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BRICK MODEL TESTS OF
SHALLOW UNDERGROUND MAGAZINES

SECTION 1
INTRODUCTION
1.1 BACKGROUND

A considerable amount of research has been performed in the last two
decades to develop data and prediction methods for airblast and debris hazards
from accidental explosions in underground magazines. Much of this work is
concerned with detonations in magazines so deep that venting does not occur.
The effect of cover venting on reduction of external airblast was initially
investigated in small-scale tests (1:25) performed in the United Kingdom
(Millington, 1985). More recently, the Shallow Underground Tunnel/Chamber
Explosion Test (Joachim, 1990), sponsored by the KLOTZ Club*, provided full-
scale airblast and debris/ejecta data for a shallow underground magazine

containing 20,000 kg'*, net explosive weight (NEW).

Ir 1980, the U.S. Army Engineer Waterways Experiment Station (WES)
conducted a series of intermediate-scale (500-kg charges) cratering tests in
open shafts in rock for the Federal Republic of Germany (Davis, 1981). The
results showed a definite effect of rock strength and structure (jointing) and
terrain surface slope, as well as the charge cover depth, on the size and
shape of the crater produced, and on the amount, direction, and velocity of
ejecta thrown out. Earlier 1:75-scale model tests by WES (Joachim, 1988 and
Smith, 1989) of fully contained detonations in long chambers in rock showed
that formulae for predicting strain and spall velocities in adjacent chambers
must include, as a minimum, a characteristic modulus value for the rock

surrounding the chamber.

* The KLOTZ Club is an ad hoc committee, representing the defense
agencies of France, Germany, Norway, Sweden, Switzerland, the United Kingdom,
and the United States, which sponsors research to improve the safety of
ammunition storage.

** A table of factors for converting SI units of measurement to Non-SI
units is presented on page vi.




These results strongly imply that, at large scales where extensive
volumes of rock must be moved during the venting process, the gross (as
opposed to unit) strength and structure of shallow rock covers may be
important factors in predicting the extent of rupture of the cover, and the
ejecta hazard ranges, from site to site. This is in addition to the known

problem of accounting for the variations in cover thickness and surface slope.

The 1988 Shallow Underground Test provided data for a single site,
consisting of a weak, highly jointed rock. 1In actual practice, however,
magazines of this design have been constructed at sites having a wide range of
rock strengths and cover thicknesses over the magazine chamber. 1In addition,
the loading densities of the magazines differ from site to site. To
investigate the influence that these variations would have on the external
blast hazards from an accidental explosion, and the extent that their effect
can be reproduced in small-scale tests, a series of model tests were conducted
in this study to provide a comparative basis to evaluate these factors. 1In
particular, it was desired to compare the external airblast (beyond the tunnel
portal) with that measured in previous model tests which simulated solid rock
or soil (sand) covers, as well as the airblast measured in the large-scale

1988 Shallow Underground Test.
1.2 OBJECTIVE

The overall objective of the Brick Model test program was to determine
the hazardous effects (airblast and debris) produced by an accidental
detonation of explosive stores which ruptures the overhead cover of an
underground magazine. Specific test objectives were to evaluate the effects
of explosive loading density (kg of explosive per m® of chamber volume) and
the thickness and strength of the rock cover on the external blast hazards,

and the ability of small-scale models to reproduce large-scale test results.




SECTION 2
PROCEDURES
2.1 APPROACH

Models of underground munitions storage magazines were constructed at
1:25 scale and tested to evaluate the effect of cover depth, cover
structure/strength, and loading density on ejecta throwout and venting relief
of the access tunnel airblast pressures. The basic model consisted of a
single storage chamber and access tunnel constructed in a large testbed of
paving brick, simulating a jointed rock mass. The dimensions of the storage
chamber and access tunnel corresponded to a 1:25-scale model of those
constructed for the 1988 Shallow Underground Tunnel/Chamber Explosion Test.
The model access tunnel was 1.0 m long with a cross-sectional area of 84.4 cn’
(9.6 cm in height and width; see Figure 1). The model storage chamber was 72
cm long, with a cross-sectional area of 294.4 cm® (20 cm wide by 16 cm high;
see Figure 2).

Dynamic measurements included: (1) chamber pressures, (2) access tunnel
pressures, (3) external airblast pressures, and (4) motion (acceleration) of
the simulated rock mass above the chamber. The airblast and ground motion
gage locations are shown in Figure 3 and listed in Table 1. Passive
measurements consisted of post-test surveys of debris distributions for
Test 3, and observations of the extent of cover rupture and debris throw on

all three tests.

