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Section I

INTRODUCTION

Use of advanced fiber-reinforced composite laminates has been rapidly growing in
structural engineering, e.g., in the design of aircraft, space vehicles, automobiles,
large-span roof structures, etc. This is due to the high strength/weight ratio and the
possibility for optimal design by tailoring the mechanical properties of structural
components for a specific application. Increasing use of composite materials in the
design of high-performance vehicles has attracted much attention to the dynamic
behavior of structural components under service conditions. Experimental procedures
can provide information on the real behavior of structures to the designer, but cannot
cover all the design possibilities. Therefore, it is important to develop a general, as
well as reliable, analysis procedure which can predict the response of composite
laminates under a variety of service conditions.

Considerable research effort has been devoted to the development of analytical
procedures for the analysis of composite materials. This has resulted in a variety of
laminated plate theories and solution methods including, among others, classical thin
plate theory [e.g. Reissner 1961, Stavsky 1961], first-order shear deformable theories
feg. Yang 1966, Whitney 1970}, higher-order theories [e.g., Whitney 1973,1974, Nelson
1974, Lo 1977, Reddy 1984a] and discrete laminate theories [e.g., Srinivas 1973, Sun

1973, Pagano 1978,1983, Seide 1980, Green 1982}




Classical thin plate theory (CPT) based on the Kirchhoff hypothesis assumes that
the transverse shear deformation is negligible. For the analysis of laminated composites,
it is well known [Whitney 1969, Pagano 1969,1970b, Jones 1970, Srinivas 1970] that
use of CPT leads to underprediction of the transverse deflection, overprediction of
natural frequencies, and higher buckling loads. This is attributed to the fact that the
ratio of shear to Young’s modulus is lower in most composite materials than in
conventional isotropic materials. Also, the error grows with an increase in plate
thickness.

This theoretical deficiency of classical thin plate theory was corrected by the shear
deformable theory [Yang 1966] in which transverse shear deformation was taken into
account, following Mindlin's [1951] work, for the dynamic analysis of Jaminated plates.
Since then, various shear deformable theories have been proposed, including higher-order
theories in which the power expansion for displacements contains terms of order higher
than one. It has been shown [Whitney 1969, Srinivas 1970] that first order shear
deformable theory may be adequate to predict global behavior of laminated plates, eg.,
lateral deflection or fundamental natural frequency, but it is not better than CPT in
calculating in-plane stresses because it does not include the contributions of higher shear
modes. Higher-order theories lead to improved estimates of in-plane stress distributions
and of the flexural vibration characteristics.

However, the shear deformable laminate theory, whether it is the first or
higher-order theory, has two critical deficiencies. The first is its lack of capability to
describe local deformation precisely. Due to this, it is difficult to avoid error in
calculating natural frequencies as well as in-plane stresses around laminar interfaces,

especially, when shear rigidities of adjacent laminae are quite different [Sun 1973, Lo




1977} The other deficiency is the violation of equilibrium of the plate because stress
continuity at the interface is, in general, not satisfied. The need to eliminate these
deficiencies has motivated the development of several discrete laminated plate theories
[Srinivas 1973, Sun 1973, Seide 1980) in which variation of anisotropy in the
laminate is properly incorporated. The discrete laminate theory not only removes the
drawbacks of shear deformable theories noted above, but it also allows different
houndary conditions to be specified in each layer. It may be regurded as the most
general approach capable of accurately describing the mechanical behavior of any type
of laminated plates. Use of discrete laminate theories appeared to give better in-plane
stress disribution [Seide 1980] and more accurate natural frequencies [Sun 197
However, this theory, in general, involves a large number of field equations, and
consequently makes the problems quite complicated.

A basis often used for laminate theories is to assume a pattern of wvariation of
displacements over the thickness of the plate. In such theories, which allow for shear
deformation, the constitutive relations of transverse shear are, in general, not satisfied.
As a result, it is not possible to avoid some error in evaluating the laminate stiffness.
Since the effect of transverse shear deformation is significant in laminated composites,
accuracy of analysis can be considerably affected. In particular, its effect becomes more
critical in thick laminates or hybrid laminates made of layers with drastically
different material properties. Many attempts have been made to treat the shear
deformation realistically, but a standard procedure applicable to laminates of arbitrary
construction is not available.

Since the boundary value problem of a structure constructed with composite

laminates is extremely complex, approximate numerical techniques are often used to




obtain the solution. The most popular tool has been the finite element method which
is usually based on a wvariational formulation. Several different types of element
geometries, interpolation schemes and formulation strategies have been introduced, (eg.,
Mawenya [1974], Reddy [1980,1984b], Bhashyam [1983), and Putcha [1986]). To provide
the basis for different possible formulations, Al-Ghothani [1986] presented
complementary variational formulations of the discrete laminate theory of dynamics of
Jaminated plates following Sandhu's [1970,1971,1975,1976] procedure. Various extended
and specialized forms of the general variational principle were discussed. lowever, he
failed to derive variational principles for the direct formulation which provides another
and often more useful approach for construction of approximate solution procedures.

As part of the current research program, reliable procedures were to be developed
for the analysis of stresses and deformations in delamination specimens of composite
laminates allowing for the coupling of flexure and extension. This required
development of a theoretical model which could realistically describe the mechanical
behavior of composite laminates. The discrete laminate theory was selected as quite
general. This was extended to include constitutive coupling of force resultants in the
lamina. In Section Il, the field equations of a discrete laminate theory based on the
assumed-displacement field are summarized following Srinivas [1973], Sun [1973] and
Seide [1980), and its somewhat ad hoc treatment of transverse shear deformation is
discussed.  Section IIl presents a procedure based on a generalization of Reissner's
method to incorporate the effect of transverse shear deformation in a consistent manner.
A variational formulation of the consistent shear deformable discrete laminate theory of
laminated composite plates is proposed in Section IV. Direct as well as complementary

formulations are discussed. In Section V a finite element discretization procedure is




introduced. In Section VI, application of the finite element code to evaluation of
stresses in some cross-ply and angle-ply free-edge delamination specimens is described
along with an application to free vibration analyses.

The development of the coupled shear theory discussed herein is an important step
forward in obtaining reliable estimates for stresses and deformations in laminated
composites. Clearly, the new theory has certain limitations including its assumptions of
vanishing transverse strain. Further refinements on introducing coupled relations for the
other force resultants besides shearing forces, and allowing for variation of transverse
stress over the thickness of the laminate is apparently necessary for reliable estimation

of stresses in a composite laminate.




Section 11
FIELD EQUATIONS OF THE DISCRETE LAMINATE THEORY

OF COMPOSITE PLATES

2.1 INTRODUCTION

In this section, field equations of the discrete laminate theory for dynamics of
laminated plates are summarized using the Kinematic assumptions proposed by Srinivas
[1973), Sun [1973], and Seide [1980] The domain of definition of all functions is the
Cartesian product Kx[0,c0), where R is the closure of the open, connected spatial
region R occupied by the plate and [0,00) is the positive time interval.

We consider a laminated plate of uniform thickness h composed of an arbitrary
number of thin layers, in which each layer is assumed to be homogeneous, linear
elastic with its material axes not necessarily coincident with the geometric coordinate
axes (Figure 1.). For the Cartesiar reference frame used, the origin is located in the

bottom surface of the plate (x,—x, axes) with x, axis normal to this plane. Also, in

each laver a local coordinate system, x:“, is set up in a similar way with the range

of x' limited to the thickness of k" layer.
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Figure I: Global and Local Coordinate Systems in a Laminated Plate.
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22 FIELD FQUATIONS OF LINEAR ELASTOSTATICS
Differential equations of equilibrium for linear elastostatics are:

o,;¥f,=0 (1)
where o, and f, are components of the symmetric Cauchy stress tensor and the body
force vector respectively. Here, and in the sequel, we use standard indicial notation.
Roman indices take on the range of values 1, 2, 3 and greek indices the values 1, 2.
Summation on repeated indices is implied except where indicated otherwise. The
superscript (k) denotes the k™ layer and is not summed. Parenthesis around a single
index indicate "no sum” on that index. Parentheses around a pair of indices denote
symmetric part of the tensor defined by the pair. Indices following a subscripted
“"comma” denote partial differentiation with respect to the spatial co-ordinate defined by
the subscript.

For small deformations, the strain-displacement relations are:

e, (u,..j+uj".) (2)

=

where e, and 4, are components of the strain tensor and the displacement vector,
respectively.
For isothermal elasticity, the constitutive equations are:
(T'j = Ei/k/el'/ (3)

where, because of the symmetry of e, and o, the components E,,, of the elasticity

172
tensor satisfy the symmetry relation

E.ju = Ejil'l = Eijlk (4)
Further, assuming the existence of an energy function implies E, ,=E, . For a
general anisotropic naterial, the elasticity tensor with components E, ,, has 21

independent elements. If inverse of (3) exists,

8




=C . o : (5)

el‘/ ikt ke

where C, ,, are components of the compliance tensor.

23 SPECIALIZATION TO A LAMINATED PLATE

2.3.1 Kinematics

FFor a laminated plate subject to bending and stretching, in order to reduce the
problem to one in two dimensions, the functional dependence of the displacements upon
the transverse coordinate x, is made explicit. Often, the in-plane displacements are
assumed to vary linearly within each layer and the thickness stretch is assumed to be

negligible. Mathematically, for the k™ layer, this can be expressed as

ul(x,,0) = 700, 0) + 13 60 (xg,0) 6)
uy () = w(xg,0) (7)
where @, w'* are the associated displacements at the bottom surface of the k™ layer;

and ¢ are the rotations of the cross section of the k™ layer. For small deformation,

the kinematic relations for the k™ layer are (2

w _ 1 (u“)

(&)
€ =
1% 2 L

L)
+ud) =y
g4 (0,/)

(8)

Substituting (6) and (7) into (8), the strain-displacement relations for k™ layer become

) _ ) *) (&)

eaﬂ - ecB + X3 Koﬁ 9)
) _ 1 . ) (k)

€= 5(1}5o +w'°) (10)
) _

e, =0 (11)

where the hinematic variables are defined as




_m_ 1, _(A) __(1)
tag = 5 Wy + ) =0, (12)

(k)_l (k) (k)y — &)
K°ﬂ= (¢ ¢ ) ¢(0'ﬂ) (13)

2.3.2 Equilibrium Equations

The three-dimensional equations of motion of the k" layer are
q y

(4) () (1)

+f, =p u (]4)

i

)
g

o

where p''’ is the mass density. Here, superposed dots denote time derivatives of the

order denoted by the number of dots. Regarding o\, f\", u* as functions of x, (14)
is equivalent to
() £ &) k) _n _
f(a,” j‘f —p u )xdx, =0
for n=0, 1, ... co. The integration leads to a countable set of equations involving

functions of x, and x,, As an approximation, the values n=0, 1 are generally used.
Evidently, higher order equilibrium theory would use higher order of n as well. For

the k™ layer, integration of (14) and the first moment of two of the equations (viz.
i=1, 2) over the thickness of the laver, for the displacement assumptions (6) and (7),

gives [Al-Ghothani 1986)

(k) (k) (k- 1) (&) (&) _(&) (&) (k) _
N+ (T T )+F —P'a —R'¢ =0 (15)
Mu) Qu) + (, +t T(A) (k)ﬁi’k) _ I(t)¢i:-) =0 (16)
le + (T(;)— ™)+ Fm (”w b= a7

where

10




i

oY = f o“ax¥ (18)

(0]
t
W) g0y _ N (&) 5 (&)
. (N,g Map) = j(l, x3) 0,4 dx, (19)
0
- t .
() (k) (%) &) k)
(FV,6*) = j(l,x3 ) £ ax (20)
0
u\_ ff(:) o (21)
[§]
Ty
(P, R, Iu)} _ f{l’ x(;>’(x(;))<z)}pmdx(;) (22)
0
T = ¥ =) = 4G =0) (23)
T(f'” = U(,.;)(I(;)-:()) = vil;")(x(;—”=zk_l) (24)

and t, is the thickness of the k™ layer.

2.3.3 Constitutive Equations
For a composite lamina having material symmetry with respect to its middle
surface, coupling of the extensional stresses and the shear strains vanishes and (3)

reduces to [Al-Ghothani 1986)

(k) _ &) (0 () (k)
s = E greers T Eog33€33 (25)
: (A) 0w
= 2E]) (26)
. W _ pte) M D)
3 33y6 ya 5(3333 €33 2n
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Substituting (25) into (19) and using (11), the constitutive equations of bending and

stretching are obtained in terms of plate kinematic variables and force resultants.

Namely,
(k) (k) (k) (k)
Nog| _ |Bosys Bapye| [Exs (28)
M®© ) ) *)
of oBys Dapys| $ys
where
t(z) 2
") (L) ) 1 & (&)
(AAnﬂy?v' Bnﬂy?n ])uﬂyil) = (tl ' T ’ ?) Eﬂﬂyf) (29)

It is well known from the exact elasticity solutions [Pagano 1969,1970a} that the
transverse shear stress distribution is close to parabolic over the thickness of each layer.
In (10), however, the transverse shear strains are constant through the thickness of a
Jayer, which implies the constant shear stresses through (26). Furthermore, if interface
continuity requirement of the transverse shear stress is enforced, the shear stress
distribution becomes constant over the thickness of the entire laminate, which is far
from the real situation. As a result, direct use of (26) for obtaining the plate
constitutive equations yields an error in the evaluation of the plate stiffness. The
usual measure to avoid this error is to multiply the shear stiffness in (26) by a
coefficient KX, but a standard method to determine the value of KX is not available.
Therefore, a procedure to obtain the shear stiffness matrix which takes into account
parabolic distribution of shear stress needs to be developed so as to ensure reliability of
the theory. This issue is addressed in Section III by developing consistent transverse

shear constitutive relations which allow for realistic stress distributions.
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BOUNDARY CONDITIONS

For the k" layer, the boundary conditions associated with the field equations are:

Nf:;np = ﬁ:‘)(xﬂ,t) on S(:)x[0,00)
Mf;np = ﬁl?)(xﬁ,t) on S(:)x[0,00)
fo) = fo)(xp,t) on S(S")xIO,oo)
17(:) = ﬁ'g)(xﬂ,t) on S(;)x[0,00)
¢L“ = $:)(xﬁ,t) on S:”x[(),w)
wt) = W(“(xp,l) on S(:)x[0,00)

(30)

(31)

(32)

(33)

(34)

(35)

where x, are the coordinates along the edge boundary S5 of the spatial region R

occupied by the plate; a circumflex denotes the value of the prescribed quantity on

S$*; and m, are components of the unit outward normal to S*.

The boundary

segments S;", S% are complementary subsets of S*, and so are S®, S®. and S®, s¥.

