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Section I

INTRODUCTION

Use of advanced fiber-reinforced composite laminates has been rapidly growing in

structural engineering, e.g., in the design of aircraft, space vehicles, automobiles,

large-span roof structures, etc. This is due to the high strength/weight ratio and the

possibility for optimal design by tailoring the mechanical properties of structural

components for a specific application. Increasing use of composite materials in the

design of high-performance vehicles has attracted much attention to the dynamic

behavior of structural components under service conditions. Experimental procedures

can provide information on the real behavior of structures to the designer, but cannot

cover all the design possibilities. Therefore, it is important to develop a general, as

well as reliable, analysis procedure which can predict the response of composite

laminates under a variety of service conditions.

Considerable research effort has been devoted to the development of analytical

procedures for the analysis of composite materials. This has resulted in a variety of

laminated plate theories and solution methods including, among others, classical thin

plate theory [e.g., Reissner 1961, Stavsky 19611, first-order shear deformable theories

[e.g., Yang 1966, Whitney 19701 higher-order theories [e.g., Whitney 1973,1974, Nelson

1974, Lo 1977, Reddy 1984a] and discrete laminate theories [e.g., Srinivas 1973, Sun

1973, Pagano 1978,1983, Seide 1980, Green 19821
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Classical thin plate theory (CPT) based on the Kirchhoff hypothesis assumes that

the transverse shear deformation is negligible. For the analysis of laminated composites,

it is well known [Whitney 1969, Pagano 1969,1970b, Jones 1970, Srinivas 1970] that

use of CPT leads to underprediction of the transverse deflection, overprediction of

natural frequencies, and higher buckling lodds. This is attributed to the fact that the

ratio of shear to Young's modulus is lower in most composite materials than in

conventional isotropic materials. Also, the error grows with an increase in plate

thickn-ss.

This theoretical deficiency of classical thin plate theory was corrected by the shear

deformable theory [Yang 1966] in which transverse shear deformation was taken into

account, following Mindlin's [1951] work, for the dynamic analysis of laminated plates.

Since then, various shear deformable theories have been proposed, including higher-order

theories in which the power expansion for displacements contains terms of order higher

than one. It has been shown [Whitney 1969, Srinivas 1970] that first order shear

deformable theory may be adequate to predict global behavior of laminated plates, e.g,

lateral deflection or fundamental natural frequency, but it is not better than CPT in

calculating in-plane stresses because it does not include the contributions of higher shear

modes. Higher-order theories lead to improved estimates of in-plane stress distributions

and of the flexural vibration characteristics.

However, the shear deformable laminate theory, whether it is the first or

higher-order theory, has two critical deficiencies. The first is its lack of capability to

describe local deformation precisely. Due to this, it is difficult to avoid error in

calculating natural frequencies as well as in-plane stresses around laminar interfaces,

especially, when shear rigidities of adjacent laminae are quite different [Sun 1973, Lo
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1977]. The other deficiency is the violation of equilibrium of the plate because stress

continuity at the interface is, in general, not satisfied. The need to eliminate these

deficiencies has motivated the development of several discrete laminated plate theories

[Srinivas 1973, Sun 1973, Seide 1980] in which variation of anisotropy in the

laminate is properly incorporated. The discrete laminate theory not only removes the

drawbacks of shear deformable theories noted above, but it also allows different

o•undary conditions to be specified in each layer. It may be regarded as the most

general approach capable of accurately describing the mechanical behavior ol any type

of laminated plates. Use of discrete laminate theories appeared to give better in-plane

stress disribution [Seide 19801 and more accurate natural frequencies [Sun 197.ij.

thowever, this theory, in general, involves a large number of field equations, and

consequently makes the problems quite complicated.

A basis often used for laminate theories is to assume a pattern of variation of

displacements over the thickness of the plate. In such theories, which allow for shear

deformation, the constitutive relations of transverse shear are, in general, not satisfied.

As a result, it is not possible to avoid some error in evaluating the laminate stiffness.

Since the effect of transverse shear deformation is significant in laminated composites,

accuracy of analysis can be considerably affected. In particular, its effect becomes more

critical in thick laminates or hybrid laminates made of layers with drastically

different material properties. Many attempts have been made to treat the shear

deformation realistically, but a standard procedure applicable to laminates of arbitrary

construction is not available.

Since the boundary value problem of a structure constructed with composite

laminates is extremely complex, approximate numerical techniques are often used to
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obtain the solution. The most popular tool has been the finite element method which

is usually based on a variational formulation. Several different types of element

geometries, interpolation schemes and formulation strategies have been introduced, (e.g.,

Mawenya [19741 Reddy [1980,1984b], Bhashyam [1983], and Putcha [1986]). To provide

the basis for different possible formulations, AI-Ghothani [19861 presented

complementary variational formulations of the discrete laminate theory of dynamics of

laminated plates following Sandhu's [1970,1971,1975,1976] procedure. Various extended

and specialized forms of the general variational principle were discussed. However, he

failed to derive variational principles for the direct formulation which provides another

and often more useful approach for construction of approximate solution procedures.

As part of the current research program, reliable procedures were to be developed

for the analysis of stresses and deformations in delamination specimens of composite

laminates allowing for the coupling of flexure and extension. This required

development of a theoretical model which could realistically describe the mechanical

behavior of composite laminates. The discrete laminate theory was selected as quite

general. This was extended to include constitutive coupling of force resultants in the

lamina. In Section 11, the field equations of a discrete laminate theory based on the

assumed-displacement field are summarized following Srinivas [1973], Sun [1973] and

Seide [1980], and its somewhat ad hoc treatment of transverse shear deformation is

discussed. Section III presents a procedure based on a generalization of Reissner's

method to incorporate the effect of transverse shear deformation in a consistent manner.

A variational formulation of the consistent shear deformable discrete laminate theory of

laminated composite plates is proposed in Section IV. Direct as well as complementary

formulations are discussed. In Section V a finite element discretization procedure is

4



introduced. In Section VI, application of the finite element code to evaluation of

stresses in some cross-ply and angle-ply free-edge delamination specimens is described

along with an application to free vibration analyses.

The development of the coupled shear theory discussed herein is an important step

forward in obtaining reliable estimates for stresses and deformations in laminated

composites. Clearly, the new theory has certain limitations including its assumptions of

vanishing transverse strain. Further refinements on introducing coupled relations for the

other force resultants besides shearing forces, and allowing for variation of transverse

stress over the thickness of the laminate is apparently necessary for reliable estimation

of stresses in a composite laminate.



Section II

FIELD EQUATIONS OF THE DISCRETE LAMINATE THEORY

OF COMPOSITE PLATES

2.1 1 NTROIDUCTION

In this section, field equations of the discrete laminate theory for dynamics of

laminated plates are summarized using the kinematic assumptions proposed by Srinivas

[19731, Sun [19731, and Seide [1980]. The domain of definition of all functions is the

Cartesian product Rx[O,oo), where R is the closure of the open, connected spatial

region R occupied by the plate and [0,oo) is the positive time interval.

We consider a laminated plate of uniform thickness h composed of an arbitrary

number of thin layers, in which each layer is assumed to be homogeneous, linear

elastic with its material axes not necessarily coincident with the geometric coordinate

axes (Figure 1.). For the Cartesiar reference frame used, the origin is located in the

bottom surface of the plate (x--x, axes) with x3 axis normal to this plane. Also, in

k l)
each layer a local coordinate system, x, , is set up in a similar way with the range

of x" limited to the thickness of kth layer.
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Figure 1: Global and Local Coordinate Systems in a Laminated Plate.
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2.2 FIELD EQUATIONS OF LINEAR ELASTOSTATICS

Differential equations of equilibrium for linear elastostatics are:

ai. + f+ = 0 (1)

where or, and f, are components of the symmetric Cauchy stress tensor and the body

force vector respectively. Here, and in the sequel, we use standard indicial notation.

Roman indices take on the range of values 1, 2, 3 and greek indices the values 1, 2.

Summation on repeated indices is implied except where indicated otherwise. The

superscript (k) denotes the k0' layer and is not summed. Parenthesis around a single

index indicate "no sum" on that index. Parentheses around a pair of indices denote

s3mmetric part of the tensor defined by the pair. Indices following a subscripted

"comma" denote partial differentiation with respect to the spatial co-ordinate defined by

the subscript.

For small deformations, the strain-displacement relations are:

e = !2(,u.j + u,.) (2)

where e,, and u, are components of the strain tensor and the displacement vector,

respectively.

For isothermal elasticity, the constitutive equations are:

or, = E ijkle k1 (3)

where, because of the symmetry of e,, and cr,,, the components E,,, of the elasticity

tensor satisfy the symmetry relation

E yt./= Ejak. = Eij,,ý (4)

Further, assuming the existence of an energy function implies E,,k,=EE,,,. For a

general anisotropic niaterial, the elasticity tensor with components E,,,, has 21

independent elements. If inverse of (3) exists,
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where C,jk are components of the compliance tensor.

23 SPECIALIZATION TO A LAMINATED PLATE

2.3.1 Kinematics

For a laminated plate subject to bending and stretching, in order to reduce the

problem to one in two dimensions, the functional dependence of the displacements upon

the transverse coordinate x3 is made explicit. Often, the in-plane displacements are

assumed to vary linearly within each layer and the thickness stretch is assumed to be

negligible. Mathematically, for the k"' layer, this can be expressed as
(X )(xt) + X -(4)(, t) (6)u~ ~ t()(Xop ,t= +x3 (,X

uW (xilt) = w*)(x, t) (7)

where U), w%•) are the associated displacements at the bottom surface of the kA* layer;

and 4ý.' are the rotations of the cross section of the ki' layer. For small deformation,

the kinematic relations for the kth layer are (2):

e(A) = _1 (A()+ u ) (A) ) (A)
e., 2 (U'd j U(,.J)

Substituting (6) and (7) into (8), the strain-displacement relations for kth layer become

(A) J0 W (A)(ecoo eko +X 3 Ko (9)

e (A) (I ) W (k)))* o3 2 (.0)

=0 (II)
33

where the kinematic variables are defined as

9



JA ~(A) ( J

-(k) 1 •-t (4)• _ W

K -- (13)

2.3.2 Equilibrium Equations

The three-dimensional equations of motion of the k"' layer are

(W ) (i ) (1 ) ( 4
0, +f, = P u (14)

where p") is the mass density. Here, superposed dots denote time derivatives of the
4.) •k), W• sfnton fx,(4

order denoted by the number of dots. Regarding o,, il, U1 as functions of x3, (14)

is equivalent to

W• 4-u) a) (•- k), W
, " / -- 1_P) U, )xndx 3 = 0

for n = 0, 1 ...... cc. The integration leads to a countable set of equations involving

functions of xi and x2' As an approximation, the values n=O, 1 are generally used.

Evidently, higher order equilibrium theory would use higher order of n as well. For

the kth layer, integration of (14) and the first moment of two of the equations (viz.

i= 1, 2) over the thicknes. of the layer, for the displacement assumptions (6) and (7),

gives [AI-Ghothani 1986]

N() + (T W -T(A -)) + F() - PX)iu(A) - R •)t =0 (15)

*A, a 0 a 0

(k) (A) (4) 7,U) ( k) ( A.) (A) (A)
M(A,) Q. + G +t•T -R k- -. =0 (16)

W( + 7(k) -T(-1)) + ) (U WW) (17)3 " -P w =0

where

10



(A) (1 (, k-18
Q. f(Y-o3 dx3

0

(N"'W M(k)) = (1, X~k) Y dx~ k (19)
&A oNP j 3 ovp 3

(F) GW )= J ( (20)

J• =ff 3 dx3 (21)
0

= , ) (A (22)
T() R(A), ](4)) (A ), (Or-12)}p() dx3

7k)= 0,k)( -( t ) =(7- (A+ =0) (23)

T74-I) = (k) (()=) T-1)X (kA-1 ) ) (24)
i t3 3 03 3 k_ I

and tk is the thickness of the kth layer.

2.3.3 Constitutive Equations

For a composite lamina having material symmetry with respect to its middle

surface, coupling of the extensional stresses and the shear strains vanishes and (3)

reduces to [AJ-Ghothani 1986]

(A) = kU) (A) + E.(A-) (25)C"O, --- ,be,ybey P~•33e33

a() = 2-1() e(k) (26)
(k3 * 3 3€3  (23

(W) .4 (A) -k) ()
a 33 = 33Y6 ey"" + 3333 e33 (27)

11



Substituting (25) into (19) and using (11), the constitutive equations of bending and

stretching are obtained in terms of plate kinematic variables and force resultants.

Namely,

B(A) (28)
MrA B -Y6 Doap.b IK.Y6

where

(2) 3

"(At,, By_ ,,L !,) = (t, E " ' (29)

It is well known from the exact elasticity solutions [Pagano 1969,1970a] that the

transverse shear stress distribution is close to parabolic over the thickness of each layer.

In (10), however, the transverse shear strains are constant through the thickness of a

layer, which implies the constant shear stresses through (26). Furthermore, if interface

continuity requirement of the transverse shear stress is enforced, the shear stress

distribution becomes constant over the thickness of the entire laminate, which is far

from the real situation. As a result, direct use of (26) for obtaining the plate

constitutive equations yields an error in the evaluation of the plate stiffness. The

usual measure to avoid this error is to multiply the shear stiffness in (26) by a

coefficient K, but a standard method to determine the value of K is not available.

Therefore, a procedure to obtain the shear stiffness matrix which takes into account

parabolic distribution of shear stress needs to be developed so as to ensure reliability of

the theory. This issue is addressed in Section III by developing consistent transverse

shear constitutive relations which allow for realistic stress distributions.

12



2.4 BOUNDARY CONDITIONS

For the klh layer, the boundary conditions associated with the field equations are:

o * Al(k ,t) on S•;•x[0,oo) (30)

M)rW = P ,t)(x ,t) on S(;)x[0,oo) (31)

Qt (L•k)( tS qkx [0, oo) (2
a 3 ' ,. O -

=•¢h )t) on ((S) X[0, oo) (32)

g (4) ,_€1 ), (4)
U -uc (x•,t) on S2X4[0,c0) (33)

00 (XA It) on S4 X [0, 0) (34)

w () = ( t) on S,(A) x [0, o0) (35)

where x. are the coordinates along the edge boundary SW of the spatial region R

occupied by the plate; a circumflex denotes the value of the prescribed quantity on

SW); and 7'b are components of the unit outward normal to S~k). The boundary

segments S?, 5 k) are complementary subsets of , and so are S'), SW•. and 4t), S,).

2.5 INITIAL CONDITIONS

The initial conditions for the problem are

d )(xP 0) = akx) (36)

w(A)(xA, 0) = 0•o(•) 
(37)

u(k)(Xo 0) = u(k)(X) (39)
0~00

(kI'xo 0) = w(kx 
(40)

W •(XP 0) =, W('(X (41)

13



2.6 INTERLAMINAR CONTINUITY CONDITIONS

Since it is assumed that all the layers are perfectly bonded, continuity of

displacements and tractions along interlaminar surfaces must be satisfied. The

displacement continuity conditions are:

U+1) = U M + t -) (42)

w(h-) = (43)

and the traction continuity conditions are:

cr (A x(() = -(A 41) (X(A, 1)=0)( 4
,3 x3 A i•)='3 x3 =)(

Through these continuity conditions, all the field equations defined for each layer can

be combined to give the governing equations of the laminated plate.

In approximate solution procedures, two distinct situations may arise. In case the

interlaminar traction components and the layerwise shear forces are admitted as field

variables, continuity can be directly enforced. On the other hand, if a displacement

type approach is used, the shearing forces obtained through material contitutive relations

can be grossly in error if the simplistic kinematic assumptions (6) and (7) are used.

An alternative often employed is to evaluate shearing stresses from consideration of

equilibrium, i.e., obtaining o' through the material constitutive relations but

O(73 and oa*) using (14). We discuss this point in Section V where the new theory is

applied to free-edge delamination specimens.
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Section III

CONSISTENT TREATMENT OF TRANSVERSE SHEAR

DEFORMATION

3.1 INTRODUCTION

Laminate theories based on assumed displacements, in general, do not satisfy the

constitutive relations of transverse shear. Since the effect of transverse shear

deformation is significant in laminated composites, there could be certain loss of

accuracy in the analysis due to this error. In particular, its effect could be significant

in thick laminates and hybrid laminates composed of layers with drastically different

shear rigidities. For this reason, to enhance the reliability of laminate theory,

development of a procedure to incorporate transverse shear effect properly is necessary.

In this section, the development of constitutive equations of transverse shear in a

consistent manner is described. The assumptions and notation of a discrete laminate

theory given in Section II are used. The theoretical basis for development is a

generalization of Reissner's mixed variational principle of linear elastic orthotropic plates

to laminated composites. Reissner's principle was stated on an ad hoc basis. Herein, it is

derived as an extension of the general variational principle for linear elastostatics based

upon the general procedures for coupled linear problems introduced by Sandhu and his

co-workers [1970, 1971, 1975, 19761 A summary of these procedures is given in

Appendix A. Throughout, it is assumed that all the functions are defined on P,

closure of the open connected spatial region of interest R. A rectangular Cartesian

coordinate system is used.
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3.2 COMPLEMENTARY FORM OF FIELD EQUATIONS OF LINEAR

ELASTOSTAT1CS

The field equations (1), (2) and (5) of elasticity can be written as follows.

(T0-A. + 0a3,3 + f. = 0 (45)

0-3(,,, + a"33.3 + f3 = 0 (46)

f 1 !(u + U) (47)
2 L4-0 3.

e I(u + U) (48)2 3 2 .- 3,

e 3 3  U 3.3  (49)

eo - + 2C 3 3 +1 C 3 3 (50)
o00 o/3yb Yby A-3 -3 .333 3

e C3 o. *3yb(-Yb + 2C03y3 0-y3 + C, 3 3 3 033 (51)

e 3 3 - C 3 3oyb-a -Y6 + 2C 3 3 y3 0" 3 + C 3 3 3 3 (T3 3  (52)

Here we have separated the equations involving spatial co-ordinate x3 from the others.

3.3 SELF-ADJOINT FORM OF FIELD EQUATIONS

Coupled field equations of linear elastostatics (45)-(52) can be written in

self-adjoint matrix form as

0 0 0 A3 L,
03 2) fo o 0._ _0_ o f,

a3 0") U3  -f3

o -AL C 2 C3 V C a33 0 (53)03 3333 2 33)3 033y Y

-- a 8.y - 2C. 3 33 4C,,3, 3 2C. 3 8 0",,T 083 cla OG
-- L 1 0 C ., 3 3  2 C aO y3  C ,A),b

in which 8,, is the identity tensor, k_ and
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L

2 aa

2 2 .6~O

The operators on the diagonal of the matrix in (53) are symmetric tensors. If we

define

<f, g>,- f fg dR (54)
R

the off-diagonal operators constitute adjoint pairs i.e.,

<U , a33>R < -- <0", 3 , Uo,,3 >R + <U.,'o)37)3 >aR (55)

<U3, '"33.3> R <a 33,U 3 3 >R -+ <U3, O-33713 >aR (56)

<u > = - <47 a,uW. > R + <u,,, O')P>8 (57)

<U 3 , 73, >R A *<0" 3, US >R + <U39 0" 37).>8R (58)

(55) through (58) are sufficient to ensure self-adjointness of the matrix of operators in

(53) in the sense of (A.25). Consistent boundary conditions associated with the field

equations (53) are:
u = u7 and on S1  (59)

U373 = U 37)3 and u37)0 = 3710 on S1  (60)

-(a,,0 + a. 3r) 3 )=-3 on S2  (61)

-(0= +°' t on S2  (62)

where a superposed circumflex denotes the prescribed value of the quantity over the

boundary surface; i, and 7), are the components of the prescribed traction vector and of

outward unit vector normal to OR, respectively. In addition, S, and S2  are

complementary subsets of OR. We note that in a physical problem, each component of

17



displacement or traction may be specified over different parts of the boundary.