2.2 MODEL CONSTRUCTION

All models were constructed with solid paving bricks (without mortar)
inside a reinforced concrete containment structure, as illustrated in
Figure 4. Nominal dimensions of the bricks were 5.8 by 9.3 by 19.7 cm. As
shown in Figure 4, the bricks were laid with the wide face (9.3 by 19.7 cm) in
the vertical plane, and with the long axis rotated 30° from the vertical, in
the direction of the portal. Thus, the overburden surface slope of the models
was 30 degrees. A thin layer of sand was placed over the surface of the

bricks to simulate soil overburden.




The chamber and access tunnel were formed around galvanized steel sheet
metal, shaped to the required rross-sections (Figures 1 and 2). A layer of
mortar approximately 4 cm thick was placed around the top and sides of the
chamber form to fill voids between the form and the bricks, and bricks were
placed around the assembly. The same procedure was used to form the access
tunnel in the model. The chamber was constructed first, and the sheet metal
form removed prior to installation of the tunnel section. Figure 5 compares a
front view of the completed model (for Test 1) with a similar view of the

large-scale Shallow Underground Test magazine.

2.3 INSTRUMENTATION

Two accelerometers were positioned in the overburden above the
tunnel/chamber centerline to measure the motions of the cover material for
each test. Selection of accelerometer gage ranges was based on an
extrapolation of ground shock data from the large-scale Shallow Underground
Test. The accelerometers were mounted in small, WES-designed, two-part
cylindrical canisters. Each gage canister consisted of an outer cylinder with
a tapered, truncated, conical inner surface, and a matching insert with a flat
center section milled parallel to the axis. The gage was mounted on this flat
section before the tapered plug was inserted into the outer cylinder. The
canister was cemented into a hole drilled in a solid brick, which was placed
at the desired gage location in the model. The canisters were oriented to
measure motion perpendicular to the surface slope of the model. Cables were
placed in 6.4-mm-diameter stainless steel tubing, which was routed away from

the chamber.

Four internal airblast pressure gages were installed for each test--two
gages in the chamber wall and two in the access tunnel floor--to record the
internal pressure environment. The gages were mounted in metal fixtures
inserted into 1.9-mm-diameter PVC pipe. The pipes were routed between the
bricks to the side and rear of the test bed. The voids around the PVC pipes

were packed with masonry sand to minimize the density discontinuity.

Six free-field pressure gages were permanently installed in front of the
tunnel portal, along the extended tunnel/chamber centerline. The gage mounts

were cast into a 10-cm thick concrete slab. The concrete slab was 1.8 m wide
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and extended a distance of 6 m from the tunnel portal. The surface of the
pavement was level out to a distance of 1.5 m, where a downward slope (11

degrees) began.

One total (stagnation) pressure measurement was attempted outside the
tunnel at a distance of 20 cm from the portal. A probe fashioned from 6.4-mm
diameter stainless steel tubing was attached to a gage mount cast into the
concrete slab. The entrance of the tube was positioned 2.5 cm above the
surface-mounted, side-on overpressure gage located 20 cm from the access

tunnel portal.

The gage signals were amplified, digitized and recorded on computer-
controlled, transient data recorders. The gage signals were transmitted to
the recording trailer on 4-conductor, shielded cable (approximately 200 m
long) with a floating ground. Each channel was electrically calibrated at the

digitizer by the equivalent voltage method.

2.4 EXPLOSIVE CHARGES

The explosive charges were assembled from 0.085-kg/m (400-grain per
foot) PETN detonating cord, cut in 48-cm lengths. The detonating cord was
bundled around and taped to a thin wood slat, which was pushed through the
access tunnel into the chamber (Figure 6). The slat was just long enough to
be contained completely within the chamber (approximately 72 cm). The
explosive charge was approximately 5 cm in diameter for Tests 1 and 3, and 1.3
cm for Test 2. All charges were initiated from the portal end using a
Reynolds Industry exploding bridge wire (EBW) detonator (Model RP-83). Charge
weights, chamber loading densities, and dimensions of the explosive charges

are given in Table 2.




2.5 EJECTA/DEBRIS COLLECTION

Both previous test experience and analytical studies have clearly shown
that, while debris throw ranges and relative distributions can be scaled by
model tests, the areal density (impacts per m?) cannot. This is because the
model material which comprises the debris source does not break up with the
same size distribution as does the prototype material. Consequently, for
Tests 1 and 2, only the maximum range of ejecta/debris was recorded. However,
a more detailed ejecta survey was made after Test 3. The boundary of each
sample area was marked on the ground using a square frame covering an area of
1 m?. The location of the sample areas are shown in Figure 7. During
sampling, the frame was centered at the required distance and azimuth and the
number of pieces of brick, either whole or broken, within the frame area was
counted. The distribution data was broken down into the number of pieces

smaller than half of a brick, and those larger than half.