25

INITIAL CONDITIONS

The initial conditions for the problem are
17(: )(xﬂ, 0) = ‘:3(13)
. (x,, 0) = $ukx,)
wxg, 0) = wlx)
#x,, 0) = @40x,)
¢z, 0) = $¥Nx,)

: (6) — o0
wxg, 0) = W)

13

(36)

(37)

(38)

(39)

(40)

(41)



26 INTERLAMINAR CONTINUITY CONDITIONS
Since it is assumed that all the layers are perfectly bonded, continuity of
displacements and tractions along interlaminar surfaces must be satisfied. The

displacement continuity conditions are:

(1) _ () *)
a =z ' +t,¢ (42)

o

w(bl)= w(A-) (43)

and the traction continuity conditions are:

(), () _ e k1) _
5 (X =1 )=o0, (x;, "=0) (44)

Through these continuity conditions, all the field equations defined for each layer can
be combined to give the governing equations of the laminated plate.

In approximate solution procedures, two distinct situations may arise. In case the
interlaminar traction components and the layerwise shear forces are admitted as field
variables, continuity can be directly enforced. On the other hand, if a displacement
type approach is used, the shearing forces obtained through material contitutive relations
can be grossly in error if the simplistic kinematic assumptions (6) and (7) are used.
An alternative often employed is to evaluate shearing stresses from consideration of

equilibrium, ie., obtaining 0'(:2 through the material constitutive relations but

3] (k)

o) and o} using (14). We discuss this point in Section V where the new theory is

applied to free-edge delamination specimens.
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Section I
CONSISTENT TREATMENT OF TRANSVERSE SHEAR

DEFORMATION

3.1 INTRODUCTION

l.aminate theories based on assumed displacements, in general, do not satisfy the
constitutive relations of transverse shear. Since the effect of transverse shear
deformation is significant in laminated composites, there could be certain loss of
accuracy in the analysis due to this error. In particular, its effect could be significant
in thick laminates and hybrid laminates composed of layers with drastically different
shear rigidities. For this reason, to enhance the reliability of laminate theory,
development of a procedure to incorporate transverse shear effect properly is necessary.

In this section, the development of constitutive equations of transverse shear in a
consistent manner is described. The assumptions and notation of a discrete laminate
theory given in Section II are used. The theoretical basis for development is a
generalization of Reissner's mixed variational principle of linear elastic orthotropic plates
to laminated composites. Reissner's principle was stated on an ad hoc basis. Herein, it is
derived as an extension of the general variational principle for linear elastostatics based
upon the general procedures for coupled linear problems introduced by Sandhu and his
co-workers [1970, 1971, 1975, 1976) A summary of these procedures is given in
Appendix A. Throughout, it is assumed that all the functions are defined on R,
closure of the open connected spatial region of interest R. A rectangular Cartesian
coordinate svstem is used.
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32 COMPLEMENTARY FORM OF FIELD EQUATIONS OF LINEAR
ELASTOSTATICS

The field equations (1), (2) and (5) of elasticity can be written as follows.

Ouppt Tozs ¥ £, =0 (45) ,
Orat Ty ¥ ;=0 (46)
€= % (u, , + u, ) (47)
e, = —;— (u, 5 +uy ) (48)
€y, = Uy, (49)
€= Cuﬁyboyb + 2C03,3",3 +C, 533955 (50)
€3 = Co3ye Ty 205,305 + €333 93, (51)
€33 = Cy3y5T,5 ¥ 2C;53,30 3 + Cyy3,05 (52)

Here we have separated the equations involving spatial co-ordinate x, from the others.

33 SELF-ADJOINT FORM OF FIELD EQUATIONS

\
!
Coupled field equations of linear elastostatics (45M52) can be written in }

self-adjint matrix form as

9
0 o o Es, L
u
o o & & o |l [
03 oY ¥ -f,
—_ o = (53\ -
0 563' Ci33 2Ch5,5 Cospe || 23 0 !
o 0
_ _3 v
93 say -6_‘; 2Co333 460373 2C0376 be 0
—-L, 0 Cps 2Capys Copys
in which §_, is the identity tensor, -éa—e-?_- —é%e- and
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_ 1 9
L = E(SM@M‘”;’%)

1
L2 = 5(80‘7?% + 806 -a%—)

The operators on the diagonal of the matrix in (53) are symmetric tensors. If we

define

<f,g>REffng (54)
R

the off-diagonal operators constitute adjoint pairs ie.,

U, O 3>, = <O u >+ <u,0  M>, (55)
SUYO 3>, = — <O Uy >+ <uyl o M >0, (56)
ULO o3> = = <O U, Do+ <UL N> (57)
UPO 3 > == <O Uy >+ <uy0 .M >, (58)

(55) through (58) are sufficient to ensure self-adjointness of the matrix of operators in
(53) in the sense of (A.25). Consistent boundary conditions associated with the field

equations (53) are:

u,m, = ﬁonﬁ and u.m, = um, on S, (59)
um, = 331)3 and uym, = 133'% on §, (60)
(o, m; +o,m)= —i_ on S, (61)
—(ogm,to m)= —?3 on S, (62)

where a superposed circumflex denotes the prescribed value of the quantity over the

boundary surface; ¢, and 7, are the components of the prescribed traction vector and of
outward wunit vector normal to @R, respectively. In addition, S, and S, are

complementary subsets of §R. We note that in a physical problem, each component of

17




displacement or traction may be specified over different parts of the boundary.
However, in the interest of conciseness, we denote the part of the boundary on which
displacement is specified as §, and the portion on which traction is specified as §,.
This representation is symbolic and in no way indicative of limitations on the theory

in this respect.

34 A GENERAL VARIATIONAL PRINCIPLE

Using the definition (A.26), the governing function for the field equations (53)
and associated consistent boundary conditions (59)-(62) can be written as
1 = <u 0 33>, + <u 0o,

>t <u,0o >+ <uuo 4 >, + 2<u°,fo>k

' 8.8 3337 R 3.
+2<uy,f,>p,— <o u >, — <0 Mu  tu, )>, - <O g0 U, >
+ <033 C3333933 1 2C53,30 03 Y Ca306% s> 2
+ <205, Cl333033 1 205,50 3 ¥ Coz 6916 > 2
+ <0'aﬂ , Ca;s33°'33 + ZCMMO'73 +CaBy5Uy6>R
+ <0 g um, —2&on3>s, + <0y, um, —2{23'n3>sl
+<o_,, (W, —2&0)1;3>Sl + <o, (u3—2§3)nu>sl
~<u,, (o m+0o m)=2, >, = <Uys Oy = 2f3>sz (63)

Let (}=1{u,,q,, o,,, T, Ty} be an admissible state corresponding to the set of field
variables {v}={u_, u,, 0 ,, 0, ;, 03;}. Assuming that {V}+A{P}, for X a scalar, is an
admissible state for all A, ie. Q is defined at every point in a neighborhood of v,

Gateaux differential of 1, along ¥ is

A, Q=-2<T ., (u, +u, ) —2C,, 0, —4C ;0 ~ 2C 15039 6>

-2<T _,u ,~-C
off

of 338933 — 2C

y3aﬁoy3 - Coﬁy6076>k
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- 2C o.—-C o .>

-<T U —C o333 o3 af33 af” R

33 » Y33 3333933

+2<u_,0 + T g + f°>R + 2<173, Ti33 + T s + f3>R

al,3

+2<7_;, (u, u)'r) > +2<a'33, s m> s
+2<0_,, (“3‘“3)'7a>s, +2<T,,, (—un>g
—-2<@_, (oaﬁnﬁ + 0’03"{]3)—ta>82 - 2<i,, (o,,m, +"03"'a)"‘3>sz (64)

Because of the self-adjointness of the operator matrix (53), (51){(54), and linearity and
nondegenarcy of the bilinear mapping, the Gateaux differential (64) vanishes if and

only if all the field equations and boundary conditions are satisfied.

35 EXTENDED VARIATIONAL PRINCIPLES AND A SPECIALIZATION
Equations (55) through (58) relate pairs of off-diagonal operators in the operator
matrix of (53) and may be used to eliminate either of elements in each pair from the

governing function Q,. Elimination of an operator A, implies that the state variable u,
need not be in the domain M, of A,. This may result in relaxing the requirement of
differentiability of u, thereby extending the space of admissible states.

Through this procedure, numerous extended forms of the function 2, are possible.
Using (55)(58) simultaneously to eliminate O,;,, O5,, 0,55 and Oy, from Q,, the

domain of the functional is extended to include nondifferentiable stress state. Explicitly,
this functional is

Q.= —2<0'oB,u

2 —-2<0

(“.,3+“3,a)>x_2<°' >

wf” R a3’ 33+ %337

+2<u,f >, + 2 <uy,fi>,

+ <04y Cy3330 334 2C55,30 31 Ci306T 06> 2
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C ...0..+2C o .+C

+ <20 2333733 a3y3753 T La3y6% e

a3’ >R

+ <a'ap , Caﬁ330'33 + ZCMM(J'73 + Caﬁy6°y5>k

+2<0,,, ("o.""a)np>sl +2<0,,. (143—143)-n3>sl

+2<0

a3’

(uo—um)'r)3>sl +2<0,,. (“3_"3)"'o>sl

+2<u°,t°>82+2<u3,13>sz (65)

This is equivalent to the Hellinger-Reissner mixed variational principle. For this
functional, certain specializations are possible by constraining the admissible state to

satisfy some of the field equations. Assuming that (53), is identically satisfied, i.e.. the
constitutive equation is exactly satisfied for the "inplane” deformations and stresses, (2,

reduces to

Q.=—<0 ,,u
off o,

3 >p -2<0

3 (ua_3 + u3'G)>R 2<0,,, U5,

8

+2 <u°,fa>R + 2<u3,f3>R

+ <035 Cy333933 1 2C53,30 3+ Ci300% 06> 2

C ...0o..4+2C o.+C . .,0 . >

+ <20 0333 33 a3y3 ™ y3 o3y y§8© R

a3’

+2<0

of? (uo --—uu)‘nﬁ>sl +2<0,,. (113—113)‘113>Sl

+2<0_,, (un-uo)v)3>sl +2<0_,, (“3'“3)no>s,

+2<uo,to>52+2<u3,t3>sz (66)

The only assumption to obtain ), is that the kinematic and constitutive relations of

1-2 plane are satisfied. In connection with the use of this functional in deriving a
plate theory this point is noteworthy because most theories based on the assumed

displacement field satisfy this requirement. Reissner [1984] presented a mixed
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variational principle equivalent to Q, which was derived using a Lagrange multiplier
technique and partial Legendre transformation. For some special types of elastic
materials with certain symmetry of material properties, the procedure for obtaining the
explicit form of the principle was discussed. However, an explicit expression of the
principle for a general anisoctropic material was not given. The derivation above shows
Reissner’'s ad hoc formulation to be a special case of the general variational principle of
linear elastostatics. Also, Q, in (66) would be more convenient than Reissner's mixed
variational principle for the general anisotropic case.

If we assume further that the displacement boundary conditions on §; are
identically satisfied, €, reduces to

Q ='"<°'a,s’“

P >p—2<0,, w +uy )>, ~2<0

>

8 13- 43372

+2<u,f, >, +2<u,f,>,

+<0,,C o,..+2C o .+C

33 V3333933 3303%03 T 0330605~ 2

+ <20 C o,..+2C oc._+C

2333933 03y3%y3 Y Ca3y6%06” 2

al’

+2<u°,t°>sz+2<u3,t3>sz 67

36 A VARIATIONAL PRINCIPLE FOR A LAMINATED PLATE

The functional (67) written explicitly is:

_ 1
Q,= f{ 2 Toplap o, tuy )+ o ug,
R

— 1 ~ A
—0 48, — —5033 g, u/f, } dR-[ ut ds (68)
2
in which
éo] = Culy&ay& + 2Cu3y3 G)J + C0333 033 (69)
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8,35 Cy3.50,5 +2C5;5,,0 3+ Cyyy,0,, (70

Recalling that in the derivation of the above functional the in-plane kinematic and

constitutive relation (53); was assumed to be identically satisfied, with some algebra,

vanishing of the Gateaux differential of Q(u,0.,) along the path (v,,7.,), gives

O=A(‘r) f{av +7 (u tu, —28 )+ 7,,(u,—%,)
—vlfl}dR—[\Ji?,ds (71)
2
Using (55)-(58) yields
0=24, . ,0 f{—(o w7 (u tu, —2 )+ 1, (-8 ) dR
—‘[v,.(t‘.—?i)ds (72)

t2
Using the notation defined in Figure 1, the variational equation for a laminate

composed of N layers is

(% ¢ (&) (k) (k) (&) U) ()
0= f{z [ 45 W0+ 76l +ul) —2200) + 73] (uy  ~ & Ddxy" } A

[lZf u)( ) ‘“’)dk(“ ds (73)
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37 CONSTITUTIVE EQUATIONS OF TRANSVERSE SHEAR

3.7.1 Assumed Transverse Shear Stresses

In order to use the mixed variational principle, developed in the previous
subsection, to set up constitutive equations for the force resultants, following Reisner
[1984] we propose a state of stresses in equilibrium. The stresses are stated in terms of

the force resultants as follows. Assuming the components affa) to be linear in x,, ie.

y ) ) G
oub - o’(\ﬁ+('nﬂ13 (74)

where 0, and C; are independent of x|’ coordinate, and using the definitions of

force resultants it is easy to show that
£ £
o) = 22-32)N + Lo npM¥ (75)
°f ¢ t oB T 2t of
k k t &
The equilibrium equations of elasticity are, separating the in-plane equilibrium equations

from the transverse ones, and ignoring inertia terms:

78 ) 0 _

ooﬁrﬂ + 003.3 + 'f(o =0 (76)
) ) 0 _

Oya T 0335 t f(a =0 amn

Integrating (76) with respect to xi,
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(L)
(A) (L D f(o_(u +JJ:)) dx(;) (18)

Substituting (75) into (78),

L0 0 0 (lc)
ol = T _ 4 2-)- 3(—)]fo;'ﬂ— t—[(—-)’—( SoMG, - FY (9)
& b
Substituting (15) and (16) in (79) and again ignoring inertia terms,
x(x) (A)
oy =T Y 4 ) S O+ g -7 )
I3 l
L L
[(—)‘ (2] 10V -6¥ -1, 1) - FY (80)
A L ‘
In case of no body force, ie. F'=G* =0, (80) reduces to
(l) ((“Q(” + g(l) g 1) + C(I:)T(l) (81)
where
)
“ _ 6 (4 X5 e
[ ._2 t 3
t ‘
0 L)
{=3(2) —a(2) +1
4 tl
L w
x
U T I Y0 1
l ti

For a monoclinic material, it is only necessary to describe o‘:,’ in terms of O 1o

evaluate e,, in (69). Using the engineering notation for elastic constants . and S,
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(&) L) £) ) (k) &f4) (&)

2,, 1 ss —Cas| [T23] _ P44 ©as| [T 23
)| PO g g0 | W] T s s I
13 45 *a4 13 as 9ss] Y13

where

(&) _ k) k) N2
D=0, 55—(d45)

