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FINAL REPORT ON ACTIVITIES SUPPORTED BY

AFOSR 89 - 0031

Prepared by

David L. Russell. Principal Investigator

Department of Mathematics
Virginia Tech.

Blacksburg, VA 24060

1. General Description of the Program Commencing November 1, 1988.

and continuln to the present, the principal investigator, his assoc-

iates and research assistants have carried out a program of research
in the general area of distributed parameter systems modelling, iden-

tification and control. This work has been concentrated in four main

areas:

i) Control of the Korteweg - de Vries and other nonlinear par-

tial differential equations exhibiting solitary waves;

ii) Frequency domain analysis of distributed parameter systems;

ili) Energy dissipation mechanisms in elastic structures;

iv) Modelling and parameter estimation in elastic structures.

The research program has included mathematical studies by the princi-
pal investigator, contributions from visiting associate researchers

and dissertations preparee by PhD students of the principal investi-

gator. Related activities include experimental work in the MIPAC-VT

laboratory by the principal investigator and visiting associates,

presentation of results at scientific meetings and preparation and

publication of research articles. In the sequel we first provide
brief descriptions of each area of research and the results obtained

and then summarize research publication activity, visitors, scientif-

ic meetings, etc.
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2. Brief Descriptions of Research Areas and Results

i) Control of the KorteweK - deVries and other nonlinear_partial

differential ejuations exhibitinK solitary_waves.

With the control theory of linear partial differential equations

having now reached a certain state of maturity, we have felt it to be

important to initiate studies for nonlinear systems with significant

applications. As in the case of the early development of the control

theory for linear distributed parameter systems, we have found it de-
sirable to focus on nonlinear systems for which a considerable body

of theory exists in regard to the classical questions of existence,
uniqueness and regularity before in order to obtain definitive cont-

rol results. At the present time we are studying two nonlinear dis-

persive wave equations, the Korteweg - de Vries (KdV) equation and

the related Boussinesq equation and a nonlinear diffusion equation,

the Benjamin - Bona - Mahony (BBM) equation. A number of important

positive results have been obtained in the KdV and BBM cases. It is

significant that the study of these equations indicates questions for

related linear systems which otherwise might be ignored. Here we

will describe results obtained for the KdV equation; research is in

preliminary stages for the other two.

Work carried out jointly with Professor B.-Y. Zhang of the Uni-

versity of Cincinnati and Prof. V. Komornik of the University of

Strasbourg, France, involves the forced KdV equation

aw 8 w -w 8 w = f (1.01)
at ax 8x 3

on the region 0 1 x I 2r, t 0, with periodic boundary conditi-

tions

w (k) (2n,t) = w(k)(o,t), k = 1,2,3, ...

so that x = 2r is effectively identified with x 0.

For the unforced equation (f(x.t) z 0) it is well known that

there is an infinite set of conserved quantities. Only the first

three of these are of interest to us:
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2f w(xt) dx . (1.02)

0

2r w(x.t)* dx 
(1.03)

0

2J [(A(xit) 2 _ 1. W(X~t)3] dx .(1.04)

Much of our control analysis involves examination of the behavior of

these quantities when the forcing term. f(x,t), is not identically

zero. For suitably smooth solutions of (1.01) we have

w(xt) dx = -w(x.t)lk(x.t)--S(x,t)+f(xt) dx =0f 10 1- x ax 3

2r r_&_ lw(xt)a - a-!(xtf + f(xt)I dx - f(xt) dx
0 xaxx ' " 0

from which we conclude that "volume" is conserved if we require

Jo f(x.t) dx = 0 (1.05)

In fact we are interested in a particular sort of control

action. Let I = (a,b] be a subinterval of [0,2=], require

f(x,t) a 0 , x I

and determine f on I by

f(x.t) = -k(w(x,t) - [w] 1 ) , (1.06)

where k is a positive "gain" constant and
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b

(w]1  (w11(t) = w(xt) dxI Ja

is the mean value of w over I. It is trivial to verify that (1.05)

is satisfied. This sort of control can be realized, approximately,
by a distributed "pumping" action over the interval I which injects
"fluid" into the system at points x where w(xt) < [W][a~b)(t) and

extracts "fluid" from the system where the opposite inequality ob-
tains, at a proportional rate determined by k in each case.

The feedback control law Just described is intended to stabilize
the controlled system in a certain sense. Since volume is conserved,
for a solution of (1.01) with initial state

w(xO) = WO(x)

we have, for all t,

V(w(.,t)) = 2 w(x,t) dx = V(w) = f w(x,O) dx

0 0

equivalently, abbreviating [w)0,27, by [w] for convenience,

1w](t) R w 0]

We then note that for any w e L2 [0,2r] satisfying this identity

W(X,t) 2  dx = w(x,t) - [w] + [w], dx =
0o 0 t J

w(x,t) - [w] dx + 2(w]j w(x,t) - [w] dx J[w]Z dx
0 0 0_ _

V- 0
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0 w(x,t) - [w]) dx + [w] 2  dx

Hence, among functions w for which V(w) = V(w ), the integral (1.03)

is minimized by the constant function [w). We may therefore hope

to cause w(x,t) to approach (w] as t o - by using a control law de-

signed so that this integral is non-increasing.

Since the KdV equation has the property of invariance under

time reversal (replace x by -x at the same time as we replace t by
-t), global controllability results for the XdV equation are in our

grasp if we can use the LaSalle Invariance Principle to obtain global

asymptotic stability of the zero equilibrium state and if we can

obtain local controllability results in a neighborhood of that state.

The application of the LaSalle Invariance Principle referred to

above requires, for its implementation, certain unique continuation
results for solutions of the unforced KdV equation. We have, in fact,

shown that any nontrlvial solution of the KdV equation lying in an

appropriate function space (LO(--,c) in this case) cannot have supp-

ort restricted to two left (or right) horizontal lines in x-t space.
This result implies that the solution u cannot have compact support

at two different times and also implies that if the solution u van-
ishes in an open set in x-t space, then it vanishes everywhere. It

turns out that these results provide the proof of triviality of cer-
tain invariant sets for the closed loop KdV system described above

which is essential for completion of the asymptotic stability result.
In order to complete the global asymptotic stability part of the work

it is necessary to show that solutions of the controlled system lie

in a compact subset of the state space, 12 [0,2n]. This part of the
work has proved remarkably recalcitrant and requires our continuing
strenuous efforts for successful completion.

The required local controllability results for the nonlinear eq-
uation in a neighborhood of w a 0 follow from exact controllability

results for the linearized system, which is just the third order lin-

ear dispersion equation

Aw 83 w
at 8x 3
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We have completed a thorough study of the uniform exponential stabil-
izability and exact controllability of this system and a related

boundary control system with positive results in each instance. This
work is complete and will appear as a paper jointly authored by B.-

Y. Zhang and the principal investigator. The results on the KdV equ-

ation are currently being prepared as an article for publication

jointly authored by V. Komornik, B.-Y. Zhang and the principal inves-
tigator.

ii) Frequency domain-analysis of distributed parameter sjstems.

In this area we have been concerned with the development of fre-

quency domain methods useful for analyzing hyperbolic systems corres-
ponding to various types of wave motion, including vibration of elas-

tic systems of various types. The transfer functions and related in-
out - output operators corresponding to these types of systems have

some disconcerting properties, particularly in relation to converg-
ence questions with respect to approximation via finite dimensional

systems. In addition to these approximation questions we have been
studying the use of transfer function methods to analyze closed loop

systems arising out of certain linear feedback laws in distributed
parameters systems, particularly where boundary feedback is concern-

ed, use of transfer functions to determine the admissibility of var-
ious input and output mechanisms and a number of other related mat-

ters. In this process we have developed a representation of closed
loop semigroups in terms of the inverse Laplace transforms of the

associated closed loop transfer functions, providing what we believe
to be a significantly new approach to certain problems in this area.

Our work in this area has been greatly strengthened by the pres-
ence of Dr. G. Weiss as a visiting researcher. He has developed the

particularly useful category of regular linear systems which are, to

put it briefly, linear input-output systems whose response to an im-
pulse input occurring at t = 0 has a certain limiting behavior as

t 1 0. The Introduction of this class of systems and the systematic
development of its properties has clarified many previously obscure

questions.