SECTION 3
RESULTS AND DISCUSSION
3.1 AIRBLAST EFFECTS

3.1.1 Comparisons of Model and Large-Scale Test Results. The airblast

arrival times, peak pressures, and peak impulse values (from integration of
the time histories) obtained on the Brick Model Tests are given in Tables 3,
4, and 5. Scaled arrival time data are plotted versus scaled distance from
the initiation ends of the explosive charges in Figure 8. A comparison is
shown with the airblast arrival times measured on the Shallow Underground
Test. There is excellent agreement between the model and prototype
measurements for the external gages. The arrival times for the gages inside
the model tunnel are slightly lower (i.e., faster) than occurred inside the

prototype tunnel.

The prediction curves for airblast peak pressure (external) originally
developed for the large-scale Shallow Underground Test are presented in Figure
9. The Shallow Underground Test and the corresponding model (Test 1) data are
included for comparison. The distances from the model portal were multiplied
by the 1:25 scale factor in this plot to match the prototype scale. As shown

here, the model data clearly falls within tne band spread of the predictions.

3.1.2 External Airblast Attenuation - Comparison with Previous

Experiments. 1In Figure 10, the ratio of calculated exit pressure to measured
free-field overpressure is plotted versus normalized distance from the tunnel
portal for all available data from previous tests of underground magazines.
The Brick Model Tests (WES Model (1:25)) are included, along with six other
model series, and two full-scale tests, including the Shallow Underground Test
(KLOTZ (88)). The exit pressures were calculated from the relation given by
Vretblad, 1988:

P, = 17.7 (Q / Vg )04
where P, is the exit pressure, bars

Q is the TNT-equivalent explosive weight, kg

and Vy is the total volume of the underground facility, m3.




A reference line through the data in Figure 10 can be expressed by the

equation

P,/ P, =~1.0 (R /D )P

and D=4 A /P

where P,, is the free-field overpressure, bars
R is the horizontal distance from the portal, m
D is the hydraulic diameter of the tunnel (for turbulent flow), m
A is the minimum cross-sectional area of the tunnel, m?

and p is the perimeter of the minimum cross-sectional area, m

As shown in Figure 10, the data exhibits considerable scatter, with many
of the points lying above the reference line. Note however, that the results
of both the Brick Model tests and the Shallow Underground Test (solid data

points) fall well within the scatter band, near the reference line.

3.1.3 Effect of Cover Strength and Thickness. Table 6 lists the
Inhabited Building Distances (scaled up to full-scale ranges) derived from

five model tests with similar loading densities, but different scaled cover
depths and cover material strengths. There is a clear trend in the effect of
the overall integrity of the chamber cover on the IBD. With similar cover
thicknesses and loading densities, the heavily-jointed brick model produced
about the same long-range blast pressures as did the Norwegian sand model.
Based on the IBD's, however, the Norwegian concrete model produced a long-
range blast pressure equivalent to a heavily-jointed brick model with almost

twice the cover thickness.

Measured peak pressures from all three Brick Model tests are plotted in
Figure 11. The DDESB airblast prediction equation and the curve fit to the
peak overpressure data of the Shallow Underground Test are included in Figure
11 for comparison. Although there is some data scatter, certain trends are
indicated. When the cover depth was held constant and the loading density was
reduced from 60 to 10 kg/m® (Test 2 versus Test 1), the portal pressure was
reduced by a factor of about four, and the long-range external pressures were

about halved. When the scaled cover depth of the brick models was increased
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from 0.44 to 0.79 m/kg!/3® (Test 3 versus Test 1), and the chamber loading
density held constant at 60 kg/m®, the side-on overpressures outside the
tunnel portal increased an average of 30 percent. The peak pressure midway
down the access tunnel increased by about 130 percent. When the scaled cover
depth was held constant at 0.8 m/kg!/®, an increase in chamber loading density
from 10 to 60 kg/m® (Test 3 versus Test 2) produced an average of 250 percent

increase in the free-field side-on overpressure outside the portal.

From Figure 11, it is interesting to note the degree to which the
internal and external airblast overpressures measured on the large-scale,
Shallow Underground Test were reproduced in the 1:25-scale brick model (Test
1). 1In general, the model provided a good representation of the prototype
results. The tunnel exit pressures match very closely, but external
overpressures were low by a factor of approximately three in the free-field.
However, these lower pressures may have been due to the downward slope of the
ground surface constructed for the model (see Figure 3) at the far-field gage

stations.