3.7.2 Constitutive Equations for Shear Resultants
Neglecting €, and noting that uy’;=0 for this formulation, (73) yields the Fuler

equations for transverse shear

N

Ty
Osz{f Ty Gy iy, =280 dxy’ | dA (83)
A ()

k-1

Using (6), (7), (81) and (82), and denoting the "variation” in any quantity by the

prefixed symbol 8, (83) can be rewritten as

N S(‘.)
0= [ Z1snY |wncal e - NNt ) ;1.:”
A k- "

73)
N ) , , LIS
+ 8T LMD +w) = INNED, P T ) aa (84)
' Sss
w here
[H(o"]l = [Q:). Ti: ”. T:)] (85)
Y =1 28 1 w0
®) () )
1 M2 My
N = i 8 8 o
0 W

My3 My My,
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Tk
= f ¢ dx
(0]
r
"f;) _ j‘ gik){(jk) Y
(4]

Explicit evaluation of integrals in (88) and (89) gives

(«)
J

(k)

L 3

j= 123

ij= 123

()
L =

1 1,

w _
22

)

(88)

(89)

2
15

4

y _t
i 3() 4

Vanishing of the integral in (84), for arbitrary values of 8Q"’ and 8§7*"' pives the

following constitutive equations:

() £) &) (k) k-1) £)
¢| +w.n = S(ss s45 6 1 ___1_ T(l _ _1_T(| k=1 2 N (90)
(*) 0 dlIse |4 10 -1 10 |4) T e
®, +w, s(as S(«u L pe2 T, T(z
(&) &) [ A k+1) fk+1)) [ A+t
o _ 1 Sss s(as Q, 1 S(ss 5(45 1
0 10 |®) O |4 10 |oter 1) lier )] | k41
S45 S44 2 S(45 s(44 J 2
() o6) fpl-1) k1) Gk D} [kl
_ & Sss Sas T(n Y S(ss Sas | [Ty
30 |ot&) o |- 30 |h+1) Qe D] | kst
S45 S44 TZ sd‘n de T'(?
(£} olk) (41} Glh+1) 1)
2 Sss Sas Sss Sas L
+ — |t k=1, 2, ... N-1 (91)
15 ‘S(l) S(A) Al k1) Qs 1) v
45 44 45 44 2

For a laminate of N layers, (90) and (91) constitute 2(2N —1) equations. These

equations may be solved for T and Q¥ in terms of ¢*’+w_. To do this, it is

convenient to rewrite these in matrix form as
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where

Symm.

0

27

(92)

(93)

(94)




)
N, —-=M, 0
!, Iy
T30 2 2 T30
!y
0 ——M3 N3
K, =
n-2
30 Mn—z
tn-?
Symm. an’Z Nn 5
O tn IM
30
(1) (2) (2) (n) (n
=", 0,02, 07, .. ... OV, oM
XbT" (l)’ (1) T(Z), (2), ....... (n l) (n l)]
T _n.() () (2 (2 (n-1) _(n-1) _(n)
R, =ly, vy v oyyee oo e BT MR o
T _ 1 (0) (0) (n) (n
7, = 151878, .0.0,....0,0,g" g
T 1 (0) (0) (n) (n
71»:36[‘31'182'0'0"' OOtngl,tg2>]
and
(£) (k)
M = 55 545
L O W)
45 44
Nk = Ts—(t M +t Mk+l) k=1, 2, . ... 4 nl

) £ o) (k)
81| _ S‘ss Ses T(n

= k=1 or n
(%) k) o) &)
L$) s(As Saa T(z
D=+ w k= 1,2 .....n

Solving (92) to eliminate X,
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0
0
0
(95)
0
n-1
30 M
Nn 1
(96)
97)
(98)
(99)
(100)
(101)
(102)
(103)
(104)




Kx, =R (105)
where

K=K, ~ Kabx;t: K:b

R=R —K_ K, 7,+7,
Inverting (105),

x =K 'R = AR (106)

a

Equations (105) and (106) represent the relations between the shear forces and the
shear strains. llere K is symmetric because of symmetry of K,,’,, and, therefore, A is
also symmetric. In (104) and (105), R depends upon the shear stresses specified on the
laminate surfaces so that the constitutive equations of transverse shear include
dependence upon these quantities.

In general, K and A are full matrices. “hus (105) and (106) may be rewritten,

in the absence of surface tractions, as

n
9 + wf:)) - Zf‘:‘;) ,;, (107)
J=1
and
0 = T A (8, + W) k=1,2,. ... n (108)
=1

where A and u!y are coefficients defined by the material properties, thickness of

Jayers and stacking sequence of a laminate. From these relations, it is seen that the
shear force in a layer is a linear combination of the transverse shear strains of all
other Jayers and vice versa. This result is due to continuity of shear stresses in the

interfaces and shows that conventional approaches to handle transverse shear are not
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appropriate.  Also, symmetry of matrices K and A  implies )\:"B’) = )\ffg) and ull)' = uw?,

which means that the contribution of unit shear strain in the j” layer to the shear
force of the k” layer is the same as the shear force in the j” layer caused by the

shear strain in the k” layer.

3.7.3 Specializations to the Mindlin-Type Laminate Theory
The procedure described above can be used to obtain the shear constitutive
equations of Mindlin-type plate theory. For a homogeneous isotropic plate, (90) may be

written as

0., ©
0 Q44

-+ -
<j>,+w'l 71+T1

¢2+w'2

1

Q
[' i (109)
T, +T,

&

=.§.h
6

where T., T, (a=1,2) denote the shearing stresses specified on the top and the bottom
surface respectively. If the plate surfaces are traction-free, the relation (109) reduces to
Reissner's [1947] shear constitutive equations with the shear correction factor k=5/6.

For Mindlin-type laminate theory [Yang 1966, Whitney 1970] rotation of the plate
cross-section is constant and the plate shear force resultants are the algebraic sum of

shear forces of all layers, ie,

()

¢ =¢" forall k and Q =¥ QY (110)
L=1

In this case, the shear constitutive equations (108) reduce to

Q, =TT A (@ +wy) (111)

k=1 =1
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3.7.4 Traction-Free Edges

For the case of free-edge delumination specimens, the transverse shear stress o, at
the free-edge is known to be zero. This implies that T and (2") at the free edge are
zero. Consequently, the known quantities 7% cannot be condensed out of (92).
Explicitly specifying 7% =0 and Q" =0, (92) may be rewritten in the form

K ' 0 | K 0 X“)(, R

(Dt (1)a T(a

(aa

- =1 - -

0 111 0 10Xy, 0 0
- =1 — 1-l=|=l_1|+|-= (112)

~
o
~
)
ES
5
=
5

0 101 0 | IJXa, Y 0
where
X =100.07. . . 0™ (113)
X =10, 07, . .0 (114)
me [T<ln' T(f), ....... ”T(ln—n] (115)
x(Tz)b = [T(;), T(ZZ), ........ , T(z"—')] (116)
' 1 lg(O)- 0.0.....0,0,g" (117)
Tn = 31081 0.0, .. ..0,0, g7 (118)
R(T“a _ [y“), (12)' ....... , ‘y(ln—l), (ln)] (119)

and K,,., K., and K,,, are obtained by taking the rows and columns corresponding

to T and O from  , K, and K,, respectively.
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Eliminating X, from (112),

KX, = Ry (120)
where
- _ -1 T
K(1) - K(l)aa K(l)abK(l)bbK(l)ab
— _ -1
R(l) - R(l)a K(l)abK l)bbT(l)b+T(l)a

In the absence of surface stresses, constitutive relations of the form (107), (108) at the

traction free edge are

n
—& )

(d)(ln + WT:)) = Y Q(l_n (121)
-1
and
o' = TR+ WD 12 22

Jj=1

where X\ and u%” are the constitutive coeeficients at the free-edge.

38 AN EXAMPLE OF COUPLED SHEAR CONSTITUTIVE RELATIONS
For a graphite-epoxy laminate, made up of 12 layers, each 0.005 inch thick, let

the material properties referred to the material axes be

= 6 - - (S .

E, =190x10", E, =E, =15x10" (psi)
- = 6 - 6 .

G,=G,, =08x10°, G, =0528x10° (psi) (123)

v,.=v .=03, v23=0.42

To study the role of coupling in constitutive relations for shear forces, we consider the

stackings [0,/90,], and [+45,/-45,].
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Table 1 shows the transverse shear stiffness coefficients for the [03/903] laminate
and Table 2 contains those for the [+45,/-45,] laminate. Only the coefficients
corresponding to the transverse shear stress resultants Q‘,"’ have been listed, ie, the
A%%. For the first laminate, O and Q% are uncoupled; ie, A%’ =\%"=0. For the
second laminate the coefficients for O and Q(k) are identical due to the fibre
orientation of 45% ie, A\’ =\%". The diagonal terms, ALY, represent the shearing force
in each layer due to unit shear deformation of the same layer. The off-diagonal terms
represent the coupling between layers. As 1is evident, for the cases studied the
interlayer coupling is not “strong” ie., the shearing force in any laver is not
significantly influenced by the deformation of the others. Also, the effect is localized

i.e, the contribution of deformation of any layer to the shearing force in another

decreases sharply with the distance between the layers. Table 3 and Table 4 show the
inverse of the stiffness coefficients ie, the compliance coefficients u*”.

It should be noted that in the case where G,;=G, there will be no coupling
between Q1 and O by virtue of % in (82) being zero. Moreover, the inter-layer

coupling will be independent of the fibre orientation as J% and Qf will no longer be

affected by the orientation of the fibres.

33




Table 1

Transverse Shear Stiffnesses A, for [0,790;] Laminate

Layer Stiffness Coefficients

T N Y ST
1 3447698 133.860 22184  3.137 0538  0.002
2 133.869 3603.755  155.289  21.958  3.767 0646
3 22184  155.280 3576.224  128.611  22.066  3.786
P 3137 21958 128611 2404 119  110.513  18.961
s 0838 3767 22066 110513 2382.900  106.872
6 0092 0646  3.786  18.961  106.872 2382.300
R 0016 0111 0649 3253  18.337  106.770
s 0003 0019  0.411 056  3.149  18.337
e .+ 0003 0018 0098 0869 3253
0+« o4 o018 o111 0649
O . 0003 o018 0111
e . + 0003 0015

+ denotes coefficients smaller than 10’ in magnitude.

A=Ay =0
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Table 3

Transverse Shear Compliances #k\J 1 for {0,790, ], Laminate

B T T T T T i T e A S e

Layer Compliance Coefficients (Xx107)

S AW A by o
1 0.294 -0.0107 -0.0013 -0.0002 *  «
"2 -0.0107 o0.278¢ -0.0119 -0.0018  -0.0002
3 -0.0013 -0.0118  0.2807 -0.0148  -0.0018  -0.0002
"4 o.0002 -0.0018 -0.0148  0.4176  -0.0101  -0.002i
s . -0.0002 -0.0028 -0.0181  0.4214  -0.0186
e LT . -0.0002 -0.0024 -0.0186 04214
e O U 00008 -0.0023  -0.0186
e T T o000 -0.002
e T T T T o008
o T e
T L . T .
e T . L

U U S U e I A

- denotes coefficients smaller than 10° in magnitude.
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3.9 DISCUSSION

For determining the constitutive equations for transverse shear in discrete laminated
plate theory, a mixed variational principle of linear elastostatics has been derived. The
basis for derivation was the method proposed by Sandhu [1970,1971,1975] for the
variational formulation of linear coupled problems with multiple field variables. The
variational principle is equivalent to Reissner's mixed variational principle [1984], but
more convenient for application to a material with general anisotropy. Using this mixed
variational principle, a procedure to obtain the constitutive relations for transverse shear
has been developed for a discrete laminate theory which is based on the assumptions of
linear in-plane displacements and parabolic transverse shear stresses over the thickness
of each layer. The procedure allows for the interlaminar continuities of stresses and
displacements. Resulting constitutive equations show that the shear force resultants of a
layer are coupled with the shear strains of the other layers as well as of different
directions (x, and x,). As indicated by earlier investigators, the shear stiffness of
x,—x, and x,—x, sections, in general, are different and vary with stacking sequence of
a laminate. Also, the consistent shear constitutive relations for the Mindlin-type
laminate theory have been derived as a special case. Actual computation of the shear
stiffness requires inversion of a square matrix with constant elements. This can be
carried out with a high-speed digital computer without much difficulty. The
constitutive relation for shear at the freee-edge or surfaces on which shearing stresses
are specified is different from the relation when these stresses are not specified. The
example of a 12-layer graphite-epoxy laminate was considered using [0,/90,] and

[+45,/—45,) stackings and the extent of coupling studied.
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Section 1V
VARIATIONAL FORMULATION OF DISCRETE LAMINATE

THEORY

4.1 INTRODUCTION

Procedures for obtaining approximate numerical solutions to boundary value
problems are often based on variational formulations. For systematic development of
variational principles governing linear and certain nonlinear problems, general procedures
have been developed. Mikhlin [1965] set up the problem in an inner product space
and stated the basic variational theorem for a self-adjoint boundary value problem
with homogeneous boundary conditions. For deriving variational principles governing
initial value problems, Gurtin [1963,1964] used convolution product as the nondegenerate
bilinear mapping and explicitly included nonhomogeneous initial and boundary
conditions in the formulation. Sandhu [1970,1971] extended these ideas to the general
linear coupled problem. In the context of application of the finite element method,
Prager [1968) included in the variational formulation jump discontinuities which may
exist across interelement boundaries. By introducing the concept of boundary operators
consistent with the field operators, Sandhu [1975] examined the general case of linear
operators with nonhomogeneous boundary conditions and internal jump discontinuities.

For mechanics of the fiber-reinforced composite laminates, little work has been
done on variational formulation of the problem. Al-Ghothani [1986) following Sandhu

[1970,1971,1975.1976), presented a variational formulation of dynamics of laminated




composite plate. General variational principle was derived based on the complementary
form of an extension of Seide's [1980] discrete laminate plate theory to include inertial
force, allowing for nonhomogeneous boundary conditions and internal jump
discontinuities. Various extended and specialized forms of the general variational
principles were discussed. However, he failed to derive direct variational formulation
which gives other types of variational principles. Furthermore, the laminate theory used
did not treat the effect of transverse shear deformation adequately. This effect is
important in studying local deformation and possibly in modelling higher vibration
modes.