Dr. Weiss has been investigating the connection between state

space and transfer function representations of infinite dimensional
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linear systems. The central question is to find verifiable condi-
tions for a system to be regular, since regular systems are known

to have a convenient state space representation.

Dr. Weiss has been working with the principal investigator in

some research on well posedness of feedback systems when the feedback
operator is unbounded. Conditions have been found for the closed

loop system to be regular. Explicit characterizations of the closed
loop generator, control operator and observation operator have been

obtained. More recent work with the Principal Investigator has been
focussed on the question of a frequency domain characterization of

exact controllability and/or observability of infinite dimensional
linear systems, extending to infinite dimensions a criterion due to

M. L. Hautus in the finite dimensional setting. This research is now

complete and has been submitted for publication in the SIAM Journal

on Control and Optimization as a joint paper by G. Weiss and the

principal investigator.

Dr. Weiss has been cooperating with the principal investigator's

former PhD student, Dr. Scott Hansen, on extension of the Carleson

measure criterion for admissibility of control operators to the case

when the input space is infinite dimensional. They have also invest-
igated the connection between admissibility and the related operator

Lyapounov equation.

Working with Prof. Richard Rebarber of the University of Nebras-

ka, Dr. Weiss has found some general conditions for a feedback system
to be robustly stable with respect to small delays in the feedback

loop. Specifically, they have found that to ensure robustness, the
open loop transfer function should decay in all directions in the

right half complex plane at a certain rate. This research is also
complete and will appear as a paper jointly authored by Dr. Weiss

and Prof. Rebarber.

III) Eneryy_dissipation-mechanisms in elastic structures.

Our research program in this area has been concentrated on the

study of Internal dissipation mechanisms in the context of the Euler-

Bernoulli beam equation
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a (I32j 0 (3.01)
at x2  ax

for which, in the absence of additional dissipative terms, the energy

a L O B2 a2 2,
J LP ' EIT-3j dx (3.02)

is conserved. Difficulties encountered in developing mathematical

models for energy dissipation in this system agreeing with dissipa-
tion rates measured in the MIPAC-VT laboratory led earlier to the

development of an approach which, accurately or not, has been named
the spatial hysteresis damping model. This model consists, primarily,

In the integro-partial differential equation

aL , 2w (w, a a,2 2IIa+w0
at 2 a o atax atax t)d -21xJ =0 (3.03)

involving an appropriate interraction kernel h(x,t). The analytical-
ly derived damping rates associated with this model show excellent

a"reement with laboratory measurements over a wide frequency range,
as described in reports filed earlier.

Damping mechanisms such as this one are direct mechanisms in
that they involve direct insertion of supplementary dissipation terms
into the original conservative equations governing the elastic sys-

tem. Mechanisms studied in our recently completed work are indirect
in the sense that they involve coupling the mechanical equations gov-
erning beam motion to related dissipative systems with additional dy-

namics, resulting in an overall system in which mechanical energy is
dissipated. We have carefully analyzed the Euler-Bernoulli beam with

thermoelastic damping and with shear diffusion damping. The most sig-
nificant situation is that wherein both types of damping are simul-
taneously present. The paper embodying this research has been comp-

leted and has been accepted for publication in the Quarterly of Ap-

plied Mathematics. It will appear shortly.

Indirect damping mechanisms enjoy the advantage that they are
motivated and derived from simple physical considerations, allowing

us to answer objections often made concerning the spatial hysteresis
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model to the effect that it is ultimately ad hoc in nature. Because

of these desirable properties we have thought it useful to study such
mechanisms from a fairly general viewpoint. In an article just comp-

leted we have introduced a general analytic and algebraic structure
within which many such indirect damping mechanisms, including but not

restricted to the thermal and shear diffusion mechanisms, may be in-

corporated. The resulting framework is sufficiently general to indi-

cate the possibility of many other indirect damping mechanisms than

those already dealt with and precise enough so that it permits us to

see that thermal damping, even when longitudinal heat conduction is
admitted, is mathematically, as well as physically, quite distinct

from shear diffusion damping. This article has been submitted to the

Journal of Mathematical Analysis and Applications.

In this area we have also been concerned with the development of
new laboratory techniques which will allow us to overcome experiment-

al difficulties long encountered in separating the effects of inter-
nal damping from those due to interaction with the supporting appara-

tus and/or measuring devices. A new technique has now been developed
allowing one to study waves in the elastic structure as they leave

the supporting clamp structure, comparing them with waves returning

to that structure after reflection from the free end of the elastic

beam under study. This technique uses MIPAC-VT's laser vibrometer
to eliminate effects due to measurement devices, as are common with

the use of accelerometers and/or stress gauges, and relies on the
mathematically provable fact that damped modes in an elastic struc-

ture do not have true nodes as developed theoretically for undamped

structures. Internal damping rates are inferred from comparison of
vibration amplitudes at quasi-nodes near the clamping mechanism with

corresponding quasi-nodal amplitudes near the free end of the struc-

ture. It is these easily made observations which allow experimental
assessment of the outgoing and incoming wave amplitudes as discussed

earlier. A paper on this experimental technique, along with some

experimental results, is currently in preparation.

iv) Modelling And parameter estimation-in elastic structures.

Here we are referring to the work described under section c)
of the Renewal Proposal to which this appendix is attached. We will

not repeat the basic discription of the research program as developed
there. Rather, we will indicate what work has been carried out up to
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the present time with the support of AFOSR 89 - 0031. This work has
been a cooperative undertaking with Professor Luther White of the
University of Oklahoma, whose research is also partially supported by

AFOSR.

Extensive use of the research equipment in the MIPAC-VT facility

has been made by the principal investigator, Assistant Professor Rob-
ert C. Rogers, and Luther White, visiting from the Unive-sity of Ok-

lahoma, in study of modal frequencies, shapes and damping rates in a
variety of elastic structures. Major efforts have been made to imp-

rove laboratory capabilities in this area with the design and instal-
lation of equipment allowing separate excitation of lateral and tor-

sional modes in axially symmetric narrow plates. This equipment was
first put to use during a spring 1991 visit by Luther White, with

experimental results far better than any obtained previously. This

data is currently being analyzed for identification purposes.

This experimental data is complemented by our efforts to develop
usable narrow plate models, starting with the Mindlin - Timoshenko

plate model. Joint work by the principal investigator and Prof. Lut-
her White has now resulted in such a model which appears to offer

real advantages from the identification standpoint. This model is
a distributed model insofar as the longitudinal axis of the narrow

plate is concerned but is finite dimensional as far as description
of shearing and torsional motions orthogonal to the longitudinal axis

is concerned. Mathematically, the resulting model is a linear sym-
metric hyperbolic system; an extension of the familiar Timoshenko

beam equations. It is far simpler to work with than the two dimen-
sional plate equations and, in that respect, appears to offer real

computational advantages for identification purposes.

3. Research Associates and Assistants Supported in Part by

AFOSR 89 - 0031

In accordance with the provisions of the subject grant, three

visiting research associates were supported during the grant period.

Dr. Gunter Leugering of Technische Hochschule Darmstadt, Darm-

stadt, Germany, was supported in part by grant funds during the per-
iod January 1, 1989 through April 30, 1989 as a visiting Assistant

Professor in the Mathematics Department at Virginia Tech. Dr. Leuger-
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ing assisted the principal investigator in development of the shear
diffusion damping model and the related projection method. He also

carried out research in control theory of partial differential equa-
tions with delay terms, such as arise, for example, in connection

with elastic systemrs with viscoelastic damping.

Grant funds were used during the period covered by the grant to

provide partial support for Dr. George Weiss, who visited Virginia
Tech from the Weizmann Institute, Rehovoth, Israel. It was sufficient

to underwrite only 20% of Dr. Weiss salary as the larger part was
provided in the form of a Weizmann Fellowship. Dr. Weiss carried out

an intensive program of research in the area of frequency domain met-
hods for infinite dimensional linear systems. His appointment exten-

ded from December 15, 1989 through December 14, 1990.