The peak impulse values from the model tests, obtained by integrating
the overpressure-time histories, are plotted versus distance from the charge
initiation point in Figure 12. The peak impulse data curve from the Shallow
Underground Test are included in Figure 12 for comparison. Although peak
impulse shows more scatter than the overpressure data, the model and prototype

data clearly follow the same trends.

3.1.4 Responding Versus Non-Responding Magazines. Figure 13 is a plot

of Inhabited Building Distance (distance to the 5.0 kPa pressure level) versus
loading density for selected tests, where the loading density is based on the
total volume of the storage facility (i.e., the volume of the chamber plus the
access tunnel). A curved line has been drawn through the data points for the
WES 1:75-scale model test (Smith, et al, 1989). These small-scale tests were
conducted in a model chamber and access tunnel constructed from steel pipe.
Therefore, this model represents a totally non-responding magazine structure.
The data from the large-scale 1987 KLOTZ test at Alvdalen, Sweden (Vretblad
1988) fall very close to the WES 1:75-scale model curve. The Alvdalen tests
were conducted in rock chambers with sufficient overburden to prevent rupture

and cover venting, and therefore also represent non-responding structures.
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The remaining data presented in Figure 13 are from tests where the
overburden ruptured (responding magazines), allowing release of the detonation
gas pressures in the storage chamber through the cover venting. The full-
scale Inhabited Building Distances (IBD’s) derived from the Shallow
Underground Test, the Brick Model Tests, and the Norwegian model tests
(Jenssen and Krest, 1988) all fall well below the IBD curve for the non-

responding magazine tests, by about a factor of four.

While the IBD’s for the responding magazines may at first appear
unrelated, certain trends are indicated. For example, the Brick Model Tests
show an increase in IBD of 25 percent (from 212 to 266 m in full-scale) when
the scaled cover thickness was increased from 0.44 to 0.79 m/kgl/3,

Similarly, increasing the total loading density (mass of explosives divided by
total volume of the underground facility) from 7.1 to 42.9 kg/m® increased the
IBD by 77 percent (from 150 to 266 m), when the scaled cover depth was held
constant at about 0.8 m/kgl/3,

3.2 DEBRIS EFFECTS

3.2.1 Debris Launch Velocities. Successful measurements of the cover
accelerations for the Brick Model Tests were obtained only on Test 2, which
had the lowest loading density. A partial record was obtained for one of the
two accelerometers (EM-1) installed for Test 1, but the peaks of the
acceleration wave form were clipped due to over-ranging of the gage. The wave
form was clipped at 6,000 g’'s, and the portion recorded indicated that the
actual peak might have been close to 10,000 g's. No useful records were

obtained from the accelerometers on Test 3.

Assuming that the bricks just below the slope surface above the chamber
were launched in an initial direction normal to the surface, a launch velocity
can be roughly calculated based on the measured throw distance. This
calculation indicates a launch velocity of about

4.9 m/sec for Test 1.

The acceleration wave forms obtained for Gages GM-1 and GM-2 on Test 2
(see Figure B.11 and B.13 in Appendix B) showed severe "ringing" of the gages,

possibly due to shock reverberations in the bricks containing the gages. It
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was possible, however, to integrate these acceleration records to obtain
velocity and displacement histories. As shown in Figure B.12, the gage
located 18.3 cm above the model chamber roof experienced a peak velocity of
only 1.1 m/sec, and a total displacement of about 0.5 mm. Because of the
large scaled cover thickness for this test (0.80 m/kg!/®), the cover material
at this small distance above the chamber was not moved significantly by the
late-time gage pressures, but experienced only a small displacement as the
initial shock wave passed through it on its way to the surface. Gage GM-2,
located about mid-depth in the cover, experienced a similar peak acceleration.
Because it was nearer to the free surface than Gage GM-1, however, it moved at
a somewhat higher peak velocity (2.0 m/sec) and was displaced a greater
distance. The velocities and displacements of the brick layers increased
dramatically with proximity to the cover surface. The bricks at the top of
the chamber cover spalled completely free, but still with insufficient

velocity to constitute long-range debris.