In this section, a variational formulation of the problem of vibration of a
laminated composite plate allowing for nonhomogeneous boundary conditions as well as
internal discontinuities is developed. The theory used is the one described in Section II
along with the constitutive equations of the transverse shear derived in Section IIL
Even though the principal concern of the research program is the behavior of free-edge
delamination specimens under static loading, inertia effects and arbitrary geometric
configuration and loading are included in the variational formulation because of the
ease with which such generality could be introduced. Both the direct and the
complementary forms of the field equations are considered. Extended variational
principles based on self-adjointness of the operator matrix are introduced along with
several specializations. One of their specializations formed the basis of the finite

element approximation described in Section V.
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42 INTEGRAL FORM OF FIELD EQUATIONS

4.2.1 General Comments

To set up the function governing the motion of laminated plates, it is necessary to
write the field equations in a way that the operator matrix is self-adjoint in a certain
space. The self-adjointness of operators is not an absolute notion, but rather, it is
relative to the choice of an appropriate bilinear mapping. Thus, there are two possible
wavs to set up variational principles governing the problem; one is to find a bilinear
mapping that makes the field operators self-adjoint, and the other is to transform the
field equations so that they can be self-adjoint with respect to a familiar form of
bilinear mapping. For wvarious intial-boundary value problem, Gurtin's [1963,1964]
procedure, which belongs to the latter approach, has been successfully applied [Sandhu
1971,1987], and we follow it for the present problem although other forms can be
used. Transformation of the differential form of the field equations to the equivalent
integral form is done by applying Laplace Transform and taking inverse after
appropriate rearrangement. The procedure removes the time derivatives from the
equilibrium equations and includes initial conditions explicitly. For the field equations
given in Section Il along with the constitutive equations of transverse shear derived in
Section III, integral form of the field equations is presented below. Throughout, an

asterisk (*) denotes the convolution integral, i.e.
1
urv = fu('r)v(t—‘r)d‘r (124)
)

We note that the convolution satisfies distributive, associative and commutative laws.
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4.2.2 Kinematics

Equations (9) and (10) upon taking convolution with the time variable become:

t* i"‘; = t*‘g‘;+x(;)t*xifg (125)
" Lk; - t*(¢(k) f:)) (126)

where, by (12) and (13),

w0 10 )
e =i @ ,+a;) (127
el = _z*(¢‘0‘; &) (128)

4.2.3 Equilibrium Equations
Equations (15) through (17) upon convolution with ¢ and appropriate integration to

eliminate derivatives with respect to time give;

NS o @P T8 Lo - PP - ROP + xP =0 (129)

MO -0+ @, T + G ) — R — 1P¢% + ¥¥ =0 (130)

p00 4 e @ -8+ PP - PO+ 2 =0 (131)
where

XV = PG 107l + RO+ (132)

Yf:) = “)(—“)"'I*L_l(“) + 1(“(¢“)+I*¢“)) (133)

2% = PYOWY 4wl (134)

The initial conditions (36) through (41) appear explicitly in the equilibrium equations

above.
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4.2.4 Constitutive Equations

Equation (28) upon convolution with t yields;

() k) (k) (&)
* Noﬁ * afyb BoByb ey&
¢ - (135)
M(A) B(k) (k) )
of aBys Doyt |48
and (108) upon convolution with ¢, noting (10) gives,
vl = §ONDE (136)
71
‘The inverse relations are
() -0 ) (1)
" €.8 N Y% Bugys| |Vye (137)
(4) Bu-) —&) Mu)
Kap oBys Dopys 124
and
( (&) - &) AD
&) N (S)PRY;
@, +w I=0 3 pgQf (138)
=1

4.2.5 Boundary Conditions
As with the field equations, the boundary conditions (30) through (35) upon

convolution with t give

t* N:;nﬁ = t* Nu on S(l“ (139)
* M({:;nﬁ = t* ﬁlo on S(;) (140)
gl = QY on 8¢ (141)
et = et on 5% (142)
ol = 23y on S, (143)
xS k) () ]

trw =% on S, (144)
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4.2.6 Interlaminar Continuity f Displacements

Equations (42) and (43) upon convolution with ¢ give

(k1) _ k) (k)
g = e, g (145)

rrw® = Y (146)

43 DIRECT VARIATIONAL FORMULATION

4.3.1 Self-Adjoint Form of the Field Equations
The field equations of fiber-reinforced composite laminated plate expressed in

integral form, (125)(136) and (145)(146) can be written in the self-adjoint matrix

form as
A Bn Dn.z 0 Dl.3 0 - Dl.n—l Y Dl.n U' —r1+50
oc oo o0--- 0 o0 o0 || 0
A,3,D,0----D,_, 0 D, ||V —T,
oc o---- 0 o0 o || 0
Ay B,--°D,,, 0 D IV IR
0 0 o0 o [[E]|=| O (147)
An \ Bn»l Dn—l.n U,,f. T
o c |l o
A, ||u ~-r —Z

or, symbolically,
x|y} = {2}
Here, only the operators in the upper triangular region have been entered. The below

diagonal operators are adjoints of the above diagonal operators, i.e., the operator A, is

adjpint of A, in the sense of the bilinear mapping used to set up the variational
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formulation.

To satisfy the self-adjointness condition (A-25) in Appendix A, it is

sufficient that the elements X, of the matrix X be adjoints of elements X, for i=j

and the diagonal elements be self-adjoint. Explicitly, the symbolic operators applying

in (147) are:

=N

D =/0000000

T—
U =

-P®g o T, -R%% 0
ay 1 oy
(k) (k)

0 AL 0 t*Bggw O
-* r2 t* 0 0 0
R 0 o 1'% 0

ay ay

0 B . 0 0 DL"B’Y s

0 0 0 T, *

0 0 0 0 0

0 0 0 0 0

0 0 0 t* 0

0011, 00000
000 0 0000

00000000
000000-*00

0000000
0000000
00000090
0000000

0000000
0000000 -
0000000

0 0
0 0
0 0
0 0
0 0
0000000 O O
0 0
*AY 0
yor
0 0

() L) W) W) )

0y )
@, 8 o Nop @, K 0 M

45

< o O [=

o

0 0
0
0 0
0 -t*
0 0
0 0
0 x

* \kK >

ya

t* 0

(148)

(149)

(150)

(151)

(152)




g =1V, 1] (153)
v, =[eF+x0,0,0,06 +¥¥,0,0,0F+2%, 0, 0] (154)
gy =[017,0,0,0,0,0,7%, 0, 0] (155) :
£l =[o1,0,0,0¢ 7, 0,0, 277, 0, 0] (156) X
r, = %( 8“"5% + Bayg%) (157)

=Js 8 +5 9 (158)

r, - -2

2 2 o) 68 ab 67
Here, ’I'fm and 7" are specified shear stress components on the top and bottom surface
of the plate and 8, is Kronecker's delta. Operator matrix in (147) is self-adjoint in

the sense of (A-25) if the bilinear mapping is defined as

<u,v> =fu*vdv (159)
3

which is linear and nondegenerate. Nondegeneracy of this bilinear mapping was shown
by Gurtin [1963,1964].

The boundary conditions consistent with the operator equations (147) are

*NUm = N on S (160)
t M:‘:nﬁ =M on S(;)(x(:)) (161)
t*Q(:)na = r* Qf: )nu on S(; )(xf: ) (162)
t*ﬁff)nﬂ =r* ﬁg )nﬁ on S(:)(xasup(k)) (163) .
t*¢ff)na = t*&f:)'nﬁ on S(:)(xr)) (164) )
t w(“no =t* w“"no on S(:)(x(:)) (165)

and the internal jump discontinuity conditions are
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r(NOn) = e (g)), N E! (166)
(MUY = *(gy)), on S (167)
(k) - k) (&
Q) ‘*(35:)) m, on S(Si(xa)) (168)
t*(i(:)nﬁ) = X (g“‘)) Mg on S(;i)(xff)) (169
(¢ = (g, on SV (170)
x(wn ) = (g, on SV (71
The following relations are satisfied by off-diagonal operators.
<L7( o N(x) o - <t*‘“) N(L)> @
(k) (&) (k) _(L)
— <@ ',t*N agMg> o + <N_ a,ng> s
(k) &)y (k) (k)
- <z, , t*(N ) >5§k) + <N . t*@ np) >s‘£, (172)
(&) (&) (k) &)
<O M o> = <P, M>
(k) (k) (k) (k)
<¢ L, *M N> o + <M, t*gba 'np>s?)
- <¢) (Mim)> ot <M¥), t*(¢(:)'r)5)'>s(“ (173)
4
< t*Qu) > s =-< wf(i)’ Q:)>p(k)
—<w I*Q(A)n >g“‘)+ <Q(A) t*“’u)"h.)sm
L]
=< @Y > 4+ <0l )y > (174)
S (]
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4.3.2 A General Variational Principle

Using (A-29), the governing function for the operator equations (147) is defined as

n n-1 n
_ T T o= T o
=y <ULAUDS> + ), <ULBE> o+ Y <U,.Cz_ >
k=1 k=1 t=2
n n T n
T
+3 ¥ <U,.D,U > - 2, <VU,.D,U,>
k=1 j=1 i=1
n-1 n- 1
=T ol =T T
+Z <= BlUl>R(k) + Z <£,CU,, >
-] k-1
n
r T o= T -
+2), <V 1, >, —2< U, 5 > w*2<U, 5>,
+ Boundary Terms + Internal Jump Terms (175)

Substituting (148){171) into (175), the explicit form of the governing function is
obtained.

n

0=y (<, PP+ N —rRVeY >

o R(k)
k=1
i A BN >
+ <N(“ ) +t*§i‘; > o
+ <¢u) _Ru)_u) I(”¢(”+ *M(“ t*Qm> i
+< (‘;,_I*Bu)y{;(:é) I*D(o‘{;yw(;ﬁ) ‘*M“)>Rw
+ <M(“ —t*¢(” +‘*Kif; > 0
b < P(A)w(k)+t*le> »
+<2¢), 2 ae 40 Q> A0
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{(£) (1) (1)
t<g) gl —rwl o> )
g, 7 ®) w, 0y l)
+Z{ <L BTS> g+ <G BT US> gyt WL TS )]
_.(lz) (Iz 1) (S 1)
+ Z{ <a,’,-t* >t ‘*T( o)
n n )
“ )] (j) (%) it (A)
+X Y <%, 2w\ e > Z <Ze,,, -AU*N e >
k=1 -1
nl
(L) (&) (k) (&) (4)
+ 4 <T A g > o ¥ <TI0 owe> )
" ) )
k —(k+1 k (k+1)
T ATl ea 0> g+ <10 WS )
k=1
g, O 4 x® W)y =) L L) ), )
+2Z{ <L PF X > o+ <¢ BGUHY > 4 <w® e FP+ 20> o]
@ o7 (0 0)
—2<a), 010> = 2<w, 010> )

—(n) n) (n) (n) (n) n)
+2<a@”, 78 > 0t 2<80 B TD> 2w, B>

+Z{ <ﬁ( t*(N(” 2NZ")> + <¢u) (MO — M(“)>

og [ .u)
+< t*(Q(“ Q“))-q >5w + <N(“ t*(ﬁg)—2ﬁr))nﬁ>sm
2
+<ME, @0 - 208, > at <@, W =20 > w
4 6
(k) &) (k (k) (k) (&)
+Z{ <al, (N, -2 ’))>s(f)+ <y’ (MY =20 >
+<w? (@ Y = 2! )> <NE L (@ = 2Agh)), 0>

7:
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+ <M(“ () —2Ag%) T’B)>§m + <O, (W) = 2 ) >

.(l.)

(176)

This function is defined over the set

(k - _(l) (k) (k) (&) (k) _(k) (k) (k) &) (k)
v =130, 60wl NG M 08k e TR 1Y)

where each of the functions in the set is sufficiently smooth for the governing

3 4 3 -
function to exist. This requires &', ¢'*’, w!*’ N, MY 0% 1o be continuous and such
that their derivatives have a finite number of discontinuities. The collection of all

possible sets within the domain of Q is the set of admissible states. Let

u) (A) _ (k) L) L) k) k) k) (k) (k)
)} ] 'norﬂ' mo:ﬁ’ qa ’euﬁ’ GB’EQS'f " }

be an admissible state. Assume v+ Av € the set of admissible states for all values of

the scalar A, ie. the function ) is defined in a neighborhood of v. The Gateaux
differential (A-10) of the function Q defined by (176) along the path v, using (172)

through (174) to eliminate %, %, W% %, A%, g®, is

2,0 =2F <§<:), NSO P(A)_(k) Rm¢u) + o #‘)+X“)>

ofi.B P
(=1

ny <l er!s va<ler)>
k-1
®) ek 0)
—2Z<9 > 0= 200 0 T0>
® -, &) 4 e g®) B o O
+2Z<e Agsitys + 1" Bog s + 1 Nog> 4

)] (& (4
+2Z<n“ﬂ. ) L 418 (;>p“_,

50




S gl 0 0 0y 0 L s 0
+2Z<|11°.-R @, —1 ¢, t M QG Y >

U:)

+2Z<q,"‘) e, 75> @

k=1

+2Z<-(t) (1) &) _ e ph) + t*Mm

Bybeyé oBybyb P

..(l) (4) x (0
+2Z< cr L K>

+2F <, = POWE w0l 4 o PO+ 20>

(k)

+2<w”, 0T >

(l) (k)

n-1

k)

+2Y <w, oTF>
k=1

n
&-1) (0)
—2F <w, 6T > - 2<wt, T

> g
_ W . X
& (k) k) (D)
+22<2€o3’ Zt.(Qa —2xaﬁ 83)> (k)
k=1 j
- )
~ (A) (A’) (&
+2Z<q Qe —w T~ )>R“,
() ) W)
+2) <q, Qe ~w —¢, >
n n-1
®) (0 0 _ gl #© ®_ e
+2) <t @ 41,0 ) 2L <1 e w >
k=1

+3 <o, 20 (NEm - R > ot <o, 2:*(Mi‘gn;f’—2)01f_”)>sm
-1 3
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L (&) s - - Ak)
+ <W( 22*( (l) Q( )n )>S(“ + <n(‘) 2‘*( “)7,6 f: )>g“)

2

(k) (k)

< :
0wt (pn,— ) > w + <d, 24wy —a%n ) > »
6

+ {< ® 2 (W00 =) > + <g®, 2 (MBI — 2600 ) >
o8 op'lB 83 Ja” > g

- (k)

+ <w, 20x((Q% .

‘“)n)>su,+<n‘“ 2:(@ ) (g3 9>
2/

-(1)

+ <, 21*((¢m

R (0) K1
) -(g: )onﬁ)>$i‘“ + <qo“, 21*((w“7)°) —(g,),) >

}
\,(l

(177)

The Gateaux differential vanishes if and only if all the field equations along with the
boundary conditions and the internal discontinuity conditions are satisfied because of
linearity and nondegeneracy of the bilinear mapping.

