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1. Introduction.

People have worried for many years - centuries - about how you perform
large changes in your body of beliefs. How does the new evidence lead you to
replace a geocentric system of planetary motion by a heliocentric system' How do
we decide to abandon the principle of the conservation of mass?

The general approach that we will try to defend here is that an assumption,
presupposition, framework principle, will be rejected or altered when a large
enough number of improbabilities must be accepted on be basis of our experience. If
I think that all swans are white, and a student claims to have a counterexample, I
will assume that he has made some observational error. I will reject his result, and
continue to accept the generalization. When a lot of people claim to have seen
counterexamples, I will come around: to continue to accept the generalization
would require me to accept too many improbabilities. This is a discontinuous
process as we will construe it: it is not a matter of a general statement becoming less
probable, while certain reports become more probable. We cannot accept the
generalization and even one of the observation reports: that would be a simple
inconsistency.

One suggestion, due to Karl Popper, is that we invent Bold Conjectures, and
Put Them to the Test. (Popper, the logic of scientific discovery) Bold conjecture: the
Earth is the Center of the Solar System. Test... what? Bold conjecture: Mass is
conserved. Test: weigh a mass of plutonium and its by products before and after.
Obviously things are a little more complicated than the slogans suggest.

Alternatively, gather evidence, and accept the hypothesis that is most
probable, relative to that evidence. So far, so good (maybe). But then what? How
do you change from that hypothesis to one inconsistent with it when the evidence
so indicates? For as soon as a hypothesis is accepted, it has probability 1; and as soon
as a hypothesis has probability 1, its contraries have probability 0; and as soon as a
contrary hypothesis has probability zero, its probability can never leave zero - at
least not by Bayes' theorem.

A natural rponse to this observation is to say (as Carnap did) "acceptance" is
just an approximation to the real truth, which is that no hypothesis ever achieves
literal acceptance, which would entail its having a probability of 1. What we really
have (as opposed to the approximate way we talk) as a probability blanket over a
field of empirical propositions, none of which is ever assigned a probability of 0 or 1
unless it is a mathematical or logical truth, or the denial of one.

This latter approach presents us with serious problems. We will consider the
problem of assigning prior probabilities to the sentences of a reasonably rich
language later, but already we are faced with a difficult computational problem. Gil
Harman (Change in View) has pointed out that in a language win n basic sentences
there are 2n assignments to make. But of course we can get by with wholesale
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assignments; if we decide that each conjunction of basic sentences or their negations
is to have the same measure assigned to it, there is in fact only one assignment to
make: one simple algorithm that provides the measure for any sentence.

In general, however, a useful and realistic language will have an infinite
number of sentences, and this procedure breaks down. It is still possible to assign
measures systematically, without assigning zero to any sentence representing a
possibility. The number of sentences in any ordinary language is denumerable, and
we can find a denumerable number of finite numbers that add up to 1. But the
rationale of the system is hard to find.

It is, at any rate, worth exploring alternatives to either of these approaches to
to rational acceptance. One of the first to offer a systematic procedure for this was
Isaac Levi. In Gambling with Truth and The Enterprise of Knowledge, Ievi
proposes a rule for adding to your body of knowledge. Given such a rule, one can
obtain a rule for replacing one conjecture, law, theory, hypothesis by another by
proposing that when faced with a choice, one simply deletes both candidates from
one's body of knowledge, and then adds the one indicated by the application of the
rule for addition.

The rule is just this: [p.89] Let U be a set of most specific possible hypotheses
- i.e., a set of which exactly one member is true. Let M be an "information
determining probability" [Enterprise, p. 48],: M(g) represents the informational value
of rejecting g, and let P be an expectation forming probability (a degree of belief, a
credibility), let q in [0,1] be an index of caution. The rule (Rule A, of Gambling) is to
reject all and only those elements g of U such that P(g) < qM(g), and to accept, with
deductive closure, the disjunction of the remainder.

Given a rule for acceptance, we can construe contraction as suspending belief
in a proposition and then failing to add it back under subsequent expansion; and we
can construe replacement as suspending belief in one proposition, and arriving at
another on subsequent expansion.

We can accomplish a change of framework of "accepted facts" this way, and
we can be sure of maintaining consistency in the process. There are some knotty
problems, however. When and how do we decide to suspend belief in a framework
proposition? There are clear cases: when observations render our corpus
inconsistent, for example. "For the sake of argument," in a friendly social context.
But the question has not been very thoroughly explored. How should q, the index
of caution, be chosen? Where does the information measure M come from? How
do we arrive at the credal probability p? More fundamental: How is the "abductive"
step - the step in which the ultimate partition U is formed - to be controlled and
rationalized?

One can always raise questions, of course. But these questions are disturbing F

because the rule presupposes a framework (a language, an information measure, a
credibility measure, a set of most specific answers), and thus to be not even
potentially capable of providing guidance in the choice of a framework. But let us .
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An approach similar to Levi's has been developed in various ways by
Makinson, Alchurron, and Gardenfors. While Levi approaches the question from a
constructive, analytic angle, and seeks to provide formal analysis of what goes on in
changes in a corpus of knowledge, Gardenfors and the others approach the question
from a logical point of view: they seek to explore axioms that may be taken to
characterize the change of a body of knowledge, construed as a set of propositions.
Thus, for example, it is clear that if we add the proposition A to our body of
knowledge K, then A should belong to that expanded body of knowledge. As is the
case with Levi, it is assumed by these writers that a body of knowledge K should be
construed as a deductively closed set of propositions.

An excellent examination of these logics of theory change is provided by
Gardenfors' book, Knowledge inf Flux. It is from that source that I take the
following axioms. A belief set here is construed as a deductively closed set of
propositions.

If we denote by KA the expansion of a body of knowledge K by the addition of

the consistent proposition A , then we may express the the properties of the
expansion of a belief set by the following relatively uncontroversial axioms.

