steady rotation, (o. A l, Sf) (4, 0, 0), CL = 10.5. Bottom: oscil-
lation with same mean rotation rate as "Top:", (0, Q 1 , Sf) = (4, 2.1,0.7),

CL = 9.2.

8. Conclusions

These experiments have shown that higher cylinder aspect ratios yield higher

maximum lift coefficients. The maximum lift coefficients in the present experiments

exceed that proposed by Prandtl (1925), possibly because Prandtl's arguments ne-

glected unsteady effects. It was also found that the addition of forced rotary os-

cillations to the steady rotation of the cylinder increased CL in cases where the

wake would normally be separated (in the steadily rotating case), but decreased it

otherwise. Finally, the virtual vortex method was found to be successful in charac-

terizing the flow ahead of the cylinder. The method yielded estimates for CL which

agree with the data published by Thom (1924) for lift coefficients greater than 2,

i.e., /0 > 1. At the smaller values of 92 0 < 1, the measurements yielded values

of CL, that are higher. This discrepancy is attributed to a difference in the Re

between the experiments.

This research was sponsored by the Air Force Office of Scientific Research,

URI AFOSR Grant No. F49620-86-C-0134.
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Streamline patterns in the neighborhood of
a cylinder executing rotary oscillations

in a uniform flow

By P. T. TOKUMARU AND P. E. DIMOTAKIS

Graduate Aeronautical Laboratories, California Institute of Technology 301-46,

Pasadena, CA 91125 USA

A particular case of a circular cylinder executing forced rotary oscillations in a

uniform stream is examined. Estimates of the unsteady streamfunction, averaged at

constant phase, are presented. These data show that vortical structures are formed

very close to the cylinder. The estimated strength of these vortical structures is

small when compared with the fluctuation of the vorticity, in the boundary layer.,

caused by the cylinder motion. A possible (natural) feedback mechanism limiting

the strength of the vortices in the wake is also outlined.

1. Introduction

The flow past a cylinder executing harmonic rotary oscillations about its axis

in a free stream has been approached by several investigators, using flow visualiza-

tion, force measurements, and simulations.

Okajima et al. examined this flow using simulations and force measurements

for Reynolds numbers in the range.,

40 < Re = 2aU, <6X10 3

V

and normalized amplitudes (peak rotation rat(,). in the range

0.2 < 12, -- < 1.0,U11
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and forcing Strouhal numbers in the range

0.05 < Sf =- < 0.3
Ux1

where a is the cylinder radius, U, the free-stream velocity, v the kinematic vis-

cosity, f the forcing frequency, and 0 the angular velocity of the cylinder. They

noted a "phase locking" of the vortex shedding (generation) to the cylinder motion

over a range of forcing frequencies and amplitudes. Flows about a cylinder execut-

ing rotary motions have also been investigated by Taneda (1978), Wu et al. (1989),

and Filler et al.(1991). The l)resent data is an outgrowth of the work presented in

Tokumaru & Dimotakis (1991), and Tokumaru (1991).

In the work to be discussed here, we examine a particular case of phase-

locked vortex shedding from a cylinder executing harmonic rotary oscillations in

a free stream. The effect of the cylinder oscillation is examined using velocity

measurements in the vicinity of the cylinder, averaged at constant forcing phases.

While not perfect, these experimental data demonstrate the forced shedding process

in more detail than flow visualizations and single point measurements that can be

found in the literature.

2. Experimental facility

The present experiments were performed in the GALCIT 20" x 20" Free

Surface Water Tunnel* (see Ward 1976). A machined anodized aluminum cylinder,

4" in diameter with an aspect ratio of about 4.2 was supported 10" above the

bottom of the water channel, between 0.5" thick Plexiglas fairings. Power was

transferred from the motor to the cylinder using steel reinforced neoprene timing

belts. These were entirely enclosed in the fairings and did not interfere with the

flow. The cylinder was driven by a high performance DC motor from PMI Motion

Technologies (JR16M4CH Servodisk TM ), capable of tracking an arbitrary command

signal within the bandwidth and slewing rates that were investigated. The command

* The setup of the present experiments is similar to that used in Toknuiaru & Dimotakis (1991),

and Tokumaru (1991).
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signal for the cylinder angular velocity was generated by a computer-controlled

function generator. The angular position of the cylinder was measured using a

BEI Motion Systems Co. 13-bit absolute position encoder connected to the motor

driveshaft.