However, in the interest of conciseness, we denote the part of the boundary on which

displacement is specified as S1 and the portion on which traction is specified as Sr.

This representation is symbolic and in no way indicative of limitations on the theory

in this respect.

3.4 A GENERAL VARIATIONAL PRINCIPLE

Using the definition (A.26), the governing function for the field equations (53)

and associated consistent boundary conditions (59)-(62) can be written as

I- <Ua'O'o3,3 > + <Ua,'cT/ >R > + <Ua3 ,0 3 3 ,3>R + <U3,0-03, >R + 2<u,f >R

+2 <u 3 ,f 3 >R - <"33VU3,3 >R - <00. 3 ,(u., 3 +u 3,)> R- <0 0 uO >

+ < C '+ 2C or +C (T >
033' 333333 233w3 (X3 330o j w' R

+<2 3, CV 3 3 3cr3 +2C 3 -y3),- 3 - 3y 6 -),bY6 R

+ < aTO, C" 3A3 3 3 3 + 2CPy3 0 y 3 + C'AY 6c ab> R

+ <07", uYO- 2. 7)0> s1  <or33, U3 T)3 - 2 u 37)3 >S1

+ <00o3 (u -2u•73S + <0",3 (U3-2u3)ý .S
- .3 > S- <U 3 , 3 7 2t 3>S (63)

< Uo, (00oOA71 + a, 3")3 ) - 2t" > s2 <U30,a33 7) -i3 > $2 (3

Let { I} = r{i ? A3 , I 3, • ýM,} be an admissible state corresponding to the set of field

variables {v} = {u., u3 , >a, (.3,00,33). Assuming that {v)+X{V}, for X a scalar, is an

admissible state for all X, i.e. al is defined at every point in a neighborhood of v,

Gateaux differential of fl along P is

A f f) = -2 <zT° 3 , (U', 3 + u 3 ,o) - 2C 3 3Gk30 3 3 - 4C, o3y3a y3 - 2C yt 3a00> R

-2 < 0; ,Au0 " -- C 3 3 0 a0 3 3 - 2Cy3 o, a -- C,0aY6> R

18



- <?7 33 ' u 33 - C 3 33 3(T33 - 2C,333 (3 - Co330'A > R

+2<ila, 'a3.3 + °'PI, + fu>R + 2 <a 3 ' 0"33,3 + aO3,o + f 3> .R

+2<OF (u,-i^)Y >s + 2< 3, (U U

"+- 2 <]aP39 (U 3 _ U 3)7>S 1 + 2 <VF,3' (a--U )7)3>Si

-2 < +0 ) -tto > -2<RJa +" t(64)-2• ., (0-A 710/ -0-37)3)- S2 -- 2<3 (0337t}3 370--• -- A3 > S2 (4

Because of the self-adjointness of the operator matrix (53), (51)-(54), and linearity and

nondegenarcy of the bilinear mapping, the Gateaux differential (64) vanishes if and

only if all the field equations and boundary conditions are satisfied.

3-5 EXTENDED VARIATIONAL PRINCIPLES AND A SPECIALIZATION

Equations (55) through (58) relate pairs of off-diagonal operators in the operator

matrix of (53) and may be used to eliminate either of elements in each pair from the

governing function fl,. Elimination of an operator A, implies that the state variable uj

need not be in the domain M,, of A,,. This may result in relaxing the requirement of

differentiability of u., thereby extending the space of admissible states.

Through this procedure, numerous extended forms of the function fl, are possible.

Using (55)-(58) simultaneously to eliminate a. 3,1,- a.3,, and 0-3.3 from np, the

domain of the functional is extended to include nondifferentiable stress state. Explicitly,

this functional is

(1 2= -- 2 <- a,f U0,4> R - 2 <o",3, (U CO3+ U3,* )> R -2<O"33, Ua3.3>

+ 2 <u, f.>R + 2 <u33>R

-<cr 3 3,C 3 3 3 3 3 3 3 2C 3 3 ocr30- 3 +0C 3 3 0 00 >R
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+ < 20" 3, 3'C .333 (733 + 2C , 3 -y 30"7 3 + C.3),60" yf-> R

+ < 0,- . C,0 3 3 0"3 3 + 2C o-y30-y3 + C o,-y*> R

+2< <cr (u -- u • >5  + 2<a"3 3 ,(u 3 -i 3>-03 >5

+2<(3 ( UI - + 2 <o-3 (U3 - U<0-3, (U. -u)T)l3 > S1 3 370>S

+2<u, t.>S2 + 2<u3 ,' t 3>2 (65)

This is equivalent to the Ilellinger-Reissner mixed variational principle. For this

functional, certain specializations are possible by constraining the admissible state to

satisfy some of the field equations. Assuming that (53)s is identically satisfied, i.e., the

constitutive equation is exactly satisfied for the "inplane" deformations and stresses, D2

reduces to

0) 3 -<0- U,• > R -2<a0-3' (U., 3 + U3.0 )> R -2<c "3 3 , U3 ,3 > R

+2 <U,f.> R + 2 <u3,f 3 >R

+ <" 3 3 , C 3 3 3 3c- 3 3 +2C 3 3o30,3  3 3 4Grp >R

+ < 2a"3 , C 3 3 3 0-3 3 +-2Co3y3c"y 3 + C 3ysaoy > R

"+2<c<o , (U. -i^h,)N >SI + 2<a 3 3, (U3- U3)l713 >S

+2<cr3 ,(uT -urT 3 > + 2 <a (U3--i ) >S
. (. )73 S .3 ' 3 3 0S 1

+2<u, > + 2<u3  3> (66), S$2  , 3>

The only assumption to obtain f13 is that the kinematic and constitutive relations of

1-2 plane are satisfied. In connection with the use of this functional in deriving a

plate theory this point is noteworthy because most theories based on the assumed

displacement field satisfy this requirement. Reissner [1984] presented a mixed
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variational principle equivalent to '13 which was derived using a Lagrange multiplier

technique and partial Legendre transformation. For some special types of elastic

materials with certain symmetry of material properties, the procedure for obtaining the

explicit form of the principle was discussed. However, an explicit expression of the

principle for a general anisotropic material was not given. The derivation above shows

Reissner's ad hoc formulation to be a special case of the general variational principle of

linear elastostatics. Also, fl in (66) would be more convenient than Reissner's mixed

variational principle for the general anisotropic case.

If we assume further that the displacement boundary conditions on S, are

identically satisfied, fl3 reduces to

,4= -- _ <a'A I U008 >R -2<a, 3# U, 3(+U ,3 ",of a)> -- 2<0"33' U3.3>R

+2 <u,,f,>, + 2 <u 3,f 3 >R

"+<c" 3 3 , C 3 3 3 3 3 3 +2C33o3 0- 330- & R

+<2o' 3 , C 3 3 3 - 3 3 +2C3y3y 3 +C" 3 yo0-,y6>R

+2<u., i.> + 2<u 3 > (67)
o oS 2  3'3 S 2

3.6 A VARIATIONAL PRINCIPLE FOR A LAMINATED PLATE

The functional (67) written explicitly is:

04 fR 1ou.~ ( +u u,)+ u
n4 = {L 0-"AuA + o3 u.3 3A 3 0" 3.3

R

- ao3 e,3 2 33 e33 - u, dR- I 1i ds (68)

2

in which

o03 'C 003>yb + 2C. 3)3 a")3 + C03330a33 (69)
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e33 = C33yb0-yb + 2C 3 3 )3 cry3 + C 3 3 3 3 0"33 (70)

Recalling that in the derivation of the above functional the in-plane kinematic and

constitutive relation (53)s was assumed to be identically satisfied, with some algebra,

vanishing of the Gateaux differential of fi 4(UaO-.) along the path (va," ), gives

0---- A(, , j i) 3 4 f l0.,o+3(U. 3 + .o 3 2o3 + r33 (U33-T 33

-vf} dR - f2 vi. ds (71)

Using (55)-(58) yields

0= A(, 0 4 =f -(0-iij+ )Vi + 7.3 (U.3 +3.o--2e 3 + 'T33(U 3.3 e33 dR

R

-- v (t--)ds (72)

Using the notation defined in Figure 1, the variational equation for a laminate

composed of N layers is

N tN
ij " i ha3 o3 3,o 3 "33 3.3 33 3

-W 0 v (t4-h), A (A)• ds (73)
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3.7 CGONSITUTIVE EQUATIONS OF TRANSVERSE SHEAR

3.7.1 Assumed Transverse Shear Stresses

In order to use the mixed variational principle, developed in the previous

subsection, to set up constitutive equations for the force resultants, following Reisner

[1984] we propose a state of stresses in equilibrium. The stresses are stated in terms of

the force resultants as follows. Assuming the components or"') to be linear in x3, i.e.

"A' = -(•+ )x (74)
or, "PX

3  
(74)3

wkhere &r and C"' are independent of x) coordinate, and using the definitions of

force resultants it is easy to show that

(&) (k.)

() - 2 (2-3__'_)N(') + ±- (2X3 (75)f"° t t 2 t C

T'he equilibrium equations of elasticity are, separating the in-plane equilibrium equations

From the transverse ones, and ignoring inertia terms:

a (A) + Cr.A) + =0 (76)

(A) .. + a(3). + = 0 (77)
30 333 3

Integrating (76) with respect to x`,
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(K)
•3

0"3 = To -- (ao + dx (78)

Substituting (75) into (78),

x() (k) (k) W x) W

a(kW = T WOi - [4(.!...)-3( X.3)
2]IN~ W 6f(X3)2-(-3 )M(k - F~k) (79)a Ik t• I Rtk t a

Substituting (15) and (16) in (79) and again ignoring inertia terms,

(A) (A)

()=T~ (A + [4(X:--) - A( _ 3 )2] [,,(A + (T 0k ~T(x 1) A

(4) (W)-6 [ x3 )2 -_ ( x3 ()] (4) -18Ao))] [Q(o -Go -t - F( (80)
t A 2 a k A~ a

,4k) =k=,(0)rdcst

In case of no body force, i.e. F G- 0 r

WG' ) ( (A.) (A-0 (k)t

O4{' 3 = . + C T- + 3 To (81)

where

(A

(A) 6 1X3

(A) (A )

X,X3 -2 (4 3 ) + 1

21A 
tA

W( ) X(A)

43) = 3(3)2 _ 2( 2 )

t A A A

For a monoclinic material, it is only necessary to describe cra in terms of Qk to

evaluate e., in (69). Using the engineering notation for elastic constants ?P) and S'k,
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2e23 _23 __44 S45, 23 (2
,.AA () (() () 3 ) = S(A) ") (A.12e (A -l d 13 45 5• 5s 13

where

SD"* 4 = 5 4)(Q')2

3.7.2 Constitutive Equations for Shear Resultants

Neglecting - 'and noting that u') =0 for this formulation, (73) yields the Euler

equations for trans-erse shear

f f 7(4)( u()+ u( -2 e() dx dA (83)
a3 o .3 3.o C-z o 3 3 1

Using (6), (7), (81) and (82), and denoting the "variation" in any quantity by the

prefixed symbol 8, (83) can be rewritten as

TN(k>]T ( j(k)(+Ik) ()(kS(A).;1 1;4
22 .2 2 &(hz.k

A k-I 45

(k )T(45

w here

S[H = + , [No [(, H( )lo (85)

L" = t L('•, L•(• L•'•I (86)

2I 1I 4)3

1HY= [Q) (87)

W (A) (W)
nH n12n3

1n{3 n23 n33
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tk

ax f 3(k) d j= 1,2,3 (88)

0

(&) =J •(k)•(d) i,jt3= 1,2,3 (89)

Explicit evaluation of integrals in (88) and (89) gives

(A) (A) (4)

LI = 1, L 2 =-L'3  =0

(A) 6 (9) G - I (A) W 2 (A)
n l 5=n = 7 13 0 22 = 33 35 3 (=

Vanishing of the integral in (84), for arbitrary values of 8Q'•) and 8T7', gives the

following constitutive equations:

A- +w I 545) 6u 1 1
-- )k. - -L Tk -L k= 1, 2, . . . N,(90)

0 ;s 1 St . 1 1,0- 71
2 S45 44 45 

4  ~ 2J

), t) -k; I I __

-3 C-- S4 S T•-,- 5 S(4 +1)1+ 1--5" ) S (14)4 ,~ 1 ,0 .(kS+ ,) Sk IT (k+

45 44 2 45 -44
I , ( A) (A (4.1): S(A* (A) :5! S 45 S1 41 S430 (k 3,2.. N-I (9)1)4+
.45 44 4 5 44

For a laminate of N layers, (90) and (91) constitute 2(2N--1) equations. These

equations may be solved for T7 and Q. in terms of c +w. To do this, it is

convenient to rewrite these in matrix form as
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Ka b ~ X,, R a T o

- I - = -+- 
(92)

K I IK~ 10 T

where

MI 0 ... 0

-Mi 0

2 2  0 0

K ,),! 6 M 3 (9 3 )

h; 5 13

Symm.

t Ifl

10 0 0.... . 0

M 2 M 2 0 ...... 0

0 M 3 M 3  . . . . . 0

K M 4  
0 

(94)

0

m2n-7 n-I
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*2

N --- 2M 0 ... 0
302

t2 t3-- M2 N -- S3.M 0
30 2 2 30 3

t30 --- M N3  .... 0

30 3

K, bb (95)

t
-!L-M 0

30 .- 2

Symm. t2LM, N, 1-1 --- M30 2 2 30 ,,

x = [Q( .. Q(1) Q(2 ) (2) •(") Q (n (96)

T = [T (0, T(0 742) T (2). T 1), T (n -1 (97)
b '2 1' 22 " ....... 2

Sa= 'g0(1 I '0 . . .. . . . O. O g. 'g 2  1  2 (98)

Ir 1 (0) (0)9) (R
".9 - [ ',0,0, ...... oo (99)

[fg(0) 't (0) ,0 (n ,(n (100)
b 30 1  1 2  , 0', ....0' 0 gI' ,92~

and

IS(.A S(I
S= " 5(101)

(s A )s (A)

1 45 441

N k -. (tkMk+t*+ M k+ ) k=, 2 ..... . . n-1 (102)

I S(A 41 +

S S4 .- k=Ior n (103)

145 44 2

(k,) •(Al

4'( = + w k= 1, 2 ...... n (104)

Solving (92) to eliminate Xh,
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,, = (O5)

where

K=K K-K KK K b

1[=R -K K-' 1 7+'a ab a

Inverting (105),

x,, R =- A (106)

IEquations (105) and (106) represent the relations between the shear forces and the

shear strains. Here K is symmetric because of symmetry of K. and, therefore, A is

also symmetric. In (104) and (105), R depends upon the shear stresses specified on the

laminate surfaces so that the constitutive equations of transverse shear include

dependence upon these quantities.

In general, K and A are full matrices. ',hus (105) and (106) may be rewritten,

in the absence of surface tractions, as

n
(40 W(k) _ (kj) .) (107)

j- I

and

n

Q + + .W k=l, 2 ...... , n (108)

where 'A.an M("')

where ?,jA') and () are coefficients defined by the material properties, thickness of

layers and stacking sequence of a laminate. From these relations, it is seen that the

shear force in a layer is a linear combination of the transverse shear strains of all

other layers and vice versa. This result is due to continuity ol shear stresses in the

interfaces and shows that conventional approaches to handle transverse shear are not
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appropriate. Also, symmetry of matrices R and A implies (.)= and p" =A,

which means that the contribution of unit shear strain in the fh layer to the shear

force of the klh layer is the same as the shear force in the j", layer caused by the

shear strain in the kth layer.

3.7.3 Specializations to the Mindlin-Type Laminate Theory

'he procedure described above can be used to obtain the shear constitutive

equations of Mindlin-type plate theory. For a homogeneous isotropic plate, (90) may be

wk ritten as

h QS+ 1 h I (109)
rQ2j 41 + T

where T', T_ (a=1,2) denote the shearing stresses specified on the top and the bottom

surface respectively. If the plate surfaces are traction-free, the relation (109) reduces to

Reissner's [1947] shear constitutive equations with the shear correction factor k=5/6.

For Mindlin-type laminate theory [Yang 1966, Whitney 19701 rotation of the plate

cross-section is constant and the plate shear force resultants are the algebraic sum of

shear forces of all layers, i.e.,

= for all k and Q.= "() (110)

In this case, the shear constitutive equations (108) reduce to

x= (A (1) + W (1)
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3.7.4 Traction-Free Edges

For the case of free-edge delamination specimens, the transverse shear stress o-23 at

the free-edge is known to be zero. This implies that T.2) and Q2) at the free edge are

zero. Consequently, the known quantities T72* cannot be condensed out of (92).

Explicitly specifying T72k)=O and Q•)-0, (92) may be rewritten in the form

K( 1 0 1  K(I),,a 0 Xt1 )0  IRa l (j)

0 I1 0 X0 X( 2, 0 0

- I- I - -. .- + - (112)

K( I kh 0 1IK( (Ol,1 0 X(1  0 T 0 (Ot)

0 10 0 I X(2)j 0 0

where

xT-1=)[Q'), Q(1
2 ) .. (113)

X(1). = IQz ' O1 (113)

(2)" ........ ... Q(nj (114)

X(I)b [T, (2) - (115)

T (1) (2)
X(2) T2 ,T 2  (16

TrT gr _1 [g 0 0,0 ...... 0,0, g 1  (117)

1.1O) - 1 (0) .. .... 0,0, t g( I n (118)

R a [O- (2 0,n)

( I /I ... ... . .. , 
(119)

and K(,,., K,, and K are obtained by taking the rows and columns corresponding

to T) and Q••) from , K, and K, respectively.
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I'liminating XI), from (112),

((I))XM, = R( (120)

where

1R(1) = K( 1)00 -- K( I)ab K( 1 b K( T~

(lbb (lab

-I

In the absence of surface stresses, constitutive relations of the form (107), (108) at the

traction free edge are

(A) L+ W 1  (121)

and

n

= ( . k=1, 2,... ., n (122)
j-I

where k) and I, are the constitutive coeeficients at the free-edge.