3.2.2 Debris Distribution. The maximum ranges of debris observed on

the Brick Model Tests were 91 m for Test 1, and 32 m for Test 3. Using

W1/6 scaling, the range for Test 1 is less than half the maximum range
observed on the large-scale test. On Test 3, the explosive charge was larger
than that of Test 2, but the cover thickness was also greater, resulting in
the same (or nearly so) scaled cover thickness of 0.8 m/kg!/®. As shown in
the photos of Figure 14, the upper layers of brick again spalled away from
their in situ positions, traveling to significantly greater distances than
occurred for Test 2. Table 7 gives the surveyed distribution of debris from
Test 3. All of the debris moved outward from the surface slope over the
tunnel and chamber, within a sector extending about 30 degrees to each side of
the extended tunnel axis (see Figure 15). The vast majority of debris pieces
were fragments less than 1/2 brick in size, indicating that the initial shock

shattered most of the bricks near the surface.

3.2.3 Comparisons with Previous Tests. Figure 16 shows a series of

curves (from Helseth, 1982) relating debris launch velocity to the scaled
cover thickness and the magazine loading density. The data sources range from
aircraft shelters, which had very shallow cover thicknesses and loading

densities, to buried cratering charges, which had very deep covers and very

11




high loading densities. Underground magazines would typically fall between

two extremes.

Dimensional analyses show that the ratio of velocities measured in a
model test to those occurring in a full-scale test is equal to the square root
of the model scale factor. Therefore, the peak velocity measured by Gage GM-2
in Test 2 of the Brick Model Tests was multiplied by 5, and plotted in
Figure 16 along with launch velocities recorded on the large-scale Shallow
Underground Test. While this single data point from the Brick Model Tests
appear to almost exactly match the curves and other data of Figure 16, it must
be remembered that the Gage GM-2 was not at the cover surface, but at mid-
depth in the cover. The actual launch velocity for Test 2 (small though it
was, as evidenced by the short debris travel) was no doubt somewhat greater

than at the gage point.

Also shown in Figure 16 is the launch velocity based on the ballistic
calculation for Test 1 (see Section 3.2.1). The value, which was also
multiplied by a velocity scaling factor of 5 for plotting on Figure 16,
appears to be somewhat low in comparison to the full-scale Shallow Underground
Test.

Figure 17 shows the debris areal density (number of impacts per square
metre), as a function of range from the tunnel portal, for Brick Model Test 3
compared to that of the large-scale Shallow Underground Test. In accordance
with accepted scaling procedures for ejecta/debris (Rooke, 1980), the
distances in the model case have been scaled up by multiplying by the sixth
root of the ratio of the model-versus-prototype charge weights, i.e.,

(20,000 kg/1.27 kg)/s.

As stated earlier in Section 2.5, however, it is not possible to
quantitatively compare the debris densities of the Brick Model Tests with
those of the full-scale test, since the number of fragments produced by the
cover breakup does not scale. Therefore Figure 17 should be regarded only as
a comparison of the relative debris densities recorded on Brick Model Test 3
as a function of range and azimuth, with similar relations from the large-
scale test. To provide such a comparison, the entire grouping of the model
data has been arbitrarily positioned with respect to the ordinate scale of

Figure 17. Considering this limitation, the comparison is actually quite

12




good. the attenuation of the model impact densities with distance closely
matches the shape of the curves from the large-scale data. The relative
differences between the debris densities along the extended tunnel axis
(0-degree azimuth) and the densities "off-axis" also compare quite well with

the large-scale results.

13




SECTION 4
CONCLUSIONS AND RECOMMENDATIONS
4.1 CONCLUSIONS

Peak airblast overpressure and impulse values measured on the Brick
Model Tests at the tunnel exit and in the near-field (just outside the portal)
closely match the results of the corresponding large-scale test. The model
pressure data in the far-field was somewhat lower than measured in the large-
scale test, possibly due to the gravity and inertial effects resulting from
our inability to properly scale the overburden. A comparison among the model
test results shows an increase in pressure of a factor of 4 to 6 when the
chamber loading density was increased from 10 to 60 kg/m®. An overpressure
increase on the order of 90 percent was seen when the scaled overburden
thickness was increased from 0.44 to 0.79 m/kg!/?. The Inhabited Building
Distances indicated by the model tests were significantly less than those
found for the large-scale Shallow Underground Test, but this was also

attributed to overburden scaling deficiencies.

Ejecta impact data collected from Brick Model Test 3 demonstrate the
feasibility of modeling the basic nature of overburden ejecta throwout.
Because the breakup of the cover material does not scale, however, ejecta
sizes in the model tests were much too large to accurately define the ejecta

hazard range, in terms of impacts-per-square meter.

