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Abstract

This thesis examines representational issues that arise when reasoning about causes
and effects given incomplete and uncertain knowledge about the domain. These issues
are largely covered by the famous frame and qualification problems. This thesis shows
how traditional nonmonotonic logic approaches can be modified to address these
problems in a simple, domain-dependent way. This nonmonotonic approach is then
generalized to manipulate statistically-founded beliefs, allowing for more consistent
and fine-grained representation of causal knowledge.

In addition, this thesis presents an algorithmic approach for efficient parallel com-
putation of statistical predictions. This approach involves two heuristics, highest
impact first and highest impact remaining, which control the speed of convergence
and error estimation for an algorithm that iteratively refines degrees of belief. This
algorithm has been implemented and tested by a program called HITEST, which runs
on parallel hardware.
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Chapter 1

Introduction

Host: My first guest is someone you've all heard about but probably never met.
Let's all welcome Robbie, the hypothetical autonomous agent!

Robbie: Thanks. Great to be here.

Host: Why don't you start off by telling everyone what exactly it is that ,. u do.

Robbie: Well Host, I do many different things: stack blocks, shoot guns, start cars,
deliver bagels, but mcsly I just think.

Host: You must have a lot to think about.

Robbie: Absolutely. See, I'm supposed to be intelligent, which many people inter-
pret as doing things like people do them. People tend to take their skills for
granted, but many of the things I'm suppose to do are really quite subtle.

Host: Such as -

Robbie: Take causal reasoning. I'm supposed to be able to make predictions about
the future based on information about the past. Simple, right? Wrong. There
are all kinds of problems when you actually get down to details.

Host: I've heard of something called the Frame Problem.

Robbie: Yeah, that's a very popular problem. The standard definition goes some-
thing like this: "even if a causal reasoner has some reasonable way to infer when
some things change, it still has to have a way of inferring that the rest of the
world stays the same". A pretty tall order, really, since the rest of the world'is
a really "bloomin, buzzin place", and doesn't necessarily want to stay the same.

Host: I don't understand why you need to know about the rest of the world.

Robbie: A causal reasoner has to walk a very fine line. On the one hand, you don't
want me to make outrageous claims about what goes on when, and on the
other hand you don't want me to be so conservative that I miss some useful
predictions.
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Host: Tell us about some other problem in causal reasoning.

Robbie: Well, another biggie, maybe the biggest, is called the qualification problem.
It's quite old. and I guess you could say it's famous. but there's been relatively
little work on it. People seem to have heard of it, but aren't really sure what it
is. The folk definition is something like "there will be too many preconditions
for a realistic prediction". Now this could be interpreted in a number of ways -

Host: Excuse me for a second Rob, but I thought you might want to say what a
"precondition" is.

Robbie: Sure. Preconditions are the facts in the past that jointly imply some effect in
the future. Ideally, if you knew that all of some effect's preconditions were true,
then you could predict that effect with certainty. The qualification problem says
that in general. the reasoner won't be able to know all of the facts necessary to
make a certain prediction.

Host: So then do you make uncertain predictions?

Robbie: In a manner of speaking, yes, but usually I am designed to make predic-
tions that look like they are certain, but can later be denied if I find out they
are wrong. Trouble is, while they are acting like certainties, they can end up
combining and making some outrageous claims. For example, if it is reasonable
to assume that a light bulb will be working from one day to the next, and this
assumption is treated as certain, then the reasoner can decide that it is also
certain that the light bulb will be working for a year, or a decade.

Host: Don't need many light bulbs that way.

Robbie: You still need them, you just don't know that you need them!

Host: We're running short of time, maybe you should say something about this new
thesis you are in.

Robbie: Good idea. It's called "Principles and Algorithms for Causal Reasoning
with Uncertainty". The title says it all, really. The work looks at the problems
I've been describing, evaluates the effectiveness of some previous solutions, and
then presents some new solutions.

Host: Tell us a little about the plot.