3.8 AN EXAMPLE OF COUPLED SHEAR CONSTITUTIVE RELATIONS

For a graphite-epoxy laminate, made up of 12 layers, each 0.005 inch thick, let

the material properties referred to the material axes be

Ell =19.0X10 6 , E2 2 = E3 3 = 1.5X106 (psi)

G1 2 =G 1 3 =0.8x10 6, G 23 =0.528x10' (psi) (123)

V 12 V13 =0.3 , Y23 =0.42

To study the role of coupling in constitutive relations for shear forces, we consider the

stackings [03,/903], and [+453/-4531.
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Table I shows the transverse shear stiffness coefficients for the [03/903] laminate

and Table 2 contains those for the [+453/-4531 laminate. Only the coefficients

corresponding to the transverse shear stress resultants Qk) have been listed, i.e, the

X(kj)s. For the first laminate, QU) and QU2) are uncoupled; ie., X =. , =0. For the

second laminate the coefficients for Qk) and Q2(k) are identical due to the fibre

orientation of 45%; i.e., \x(k) - X(k The diagonal terms, Xkk, represent the shearing force

in each layer due to unit shear deformation of the same layer. The off-diagonal terms

represent the coupling between layers. As is evident, for the cases studied the

interlayer coupling is not "strong" i.e, the shearing force in any layer is not

significantly influenced by the deformation of the others. Also, the effect is localized

i.e., the contribution of deformation of any layer to the shearing force in another

decreases sharply with the distance between the layers. Table 3 and Table 4 show the

inverse of the stiffness coefficients i.e, the compliance coefficients AI.

It should be noted that in the case where G13 =G2G there will be no coupling

between QIk) and Q2) by virtue of • in (82) being zero. Moreover, the inter-layer

coupling will be independent of the fibre orientation as NO and Q will no longer be

affected by the orientation of the fibres.

33



Table 1

Transverse Shear Stiffnesses Xk' for [03 / 9031] Laminate

Layer Stiffness Coefficients

k I k2 U 4k5Xk
(k) A IA 11 XII iII

1 3447.698 133.869 22.184 3.137 0.538 0.092

2 133.869 3603.755 155.289 21.958 3.767 0.646

3 22.184 155.289 3576.224 128.611 22.066 3.786

4 3.137 21.958 128,611 2404.119 110.513 18.961

5 0.538 3.767 22.066 110.513 2382.900 106.872

6 0.092 0.646 3.786 18.961 106.872 2382.300

7 0.016 0.111 0.649 3.253 18.337 106.770

8 0.003 0.019 0.111 0.559 3.149 18.337

9 1ý 0.003 0.019 0.099 0.559 3.253

10 A 0.004 0.019 0.111 0.649

11 A 0.003 0.019 0.111

12 .* 0.003 0.015

*denotes coefficients smaller than I0O3 in magnitude.

S2~ 21
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Table 3

Transverse Shear Cornpliances 14 ýI fOr ( 03 /9031L Laminate

Layer. Compliance Coefficients (X1 3)

kk I - ----k2 - k4 - ! t

1 0.2904 -0.0107 -0.0013 -0.0002

2 -0.0107 0.2784 -0.0119 -0.0018 -0.0002 ý

3 -0.0013 -0.0119 0.2807 -0.0148 -0.0018 -0.0002

4 -0.0002 -0.0018 -0.0148 0.4176 -0.0191 -0.0024

5 -0.0002 -0.0028 -0.0191 0.4214 -0.0186

6 * ----------------------0.0002 -0.0024 -0.0186 0.421

7 -0.000 3 -0.0024 -0.0186 041

8 4 -0.0003 -0.0024

9 A -0.0003

10 ,.

11 1,

121

denotes coefficients smaller than 10- in magnitude.
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3.9 DISCUSSION

For determining the constitutive equations for transverse shear in discrete laminated

plate theory, a mixed variational principle of linear elastostatics has been derived. The

basis for derivation was the method proposed by Sandhu [1970,1971,1975] for the

variational formulation of linear coupled problems with multiple field variables. The

variational principle is equivalent to Reissner's mixed variational principle [19841 but

more convenient for application to a material with general anisotropy. Using this mixed

variational principle, a procedure to obtain the constitutive relations for transverse shear

has been developed for a discrete laminate theory which is based on the assumptions of

linear in-plane displacements and parabolic transverse shear stresses over the thickness

of each layer. The procedure allows for the interlaminar continuities of stresses and

displacements. Resulting constitutive equations show that the shear force resultants of a

layer are coupled with the shear strains of the other layers as well as of different

directions (xi and x2). As indicated by earlier investigators, the shear stiffness of

x,-x 2 and x2 -x 3 sections, in general, are different and vary with stacking sequence of

a laminate. Also, the consistent shear constitutive relations for the Mindlin-type

laminate theory have been derived as a special case. Actual computation of the shear

stiffness requires inversion of a square matrix with constant elements. This can be

carried out with a high-speed digital computer without much difficulty. The

constitutive relation for shear at the freee-edge or surfaces on which shearing stresses

are specified is different from the relation when these stresses are not specified. The

example of a 12-layer graphite-epoxy laminate was considered using [03/90j and

[+453/-453 stackings and the extent of coupling studied.
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Section IV

VARIATIONAL FORMULATION OF DISCRETE LAMINATE

THEORY

4.1 INTRODUCTFON

Procedures for obtaining approximate numerical solutions to boundary value

problems are often based on variational formulations. For systematic development of

variational principles governing linear and certain nonlinear problems, general procedures

have been developed. Mikhlin [19651 set up the problem in an inner product space

and stated the basic variational theorem for a self-adjoint boundary value problem

with homogeneous boundary conditions. For deriving variational principles governing

initial value problems, Gurtin [1963,1964] used convolution product as the nondegenerate

bilinear mapping and explicitly included nonhomogeneous initial and boundary

conditions in the formulation. Sandhu [1970,1971] extended these ideas to the general

linear coupled problem. In the context of application of the finite element method,

Prager 119681 included in the variational formulation jump discontinuities which may

exist across interelement boundaries. By introducing the concept of boundary operators

consistent with the field operators, Sandhu [19751 examined the general case of linear

operators with nonhomogeneous boundary conditions and internal jump discontinuities.

For mechanics of the fiber-reinforced composite laminates, little work has been

done on variational formulation of the problem. Al-Ghothani [19861 following Sandhu

[1970,1971,1975,1976], presented a variational formulation of dynamics of laminated
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composite plate. General variational principle was derived based on the complementary

form of an extension of Seide's [19801 discrete laminate plate theory to include inertial

force, allowing for nonhomogeneous boundary conditions and internal jump

discontinuities. Various extended and specialized forms of the general variational

principles were discussed. However, he failed to derive direct variational formulation

which gives other types of variational principles. Furthermore, the laminate theory used

did not treat the effect of transverse shear deformation adequately. This effect is

important in studying local deformation and possibly in modelling higher vibration

modes.

In this section, a variational formulation of the problem of vibration of a

laminated composite plate allowing for nonhomogeneous boundary conditions as well as

internal discontinuities is developed. The theory used is the one described in Section II

along with the constitutive equations of the transverse shear derived in Section III.

Even though the principal concern of the research program is the behavior of free-edge

delamination specimens under static loading, inertia effects and arbitrary geometric

configuration and loading are included in the variational formulation because of the

ease with which such generality could be introduced. Both the direct and the

complementary forms of the field equations are considered. Extended variational

principles based on self-adjointness of the operator matrix are introduced along with

several specializations. One of their specializations formed the basis of the finite

element approximation described in Section V.
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4.2 INTEGRAL FORM OF FIELD EQUATIONS

4.2.1 General Comments

To set up the function governing the motion of laminated plates, it is necessary to

write the field equations in a way that the operator matrix is self-adjoint in a certain

space. The self-adjointness of operators is not an absolute notion, but rather, it is

relative to the choice of an appropriate bilinear mapping. Thus, there are two possible

wvavs to set up variational principles governing the problem; one is to find a bilinear

mapping that makes the field operators self-adjoint, and the other is to transform the

field equations so that they can be self-adjoint with respect to a familiar form of

bilinear mapping. For various intial-boundary value problem, Gurtin's [1963,1964]

procedure, which belongs to the latter approach, has been successfully applied [Sandhu

1971,1987], and we follow it for the present problem although other forms can be

used. Transformation of the differential form of the field equations to the equivalent

integral form is done by applying Laplace Transform and taking inverse after

appropriate rearrangement. The procedure removes the time derivatives from the

equilibrium equations and includes initial conditions explicitly. For the field equations

given in Section II along with the constitutive equations of transverse shear derived in

Section III, integral form of the field equations is presented below. Throughout, an

asterisk (*) denotes the convolution integral, i.e.

t

u*v = f u(i)v(t-r)d d (124)
0

We note that the convolution satisfies distributive, associative and commutative laws.
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4.2.2 Kinematics

Equations (9) and (10) upon taking convolution with the time variable become:

1*e(W = t,_(e W +X t*K W (125)

I* eok W = I t*((k) + W(k)) (126)
0,3 2 0.

where, by (12) and (13),

t_ ,, *(ao0 + (127)
S 2 O43P .

K* = 1- 1*. (A) + (128)
0A( 2 o4p 0.(,

4.2.3 Equilibrium Equations

Equations (15) through (17) upop convolution with t and appropriate integration to

eliminate derivatives with respect to time give;

t* N() + t*(T, - T_ -) + t*F0  -. _ JO 0 M + X W)= 0 (129)

t* Mk) W tTW + G O R(kW_(k) W + )(k) ) (130),OAtA -*Q., + t* (tkT )h +0 G) - -,=0'(30

t* ) + t* (T X*) - T3(A-) + F (-() P(k)w() + Z W)= 0 (131)

where
(A (A) (_A) +t, !•)

X W P (a(A) + t*u()) + R) G') + (132)

y()) R(G) (,(A) +t*u(A)),0 + I () (••() + (• ) (133)

Z11) pA)" ( W+ t* "ý W (134)
0 0

The initial conditions (36) through (41) appear explicitly in the equilibrium equations

above.
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4.2.4 Constitutive Equations

Equation (28) upon convolution with I yields;

N")I [A~ W (,> )l•,
N`0 A•= klo•),, "),8

M (4) IB W (k) K K(A)

and (108) upon convolution with t, noting (10) gives,

I* 2t* E Aj j (136)

The inverse relations are

e

1 ( A = t A• , .> - , N ( 1 3 7 )

1 0t1 OI43yb D,4yl]I Ysb

and

n

t*( + ,W0) = -t*, (Aj) (().0 +z VýC APQ (138)

j-t

4.2.5 Boundary Conditions

As with the field equations, the boundary conditions (30) through (35) upon

convolution with I give

O Won S (A (139)

t*M (1)70 t*AJl on S(4) (140)
3

-o I on sý" (141)

!on S() (142)

0 0 2

0- t*() on 4 (143)

t*w = t* O') on S(4) (144)
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4.2.6 Interlaminar Continuity cf Displacements

Equations (42) and (43) upon convolution with I give

t* U (k0 = t* UW +•t*t, W. (145)

t*w(k) = t-* wk+ 1) (146)

43 DIRECT VARIATIONAL FORMULATION

4.3.1 Self-Adjoint Form of the Field Equations

The field equations of fiber-reinforced composite laminated plate expressed in

integral form, (125)-(136) and (145)-(146) can be written in the self-adjoint matrix

form as

A, BI D 1 ,2  0 D 13  0 .... D L•_ 0 D,1 U1  +

0 CT 0 0 0 .... 0 0 0 - 0

A2 B2 D2.3 0 . D 2,n_ 0 D2 n U 2  -r 2

0 C 0 ... . o o0 0 0 -2 0

A3 B .D 3  _In 0 D3 n U 3  -r 3

0 0 0 0 0 (147)

A I B , I D ,- I U ,,r

0 CT = 0

A Un n n

or, symbolically,

[x](Y} = {z)

Here, only the operators in the upper triangular region have been entered. The below

diagonal operators are adjoints of the above diagonal operators, i.e, the operator A,j is

adjoint of A,, in the sense of the bilinear mapping used to set up the variational

44



formulation. To satisfy the self-adjointness condition (A-25) in Appendix A, it is

sufficient that the elements X, of the matrix X be adjoints of elements X, for i~j

and the diagonal elements be self-adjoint. Explicitly, the symbolic operators applying

in (147) are:

-p(k) 8  0 t* r -R(k)6 0 0 0 0 0

0 -t A0,6 0 -* Ba 0 0 0 0

-t F2 t* 0 0 0 0 0 0 0

g( )8 0 0 lJWS 0 t* F 0 0 -*

0 V B(A) t D(k)
A4- 0 0 1,ma t 0 0 0

0 0 0 -t*P2 t* 0 0 0 0

0 0 0 0 0 0 _p) o t 8a"ay a' (148)

0 0 0 0 0 0 0 PXkk t*

0 0 0 -t* 0 0 -t" AL t* 0
'Y ay

B T= 1 0 00 t tkj000 (149)

k 00 0 0 0 0 -t* 0 0'

=f-o* 0 00 00 0000w (150)

B,= 0 0 0 0 0 -t* 0

C 0 = 0 0 00 -t* 0

0000000 0 0

o0 0 () 0) 0 0 0 0
00 00 0 0 0 0

0 0 0 0 0 0 0 0 0o 0 0 0 0 0 0 0 0

0 = 0000000 0 0 ij 1,2, . n (151)
00000000 0 0
0000000 0 0

00 00 0 0 0-*X'J 0

0000000 0 0

T W() _W (A) ,(k) t(k) Mk w(4), U ) Wk)

UT = [, NOW P, 4•0 , K'b, Mw e3, Qwk)3 (152)
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=T [7,(A) Tc() (
" 3= T(A( (153)

r [t*F(A) + X(A), 0, 0, tz*G + Y), 0, 0, t*F() + Z(k), , 0] (154)

"0 =[t ,0,0,0,0,00, t*T(O) 00] (155)

= [t*TI'), 0, 0, t*tT" O, 0,0, t*T() 0,01 (156)

2 " + )(157)

=, 1(8" i+ 8 , (18
r':2 8 (158)

"(0) 0"lere, 7I, and T, are specified shear stress components on the top and bottom surface

of the plate and 8. is Kronecker's delta. Operator matrix in (147) is self-adjoint in

the sense of (A-25) if the bilinear mapping is defined as

<u, v> = f u*v dv (159)

which is linear and nondegenerate. Nondegeneracy of this bilinear mapping was shown

by Gurtin [1963,19641.

The boundary conditions consistent with the operator equations (147) are

t*N"P7r( =) ---- on S Ix()) (160)

t*M (A) rT) = t* k/l on S (AX(A)) (161)o0 3 D

"()" on1 (4 ((6)

W*(& 4*(A) SAk)X

ton( )0 t* ,7 son 2 (x sup(k)) (163)

t, _(k) = t* •(k) S t-) X(k))

-no on 4 ( (164)

=*w t ) Son S()(x)W (165)

and the internal jump discontinuity conditions are
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)* (N() I a on S (166)
t* (k) , t, i(),o S (k)(X(k)) (167)

Wn) t*)(g ,.k)) S(.k)(xk)) (168)

t*(d(kr 1)- t* (g(k)).n (k)on X(169

t 7) 2 oon S2i o(

-* 0, 7)0 = t*(g () rp on S(A)(x W)) (170)

I*(w ) =t* on S (x (171)

The following relations are satisfied by off-diagonal operators.

(4) (A) (,) W()< to ' O - ,3> # - < l i'i 0,0, N~O O > R( .,,)

_(k M

<.0(k) t*N (k) > + <N(k) t,_zk) >
<.A) t(A) aP k)

I S2

-<d ,t* l > + <N *, t(dk) )> (172)
41 42,

W- <t, (k) -W(k)< • /t* M a , P > R ( k) < t * .00 , , M cv > R ( k)

-- <(k) t* MW,>, + < MM ) t* Wq,•

S(Mk&).>#., + <M(k) t*(4;.)y> (173)

(A) W,>

<W Qk)>Rk <w(t) t,Q (t QO() .(• > , (k

W(, t* Q)) A ) >)+ <

(A) (A) < (A.) ( W)

- w' t*(Q( ), >s t) + < t*(w7.)'> S(6) (174)
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4.3.2 A General Variational Principle

Using (A-29), the governing function for the operator equations (147) is defined as

n n-I n

O= <', A~U~> R( <Uj),= +F~) ~n <o A,> + R(k) ki jktt () + < UdT, t. R(k)

k-1 k-1. k-2

n Fl n
S T <T+EE <UA', D jU >k)- E <Uk.'D&AUk > *)

•-1 j=- k==

f - I I?- I

+ <=T7 U A > (k) + i: < _, CTOUXI > (k)

A I l

+E <UTT2 r, R .) 0 R2< 1 - >R+ -) >
Alý

+ Boundary Terms + Internal Jump Terms (175)

Substituting (148)-(171) into (175), the explicit form of the governing function is

obtained.

n = { - +t*N( - R Oow) > jk)

k-I

_(k) ., (k) _(k) . , (4) ., (W Wk
"+ < .Zoo, - t* crpYbe)b -+ t I B•--fb > R(k)

" <N(k) ,_*(4) +t*e () >

( A)M (4) (A (A) (A)(A
+ < 0,-. -R -a 1 0, +t*M•-o t*Q.)> R•k)

<K (A) _t* B(A) _(k) t*D (A) (0)+t*) ,M( >

+ <M(L) -t* ,(A) +*(k) > Rk(A) (k) (A

+ <w () -p(A) wW)+t*Q(4) >

<2 e() . e (A) +t*Q ()>
+ O 0-e3 R4
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+ k * (A () (A )

n-+. <Q. ) . tT*> w,,) + < t* . 3() ttT )> R(41)+<w )t, )> )}
n-I

+(< <-(), *T )> , + < t*t T, > + <w• t*T) >a a R~) 'ýW3 Rgk)
k-I

n

+ E{ <Jk, t*T(k > W+ < ,*T&I>

k-2

I? n fl

+ <2e"'> 2t* X e > <2e3- 2,*X . e >a3h A 3 R(,) o3 oh e3 k)

AI I

+ <T(), t*I- ) + t* .0(k) >. + < (-) t*w(A }Rlk) 3 R(k)
h=l

n- I

+E( <T <W,-t*U(4+)>` + <r1U -tw( * )> jA)

k-I

'< ~ t*F +~ + lk) +K (K)) U. (A.)>
U2E (),u t* a > R(k) + < G, G, + Y,>(k) + <w OF t3 + Z(> k)}

k-I

--2<R()' t* T(O) > -- 2 <wK?(1),9tT7-°) >
a '~ 3 R

+ 2<d(k, t*T•)> + 2< ,t* tT> > + 2<w( ,t*)>

n

+E l <uo ' t*(N ,r, 1* (Mk(A) +W - 2k() >.•(Aa OP a

<w(k),zQ() (O ) <N*t t((A W) (-()2
+w Q. - 20( > + <N kU -)uo >(• k. < A(), ••

n

+ <U t*((N*)) Y-2(g()) >sA) + _ k t* ( k)W- - 2(> ) W>
a-' , w (( :0) - 1•bo>, a SW a opy°lp) 93 ->40

k~l

<w(), t*((Q ()A) 2(g~k)))> + <N' g2 >
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+-<M', f1((0(A)v) + <Q 81, I*((W(I) 2(g( )'v) ) >