Rearranging the terms, the governing function (176) may be written as

0 = Z{ <, u)‘_‘g)>k( <o, 1 m¢m>kw <w®, Pu)wu)>kw
A 0 = A
+<al e NY > - <N, t*“";> + <¢, ‘*M:;.fpm
<M(“ t‘¢(”> o + <w t*Q“)> m <Q(I:) t*wm> -
—2<a"” R‘“¢‘”> - 2<¢?, ‘*Qm>,m‘2<?‘:;"'Bf;,w(;a)>km
+2<&), t*N“’>Rm + 2<M£:;,t*xm>km+ 2<2¢*), Q"> o~

(l) x (lr_/)/
+ZZ <2, -2A*\ e >
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n i
Y <1, @ 41,60~ |+ <TP, - “”’)>R(k>}

R(L)
L=1
_(L) (k) (k) (k) &) (k) &)
+2Z{ <a®, PO+ x> ot <8, G, +r¥> > wt <w Lo PP+ 29> > )
0) (l) (0)
‘*T( O STy >
+2<a‘"’ t"‘T(")> ot 2<¢(’" *t T(")> o ¥ 2<w™, t*T(")>

(u)

~ W w w ®) W) _ o )
+3 {<a’, *(N n,—2N, )>s‘,“ + <¢, (M g, —2M )>S(3“

+ <W“), t*(QL‘)no Q(‘)n )>S(k) + <N(‘) t*(i(l)nﬁ h(‘)nﬁ) >S(k)

+< M(k) *( ¢(Iz)n‘_ ¢(k),nﬂ) >g(k) + <Q(t) t*(w (k) 2W(A-)m') >s‘*)
6

+ <o, (MUY - 2g), )>

+ Z{ <z, (N8 ) — 2" ) > o

Bnp s(‘k)

+<w®, (@0 ) =26 ) >, + <NO, @) - 26 ) >

S(lz) s(k)

(&)

+ <My (@) = 2gDm) > gy + <0 (@00 ) =26 ) >

S(k)

(178)

4.3.3 Extended Variational Principles
Equations (172){174) relate pairs of operators in the operator matrix of (147).

These relations may be used to eliminate either of N, or @', either of

M/, or ¢!, and either of Q% or w* from the governing function © in (176),

leading to numerous different forms of variational formulations. Elimination of an
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operator A, implies that state of variable u, need not be in the domain M, of A

)°

Where A, are differential operators, this results in relaxing the requirement of
differentiability in u,, thereby extending the space of admissible states. In the context

of the finite element method, it is clear that the extension of the admissible space
provides greater freedom in selection of approximation functions. To Illustrate the

procedure, we present six extended variational principles.

Using (172) to eliminate N, (178) gives
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(179)

where N need not be differentiable. In addition, eliminating M%), from (179) Q

reduces to
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Also, Q') can be eliminated using (174) from (180) to give
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where none of the stress resultants Nf,“ﬂ) , M%) and O need be differentiable.

57




Alternatively, extended formulations which do not have derivatives of the

—Lk)

kinematic variables Z", ¢ and W’ may be derived. Elimination of @*) from Q using

(172) results in
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Using (173) to eliminate ¢.; from Q,
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where Z and ¢ need not be differentiable. If we eliminate w'’ from (183), the
extended formulation which does not require continuous differentiability in any of the

kinematic variables is realized.
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formulations while Q, leads to stress formulations.

general variational principle than the ones presented here are possible.
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In the context of wuse in the finite element procedure, 2, leads to displacement

elimination of derivatives of certain force resultants from €, and Q, or derivatives of

Kinematic variables from €, and Q results in socalled mixed formulations.
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Evidently, other extensions of the

For example,
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4.3.4 Some Specializations

If the admissible state is constrained to satisfv some field equations and/or
boundary conditions, certain specialized forms of the variational principle are realized.
This procedure is used to reduce the number of free wvariables in the governing
function. Also, certain assumptions in the spatial or temporal variation of some
variables can lead to approximate theories. Some specializations of the extended
variational principles stated in the previous section are presented below.

Specialization of the function €, to the case where (146) and (169}(171) are
identically satisfied i.e. if displacement w is constant through the thickness of plate
and the jump discontinuities in ‘displacement’ components over internal surfaces are

identically satisfied leads to
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Since w'*’' was assumed to be constant over the thickness of laver, its continuity in the

interface implies that the lateral displacement is constant through the thickness of

plate. If we further specialize €, to identically satisfy the Kkinematic relations

(125)(128),
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Furtherfore, if the interface continuity condition of the in-plane displacements (145)
and the displacement boundary conditions (163)(165) are identically satisfied, €, in
(186) reduces to the potential energy type variational principle. Here, two different
forms of expression are possible, depending on which of the variables is eliminated.
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which 1s the wvariational principle for Sun’s [1973] theory. On the other hand,
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(188)

which is the variational principle for Srinivas' [1973] and Seide's [1980] theories. In
connection with finite element formulation, it is worth noting that use of Q, is more
convenient if in-plane streching of individual layer needs to be specified.

Clearly, a large number of other specializations from other extended variational
principles are possible. We desist from an attempt to make a comprehensive catalogue

of such possibilities.

44 COMPLEMIENTARY VARIATIONAL PRINCIPLES

4.4.1 General

An alternative procedure to set up variational principles governing the problem is
to write the operator equations in complementary form instead of the direct
formulation (147). In this formulation, it is assumed the Kkinematic relations are
satisfied. Al-Ghothani [1986] presented the complementary formulation of laminated
composite plate for the dynamic case using a discrete laminate theory and discussed
various specializations of the extended variational principles. In this section, we present
the complementary form of the field equations given in the previous section. Except
the constitutive equations for transverse shear, the formulation is the same as the one
given by Al-Ghothani [1986] Since an extensive diccussion on the extended principles
and various specializations, some of which led to the variational principles of various
approximate theories, has been given in [Al-Ghothani 1986} those investigations will
not be repeated here. However, some extensions of the general complementary
variational principle and specializations which are not included in [Al-Ghothani 1986],

but are interesting are presented.
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4.42 Complementary Form of the Field Equations

Assuming the kinematic relations (125){128) are satisfied, the field equations

(129)(131), (137)4139) and (145)(146) may be written in the self-adjoint matrix form

as
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2738 P ga
The operator matrix in (189) is self-adjoint in the sense of (A-25) if the bilinear
mapping defined in (159) is used. This self-adjoint form of the field equations (189) is
different from Al-Ghothani's [1986] in that it includes matrices E,, representing the
coupling of transverse shear constitutive relations between layers based on the consistent

shear theory developed in Section IIL

4.4.3 General Complementary Variational Principle
For the operator matrix equation (189), the governing function is defined,

following (A-29), as
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+ Boundary Terms + Internal Jump Terms (201)

Substituting  (190)-(200) into (201), the explicit form of the governing function is

obtained.
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(202)

As in direct formulation, it can be shown [Al-Ghothani 1986] that the Gateaux
differential of J vanishes if and only if the field equations (189) along with the

boundary conditions and the internal jump discontinuity conditions are satisfied.

4.4.4 Extended Complementary Variational Principles

Foilowing the principles and methodology presented previously, it is possible to
develop extended variational principles for the complementary form of the field
equations (189) as well. Relations (172)(174) can be used to eliminate some of the

operators  from  (202). Simultaneous use of those relations to eliminate
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Here, the force resultants need not be differentiable.  Alternatively, eliminating

@'l ¢t and W from (202),
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In addition to extensions illustrated above, it is obvious that numerous other extended

principles are possible [Al-Ghothani 1986].

4.45 Some Specializations

As in the direct formulation, some specializations of the complementary extended
variational principles are possible by requiring that certain field equations and‘or
boundary conditions be identically satisfied.

If we assume that the equilibrium equations (129)>(131) are identically satisfied, J,

results in
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If we further specialize (205) to satisfy the stress boundary conditions on

S\, 8¢ and S, and the internal jump discontinuity conditions
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45 DISCUSSION

Based on the discrete laminated plate theory, which accounts for the effect of
transverse shear deformation in a consistent manner, a systematic development of
variational principles for dynamics of linear elastic composite laminated plate has been
presented. The direct as well as complementary formulation are considered.
Complementary self-adjoint form of the field equations is the same as the one
presented by Al-Ghothani [1986), except for the coupling terms of transverse shear

constitutive equations between layers which have been introduced in the consistent
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shear deformable theory presented in Section 1lll.  Nonhomogeneous boundary conditions
and internal jump discontinuities have been explicitly included in general variational
principles.  Allowance of jump discontinuity terms in variational formulation is
necessary in the context of direct approximation in finite element spaces since the space
of approximants may not be sufficiently smooth. Also, extensions of the general
variational principles through elimination of certain field operators and specializations
by restricting some of the field equations and/or boundary conditions to be identically
satistied have been proposed. ligure 2 and Figure 3 diagrammatically depict possible
extensions  of the general vamnational principles based on  the direct and the
complementary formulation, respectively. In either case. the specializations listed in this
section are shown. These formulations can provide a basis for development of
alternative approaches to approximate solution of the problem and also for development
of approximation theories. Evidently, other extended forms could be used as starting

points for specialization.
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Section V
FINITE ELEMENT FORMULATION OF A SPECIAL DISCRETE

LAMINATE THEORY OF PLATES

5.1 INTRODUCTION

In the fimte element procedure. the region under consideration is subdivided into a
finite number of dispint subregions (elements), and the field variables of the problem
are approximated bv functions which are continuous along the boundary of elements,
but have limited smoothness. Consider the open connected region R in an Euclidean
space discretized by a finite number of elements R, (R, e=1, . . ., m) such that

R = lim U R (207)
e=1
in which the elements satisfy the property
R R =0 if exf (208)
and are connected at a finite number of nodal points. Here, R and R, denote the
closures of R and K, respectively.

Since the field variables of the problem are represented by functions which may
not be sufficiently smooth over the region R, the variational principles derived in the
previous section may not be valid over the region R. However, if approximate
functions have adequate smoothness over each element, and internal discontinuities

across element boundaries are explicitly included, they are valid. For such case, we

define the governing function over the region R as
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0= Z Q (209)

where €, (e=1,2,..m) is the set of functions governing the problem over indicated
element R_. Sandhu [1976] showed that Gateaux differential of £ in (209) vanishes if

and only if the field equations, the boundary conditions and the continuity conditions
across the interelement boundaries are satisfied. If there are discontinities across the
interelement boundaries, the actual jump quantities need to be explicitly included in Q,
[Sandhu 1976}

In the following, we present a finite element formulation based on the variational
principle using the governing function Q, which is defined in terms of displacement

=1

field veriables @', ¢ and w, and is a specialization of the extension of the general

variational  principle to cases where N_, M_, Q. may not be continuously

differentiable. The specialization is to the case where wX=w for all k, the

strain-displacement equations are identically satisfied, the in-plane displacements u, are

continuous and the specified displacement boundary conditions are identically satisfied.

52 SPATIAL DISCRETIZATION OF GOVERNING FUNCTION
The governing function €, satisfying the kinematic relations and displacement
continuities in the laminar interfaces, can be rewritten as the sum of functions ,

(e=1,2...m) defined on each element of the finite element representation as

n k-1 k-1 k-1
_ () (D) D) Bl i i plk) 0
Q =-Yli<z ,Pa, > w*t2<8 P Y1 > w* <Li$,.P Yo, > .
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S

le *

where S\, St and Si’ are the intersections of the boundary surface of an element

with SV, 8% and S, respectively. For spatial discretization of this function, it is

assumed that the field variables are interpolated over an element domain as

7 x.0) = H(xUQ) (211)
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¢ x,1) = H:(x)«b“)(t) (212)

w(x,1) = H (x)W(t) (213)

where

_(l) = [..(l) (1
2

(1) (x) (KRhT
¢ L5 ]

and U(1), @“(t), W(t) are the vector functions of time defined at the nodal points and
H,.H,, H are respectively, the matrices of spatial interpolation functions for the field

variables indicated by s bscripts. Also, the generalized strains may be expressed as

V=1 u0) (214)
W _ Titb(‘)(t) (215)
= T/ W() + H,0“0) (216)

where
- [_(lll)' _(2 12), _(112)]7‘
O = [K(ltl)‘ K(zkz)’ 2"(1“::]]‘
yu‘. - 2[e(;_:, e(;})lr
and T, T, and T,  are, respectively, the transformation matrices derived from the
displacement interpolation functions H,H, and H, by suitable differentiation and

reorganization of terms.

Substituting (211)4216) into (210), the spatially discretized governing function is

obtained.
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In the above expressions, A, B’ and D* denote, respectively, the matrices of the

(k) k)
stiffness A/, ., B

aBy

summations in (217) as

s and Df,";,é.

For convenience, we rewrite the quantities involving

Z{zu M‘“ Zt o'} = 2U7 Z(ZM ) o (258)

k=1 J=k+1
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Z{Zz (O)TM(“ *Zz oV} = Z‘ (<I>“))TZ M., *(Zz ¢"’)+(ZM"’ )40

k=] i=] i=k+1 J =i+
(259)
Z(zZz @M o) = 22: @ ZM (260)
k=1 =1 i=k+1
Z{zu K *Zz o'} =20’ Z(ZK"M o (261)
k=1 i=k+1

ﬁ‘,{z: @YK *Zz o) = Zz ol Z KW*(Zz ¢(’))+(ZK(’) ) &

k-1 i=1 i=k+1 J=t+1
(262)
Z{zzz @YKY, ™) = 22: @*) ¥ Z X, o) (263)
i=1 i=k+]

Using above equalities, the discretized function (217) becomes

=—{ ZU MU+ 2U7 Z( ZM’ )*, & + Z(d>‘”)’ M2 g

k=1 i=k+1

+2: @ Z M., *(Zz ) +( ZM(’) ), + W ZM‘“*W

i=k+1 J=+1

+2U Z{M‘“ *o) + 22: @“) 4 Z M, )

i=k+1

n-1 n
+*U ZK‘“ U+ 200 Y (T KD, 00
k=1

k=1 i=k+1

+Zt (@Y Z KMA'(Z‘ &) +( ZK(’) )*, o'

i=k+1 J=i+]
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+z*2(d>“)) K, 0" + 220 ZU Kol + Z: @*) zx 0
i=k+ |

—x Z{w Z K w 4 2w ZK‘“’* e + (o"")TZK“”w‘”}

Sww
j=1 J=1

n
+23 {rru’s £+ Ul + o Zz (@Y *b%® + ¢ Zz (@) =%

=] i=1

+:(@)*g® + (@B + e WTr £ + W)

+20* {“UT* 7° + WT* (p(n)_PO) + UT* ’T(") + Zti((pi)T* t(u) }
i=1

n k-1
—2* FTAUTRY + Fr, (@) R + @Y RY + W) (264)

k=1 =]

53 SEMIDISCRETE EQUATIONS OF MOTION
To obtain the semidiscrete equations of motion of laminate plate, it is convenient

to rewrite the spatially discretized variational principle, (264) in matrix form as
_ T T
Q =-X,8*X +2X *R, (265)

where
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P
U u
(l) P(])
¢ e Sll ' SIZ Y
<ll>(2) ¢(z) - =} -
X=1. R = S, = sz 185,185 (266)
- -] -
T
o™ P, 0 15,18,
¢n
w Pu'

Here, elements of the submatrices of §, and the load vector R, are, explicitly,

n
N ®) L g0
Sll - Z(Mut+t KuuA)
k=1

e )
(s,.) -th(M

7)) 1) 0 . i
1215 u¢P+t KM¢A)+MH¢R+t Ku“ , Jj =12 .4 nl1

k~j+1

—_ xaln (n)
(slz)ln - Mu¢k +o Ku¢3

8,0, =67 T (M +0KD Y+ M, + oKL 4K ) L =1, 2., n
k=i+}

— aaln) (n) nn
(S, = MO, + er (RO 4K )

n
- ® 4 g @D 4ok 1
(S0, =t1, ¥ (Mg, +1*K )+ 1My + (K +K,)

227y SHR
k=j+1
i=12 .., n1 and j= i+l, i+2, . ., n-1
- (r) (n) in )
(S,,. —thwR+¢*(t,K#B+KsM), =12 ..., n1

!