Robbie: Well, it starts off with this silly scene-setter dialogue in Chapter 1. Chap-
ter 2 is somewhat drier, where the author describes some old and new notations
for representing the knowledge needed for causal reasoning. This sets up Chap-
ter 3, which talks about the frame problem, and how it should be solved by
domain-dependent knowledge about how facts persist, instead of the traditional
non-monotonic approach.
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Host: Sounds okay so far.

Robbie: Then in Chapter 4, the author dives in to the qualification problem. and
shows several difficulties with the classic solution using circumscription. This
sets a negative tone, but then the author turns it around and talks about what's
useful about default logic in general.

Host: And that's it?

Robbie: Oh, no. The plot changes to talk about the use of statistics for the repre-
sentation of causal knowledge.

Host: And statistics do this better than default logic?

Robbie: They share many common features, but the statistical approach can gen-
erate predictions between certainty and falsehood. Not only does this allow for
more detailed relationships between facts, it can avoid the problem I mentioned
about invincible light bulbs.

Host: So what do you do in the thesis?

Robbie: I start a lot of cars, or at least I try to. See, the qualification problems says
that there are so many things that can go wrong with a car, I can never be sure
that the car will start. Statistics give me a quantitative way to estimate how
likely it is that the car will actually start, given what I know about the situation,
and my past experience with starting cars. In Chapter 6, I use the statistical
relationships between preconditions and effects to decide which preconditions
are more important than others. Therefore, if there are constraints on how much
time I have to reason, I can choose to consider the most important preconditions,
and ignore the rest.

Host: But surely this ordering of preconditions must take too much time to figure
out.

Robbie: That's the real climax of the thesis - Chapter 7 describes how the ordering
can be computed in parallel. Each precondition computes its statistical impact
on the effect at the same time, and the one with the highest impact is considered
first. Then the preconditions all recompute their statistical impacts with respect
to this considered fact. The process repeats until nobody has a significant
impact, and the current value of the belief is used.

Host: Wow. Do we get a clip from this thesis?

Robbie: Just happen to have one. This clip is a sample run of a program called
HITEST that runs on parallel hardware (see Figure 1.1). HITEST is going to
compute a belief that the car will be running given that now the car is not
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[2] hitest running 0 -running +ignition +cold +damp +heater
Prediction is now -1.935520

+cold -.139392

+ignition 4.733500
+damp -.037231
+heater .001621
-running -1.590289

+ignition has highest impact 4.733500
Prediction is now 2.797979

+cold -.765457
+damp -.314173
+ignition -.000000
+heater .037387
-running -.465519

+cold has highest impact -.765457
Prediction is now 2.032521

+ignition .000000
+damp -.254750
+heater .331753
+cold .000000
-running -.779762

-running has highest impact -.779762
Prediction is nov 1.252759

+cold .000000
+damp -.196710
+ignition -.000000

-running -.000000
+heater .514899

+heater has highest impact .514899
Prediction is now 1.767658

+cold .000000
+damp -.301324
+ignition -.000000
+heater -.000000
-running -.000000

+damp has highest impact -.301324
Prediction is now 1.466333

+ignition .000000
+heater .000000
+damp .000000
+cold .000000
-running .000000

Iteration complete with final prediction of 1.466333

Figure 1.1: Example run of HITEST program. The fluents are considered one at
a time in an order determined by the dynamic values of the fluents' impacts. The
numeric values are logarithmic odds; positive values are support for the fluent and
negative values are support for fluent's negation.



running, its ignition is engaged, the weather is cold and damp, and the car has
a special device that keeps the engine block warm in cold weather. One of these
facts will be recognized during each iteration. The new fact is the one with
the largest absolute value of its impact. Look how the engaged ignition causes
the prediction of the car running to jump from negative (leaning towards not
running) to positive (leaning towards running) after the first iteration. The facts
are considered one by one in order of statistical importance, finally converging
on an answer.