(176)

This function is defined over the set

(ky =Jk) (A W k W k (k W & Wk (W (44 ){•O• { 00) . .. ýV (, .. o•', .018 Q. ', e,,-' Cv p 0, 3•') ', rk t 3

where each of the functions in the set is sufficiently smooth for the governing

function to exist. This requires u , • , Wk, N(.4, M,3,Q, ) to be continuous and such

that their derivatives have a finite number of discontinuities. The collection of all

possible sets within the domain of fl is the set of admissible states. Let

W ), 41 W, *(k),Ft (A) , in., ) (k) (. ) W(k) ,(f)= ~ ~ ~ ~ ~ CP oCP 6.°, n•m ,q E#K# 3' a 13

be an admissible state. Assume v+X XE the set of admissible states for all values of

the scalar A, i.e. the function fl is defined in a neighborhood of v. The Gateaux

differential (A-10) of the function f defined by (176) along the path v("), using (172)

through (174) to eliminate , ,,'l)(k)' r ' (T). is

n

1& = 2T4 < , t* N(A) 0P('), -
'-I

+2 '<P'', ,*T ()> + 2 <") 1*T,"0>
S R( ' R(n)

-2F <9-('), t* T(4-1) >o jk) - 2<01(),• t*'T(°)>A-2

+ <'"W -tA, e + -t-* B + *tP")>
A-I

n

2A(A ,() + ,-(A) (A- I

+2 E <?iFt t* U . + t*e)> R )
Al1
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00), "-.(A oA) (.RA) (A) (4) (b ( a (A )

AII+2 _" < -R)o U0~r' 0. +Q,+G

k-I

+2E .) <(A) -•) k*(A) () Mk)
<.K W, -t*B Wt- (A)-- D (4) (4) + t*M >

f)'tei + R (4)

k- I

n

W2' < h -t 1) ( 4) (A) (A) (4

+2E <* P, w +t*Qo.p + O*F 3) +Z ()> •(k)

n-I

+2y_<*, ti.•k)> (k) + 2<) t*T ()>
kt-I

-3 T) 3 (> k)

k-2

n n+ 2 " W.k 2X- (k, e^ t . ( J) (,) >
<•3' Et* (9• 00 P3 R(jk)

A-1 j-I

W~ A (A)

+ 2E < , t* (2e() w1 >
oa3 .0 a Rp)

A-1

n n- I
< _(A- 1) 2 < (k), t, (w()((k >I+2E a u t A0A6t o a () + 2 3

k-I k-I

+ E <oP'. 2,*((A)o - &A > , + <, 2 t*-(M*(-)7 ( 2- (k), >
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- o >O,.,+ ::2 no(A, (A

n~, <{ .AM*((Nk).,)' -(,,"''> S(,1) + <,A .0" 2* ((MQ7)0 -Y1• o >

k'-I ((A(') )'((g ) + -) 2t*(((k)W ()

*< M(•P, 20* (0o T) -- p g)o)> SW + <n, 21*)--g )(w > >..:

4 ,S

(177)

The Gateaux differential vanishes if and only if all the field equations along with the

boundary conditions and the internal discontinuity conditions are satisfied because of

linearity and nondegeneracy of the bilinear mapping.

<00,, >-<b• * SW _ W <W) p(k)REaragn the terms, q) th goenn funtio (176 may be(. wrte>a

k-I

A-,,

+<(A) t* ((A) > Y -(<g(A ) *-))> + < "(A) (*o)

_<M(') t,-(k) > +<w(e), • Qt)> - <Q(A) tsW"')>

a-2 ut) ' a()"()to •t)R) a <•(a_ , * (A) > •) a- 2 •* *-• • • y .(

+ -) t*Nvk> + 2 <4(A) P * + 21 2 e) * (()

a to,' a, A at) at) jA) ao3' , a R

n n

n. _< k) Apk e),I (*)> k

W (4) - ~~(A)()(A ()

-I < I
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'I I 1 J

_<T+ dt + t+ <Tk° (w> -,W)><>,
R 3

A-1

Al,, t(.) W(n W W( w( ', W*60")li

+2E <Uo, OF +X,> o+< t*G)+ Y") + <w>,t*F< Z +>

+• { k( a,.• M•(k), 0 o a >• ,R.( k) 3 R_2/k)

k-1

(n (n) ( n))t(• .q) _ •(•
o <' o,' --

+F2<a(ion 7)T > l)+ 2 <0,r, tot n )op> + 2 < matri I* (141).

0* Rihe Ro)f R

+~<d',t* (N N7 ~ 2 &( k)) + < *(M >

+w() (A))J (4 (). 1 ) + < N(k) t* (-k),',2.,(A),)

53S(

<M W (k)*((> (k) t* (W(k)r ...2,().)) >
+ ~ < M, t 0.~j~' 7)pg- ))> 71 + <Q 7 -*(~~vk)2 (k) )>.S

+W t (kQ.7) 2g)\7 > +WN t* ((M(0)0Y,(g~X 0 ) >

+ <(k N*(,(k7) 0 Y- 2(g )0 S~)> +< pP-
k-I Sk)

(178

4.3.3 Extended Variational Principles

Fquations (172)-.(174) relate pairs of operators in the operator matrix of (147).

These relations may be used to eliminate either Of M-") or dt ' either of

MWj or and either of Q5k,) or w¶k) from the governing function a in (176),

leading to numerous different forms of variational formulations. Elimination of an
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operator A,, implies that state of variable u, need not be in the domain M, of A,,.

Where A,, are differential operators, this results in relaxing the requirement of

differentiability in u,, thereby extending the space of admissible states. In the context

of the finite element method, it is clear that the extension of the admissible space

provides greater freedom in selection of approximation functions. To Ilustrate the

procedure, we present six extended variational principles.

Using (172) to eliminate Na,, (178) gives

ii( = PS _ <((A4p <h ) (: ) ( ) , p k)w ( . A)
U 0' > R~ -- > RO') - W > R (k)

(<) t a - •- M ( ) , D PN ) (A,) >

+2 (k) ,,_(k) _(k))> + <.(t), ,-(k) )+2 < N~d~ Of &P- .,P R(k) + - , t* M o,A#• > p(k)

-<M, ,*(k) > + <w(k) ,t*(k) < V t*w )>
CV. O', t ,#>Re,) +tQ0,0 > R#k) -•, * Rw *

- < (A) (0) (k) (k)) ()) ( k)
Sa , > - 2<0, tQ, > - 2< 1 (k),t*B >t( co " R() "o' Rk) ov),6-Ky R(k)

+2<M (k), t*K (> + 2< (k) t (k) ]
01P CP jk) o3' Q.> ik

a a
-(A), _ e

L<2e3  2t*X )

(k _ JA 1)()I*(~ ) %A+0

-t. + <-n t*(.0l 0, atq~ -- 3 R(

k-I

-(A_) tFlk) + X(k)> (A.) tG) +(A)> + < W(k), t, XF.k) +(A)>

+2 "{ <UO) ,t* or F X 0> P) + <' (Lt' + G,* + <*>h) 3 +Z > R(k)

-2 < dI), t*_T()> 2 <w('), t*T(0)>

~(I)3 R")

)() n()) * n)
t*dT > (n)+ 2 < O~ t*tT > + 2<w t >
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+ 2 <i(), te* 94) > + <0.) t*" )7~(S "-2•"') >

+ <Nk, ( k(Q) - d) >+2N t,(dL) )p

+ 0 L (k)• - 20(k)7) > +) 2 . ,- 01 -71 a

W *0 k + < QW t* (kJ

*• -<Map . ý 71p -o 2.. 71p:• S(, azg 20A >.,

(AA)( (A ) , (k)) > X
A J

+< L, 1 *((Q ) ' (g-2( .- q).) > + 2 < , ((u, 1 W ) -(A )o.•,) >.,(.)

(179)

where /' need not be differentiable. In addition, eliminating M. from (179) nI

reduces to

n

- p(k)dk) > (k) W ) (W) (k) (< ( ) > ) < WFx) ,,() ,P.) >j,,

_2n' R(k)( )> R <•)tQ•> - <) R~(k) ()

k-I

(k) W W W WD W)

(A * (4) _ (k (A)- U

+2 <N('), t*(Z- )Ud&)> + 2 <M(), P*(K() ~)>()

c~ ~ 3 ~ ( k.) ( il' Wi * (4)

Q0110) t*"> R(k) - <Q 1, t~"> R~ + 2 <2e,3 tQ. " )>

2 <u, , R 0, > RjA-2< ý',t*Q ,) ar21e' t* fprn6K-y8> RCA)

(A)

3'' 0 3 RCk)
A-I j-1
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+ <TU , U(k I W ( ý0) + <T~' *(A () ..(A G 1)

k-I

-2<U_0), t_7, 0 >> 2 < t*T(O)>
0, 0 1 3 R(1)

+ 2 <a(), t*T( T > + 2 < 00 , t * > + 2<vw. - ,T,.>

fl1

0 a R() )

U"), 0o V > - 2< k(A •)k t, S(34

A I

<w(k), t*(Q) 2 (+2 <N(A l*) -(* >

+W 204. > + 2-NU- Q u ,. >~ k np• •

S2

W (k) W (<(A.)(• r•' ()
+<w(•),~~~ ~ ~~ ~ t (Q 1)-2g)•°) >s~• + 2Q. '- •orl •

+2 <Mo t + lip, < o•0 )>s7+* (Cw l)2 S >k)

(18o
AI, '# Oan'e'eimiate -2ng(14 frm(10 togiv

+<W-(), (k <g(k)%) )> +2k> t* ((<"(4) p ( (k),.•>
-Of 7) or )'-2( 54)) +-o 2 < N PgT 2 ) 5 k)

S(21

W_• W .(k) W() • ~ •• (k) -2< () -- )-()
+2<MO~ A qy)e > (g( ) p-- <Ke Q0,0 , • o* (( 7).)' >2(

N(•)4 ,.T• 96(•• <71.) >,S") -(.)

566

(180)

Also, Q~can be eliminated using (174) from (180) to give

_<-= (k), p(k)j-(k) >j (k (k k <w Wk, pl)W(k) >

k-I

-<i(k) (A.) W <K (1 t* D (k (k) > R~)- 2 < U ), R)P U)ept 00Y6>Rk co pyyb R(), 0(A)R

(4 , 4) Jk M f~k) ', Of (O (k)_ kk)

+2 <N" 00*oar -U01)> RW+ 2<MOp t*K()CA R(k))

56



-2 < (A) t*2O' -()w> <i' ">

n n
W(k))<2e,"'' - e" > >
3,- p 03 R(k)

k=Ij-1

n-I

(A)<" , t (dk) + X 4k +1 (A) W WTk) t( k w ( 1~), Gk ) ()

+2E i <U¢) , t. Fa +X.>• , R W + Go~),, t,~.+• YO >o RU) + <Wh' I* F 3+Z h> R.,

a 3

--2<u.l 't*T, >o R¢•- 2<w OtT3 > R")

()) (n) ( n) (n ) (n) (.)n,,+2<U t*T, > R(11) + 2x< t* t+ >R > + 2 13 >R00
a) t * R ~k > RA

S<k),o t* P•k > 2, <,•, (k#•>.>4
A-I

- 2O - V¢k), t.. 7). > 2 ,+ 2 < (k * <g(A ) - t*Tk") >

W --t* ) W-t • (k), (k) W+2 2< Mp -no -< i.n) > SW + 2 < Q. t*3(w 17,o- 0 7) >

n

--2< A-), t*" ()). - 2< (k t* ((k •• ' .I)

I -2 (gk)3 s(k)
41 3 ,

-2<W4,t g (A ).7).> •)+ 2 </ o•'A (k) (g2A )"TrlA) >•,x

< A(k) gk..p>W(k(A

+ <M2 ) t* (•)2) ) > + 2( 7•t*(( (k) ) (g )--

4 
P1

+ ~Nk) M,,{ ykd',t*gk)

where none of the stress resultants N<• <•and L.' need be differentiable.
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Alternatively, extended formulations which do not have derivatives of the

kinematic variables u., c and w(k) may be derived. Elimination of u• from () using

(172) results in

0 4 = W UW> k ~<WU(k) W) > <W(k), p()(k)>

~~ R*~a>(k) R K, *(k) Rk)>
- ( 4) t * A ( 4) _ ( 4-) > < K W• O D W• • W >

CO p be-Y6 R W 001 0y&CKyb R(47)

W (A (A) (4)+2 < U , O*N ( ) + <- ( I) M* .>( R

-<M. t* ,,k) + <w>), +, > t ()*_ <> Q., t*W. >

_2 < ,R _ 2< A), Q )() <- (A) (A )
0(k) R(k) < z(k Q >* (k) M-W

+ 2<e,, t oN r> R() + 2 KoP>>o ) + 2<2e, 3

n n

& ,3 ' a p e63 , ,• k)

k- Ij-t

1-1
n-(k) • _)-( '>k+I + <7'), t*(w( k)-w(" k 4 )>

k-I

+2E' <F("Mt*Fk) + X M > + < W t*G 4)+Y(A) + <w(A) t*F+ +Z () }o ,0 o()+ • ) ,tG ) o t(k,+tF()••

A=I
01 R W >* (0)) 3(I

-2<o ,tT ) 2 <w(

0 > R(I)3 R").<~~ t*1") + 2< (A.) W ~ (n) t*T7'n)>

n

+ 2 , t*(N (- g¶>s(k)+< ( ,)t* (Mi7W- 2fi)> )
k-I

+ <w ), t*( 2Q >-2 )h n A 2,2
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(A ) (A ( + )A

+ M<() , 2 ( )T( >( + < Q0 (w 20 -n. > )

+ <a t* R •)3'- 2(g S)) > + <Q * ( i)- -2(g 6 )M)9 >

(182)

Using (173) to eliminate 4bCj) from fi)4.

k-I

+ (A A(k) <k) <K) (W) (k) (A)>

Q.y~y 2(>5jA n) >i~ aSyk)8 A <Nup 2k)

+2 <dc. t*N(k) , >.+2 <4k(>), +*M(&) (
o, t -~4.6>a• 2 -- , a lo.•. R(k)

+<w(2), ,((w) 7. --_" < t) wT

Using (173)(Q)> to elimin e(-) ,_B() (-)4<W ,R(k)-o () - a , R(k)- (k) W W(3y) (kR)k)

5 <uO t u,N(> RMW( 0 > R(k) _w w• t, > W

+2<-'W t*N"(. + 2 <')K> + 2<W (, W

+E < e,, o* AO,"bo-y > R(A ) + (<Ki &0t .,by

+LL <2e), W2t*F)+ > + o + + t*F U)

(k) * (k.) W) (A.)
+<w , Q.1 >R~) Q + < 3, t* (wk)w4l) >JR

(k), JO W (0 W() W) (k)

+2~<U~,*F') (~A> 1 (4( ) t*~)Yk>~ <(A), t* (A)+()

( 1
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1) ( )(1) * (0),t* > -2<w t*T >

+2<(n) (t*T)> + 2>h€ t*t(T))> + 2 < (n),T()>+ <i, T Rin) t*tlt > R W 3 R~

n

S<w), t*(NWT) 2 ))> + 2 <N W) t* (k)WRk

+<W" z*(Q 2 Ahl>/.- 2<N2 *() 7
€ 2 ,, - ¢ ,. 0 ,. > a h• I * U .• 7 ) 0 u

S 
24

-2 <M G (A 7 > + < Q•( t* (, ) - 2  (A) ) >

4 6

(<) (), (gi))., 2 <.i"), t (g9())) > )+ 2 <"(L-- t*(,M(A) (< (() 3
Z 1 " ItS31

( k) W <
+ < W(, t, ((Q 7).)'-_ 2(g )) 'q) > Op ( 92 k)u

-2<M M, t* (gk)) 7)0 > + <Q ), ,,2( g)vQ >, (183)
(, )• )sk) + 6 sk)

where u• and need not be differentiable. If we eliminate Wk) from (183), the

extended formulation which does not require continuous differentiability in any of the

kinematic variables is realized.

i =)_ (4) , (A) (• ))>(). (A) (A) ) _ < w W, p ( )W W)>

W I

<Z(A) t* (A) (4)A (<) (Ar4) (()A

_2<U ,R _()() > 2<•('t* ,- > -- 2<e-) t* -B• 6K

00 nob', c43 (1, 00Rk-bKk)R

+2< 0• t* "a~ > • ) <0,' t* M.10> )_ 2 < w, t* Q,,- > "k

+i' N(> + 2<M(A) t* K, > + 2<2e. £*Qo >
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+2Ž.<2e, ~2t* (A
o3 (3 033

A j

ni I

+Ei< k, -"(1l WR(+ +< k *(Wk 'a2 3,-2 4,0e. 3 Of R R

n
+2" <U(",, t, F(A)+X)> + <0. , t*G(.)+y(Y)> + <w),t, F(&)+Z()> }

Rt*F R(4)3

_2<i{ ,7(0)> _ < (1) ,7(0) >
o ( 2o t(l' 3 1

*+2 <u•) t "> .60 + 2 >•b•' t tT'> :+ 2<w (n), t * TO >R•

+* E 2 <U"), * "('>) -• >s+ 2 <Ok) * (M) +) ft(k)1 ;>a , ( Of 0 ,, k + 2 -oT) ,tts 0 -k) s~

k= 3

+2< ,k)t (4') -O) > 2<N (4) ,k)_<J, (Qo -l• a. 4) - fi 0'* U0 TIP > s(2)

-2 <M t* 0 W )p > #- 2 <Q W , 00, W°) >•,
W W -)(A) ()

+ , {2 <..k, - +2< '

+E1., 2 <J, *((N•)) S(k)

/'-I

+2<W(k), ,* ( (k)f _ _(g(k))o.q.)> () - 2<N(k) , (-)t o,0 ,s -SS °0' 2 (g o 11s,,-

-2<M() "*g (A) -2 <Q, ) *(g ')t > (184)
0 g4 )J.t >o ) , o (18 4)

In the context of use in the finite element procedure, Q, leads to displacement

formulations while fl, leads to stress formulations. Evidently, other extensions of the

general variational principle than the ones presented here are possible. For example,

elimination of derivatives of certain force resultants from 11, and fl, or derivatives of

kinematiL variables from fl( and 0l, results in so-called mixed formulations.
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4.3.4 Some Specializations

If the admissible state is constrained to satisfy some field equations and/or

boundary conditions, certain specialized forms of the variational principle are realized.

This procedure is used to reduce the number of free variables in the governing

function. Also, certain assumptions in the spatial or temporal variation of some

variables can lead to approximate theories. Some specializations of the extended

variational principles stated in the previous section are presented below.