4.2 RECOMMENDATIONS

The results of the tests conducted in this study demonstrate that some
explosion effects can be very accurately simulated in small-sc:le models,
while others are biased by properties of the test environment that are not
normally scaled with sufficient accuracy. For example, the peak internal
airblast pressures in the brick model closely matched the full-scale China
Lake Test. The external pressures, however, were lower in the Brick Model
Test than in the full-scale event, apparently due to an earlier venting of the
long-duration chamber pressures in the model. This, in turn, was probably due
to the fact that the mass of the cover material, which resists the venting

force, cannot be properly scaled in a normal "1g" model. For the same reason,

14




it is not possible to accurately simulate the breakup of the cover rock in

such a model, nor the range to which the debris is thrown.

It is strongly recommended that, before further model tests of
responding magazines are conducted, a thorough analysis be made of the
fundamental physics of the explosion/response problem for responding magazines
in order to clearly identify the inter-relationships between the
model/prototype properties and the outcome parameters. Two approaches for
such an analysis are recommended. The most inexpensive would be the
development of a single computer model which idealizes the problem, and
predicts outcomes based on simple physical laws. A more revealing approach
involves the use of numerical computer codes capable of treating a structure
"breakup.” Some of the recently-developed versions of the Discrete Element
Code are ideally suited to such a problem. These codes have been used
previously to study the formation and throw velocities of debris from simple
cratering explosions in jointed rock, and have provided significant insights
into the actual influence of factors such as rock strength and density, joint

patterns and shear strengths, and overburden surface slopes.
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Figure 1. Access tunnel cross-section for 1:26-scale
WES Brick Model Tests
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Figure 2. Storage chamber cross-section for 1:26-scale
WES Brick Model Tests.




"[PPOW >2ug SIM 3leds-ge:| Jo (d|youd aujauad) 1noke ‘g unbiy

w ‘aouejsia

9 S 14 €
L | 1 |

TIVOS

19]9WOIBIIY USpINQUAAQ O
abeD ise|quly piPIto3d @
abep) jsejquiy jewdu] W

uoneuIAWNgSU|

uonEBLQ SIXY
Guisuag J319wWwoIda92yY

ANIMYILNIO DNOTVY F11404d
T13AON 40 LNOAV1

18




souyzeSew punoiBiapun MOTTEYS 103 STIA3T ISETqIFe TBUIIIXI/TBUILIUT pue ‘eIoafs ‘Juyjusa
UO SOT3ISTI9708IBYD YOOI IIA0D JO PDUINTIUF JO §3I593 ITEBOS §Z:] 303 udysap paqisal ‘4 2an3ig

2008 Q3INIOC
INILIVINNWIS
1 SA2078 1N0Y9

19

NIQYNE8Y3IA0
JANLINYLS 7110S 0371300W

INIWNIVINOD 313¥INOJ

ONINJVE 1I0S

HII-"I\




Figure 5.
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/
b. Brick Model Test 1.
Tunnel portals and foreground areas (for external
external airblast measurements) of the large-scale

Shallow Underground Test and the corresponding
Brick Model Test.
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Figure 6. 1.27-kg explosive charge before insertion
into chamber of Brick Model Test.
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Figure 7. WES Brick Model Test 3: location of ejecta collection areas.
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Figure 8. Scaled arrival time versus scaled horizontal distance from
the charge Initiation point. A comparison Is shown between
the prototype (Shallow Underground Tunnel/Chamber
Explosion Test, loading density 60 kg/m®) and the Brick Model

Test data. Solid symbols are internal gages in the model tests.
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Figure 9. Free-fleid side-on overpressure scaled to the
Shallow Underground Tunnel/Chamber
Explosion Test (KLOTZ 1988) parameters.
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Pressure-distance comparisons from existing data on model and
large-scale detonations in underground magazines. The ratio of
calculated exit pressure (P ) to measured free-tield side-on

overpressure (B ) Is plotted versus distance (R) from the tunnel
portal along the tunnel/chamber centeriine. The distance Is
normalized by dividing by the hydraulic diameter (for turbulent
flow) of the access tunnel cross-section.
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Figure 11. Peak side-on overpressure versus horizontal distance from
the charge Initiation point. A comparison is shown between

the prototype (Shallow Underground Tunnel/Chamber
Explosion Test, loading density 60 kg/m®) and the WES Brick
Model Test data.
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Figure 12. Peak side-on impulse versus horizontal distance from the

charge Initiation point. A comparison Is shown between
the prototype (Shallow Underground Tunnel/Chamber
Explosion Test) and the WES Brick Model Test data.
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Figure 13. Airblast inhabited Bullding Distance versus total loading
density (charge mass divided by total internal volume) for

selected model and large-scale tests. Solid symbols are
for “responding" magazines, and open symbols for
"non-responding" magazines.
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Figure 14. Photos of debris fields from Brick
Model Test 3.
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Figure 15. Ejecta distribution as & function of azimuth along
the 8.1 m arc, WES Brick Model Test 3.
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Figure 16. Launch velocity of cover rock ejecta from WES brick model
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Underground Tunnel/Chamber Explosion Test (Joachim,
1990) and other sources (Helseth, 1982) on previous
explosive tests.
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i

measured from the tunnel portal.

surface of concrete airblast pad.