—_ ki .
(st)n = "Z K,W' i=1, 2, ..., n1
k=1




n n
_ (&) * )]
S33 - Z Mu'u +i z KSk'w
f=1 =1

P, = Y (" -r")+ 1Y) + 1z =%
k=1

n
PG i WARTR D U CRETRAES b B S 20 N RS

=1+

~
|

(x)

(n)

v

P, = *(g" +1 —R") + b
(1)"‘ n i

Ph = Z( lx(f(;)_RfI‘))_’_bﬁ/‘)_pn_'hp(u))
k=1

The spatially discretized governing function for the global system is given by

0=Ya =-x"sX+2X"*R (267)

-1
where X is the vector of values of field variables at the system nodal points, R is the
set of corresponding ‘forcing' quantities and S is the system matrix corresponding to S,
for an element. Here, summation in (267) indicates matrix assembly following usual
(direct stiffness) procedure. Vanishing of the differential of Q in (267) with respect
to X gives the set of equations:

SX=MX+*KX =R (268)

where
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The semidiscretized equations of motion for the entire system can be obtained by
differenting (268) twice with respect to time.

MX + KX =R (269)
where mass matrix M and stiffness matrix K are symmetric. Furthermore, M and K

are positive definite and semi-positive definite, respectively.

54 FREE VIBRATION ANALYSIS
For free vibration analysis, the load vector R is set to zero and (269) becomes
MX + KX =0 (270)
Assuming harmonic motion of the system, ie., assuming the solution by X = e,

where ¢ is the amplitude vector, w is the natural frequency and i=J-1, we obtain

generalized eigenvalue problem

K-o?M)y =0 (271)
Before applying the boundary constraints, this eigenvalue problem has three zero
eigenvalues corresponding to the rigid body motions. If equations corresponding to the
constrained nodes are removed before solving the eigenvalue problem, matrix K becomes
positive-definite and consequently all eigenvalues are positive real and corresponding
eigenvectors representing vibration modes are orthogonal with respect to the mass

matrix M.
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55 SPECIALIZATION TO THE STATIC CASE
A specialization to the static problem can be made by dropping the inertial terms
from the set of equations (269). The resulting system of linear algebraic equations is
KX =R (272)
Equation (272) can be modified to account for known boundary constraints and

subsequently solved for the unknown vector X comprising kinematic quantities.

56 FREE-EDGE DELAMINATION SPECIMENS

IFor the case of a free-edge delamination specimen, the stresses o, at the free-edge
are known to be zero. As the field variables in the present formulation are the nodal
values of displacements and rotations, these stress-free constraints cannot be directly
applied to the system (272). Since in this formulation stresses are secondary variables
to be computed from the obtained displacements, appropriate refinement of the mesh
near the edge boundary would be needed to realize o, as close to zero as possible.
However, as discussed in Section 3.7.4, different constitutive equations (122) apply at
the free edge for the case of transverse shear. This leads to two sets of constitutive
relations, one applicable in the interior of the laminate and the other at the free edge.
Hence, in evaluating the integrals in (231) through (233), (108) were used for elements
lying entirely within the interior of the laminate. For elements having one edge
coinciding with the free edge, values of A“’ at each of its nodes were chosen from
either (108) or (122) depending on whether the node was on the free edge or in the

interior. Then the value of A"”

at the gauss points could be determined by
interpolating the nodal values using some interpolating functions. For the examples of
application given in this report, the same interpolation was used as adopted for the

displacements.
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57 CALCULATION OF STRESSES
After obtaining the displacement solution, secondary computations to obtain the

stress components can be carried out in the following manner.

5.7.1 In-Plane Stress Components
Using the known nodal displacements in conjunction with the interpolating

functions, strains can be obtained at any desired location over an element. Subsequently
using (25), and noting that €3 =0 in this formulation, the components of in-plane

stress can be calculated. Alternatively, (28) may be used to obtain the stress resultants

N, M, and (75) used to obwin o,

5.7.2 Transverse Shear Stresses

Having the solution for the nodal displacements and rotations, the resultants ow
can be determined from the constitutive relations (108). Subsequently, use of (92) will
veild x, and hence T, The transverse shear stresses o, can then be evaluated from
(81).

For the case of the free-edge delamination specimen, interpolation over the edge
elements as described in Section 5.6 was done to obtain Q% and T at the desired

Jocations over the element.

5.7.3 Transverse Normal Stress

To compute the normal stress o,, the equilibrium equation (77) is integrated w.r.t

xj to obtain

W _ D 3 ®
o) = T4 - fo v, ,dx" (273)
using (81),
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(A) (x 1) f [gu) () g(t (k-1) +§(“T(“]d (&) (274)

Substituting for ¢, ¢, and ¢ from (81) and evaluating the integrals leads to

£ 2 £
(k) _ lk-1) 3 3
o) = 157V = (D) [3 - 2(7‘)] Q,,
k &
x‘ (2) x‘
_ x(:) (_i) _ 2(~_3_) +1 ,1‘(1\ 1)
o] l‘ l‘ O,0
xx (2) (l)
-2y |(22) —(——) “ (275)
b L
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Section VI

APPLICATIONS

6.1 INTRODUCTION

The formulation presented in the preceding section was incorporated in a computer
program. A nine-noded Heterosis element, shown in Figure B.1, was used for finite
element analysis. For verification of the code, the program was used to solve the
problem of a three-layer, simply supported, square sandwich plate with
isotropic/orthotropic outer skin layers. The results were compared with an exact series
solution. This example is the same as used by Mawenya [1974] The formulation was
then applied to the solution of a Free Edge Delamination (FED) problem. A four-layer
coupon under uniform axial strain whose solution has been presented by Pagano[1978]
was considered. Displacements and stresses along the midsection were computed and
compared with Pagano's results.

Though the constitutive relations for transverse shear have been derived using the
equations of static equilibrium, the problem of free vibration of a simply supported
laminated plate was also solved by including inertial terms in the finite element
formulation. Developing constitutive equations for the coupled theory, allowing for the
inertia terms, Schoeppner [1990] has shown that the effect of inertia on constitutive
relations decreases with decrease in layer thickness. Thus, for sufficiently small layer
thickness (any lamina can be arbitrarily replaced by a suitable number of sublayers)

the constitutive relations developed in Section IV would be applicable. The natural
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frequencies of free vibration of a sandwich plate were computed and the fundamental

frequency compared with an exact elasticity solution by Srinivas [1970]

62 PLATE ANALYSIS

A three-layer, simply supported, square plate uniformly loaded in the transverse
direction was considered for analysis. Two separate cases in which the outer layers
were respectively isotropic and orthotropic were considered. The plate dimensions and
material properties were the same as in a similar example considered by Mawenva

[1974], and were

Plate Dimensions

Length of each side =10 in.

(1)

Thickness of outer layers ¢t =¥=0.028 in.

Thickness of core t(2)=0.75 in.
Material Properties

a). Isotropic Outer Layers

EYV = EY =107 wrin?
V(” = V(3) =03
G'? = 3x10* w/in?

b). Orthotropic Outer Layers
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107 Ib/in’

2
I
™
I

EV = EY = 4x10° wrin?

1.875x 10° b/in.?

Q
I

(I _ (3 _
Vi,=V,= 0.3

3x10* w/in’?

Q
t
!

=12 x10% b/in?

~
<
1

Lateral lLoading

g =10 I/in?
Due to the symmetry of the problem, only one quadrant of the plate needed to be
considered for finite element analyses under static conditions. A typical discretized
quarter along with associated boundary conditions is shown in Figure 4. Discretization
was done using 1x1, 2x2, 4x4 and 8x8 meshes.

The results for maximum lateral deflection at the plate midpoint are shown in
Table S and Table 6 along with the exact series solutions [Mawenya 1974] and a
comparison with results obtained by Moazzami et al. [1991] using the conventional
Discrete layer theorv. The CPU time used on a Cray Y-MP8/864 is also listed. It
shou'd be noted here that the Heterosis element used is nine-noded except for the
lateral displacement degrees of freedom, for which it is eight-noded. Moazzami's results,
on the other hand, were obtained using a fully nine-noded element.

These results were obtained using a generalized plane stress assumption for the
purpose of matching them with the series solution. Solving (27) for e, and

substituting into (25) and (27),
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u=¢®P=w=0

Figure 4: Discretized Quadrant of a Simply Supported Plate
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Table §

Maximum Lateral Deflections for the Isotropic Case

No. of Maxm. Defl. Max. Defl.
Elements CPU (Secs.) from Code Moazzami et al.
1x1 0.113 0.00069822 0.00073539
2x2 0.411 0.00073456 0.00074087%7

4x4 1.733 0.0007353%7 0.00074008
8x8 9.912 0.00073538 0.00074006
Series Soln. [Mawenya 1974] 0.00074000
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Table 6

Maximum Lateral Deflections for the Orthotropic Case

No. of Maxm. Defl. Max. Defl.
Elements CPU (Secs.) from Code Moazzami et al.
1x1 0.114 0.0011452 0.0012140
ex2 0.414 0.0012065 0.001222¢
 4xa  1.783 0.0012074 0.0012216
exs 0.000 0.00120v5 0.0012216
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) _ 56 (l) £) (&)
Oap = Lapylys E(aﬁ:!] 933 (276)
(n — o W
2E(03y3 €3 (277

where

k)
E(k) (k) Ef,gs:; E(Ic)

ofys = Eapys — £ 33y6

3333
()
E
(&) of33
. =3 N b
E 433 0 (278)
3333
O _
I’usys - 1‘03y3
Assuming generalized plane stress state in a lamina, ie,
r
k k
f o axl =0 (279)

0

the constitutive equations of bending and stretching are obtained as in (28), where now

2
(A0 g W _ix_ f, —ky o (280)

afyds DaByb, 0576) = (tl ’ ofyd

(&)

We note here that the assumption of u, constant over the thickness of each layer

implies e}y =0. We also note that (25) and (27) would not contain €% and hence there

would be no need for its elimination. The in-plane constitutive equations can be
obtained as was done in (28) without any assumptions on o). However, for
comparison with the series solution based on Kirchoff's theory, (280) were used. The
choice of the two constitutive relations is easily incorporated into the program with
the inclusion of a few lines of code.

The assumption of generalized plane stress state defined by (279) was first used

by Mindlin [1951] for homogeneous plate theory and later by Whitney [1970] for
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laminated plate theory. They, however, assumed the integral of 0'(3';) over the entire

thickness of the laminate to vanish as opposed to over each layer indicated by (279).
Hong's [1988] assumption (279) is clearly invalid for a multi-layered laminate.
However, for a single layer plate or the sandwich plate with thin outer layers under

consideration, it is acceptable.

6.3 APPLICATION TO FREE EDGE DELAMINATION (FED) SPECIMEN
Pagano[1978] presented solutions for the free-edge problem of a coupon subjected to
uniform axial strain €. A four-layer laminate as shown in Figure 5 was considered.

The material properties were:

= 6 = = 6 .
E, =200x10", E, =E, =21x10 (psi)

G,=G

_ _ 6 .
2 =G,, = 085x10° (psi) (281)

13

Vi, SV 3=V, = 021

To match the ratios of the spatial dimensions with those used by Pagano, the laminate
length : width : layer thickness (ie, L : 2b : h) was selected as 11 : 3 : 0.1875. Two

stacking sequences viz., [+45/-45] and [0/90] were considered.

6.3.1 Angle Ply Specimen

In the x direction the specimen was discretized using 11 equal sized elements. In
the y direction a sequence of mesh refinement was done by starting with three equal
elements and succesively subdividing the elements along the two traction-free edges
further into three equal elements. Using this pattern, 3x11, 7x131, 11x11 and 15x11
element meshes were used. This scheme is illustrated in Figure 6 where refinement

from the 3x11 to the 7x11 mesh is depicted. A nine-noded Heterosis element shown
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Figure 5:

—

Four-Ply Coupon Subjected to Axial Strain
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in Figure B.1 was used for the finite element analysis.

The results for the inplane stresses o,, and 0, for the various meshes are
compared with Pagano’s solution in Figure 7 and Figure 8. These stresses are plotted
across the middle surface of the top layer for comparison with Paganos solution. The
stresses are shown over half the width of the coupon, where (y-b)/b=0, 1,
respectively represent the center and the free edge of the laminate.

The result for the 3x11 mesh shows a jump across the element boundary. It

should be noted that as only half the laminate width is represented in the plots, the

3x11 mesh is represented by 1% elements. For the chosen element, in-plane strains, and

consequently the stresses, are linear over the element. The edge element in the 3x11
mesh attempts to model both the sharply varying stresses near the free edge and the
relatively flatter ones near the center by a single linear fit. Hence the stresses near the
inner boundary of the edge element tend to be overestimated. This explains the kink
in the 3x11 solution across the element boundary. With mesh refinement the kink was
observed to reduce for the 7x11 mesh and was not noticeable in the solution for the
11x11 element mesh. Moreover, it was observed that further refinement to a 15x11
mesh did not show "substantial” improvement in the solution. A comparison of the
total CPU time for the different meshes using a CRAY X-MP/28 is given in Table 7.
The results in Figure 7 and Figure 8 show that the finite element results
overestimate Pagano's solution for o,, and O,, by about 4 percent at the center and 12
percent at the free edge. The same amount of error is observed at the free-edge in
the longitudinal displacements plotted in Figure 9 for the “optimum™ 11x11 mesh.
The transverse shear stress o,, computed using (81) is shown in Figure 10.

Comparison with Pagano's exact solution shows that the numerical results grossly
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3x11 MESH

Figure 6:

7X11 MESH

Sequential Refinement Scheme for the Finite Element Mesh
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Table 7

Comparison of CPU time for different Finite Element Meshes.
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F.E.M Mesh Total CPU time on a CRAY X-MP/28
(Seconds.)
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""" w1 2320
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underestimate the shearing stress.

To further enhance the accuracy of the solution, refinement in the thickness direc-
tion, 1e. the division of each layer into sublayers, was attempted. Each layer was
divided into three sublayers of thickness hA/3. Further subdivision into five layers was
done by dividing the sublayer of interest (i.e., the one containing the location at which
stresses were desired) into three equal layers of thickness h/9. To save on comjuta-
tional effort, the symmetry of the problem was exploited by considering onlv the top
two plies and specifying the transverse displacements, w, at the middle surface of the
laminate equal to zero. llence, solutions for the cases of N =2, N=6 and N=10 were
obtained, where N represents the total number of resulting layers; N=2 being the case
with no sublayers. The scheme for sublayer division is depicted in Figure 11.