+

(K+ 1) K is a belief set.

(K+ 2) KA AA+

(K+ 3) If -A EKA ,thenKA Q K

(K + 4) If A e K, thenK A = K

(K+ 5) If H ;2K, HA  2 KA

(K+ 6) For all belief sets K and all sentences A, KA is the smallest belief set

that satisfies (K+ 1) - (K + 5).

What is not so uncontroversial is the question of the principles according to
which a body of knowledge should be contracted. This is not a terribly serious
question for Levi: any proposition in our body of knowledge can be doubted with
relative impunity. It can be doubted with relative impunity, since, if it belongs in
our corpus of knowledge, it will be reinstated on reflection. One can thus suspend
belief in a proposition A on quite casual grounds.
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A serious reason to suspend belief in something arises from the circumstance
that our corpus of knowledge is inconsistent. For example, if there are
observational routines that warrant our acceptance of the statement that a is a crow
and a is not black, then when we practise those routines, we should accept the
corresponding statement. (Or proposition.) But if we already accept the
generalization that all crows are black, this renders our corpus inconsistent.

With an inconsistent corpus, we are clearly obligated to suspend belief in
something. Levi says that we should shrink our corpus of knowledge in such a way
as to retain the most "information." But it is clear that no simple-minded construal
of "information" will lead to the right results. In some sense it is clear that the
information content of "all crows are black" is greater than that of "a is a crow and a
is not black," but of course on any standard construal of hypothesis testing it is the
former that will be suspended and the latter that will be retained.

While Levi offers us no logic of contraction, that is the main concern of
Gardenfors et al. Gardenfors offers a number of axioms characterizing the

contraction operation, denoted by KA, Most of these axioms are relatively

uncontroversial, as in the case of expansion. We have:

(K- 1) For any sentence A and any belief set K, KA is a belief set.

(K- 2) K ; KA.

(K3) If A e K, then KA = K.

(K-4) Ifnot-A, then A e K..

(K-5) IfA e K thenKA ; K.

(K-6) If A -* B ,thenKA= KB-.

(K-7) KA&B KA -, KB

(K) fA~ KA&B , then KA Q K & B

These axioms may be more controversial than those for the expansion of a
body of knowledge, but there is still nothing obviously wrong with them. It is
possible to provide intuitively plausible axioms for theory replacement, and to show
that in general replacement can be construed as a contraction followed by an
expansion.
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What becomes controversial is the procedure for conducting contractions.

The contraction KA is not uniquely determined by these axioms, in contrast to KA

(under the assumption of deductive closure). We must thus consider how to
perform the contraction. One possibility is the following. Consider a subset of K
that is deductively closed, that does not contain A, and that is such that if any other
sentence of K is added to it, A will be a consequence of it. The set of all such sets of
sentences is denoted by K LA. Clearly the result of contraction should be a member
of this set (if it isn't empty; if A is a theorem, then we can take the contraction of K
by A to be K itself. All we need to do is to devise a "selection function" S that will
pick one set out of K IA. But, as Gardenfors shows, this yields contractions that are

"too big." If A e K then this procedure will yield a KA that for any proposition B

contains either A v B or A v -B.
The next idea one might have is to consider the intersection of all the sets of

sentences in K IA. (This is called the "full meet contraction.") This is too small:

KA will consist only of the logical consequences of - A.

Finally, we may consider a selection function S that picks some of the
members of K IA, intuitively the most epistemically entrenched members, and

take KA to be the intersection of these.

But what does epistemic entrenchment come to? That seems to be where the
real controversy lies. Levi seeks to preserve information (in some sense); he can be
construed as construing epistemic entrenchment in terms of information. But the
epistemic entrenchment ranking of sets of propositions can plausibly be taken to
reflect a system of beliefs, and thus be sensitive to such things as "scientific
revolutions." Gardinfors says that "...the fundamental criterion for determining the
epistemic entrenchment of a sentence is how useful it is in inquiry and
deliberation." [p.871 (Note that the selection function S is originally defined over
sets of sentences, rather than sentences. This reflects a difference that could be
exploited.

One idea for representing such factors is provided by Wolfgang Spohn
("Ordinal Conditional Functions: A Dynamic Theory of Epistemic States," in
Causation in Decision, Belief Change, and Statistics, W. Harper and B Skyrms (eds)
Reidel, Dordrecht, 1987.pp. 105-134. ). Spohn defines an "ordinal conditional
function" that maps possible worlds into ordinals. The value of the function
represents a degree of implausibility, or a degree of unwillingness to accept, or a
degree of potential surprise (Levi, Shackle).

This function is can be extended to propositions in general by taking the
value of the function for a proposition, to be the minimum value of the function
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over the set of worlds in which that proposition is true. Thus, since it is assumed
that there is some world with value 0, either k(A) = 0 or k(-A) = 0, and k(A u B) =
mink(A),k(B)), where k is Spohn's ordinal conditional function.

Spohn's approach is more general than Gardenfors' since it takes as epistemic
input a pair (A,a) consisting of a proposition A and an ordinal a. This yields a new
ordinal function on possible worlds, and thus a new ordinal function. In the
extreme cases, however, the treatment yields results parallel to those of Gardenfors.
(Gardenfors, p. 73.)