Velocities were measured using a Bragg cell frequency-shifted laser Doppler

velocimeter with a translatable (and rotatable) focal volume. A Lexel Model 85

Argon-ion laser operating in single line mode (514.5 nm) at about 200 mW was

used for the LDV. The laser beam for the LDV velocity measurements was split

into two beams of nearly the same intensity using a cube beam splitter. The beams

were then Bragg cell frequency-shifted to allow for flow reversals. The Bragg cell

offset between the two beams was 200 kHz. A Dove prism was introduced in line

after the Bragg cells for the purpose of rotating the orientation of the measurement

volume. An achromat was used to focus the beams in a focal (measurement) volume

located in the midspan plane of the water tunnel. The light scattered from the focal

volume was gathered by a pair of achromats onto a photodiode with an integral

low noise pre-amplifier designed by Dan Lang. The signal from the pre-amplifier

was then band-pass filtered above and below the frequency corresponding to the

mean flow velocity. The band-pass range was chosen to pass instantaneous velocity

fluctuations. A tracking phase-locked loop was then used to lock a TTL square wave

to the dominant frequency. The TTL signal was read by a counter-timer board on a

data acquisition computer and stored on disk for later processing. The transmitting

and receiving hardware was mounted on a motor driven x-y-z traverse (positioner).

3. Results and discussion

The cylinder was rotated sinusoidally in time, i.e., with a rotation rate, 0(t),

of

9(t) = -j sin(27rft), (1)

where f denotes the forcing frequency, a the cylinder radius, and 9j the peak

rotation rate of the cylinder. For the present experiments the forcing Strouhal

number Sf , normalized peak rotation Q1. and the Reynolds number Re. were all

fixed (Sf = 0.9, Q, = 2, and Re = 2.1 x 104).
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3.1 Velocity measurements

The angular velocity component in the flow, vo(r,O), was measured along

eleven 0 = constant rays in the Uipper half plane, at 15 degree intervals. The points

in Fig. 1 denote the measurement volumes used in the present experiment. Each

forcing period was divided up into fifty (f bt = 0.02) time slices (phases). The

velocities at each location were averaged at constant phase (i.e., at each of the fifty

forcing phases), over approximately fourty-one forcing cycles.

The velocity data were smoothed in time using a Gaussian filter with a 3 dB

cutoff around five times the forcing frequency. No other explicit smoothing was

performed, but, because of the wide spacing of the 0 = constant rays, there was an

implicit smoothing of data interpolated in between.

3.2 Streamfunction

Calculation of a stream function from velocity data was relatively straightfor-

ward. It was calculated at each forcing phase in order to visualize the development

of the flow with time. In particular, given that the stream function T is known

at some point in the flow x 0 , and the normal velocity, u, = u- n, to any path C

connecting two points x and x0 , is also known, the (dimensionless) stream function

p(x) can be calculated, for two-dimensional flows, by the expression

_(x) I' u.. dl
,)(x/a) -+ Qa =o (xo/a) . (2)

U,,a c U,, a

Further, since the stream function is constant along a solid surface, it is convenient

to begin integrating from there, and to choose some 0(xo/a) = constant Gn that

surface. For the present experiments, V'o was chosen to be zero on the cylinder

surface, so Eq. 2 could be written as

g(r/a) = J vo(r/a) dr/a (3)

where r is the radial coordinate with r = 0 oni the cylinder axis.

16 April 1992
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The stream function data were first estimated along each 9 = constant ray

using Eq. 3 and a simple trapezoidal integration scheme. Between the measurement

points, the streamfunction was estimated using spline interpolation, first along the

rays, and then between them. The velocities in the lower half-plane were approxi-

mated using the measurements from the upper half-plane, but a half forcing cycle

out of phase. The streamline plots were gencrated using a contour plotting routine

with points interpolated on a 300 x 400 rectangular grid.

Figures 2 to 11, show selected stream lines calculated from the velocity data

averaged at constant forcing phase. The dot in the figures inside the cylinder

mark the approximate cylinder position, the arrows, the direction of rotation, and

the shaded regions, the range of motion. Notes on the averaged constant-phase

streamline data are contained in the captions of the Figs. 2 - 11.**

In Fig. 2 (ft = 0.0), the cylinder has just finished shedding a vortex (at

x/a = 1.5), and the kernel (bump) of the next vortex to be shed can be seen at

about 45 degrees on the cylinder surface. The bump has grown larger in Fig. 3

(ft = 0.1), note also the beginnings of a second bump on the cylinder surface at

about 90 degrees. In Fig. 4 (ft = 0.2). both the main bump and secondary bump

have grown larger, and moved around the cylinder in the clockwise direction. There

is also a large vortical structure being shed off the lower surface at the same time.