Horizontal distance along tunnel/chamber centerline

Elevation measured from the tunnel/chamver floor and/or

Table 1. WES Brick Model Tests: Measurement Type and Gage ]
Location Data.
Station Horizontal" Measurement J
No. Distance Elevation™* Type
(cm) (cm)
AB-1 20 0 Side-on Overpressure J
AB-2 20 0 Stagnation Pressure
AB-3 40 0 Side-on Overpressure
AB-4 100 0 Side-on Overpressure
AB-5 300 0 Side-on Overpressure
AB-6 600 0 Side-on Overpressure
AB-7 -10 0 Side-on Overpressure _l
AB-8 =50 0 Side-on Overpressure J
AB-9 -124 0 Chamber Pressure
AB-10 -148 0 Chamber Pressure
GM-1 -115 52.6 Overburden Acceleration
M-2 -125 34.3 Overburden Acceleration

f

Table 2. WES Brick Model Tests: Explosives Charges, and Chamber Cover
Thicknesses
Explosive Charge Minimum Scaled
Test Total Loading' Chamber Portal
No. Mass Density No. of** Length Diameter Cover Cover
(kg) (kg/m3) Strands(kg) (cm) (cm) (m/kg1/3) (m/kgl/3)
1 1.27 60 31 48 5 0.64 0.034
2 0.21 10 5 48 0.80 0.062
3 1.27 60 31 48 5 0.79 0.48
Mass of explosives divided by chamber volume.
** 0.085 kg/m (400 grains/foot) detonation cord
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Table 3. WES Brick Model Tests: Airblast Pressure and Ground Shock
Measurements; Test 1 (60 kg/m® PETN charge loading density,
0.44 m/kg!/® scaled chamber cover depth).
Peak Data
Station | Horizontal® Arrival Measured First
No. Distance Elevation™ Time Integral
(cm) (cm) (msec)
AB-1 20 0 0.77 5.37 MPa 2.0 kPa-sec
AB-2! 20 2.5 0.67 1.83 MPa 1.1 kPa-sec
AB-3 40 0 0.83 1.92 MPa 0.10 kPa-sec
AB-4 100 0 ---- ---- ----
AB-5 300 0 5.6 0.036 MPa 28. Pa-sec
AB-6 600 0] 13.5 0.010 MPa 13. Pa-sec
AB-7 -10 0 ---- ---- ----
AB-8 -50 0 0.17 12.4 MPa ----
AB-9 -124 8 _--- R S
AB-10 -148 8 0.2 >750 MPa ----
GM-1 -115 52.6 0.24 ---- ----
GM-2 -125 34.3 ---- ---- ----

* Horizontal distance along tunnel/chamber centerline measured from the

tunnel portal.

cover.,

*% Elevations measured from the tunnel/chamber floor.

! Total pressure measurement

Negative distances are inside tunnel or above chamber
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Table 4. WES Brick Model Tests: Airblast Pressure and Ground Shock
Measurements; Test 2 (10 kg/m3 PETN charge loading density,
0.80 m/kg!/® scaled chamber cover depth).

I
Peak Data
Station | Horizontal” Arrival | Measured First
No. Distance Elevation™ Time Integral
(cm) (cm) (msec)
AB-1 20 0 0.88 >5.2 MPa >0.57 kPa-sec
AB-2' 20 2.5 1.35 1.13 MPa 1.1 kPa-sec
AB-3 40 0 1.09 0.45 MPa 78. Pa-sec
AB-4 100 0 2.33 0.125 MPa 64. Pa-sec
AB-5 300 0 7.04 16. kPa 19. Pa-sec
AB-6 600 0 15.3 5.2 kPa 6.0 Pa-sec
AB-7 -10 0 0.64 1.89 MPa 1.9 kPa-sec
AB-8 -50 0 0.37 2.0 Mpa 1.0 kPa-sec
AB-9 -124 8 ---- 114. MPa 3.4 kPa-sec
AB-10 -148 8 -.-- 52. MPa 4.0 kPa-sec
GM-1 -115 52.6 0.25 1500 g's 1.08 m/sec
GM-2 -125 34.3 0.06 1500 g's 2.0 m/sec
* Horizontal distance along tunnel/chamber centerline measured from the
tunnel portal.
** Elevations measured from the tunnel/chamber floor.
! Total pressure measurement
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Table 5. WES Brick Model Tests: Airblast Pressure and Ground Shock
Measurements; Test 3 (60 kg/m® PETN charge loading density,
0.79 m/kg!/?® scaled chamber cover depth).