2. The Probabilistic Alternative.
To be contrasted with this approach in terms of deductively dosed sets of

propositions, we may consider a purely probabilistic construal of knowledge: We
take a statement as acceptable in our knowledge base when it becomes
overwhelmingly probable. This is in accord with the nearly universal agreement
that when it comes to empirical matters of fact, there is nothing (or almost nothing)
that is certain. Almost any of the things we take for granted "could" turn out to be
wrong. Nothing is incorrigible. Not even "observation" statements: without
knowing how to handle errors of observation, modem science could hardly get off
the ground. Of course, very crude observation statements, e.g., "the sun is shining
now," are very unlikely to require correction. (They could be wrong: my
"observation" may result from post-hypnotic suggestion, rather than the state of the
weather. )

One way of dealing with an approach to knowledge that takes nothing
empirical to be incorrigible is to become a thoroughgoing Bayesian: Represent
knowledge as a probability function defined over the whole algebra of propositio'.s
in the language we are using for knowledge representation. Of course, as Carnap
observed (1951), we must suppose that all refinements have been made in the
language: we cannot introduce new terms without risking having to change our
probability function. Then when experience causes us to shift the probability of
some proposition, that change in probability propagates through the algebra in
accord with some rule of propagation. (One possibility is "Jeffrey
conditionalization.")

This approach to corrigibility has a number of drawbacks. The main one is
computational. In language capable of representing some piece of common senses
knowledge, or of reasoning about even quite a limited domain, the computational
resources needed mount dramatically. The number of possible worlds, describable
in even a constrained language, is LARGE. There is also the problem of the source
of the original probability measure. Experts? There is the problem of soliciting
consistent opinions. Generalize to sets of probability measures? This might be
some help, but perhaps not much. There is the problem of updating: No set of
probability assessments is likely to be consistent; adjustments will have to be made
to achieve conformity with the probability calculus; and one of the items most
natural to adjust is the ratio of probabilities P(A &B)/P(B); but this is just the
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important probability of A given B. And supposing a collection of agents with a
common goal, sharing knowledge: how are disagreements concerning probabilities
among these agents to be resolved?

These are difficult questions, and while one cannot be certain that plausible
answers can't be found, it seems at least worth while to explore an alternative
strategy. The alternative that has been explored for some years is that of adopting a
purely probabilistic rule of acceptance: In general, "Accept P when its probability is
high enough." (HEK 1961)

One question rises immediately: how probable is "high enough?" A tentative
answer to this question ("It depends on how much is at stake in using the corpus of
knowledge in question") has been outlined in (HEK 1984).

A less immediate question arises when we reflect that probability itself -

especially evidential probability - depends on evidence. What is probable depends
on what we know; and we are proposing that what we know depends on what is
probable. Can we have it both ways? In particular, can evidential probability be
serve both functions?

We answer yes. It has been proposed (K 1983, K 1984, K 1974) that having
fixed on practical certainty, we can introduce evidential certainty as the square root
of practical certainty. (This stems from the fact that, using a probabilistic rule of
acceptance, the conjunction of a pair of statements that do not appear conjoined in a
higher level corpus will appear in a lower level corpus.)

A purely probabilistic rule of acceptance does not yield what Gardenfors has
called "belief sets." The set of accepted statements is not closed under deduction, nor

what comes to the same thing in a logic with compactness - is it dosed under
conjunction. In general, it is not the case that if A and B are in our corpus of
knowledge, their conjunction will also be in it. Of course it does not follow that the
conjunction of a pair of statements in our corpus of knowledge will not be in it!
There may be large conjunctions of statements whose probability is high enough to
qualify for acceptance, and every conjunct of such a set of statements will also be in
the corpus. In fact, every logical consequence of each statement in our body of
knowledge will also be in it.

An immediate consequence is that there is an axiomatic representation of our
body of knowledge. That is, there is a (presumably finite) set of statements from
which the entire contents of our body of practical knowledge follows. This fact has
useful consequences when it comes to talking about revisions of our body of
knowledge.

The failure to embody deductive closure is not entirely unintuitive. Our
confidence in the conclusion of an argument that involves many premises tends to
decrease, even though we cannot put our finger on a specific doubtful premise, as
the number of premises decreases. There are good intuitive grounds, even, for
thinking that the set of statements that I am well justified in accepting is
inconsistent; if it is inconsistent, to apply deductive closure to it would be a disaster.
One particularly natural example concerns measurement. Suppose the method M
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yields errors that are distributed approximately normally with a mean of 0 and a
variance of .04. Consider a set of applications of that method, from which we infer,
in each case, that the length measured lies in the interval r ± .8 (i.e., within four
standard deviations of the observed value.) Surely, by any ordinary standard, these
results are acceptable. But if we accept a large number n of these results, it will also
be overwhelmingly probable that at least one of them is wrong - according to the
same distribution. The resulting body of knowledge is inconsistent.

The picture we work with so far is this: There are two sets of sentences we use
to represent our bodies of knowledge. One, the practical corpus, contains the other,
the evidential corpus, as a part. Everything in our evidential corpus is also in the
practical corpus, since an item is a member of the practical corpus if and only if the
lower found on its probability (since we are using evidential probability), relative to
the evidential corpus, exceeds some fixed probability p.

Statements may come and go, in the practical corpus, according as their
probabilities vary with the contents of the evidential corpus. Thus there is no direct
problem of revision, expansion, or contraction: all are taken care of by the
probabilistic rule of acceptance.

This applies to statistical statements, as well as other statements. So we will
have such statistical statements in our practical corpus as "about 95% of birds fly,"
'less than 2% of penguins fly," etc.

Now how about the corpus of evidential certainties? How do statements get
in this corpus? By being probable enough, if we are to have a uniform treatment of
acceptance and corrigibility. But we can't (for reasons pointed out in HEK 1%1b) just
consider simultaneously a sequence of bodies of knowledge. So we must construe a
question about the contents of the evidential corpus as shifting context. now we are
thinking of a different and higher level as the "evidential" corpus, and what was
the evidential corpus as a practical corpus.

3. Probabilistic Inference.
Statistical inference is no problem for evidential probability, but there is no

ordinary way that empirical generalizations ("All Crows are Black," "Length is
additive under collinear juxtaposition," etc) can be given probabilities. And it is just
such items of knowledge that we would like to be able to correct. A related fact is
that epistemological probability is defined only relative to a fixed language: the
definition is syntactical, and depends on the recursive specification of potential
reference classes and potential target classes. How do we handle generalization?
And how do we deal with the relativization of probability to a language?