Our research efforts in nonlinear distributed parameter control

were greatly aided by the visit to Virginia Tech, during Sem. I,
AY 1990-91, by Professor V. Komornik, newly appointed Professor of

Mathematics at the University of Strasbourg, France. Professor Kom-
ornik, who was partially supported by this AFOSR grant, has gained

world recognition for his exceptionally insightful treatment of con-

trol problems for wave and elastic systems, as well as certain non-

linear distributed parameter systems. He worked with the principal
investigator and the principal investigator's former PhD student, Dr.

B.-Y. Zhang on global controllability of the Korteweg - de Vries eq-

uation.

The principal investigator's former PhD. student, Scott Hansen,

was, in part, supported by the grant from November 1, 1988 through
April 30, 1989. Mr. Hansen had also been supported in part by AFOSR

at the University of Wisconsin from an earlier grant at that Univer-
sity. In December of 1989 Mr. Hansen received the Mathematics PhD at

the University of Wisconsin - Madison, presenting a thesis titled

Frequency - Proportional Damping Mechanisms in Elastic Beams. This
thesis dealt with mathematical properties of the spatial hysteresis

damping mechanism and related "bending rate" models, with particular
attention being given to the properties of the strongly continuous

semigroups associated with such models and the character of the gen-
erating operator of the semigroup. Dr. Hansen continued these re-

searches at Virginia Tech during Sem. II, 1988-89. He is currently

at Iowa State University.

The principal investigator's former PhD student, Mr. B. - Y.
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Zhang, received his PhD from the University of Wisconsin, Madison,
in May, 1990, presenting a thesis titled Some Results for Nonlinear

Dispersive Have Equations with Application to Control. Although
Mr. Zhang was not directly supported by grant funds, his thesis re-

search nevertheless parallelled and supported the principal inves-
tigator's work in the control of nonlinear partial differential eq-

uations. Dr. Zhang is now Assistant Professor at the University of

Cincinnati.

4. Research Articles Resulting from Work Supported in Part by

AFOSR 89 - 0031

The following is a list of papers reporting research supported

in part by AvOSR 89 - 0031. In the case of papers by the principal
investigator it includes some articles for which the research was

carried out under the aegis of earlier AFOSR grants but for which
processing continued under AFOSR 89 - 0031. Listed papers by other

authors report only research carried out under AFOSR 89 - 0031.

Papers_by jh principal investigatort

On mathematical models for the elastic beam with frequency

proportional damping, in "Control and Estimation in Distributed

Parameter Systems, H. T. Banks, Ed., SIAM Publ., Philad., 1990

On the positive square root of the fourth derivative operator.

Quarterly of Applied Mathematics, 46 (1988), pp. 751 - 773.

Spectral and asymptotic properties of linear elastic systems

with internal damping. Proc. Conf. on Boundary Stabilization
and Control of Systems Governed by PDE's, Clermont-Ferrand, 1988

(with T. P. Svobodny) Phase identification in linear time-perio-

dic systems, IEEE Transactions, Vol. AC 34 (1989), pp. 218-220

(With G. Chen et al) Analysis, designs and behavior of dissipat-

ive joints for coupled beams, SIAM J. Appl. Math. 49 (1989), pp.
1665-1693

Computational study of the Korteweg - de Uries equation with

localized control action, in "Distributed Parameter Control
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Systems: New Trends and Applications", G. Chen, E. B. Lee,

W. Littman and L. Markus, Eds., Marcel Dekker, Inc., New York,

1990, pp. 195 - 203

Approximation of input-output operators for distributed parameter

systems, Proc. 1990 IEEE-SIAM Conf. on Dec. & Cont., Honolulu,

December 1990.

A comparison of certain elastic dissipation mechanisms via de-

coupling and projection techniques, to appear in Quarterly of
Applied Mathematics, 1991

Neutral FOE canonical representations of hyperbolic systems,

Jour. Int. Eq'ns. 3 (1991), 129 - 166

A general framework for elastic systems with indirect damping,

submitted to J. Math. Anal. Appl.

(With G. Weiss) A general necessary condition for exact observa-

bility, submitted to SIAM J. Cont. Opt.

(With B.-Y. Zhang) Controllability and stabilizability of the

third order linear dispersion equation on a periodic domain,

to appear.

PaRers_by Dr. Scott W. Hansen

Frequency - Proportional Damping Mechanisms in Elastic Beams,

Doctoral thesis, University of Wisconsin-Madison, Dec., 1988

(with G. Weiss) The Operator Carleson Measure Criterion for Ad-

missibility of Control Operators for Diagonal Semigroups on Z2.

Systems and Control Letters, 1991

Papers_by Prof. Guenter Leugering

A Decomposition Method for Integro-Partial Differential Equat-

ions and Applications, to appear in Math. Pures et AppI., 1991

Lapers_by Dr. GeorpeWeiss.
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Transfer Functions of Regular Systems: Part 1, submitted to
Trans. of the AMS,

Robustness of Feedback Systems with Respect to Small Time

Delays, Proc. Conf. on Dec. & Contr., Honolulu, Dec., 1990

Two Conjectures on the Admissibility of Control Operators,
Proc. Vorau Symposium on Ident. & Contr. of Distr. Systems,
July, 1990, to be published by Birkhauser.

Representations of Shift Invariant Operators on t2 by Transfer

Functions in H-: An Elementary Proof, a Generalization to tP

and a Counterexample for t, Math. for Control, Signals and
Systems, 1991

5. Partially Supported Visitors and Speakers

Speakers partially supported by the grant during the reporting period
with the general area of their presentation:

Prof. Katherine Klime, Case - Western Reserve University
S.

Control theory of the Schrodinger Equation

Prof. Joseph Watkins, University o: Southern California

Semigroups and Stochastic F icesses

Prof. Luther White, University of Oklahoma
Identification of Coefficients in Elliptic Systems

Prof. B. - Y. Zhang, University of Cincinnati

Control Theory of the Korteweg - de Vries Equation

Prof. Jack Hale, Georgia Tech
Periodic solutions of infinite dimensional nonlinear systems.

Prof. Walter Rudin, University of Wisconsin
Some aspects of the theory of several complex variables.
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Prof. G. Chen, Texas A. & M. University

Control of wave equations with localized controls.

Prof. W. Hereman, Colorado School of Mines

Analytic methods for analysis of nonlinear PDEs with solitary

wave Solutions

Prof. V. Komornik, University of Bordeaux

Minimal time controllability of the wave equation with boun-

dary controls

Prof. L. F. Ho, Wright State University

Control of the Euler - Bernoulli beam equation with localized

controls

6. Travel to Scientific Meetings Partially Supported by AFOSR 89-0031

Grant funds were used during the reporting period to attend

and present lectures at the following meetings. In each case a

talk was presented describing AFOSR - supported research.

Conference on Decision and Control, Tampa, FL., December, 1989

SIAM Meeting on Control in the 1990's, San Francisco, May, 1989

Three Rivers Applied Mathematics Symposium, Pittsburgh, PA,

April, 1990

SIAM Summer Meeting, Chicago, Illinois, June 1990

Regional AMS Meeting, Tampa, Florida, March, 1991

(Travel by V. Komornik) Conference on Decision and Control, Honolulu,

December, 1990

(Travel by G. Weiss) SIAM Meeting, San Francisco, Feb. 1991
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Some Remarks on Experimental Determination of Modal Damping Rates

in Elastic Beams

by

David L. Russell

Department of Mathematics

Virginia Polytechnic Institute and State University

Blacksburg, VA 24061

1. Background Let us begin with a protective disclaimer of all in-

tention to treat our subject in any degree of completeness, particu-

larly in regard to giving an account of historical efforts to deter-

mine damping rates In elastic systems. A very fine account of the

latter is provided by Bell in [ 1 ], particularly in regard to the

nineteenth century studies of Kelvin, Voigt and Weber. An overview

of recent studies in this direction is given in Bert's article [ 2 ].

We should also duly note the very significant study [ 12 ] of Zener

In which he presents a variety of theoretical explanations accounting

for internal energy losses in elastic systems.

The projected use of extended elastic structures in a variety of

space applications has led, during recent decades, to a significant

revival of interest in the study of internal damping mechanisms in

such structures. The research so motivated has been greatly facili-

ted by modern methods of data collection and analysis, such as laser
vibrometry and Fast Fourier Transform (FFT) techniques allowing far

more comprehensive studies of damping than were possible in earlier

times, particularly in the high frequency range. Even more recently,

as illustrated by some vibration problems encountered with the Hubble

space telescope, it has become ever more evident that such studies

are vital if future space platforms are to function satisfactorily.