Specialization of the function fl , to the case where (146) and (169)-(171) are

identically satisfied i.e. if displacement w is constant through the thickness of plate

and the jump discontinuities in 'displacement' components over internal surfaces are

identically satisfied leads to

n
Ef _'{ <_(k) p(k)k)> _, (k) (k) (k) - (k)

k-I

_(k) , (A) _(k)_ Wt W*(t Wh
-< e op , OA -,b, > R(k)-- < K OP , D p•y K-yb> R(k)

+2 <t*N) e(k) Rk))> + 2 <t*M OA (KOP) k )>
Wt W, e .k U Wk) 2,( o .) >R(A)

+2 <t*Qo . (2e 3-Wo-0a>) - 2<oI t* ) >

(> R~.(4 ) (4)) () t

+2 R , e& > Rt>

R(A

n 0-
< (A) <T(k•) t,( -) JA))i:E <2e, ~2t*X. ~e > M(& + -()t*a+ )>

o3 0 3 R C. ~a a R(k)
k-I j-I AI

n

+2÷E <"1.,* 0 R ,X), + <,•',t*G,+Y ,, +y (k) + <-. t 3,-R;k+ MU ,

A-1

-2 < d", t*T>°), TO>
R -22 3 R()

62



C, I 1*7 > R 6kR)

n
2k)~ M ft t* - (k)+ -2<" d",t + > 40 t < >M >S' 0 3 ~ kk)

k-1 (

, (k) < (k) t (_() ,(k),

-2<wt 0'ta > SW) + 2 < pt WO - U.)>

Sic asasue o ecosan ve" h thicnes oflyeis8oti5t)i h
+2<MW, t(0W_ýA)T > + 2 <(t *(w - 0)7)a > (185

ao 0 4 -- .36

Since w",' was assumed to be constant over the thickness of layer, its continuity in the

interface implies that the lateral displacement is constant through the thickness of

plate. If we further specialize 0, to identically satisfy the kinematic relations

(125)-(128),

k-1I

-2< _(k) _,*(k) (t) B <i T(k) W()Do, apo&K- R(k) 2 R , > 'Rtd

r(-)

W - e 3> (W.) + (-)

+ 2 T{ <i , tF (+X> ) + (,), t*G( )+Y > + <W, V(l)+ }Ch ' 0 c U) + 0, R(k) 3 (k)

'-1

-2< U"), -2 T(O) > -2 <w, t*T ()>
0 R(1) 3 R(1)

+2 <Un). t* T )> W + 2<0t*~~w .ItnT )> R()+ 2 < w, t* 71.) >#

+E1 -2 <•,I•o , t* p<k) > k)o 2 <0 (k)_ , (k) > o
A I6
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-2<w,t*o•.)>> + 2 <•N' t*01 -Ui )i> >o,, a.(•,) alt' )3 <0")S 2W

+2<..o ,.o-,.,) > +2 -Q(A I*(w-0),) > k) (186)

UP S13 k) + ' 2 Q S(6)

Furtherfore, if the interface continuity condition of the in-plane displacements (145)

and the displacement boundary conditions (163)-(165) are identically satisfied, fl, in

(186) reduces to the potential energy type variational principle. Here, two different

forms of expression are possible, depending on which of the variables is eliminated.

When u is eliminated, it becomes

A -I I I I
(1), GO Wl -(4)' >--t f ý.

<)(> <(A) U +2<d'l , P + <E.,O' n,(PJ

A I i= i= -I

+ W (A.) W() -(0) W U

R(k) +(e ) W -a M>
tAl+2' < EtA) + <ýw 6e~k .

k-I k-I k-I

+2<ii ,_() k•-I A + < () +,t) < ()
i01 Ai= yK= P

+<,K(k), t* + t*W-W> +<e (4 >• ) >

+ K' , B(A) (A)

(A) j)
-EE <2e3 , +2t*>, 1 >

n k-i

+2E <U) , t*F")+XW > + <Z ,,,F0+ X)>0 " c R(k) or of_ a

k-I i-I

+<Oa3, t*G, + > R + <w, t* 3(+Z ) > R W
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(0) (0)
-2<i) 0 T > - 2<w, t*IT > + 2<U , t'">

+2<Zt4,' OtT ()> + 2<w, OT(n)>
ao R() 3 Rn)

n'-

-2y, <U' , t* )> + , t* g)> +< (k),t*ktk)o

+> 1 (187)

%k ihch is the variational principle for Sun's [19731 theory'. On the other hand,

eliminating q), we have

rl ~i <•h •••> _< (4 ý 1) (At) .V ({ l >{) (A) >

1o0 {- a 0 Rik)- (2) ° O -- <w, P W>

k I tk R

(k{) * () _t)*_ 1 <W1 >A ,-+) - W _D()A.) W)
- , tA ,Abe .6 R(k) t (2) - e ,, a 5(e.b -e )>R()

kk

-• > 2 <k) Ru)•- •Uc>

n n

<~ <2e3 ,) -2t* X ~)
+EA i 0 3 3R

A A A.I A ) (A) (A)

+2T { <a"'. t*I,'('+XI > () + <( i,, .1*G. +Y. >,, 0 R I / R(A)

A 1 A' A

P (>2 (l), T (0) (0)
+ <w,t 3  + • R)> 2< , 0t*T R()-- 2<w,t*T 3 > Rn1

W 2 1k.) ()

+2 <Ua*,t + T<i >i Wt + 2<w

-2 drg*~JA)>) 2~(A)d>) +*M2<w> - 2<w

+E a -2 <a0>k <,

SA3
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(188)

which is the variational principle for Srinivas' [1973] and Seide's [1980) theories. In

connection with finite element formulation, it is worth noting that use of fl, is more

convenient if in-plane streching of individual layer needs to be specified.

Clearly, a large number of other specializations from other extended variational

principles are possible. We desist from an attempt to make a comprehensive catalogue

of such possibilities.

4.4 (OMl'Lh'MI 'NTARY VARIATIONAL PRINCIPLES

4.4.1 General

An alternative procedure to set up variational principles governing the problem is

to write the operator equations in complementary form instead of the direct

formulation (147). In this formulation, it is assumed the kinematic relations are

satisfied. AI-Ghothani [1986] presented the complementary formulation of laminated

composite plate for the dynamic case using a discrete laminate theory and discussed

various specializations of the extended variational principles. In this section, we present

the complementary form of the field equations given in the previous section. Except

the constitutive equations for transverse shear, the formulation is the same as the one

given by AI-Ghothani [19861 Since an extensive di-.cussion on the extended principles

and various specializations, some of which led to the variational principles of various

approximate theories, has been given in [AI-Ghothani 19861 those investigations will

not be repeated here. However, some extensions of the general complementary

variational principle and specializations which are not included in [Al-Ghothani 1986],

but are interesting are presented.
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4.4.2 Complementary Form of the Field Equations

Assuming the kinematic relations (125)-(128) are satisfied, the field equations

(129)-(131), (137)-(139) and (145),(146) may be written in the self-adjoint matrix form

as

A 1 B1 E1.2 0 .3 EU0 E En, 1 0 E I n--rI + 0

0 CT 0 0 0 .... 0 0 0 0
A, B2 E2 . 0 .... E2 .,, 0 E,,, U2  -r

0 CT 0 .... 0 0 0 -2 0

A3 B 3 E E 3, 1 0 E3.n U3  -r 3

0 0 0 0 - 3  0 (189)

A - Bl E Jn U, -r

"0 CT =. 0

A n -rn - n

where we redefine the operators

-P (A)8 -R )8 0 le n 1 0 0

-R() 8 -I(A)8 0 0 lt* I

0 0 -Ph 0 0 t*8

A, = I (19o)
-! * I-I, 0 0 t* 0'•

0 -1t* n' 0 D* o t* 0

2 0 t t 6  o

o 0 0 t* 4

BtT 0 1* 0 0 (191B• = 0 t* O0 (191)

r I-t* 0 0 0 0 O0
C4 = o0 0 -[* 0 0 J (192)
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() o () 00 0
0 () 0 0 0

000000 0
00000 0 Qj= 1, 2,. n (193)

00000 0

0 0 0 00 i)

ST ( k= 1, 2A ) n (194)

[,.), 'i' ]i k= 1. 2 ......... n-I (195)

0= [t* + +X" I*G + , * +( ,,] (196)

= 01",0 7 ,0 (O 00] (197)
03

-n = [t*T(•,, t~t Tn , t*T 3), 0, 0, 01 (198)

n1 =8. +8 .=. (199)

n12 = 8 0L+ sfi- (200)

The operator matrix in (189) is self-adjoint in the sense of (A-25) if the bilinear

mapping defined in (159) is used. This self-adjoint form of the field equations (189) is

different from Al-Ghothani's [1986] in that it includes matrices E,., representing the

coupling of transverse shear constitutive relations between layers based on the consistent

shear theory developed in Section 1I1.

4.4.3 General Complementary Variational Principle

For the operator matrix equation (189), the governing function is defined,

following (A-29), as

n n-I nJ:~~~~~ E < <U'., B, E,,, .,- >
+' A U~E > Wk)+ < U",~

' I L-1 A-2
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t nl riT V<TEUS< Uk'E ~U > -T.) < <Uk',E tUh > R(k)

4-1 j- I k-1

n-I n-I

+ <E BT > + E< =,CTU >+ _ B kUk>Rk)- k+I R(k)

k-I k-I

n+2 <U' r-<UT > + 2< U', =>R,,
k kU R.I --2<U , 0  R(1) _n , RW

+ Boundary Terms + Internal Jump Terms (201)

Substituting (190)-(2(X)) into (201), the explicit form of the governing function is

obtained.

(4) (A) (A) (4) (A)
J= u, <+ t-P• • , >a ' a "•,fP.0 -- R(k)

A-1

W(W) W() (k ))) ()(K) W(k) ()
+ < ,-R , -U 0, +t*Mk,)S Q, >t(k) + <w +t*,o.p>R U)

<N ,k) Wt,(k) +t*(--k) W +E(k) (k))

*A 's-yb Cr y )'6 R (k)

+ <M(k) Wt,(k) + -k) & (k) + DA)(W))>

+ <QW-, t,•(k)_t~w(,)+t, k.kQ(). W

I, I

+ E{ <u', t*,T()> +< 0), T ()> +<w)(+ ) t*T() >0 R t(k), Pl (4• ) 3 R• (k

+E i <ii A) -t*# T(k-1)> +<w (k,-'t*# 1- ')>> Wo 3 R

4-2

<, >, (k) < , t* ":A'•,o Q() A ) )()4- k# W W-"

- I
E{~~ ~~ -'' *"" (k), t* W(k)

+ E f < 7-(", t*dC) + t+ > () + <T 3> (
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,, I
+E <7.(,) _/, a. > W + <7 Iw >.l

n p(k) 3 R W(k)
A-I

n

+2a{ <ak)At*F()+Xt)> G,+ <(t +y(,> (k) <w(+), *F(w3+Z(k)> }
k-I

-2<un', t*T(0 )> ()2<w ), t*T3)> +2 <(ý+tn4o.), t*T,)> R()+2 t* >
0• 0 p -- X~t _/() --n )' 0<w)) -- n)

n

+E {t _<i (' t, .( h _2&•(')) > t t(M(T) ,,)' . )no ' tr >,a , sb, ,t~t•- M >.
A I 3

W 20("1,) >Nt >*-a - •
<vt, I*(Q•Q . -( % ,)> + < 1 u (i •7 -. Th)> .(.,

00 0 0 saS

+ <M"), 1*(0 I 20 (X) > <Q" 1,tw (A) -q .. 2 I.) "> }

n

A - J tI•k

(W) (k) (k-( )) > + <No#) t*((M',) g())t* ((N 2((7)(k-2
4*1 2:

>,,:, + < (kt g' > .,
'4(2

4 'Sk (96 >•--2 0u() ((A-) * " (A) ) (A.) (A) (A)
.' ' "(k) + W R W F> g )

-2_< ,-(A) > _ (• t.-)) _ •
+ < N( R ) I + (,M() (,.,0).(k)A

<uW (A) (4)k ~ ~(A ) + <W(W) t*Q (A

N.01 >,(k) + < o.A. R(k) Q0I >

+2 < N"(2 tI* > <(k)>
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+ <""t7, + t*1 7, > + <w(k t*T h>< Q t(a) R(k) 0 '0 3~ R W

A-1

n

+ Ef <d. ~t* To '> + (k) + tWT" 3 > R

4-2

+ ~ t IA" QQP t~Q> R (k)

+ ~ T' ~~+ t~lj-ý (k + <7 , v >1

A - I

n
+A W (k), *k+~)+2E({ <U-k) t*Fk + < 4 kVk t*Glk)Y +~ 3 j)>

a a a R(A) Ral + A~
k-I

t* .>R(I) 3'( U a , a R(PO3)(R

+ ~{-<dQ t* (N 7)pr - 2,0 >) - 1W~*(mvk ~2kI()) >
Do 0 a ~k

- ~ ~-2O" ~ + (k)0 k)

+~~~ < (,t 0,To-2,,70 + <Q0 , t* (w &71~. -20 -n)>

< M 2 *( k(A -(44. d) (A) (A)

+E,{ <dA(), * ((N(A) 71 p) -2(g(14)).)> < k 0. t ((M~~) 71()) - 3 ). )>4
*- ckp 4 < 4

(k)I 1, W kW3,*(-k

< *((Q.k)7).) - 2( 5,) + <N t*(( n)'- Y2(g(*)rynp >~A
5, '2,

W*(4 (kY- (k)j~ +W ((~)

<M(k) 2&(g, ).n)>(k) +<Q.k), t* ((wk al'I ( 6 I)Ia) S)

S4, 6
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(202)

As in direct formulation, it can be shown [Al-Ghothani 1986] that the Gateaux

differential of I vanishes if and only if the field equations (189) along with the

boundary conditions and the internal jump discontinuity conditions are satisfied.

4.4.4 Extended Complementary Variational Principles

Foilowing the principles and methodology presented previously, it is possible to

develop extended variational principles for the complementary form of the field

equations (189) as well. Relations (172)-(174) can be used to eliminate some of the

operators from (202). Simultaneous use of those relations to eliminate

N(Al>J, JM,.,,•• and Q results in

Jt E { _ •.(). p(*)-(k) _ d(k) -((k) W < (k), p~k)W~k)

= -- , >R(k) <- , >(Ik) < , > R(k)

-, .?(k)o R(k)

WO W& <A M<k) , t*Q(k)>()
-2 <N(k) ,t*U k) - 2 ) 0.0>R(k) - 2<( ), t*w(k)> (k)

+<N() t*,--4•) W-) +< W ,-, t*k) W()

+2<NN' t*' 9" (A) >(d

+ <ii t*T()> + < "' t T > W+ < ,T* *'>

S" ' t ,o A R 3 R
A'•1

UA ( 1 ) (A)
+ <u -t*r, > + <w ', >tT(A-)

, ~ 3 Ra t!k)•.k

~~( jQ) QQp)Q> R(k)

k=I /-I
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t(() (A)+ I* -(A) <T(") )* W+t + IlAo> + <Oi *3RI RA,)

Al

n- I

nI

--(k), W +i(A X)> ++( -t +ww())> >
, R( k) 0 <R()R( )

A=lI

+(L)/(L)+ () <2(<)(t*G y()+ <w(I) > +.F<

o ~ S( ' o o Rk) S (/) 3 A ~ )' (

+22k){ <i t*1 +X7) > (A)~ (o R(k ) +
+2<w'l a*'(' w(k), + ' () 2<NOt ,+ t* 1. - ,,)A

<' M,), t* W-2 ý(), >, (A 2 * < (% ,-.(") .t+7">, ,,+2<w')` tT">

'I

+ 2 0,0<00 S+4 k) + 2<)>, <Q,, " +•2>kw.,,,

2 ic) * (g()) >1 + 2 W (

S(k) +, (9 > (k

+ (), t,( W > + 2<N (k) .. t* < (w(l )_nh •> _>
+ - - , 2 ,

+2<M"' t*G9 >, + 2 < ,) ( w I

02< w , , , 0k N4 • t,((1) 6) ( (-)

4,, > +
+E{ 2<MI,] t*((g')) Sk + (k) >*(g"))

+ w" , t*g •1 ) > +g 2<N )>,, + <Q*,t*(wU(Ao,-•g(vl-o

(203)

IHere, the force resultants need not be differentiable. Alternatively, eliminating

u., and (k) from (202),

J2 { (_) p(•( () (k) (W) ( 4) _ w(A) (A)w()>
J, -<a"), pkck > ROI > w )

_2<u", R( •( ( _ 2<0P. Q > k

73



+2 <dIt ,*N. > + 2<0. tM > . + 2<w,

+<N(A) ( .A), A) (4) > + <M"), t*,A) >
apo/6 , t • /b R(k) + p avy, • ty6> R(k)

n- I

+*T(')> + < Rk) + f > + (k)

Al

+ E* < il" .( 0> + <w W, t*T ~j(A )

£2

n Ijl

A I - I

+ Et <T 0 U, ~+ t* t kO. > R(k) + <T k) t w k> R~k

k-I

n-i

+ ( <Tr(), t* k ~ RCA) > + <* 1-.0 <* W( 0 I)>

A-I

n
-(A), -t* ('I A) W W + (A) (t) (>)+2E{ <•uo. t ,+ XW >o <) + <q5t-o, t*G *+ Y •> R) + <wi) t*F )+Z )> ,}

'R(k) o' k Ra )3
A-I1

-2<ii(",.*,O > 2<w) t*TW)> + + 2<<(w+ *7 >*) (io (,B>
S3 ,() R 60 3 >

+ •=. -2<d•), ,,-N('r ,-,A)) _ (A,) ,---(k)r( ¢)_...u())>

WA (A) k4)))

S< i) -* (N(') 2<N t *M,>

SS

-2 <M(k)) t*, (k) A) - .('t* ) >

S,,) ,,(A) y ..g(k). >( A). (A W (4

+ E -2<i . t- ((N 1•,Y ( )" -k <) 2, )" , .())(M -3
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- 2 <w") t* ((Q Ij)'-(g"))): > - 2 < No(-g')•)>•

2'

-2<M() t*(g()) > <-(2 ) ( (204)o• 4 S.k) >Q.2 - 'g t* (96 )7). >sJ}(

In addition to extensions illustrated above, it is obvious that numerous other extended

principles are possible [Al-Ghothani 19861.

4.4.5 Some Specializations

As in the direct formulation, some specializations of the complemnentary extended

variational principles are possible by requiring that certain field equations and'or

boundary conditions be identically satisfied.