The key notion is that of error. We do not suppose that we have a dear cut
distinction between "observational" predicates and "non-observational" predicates.
We suppose instead that there is a metalinguistic corpus, parallel to our evidential
corpus, that contains a representation of our knowledge concerning observational
error. For example, it is there that we store the knowledge that method M for
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measuring length yields errors approximately normally distributed with a mean of 0
and a variance of .04.

The details of this construction are to be found in K 1983 T and M. The
general idea is that empirical generalizations and theories are construed as features
of the language we choose to use. But to each of those possible languages will have
going along with it, based on a given stock of actual experience, a corpus of
knowledge concerning observational error. Good "observational" predicates are
those that can be used with little chance of error; "non-observational" predicates
will be those that have significant errors associated with them.

Observational error is generated by the interaction of our experience and a
language in the following way: We know that error has occurred when we make a
set of judgments that cannot all be true. Thus

What we need, then, is a way of choosing between candidate languages on the
basis of the consequent errors associated the languages. In earlier work (T and M
1983, 1990) we approached this question in a very abstract framework, with a view to
obtaining treatments of error in both direct and indirect measurement. Here we
will adopt the same general standpoint, but examine a variety of replacements of
framework assumptions (and expansions and contractions) that are rather more
specific.

Our alternative approach has been briefly hinted at in Measurement and
Science and Reason. The basic idea is that conflict between a general framework or
model, and a set of routines of observation, is reflected in what we take to be the
reliability of these routines. Thus if there is a lot of stress between our view of the
world and our observational routines, we will be forced to conclude that our
observational routines yield a significant amount of error. Given a choice between
two frameworks, we choose that that minimizes this error.

This approach does not require either measures of information defined on
our language (or languages) or subjective measures of probability. It proceeds in
terms of classical statistical inference and evidential probability, and requires only a
single index, corresponding to Levi's index of caution q. For present purposes, we
will suppose that the observational routines are fixed.

An observational routine is a procedure for adding information to the corpus
of knowledge K. Observation and measurement are the prime examples. In direct
observation, something happens to you add a (possibly complex) sentence to your
corpus of knowledge K. Under no circumstances does observation yield an
incorrigible result; error is always possible - as an extreme, hallucination. But
under ordinary circumstances, observation does yield knowledge. Indirect
observation - observation through a telescope, or a microscope, or a radar screen,
or contact lenses, admits of error, but yields knowledge. Similarly, measurement,
though it always admits of error, yields knowledge. We measure the voltage, and
obtain a value of 3.15, and conclude that as a matter of fact the voltage is between
3.12 and 3.18.
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It is enlightening to reflect on measurement. Ordinarily, one supposes that
errors of measurement are normally distributed with a mean of about 0, and a
variance that is characteristic of the measuring process or instrument. L it if these
errors are normally distributed, an error of any finite amount has a finite
probability. Given our measured value of 3.15 volts, there is a finite probability that
the actual voltage is 3000: not at all between 3.12 and 3.18. How did we conclude as
knowledge, as a matter of fact, that the voltage was in those limits if it could have
been outside them?

We did so on the basis of high probability. That is: there is a number q
determined by context in ways that will be considered later, such that if the
probability is less than 1 - q that something is so, we just dismiss the possibility.
Thus, having made the measurement, having no reason to suspect anything
peculiar about it, we just dismiss the possibility that the true voltage is 3000.

There is much to be learned from this simple example. First, we accept limits
on the voltage. We do not merely assign a "high" probability to the claim that the
voltage lies within those limits. We use this claim as a premise in arguments: if the
voltage is less than 3.20, then the the solenoid will not operate; the voltage is
between 3.12 and 3.18; therefore the solenoid will not operate. We go on to make
further inferences, with the help of more premises: therefor the starter motor will
not engage; therefore the engine will not start; therefore ...

In principle, we could avoid acceptance. We could assign probabilities to each
of the statements in our cascade of inferences. This is not the way people seem to
operate. But it isn't clear how much ice that observation ought to cut. What seems
likely is that keeping track of probabilities is just computationally infeasible except
for relatively small algebras. In fact this fact might well be the biological reason that
people have evolved to argue in logic rather than in probabilities. But that is a
,natter of speculation. In any event, there is good reason to explore an acceptance
model of belief in addition to a purely probabilistic model in which changing
degrees of belief migrate over a field of propositions.

Second, the basis on which we accept the limits on the voltage is a straight-
foward statistical law: errors of measurement characteristic of the process we used to
measure the voltage are distributed according to the distribution D. This also is
something we accept; we presumably accept it on the basis of a body of evidence; we
presumably accept it because it is overwhelmingly probable. But what is the relation
between accepting the law of error and accepting the limits on the voltage?

In principle, they could both be reflected in the same structure. We could
have a body of evidence, that would include both the evidence on which we base
our statistical law of error, and the evidence comprising the measurement in
question, and, relative to this body of evidence we could accept both "The
distribution of errors of measurement is D" and "this voltage lies between 3.12 and
3.18 volts." But note that in this case we would not be basing our statement about
the voltage on the "known distribution of error." Rather, both the statement about
the distribution and the statement about the voltage would be based on a single body
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of evidence. Furthermore, it is not easy to see how in this framework we can find a
basis for accepting a distribution of error: How do we know when we have made
errors? How do we know how big they are? Again computational problems loom.

A simpler structure is obtained by representing our knowledge in two levels:
an evidential level and a level of practical certainty. (Kyburg, 1974) At the level of
evidence, we accept both the result of the individual measurement and the
statistical knowledge reflecting the reliability of the class of measurements to which
we take the individual measurement to belong. We must first account for this
statistical knowledge.