In manned space stations damping is likely to be Important in all

frequency ranges, from the lower frequencies due to excitation of

natural modes of vibration by movement of masses within the struc-

ture, docking maneuvers, etc., to high frequency vibrations excited

by rotating electrical machinery, "popping" of joints during thermal

expansion or contraction, sharp impacts, and many other causes.
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Earthbound laboratory studies of Internal damping in elastic

structures has been complicated by the very real difficulty of eli-

minating energy losses to the external environment, which are often

such greater than the internal losses which are the subject of study.

This is particularly true in the high frequency range where vibration

of the structure excites acoustic waves in the atmosphere and the

support platform for the experiment. Three main sources of external

losses may be cited: i) losses due to attachment of sensing devices

such as accelerometers, strain gauges, etc., ii) losses due to exci-

tation of sound waves in the atmosphere and atmospheric viscosity,

and Iii) losses due to interaction of the sample with its supporting
structure, such as a clamp, e.g.. The first of these can be largely

eliminated with the use of laser vibrometer measurements. Ironically,

the use of that technique aggravates the problems associated with
the other two because laser vibrometry is a sensitive process; it is

usually difficult to obtain a satisfactory reflected signal from the

sample unless the sample is supported in such a way as to minimize

rotation. This problem leads to the necessity of using, in the case

of samples suspended by thin nylon filaments ("pseudo-free" configu-
ations), fairly large samples with significant rotational inertia.

In the case of lighter samples It becomes necessary to study the sam-

ple in a "cantilever" configuration using a rather massive clamp. In

either case, experience indicates significant energy losses through
the stretched filaments or the supporting clamp. Laser vibrometry al-

so complicates the use of vacuum chambers to reduce atmospheric eff-

ects since a laser beam often cannot be transmitted through the glass

windows of such a chamber without significant interference. Thus the

vibrometer needs to be in the chamber with the sample with attendant

difficulties in aiming the laser and adjustment of the associated el-

ectro-optic devices.

In the article to follow we present the results of the writer's

experience over the last several years in attempting to answer two

questions about internal damping in elastic beams. These questions

are the following.

i) What do laboratory experiments indicate concerning the qualita-

tive character of the functional relationship between modal damping

rates arising from internal energy dissipation and the corresponding

modal frequencies?

ii) What precautions, both in the original experiment and in the
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subsequent mathematical analysis of the experiment can be taken to
minimize the influence of external energy losses so that the observed

damping rates may reasonably be attributed to internal dissipation?

A preliminary exploration of both of these questions appears in
[ 10 ]; it amounts to an Informal account of our understanding of the

issues and the implications of our experimental data at the time when
that article was written. Developments since then indicate that our

early experiments were more seriously contaminated by the effects of

external losses than we believed at that time. Also in the interim
a better understanding has been gained with regard to the mathemati-

cal modelling of both internal and external energy losses in elastic

beams and of mathematical procedures which can be used, in conjunc-
tion with corresponding experimental studies, to minimize the effects

of the latter.

In §2 we discuss, from a mathematical viewpoint, what losses
may be expected from a vibrating beam to supporting filaments or to

the surrounding atmosphere. Since these losses appear to be rela-
tively modest, particularly at high beam vibration frequencies, we

indicate at the end of that article the nature of our best measure-

ments of internal damping in certain types of beams suspended by

thin nylon filaments.

In the article [ 10 ] we discussed a mathematical approach to
determining the magnitude of energy losses from a beam to a support-

ing clamp, holding the beam in the so-called "cantilever" configura-

tion. There we represented the clamping device as a much thicker

beam to which the thin beam under study is coupled in a particular

way. In §3 we present a revised analysis of this model confirming

the results obtained in a more cd hoc manner in that article.

Finally, in §4, we discuss an experimental / mathematical proce-
dure based on observation of modal shapes of a beam subjected to

sinusoidal forcing which shows promise of being able to identify in-
ternal damping rates in a manner minimally affected by losses to a

supporting clamp. We exhibit experimental and computational data

plots to indicate the promise inherent in this approach.
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2. Losses to Supportinf Filaments and the Atmosphere

As we have indicated in §1, one of the ways in which one may

attempt to minimize external energy losses in beam damping experi-

ments is to support the beam by long thin filaments, commonly nylon

fishing line, as shown in Figure 2.1 at the end of this section. In
our earlier article [ 10 1 we provided an analysis of energy losses

from the beam to these supporting filaments. Here we will indicate

the framework used in that analysis and restate the conclusions, ref-

erring the reader to the original paper for the details of the esti-

mates.

Since we are interested in energy losses from the elastic beam

to the supporting filament, we will use the energy conservative Euler
- Bernoulli equation to model the beam. Assuming the beam to have

length L, uniform linear mass density a and bending modulus EI, all
constant, and assuming the length of the filament supporting the beam

to be t and the linear mass density to be r, we have as the approxi-

mate energy expression for the system

L rL [ a raw)2 + EQ 2w 2 dx _ gL v(0.t 2

a 0 L lt xaJ a

+ -- + aL (v 2  ds

with the constraint w(L,t) v(0,t). Here w is the beam deflection

as a function of its longitudinal parameter x and v is the filament

deflection as a function of its longitudinal parameter s. The last

term in the first line comes from lifting of the beam as it swings

on the supporting filament. From this energy form one readily derives

the equations of motion

m a w + El w 0. 0 x L , (2.01)
a 2x

4

r w - pL ! 0, 0 s 1 (2.02)
at2  s a

and the boundary conditions
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82W (O.t) = 0 aw (0,t) = 0, a w  (Lt) = 0 (2.03)
Bx 2  axx3  Bx '

EIB- (L t) + mL BE (O,t) + IML w(L,t) = 0 (2.04)
ax 3ast

We assume that waves propagating through the filament are not reflec-
ted at x L; this corresponds to the boundary condition

A- (m. + (L 1/ 2 av (t t) - 0 (2.05)

at Bs

It is not supposed that the last condition is completely realistic.

It simply replaces more complicated assumptions ensuring that very
little, if any, energy entering the the supporting filament, or
string, is reflected back to the beam. We are assuming that waves
in the string move only in the direction from s = 0 to s = 1. Then,

in fact, equation (2.05) is valid with I replaced by s, 0 s S t ;
in particular it is true at s = 0. Using this in (2.04) along with
the constraint w(L,t) - v(O,t) we arrive at

EI- ax w (L.t) - (rmL)/2 at (L,t) + gfk w(L,t) (2.06)

A straightforward spectral analysis, similar to that appearing in the
article [ 9 ], shows that the resulting modal damping exponents are

asymptotically constant with the limiting value

2El 1/2=P (rmL)

It is easy to see that the attachment of n parallel filaments corres-
ponds to replacing r by nr. Thus, as we vary the number n of support-
ing filaments, the damping rate should be asymptotically proportional

to n / 2. It is clear from this that by supporting tha same beam in
several different configurations with different numbers of identical
filaments it is, at least in principle, possible to identify the

energy loss rates to the supporting filaments and subtract them from
the overall energy loss rates to provide an improved estimate of the
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Internal dissipation in the beam.