If we assume that the equilibrium equations (129)-(131) are identically satisfied, J2

results in

n
- (k ) ( (k) _(k)() WW2 W()3 D <oC R(k) + -< ' 1 0, > R(k) + <WP k) + 2<U0 R'A R(AJ >t)

+ +<k (L)k (A) t*AW W> M() *)k
/A-I

+2<N A() ,•k) > (J)

ap3 yb '&M A)

+ <Q()', >
n

(-k- ) *() (()-)()))

+, 2<~ , -*NkT ~~A - 2<o t*(Mr)l )>s

-2 <w) t*, -)n > - 2-<N, ' uL
SS 2

-2M(k) , >()<00) 71, >
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+E{-2 <i'u, t- ((N(t • )-(g" )))) ) > 2<0 ((M, '37)t ) -g ,0 :>. >

- 2 <w t*((Q, T),)' -(g()) >k - 2<N(L) >*(g•>)r)>

M g9 , > : > *g1) >s(20:5)

-2 < MO• , t* (g l)) 0  > - 2<Q--, g6()v}r, > ) (205)

If we further specialize (205) to satisfy the stress boundary conditions on

S',", S,*' and S,)', and the internal jump discontinuity conditions

= E < ,L -0~ U " z, t_(A) -W- +< w() Np~ )wN)2
J4 i < (X )iu(0 > )+ < : > >.+,+

A I

(A) ,( -7-4A)
+ <N ,tN ,* N> + DO >

+2<N" (A), .-. A) (k) >

n n<°' '' (,

4-I j- I

+E,"-2<N"2, t*% U )o > - 2<M ,t*,,7)o > 2 < Q, t*-0 > )

k-1 S2 416

4.5 DISGUSSION

Based on the discrete laminated plate theory, which accounts for the effect of

transverse shear deformation in a consistent manner, a systematic development of

variational principles for dynamics of linear elastic composite laminated plate has been

presented. The direct as well as complementary formulation are considered.

Complementary self-adjoint form of the field equations is the same as the one

presented by AI-Ghothani [1986], except for the coupling terms of transverse shear

constitutive equations between layers which have been introduced in the consistent
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shear det'ornable theory presented in ýection III. Nonhomogeneous boundary conditions

and internal jump discontinuities have been explicitly included in general variational

principles. Allowance of jump discontinuity terms in variational formulation is

necessary in the context of direct approximation in finite element spaces since the space

of approximants may not be sufficiently smooth. Also, extensions of the general

variational principles through elimination of certain field operators and specializations

by restricting some of the field equations and/or boundary conditions to be identically

satisfied have been proposed. Figure 2 and Figure 3 diagrammatically depict possible

extensions of the general variational principles based on the direct and the

complementary formulation, respectively. In either case. the specializations listed in this

section are shown. These formulations can provide a basis for development of

alternative approaches to approximate solution of the problem and also for development

of approximation theories. Evidently, other extended forms could be used as starting

points for specialization.
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Section V

FINITE ELEMENT FORMULATION OF A SPECIAL DISCRETE

LAMINATE THEORY OF PLATES

5.1 1NlROI)U(7"iON

In the finite element procedure, the region under consideration is subdivided into a

finte number of disoint subregions (elements), and the field variables of the problem

are approximated by functions which are continuous along the boundary of elements,

but have limited smoothness. Consider the open connected region R in an Euclidean

space discretized by a finite number of elements R, (R, e=I, .. m) such that

=lim Uk (207)

in which the elements satisfy the property

R, nf R = 0 if eef (208)

and are connected at a finite number of nodal points. ttere, R and R, denote the

clýosures of R and R., respectively.

Since the field variables of the problem are represented by functions which may

not be sufficiently smooth over the region R, the variational principles derived in the

previous section may not be valid over the region R. However, if approximate

functions have adequate smoothness over each element, and internal discontinuities

across element boundaries are explicitly included, they are valid. For such case, we

define the governing function over the region R as
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0= (209)
t- I

where 0, (e=1,2,.,im) is the set of functions governing the problem over indicated

element R. Sandhu [1976] showed that Gateaux differential of 11 in (209) vanishes if

and only if the field equations, the boundary conditions and the continuity conditions

across the interelement boundaries are satisfied. If there are discontinities across the

interelement boundaries, the actual jump quantities need to be explicitly included in f,

[Kandhu 1976].

In the following, we presen! a finite element formulation based on the variational

principle using the governing function fl0, which is defined in terms of displacement

field variables ", $ and w, and is a specialization of the extension of the general

variational principle to cases where N.., Mý8 , Q. may not be continuously

differentiable. The specialization is to the case where w) = w for all k, the

strain-displacement equations are identically satisfied, the in-plane displacements u. are

continuous and the specified displacement boundary conditions are identically satisfied.

5.2 SPATIAL DISCRETIZAT"ION OF GOVERNING IVNCTION

The governing function 0,, satisfying the kinematic relations and displacement

continuities in the laminar interfaces, can be rewritten as the sum of functions f,

(e=1,2.....m) defined on each element of the finite element representation as

n k-! k-I A-1
W (k) 101.>2, + < E' PW>0 14>R) + 2<0 'L W f,, 0 ' ' >

k-I -i- i-i jIl

( < ( ) CA) (k) (() (A) W()
I <> + <WP w> + 2 < R >
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A( I()

+ 2+< 1"1,0', R() )> +<i' t*A >0R k) '4 46~,pk)

k-I k-I i-I
-2i)~.L (L) a > _ < (k) _*(k) •-. (j)•--<Cv( ) t* A A • : 2 : > , + < WJ o# U* Qo: •<)

i-I ail j-l R

+ (K) , 1 (A)> + _(Z) t*B(k) (k)O•4Ko•4 '4vq. R(k) + C43 2Yb Rk)R•)

j-I+2< ' (4•>t* R()>

-~< 2 e(" 2t*YA(ýeI >W0 0 3 R -I

SA-1

+2- <2 (I), t* +X(,)> + < 13>0 t k +

A-I i-I F

+<.u) t, G. + y. > ,t*F¶3 +}>

-2 <io (1), t*T(0)> 2<w, t*'T(O)> + 2<a(I)' t*r"n)>

R(' 3 R(n' ) R

<utP, T> + 2 < t•t* 7" )>. +
-2 I "<"o W. t*&A> +<EA O 0 , .. (A>

AS I 
SI l 3-(

+ <w. t* 0 W 7)"o > €(210)

where S11, ST) and Sý) are the intersections of the boundary surface of an element

with Sý`, S) and 4sk, respectively. For spatial discretization of this function, it is

assumed that the field variables are interpolated over an element domain as

Ul)(x .t) = HrT(x)U(t) (211)
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0" )(x,t) = HO(x)O")(t) (212)

w(x,t) = Hl(x)W(t) (213)

where

• ( ) ~(A)

and U(t), 4 )(k(t), W(t) are the vector functions of time defined at the nodal points and

H, H', H,, are respectively, the matrices of spatial interpolation functions for the field

variables indicated by s bscripts. Also, the generalized strains may be expressed as

C1' =TTU(t) (214)u

K W = TT0(*)(t) (215)

'k TTW(t) + H4(( (216)

where

II1 22' 12

K = [K K2 2, 2K0If

.Y [ = 2[e2A, ea)JT
23 13

and T,. T, and T, are, respectively, the transformation matrices derived from the

displacement interpolation functions H,,HO and H,, by suitable differentiation and

reorganization of terms.

Substituting (211)-(216) into (210), the spatially discretized governing function is

obtained.
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=~u MI:*-u + 2U Mab1 ~,~?T~

S))TMk W +A- WTM(T W +UM(k)*

k- I k-I

+ )+t* U U + 2t* UTK( 4) Lt v

A-I A-1

+t. Et ('D7 " 4) + 1* (4)( )TK (4) *D + 21*U UT K( .W

, II

-" ,W' £IK(-* W + 2W'E~K(4j)*d It(j + 4>)T0)) '~

nk-I k-i

+2~t*T~fL + UTb() + t* E:(4)t*h' + r~,4 ,) Wr&

+2yi*u * i + wU'* (px 0  ~ n ,,4Y :'

A--I

-2t t  *V- (k + ~l(Ok)r*R(4) + (4tr*Rm (217) W
y 3

= ? (k) (k) + (2(9)

fJHqP(A)H'dR (220)
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m,(4 = I HR"H' dR (221)

m € H .] i*iH' dR (222)Rek)

(A))
m - = f HuP Hu dR (222)

• (A )T dR (225)

* hk ' *'

* = (R HT dR (223)MI>,. = :,TIHP'ldR (224)

Kt)= J• T•A)TdR (225)

R')

1(k) = T TBA)f dR (226)
R

OOA, T.A*- dR (228)
K() = I T B(k)'TT dR (227)

R

K = T D dR (232)

R8)

=~ TAB(&)TT dR (229)

K(A]) TA (kJ)TT dR (232)
RI)
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K{•,)~~( = -Hc¢) r
,ý " He dR (233)

fu) F"f ) dR (234)

fý)= fH F()dR (235)

g fJ = H .HG dR (236)

hi = HF" dR (237)

H= fH.X()dR (238)

b k)= JHX') dR (239)

b W = fH Y() dR (240)

b(kt) = •HZW) dR (241)

R

T T(r". I')= HI, (T', T"•) d R (242)

Ret}= f T' dR (243)

(po. pn") = (7 H-(T, T•n) dR (244)

R = n ds (245)
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R =.( Hn (k) ds (246)

S k)
le

R(k)=) H m U) ds (247)

k(• ) ) , ()

R = W H,q(k) ds (248)

and

x(A = [X(A X,(A T• (249)
1' 2

*X)= r21) UI (2:50)
I' 2

W (k) (k

Frh) = [F1' F2 I (251)

G0€) = 2 Y (252)

T = [7T1', T (253)

7n)= [T (n), T (Of (254)1' 2

n(k) = [&(k) , (k)1  (255)
1' 2

m(A) = [ k(A )] (256)
1' 2

q(4) [OA, O, 2'k (257)

In the above expressions, A (k, B(") and D(k) denote, respectively, the matrices of the

stiffness A.). , B' and D~k) For convenience, we rewrite the quantities involving

summations in (217) as

n k-I n-I n

)"2UTM(k) ,ti} = 2 U T ( X M5 )*t 0 W (258)
87 op k

•=I t~lk=1 i-k-l
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11~ AIkI - 1 , jýP(-I jj) ( n Mj
-jt(tT~1*j( j EttA (0 (k))r Y, IMp(,4J)(~M! *'

A-I i-I j-1 A.-I a-i-I~l j=I ji+

(259)

fl k-I n-I n
( tOD 00? 2 Etk ((>k) fEMiR(260)

k-I j= k I -k

it A-I n-I n

£12UTK (k) * EtD,4 } 2 U TE( E ',)*,0' (261)
A-] k= -I i=A4-I

11 A I k-I n-I '- 1a

E ~~ (4 ) l)T K( W Q = Et ~4(OA))T E j~i(j4J)+(
A -I ai= I j -I 141+A - 1 -I

(262)

n k-I n-I n,

E{ 2 EjW 0B*M=2t, *4)-j) (263)
k-I i-I kI i-k+I

Using above equalities, the discretized function (217) becomes

a, n-I 'n n( Y T~)

El=- UTM)* U + 2UTZE( E Ný P) ,Ok) + (04)1 M W

k-I k-I i-k+I k-I

n-I n a~ - I 'jDj)+ nTn

+~t(4)()T i 0i E4~ Q ~M) ~,4)i + WT ,M(A W
-I i-A-i- I= j-a+4 1 A-I

n n-I n
+2U TEIM(k) 4 (DJ) ý+Tt(-O)TjE o.

A-I k-I i-k+ I

+t* UT yK~k) U + 2t* U T E~ LKuA) OW
k-I k-I i-A+I

n-I n

+ IXl "J' *(t0j)(K~j))*ta 4)

k-I i-k-i- j-1 j-ai+ I

88



n n n-I+*E (0,) TK (k) *,) k + 2*.UTK()*4 k t( k ý2'

k=!D ,('= k~lit

nl n n

_t. " WTE"g<:w* W + 2WT'K€4j)* 4ýj) + E (j)

k-I j-I j- l j-1

n k-I k-I

+2E{t*uW *f ') + UT*,b( + t Et( 4 .)T *h W) + t* t (.Oif *r()

k=I i=! fi1

+t* (4 (4))T* g(A) + (1 (k))T* b(k)y + t* WT* f(4) + WT, b(k)l
Y 3 -

n

+2t* {-U"* _To + WT* (( ,()_ pO) + UT* (n) + Eti(,i)7 , t(n) }
j=1

n k-I

-2t* Z{ UT *R(k)R + Etit(D')T .2+ ( ,Rm + W *R (264)
k-I i-I

5.3 SEMIDISCRETE EQUATIONS OF MOTION

To obtain the semidiscrete equations of motion of laminate plate, it is convenient

to rewrite the spatially discretized variational principle, (264) in matrix form as

f) =-XT S *X +2XT*R (265)
c e e e e26e

where
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PuU

4() I() I S12 0
q(2) P 0,(2) - I _

SS is is 2 3  (266)
e *e e 12 22 2

(n) , 0 IsT Is
) r (M) 23 33

w p

Here, elements of the submatrices of S, and the load vector R, are, explicitly,

... + t*K ('))

k1

($2U= t2•. (M",k) +t*K()A) + +Ij t,(J

k-j+ 1

- (n) t* ()
(S, 2 )•, = M4 ,, +t*K• 8

n

(S - t(2 ) -- K(k) + --(k) + +M' + t*( i jii =1, 2, n

(Msi.. j4sp+ 44A C~ KD+K) s=,2 .. -

k-i+ 1

M (n) + t )K.(n)

(S22) = +t(R +In

(S22 2)l E (M(k) + t* (K)) + 4  + (K*( + A2 Ki)

S=j./ 1

i2=1, 2 . n-1 and OiO, i+2 .... n-

( n)+t(K ( (n) +K nn

( = t M+ ) + t*(t K(•) +K i 1, 2, K ()+

(S23)2 i= t K4,0A ... 1, 2, . n-I

k-I
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= M( *$33 -1 + K(•j)

po= • (t (f) - Ro•) + _+ ~ t*(<- 0)

k-I
n

¶o- -- E (t*(th '•- Ro) + + r: ' ) * ( k)"+,, r°n- R"k)) + b",. k --1. 2, . . n-1

P. (gf() +LT ) +R' b) +

= X

The spatially discretized governing function for the global system is given by

[1= •fe= -XTS*X + 2X 7 *R (267)

e- I

where X is the vector of values of field variables at the system nodal points, R is the

set of corresponding 'forcing' quantities and S is the system matrix corresponding to S,

for an element. Here, summation in (267) indicates matrix assembly following usual

(direct stiffness) procedure. Vanishing of the differential of fi in (267) with respect

to N gives the set of equations:

SN = MN + 1*KN =1R (268)

where
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() n-2 (A) (n - 1) (n)
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The semidiscretized equations of motion for the entire system can be obtained by

differenting (268) twice with respect to time.

MX +KX =R (269)

where mass matrix M and stiffness matrix K are symmetric. Furthermore, M and K

are positive definite and semi-positive definite, respectively.

5.4 )"REE VIBRATION ANALYSIS

For free vibration analysis, the load vector R is set to zero and (269) becomes

MX + KX = 0 (270)

Assuming harmonic motion of the system, i.e., assuming the solution by X = 4e",

where * is the amplitude vector, w is the natural frequency and i=Vf1, we obtain

generalized eigenvalue problem

(K-W (2M)#W = 0 (271)

Before applying the boundary constraints, this eigenvalue problem has three zero

eigenvalues corresponding to the rigid body motions. If equations corresponding to the

constrained nodes are removed before solving the eigenvalue problem, matrix K becomes

positive-definite and consequently all eigenvalues are positive real and corresponding

eigenvectors representing vibration modes are orthogonal with respect to the mass

matrix M.
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5.5 SPECIALIZATION TO THE STATIC CASE

A specialization to the static problem can be made by dropping the inertial terms

from the set of equations (269). The resulting system of linear algebraic equations is

KX = R (272)

Equation (272) can be modified to account for known boundary constraints and

subsequently solved for the unknown vector X comprising kinematic quantities.

5.6 I,'REE-EDGE DELAMINATION SPECIMENS

Ior the case of a free-edge delamination specimen, the stresses '2, at the free-edge

are known to be zero. As the field variables in the present formulation are the nodal

values of displacements and rotations, these stress-free constraints cannot be directly

applied to the system (272). Since in this formulation stresses are secondary variables

to be computed from the obtained displacements, appropriate refinement of the mesh

near the edge boundary would be needed to realize a2, as close to zero as possible.

However, as discussed in Section 3.7.4, different constitutive equations (122) apply at

the free edge for the case of transverse shear. This leads to two sets of constitutive

relations, one applicable in the interior of the laminate and the other at the free edge.

Hence, in evaluating the integrals in (231) through (233), (108) were used for elements

lying entirely within the interior of the laminate. For elements having one edge

coinciding with the free edge, values of A(kJ) at each of its nodes were chosen from

either (108) or (122) depending on whether the node was on the free edge or in the

interior. Then the value of A 4J) at the gauss points could be determined by

interpolating the nodal values using some interpolating functions. For the examples of

application given in this report, the same interpolation was used as adopted for the

displacements.
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5.7 CALCULATION OF STRESSES

After obtaining the displacement solution, secondary computations to obtain the

stress components can be carried out in the following manner.

5.7.1 In-Plane Stress Components

Using the known nodal displacements in conjunction with the interpolating

functions, strains can be obtained at any desired location over an element. Subsequently

using (25), and noting that e"'=O in this formulation, the components of in-plane

stres. can be calculated. Alternatively, (28) may be used to obtain the stress resultants

N,3, M,: and (75) used to obtain o".

5.7.2 Transverse Shear Stresses

Having the solution for the nodal displacements and rotations, the resultants Q.)

can be determined from the constitutive relations (108). Subsequently, use of (92) will

yeild X, and hence 7T. The transverse shear stresses o'.. can then be evaluated from

(81).

For the case of the free-edge delamination specimen, interpolation over the edge

elements as described in Section 5.6 was done to obtain Q?)and T• at the desired

locations over the element.

5.7.3 Transverse Normal Stress

To compute the normal stress a.33, the equilibrium equation (77) is integrated w.r.t

3x3 to obtain

(W)

a() T"' - f 3 dx") (273)033 3--- 3 -- 3

using (81),
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( A) = - 1) 3 (W) (A) (4)T k -) I (kT) (A ()
0"33 T3 f , R Q , + + 3 --.a(274)

Substituting for ', and 3 from (81) and evaluating the integrals leads to

k 2 (k)
0"33 -3- ( A ,

4 (2) 4T G) -3 2( X3 + 1 7' G,,
A (2) A

-x G (X 3 ) -( 3  TG) (275)
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Section VI

APPLICATIONS

6.1 INTRODUCTION

The formulation presented in the preceding section was incorporated in a computer

program. A nine-noded lleterosis element, shown in Figure 11.1, was used for finite

element analysis. For verification of the code, the program was used to solve the

problem of a three-layer, simply supported, square sandwich plate with

isotropic/orthotropic outer skin layers. The results were compared with an exact series

solution. This example is the same as used by Mawenya [19741 The for7mulation was

then applied to the solution of a Free Edge Delamination (FED) problem. A four-layer

coupon under uniform axial strain whose solution has been presented by Paganof19781

was considered. Displacements and stresses along the midsection were computed and

compared with Pagano's results.