In Fig. 5 (ft = 0.3), the bumps continue to grow. The main bump seems to be

held in place relative to the cylinder surface. possibly by the flow induced by the

previously shed vortices. The cylinder motion is in the clockwise direction which,

intuitively, would tend to have the opposite effect. In Fig. 6 (ft = 0.4), again, the

bumps continue to grow, but they now appear to be more rounded. The larger

bump looks as if it is being "pinched" into the flow. In Fig. 7 (ft = 0.5), the

presence of the secondary bump is less noticeable; most likely it has been merged

with the primary structure. In Fig. 8 (ft = 0.6), the cylinder begins to move in

the opposite direction to the flow on that side. This appears to be when the vortex

begins to be released into the flow. Note in Fig. 9 (ft = 0.7), the beginnings of

the next vortex to be shed. Then, in Fig. 10 (ft = 0.8), the main vortex begins to

PostScript R plots and averaged velocity data for the entire set of 50 phases of the flow can be
obtained in electronic form by e-inailing a request to archivef(hydraO.caltech.edu.
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move off to the right. The next vortex to be shed continues to be held in place both

by the vortices which have been shed, and the rotation of the cylinder. Finally, in

Fig. 11 (ft = 0.9), the main vortex continues to move off to the right. Figure 12

illustrates the stream function averaged over all forcing phases. Note the small size

of the mean recirculation region.

These figures show that the forced shedding mechanism outlined in these

figures replaces the natural shedding mechanism with one that gathers vorticity

close to the cylinder surface, and then releases it as a vortical structure into the

flow. This is in contrast to observations of unforced vortex shedding which show

that vorticity is introduced into the flow from more-or-less steady separation points

with the resulting vortical structures forming in the wake of the cylinder.

3.3 Strength and speed of shed vortical structures

The angular velocity data in the present experiment is also well suited to

calculating the circulation r, around the cylinder,

l7c(r)_ r f ve(r,) dO , (4)

U, a a JC(r) U"

where r is the radius of integration around a circular contour C(r) concentric with

the cylinder.

The data in Fig. 13 is typical of the variation of Fc/Uca with radius of

integration r/a at a constant phasc. Figure 14 is the streamline pattern related to

the data in Fig. 13. Figure 15 shows the variation of PIU.a with ft and r/a.

The circulation inside an annulus between two circles of radii ri and r 2 can

be written as F, I :  F (r2) ]F,(ri)(5

Ua U, a Uoa

Hence, an estimate for the strength of a vortical structure (residing in an annulus)

is
Fv ( F, (r,1ax )( r1 i,,) I  (6)
UU a Iax U[a - ,i,

16 April 1992
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where rmax and r111in are chosen to maximize Eq. 6 in the wake. Using Eq. 5 and

data like that shown in Fig. 13 and 15 to estimate the strength of the vortical

structures yields
r V ( 7 )

U~a

for the present experiment.

Note. however, that the (peak-to-peak) fluctuations of the circulation at the

cylinder surface

r Fcnx(r : a)
a 2 - = 47rQ 1 - 25, (8)

for the present experiment, is much larger than in Eq. 7.

This may be because the strength of the vortices in a wake pattern is nec-
essarily limited since the pattern cannot have a self-induced velocity greater than

the free stream, i.e., the wake pattern cannot convect upstream faster than the

cylinder. This suggest that a natural feedback mechanism is at work limiting the

strength of the vortices well below values like Eq. 8. For example, if the vortices are

too strong they will tend to move downstream more slowly, delay the shedding of

the next vortical structure into the wake. The oscillations of the cylinder generate

both positive and negative vorticity over the entire surface of the cylinder during

each forcing I)hase. This allows the vortex to gather vorticity of both signs during

a forcing cycle. The strength of the vortices then depends on the shedding phase,

where the shedding phase is regulated by previously shed vortices. In some sense,

this feedback can be likened to a phase-lock loop circuit.

Finally, from the slope of the contours in Fig. 15, it is found that the average

(normalized) convection speed, u,/U,, of the vortices relative to the cylinder,

based on the slope of the Fc/Uca = 0 contour, is

U, Sf d(7r/a)U.- S d(f/t) 0.6 , for - > 1.2. (9)
U c 2 d(ft) a
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3.4 A rough estimate of the vortex strength

Using the Karman vortex street as a model, all order of magnitude estimate of

the strength per unit streamwise spacing of the vortical structures call be derived.