Let us now turn our attention to the question of losses to the

surrounding atmosphere due to generation of acoustic waves from the

lateral surfaces of the beam. It must be recognized that there may

be other atmospheric effects than these; for example, viscosity ef-
fects, particularly due to airflow around the edges and free ends of

the vibrating beam. These may be expected to have very complicated
effects and we make no attempt to account for these in the present

discussion. In order to keep our treatment uncomplicated, and yet

fairly realistic, let us consider the configuration shown in Figure

2.2; the ends x - 0 and x = L of the beam are identified, so that
the resulting structure is L-periodic in the x direction. For high

frequency beam vibrations, which are our main interest, acoustic

waves are generated predominantly in the direction orthogonal to

the lateral faces of the beam. Hence we study the linearized acous-

tic equations in the strip S: -- < y < - , 0 1 x < L, with x = 0

again identified with x - L. A moment of consideration leads one to

conclude that atmospheric density variations induced by motion of

the beam will be odd functions of y; hence we may confine our study
to the half strip corresponding to y 1 0. We begin with the Euler

equations for compressible flow in two dimensions, as given in [ 6 ]
(cf. p. 600 ff.), for example:

p_.P u ._u + p v _u + p, 0, (2.07)
at ax ay ax

p .v + p u 1 + p v a +p , (2.08)
at ax ay ay

B u+ UAE v+ V p P_ = 0 , (2.09)
at ax ay ax ax

where p is the atmospheric density, u,v are, respectively, the fluid

velocity components in the x,y directions, and p - p(p) describes

the constitutive relation between pressure and density. To obtain

linearized equations for small amplitude waves we let p0 be the mean

atmospheric density and we represent p in the form p = po E 6p,

u = Z )A. v e C V. Setting I = p'(p ) and collecting terms of first

order in c in (2.07) - (2.09), finally multiplying the last equation

by R/p o, we arrive at the linearized equations



-7-

P0  + , = (2.10)
at ax

O x + R a6p = 0 , (2.11)
at By

at ax ax

This is a linear symmetric hyperbolic system with conserved energy

integral

9= 4 ji Po) 0 / V 0  p dx dy ,(2.13)

defined (minimally) on any bounded region R contained in the half

strip described above.

Almost any linear operation on the variables p, v, 6p will pro-

duce a solution z of the wave equation

a2 z - R ( aaz a2 z = 0 (2.14)
at 2ax

2  aya

the trick is to find the linear operation for Iwhich the energy asso-

ciated with (2.14), i.e.,

E fR az )2 az )2]1 dx dy , (2.15)
Sat ax B

agrees with the physical energy (2.13). Assuming the mean value of

each of p, v, 6p to be zero, we may define the inverse Laplace opera-

tor A- ' on each of these quantities or their derivatives. Applying

a2 /atax to (2.10) and a2 /atay to (2.11) and adding, we have

P0 -div(,v) + R a -dp = 0
at 2

at
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Applying A-1 we have, with

z = A-1 div(p,v), (2.16)

a=z + R 8 Po po div(.,v) = o i 'z = 0Poaa atota ao-pt j S A

and we conclude that (2.13) is satisfied with z given by (2.16).

Applying 3/Bx to (2.10) and a/ay to (2.11), adding and then applying

A-  we have

LZ_ _ _ .p (2.17)