The results for inplane stresses for different N using a 11x11 element mesh are
compared with Pagano's results in Figure 12 to Figure 15. A comparison of CPU time
for various number of sublayers is given in Table 8. Table 7 and Table 8 show that
for the problem using the 11x11 mesh, exploiting the symmetry by considering only
two plies reduced the CPU time from 42.664 to 15.852 seconds.

Figure 12 and Figure 13 show significant improvement in the results for inplane
stresses at the free edge with increasing number of sublayers, though the stresses at
the center of the laminate remain essentially unchanged. The results for axial
displacement are shown in Figure 14 and show that the displacements obtained using
N=6 and N=10 agree closely with Paganos solution.

The transverse shear stress o,, at the +45° interface was computed using (81) and
is shown in Figure 15. With increasing N, the computed free-edge stress steadily

increased in magnitude. Pagano [1978] observed that o,, at the edge grows with
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Table 8

Comparison of CPU Time for 11x11 Mesh with Different Num-
ber of Sublayers.
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""" - Tises2
""" e e
""" o lerss

— . ———— — - S A& = ——— - ——— v —— W T > T W W S o g

116




o/ 10%

o

-

oW @ W W Bag f f »
rorr SRALEAANNGL.,,

: ; ! . QQ »QAAA :

- %QQ

= |

(\;_

fes)

l\

o

o i i ;

% 11X11 MESH
A Ne2

© ® N=B

=

o X N=710 :
" PAGANO N=6

O

™ _5 : :

“%. 00 0.20 0.40 0.60 0.80 1.00

(Y-B) /B

Figure 12

Distribution of X-stress Along Centre of

(Angle Ply).

117

Top laver for Various N




6
ny/ 10°¢

W v
o
l s & = !aasag@é, &
: EQQ Qﬁ

o
=)
T
™~
C;—
o | |
2 11X11 MESH
e : ;

A N=2
L ® N=b
o .
o X N=:10

B PAGANO N=6
o
o : : . ] N C)
%. 00 0.20 0.40 0. 60 0. 80 00

(Y-B) /B
Figure 13: Distribution of XY-stress Along Center of Top Layer for Various N

(Angle-Ply).

118

]




U/ €h

NODAL DISPLACEMENTS

-0.00

7

AN-6
4 O HONG N=10
~ PAGANO N=6

-0.20

-0.40

-0.80 -0.60

1.00

0.00 0.20 0.40 0.60 0. 80 1.00
(Y-B) /B

Figure 14.  Axial Displacement Across Top Surface with N=6, 10. (Angle-Ply).

119




increasing N and could not determine whether a finite limit was approached for large
N. The values of the transverse stress close to the free edge for different number of
sublayers are presented in Table 9.

To observe the effect of the consistent shear treatment, the results were compared
with those obtained by Moazzami et al. [1991] using the discrete laminate theory
along with a constant shear correction factor. The stresses and displacements at
element centers for a 11x11 mesh with N=2 are compared in Table 10 to Table 13.

Table 10 shows that the results for o,, do not show any "substantial” difference.

‘The results for o,, o, and u, in Table 11 to Table 13, however, indicate that those

obtained from the present theorv are slightly better than those obtained using the
existing discrete laminate theory. As observed in Section 6.2, only marginal improve-
ment was expected by the introduction of consistent shear coupling.

In summary, it was observed that the results improved to a certain extent only
with spatial refinement of the finite element mesh. Convergence after the 11x11 mesh
was slow. Further enhancement in the solution was obtained by dividing each ply into
sublavers. As the inplane displacements are assumed linear over the thickness of each
laver, division into sublayers resulted in piecewise linear displacements over each ply

contributing to increased accuracy.
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Table 9

Growth of XZ-stress at Free Edge with Increasing N

N The Present Study Pagano
2 0.416 1.664
6 0.955 2.213
10 1.450 -

- —— - ——— T —— D —— - ———— . — - - — - —— - —— - " = —— -
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Table 10

Comparison of X-stresses with those Obtained by Moazzami et al.

. Present Moazzami Pagano
(y-b)/b Study (N=6)*
) 0.000 3.0912 3.0882 2.902
 0.4e4 5.0853 3.0v85 2.90
~ o.ee6 5.0s05 5.058¢ 2.89
o815 2 9999 3.0067 2.76
~ o.ss8 2.9220 2.9317 2.67
o.9e2 2.vmz 2.7658 2.25

* Note: These numbers

are approximated from the plots in
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Table 11

Comparison of XY-stresses with those Obtained by Moazzami et al.

Present Moazzami Pagano
(y-b)/b Study (N=6) *
0.000 1.1793 1.1995 1.15

" 0.4aa  1.1668  1.1021  1.1a
o666 1.1  1.1s26  1.05
o815 0.9923 1.0s04 0.88
o888 0.63¢8 0.0023 0.64
o.92 0.52e8 0.6209 0.25

* Note: These numbers are approximated from the plots in Pagano [197
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Table 12

Comparison of XZ-stresses with those Obtained by Moazzami et al.

Present Moazzami Pagano

(y-b)/b Study (N=-6)*

0.000 ~-0.0030 ~0 -0.00
 0.422 ~0.0143 0.0072 0.019
o666 _0.0613 0.0387 0.00
~ o0.815  -0.1vs2  -0.1268  -0.26
o.s88 ~0.3046 —0.2385  -0.38
 o0.062 —0.s465 ~0.4662 0.939

* Note: These numbers are approximated from the plots in Pagano [197
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Table 13
Comparison of X-displacements wiih those Obtained by Moazzami
et al.
_________________ Present  Moazzami  Pagamo
(y-b)/b Study (N=6)*

0.000 -0 ~0 0.00
 0.4e¢  -0.0143 0.00v1 0011
~ o.e66  -0.0615  -0.0387  -0.085
o815  -0.1ves “0.1244 016
0.8  -0.3069  -0.2338  -0.26
 o.0e2 0.s507 0.a571 047

* Note: These numbers are approximated from the plots in Pagano [197
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6.3.2 Cross-Ply Specimen.

The second example of the FED specimen solved was a [0/90] laminate. The
material properties and laminate geometery were the same as before. Results for
o, and 0, were computed for comparison with Pagano's solution.

Figure 16 compares the results obtained for o, with those given by Pagano [1978}
The results for N=C matched well with those of Pagano's except over the edge
element. Notice that a singularity exists at the edge due to the different constitutive

relations at the free edge. As the A“”

s were interpolated over the edge element, the
edge element should be kept relatively small to better approximate the singularity.
Hence further spatial refinement was done by using 15x11 and 19x11 element meshes.
These results are shown in Figure 17 and Figure 18. These figures show that with
mesh refinement near the edge of the laminate, a sharp peak was observed in the edge
element. The magnitude of the peak increased with decreasing width of the edge
element. It appears that if the edge element is sufficiently small and is ignored, the
stresses in the penultimate element can be considered to realistically represent the
conditions very close to the free edge.

Equation (275) was used to compute the normal stress. The derivatives were
computed at each location using a central difference method. The size of the interval
used was 0.05 of the element width, reducing to 0.02 of the element width near the
free edge.

The results for o, for the different element meshes are shown in Figure 19.
The hump noticeable in Paganos solution was not observed. It was observed that the

edge values of the stresses approached Paganos solution as the mesh near the laminate

edge was refined.
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The distribution of the tranverse inplane displacement is shown in Figure 20 and

agrees well with Pagano's result.

64 NATURAL FREQUENCIES OF FREE VIBRATION OF A SANDWICH
PLATE.

Though the constitutive relations for transverse shear have been obtained from the
equations of static equilibrium, inertial terms were included in the finite element
formulation to compute the natural frequencies of free vibration of a simply supported
plate. A sandwich plate whose 3-D elasticity solution for the fundamental f{requency
was presented by Srinivas [1970] was considered. The orthotropic laminated plate
consisted of three layers as shown in Figure 21. The top and bottom layers had the
same thickness and material properties while the thickness and material properties of
the middle layer were different. Square geometry with thickness/side ratio of 0.1
(h/a=h/b=0.1) was used and three different cases of material properties given in Table
14 were considered.

For a simply supported laminated plate, the boundary conditions are [Srinivas

1970,1973}
u =w=0 at x,=0 and b (282)
u,=w=0 at x, =0 and a (283)

With the present formulation, these boundary conditions were restated as

T
]

u=¢¥=w=0 at x,=0 and b (284)
W =g =w=0 at x,=0 and a (285)

Figure 22 shows the finite element mesh along with the boundary conditions.
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Table 14

Lamination Data for Sandwich Plate

- T — T - e W R A P T G G - - - - ——

- —— — — —— —— ——— — - — > " T ——— > —— - — - -

I 0.1 0.8 0.1 1.0 1.0 1 1
II 0.1 0.8 0.1 1.0 1.0 10 10
III 0.1 0.8 0.1 1.0 1.0 50 50

* For all layers, ratios of orthotropic elastic constants
were:

0,,:0,,:0,,:0,,:0y: O = 3.802:0.879:1.99:1.015:0.608: 1.0
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Table 15 shows the nondimensionalized fundamental natural f{requency obtained
using 4, 16 and 36 element mesh for cases 1, II, Il for which the ratio of elastic
constants of the middle layer to those of the outer layers was 1, 10 and 50,
respectively. It was seen that the accuracy for Case 1 was excellent, but the error
became larger as the ratio of the elastic constants of the outer layers to the middle
layer increased. Figure 23 illustrates the convergence of the numerical solutions with
spatial mesh refinement. It was seen that convergence after refinement beyond 16
elements was slower than from 4 to 16 elements.

To examine the effect of consistent treatment of transverse shear deformation, the
same example problem was solved using the code with a simple shear correction factor
k=5/6, assuming the constitutive equations of shear in each layer to be uncoupled.
Table 16 shows the non-dimensionalized fundamental natural frequency obtained based
on this approach for the three cases. The quantity in parentheses is percentage error.

The results obtained with k=5/6 were compared with the result obtained with the
consistent theory. These comparisons for cases I, II and IIl are illustrated, respectively,
in Figure 24, Figure 25 and Figure 26. It was observed that the uncoupled approach
overpredicts the natural frequency. The difference increases as the difference in stiff-
nesses of the outer and the inner layer grows. Further, Figure 24 through Figure 26
show that the best accuracy was obtained with the 4x4 element mesh, but the solution
did not show monotonic convergence.

To further study the effect of the proposed consistent shear constitutive relations,
in addition to comparing the fundamental frequency the higher frequencies obtained
using the proposed theory and a shear correction factor of 5/6 were also compared.

Figure 27 to Figure 29 compare the frequencies of a 537 degree-of-freedom system
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Table 15

Non-Dimensionalized Fundamental Frequency by FEM based on the Con-
sistent Shear Deformable Theory

Mesh Case I Case II Case III
4 0.094697 0.19682 0.31097
(2.4%) (2.9%) (3.8%)
16 0.092952 0.19472 0.30919
(0.5%) (1.8%) (3.2%)
36 0.092900 0.19463 0.30911
(0.4%) (1.7%) (3.1%)
Exact 3-D 0.09248 0.19132 0.29954
(Srinivas)
P, .
*A=wh = where ® is natural frequency.
Qs
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Table 16

Non-Dimensionalized Fundamental Frequency by FEM using shear correc-
tion factor k=56

——— i ——— ———— ————  ——— ——— > = — = e —— - — ——— - — —— — ——— —_ —————— ——

Mesh Case I Case II Case III

4 0.09498 0.19710 0.31489

(2.7%) (3.0%) (5.1%)

16 0.09317 0.19584 0.31305

(0.7%) (2.3%) (4.5%)

36 0.09341 0.19805 0.32232

(0.7%) (3.5%) (7.6%)

Exact 0.09248 0.19132 0.29954
(Srinivas)
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(4x4) mesh for the three cases of the sandwich plate studied. The values of the lower

frequencies computed using the consistent shear approach differ only slightly from

those by the discrete laminate using a shear correction factor of 5/6.

higher frequencies are distinctly different.
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Section VII

DISCUSSION

Due to the inherent complexity associated with material anisotropv and
inhomogeneity of composites, a laminated plate often shows quite different mechanical
characteristics from the homogeneous isotropic counterpart. Therefore, it is essential
that any simplified theory satisfy equilibrium, kinematic and constitutive relations as
closely as possible to ensure reliable results.

The investigation reported here, aimed at development of stress and deformation
analysis of laminated composites resulted in the following accomplishments:

a. Development of a systematic and general theory to consistently incor-
porate the transverse shear-deformation effect in composite laminates.

b. Derivation of variational principles governing the refined theory to
provide a basis for development of efficient and reliable Ritz type as
well as finite element approximation procedures.

c. Implementation of the theory into a finite element computer program
including code verification.

d. Application of the theory to free-edge delamination specimens.

A discrete laminated plate theory based on the assumption of a layerwise linear
variation of in-plane displacements has been further refined by incorporating the effect
of transverse shear deformation in a consistent manner, viz. allowing for the coupling

of shear deformation effects between layers. This development was facilitated by a
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mixed variational principle of linear elasticity derived using Sandhu's generalized
procedure for variational formulation of linear coupled boundary value problems. This
mixed variational principle is more useful for the application to a general anisotropic
material than Reissner's [1984] approach. A parabolic distribution of shear stresses over
the thickness of each layer was assumed. Continuity of stresses and displacements in
the layer interfaces were allowed for. Distinctive features of the resulting constitutive
relations for transverse shear are:

1. Shear force resultants for each layer are a linear combination of the shear
strains of all the layers. Directional coupling of the constitutive relations dis-
appears for orthotropically constructed laminates.

2 Coefficients in a linear combination of shear strains are determined by parame-
ters related to lamination schemes such as material properties, thickness of lay-
ers and stacking sequence of layers.

3. The shear constitutive relations also depend upon tangential stresses specified
on the laminate surfaces.

The fact that the shear force over a layer is coupled with the shear strains of other

layers in a linear fashion seems to be a striking result because such coupling has not

been anticipated in earlier work. However, this result can be attributed to the consid-
eration of continuity of shear stresses in the interface of lavers which has not been
taken into account in previous studies. Coupling of shear constitutive relations of all
lavers could result in a better understanding of how a laminate composed of many
lavers might react to applied forces.

The nature and extent of the shear coupling was studied by looking at the

constitutive matrix for a 12-layer graphite epoxy laminate. It was observed that the
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shearing force in a laver was not significantly influenced by the strains in other
layers. Also, the effect was local, ie, contribution from other layers decreased sharply
with increasing distance between layers.

Using the refined laminate theory, a systematic development of variational
principles for static as well as dynamic analysis of laminated composite plates was
carried out. Direct as well as complementary formulations were developed. The
complementary self-adjoint form of the field equations obtained is an advancement over
the one presented by Al-Ghothani [1986], insomuch as the present work contains
coupling terms of the transverse shear constitutive equations between lavers.
Nonhomogeneous boundary conditions and internal jump discontinuities have been
explicitly included in the general variational principles. Allowance for jump
discontinuity terms in the variational formulation is meaningful in the context of
direct approximation in finite element spaces since the space of approximants may not
be sufficiently smooth. Extensions of the general wvariational principles through
elimination of certain field operators and specializations by restricting some of the field
equations and/or boundary conditions to be identically satisfied have been proposed.