Peak Data I
Station | Horizontal® Arrival Measured First
No. Distance Elevation™ Time Integral
(cm) (cm) (msec)
AB-1 20 0 0.45 4.8 MPa 0.75 kPa-sec I
AB-2' 20 2.5 0.77 2.8 MPa ----
AB-3 40 0 0.60 2.2 MPa 0.16 kPa-sec
AB-4 100 0 1.30 0.78 MPa 0.10 kPa-sec
AB-5 300 0 5.0 0.049 MPa 63. Pa-sec
AB-6 600 0 12.7 0.015 MPa 20. Pa-sec H
AB-7 -10 0 0.33 6.3 MPa ---- I
AB-8 -50 0 0.16 29. MPa ---- I
AB-9 -124 8 ---- ---- ----
AB-10 ~148 8 ---- ---- ----
GM-1 -115 52.6 0.16 ---- -
GM-2 -125 34.3 ---- ---- ----

* Horizontal distance along tunnel/chamber centerline measured from the
tunnel portal.

** Elevations measured from the tunnel/chamber floor.

! Total pressure measurement
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Table 7. WES Brick Model Test 3: Brick Ejecta
Distributions.
Number of Brick Ejecta
Horizontal® Size of Brick
Distance Azimuth"™*
(m) (degrees) Full>Half <Half
l 3.1 [} 4 134
4.6 0 3 62
6.1 0 8 50
9.1 1] 1 9
12.2 0 2 4
18.3 0 0 4
24.4 (1 0 1
3.1 10 0 13
4.6 10 3 24
6.1 10 6 24
n 8.1 10 0 5
12.2 10 1 16
18.3 10 0 2
24.4 10 1 0
3.1 350 2 84
4.6 3aso 3 60
6.1 350 1 16
9.1 350 3 2
12.2 350 0 2
18.3 350 0 1
24.4 350 [} 0
6.1 25 1 14
6.1 30 2 4
6.1 45 0 0
6.1 340 4 20
6.1 330 3 4
6.1 315 0 0
* Horizontal distance along tunnel/chamber
Centerline measured from the tunnel portal.
**  Azimuth referenced to extended tunnel/chamber
centerline.
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APPENDICES A, B AND C

AIRBLAST PRESSURE AND GROUND MOTION WAVE FORMS

Gage Identification Code:

Digital Gage MUST 00-X CBS 0 0000 0.0000
Array Size MN
Fl1 Low Pass 0000 HZ
Cal Val 00.0
Deflection 0000

00 KHZ DD-MM-YY
The first line contains identification code (00-X). AB and GM identify
airblast and ground motion (acceleration) measurements, respectively. In
addition, some time histories require baseline shifting indicated by the CBS
(constant baseline shift) shown on the far right of the first line. The
numbers following the CBS indicate shift starting and ending times (msec) and
the amount that the data was shifted. Negative numbers indicate a downward
shifting of the time history. The second line gives the size of the data
sample. The third line lists the low pass filter cutoff frequency. The
fourth and fifth lines gives the values of the shunt calibration and the
corresponding value of the voltage deflection, respectively. The last line
shows the sampling frequency of the filtered data and the date on which the

plot was generated.
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APPENDIX A

AIRBLAST AND GROUND MOTION WAVE FORMS

Brick Model Test 1

Explosives Charge: 1.27 kg PETIN

Chamber Loading Density: 60 kg/m’

Minimum Scaled Chamber Cover Depth: 0.44 m/kgl/?
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APPENDIX B

AIRBLAST AND GROUND MOTION WAVE FORMS

Brick Model Test 2

Explosives Charge: 0.21 kg PETN

Chamber Loading Density: 10 kg/m3

Minimum Scaled Chamber Cover Depth: 0.80 m/kg!/?
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APPENDIX C

AIRBLAST AND GROUND MOTION WAVE FORMS

Brick Model Test 3

Explosives Charge: 1.27 kg PETN

Chamber Loading Density: 60 kg/m?

Minimum Scaled Chamber Cover Depth: 0.79 m/kgl/?
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