Though the constitutive relations for transverse shear have been derived using the

equations of static equilibrium, the problem of free vibration of a simply supported

laminated plate was also solved by including inertial terms in the finite element

formulation. Developing constitutive equations for the coupled theory, allowing for the

inertia terms, Schoeppner [1990] has shown that the effect of inertia on constitutive

relations decreases with decrease in layer thickness. Thus, for sufficiently small layer

thickness (any lamina can be arbitrarily replaced by a suitable number of sublayers)

the constitutive relations developed in Section IV would be applicable. The natural
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frequencies of free vibration of a sandwich plate were computed and the fundamental

frequency compared with an exact elasticity solution by Srinivas [19701

6.2 PLATE ANALYSIS

A three-layer, simply supported, square plate uniformly loaded in the transverse

direction was considered for analysis. Two separate cases in which the outer layers

were respectively isotropic and orthotropic were considered. The plate dimensions and

material properties were the same as in a similar example considered by Mavenya

[1974], and were

Plate Dimensions

Length of each side =10 in.

Thickness of outer layers t0) = t(3)0.028 in.

Thickness of core t (2)=0.75 in.

Material Properties

a). Isotropic Outer Layers

E = E 10 lb/in.2

(i) (3)
v =v =0.3

G (2 =3x10 lb/in.2

b). Orthotropic Outer Layers

99



,(ii = ,(Fi = 10• lb/in."

(1) (3) 6 2
E 2 2  El = 10 b/n.

(1) (3) 2

G12 =G 1 2 =1.875 X 10 Lb/in.

0) (3)
V12 12 0.3

~(2) 4 2G1 3 = 3x1( lb/in.2

.(2)2

G23= 1.2 x 104 lb/in.

Lateral Loading

q = 1.0 lb/in.
2

Due to the symmetry of the problem, only one quadrant of the plate needed to be

considered for finite element analyses under static conditions. A typical discretized

quarter along with associated boundary conditions is shown in Figure 4. Discretization

was done using lxl, 2x2, 4x4 and 8x8 meshes.

The results for maximum lateral deflection at the plate midpoint are shown in

"Fable 5 and Table 6 along with the exact series solutions [Mawenya 19741 and a

comparison with results obtained by Moazzami et al. [19911 using the conventional

Discrete Layer theory. The CPU time used on a Cray Y-MP8/864 is also listed. It

should be noted here that the Heterosis element used is nine-noded except for the

lateral displacement degrees of freedom, for which it is eight-noded. Moazzami's results,

on the other hand, were obtained using a fully nine-noded element.

These results were obtained using a generalized plane stress assumption for the

purpose of matching them with the series solution. Solving (27) for e". and

substituting into (25) and (27),
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Vi 0
2I

Ell __ _ _ _ /2_ _ _ _ _ _ _

P-igu~e 4: IDiscretized Quadrant of a Simply Supported Plate
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Table 5

Maximum Lateral Deflect ions for the Isotropic Case

No. of Maxmr. Defi. Max. Defi.
Elements CPU (Secs.) from Code Moazzami et al.

1x1 0.113 0.00069822 0.00073539

2x2 0.411 0.00073456 0.00074087

4x4 1.733 0.00073537 0.00074008

8x8 9.912 0.00073538 0.00074006

Series Soin. [Mawenya 1974] 0.00074000
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Table 6

Maximum Lateral Deflect ions for the Orthotropic Case

No. of Maxm. Defi. Max. Defi.
Elements CPU (Secs.) from Code Moazzami. et a1.

TiXI 0.114 0.0011452 0.0012140

2x2 0.414 0.0012063 0.0012224

4x4 1.783 0.0012074 0.0012216

8x8 9.909 0.0012075 0.0012216

Series Soin. tMawenya 1974] 0.0012300
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0*= n o 4QePY + o,633 033 (276)

&3 a)y3= 2 ( o3L3) e M (277)

where

E)(k 
)

=py Ecxjiy6 - EMk 33 -yb

3333

E(4)
•33 (278)

F 3 3 3 3

.-(A•) . (A)

a3y3 =E o3"3

Assuming generalized plane stress state in a lamina, i.e.,

3o ('0 dx() = 0 (279)0"3

the constitutive equations of bending and stretching are obtained as in (28), where now

2 3(A(k) () (k) a t• , ý) L•) (280)
-ayb Ba,ta, Dpba) = (tk' 2 3T

We note here that the assumption of U3 constant over the thickness of each layer

implies e�--0. We also note that (25) and (27) would not contain e33 and hence there

would be no need for its elimination. The in-plane constitutive equations can be

obtained as was done in (28) without any assumptions on os. However, for

comparison with the series solution based on Kirchoff's theory, (280) were used. The

choice of the two constitutive relations is easily incorporated into the program with

the inclusion of a few lines of code.

The assumption of generalized plane stress state defined by (279) was first used

by Mindlin [19511 for homogeneous plate theory and later by Whitney [1970) for
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laminated plate theory. They, however, assumed the integral of o4'7 over the entire

thickness of the laminate to vanish as opposed to over each layer indicated by (279).

Hong's [1988] assumption (279) is clearly invalid for a multi-layered laminate.

However, for a single layer plate or the sandwich plate with thin outer layers under

consideration, it is acceptable.

6.3 APPLICATION TO FREE EDGE DELAMINATION (FED) SPECIMEN

Paganof1978I presented solutions for the free-edge problem of a coupon subjected to

uniform axial strain e. A four-layer laminate as shown in Figure 5 was considered.

The material properties were:

Ell = 20.0X106 
, E 22  E33 =2.1 X 106 (psi)

G1 2 = G13 =G 23 =0.85X106 (psi) (281)

V/12 V 13 V 23 =" 0.21

To match the ratios of the spatial dimensions with those used by Pagano, the laminate

length : width : layer thickness (i.e, L : 2b : h) was selected as 11 : 3 : 0.1875. Two

stacking sequences viz., [+45/-45], and [0/901, were considered.

6.3.1 Angle Ply Specimen

In the x direction the specimen was discretized using 11 equal sized elements. In

the y direction a sequence of mesh refinement was done by starting with three equal

elements and succesively subdividing the elements along the two traction-free edges

further into three equal elements. Using this pattern, 3x11, 7x11, 11xll and 15xll

element meshes were used. This scheme is illustrated in Figure 6 where refinement

from the 3xl1 to the 7x11 mesh is depicted. A nine-noded Heterosis element shown
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4 h X

Figure 5: Four-Ply Coupon Subjected to Axial Strain
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in Figure B.1 was used for the finite element analysis.

The results for the inplane stresses Cra and Cr21 for the various meshes are

compared with Pagands solution in Figure 7 and Figure 8. These stresses are plotted

across the middle surface of the top layer for comparison with Pagano's solution. The

stresses are shown over half the width of the coupon, where (y-b)/b=O, 1,

respectively represent the center and the free edge of the laminate.

The result for the 3xll mesh shows a jump across the element boundary, It

should be noted that as only half the laminate width is represented in the plots, the

3x11 mesh is represented by 1- elements. For the chosen element, in-plane strains, and

2

consequently the stresses, are linear over the element. The edge element in the 3xlI

mesh attempts to model both the sharply varying stresses near the free edge and the

relatively flatter ones near the center by a single linear fit. Hence the stresses near the

inner boundary of the edge element tend to be overestimated. This explains the kink

in the 3x11 solution across the element boundary. With mesh refinement the kink was

observed to reduce for the 7x11 mesh and was not noticeable in the solution for the

IlxIi element mesh. Moreover, it was observed that further refinement to a 15x11

mesh did not show "substantial" improvement in the solution. A comparison of the

total CPU time for the different meshes using a CRAY X-MP/28 is given in Table 7.

The results in Figure 7 and Figure 8 show that the finite element results

overestimate Pagano's solution for all and ar,2 by about 4 percent at the center and 12

percent at the free edge. The same amount of error is observed at the free-edge in

the longitudinal displacements plotted in Figure 9 for the "optimum" lIxil mesh.

The transverse shear stress al. computed using (81) is shown in Figure 10.

Comparison with Pagano's exact solution shows that the numerical results grossly

107



y

-!-

3xIl MESH

---. sa X

7X 11 MESH

Figure 6: Sequential Refinement Scheme for the Finite Element Mesh
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P igure 7; Distribution of X-stress along Center of Top Layer (Angle-Ply).
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Figure 8: Distribution of XY-stress along Center of Top Lyer (Angle-Ply).
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Table 7

Comparison of CPU time for different Finite Element Meshes.

F.E.M Mesh Total CPU time on a CRAY X-MP128
(Seconds.)

3x11 7.798

7x11 23.424

llx12. 42.664

15x11 68.921

------- -- --- -- -- -- --- -- -- -- --- -- -- -- --



underestimate the shearing stress.

To further enhance the accuracy of the solution, refinement in the thickness direc-

tion, i.e. the division of each layer into sublayers, was attempted. Each layer was

divided into three sublayers of thickness h/3. Further subdivision into five layers was

done by dividing the sublayer of interest (i.e, the one containing the location at which

stresses were desired) into three equal layers of thickness h/9. To save on comp.uta-

tional effort, the symmetry of the problem was exploited by considering only the top

two plies and specifying the transverse displacements, w, at the middle surface of the

laminate equal to zero. Hlence, solutions for the cases of N=2, N=6 and N,=10 were

obtained, where N represents the total number of resulting layers; N=2 being the case

with no sublayers. The scheme for sublayer division is depicted in Figure 11.

The results for inplane stresses for different N using a 11xli element mesh are

compared with Pagano's results in Figure 12 to Figure 15. A comparison of CPU time

for various number of sublayers is given in Table 8. Table 7 and Table 8 show that

for the problem using the 1lxII mesh, exploiting the symmetry by considering only

two plies reduced the CPU time from 42.664 to 15.852 seconds.

Figure 12 and Figure 13 show significant improvement in the results for inplane

stresses at the free edge with increasing number of sublayers, though the stresses at

the center of the laminate remain essentially unchanged. The results for axial

displacement are shown in Figure 14 and show that the displacements obtained using

N=6 and N=10 agree closely with Pagano's solution.

The transverse shear stress (r,3 at the ±45° interface was computed using (81) and

is shown in Figure 15. With increasing N, the computed free-edge stress steadily

increased in magnitude. Pagano [1978] observed that oa3 at the edge grows with

112



0 HONG
C0

CuPAGANO N=6

0

00

0

10.00 0.20 0 . 40 0.60 0.80 1.00

Figure 9: Axial IDisplactme~it Across Tiop Surface (Angle-Ply)

113



C(:

0
0

0 .1IXI MESH

o - PAGANO N=6
(.0

10 0,o C

N

0

0

0

0

Th 00 0.20 0.140 0 .60 0 .80 1.00
(T-B) /B
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Figure 11: Division of Individual Plies into Sublayers
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Table 8

Comparison of CPU Time for lxI) Mesh with Different Num-
ber of Sublayers.

---------------------------------------------
N Total CPU time on a CRAY X-MP/28

(Seconds.)
-----------------------------------------------

N=2 15.852
----------------------------------------------

N=6 79.333
-----------------------------------------------

N=10 197.084
--------------------------------------
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increasing N and could not determine whether a finite limit was approached for large

N. The values of the transverse stress close to the free edge for different number of

sublayers are presented in Table 9.

To observe the effect of the consistent shear treatment, the results were compared

with those obtained by Moazzami et al. [19911 using the discrete laminate theory

along with a constant shear correction factor. The stresses and displacements at

element centers for a 11xll mesh with N=2 are compared in Table 10 to Table 13.

Table 10 shows that the results for oa do not show any "substantial" difference.

The results for o), 0"111 and u, in Table 11 to Table 13, however, indicate that tmose

obtained from the present theory are slightly better than those obtained using the

existing discrete laminate theory. As observed in Section 6.2, only marginal improve-

ment was expected by the introduction of consistent shear coupling.

In summary, it was observed that the results improved to a certain extent only

with spatial refinement of the finite element mesh. Convergence after the 11xl1 mesh

was slow. Further enhancement in the solution was obtained by dividing each ply into

sublayers. As the inplane displacements are assumed linear over the thickness of each

layer, division into sublayers resulted in piecewise linear displacements over each ply

contributing to increased accuracy.

120



0

C(:

0 N=2

o + N=6

- X N=10

PAGRNO N62

0

0.

0
5ý-

0

00+

oo +

0

•h00 0.20 0.40 0.60 0.80 1.00
(Y-B) /B

Figur e 15: Distribution of XZ-stress Along 45/-45 Interface for Various N (Angle-

Ply).

121



Table 9

Gowth of XZ-stress at Free Edge with Increasing N

N The Present Study Pagano

2 0.416 1.664

6 0.955 2.213

10 1.450
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Table 10

Comparison of X-stresses with those Obtained by Moazzamd et at.

Present Moazzami Pagano
(y-b)/b Study (N=6)*

0.000 3.0912 3.0882 2.902

0.444 3.0853 3.0785 2.90

0.666 3.0593 3.0584 2.89

0.815 2 9999 3.0067 2.78

0.888 2.9229 2.9317 2.67

0.962 2.7712 2.7658 2.25

* Note: These numbers are approximated from the plots in Pagano [197
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Table 11

Comparison of XY-stresses with those Obtained by Moazzatni et al.

Present Moazzami Pagano
(y-b)/b Study (N=6)*

0.000 1.1793 1.1995 1.15

0.444 1.1668 1.1921 1.14

0.666 1.1137 1.1526 1.05

0.815 0.9923 1.0504 0.88

0.888 0.8348 0.9023 0.64

0.962 0.5248 0.6409 0.25

*Note: These numbers are approximated from the plots in Pagano [197
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Table 12

Comparison of XZ-stresses with those Obtained by Moazzami et al.

Present Moazzami Pagano
(y-b)/b Study (N=6)*

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --4

0.000 -0.0030 -0 -0.00

0.444 -0.0143 -0.0072 -0.019

0.666 -0.0613 -0.0387 -0.09

0.815 -0.1752 -0.1268 -0.26

0.888 -0.3046 -0.2385 -0.38

0.962 -0.5465 -0.4662 -0.939

*Note: These numbers are approximated from the plots in Pagano (197
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Table 13

Cornparison of X-dis placements with those Obtained by Moazzami

et al.

Present Moazza~mi Pagano
(y-b)/b Study (N=6)*

0.000 -0 -0 0.00

0.444 -0.0143 -0.0071 -0.011

0.666 -0.0615 -0.0387 -0.055

0.815 -0.1765 -0.1244 -0.16

0.888 -0.3069 -0.2338 -0.26

0.962 -0.5507 -0.4571 -0.47

*Note: These numbers are approximated from the plots in Pagano (197
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6.3.2 Cross-Ply Specimen.

The second example of the FED specimen solved was a [0/90], laminate. The

material properties and laminate geometery were the same as before. Results for

0"2 and a33 were computed for comparison with Pagano's solution.

Figure 16 compares the results obtained for o"23 with those given by Pagano [19781

The results for N=6 matched well with those of Pagano's except over the edge

element. Notice that a singularity exists at the edge due to the different constitutive

relations at the free edge. As the A'kI)s were interpolated over the edge element, the

edge element should be kept relatively small to better approximate the singularity.

Hence further spatial refinement was done by using 15x11 and 19x11 element meshes.

These results are shown in Figure 17 and Figure 18. These figures show that with

mesh refinement near the edge of the laminate, a sharp peak was observed in the edge

element. The magnitude of the peak increased with decreasing width of the edge

element. It appears that if the edge element is sufficiently small and is ignored, the

stresses in the penultimate element can be considered to realistically represent the

conditions very close to the free edge.

Equation (275) was used to compute the normal stress. The derivatives were

computed at each location using a central difference method. The size of the interval

used was 0.05 of the element width, reducing to 0.02 of the element width near the

free edge.

The results for a33 for the different element meshes are shown in Figure 19.

The hump noticeable in Pagano's solution was not observed. It was observed that the

edge values of the stresses approached Pagano's solution as the mesh near the laminate

edge was refined.
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The distribution of the tranverse inplane displacement is shown in Figure 20 and

agrees well with Pagano's result.

6.4 NATURAL FREQUENCIES OF FREE VIBRATION OF A SANDWICH

PLATE.

Though the constitutive relations for transverse shear have been obtained from the

equations of static equilibrium, inertial terms were included in the finite element

formulation to compute the natural frequencies of free vibration of a simply supported

plate. A sandwich plate whose 3-D elasticity solution for the fundamental frequency

was presented by Srinivas [19701 was considered. The orthotropic laminated plate

consisted of three layers as shown in Figure 21. The top and bottom layers had the

same thickness and material properties while the thickness and material properties of

the middle layer were different. Square geometry with thickness/side ratio of 0.1

(h/a=h/b=0.1) was used and three different cases of material properties given in Table

14 were considered.

For a simply supported laminated plate, the boundary conditions are [Srinivas

1970,19731

u,=w=0 at x2 = 0 and b (282)

u2 =w= at x O = 0 and a (283)

With the present formulation, these boundary conditions were restated as

U1)=0(1) W 0 at x2=0 and b (284)

u ( 0 = =0 at x 0=O and a (285)

Figure 22 shows the finite element mesh along with the boundary conditions.
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Table 14

Lamination Data for Sandwich Plate

Case tj1h qh t3/h p~l)/pM2 .~)p 2  '04/~ , WOW

I 0.1 0.8 0.1 1.0 1.0 1 1

II 0.1 0.8 0.1 1.0 1.0 10 10

III 0.1 0.8 0.1 1.0 1.0 50 50

* For all layers, ratios of orthotropic elastic constants
were:

Q- : = 3.802: 0.879: 1.996: 1.015: 0.608: 1.0
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Table 15 shows the nondimensionalized fundamental natural frequency obtained

using 4, 16 and 36 element mesh for cases 1, 11, I11 for which the ratio of elastic

constants of the middle layer to those of the outer layers was 1, 10 and 50,

respectively. It was seen that the accuracy for Case I was excellent, but the error

became larger as the ratio of the elastic constants of the outer layers to the middle

layer increased. Figure 23 illustrates the convergence of the numerical solutions with

spatial mesh refinement. It was seen that convergence after refinement beyond 16

elements was slowxer than from 4 to 16 elements.

To examine the effect of consistent treatment of transverse shear deformation, the

same example problem was solved using the code with a simple shear correction factor

k=5/6, assuming the constitutive equations of shear in each layer to be uncoupled.

Table 16 shows the non-dimensionalized fundamental natural frequency obtained based

on this approach for the three cases. The quantity in parentheses is percentage error.

The results obtained with k=5/6 were compared with the result obtained with the

consistent theory. These comparisons for cases I, II and III are illustrated, respectively,

in Figure 24, Figure 25 and Figure 26. It was observed that the uncoupled approach

overpredicts the natural frequency. The difference increases as the difference in stiff-

nesses of the outer and the inner layer grows. Further, Figure 24 through Figure 26

show that the best accuracy was obtained with the 4x4 element mesh, but the solution

did not show monotonic convergence.

To further study the effect of the proposed consistent shear constitutive relations,

in addition to comparing the fundamental frequency the higher frequencies obtained

using the proposed theory and a shear correction factor of 5/6 were also compared.

Figure 27 to Figure 29 compare the frequencies of a 537 degree-of-freedom system

137



Table 15

Non-Dirnensionalized Fundamental Frequency by FEM based on the Con-

sistent Shear Deformable Theory

Mesh Case I Case II Case III

4 0.094697 0.19682 0.31097
(2.4%) (2.9%) (3.8%)

16 0.092952 0.19472 0.30919
(0.5%) (1.8%) (3.2%)

36 0.092900 0.19463 0.30911
(0.4%) (1.7%) (3.1%)

Exact 3-D 0.09248 0.19132 0.29954
(Srinivas)

* oh = 2 h where (o is naturalfrequency.