From Goldstein (1938, §244),

Ura I ( b) (10)

where f4 the strcamwise spacing of the vortical structures. In addition, 14/a call

be related to u,/U,, and Sf by

Sf-: f _ Uv
2a -U = Uo (11)

Note that by construction F, > 0 (uv < 1) for a wake, and a value of u, < 0

would indicate a wake pattern that is traveling upstream faster than the cylinder,

so for steady vortex shedding it is expected that

0 < < .(12)

Taking Eqns. 10 and 11 and applying Eq. 12 then yields

0 < Ua < - 1.5 (13)

for the present experiment. This is consistent with the value of r,/Uoa 1 in

Eq. 7.

16 April 1992
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3.5 Caveats

It should be noted that there are several limitations to the present results.

For a few measurements near the cylinder surface, the boundary layer could not

be resolved with the present setup. This was because of large gradients in the
velocity and difficulties in positioning the measurement volume. This did not cause

large errors in stream function integration, however, because the velocity of the
cylinder surface was known a priori. For the integration at the cylinder surface, a
(straight) line was fit between the velocity at the wall, and the nearest measured
velocity. As can be seen from Fig. 1, the spatial resolution of the data for r/a > 1.5

corresponds to only a handful of measurement locations per vortical structure in
that region. Continuity of the velocity field, however, diminishes this problem. In

addition the data in the lower half plane was taken to be the same as in the upper
half plane, but a half forcing cycle out of phase. Because of asymmetries in the flow,

this match (at y = 0) is not perfect and causes small "glitches" in the streamline
pattern around the joint between the upper and lower half planes. Comparing

streamline patterns a half period apart gives an indication of the asymmetry in the

data. Because the present data was measured at midspan, there is no out-of-plane
velocity, in the mean. This does not. however, remove three-dimensional effects like

vortex stretching and instantaneous out-of-plane flow. Finally, because the data

was averaged at constant phase. fluctuations in the flow that are not in phase with

the forcing will be averaged out. Because of factors such as these, comparisons of

the present data with two-dimensional simulations will not be exact. It should be

emphasized, however, that the basic mechanisms gathering vorticity close to the

cylinder (allowing it to mix and cancel) and then ejecting it into the flow, should

not be strongly affected by these factors. A good simulation (that captures the

behavior of the unsteady boundary layer) should yield results similar to the present

data.
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4. Conclusions

Estimates of the unsteady streamfunction, averaged at constant phase, were

made. They revealed that the vortical structures are formed very close to the cylin-

der and then released into the wake. This is in contrast to the natural (unforced)

shedding of vortices, where the structures form after the vorticity has been shed

into the wake, from more-or-less steady separation points.

In addition is was found that the strength of these structures was small,

by more than an order of magnitude, when compared with the fluctuation of the

vorticity in the boundary layer caused by the cylinder rotational acceleration. It

is proposed that this is because the strength of the vortices in a wake pattern is

necessarily limited since the pattern cannot have a self-induced velocity greater

than the free stream (i.e., the wake pattern cannot convect upstream faster than

the cylinder). Evidently, most of this vorticity, introduced into the boundary layer

fluid combines before the fluid is allowed to enter the wake.

This research was sponsored by the Air Force Office of Scientific Research,

URI AFOSR Grant No. F49620-86-C-0134.

16 April 1992
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FIG. 1 Measurement locations.
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FIG. 2 ft =0.0. The dot in the figure marks the approximate cylinder position,
and the shaded region, the range of motion. The arrows in the figures that
follow indicate the direction of rotation.
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FIG. 3 ft=O0.1.
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FIG. 5 ft=0.3.
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FIG. 6 ft=0.4.



18

1.5

1.0

1.5 -1.0 -. 50 .5 1.0 1.5 2.0

FIG. 7 f t = 0.5.
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FIG. 12 Streamlines averaged over all phases. Note the delayed average separation
point and the small averaged "recirculation" region realized in this forcing
regime. This looks very much like the (unforced) time averaged flow around
tie cylinder at higher Reynolds numbers (> 5 x 10'), which also has a
similar drag coefficient of about 0.2 to 0.3.
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FIG. 13 Variation of the normalized circulation, r,/Ua, taken round contours of
varying radius, r/a ( ft = 0.54). The rise in the curve between r/a = 1.2
and 1.7 marks a patch of positive (clockwise) circulation and the drop
between r/a = 1.7 and 2.3 a negative (counter-clockwise) patch. cf.
Fig. 14.
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FIG. 14 Streamline pattern associated with the data in Fig. 13 (ft = 0.54).
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FIG. 15 IF,/U,,a vys. r/a and ft. Thc dashed lines denote net counter-clockwise
rotation; the solid lines. clockwise. The value rc/U,a at contour level
'1 = 0.6, '2' = 0.5. '3' = 0.4 ... , down to, '13' = -0.6. Contour level
'7', solid line, marks the zero contour.
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