at PO

Using this equation to solve for Sp in (2.10), (2.11) we have

(p - 3 =0 , v - =0

From this it can be shown, much as in [ 8 ], that

az= az

ax ay

Then (2.13) becomes

~~~,z ]2]Z Z ~ dx dy ' E
ax By at

and we see that z, as given by (2.16), yields equivalent energy int-

egrals; indeed, replacing z by (R/p 0)/az the energy integrals agree.

Accordingly the total energy expression for the coupled beam -

atmosphere system becomes

L 2)]d 2 R).Ra

0 at ax(~..~]d at axJ Ea 2
oS



Differentiating with respect to t, assuming the overall system to be
energy conservative, and recognizing that the force due to the pres-
sure variation across the beam leads to the equation

m 82w+El ~ 2C ap = 0

the usual calculations lead to the interface condition

0=f -(x,t) dp(x,O,t)+P 0Z(,ot !o,tdxI =
0 aw ayt + P a t ' '

I L [ E a -( x , t ) - z ( _ , t ] 5 p x 0 )

from which we .;onclude that the appropriate boundary condition for z

is

-z(x,0,t) =- awxt (.8
By a

Let us, for convenience, normalize L to 2tr. We introduce the
Fourier expansions

00 ix00 
k

w(x~t) =~ 7_wk(t)e, z(X,y,t) I zk(y~t)e.
k=o k = -

00 k

6P(xly,t) I di'k~(y,t)e~k

Then. with a - El/rn, the coefficients wk(t) satisfy the ordinary

differential equations

d 2 wk . -k* wk(t) - 2t 6 PkOOt), -- k < 00, (2.19)

dt2

while the coefficients zk(y~t) obey the partial differential equa-

tions
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aZk a k  2
!B Zk R k < k

at zk = 0 , - < k < (2.20)

and the boundary conditions at y = 0 (cf.(2.18))

-zk(o,t) = i dWk(t) , -- < k < (2.21)
By dt

Using (2.17) we may replace (2.19) by

daw k  2.-p 0 zkd-- k* ' w - -- 't(Ot) = 0, -- < k < . (2.22)

In order to be able to use (2.18) to replace BZk in (2.22) by dwk

we need to establish a connection between the t and y derivatives

of zk at y = 0. To this end we need a more detailed description of

the forced oscillations in the atmosphere. To this end we attempt

a solution of (2.20) - (2.22) in the form

X kt Py X k t

Zk(y't) = k e e , wk(t) = ck  e (2.23)

Then from (2.20) we see quite directly that

= K - k , (2.24)

while (2.21) and (2.22) combine to give

X2 + ek* - 2Ep K-$Xk ] kk~~ 00 '
zK-'Xk -Ak k

Setting the determinant of the matrix equal to zero and substituting

I 24), we have the polynomial equation in Pk
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K3 -1 22 2IA k 2ep 0K puk + (aOck k) "k +2i 2 pK-2k2  (2.25)

Let

,"k = Ak k 2  (2.26)

Substituting (2.26) into (2.25) and dividing by ;kk 6, we have, as

k - o-

K - 2 2 v*pK_k-k + a 0 - 0

which gives

= P K- 2 k 2 + i (oK-1)1/2 + 0(k - 2
1Ak 0

and thus

k - I (xK-1) 1/2k + r2 P K-a + O(k - 2 ) (2.27)

Substituting (2.27) into (2.24) we find that

). = ± K"/ Z  + O(k-2). k - o (2.28)

The - sign is used since it corresponds to waves moving away from

the elastic beam in the positive y direction. Then an easy compu-

tation using the assumed form (2.23) and (2.28) shows that

aZk (O,t)= (-K±/2 O(k-2)] aZk (O,t) (-K-1/2 + o(k-2)I dwk (t)

and thus (2.22) becomes

d 2 k 2 2  K3/2 + O(k2) d Wk + k" wk(t) , -c < k < c

dt2  0 )T-kt

From these equations we conclude that rate of energy dissipation in

the k-th vibrational mode is asymptotically uniform as k 4 cc and
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directly proportional to the mean atmospheric density p 0 .

In Figure 2.3 we show superimposed plots of successive power

spectra for an aluminum bar supported by two nylon filaments at nor-

mal atmospheric pressure; the delay from the beginning of the first

sampled time interval to the beginning of the second is 2.8 seconds.
The lighter curve is the power spectrum corresponding to the first

interval; its peaks are highlighted with a dark dot. The darker
curve corresponds to the second power spectrum. (See [ 9 ] for a

more detailed account of the manner in which these successive power

spectra are obtained.) Figure 2.4 plots the differences of the peak

values, corresponding to the damping rate in db/sec for the natural
modes of vibration with the indicated frequencies. These plots very

strongly indicate a rate of damping at least linearly proportional
to frequency. The anomalously high damping rates at the lower end

of the spectrum are due to losses to the resonant modes of the sup-

porting filaments. Our mathematical analysis indicates that we need

not anticipate that the linear character of the damping versus freq-
uency relationship in the high frequency range is seriously corrupted

by losses to the supporting filaments or the atmosphere.
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3. External Energy Losses for Clamped Beams

As in our earlier article [ 10 ], we consider a thin beam whose

lateral displacement is described by w(x.t). 0 1 x I L. This beam is

assumed clamped at x = 0 by a device which we model mathematically as

a thick beam with displacement W(xt). We consider "monochromatic",

I.e., single frequency, solutions of the combined system under the

assumption that "outgoing" waves, moving toward -- in the clamping

beam are the only motion present in that structure. For definiteness

we assume the x = L endpoint of the thin beam to be free but other

energy-conservative boundary assumptions would serve equally well.

Our analysis here will differ somewhat from that given in [ 10 ],

where we assumed the thin beam to have infinite length. We refer

the reader to that article for explanatory figures.

We treat the thin beam in the Euler - Bernoulli framework with

equation of motion

m- w 
- e I ow = 0 , (3.01)

at z  ax4

a being the mass density per unit length and ei the bending modulus.

At x - L we impose the familiar free endpoint boundary conditions.
The thick beam to which the thin beam is attached Is modelled via a

similar equation with corresponding parameters M and El:

M 3 + EI--WW = 0 (3.02)

The clamping assumption yields the kinematic, or essential, boundary

conditions

w(Ot) * W(O,t), a (O,t) = .(Ot) (3.03)

ax ax

The relevant energy expression is

B 2 a f El x8 W)] dx + [ 0 m( + ei-EAw ]dx (3.04)

and it is easy to see that the conditions which should be satisified
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for energy to be conserved at the joint x = 0 between the thin and

thick beams is

El aa (,t) a ei !-w(ot) (3.05)

E1 L3W(0,t) x ei -w(O t) (3.06)
ax 3  ax 3

Let us begin the analysis by studying solutions of (3.02) with

the special form

W(x,t) = e te~ (3.07)

We further restrict these solutions by insisting that they be "out-

going solutions", i.e., that they should represent waves moving away

from x - 0 toward --. To facilitate analysis of what that means, let

us set

X = aj (3.08)

where

4 M 0 + i a1 (3.09)

comes from a set of complex numbers yet to be determined. Substitu-

ting (3.07), (3.08) into (3.02) and dividing by A2 we arrive at the

equation

4 (a + EI ;L 2 0

so that

p = ± vM/4-EI ci ± R ai (3.10)

Using (3.10) and specializing to the + sign for the present, we have

RI' 2 t aX' . Ri[(a 2 -cc)t + aox ] [-2a at t-a X1
W(x0t) - e R e 0 L 0 e 0 1 x (3.11)
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The condition for waves to be moving from right to left is that

a2a al and ao should have the same sign. Since this motion is supposed

to result from a motion in the thin beam decaying in time, both a a

and a1 in the real exponent should be positive. Thus we are looking

for positive numbers a0 and aI with a > a

The corresponding displacement w(x,t) of the thin beam will be
assumed to have the form (cf. (3.01))

w(x,t) = e Xt(x) = e ia 2 t Ox) (3.12)

substitution into (3.01) provides the differential equation satisfied

by V(x):

ei d = ma* ,

dx*

so that, with r - (m/et)' / * ,

p(x) c Icos rax + casin rax + c3 era(x-L) c 4 e-rax x V (0,L).
(3.13)

From the formula (3.07) for W and the identities (3.08), (3.10),

we have

2W (x,t) - XL exte p x = -Ra 3 eXteP X
atax

AW (x,t) = X eXte x = Ra 2I eXtepx
at

E1 32 w (x t) = - EI R a2 e te;x
ax 2

E x (xt) = -El R 3 a3 extepx
3 3

Then from (3.05), (3.06) and the requirement that the boundary condi-

tions on w at x = 0 should reduce to the free endpoint conditions
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as K and El tend to 0. we obtain

ci AwNOt El aL(~t - El R2a~ aWOt (3.14)
ax' aFx3 at

ci -;(0,t) -El -8-j(O .t) -El a-' 82 .Ot (3.15)
x X2 atax

When the boundary conditions (3.14), (3.15) are applied to complex
solutions of (3.01) along with the conservative free endpoint condi-
tions

L-w(L,t) - 0, 83N(L~t) - 0 (3.16)
axa ax

one finds that the time rate of change of

Eu. jL 2 + el 1i aw1dx
0 at Fix I

is

-Re e i k-~!(O~t) ia~! (Ot) el ci aw(O 1~(OI ax2  ataix ax' at

--Re Ft ci &-(0,t) k~~! (Ot) el ci i-(ot) 1:!(O~t)1I 3X2  atax ax3 at

-EI Re(a 1 ) 12"(Ot)12 El R 2 Rea 2 aw 0t (317
atax AK 'a t J0 ( . 7

with our assumption that Re(a) a a 0 > 0. The remainder of the analy-

sis consists of an examination of the system (3.01), (3.14) - (3.16)
with a view to obtaining the high frequency modal damping rates.

From the boundary conditions (3.14), (3.15), (3.16) and from
(3.12), setting

=EI/ci, 6 - (El R2 )/ei,
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we obtain for V the boundary conditions

4F(L) - 0, (L) =0, (3.18)

S(0) = -ya" Fi W(0). (0) =-6a3 i ;(0). (3.19)

Using the so-called wave propagation method [ 4 ], which simplifies
elgenvalue approximations by neglecting the exponentially small terms

e-raL arising from substitution of (3.12) into (3.18), (3.19) we ob-
tain the vector equation

r-cos raL -sin raL 1 0 lc1 I