Host: I should point out that Robbie is a professional, and our readers should not
try this at home. Any more action in the thesis, Rob?

Robbie: Chapter 8 talks about how degrees of belief can be used to derive other
degrees of belief, involving some combinatorial problems and ideas on how to
solve them. This is related to the work of Judea Pearl, which you may have
seen.

Host: So what's in store for you now that you've gotten better at car starting?

Robbie: Well, I've been thinking about doing some full-fledged planning, involving
the manipulation of unusual or unknown objects, or maybe some financial mar-
ket analysis, involving forecasting and cost/benefit measurement. Before I do,
though, more work needs to be done on the incorporation of decision theory,
and how to exploit the properties of various statistical distributions. There's
been talk about several sequels.

Host: There you have it. Thanks for coming, Rob, and readers: don't miss the rest
of the thesis!



Chapter 2

Logical Representations for
Causal Reasoning

This chapter reviews some of the more influential representations of knowledge about
causality. All of these representations are based on first-order predicate calculus. a
language for constructing formal theories about problem-solving domains. This thesis
assumes that the reader has a basic understanding of the syntax of first-order logic, as
well as some exposure to its use in knowledge representation. The is some variation,
however, in the symbols used to write sentences. I use the following symbols and
meanings:

A conjunction
V disjunction

-' negation
material implication

V infinite conjunction
3 infinite disjunction

A finite conjunction
V finite disjunction

Predicate, function, and object constants are printed using the typewriter font (p),
and variables using math italics (p). Unbound variables are implicitly universally

quantified.

2.1 The Situation Calculus

Historically, the first and most influential logical representation for causal reasoning
was the situation calculus [McCarthy and Hayes, 1981]. In this representation, the
problem solving domain is in one of a set of instantaneous states, or situations. These
situations are first-order objects. A fluent is a property of situations; intuitively,
each fluent is either true or false in each situation. Traditionally, fluents have been

represented as first-order predicates, e.g. "raining(s0 )" represents that the fluent
raining is true of the situation so.

6



2.1. THE SITUATION CALCULUS

We will often wish to attribute properties to objects in situations. For example,
we might like to say the "block b is colored green in situation so". Ideally, we would
define a function on domain objects which returns a fluent which is then applied to a
situation, e.g. (green(b))(so). This is not nossible when fluents are predicates, since
predicate functions are not allowed in first-order logic. However, it is expressively
equivalent to define predicates with domain objects as arguments in addition to the
situation argument, as in green(b. so).

2.1.1 Actions and causal rules

In the situation calculus, an action is a function that maps a situation to a new
situation. Rather than represent actions as actual first-order functions, they are
usually reified using a "do" or "result" predicate, e.g. do(shoot-gun. so). The
changes that an action makes are reflected by the differences in the values of the fluents
between the original and resulting situations. This relationship between fluents and
actions is captured using causal rules, based on material implication [Hayes, 1971] as
in the following:

clear(b, s) --+ grasping(b, do(pickup(b), s)) (2.1)

In words, if the block 6 is clear in situation s, then the hand will be grasping b in
the situation resulting from the application of action pickup(b) to s. Fluents that
appear in the antecedent of a causal rule for an action are called preconditions of that
action, and fluents that appear in the consequent are called effects of that action.

Two famous problems arose from the development of rules such as this: the frame
problem, which asks how to succinctly represent what fluents do not change when an
action is applied (the subject of Chapter 3), and the qualification problem, which asks
how to keep the complexity of the antecedent at a reasonable level (the subject of
Chapter 4).