4 New Observations
There are a number of ways in which new data can impinge on our old body

of knowledge. The most common is simply to have new observations added to our
body of knowledge. This has an impact on what we believe even when it does not
contradict anything we already belief. This impact has two forms. To accept the
observation that A is a crow and that A is black entails, in our body of knowledge
that A is a bird, since we know that all crows are birds. What is entailed by our
background knowledge, and the new observation, becomes part of our background
knowledge. (Subject to some caveats we'll get to later: the consequences of long
conjunctions of things may not be in our body of knowledge.)

The other form, more interesting in this context, is the impact that the
observation has on our general statistical background knowledge. If we have
statistical beliefs concerning the frequency with which A's are B's -- e.g., that it is
between p and q - and we observe an A that is not a B, that should change our
body of knowledge, but not very much. If we had earlier accepted our statistical
knowledge on the basis of an observation of n A's, of which m were observed to be
B's, we now have, as a basis for our statistical knowledge about A's and B's a sample
of n + 1, of which m are B's. It is clear that our body of knowledge will change
relatively gradually as new observations come in: we will not, in this context, find
the discontinuities that we observed earlier.

There is also the possibility that our background knowledge, even though
statistical, is based on more than observation. For example, my belief that the
chances of a birth being the birth of a male is about in [.50,.52] is based on lore
obtained from sources that I regard as reliable. To learn that my daughter just gave
birth to a boy will not only have little impact on that statistical generalization: it
will have no impact. But if my source of knowledge were impugned, that would
have a large effect. And it is conceivable that I could myself acquire such a large
database of sex observations that my own data would impugn the authority on
which I had accepted the conventional interval.

This also applies to the sort of statistical knowledge based on physical
principles and assumptions. If a die is well balanced, then the velocities and
momenta that characterize its trajectory will lead its landing on each side with very
nearly equal frequency in the long run, in view of the fact that very small changes in
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these momenta will lead to discontinuously different outcomes. If I roll a die and
get a '1', my beliefs concerning its statistical characteristics will be unchanged.
(Contrary to the Bayesian view, which would demand a tiny change.) If I roll the die
a lot, and get a disproportionate frequency of 'l's', then at some point I will question
my assumptions - in particular, the assumption that the die is well balanced -

and replace (not modify) my belief that the long run relative frequency of l's is 1/6,
by a statistical belief determined by my experience. (This will not be a very exact
statistical belief, since I may well make this replacement on the basis of a fairly small
sample. Thus I might come to believe that the frequency of l's is in [.5,1.0].)

Thus even in the case of statistical knowledge, augmented by some more
instances, there may be discontinuities. We have continuity (and, strictly, even this
is not usually continuity in the mathematical sense) only when our evidential
knowledge base contains representations of all the data on which our the statistical
law in our practical corpus is based, and when, in addition, we obtain additional
statistical evidence by a procedure which is evidentially reliable.

Let us consider the other cases, in which our statistical knowledge is modified
by the acquisition of new data. Suppose we have in our evidential corpus a
statistical law - e.g., that the proportion of B's among A's lies in the interval [p,q].
We observe, with evidential certainty, an A that is not a B. This has, and should
have, no effect on our statistical knowledge. The probability of our evidential
statistical knowledge is [1.0,1.0], and thus quite independent of the outcome of a
particular trial. (Thus evidential independence is not symmetrical! The probability
of the outcome of a trial obviously depends on our statistical knowledge.)

We observe a lot of A's, some of which are and some of which aren't, B's
When should we take this as evidence bearing on our statistical knowledge? Here is
one plausible idea: Suppose that the statistical law is in the evidential corpus whose
level is r. That is the corpus into which we accept things, provided the chance of
error is less than 1-r. Suppose that what we have observed is a priori less probable
than this. Before the event, we are practically certain that we won't observe what in
fact we observed. In itself, this does not impugn our generalization: the improbable
does happen, and there, before our very eyes, is an instance of it. Besides, as Savage
pointed out long ago, whatever happens, described in detail, is extremely
improbable. The most pedestrian bridge hand has only a chance of 1 in 109 of being
dealt.

What leads us to question the fairness of the deal (that is, the appropriateness
of the usual statistical law governing bridge hands) when we get 13 spades? But not
when we get 4 9, 3 + K, J, 2 I A, 4, 3, 2 4 9, 6, 5, 3, even though the chances of
getting this hand are just as small as the chances of getting 13 spades? That's a good
question. The answer usually given is that there is an alternative explanation for
the 13 spades (somebody is cooking the cards), that renders that particular hand
more probable than it would be in the course of nature. But this is just to look at a
corpus in which we can evaluate the relative likelihood of the ordinary statistical
law and the fall of the cards being the result of manipulation. What happens when
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we encounter striking evidence (not merely 'improbable' evidence) is that we are led
to alter our level of evidential certainty to accommodate the probability of what we
ordinarily take as evidence.

This move is always available to us. But it is one we will only make when we
are motivated to make it. In accordance with the analysis offered in (Theory and
Decision), we will be motivated to raise our acceptance and evidential level when
there is more at stake. That's not hard to see in this context: If we are playing high
stakes bridge in a shady gamerocm in Reno, we are likely to consider the possibility
of cheating more seriously than if we are playing a friendly game of bridge with our
in-laws.

Let us look at an alternative circumstance under which we might be led to
suspend acceptance of a statistical law. Suppose we have a die that seems perfectly
symmetrical, but that turns up five 40 % of the time on a thousand throws. We
accept, we assign probability 1.0 to, the proposition that the die yields five about 17%
of the time. But here we have an observation that has a probability of essentially 0,
given the truth of our assumption. Such observations do occur (remember the
ordinary bridge-hand), but if there is an alternative account according to which the
observation is not so improbable, perhaps it is worth our effort to escalate the level
of our evidential corpus and examine the probabilities of the alternatives.