sin raL -cos raL 1 0 H c2  0 0320

-r -'Yi 0 -yi-9r c3  (.0
di -3-r 3 +ai c

Setting the determinant of the Indicated matrix equal to zero we have

sin raL ( (2vz.3 + 2rd)i) + cos raL f 2r' - 2yfd + (2-yr 2 - 26r)iJ 0,

or

tan roiL 26r - 2-Yr 3 + (2r4 + 274.)1
2 ir . 2r6

Since tan roiL behaves like 1/((k+l/2)7-rocL) In the neighborhood of
(k+1/2)ir for each integer k we have, in first approximation

roiL (k+1/2)ir - 27yr3 + 2r6
2dr - 2yfr 3 + (2r* + 2-,5)1

(k+1/2)7~- (2-yr3 2r6) (26r - 2-i'r3 ) - -(2r4 + 2'Y6)i
(26r - 2-Yr3)2 . (2r* + 2,y6)

and we conclude that large values of a do, indeed, have the form
(3.09) with a0and a I positive; a . grows like (k+1/2)r,/rL + c for

some real constant c while a I tends to a fixed positive value. Ac-

cordingly,
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Xa Ra mi - Rr(.aa2 a 2 ) +2*a i~i--R~,+R& 2
R + 0 1 i 1

has negative real part z -2Ra 0a asymptotically proportional to the

square root of the frequency _ _ a2 ) as the latter tends to
0 1

+0. The other values of X being complex conjugates of these, we

conclude that, granted the validity of this type of clamping model,

the damping rate should be asymptotically proportional to the square
root of the frequency. This agrees with the result obtained in [ 10

via slightly different reasoning.

There may be some disagreement that the thin beam/thick beam

representation of a clamping device is an accurate one. The assump-
tion of infinite length for the thick beam is certainly suspect as is

the assumption that no energy is lost in the clamped joint itself.

A somewhat different model is obtained if we abandon the thick beam
representation of the clamp and suppose the beam attached at x - 0

to a clamping device which may undergo some rotational deformation in
the process of beam oscillation and may dissipate energy in that pro-
cess. For this model we suppose an overall energy functional

S,[P( aw). a EI xa dx + ( 2(O ,t)1

at at) EL () ] ax(0)Bt0 (3.21)

The last term corresponds to rotational elasticity of the clamp; if
the clamp were assumed perfectly rigid one would impose a boundary

condition Bw/ax(o,t) 0 0. For smooth solutions we may then compute,

taking the boundary conditions at x = L to be (3.16) and employing

the usual integrations by parts in the second term of the integral,

O'S =I _l-Bw(O,t)• 32W(O,t) + EIa- w (O,t)A-w(O,t) + RAMMIO,t) k=W(o,t).

dt x2  atax ax3 at ax atax

Assuming

w(0,t) a 0, (3.22)

the first and third terms reduce to
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B-W(O't)[R AW(Ot) - E1 B2w(Olt)

atax I x Bx 2

which becomes the boundary dissipation term

CF (-2,2wo.t))2 i 0 (3.23)

if we impose at x - 0 a second boundary condition

R -w(Ot) - El A-w(0,t) + a aW(O,t) = 0 , (3.24)
ax x atax

wherein the last term corresponds to an assumed frictional resist-

ance to rotation in the supporting clamp.

Analysis of the system consisting of the equation (3.01) along
with the boundary conditions (3.16), (3.22) and (3.24) by the wave

propagation method referred to earlier shows that in this case the

rate of energy decay in each mode is proportional to the modal fre-

quency. If this model, or even the model discu.sed above, for energy
loss to a supporting clamp is a valid one it is clear that the deter-

mination of internal damping rates in clamped beams from just the
"raw" spectral data is a questionable undertaking. In the final sec-

tion of this article we indicate mathematical procedures whereby the
clamping effects can be very nearly eliminated through observation of

modal shapes in situations where the supporting clamp, and thus the
beam with it, can be forced to oscillate at the corresponding modal

frequency.

In view of the above results it is significant that the writer

has never been able to obtain satisfactory damping data from clamped
metallic beams in the laboratory, notwithstanding any earlier cqnclu-

sions in ( 10 ]. We have obtained fairly good data for composite
beams under these circumstances because they have such high internal

damping rates that those rates are not unduly masked by losses to the

clamping device.
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4. Characteristic Features of Elastic Beams in Forced Oscillatory

Motion and their Relation to Internal Damping Rates

We provide here a mathematical analysis showing that an elastic

beam excited into vibration by sinusoidal motion of its clamping

mechanism, exhibits in the resulting beam vibration certain features

which are determined by the internal damping rate and are largely

independent of the characteristics of the clamp. In Figure 4.1 at

the end of this section we indicate, schematically, the experimental

set-up and the heuristic basis for the proposed method.

The forced motion of the clamped end of the beam generates waves

propagating "outward" toward the free end of the beam, where they are

reflected and travel back toward the clamped end. In making this dou-

ble transit of the beam the waves are, to a greater or lesser extent,
depending on the degree of internal damping, attenuated; the work

done by the forcing function at the clamped end is, in the periodic
steady state situation, just enough to make up for the energy lost

in the propagation process together with losses to the supporting

structure.

In the loss-free situation, once a periodic motion has been in-

itiated, it continues without any motion of the clamped end. The

waves returning from the free end have the same amplitude as the out-

going waves and, at the natural frequencies of the beam, the outgoing

and incoming waves interfere constructively to produce a standing

wave which is the corresponding natural mode of vibration. When we

have internal damping, however, the returning wave has smaller ampli-

tude than the outgoing wave and the constructive interference is not

perfect. In particular, as we will see, there are no true "nodes"

and the steady state amplitude is not the absolute value of a sinus-

soidal function of x (plus the small correction due to the real expo-

nential parts of the eigenfunction in question) but, rather, is modi-

fied so as to decrease in amplitude as x varies from the clamped end,

x = 0, to the free end, x - L. We will see that this spatial varia-

tion in amplitude provides a measure of the internal damping in the

beam which is independent of energy losses in the clamping/forcing

structure holding the beam at x = 0.

In our present mathematical discussion we will assume that the

internal damping operator commutes with the elasticity operator. This

is not the case for many recent beam dissipation models (cf.[ 9,10 ])
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but it is true for viscous damping, Kelvin-Voigt damping (cf. [ 10 ])

and square-root damping [ 3,5,7 ]; it will serve for the present ana-

lysis. Accordingly we consider a uniform elastic beam modelled by an

an Euler - Bernoulli type equation

p -w + G &.w + EI a w  = 0, t E (- ,o) , x 6 [0,L] , (4.01)
at 2  at ax 4

where G is a non-negative, in general unbounded, self-adjoint opera-

tor commuting with the operator a4/ax*. The beam is assumed free at

the end x = L, corresponding to boundary conditions (3.16). At x = 0

we suppose that there is forced motion:

w(0,t) = f(t) (4.02)

This motion is produced by a corresponding motion of a clamping de-

vice. We model the clamp as in the last paragraphs of the preceding

section, supposing the overall energy functional to be (3.21). The

rate of change of energy is now seen to be

--9 = _ (A (.,t), . Aw .,t)) - EI -- 0 t) -- (O,t)

dt at at L 2 [O,L] ax 2  atax

+ El ~3W(ot) 3W(Ot) + R aW(o0t) a2w(0,t)

ax 3  at ax atax

The first term on the right hand side is non-positive and represents

internal energy dissipation. From (1.03) the third term is

EI -3w(0t) ft) , (4.04)
ax 3

representing the work done on the beam by the external forcing. With

the boundary conditions (3 t) and (4.02) applying at x = 0 the total

energy dissipation form is jw seen to be

-RAw(. t), G aw(.,t,) - a [- -- )2] 0 4.5

at at L2 [0,L] atax

which is balanced by (4.04) over each period of the steady state for-
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ced oscillation.

Now we suppose that the function f(t) in (4.02) takes the form

f(t) - e i t (4.06)

and that the corresponding response takes the form

w(xt) = eiGt w(x,'C) ; (4.07)

we will separate out the real component of the motion at the end of

our calculations. The boundary conditions for w now take the form

(cf.(4.02), (3.16), (3.24))

w(O,w) z 1 , (R + aic) 8;(O.c) - El IaW(ow) n 0 (4.08)
ax ax 2

a2W(L c) • *W(L c) a 0 (4.09)
ax 2  ' ax 3

From our commutativity and non-negativity assumptions on the operator
G, we may assume that there is a non-negative function 7(c), the form

of which is to be identified, such that w(x,4) satisfies the differ-

ential equation

EI -w(x,w) + (icT(c) - p 2) w(xW) = 0 (4.10)
dx.

Suppressing the role of w as an argument and setting

4i ( /2-E)
r = p/EI, cog = 7/EI, C2(r-ig) = v 4e , (4.11)

where

- 41(7-/2-E)
= 4 2 /r 2+g2 , e = (r-ig)//v/r2+g

2

the fourth roots of wa(r-ig) take the form
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i (kr./2-)

Ak x v e • v ek , k = 1,2,3,4 (4.12)

The indexing is such that lk lies in the k-th quadrant of the complex

plane in each case, assuming g sufficiently small so that 0 M <' 2

Accordingly, for some coefficients ck, k = 1,2,3,4, we have

pLx p2X 3X X
w(x,cj) = c e + c2 e + c3 e + c*e (4.13)