3)66
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Table 16

Non-Dimensionalized Fundamental Frequency by FEM using shear correc-
tion factor k=716

Mesh Case I Case II Case III

4 0.09498 0.19710 0.31489
(2.7%) (3.0%) (5.1%)

16 0.09317 0.19584 0.31305
(0.7%) (2.3%) (4.5%)

36 0.09341 0.19805 0.32232
(0.7%) (3.5%) (7.6%)

Exact 0.09248 0.19132 0.29954
(Srinivas)
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(4x4) mesh for the three cases of the sandwich plate studied. The values of the lower

frequencies computed using the consistent shear approach differ only slightly from

those by the discrete laminate using a shear correction factor of 5/6. However, the

higher frequencies are distinctly different.
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Section VII

DISCUSSION

Due to the inherent complexity associated with material anisotropy and

inhomogeneity of composites, a laminated plate often shows quite different mechanical

characteristics from the homogeneous isotropic counterpart. Therefore, it is essential

that any simplified theory satisfy equilibrium, kinematic and constitutive relations as

closely as possible to ensure reliable results.

The investigation reported here, aimed at development of stress and deformation

analysis of laminated composites resulted in the following accomplishments:

a. Development of a systematic and general theory to consistently incor-

porate the transverse shear-deformation effect in composite laminates.

b. Derivation of variational principles governing the refined theory to

provide a basis for development of efficient and reliable Ritz type as

well as finite element approximation procedures.

c. Implementation of the theory into a finite element computer program

including code verification.

d. Application of the theory to free-edge delamination specimens.

A discrete laminated plate theory based on the assumption of a layerwise linear

variation of in-plane displacements has been further refined by incorporating the effect

of transverse shear deformation in a consistent manner, viz. allowing for the coupling

of shear deformation effects between layers. This development was facilitated by a
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mixed variational principle of linear elasticity derived using Sandhu's generalized

procedure for variational formulation of linear coupled boundary value problems. This

mixed variational principle is more useful for the application to a general anisotropic

material than Reissner's [1984] approach. A parabolic distribution of shear stresses over

the thickness of each layer was assumed. Continuity of stresses and displacements in

the layer interfaces were allowed for. Distinctive features of the resulting constitutive

relations for transverse shear are:

1. Shear force resultants for each layer are a linear combination of the shear

strains of all the layers. Directional coupling of the constitutive relations dis-

appears for orthotropically constructed laminates.

2. Coefficients in a linear combination of shear strains are determined by parame-

ters related to lamination schemes such as material properties, thickness of lay-

ers and stacking sequence of layers.

3. The shear constitutive relations also depend upon tangential stresses specified

on the laminate surfaces.

The fact that the shear force over a layer is coupled with the shear strains of other

layers in a linear fashion seems to be a striking result because such coupling has not

been anticipated in earlier work. However, this result can be attributed to the consid-

eration of continuity of shear stresses in the interface of layers which has not been

taken into account in previous studies. Coupling of shear constitutive relations of all

layers could result in a better understanding of how a laminate composed of many

layers might react to applied forces.

The nature and extent of the shear coupling was studied by looking at the

constitutive matrix for a 12-layer graphite epoxy laminate. It was observed that the
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shearing force in a layer was not significantly influenced by the strains in other

layers. Also, the effect was local, i.e, contribution from other layers decreased sharply

with increasing distance between layers.

Using the refined laminate theory, a systematic development of variational

principles for static as well as dynamic analysis of laminated composite plates was

carried out. Direct as well as complementary formulations were developed. The

complementary self-adjoint form of the field equations obtained is an advancement over

the one presented by AI-Ghothani [1986], insomuch as the present work contains

coupling terms of the transverse shear constitutive equations between layers.

Nonhomogeneous boundary conditions and internal jump discontinuities have been

explicitly included in the general variational principles. Allowance for jump

discontinuity terms in the variational formulation is meaningful in the context of

direct approximation in finite element spaces since the space of approximants may not

be sufficiently smooth. Extensions of the general variational principles through

elimination of certain field operators and specializations by restricting some of the field

equations and/or boundary conditions to be identically satisfied have been proposed.

Based on a special variational principle, a finite element procedure which uses

, and w as the field variables has been formulated and a finite element code

has been developed. The computer program was used to study the effect of the

constitutive coupling by solving the static problem of a laminated coupon under axial

extension. The results were compared with the solution provided by Pagano [19781

The displacement solution was seen to agree well. In addition to refinement of the

Finite Element mesh, increased accuracy was seen to result from the division of each

layer into sublayers. The results for inplane stresses compared well though those for
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transverse shear and normal stresses did not. It was observed that refinement of the

finite element mesh along the length of the free-edge delamination specimen did not

significantly contribute to improvement in accuracy. However, refinement in the lateral

direction (y-direction or the x2 axis) near the free-edge gave considerable improvement.

Also, refinement of layers into sublayers improved the results. This points to the

desirability of using a higher order variation over the x3 co-ordinate.

Though the constitutive relations have been derived from the equations of static

equilibrium, the problem of free vibration of a sandwich plate was also studied by

including inertial terms in the variation formulation. The fundamental frequency was

compared with that obtained from an elastodynamic solution. It was observed that

1. In certain cases, a consistent shear correction improves the accuracy considera-

bly in predicting natural frequencies over the shear correction by a simple

factor which has been widely used in previous theories.

2. Improvement of accuracy depends upon the material properties of each layer.

With increase in the difference of material properties in the individual layers,

the significance of a consistent shear correction was more pronounced.

The higher frequencies were also studied and it was observed that the higher

modes differed sharply from those obtained using a single shear correction factor.

These limited numerical tests illustrate the validity of a consistent shear correction

procedure. Considering numerous design possibilities of composite laminates, use of a

procedure to treat transverse shear deformation in a consistent manner rather than

shear correction on an ad-hoc basis seems to be desirable.
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Appendix A

VARIATIONAL FORMULATION OF LINEAR COUPLED

PROBLEMS

The procedure for obtaining variational principles governing linear coupled

boundary value problem is summarized following Sandhu [1970,1971,1975,1976]. The

procedure can be considered as an extension of Mikhlin's [1965] basic variational

theorem to coupled linear boundary value problems, including nonhomogeneous boundary

conditions and internal discontinuities which may exist in the physical problem or arise

in connection with numerical approximation procedures.

A.] MATHEMATICAL PRELIMINARIES

A.I.I Boundary Value Problem

Consider the boundary value problem

A(u) = f on R (A.1)

C(u) = g on OR (A.2)

where A and C are the linear, bounded operators, u is the field variable, R is an open

connected region in an Euclidean space and OR is its boundary. Let VR and V,, be

linear vector spaces defined on the regions indicated by subscripts such that

fEV-Al and g EVa
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Then. the operators can be regarded as transformations defined over sets WI, WsA such

that

A : Wý - VR (A.3)

C: W6R VaR (A.4)

For A, C differential operators, WR, W,, are, in general, dense subsets in V,, V'k,

respectively.

A.1.2 Bilinear Mapping

Let V and S be linear vector spaces. A bilinear mapping B(w,v): VxV -S assigns

an element in S to an ordered pair of elements wv%,EV while preserving linelrity. For

convenience, we shall use the notation

B(w,v) =- <w,v> (A.5)

Bilinear mapping B is said to be nondegenerate if

<w,v> = 0 for all w EV ifandonlyif v=O (A.6)

and symmetric if

<W, V> = <v, w> for all v,w EV (A.7)

A.1.3 Self-Adjoint Operator

Let A:V" V be an operator on the linear vector space V. Operator A' V V is

said to be adjoint of A with respect to a bilinear mapping < > R: VxV - S, a linear

vector space, if

<w, Av>R = <v, A w> R + DaR(vw) (A.8)

for all v,w E V. We assume here that the domain of A, A', a dense subset in V can be

extended to V. Here, the subscript R of bilinear mapping indicates that V is defined

over spatial region R and D,(v, w) represents quantities associated with the boundary
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8R of R. If A = A', A is said to be self-adjoint. In particular, an operator A is

said to be symmetric with respect to bilinear mapping if

<w, Av> = <v, Aw> R (A.9)

A.I.4 Gateaux Differential

Consider a continuous function fl:V--* S. Gateaux differential of fl is defined as

A f)(u) = rnlir l[l(u+Xv) - (1(u)] (A.l1)
k'-0 X

provided the limit exists. llere, v is referred to as the 'path' and X is a scalar. We

note that for u, v'EV, u + ,v E V. If the Gateaux differential exists at every point in a

neighborhood of v=u=

a nl(U) = d-- MlU+ X01__
V dk ~

A-2 BASIC VARIATIONAL PRINCIPLE

For the boundary value problem (A-I) with homogeneous boundary condition,

Mikhlin [19651 used the inner product as the nondegenerate symmetric bilinear mapping

on the linear vector space of square integrable functions and showed that the unique

solution u minimizes the functional

f)(u) = <Au, u>, -- 2<u, f> R (A.1 1)

if the linear operator A is positive definite and self-adjoint. Conversely, u. which

minimizes the functional (A-I1) is the solution of the problem (A-I).

Taking Gateaux differential of the function (A-11),

Afl(u)=lim-[<A(u+Xv> ,u+Xv> -2<u±Xv> <Au,u> +2<u,f>]
X-0 X

= <Au,v> + <Av, u> - 2 <v,f>
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=2<i,, Au-f> (A.12)

The Gateaux differential evidently vanishes at the solution u =u, such that

Au -- f = 0. Also, since the bilinear mapping is nondegenerate, vanishing of the

Gateaux differential for all v implies Auo-f = 0. To prove the minimization property,

the bilinear mapping has to be into the real line and the operator must be positive.

Iloever, in general, it is only necessary to use vanishing of Gateaux differential as

equivalent to (A-1) being satisfied.

A.3 VARIATIONAL IFORMULATION OF TIlE COUPLED PROBLEM

Through generalization of Mikhlin's theorem, Sandhu [1970,1971,1975,1976]

constructed a framework to handle the inverse problem of variational calculus for the

linear coupled problem with multiple field variables. To include the nonhomogeneous

boundary conditions and internal discontinuity conditions explicitly in the formulation,

the concept of consistent boundary operators was introduced.

Consider the coupled boundary value problem with multiple field variables

A(u) = f on R (A.13)

C(u) = g on 6R (A.14)

in which A, C and u are, respectively, the field operator matrix, the boundary operator

matrix and the vector of field variables, and f, g are the vectors of known forcing

functions. Explicitly,

n

EArlu = f, on R (A.15)
J,-I

n

E C,,u = g, on OR . i= 1, 2, . . n (A.16)
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in which OR denote segments of OR such that

OR = U OR, (A.17)
1=1

and n is the number of independent field variables. Operators A,, are regarded as the

transformations

.4 :M -- ,P(A.18)
Al: M ill P11.

there

SE W = M• , (A.19)

f, E V, = U P (A.20)
.1=I

Thus, the range of A, constitutes a product space

V = I 2 x ... . . . V (A.21)

Let V be a vector space defined as the direct sum

V = V + .... +Vn (A.22)

and an element uEV be the ordered set

u = iu ., , u,} (A.23)

suc-h that u,\EV,. Then, a bilinear mapping on V, may be defined as

<U, V>A, = <UI VI >R +R ......... + <un,v >R (A.24)

The set of operators A,, is said to be self-adjoint with respect to this bilinear mapping

if [Sdndhu. 1976]

E <u, A u> R = <u, "A u > R +D O(uu") (A.25)
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x\here l),k(u,.u,) denote quantities associated w ith OR. If the set of operators A. is

sell" adjoint. as a generalization of Mikhlin's theorem, the function governing the

problem (A-13) and (A-14) was defined as

n n

Q = ET{<u,, Au- 2f >R + <u, , C u -2g, >1 (A.26)
.1 J J Jla

For vanishing of the Gateaux differential of this function to imply (A-13) and (A-14).

the Ioundary operators C,, must be consistent with the field operators A,,. Sandhu

[19761 ;tated the consistency condition of the boundary operators as

I)D(uu <)= u,, C. u> E- <,<u C u > (A.27)
I 1 I 1

In other words, for (A-26) to be the governing function in variational formulation of

the problem given by (A-13) and (A-14), the boundary operators must satisfy (A-27).

Sandhu [19751 showed that appropriate boundary terms should be included in the

formulation even if the boundary conditions are homogeneous.

In applying the finite element method to obtain an approximate solution, the

approximation space may have limited smoothness, e.g., when nonconforming elements

are used. Prager [1968] was the first to discuss this aspect in connection with

\ariational formulation. To allow for this, Sandhu [1975] wrote the internal

discontinuity conditions in the form

(Cu.)' = g' on OR, (A .28)

where a prime denotes the internal jump discontinuity along internal surfaces 8R,

embedded in the region R. Since (A-28) has the same form as the boundary

conditions, it is apparent that this condition can be included in the governing function

in the same way. The gcx, erning function allowing for (A-28) is
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= D <u, ,u- 2f> + <u,, Cu- 2g,->6

+ <u1, (C, uY - 2g',> a.' } (A.29)

This is the general form of the governing function in the variational formulation of

linear coupled boundary value problem with multiple field variables. The essential

Ntep in settini, up a variational formulation of a boundary value problem is to write

the field equations in a form that the matrix of field operators is self-adjoint "ith

rcsp-t to tert.ir bilinear mapping and the boundary conditions are consistent with the

!ield lperaitkrs. The procedure is also applicable to initial-boundary vaiue problems using

appropriate bilinear mappings.
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Appendix B

EVALUATION OF ELEMENT MATRICES

B.1 INTIRPOLATJION V VNCTIONS OF THE 'HETEROSIS. ELEMENT

The computer program developed incorporated the 'lleterosis' plate bendinEg t.lement

[Ilughes 1978] along with reduced/selective integration technique. The element matrices

can be formed following the usual procedure of isoparametric element formulation.

Howkever, the 'Ileterosis' element differs from other isoparametric elements in using

different interpolation scheme for lateral displacement on the one hand and inplane

displacement and rotations of the cross-seclion on the other. In-plane displacements uIV(

and rotations of cross-section • are approximated by qaudratic functions for S-node

isoparametric element while the lateral displacement w is approximated by 9-node

Liagrange interpolation functions. Consequently, the number of degrees of freedom at

the center node is less than that at other nodes by one. Interpolation scheme of the

Ileterosis' element is shown in Figure B.I. Using such interpolation scheme, Hughes

[1978] was able to avoid spurious zero energy mode of stiffness matrix which can be

caused by use of reduced integration.

Interpolations functions of 8-node isoparametric element and 9-node Lagrange

element in terms of natural coordinates (s~t) and their derivatives with respect to s

and t are given below.
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(l-s X-X-l-s-t) '(1-tX2s+t) (1-sX2t+s)

(l+sXI-tX-1+s-t) (1-tX2s-t) (I+sX2t-s)
(1+sXI+tX-1 +s+t (1+t2(2) 0 +sX 2t+s)

(N I -sX1+tx-N-s+t (I+tX2s-t) (I-sX2t-s)
N 2(I-SX,-t) 74 -4s(l-t) Ot 4 -2(1-s') (B-0

2 (1+sX 1-t2 ) 2(,-t 2) -4 t(+s)

2 (0 -sX 1 +t -4 s(1+t) 2 (-s_2)
2 ( 1 -sX 1 _1 2) -2 (1 -t 2) -4 tOl-s)

st(1-s)(1-1) 1(2s-l1)(t-1) s(2t 1 ) s-l)
S1 (1+s)(l-l) t (2s+l)(0-l) s(2t-1)(s+l )
St (I +S) (1+1) 1(2s+l)(t+l) s (2t+l)(s41I

st (s-)(t+ 1) 1(2s-1)(t+il) s (2 ) 1)(s-1)

L 1 2t(I-s_)(S-2) L_ - 4st(l-0) OL - I 2(21+1)(ls 2. (B.2)
4 2s(s+I)(l-t 2) as 4 2(2s+l)(1_t2) o 4 -4st(s+I)

2t (l-s ) (t+1I ) -4 st (t+1) 2 (2t+ 1 ) (1-s2)

2s (s-1)(I-t2 ) 2(2s-1)(1-t 2) 4 st (-s)

4 (l-s 2 )(1-t 2) 8s(t 2- ) 8t (s 2-1)

Here, N and L denote interpolation functions for 8-node isoparametric and 9-node

Lagrange element, respectively.

B.2 EVALUATION OF STIFFNESS AND MASS MATRICES

Since the field variables are interpolated over an element in natural coordinates

(s,t), it is necessray to set up the relation of the global coordinates and natural (local)

coordinates for evaluation of the element matrices defined in Section VI. We consider

a mapping of global coordinate system (x ,x 2) to local coordinate system (s,t). We

assume that this mapping is one-to-one and onto. By chain rule, the derivative in

each coordinate system is related by
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a a AL aO = J Oxor =x _ Os (B.3)

where Jacobian matrix J and its inverse is defined as

j=as as and J- I 8' as (B.4)
ax ay TTJ - ax ax

Hlere, IJI is the determinant of Jacobian matrix. Using (B-3) and (B-4), one can obtain

the expressions of the matrices T,,T,, and T, defined in (214)-(216) in natural

coordinates. Following the concept of isoparametric formulation, global coordinates are

interpolated over an element as

T - 7_ (B.5)
X =1 *X

where W is the vector of interpolation functions used for field variable. x is the

vector of global coordinate values at nodal points. Since in the Tleterosis' element

different interpolations functions N and L are used for 01.0 and w, 'i in (B-5) must be

L for evaluating T. and T, while be N for T,

Using (B-1)-(B-5) and the interpolation functions defined in (211)-(216),

H =H L 0 (B.6)

H = N (B.7)

40

T T (B3.9)

xk here
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1i N I T

ijl= _Tpy

T T

P = -, L ,T_,L'T

R = N, N,T - N,', NT

Here, a subscripted comma denotes partial differentiation with respect to the variables

following the comma.

In element matrices given in (218)-(233), the integrands are functions of natural

coordinates (s-t). Therefore, the surface integration extends over the natural coordinate

surface. Since, in general,

dR = IUI dsdt (B.1O)

integration in each coordinate system is related by

f f x.)dxdy = ff-F(st) Jlds dt (B.I1)
A -1 -1

Using Gaussian quadrature

mn m

f F(xy) dR = r FF(s,1 jt1 j) IJ,) 1WI.) (B.12)
R i=1 j=1

where m is the number of Gaussian quadrature points and W,, are weighting values.

Here, it should be mentioned that the in the 'Heterosis! element numerical integration

was performed by selective/reduced integration technique, viL, two-point Gaussian

quadrature for evaluation of transverse strain energy term while three-point quadrature

is used for other quantities. Therefore, (231)-(233) were evaluated by two-point

quadrature and the remaining quantities were evaluated by three-point quadrature.
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