What are the alternatives to be examined in this case? There is the possibility
that the analysis of the behavior of dice in terms of varying outcomes with varying
momenta is wrong: Note that the probability of getting 40% fives, on the usual
hypothesis is no less than the probability of getting any sequence of a thousand
outcomes. It is not the improbability of the observation that leads us to a new
possibility. It is the fact that we have alternative statistical laws in mind that render
the result more probable. We would not (on the basis of the evidence described)
conjecture that the results of the tosses were not independent and identically
distributed. We would conjecture that the die was not symmetrical, and that the
outcomes of its tosses were multinomial with a parameter close to 0.4 for five.

Of course as soon as we reject the reasonable presumption that the die is fair,
we are in a position to start using the evidence we have concerning its outcomes to
confirm at the level of evidential certainty a statistical law characterizing them. We
find, once more, discontinuity: We do not become suspicious of the die on the first
few tosses: four fives on ten tosses is perfectly understandable, if a bit unusual. We
do not gradually modify the statistical law that we take to govern the outcomes of
the die. At no point, in the scenario described, do we reject the statistical law
according to which the outcomes of the die are iid. But at some point we flatly reject
the assumption that the die is a standard well-balanced die, and begin to use our
data for an inference about its approximate true multinomial distribution.

5. Conflicting observations.
It is useful here to make a distinction between 'observation reports' - what is

said to have been observed, and 'observation statements' - what is alleged in the
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report to have been observed. Observation reports cannot really conflict. If I report
the weight of body W on one weighing as 23.654 grams, and on another weighing as
23.655, there need be nothing wrong with my observations, although the
observation statements, "W weighs 23.654 grams," and "W weighs 23.655 grams" are
inconsistent. This is why the natural and appropriate observation statement is
rather, "W weighs 23.65 ± .02 grams." Note that this statement is not certain: It is
acceptable, because the chance of error is negligible, not because it is impossible. On
the usual treatment of errors, they are treated as normally distributed, and an error
of any magnitude is possible.

We treat it as evidence, however. We take it to be a statement that we can use
in designing machinery, in engineering, in prediction, etc. It is not a statement to
which we merely assign a high probability.

But it is corrigible. We may weigh W twice again, and conclude (with the
same degree of justification as we had before) that it weighs 23.60± .02 grams. The
two statements are strictly incompatible.

There are various possibilities. First, we may suppose that we simply have
made somewhat unusual errors of measurement. If it is evidentially certain that W
weighs between 23.63 grams and 23.67 grams, then W cannot weigh as little as 23.62
grams. But if W can't change weight, the discrepancy must be due to errors of
measurement. If this is the case, then there are two impacts of our conflicting
observations: The observations should be combined; and the discrepancy between
the two sets of measurements should be taken as evidence concerning the
distribution of errors of measurement for the measuring device(s) involved.

Merely combining the measurements would yield 23.62 ± .015, if we assume
that all four measurements are simply taken from the same normal population of
measurements. But the discrepancy might suggest that we should regard the
measurements as coming from two distinct populations, or as coming from a
population with a larger variance than we had thought.

In general, the conflict among observation reports must be taken as evidence
concerning the reliability of the observer, or of the apparatus, of both. We will find
that this is true also in the case of more basic conflicts.

6. Conflict between Observation and an Accepted Framework.
This is the most interesting sort of conflict. It is the sort that is most likely to

arise, since we often make relatively local assumptions that we take for granted, act
on the basis of, until and unless they lead us into difficulty. Good judgment consists
in knowing when to abandon an assumption. But can good judgment be codified,
reduced to mechanical rules? In some respects, we will argue, it can.

The simple-minded view of belief change is this: You have a generalization
that you have taken for granted that leads you to infer that observational
circumstances C will be followed by or accompanied by observational outcome 0.
You observe C. You observe some contrary of 0. You reject your assumption.
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But things are almost never this simple. Even when (rarely the case) a
qualitative generalization is understood to be strict, to admit of no exceptions, there
are alternatives to rejecting the generalization in the face of apparently conflicting
observation. We may take the alleged observations to have been in error. Illusion,
hallucination, are always available to explain away apparent refutations. And this is
not irrational. In fact it has been argued that this is the source of our knowledge of
the qualitative errors of observation. The identification of an object of observation
as belonging to a given kind is subject to error. The frequency of such errors is given
(as suggested in Science and Reason) by two principles: One is the conservation
principle, which suggests that we should not attribute more error to our
observations than we are obliged to by the model of the world we accept. (Notice
how this is in almost direct contrast to the proposal that one should accept a model
of the world only if it does not contradict any of one's observations.) The other
principle guiding our assessments of error is the distribution principle, which says
that, given the satisfaction of the conservation principle, we should distribute the
errors we are obliged to attribute to our observations as evenly as possible among
the kinds of errors we might have made.

Thus if our model of the world assumes (presupposes) that all crows are
black, and we have some observations of blue crows, we would assume that those
observations contain errors. And further that the errors are (other things being
equal) are distributed equally between judgments of blueness and judgments of
crowness. The metalinguistic fact that we must assume that we have made these
errors of observation provides evidence about the reliability with which blueness
and crowness can be identified.

Naturally things are not this simple, since in the real world "is blue" is a
vague term, and furthermore a term that enters into a great many rough
generalizations; and "'is a crow" is a technical term of ornithology, involving a
complex set of necessary and sufficient conditions that are tied to a great many other
properties, some of which are observational and some of which are not.

Now of course there are circumstances under which observations of blue
crows would lead to the rejection of the frame assumption that all crows are black.
This is exactly the kind of thing we are looking for: when are things so anomalous,
given our assumptions and beliefs, that we should profoundly alter those
assumptions. So let us look at two new crow stories.