Applying the boundary conditions (4.08), (4.09) we have the system of

equations

c +c + c 3 +c = 1, (4.14)

R cI + R2 c2 +R3 c 3 Rc = 0, (4.15)

2 _p1 L + p2L 2pL epL

pe c1  +se + )A 2e p e c3 + pJe c4 = 0 , (4.16)

A e+ 1 Lc + + L c + A +3 eP 3L c4 = 0 , (4.17)

where, in agreement with (4.08),

Rk i (R+aio) Pk - EI p , k = 1.2,3,4

The solution of this four dimensional system is rather compli-

cated; it will serve our purposes here to develop an approximate sol-

ution, valid for large v and small z, again using the wave propaga-

tion method. Under these circumstances A4 has large positive real

part and p2 has large negative real part. Assuming cI and c 3 can be

shown to have relatively moderate values, we omit the second term

from equations (4.16) and (4.17). Multiplying the modified equation

(4.16) by P and subtracting the modified equation (4.17) we have

ce IA3L (A) ) + c e (;& 2 -2 S) = 0 (4.18)c3e (PP 3 3
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From (4.18) we infer that c 4 must be very small. Omitting the fourth

term from equations (4.14), (4.15), we obtain two modified equations.

Then, multiplying the modified equation (4.16) by p4 and subtracting

the modified equation (4.17) we obtain a third equation. These toget-

her form a three dimensional system

C + C a c3 = 1 ,(4.19)

R IC + R 2c2 + R 3c 3 0 , (4.20)

e ; 1 L 2 3)c + e IA P - P 3  = 0 (4.21)

Solving for c2 in (4.19) and substituting in (4.20) and (4.21) we

obtain the two dimensional system consisting of (4.21) and

(Ra-R 1 )c + (R2 -R3 )c3 = R (4.22)

Applying Cramer's rule to (4.21),(4.22) we have

c= R e 3 ( A 3 )/D(p) , (4.23)

C = -Rae p1L I -3 p D)/D(p) (4.24)c3  2 pp

where Df(p) is the determinant

D(p) = (R -R )e 3 (pA2 - A ) -(R-R )e ; A - A) .(4.25)2 1 _ 3) (3 2231

From (4.23), (4.24), noting that u3  - p., we see that there is a

complex A = A(R.o,p) such that (cf.(4.12))

A 3L pL
c =A (e4 - e3 ) e , c3 =A (eI - e4 ) e

1 L  (4.26)

From (4.18) we also have, since ;L = A
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p3L

e 3 (0 3 - ) e - e J L -L( 1 3 - 3 11 3
4 p4 L 2 _ c3  e -e* e e c 3 (4.27)

14 4

-p4L p2L

In this approximation e f e is to be regarded as replaceable
pL

by zero, unless multiplied by a term comparable to e . Thus we
have, using (4.19),

c2 = 1 - c- c = 1 - A(e(eL e-L e e L - L )). (4.28)

Thus the forced beam oscillation has the approximate form

w(xt) = Aeiseit[I(+i)e A1(x-L) -p (x-L) i~ezl e p,(x-L)

+ ei (A-± - (e (e O L + e"1'L - e4(e
I L _ - OL)))e-'4] .(4.29)

Since A depends on a, the damping parameter of the clamp, the last

term also depends on a. But, since e _ is a factor in this term
and since -p4 has large negative real part for large values of Q,

this term will not be important, again for large w, at any substan-
tial distance from the clamp. The third term will not be important
at any substantial distance from the tip of the beam. Assuming we
make measurements in a "central region" of the beam, we can concen-
trate on

w(x,t) 2 Ae t ei it [(1-i)eA1 (x-L) +(il-)e- A(x-L) (4.30)

We still have A, which depends on a, as an amplitude factor but,
since it multiplies both terms, it will play no role in comparing
relative amplitudes at different points x in the central region.

(The imaginary part of A simply gives rise to a time phase shift.)
This is the basic idea to be used in identifying -, the damping
parameter for the beam itself, since, as we can see from (4.11),

p Is determined by the coefficients p, EI, and 7 appearing in the
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equation (4.10). So we now consider just the expression

[ CA (x-L) -(x-L)]w(x,t) a e t[ (l+i)e ( +(i- )e I =

2(cos wt + i sin Ct)[sinh ;LI(x-L) + i cosh p,(x-L)] (4.31)

Let us set

7ra 2r
S - sin - J ( 7 - - , = cos - = sin a z E (4.32)

Then

pI v e v (C + is) (4.33)

e; x  t e CX (cos vSx + 1 sin vSx) e .
C x  (4.34)

From (4.31)and (4.34) we can see that

Re w(x,t) = 2 (cos wt cos vS(x-L) sinh YC(x-L)

- sin cit sin vS(x-L) cosh vC(x-L) - cos ut sin vS(x-L) sinh vC(x-L)

- sin t cos vS(x-L) cosh vC(x-L)] =

2v/2 [ Cos Wt Cos (vS(x-L) + ]~ cosh a'C(x-L)

-sin c.,t sin ( vS(x-L) + 4) sinh i/C(x-L)]

2,f- [cos ( cit + vS(x-L) + 7) evC(x-L) +sin t - vS(x-L) - e-vC(x-L

This formula expresses the central region motion in terms of an "out-

going" wave (the second term), attenuated like e - v Cx as it moves to
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the right, plus an "incoming" wave (the first term), attenuated like

e V e x as it moves to the left. From the penultimate formula of (4.35)

we see that, for given x in the central region, the amplitude of the

time oscillation is

1//2
2v/- [cos2(vsx-L'jcoshavCx-L + sin2(vS(x-.L).j)sinh 2lC( x-L)] /2

2v/-2 Posh 2 7C( x-L) _ sin12 ( S(x-L) + / (4.36)

When 7 (hence also C) - 0 the last expression has zeros where

sin [vS(x-L) + = ± 1 . (4.37)

corresponding to "nodes" of the standing wave form. When 7 > 0 there
are no true nodes; what are left are "quasi-nodes" corresponding to
minima of (4.36). The values of these minima will correspond to an

amplitude factor times coshavC(x-L) - 1; by comparing these minima

as they occur for different values of x in the central region of the

beam one may obtain an estimate for vC a D for the mode under study.

From (4.11) we see that, assuming g, and hence z, small

9 f sin 4t = 1 (4.38)4 4 v / -7 -, 2

and from (4.11), (4.32) we have

0 jI/2 (r+g 1/8. (4.39)

so that

7 : 4 /'[ r/ + 3'
= cig t 4 e 2( J.g2)3/ . (4.40)

From the last formula we see that a constant (i.e., frequency

inoepntoent) damping rate, corresponding to y constant, is indicated

by the following relationship between V and the frequency, w:
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D = (& - 1/2) , (4.41)
4 1/a [v/r 2+g2)

while frequency proportional (sometimes called structural) damping

corresponds to g constant so that

jr C.) O(CJ /2) (4.42)

According to this theory, then, the presence of structural damping
will be indicated by an estimated value of V = D() varying in pro-

portion to c$/2 as w becomes large.

In Figures 4.2 and 4.3 we show computed values of the amplitude
of the time oscillation for two natural modes of a damped Euler-

Bernoulli beam (these are computed exactly, rather than by means of
the approximation (4.36)). plotted as functions of the longitudinal

beam parameter. In Figures 4.4 and 4.5 we show mode shapes taken in
the laboratory by scanning a beam in forced vibration by means of a
laser vibrometer. The last two figures do indicate that the minima

corresponding to what we have called the quasi-nodes are smaller at
the right hand (free) end of the beam than at the left hand (clamp
driven) end. The experimental data are not of the quality required
for reliable estimation of internal damping rates at the present wri-

ting but do indicate that improvement of our scanning techniques and
equipment may be expected to yield such estimates in the near future.
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Figure 4.1 Schematic for beam driven in oscillating clamp
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Figure 4.2 Amplitude modulus; driven beam node
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Figure 4.3 Amplitude modulus: driven beam mocc



Xu. 871& 1X~73 S '-5.290iE3 V
Ye-s. aeua4 Aifaa382 .13mV -33..

* CAP TffL"WUr-5.01

Real

Frxd x< rsGm Sec E-

Figure 4.4 Experimental amplitude modulus; aluminum beam

X-2.885 S AX-2.48 S Y-5.250i2 V
Ye-5.24517 aye-i03.SmV
CAR TIM BUF

4~ .1

Figue 4.5 xpeimetalamplitude modulus: aluminum beam



-34-

References

[ 1 ] Bell, J. F.: Experimental Foundations of Solid Mechanics.
Handbuch der Physik, Vol. VI A/1, Springer - Verlag, Berlin,

Heidelberg, New York, 1973

[ 2 ] Bert, C. W.: Material damping; an introductory review of math-

ematical models. measures and experimental techniques, Journal
of Sound and Vibration 29 (1973), pp. 129 - 153.

[ 3 1 Chen, G., and D. L. Russell: A mathematical model for linear

elastic systems with structural damping. Quart. Appl. Math.,

January, 1982

[ 4 ] Chen, G., and J. Zhou: The wave propagation method for the an-

alysis of boundary stabilization in vibrating structures. SIAM
J. Appl. Math., 50 (1990), pp. 1254 - 1283

[ 5 C Chen, S., and R. Triggiani: Proof of extension of two conject-

ures on structural damping for elastic systems. The case
1/2 5 a 1 1. Pacific Jour. Math., 136 (1989), pp. 15-55.

[ 6 ] Courant, R., and D. Hilbert: Methods of Mathematical Physics:

Vol. I: Partial Differential Equations. Interscience Publish-

ers, John Wiley & Sons, New York, 1962

[ 7 ] Huang, F.-L.: On a mathematical model for linear elastic sys-
tems with analytic damping. SIAM J. Cont. & Opt., 26(1988),

pp. 714-724.

[ 8 ] Russell, D. L.: Boundary value control of the higher-dimension-

al wave equation, SIAM J. Control, 9 (1971), pp. 29-42.

[ 9 ] Russell, D. L.: A comparison of certain elastic dissipation

mechanisms via decoupling and projection techniques. to appear

in Quart. Appl. Math., 1991

[ 10 ] Russell, D. L.: On mathematical models for the elastic beam
with frequency-proportional damping, in Control and Estimation
in Distributed Parameter Systems. H. T. Banks, ed.. SIAM Pub.,

to appear.



-35-

11i Wang, H., and G. Chen. Asymptotic locu~tions of eigenfrequencies
of Euler - Bernoulli beam with nonhomogeneous structural and
viscous damping coefficients. SIAM J. Cont. & Opt., 29 (1991),
pp. 347 - 367

[12 ]Zener, C. M.: Elasticity and Anelasticity of tietals. University
of Chicago Press, Chicago, 1948