Based on a special variational principle, a finite element procedure which uses

u"”, ¢ and w as the field variables has been formulated and a finite element code

has been developed. The computer program was used to study the effect of the
constitutive coupling by solving the static problem of a laminated coupon under axial
extension. The results were compared with the solution provided by Pagano [1978]
The displacement solution was seen to agree well. In addition to refinement of the
Finite Flement mesh, increased accuracy was seen to result from the division of each

layer into sublayvers. The results for inplane stresses compared well though those for
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transverse shear and normal stresses did not. It was observed that refinement of the

finite element mesh along the length of the free-edge delamination specimen did not

significantly contribute to improvement in accuracy. However, refinement in the lateral
direction (y-direction or the x, axis) near the free-edge gave considerable improvement.

Also, refinement of layers into sublayers improved the results. This points to the

desirability of using a higher order variation over the x, co-ordinate.

Though the constitutive relations have been derived from the equations of static
equilibrium, the problem of free vibration of a sandwich plate was also studied hy
including inertial terms in the variation formulation. The fundamental frequency was
compared with that obtained from an elastodynamic solution. It was observed that
1. In certain cases, a consistent shear correction improves the accuracy considera-

bly in predicting natural frequencies over the shear correction by a simple
factor which has been widely used in previous theories.

2. Improvement of accuracy depends upon the material properties of each layer.
With increase in the difference of material properties in the individual layers,
the significance of a consistent shear correction was more pronounced.

The higher frequencies were also studied and it was observed that the higher
modes differed sharply from those obtained using a single shear correction factor.

These limited numerical tests illustrate the validity of a consistent shear correction
procedure. Considering numerous design possibilities of composite laminates, use of a
procedure to treat transverse shear deformation in a consistent manner rather than

shear correction on an ad-hoc basis seems to be desirable.
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Appendix A
VARIATIONAL FORMULATION OF LINEAR COUPLED

PROBLEMS

The procedure for obtaining variational principles governing linear coupled
boundary value problem is summarized following Sandhu [1970,1971,1975,1976).  The
procedure can be considered as an extension of Mikhlin's [1965] basic variational
theorem to coupled linear boundary value problems, including nonhomogeneous boundary
conditions and internal discontinuities which may exist in the physical problem or arise

in connection with numerical approximation procedures.

Al MATHEMATICAL PRELIMINARIES

A.1.1 Boundary Value Problem
Consider the boundarv value problem
Alw) = f on R (A1)
Clu)=g on QR (A.2)
where A and C are the linear, bounded operators, u is the field variable, R is an open
connected region in an Fuclidean space and §R is its boundary. Let V, and V,, be
linear vector spaces defined on the regions indicated by subscripts such that

fE€V, and g€V,
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Then, the operators can be regarded as transformations defined over sets W, W.  such
that

AW, =V, (A.3)

C: WaR—*V (A4)

£y
For A, C differential operators, WR’WaR are, in general, dense subsets in \"k.\v’bk,

respectively.

A.1.2  Bilinear Mapping
let V' and S be linear vector spaces. A bilinear mapping Blw,v) VXV = § assigns

an element in $ to an ordered pair of elements w,v€l" while preserving linearitv. lor
convenience, we shall use the notation

B{w,v) = <w,v> (AS5)
Bilinear mapping B is said to be nondegenerate if

<w,v> =0  for al w €V if and only if v=0 (A.6)
and symmetric if

<w,v> = <v,w> for all vyw €V (A7)

A.1.3  Self-Adjoint Operator
let A:\V'—V be an operator on the linear vector space V. Operator A': V' =\ is
said to be adjoint of A with respect to a hilinear mapping < , > VXV — 3§, a linear
vector space, if
<w, Av> = <v, A'w>R + DaR(v,w) (A.8)
for all v,w € V. We assume here that the domain of A, A’, a dense subset in V can be

extended to V. Here, the subscript R of bilinear mapping indicates that V is defined

over spatial region R and D(,,R(V.W) represents quantities associated with the boundary
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OR of R. If A= A", A is said to be self-adjoint. In particular, an operator A is
said to be symmetric with respect to bilinear mapping if

<w, Av> , = <v, Aw> (A9)

A.14 Gateaux Differential

Consider a continuous function Q:V — §. Gateaux differential of Q is defined as
A QW) = lim %[Q-(u+)\v) - Q)] (A.10)
A—=Q

provided the limit exists. Here, v is referred to as the ‘path’ and A is a scalar. We
note that for w, veV, u+Av €V. If the Gateaux differential exists at everyv point in a

neighborhood of v=uy,

_ d
A Q) = EXQ(‘H'}‘U)!uo

A2 BASIC VARIATIONAL PRINCIPLE

For the boundary value problem (A-1) with homogeneous boundary condition,
Mikhlin [1965] used the inner product as the nondegenerate symmetric bilinear mapping
on the linear vector space of square integrable functions and showed that the unique
solution u, minimizes the functional

Q) = <Au,u>, - 2<u, f>, (A1)

if the linear operator A is positive definite and self-adjint. Conversely, u, which
minimizes the functional (A-11) is the solution of the problem (A-1).

Taking Gateaux differential of the function (A-11),

A Q(u) lim—;\—[<A(u+Av>.u+)\v> —2<u+Av> <Au,u> +2<u, f>]
A—O

<Au,v> 4+ <Av,u> —2<v, f>




=2<v, Au—f> (A.12)
The Gateaux differential evidently vanishes at the solution u#=wu, such that
Au,— f = 0. Also, since the bilinear mapping is nondegenerate, vanishing of the
Gateaux differential for all v implies Au,—f = 0. To prove the minimization property,
the bilinear mapping has to be into the real line and the operator must be positive.
However, in general, it is only necessary to use vanishing of Gateaux differential as

equivalent to (A-1) being satisfied.

A3 VARIATIONAL FORMULATION OF THE COUPLED PROBLEM

Through  generalization of Mikhlin's theorem, Sandhu [1970,1971,1975,1976]
constructed a framework to handle the inverse problem of variational calculus for the
linear coupled problem with multiple field variables. To include the nonhomogeneous
boundary conditions and internal discontinuity conditions explicitly in the formulation,
the concept of consistent boundary operators was introduced.

Consider the coupled boundary value problem with multiple field variables

A(w) =f on R (A.13)

C(u)

il

g on QR (A.14)
in which A, C and u are, respectively, the field operator matrix, the boundary operator
matrix and the vector of field variables, and f, g are the vectors of known forcing

functions. Explicitly,

ZAqu =f on R (A.15)
s 1
Y Cu =g on §R . i=1,2,,,,.n (A.16)
1
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in which gR denote segments of @R such that
8k = |J R, (A17)
=1
and n is the number of independent field variables. Operators A, are regarded as the

transformations

A:M —-P (A18)
where
wew = M, (A.19)
=1
fev= e, (A.20)
J=1

Thus, the range of A, constitutes a product space
V=VxV,x. ..... 1% (A21)

l.et V be a vector space defined as the direct sum

V=V 4V, 4.0 +V (A.22)

and an element u€V be the ordered set

u = {u U sy '“,.} (A.23)

.
such that u €V, Then, a bilinear mapping on V, may be defined as

<u,v>,=<u,v,> . +....... + <u ,v >

PV a V> p (A.24)

The set of operators A, is said to be self-adjoint with respect to this bilinear mapping

if [Sundhu, 1976]

Z <u,Au>,= <u, ZA:;“;)R + Dala(".’u;) (A.25)
71

=1
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where D f(u u) denote quantities associated with QR. If the set of operators A s

self adpint, as a generalization of Mikhlin's theorem, the function governing the

problem (A-13) and (A-14) was defined as

n n
Q=3 Y A<u, Au-2f> + <u,Cu~2>.)} (A26)

=1 j=1
For vanishing of the Gateaux differential of this function to imply (A-13) and (A-14).
the boundary operators €, must be consistent with the field operators A,. Sandhu

[1976] stuted the consistency condition of the boundary operators as
/)M(u'.u_) = <u, ,Zl(fi.‘u)ap -~ ’Z’<u.,, (;»,,“,>(’,p (A.27)
sl [
In other words, for (A-26) to be the governing function in variational formulation of
the problem given by (A-13) and (A-14), the boundary operators must satisfy (A-27).
Sandhu [1975] showed that appropriate boundary terms should be included in the
formulation even if the boundary conditions are homogeneous.

In applying the finite element method to obtain an approximate solution, the
approximation space may have limited smoothness, e.g., when nonconforming elements
are used. Prager [1968] was the first to discuss this aspect in connection with
variational  formulation. To allow for this, Sandhu [1975] wrote the internal
discontinuity conditions in the form

(Cuu_,)' =g on 9R (A.28)
where a prime denotes the internal jump discontinuity along internal surfaces @R,
embedded in the region R. Since (A-28) has the same form as the boundary
conditions, it is apparent that this condition can be included in the governing function

in the same wayv. The governing function allowing for (A-28) is
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0= Z Z{ <u,Au~2f>,+ <u,C u—2>

=1 4=1

ok

o} (A29)

+ <u,(Cu)—-2¢>
This is the general form of the governing function in the variational formulation of
linear coupled boundary value problem with multiple field variables. The essential
step N setting up a varniational formulation of a boundary value problem is to write
the teld equations 1n a form that the matrix of field operators 1s self-adjoint with
respect to certair bilimear mapping and the boundary conditions are consistent with the
tield operators. The procedure 1s also applicable to initial-boundary vaiue problems using

appropriate bilinear mappings.
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Appendix B

EVALUATION OF ELEMENT MATRICES

B.1 INTERPOLATION FUNCTIONS OF THE 'HETEROSIS ELEMENT

The computer program developed incorporated the ‘Heterosis plate bending wlement
[Hughes 1978] ulong with reduced/selective integration technique. The element matrices
can be formed following the usual procedure of isoparametric element formulation.
However, the 'Heterosis' element differs from other isoparametric elements in using

different interpolation scheme for lateral displacement on the one hand and inplane

displacement and rotations of the cross-section on the other. In-plane displacements u'"

and rotations of cross-section ¢ff) are approximated by qaudratic functions for &-node
isoparametric element while the lateral displacement w is approximated by 9-node
Lagrange interpolation functions. Consequently, the number of degrees of freedom at
the center node is less than that at other nodes bv one. Interpolation scheme of the
Heterosis' element is shown in Figure B.l. Using such interpolation scheme, Hughes
[1978] was able to avoid spurious zero energy mode of stiffness matrix which can be
caused by use of reduced integration.

Interpolations functions of 8-node isoparametric element and 9-node Lagrange
element in terms of natural coordinates (st) and their derivatives with respect to s

and t are given below.
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(a) Local

(h) Global

Figure B.1: Global and local Coordinate Svstems of ‘Heterosis' Element
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(1-sX1-tX-1-5-t) (1-eX2s+t) (1-sX2t+s)
(+sX1-tX-1+s5-1) (1-1X2s-1) (1+sX2t-s)
(145X 1+t X-1+5+¢) (1+¢X2s+t) (1+5X2t+s)
Q-sX1+1X-1-5+t)
gl s +t, S+t aN _ 1 (1+¢X2s-0) ON _ 1 (1-sX2t-5) ®1)
2| 20X | e T | s | e T 23163 '
2(1+sX1-t%) 2(1-¢%) -4t(1+s)
2(1-5X1+¢) -4 s(1+1) 2(1-5%)
2(1-sX1-%) 2049 -41-s)
st(1-5)(1-1) 1(25-1)(2-1) s(20 (s 1)
st(1+8)(1-1) t(2s+1)(1-1) s(21-1)(s+1)
st (1+5)(1+1) 1(2s+1)(2+1) s(2141)(s+1)
st(s-1)(+1) t(25-1)(t+1) s{2t+1)(s-1)
L= 1{200-s00D oL 1 ast -0 | 8L _ 1]5(241)(15) (B.2)
4 25(s+1)(1-1%) gs 4 22s+1)(1-29) o 4 -451(s5+1)
2 (1-5) (t+1) -4st(1+1) 2(2+1) (1-5)
2s(s-1)(1-t%) 2025117 4st(1-5)
4(1-s) (1) Bs(t%1) B (s™-1)

Here, N and L denote interpolation functions for 8-node isoparametric and 9-node

Lagrange element:, respectively.

B2 EVALUATION OF STIFFNESS AND MASS MATRICES

Since the field variables are interpolated over an element in natural coordinates
(s,t), it is necessray to set up the relation of the global coordinates and natural (local)
coordinates for evaluation of the element matrices defined in Section VI. We consider
a mapping of global coordinate system (x,,x,) to local coordinate system (st). We
assume that this mapping is one-to-one and onto. By chain rule, the derivative in

each coordinate svstem is related by
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9 KR ] 9
9s ox 9x -1 |0s

=] or =] (B.3)
9 9 9 9
i oy ay o
where Jacobian matrix J and its inverse is defined as
9x 9y o _oy
y=|% O and P 0 L (B.4)
9x dy Jh]_gx  8x
o o o 9

Here, 1J! is the determinant of Jacobiun matrix. Using (B-3) and (B-4), one can obtain
the expressions of the matrices T,, T, and T, defined in (214){216) in natural
coordinates. Following the concept of isoparametric formulation, global coordinates are

interpolated over an element as

x=¥gx (B.5)

where ¥ is the vector of interpolation functions used for field variable. x is the
vector of global coordinate values at nodal points. Since in the 'Heterosis' element
different interpolations functions N and L are used for ¢ and w, ¥ in (B-5) must be
L for evaluating T, and T, while be N for T,

Using (B-1){B-5) and the interpolation functions defined in (211){216),

Lo
H,=H,| (B6)
H =N (B.7)
Yy o
T =T,= 7|0 |P (B8)
Ly r .7
_x I
) T
T = 5+ [i, R (B.9)
AEX

W here
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N, =—x" Py

Wl =-x"Ry

P=L,L -L,L,/

R=N,N/-N, N/
Here, a subscripted comma denotes partial differentiation with respect to the variables
following the comma.

In element matrices given in (218)233), the integrands are functions of natural

coordinates (s-t). Therefore, the surface integration extends over the natural coordinate
surface. Since, in general,

dR = \JIdsdt (B.10)

integration in each coordinate system is related by

1

[ [rapazay= [ ]' Fls)Udsdt (B11)
A

-1 -1
Using Gaussian quadrature
m m
[ Fapar= LY FGs 20w, (B12)
» i=1 j=1
where m is the number of Gaussian quadrature points and W, are weighting values.
Here, it should be mentioned that the in the 'Heterosis' element numerical integration
was performed by selective/reduced integration technique, viz, two-point Gaussian
quadrature for evaluation of transverse strain energy term while three-point quadrature
is used for other quantities. Therefore, (231)233) were evaluated by two-point

quadrature and the remaining quantities were evaluated by three-point quadrature.
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