The simple story continues to make use of ordinary observation. Suppose
that many people report seeing many apparently blue apparent crows. Their reports
are wrong, of course, given our assumptions. But two facts about error are entailed
by the prevalence of people seeing 'blue crows'. First, the reliability with which
people can identify the color blue decreases, in general. The same is true of the
reliability with which ordinary observation can identify a crow. The long run
inferred frequency with which observation reports of the form "x is blue" are in
error, after our experience with the blue crow observations, is higher than it was
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before. Similarly for the long run inferred frequency with which observation
reports of the form "x is a crow" are in error.

But this is a small difference (we suppose) and in fact is not the relevant one.
Observations are made in context, and we can find a context in which a subset of the
class of "x is blue" observations (when they occur in conjunction with an"x is a
crow observation") in which the frequency of error is very high. (Perhaps 50%, since
any conjunctive blue crow observation, given our assumption, must contain an
error in at least one conjunct.) This is such a high rate of error that we do not have
observational grounds for accepting "x is blue" or "x is a crow" in this context.
When John reports to me that there is a blue crow on the fence, I not only must
reject the observation statement corresponding to his report, but even the
observation statement that there is something blue on the fence and the observation
statement that there is a crow on the fence. This is a serious loss of communication
as well as an impoverishment of our language.

We lose something by abandoning the generalization that all crows are black;
but we lose more by abandoning the reliability of observation terms in a certain
context.

It is not always true that we will abandon the generalization in favor of the
universal reliability of observation. We abandon the reliability of perceptual
judgment of straightness when it comes to sticks half in and half out of the water,
because there is such a rich matrix of generalizations concerning sticks (!) that we
would lose more by abandoning those generalizations than by supposing that our
perceptions of sticks in water are unreliable. (Note that this is true even without the
knowledge of why the stick appears bent; we did not require a theory of refraction to
know that putting a stick in the water didn't bend it.)

The second crow story is more complicated and also more realistic. We
would not in general require that a lot of people reported a lot of blue crows before
we abandoned the assumption that all crows are black. One, or one or two, good
crows, observed in careful scientific detail, would do it. Black and blue are hard to
distinguish, sometimes, and most of us 2-e not ornithologists. But we will not
suppose that a trained ornithologist wil " - kake a mistake about even a single
specimen. What is the difference?

The difference can be explained in terms of probability. Here is R. A. Fisher's
explanation. (scientific inference) G entails something very improbable, C, that in
fact happens. The improbable doesn't happen. Therefore G is likely to be false.
Both scenarios fit this description: Ordinary observation is unlikely to be wrong
about such things as blueness and crows, but not very unlikely. On the other hand,
a lot of ordinary judgments are very unlikely to be uniformly wrong. Professional
scientific observation is, from the outset, very unlikely to be wrong.

As we have already seen, this is an oversimplification, since what actually
happens is always very unlikely (the bridge hands). What is left out of account is
the existence of an alternative framework, assumption, presupposition, according to
which what we have observed is not so unlikely. In the case of the blue crows, the
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alternative assumption is quite simple: abandon the general assumption that all
crows are black, and replace it with an approximate statistical generalization
concerning the frequencies of blue and black crows. This results in a significant loss
of information in one regard, especially since in the beginning there will be little
statistical evidence to base our generalization on. But it would be worse to stick to
the universal generalization in the fact of a most improbable collection of
observational errors.

To contrast: in the case of the stick that appears to be bent in water, we have
no alternative assumption that doesn't entail severe damage to our body of
knowledge. (Sticks have a lot of properties - rigidity, relatively constant bending
moments, etc. - that are inconsistent with the accuracy of our perceptions of sticks
in water.) So even at the cost of a whole class of unreliable perceptions, it is better to
continue to believe that putting a stick in water doesn't bend it.

8. Quantities conflicting with formulas.
Suppose in general that we assume the quantitative law, y = f(x,z) in our body

of knowledge. Then we observe a series of measurements of the quantities X, Y, and
Z. No set of measurements can contradict the law in question, since any
measurement is subject to error, and indeed, on the usual theories of measurement
error, subject to error that can possibly be arbitrarily great. But of course large
discrepancies, relative to a body of knowledge that contains the law in question, are
extremely improbable.

The same general approach makes sense: The very improbable happens all
the time (the particular set of measurements we make are improbable even if our
assumed law is true), but if there is an alternative that renders the improbable not so
improbable, the observations support that alternative. To put a quantitative
measure on this is not trivial. One way, in terms of the framework we have already
talked about, is the following: Anomalous observations can have two effects: they
can provide new data concerning the errors of observation of a certain sort, or they
can be taken at face value, and thus provide grounds for the rejection of general
formulas.

7. Fundamental Assumptions.
Before going on to consider the grounds on which one would choose to give

up an assumption in favor of attributing errors to one's observations, it is worth
looking at one more extreme cases. This is that of measurement, and has been
discussed more fully in (Theory and Measurement). We suppose that length is
additive: that the length of the collinear juxtaposition of two bodies is the sum of
their lengths. Our measurements, of course, do not support this supposition; less
dramatically: we can maintain the additivity of length only by attributing error to
almost all our measurements.

Is this the alternative? To suppose that we can measure accurately, but that
length is not additive, on the one hand, or, on the other, to suppose that length is
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additive, but that all our measurements are infected with error? Put this way it
seems odd that one would ever opt for the second alternative. But we do.

Here is a possible explanation. The errors of measurement we need to
introduce are very rarely large. They therefore do not deprive us of much useful
knowledge. But the additivity of length is an enormously powerful predictive
device. Knowing the length of two rigid bodies, we know, without even measuring,
the approximate length of their collinear juxtaposition.

The choice between attributing error to observations and maintaining a
generalization, as opposed to taking observations to be accurate and to refute the
generalization, lies in the predictive observational content of the whole body of
knowledge involved.

How do we measure predictive observational content? That seems to admit
of no simple and general answer. In the case at hand, though, the measurement of
length is so pervasive, and the predictions we get from construing length as additive
are so widespread, that there can be no question about the choice. What we would
like to achieve is a principle or set of principles that apply to less obvious cases.

8. Choosing between an assumption and errors or between assumptions.
Suppose we consider two bodies of knowledge, one that embodies among its

evidential certainties (among other things) the assumption A, the other of which
does not. We make a set of observations (add to our evidential certainties a set of
observation reports). We have in our background knowledge statistical information
about errors in observations of this sort. Given the assumption A, the observation
reports must be taken to embody unusually (improbably) large errors. These errors
are not without observational consequences. They render observational predictions
less dependable, since the correspondence between what is predicted and what
probably going to be observed is only approximate, and reflects our knowledge of
errors of observation.

Here are the two cases: Keep assumption A, and suppose that errors of
observation in the circumstances are large. That large errors of observation are
encountered in this situation provides evidence that the errors of observation in
this situation are unusually large. (We base our knowledge of the frequency and
magnitude of errors - their distribution - on the sample we have, and these
errors form part of that sample.) That means that our predictions are less precise,
and thus less useful. This applies not only to predictions made in accordance with
assumption A, but predictions of the same sort made under the same circumstances
whether or not they involve assumption A. This may be worth it: half a loaf is
better than none.

Second, give up assumption A. Interpret the results of your observations as
refuting A. Now we need not impugn our observations either in general or in the
particular circumstances at hand. Our observations are as accurate as they ever
were. Everything else, we may assume, remains unchanged in our body of
knowledge, and thus all we lose are the predictions based on assumption A.
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How do we weight the advantages of one choice or the other? In order to
have an actual measure that will yield an answer in these cases, we must focus on a
class of predictive statements - that is, a class of statements that is of interest to us
in the circumstances at hand. It is in this class that the predictions of the two cases
are to be drawn. Let this class be C. We also need a measure of the precision of the
predictions: thus if a prediction has the form "Bird B is Blue," the amount of
content of that prediction must reflect the chance of an error in the observation that
would test that prediction. If we can't accurately tell blue things, there is less content
to the prediction that something is blue. If the prediction has the form, "Object 0
will be observed at an angle between a - d and a + d," then its content will reflect the
distribution of errors of observation of angle in the circumstances under
consideration.

The class C of predictive statements about which we are concerned should be
finite. It can be large, but we want to ensure that ratios are well defined in it. How
do we characterize this set of statements? I don't know, but it clearly should be
context dependent. Next we need measures of accuracy.

With regard to categorical statements ("There's a crow," "that's blue") we get
two cases: there is no prediction (clearly no help at all) or there is a prediction that
reflects a certain error rate, or pair of error rates, in using the term being predicted.
We refer to a pair of error rates, since there is both the chance of failing to identify
an instance of the predicated predicate or relation, and the chance of falsely
attributing to an object the presence of the predicate or relation. One natural
approach would be to regard each kind of error as being equally important. But this
may not be appropriate. In a given kind of context, one of these errors may be much
more important than another. That difference of importance can be reflected in the
cost of errors of the two kinds. It cannot be given a priori.

With regard to quantitative statements ("The widget will be observed at angle
alpha," "An increase of weight will be observed") there is a standard conventional
measure of the error: namely, the square of the difference between the predicted
value and the observed value (the value indicated in the observational report). But
again, this should perhaps not be taken as universal. It may be that in a given kind
of context, errors in one direction are much more important than errors in another
direction.

What we need is only (i) a (finite) set of sentences that include all those that
may be of predictive interest in a given context, and (ii) a measure of how
important errors of various kinds are. We get the frequencies of these errors from
our background knowledge of the observation reports we have had, together with
assumptions of our body of knowledge. When we change the assumptions (or
eliminate one) we change the statistical representation of these errors that we have
reason to accept. If, for example, we eliminate an assumption,we can replace a
number of predictions (those that stemmed from that assumption) by no
predictions.
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9. Summary.
Global approaches to replacing one theory by another require relatively

universal conventions: an ordering of all the sets of sentences in a formal language,
for example. Approaches to eschewing acceptance, and therefore replacement, such
as proposed by "Bayesian probabilists" tend to be impractical for simpler reasons: too
much computation is devoted to issues that are at best peripheral to the questions at
hand ("Should we assume that instrument I is operating correctly?").

We have proposed instead an approach characterized by a set of sentences
(sentences that could, in principle, be construed as predictive observational
sentences in the sense characterized above), and also by a measure of informational
value determined by a distribution of errors for these sentences. Given a pair (C,m)
consisting of a set of sentences and a measure of the importance of errors, then the
relative value, in the face of a given body of observational reports, together with a
body knowledge, of two assumptions, or of one assumption as opposed to none, is
determined. It is determined by machinery of probability that we already have in
hand.

There is, of course, the problem of determining the pair (C,m) to fit a given
context. We have not yet dealt with this problem. We observe only that it is a far
less overwhelming problem than that of determining informational content of all
the sentences of a language (Levi) or of associating with each sentence of the
language an ordinal number (Spohn). It can be done for a specific class of
circumstances when certain kinds of predictions or anticipations are the kinds at
issue. When the "assumptions" about which we are talking are relatively limited in
scope ("Instrument 47 is working correctly"), it is not at all unreasonable to suppose
that in fact we can isolate such a useful set of sentences. The question of deriving
such a set of sentences from our concerns in a given context, and the question of
deriving the importance of various kinds of error from the utilities of the outcomes
possible in a given context, are questions that must be reserved for another time.

Henry E. Kyburg, Jr.
University of Rochester
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