2.1.2 Reified fluents

It has become more common to represent fluents as reified objects rather than predi-
cates, just as actions have usually been represented as reified objects rather than func-
tions. This approach uses a single "holds" [Lifschitz, 1987] predicate to capture the
truth of a fluent with respect to a situation, e.g. holds(raining, so). There are two
advantages to the reified approach: 1) fluent objects can be arguments to predicates
such as causes(raining, hair-wet), and 2) fluent objects can be the value of a func-
tion on domain objects, such as holds(on(block, table), so). Using predicates, this
would be represented in the slightly less intuitive way on(b, table, So) [Hayes, 1971,
Bacchus et al., 1989).
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Advantage 1 above allows causal rules to be expressed as relations rather than
explicit implications. Lifschitz [1987] used two predicates, "causes" which captures
when an action causes a fluent to be true, and "precond" which captures when a
fluent is a precondition of the successful performance of an action (i.e. the members
of the antecedent in (2.1)). For example, (2.1) would instead be written as:

precond(clear(b), pickup(b))

causes(pickup(b), grasping(b))

These predicates are given meaning via the following Law of Change:

causes(a, e) A Vp[precond(p, a) - holds(p, s)] -- holds(e, do(a, s))

In words, if all of action a's preconditions are true, and a causes fluent e to be true,
then e will be true when a is applied. With this approach, it is important to have
axioms capturing what is not a precondition of an action; Lifschitz achieved this
by minimizing the precond predicate (cf. Section 4.4). Negated preconditions and
effects can also be represented if a function is defined that negates fluents, e.g.

holds(not(f), s) -- holds(f, s)

allowing assertions like causes(putdovn(b), not(grasp ing(b))).

2.2 Explicit Time Lines

The situation calculus provides a strange model of time, since a new situation is
created only by the application of an action. This makes it hard to represent facts such
as "the bank will be open at 10 AM", since there is no global temporal reference with
which to define "10 AM" or relative times like "an hour from now". This deficiency
is addressed by adding an explicit time line to the representation. The result looks
surprisingly like the situation calculus, but I will point out some subtly important
differences in the meaning of actions.

2.2.1 Moments

Instead of situations, an explicit temporal representation uses a totally ordered set
of moments (a.k.a. time points). A successor function for this set maps a moment to
that unique moment which comes directly afterwards. Such a function exists if and
only if the set of moments is countable; if this is so then the temporal model is said
to be discrete. Otherwise, the temporal model is said to be continuous. Although the
psychological, philosophical and computational ramifications of this choice are very
interesting [McDermott, 1982], they are tangential to the main points of this thesis.
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Figure 2.1: A discrete, linear, unbounded time line of moments

For simplicity, I will concentrate on discrete representations and therefore assume the
existence of a successor function.

I will use integer constants to stand for moment constants, in order to easily
convey the ordering of moments in examples. Integers are a reasonable choice since
by definition, any countable, totally ordered set is isomorphic with a subset of the
integers. I will also employ operations on integers as operations on moments. In
particular, the successor of moment m is m + 1, or equivalently, m'. Intuitively,
moments partition a (non-branching) time line into pieces of equal size each labeled
with an integer, as shown in Figure 2.1.

2.2.2 Fluents

Fluents are either true or not of moments, just as they were for situations. One of the
predicates "holds" [Georgeff, 1987, Weber, 1988] or "T" [Shoham, 1988] is usually
used to relate reified fluents to moments, as in holds(raining, 15). Loui [1987b] pre-
sented a variation using an "0" predicate in an infix form, e.g. raining@15. Shoham
[1987] even defined the syntax and semantics of a temporal logic as a substitute for
first-order, although Bacchus et al. [1989] showed that the resulting logic was no
more expressive than adding an additional temporal argument to fluent-predicates,
e.g. clear(b, 22).

2.2.3 Actions

Since a moment's successor is defined by the successor function and not "produced" by
the application of an action, the semantics of action is profoundly changed. Georgeff
[19871 proposed that actions are now relations between moments instead of functions;
thus an action constrains what fluents can be true on future moments. For example,
the following sentence defines the successful performance of a "pickup" action:

occurs(pickup(b), m, m+6) = (-'holds(grasping(b), m)Aholds(grasping(b), m+6))

where the "occurs" predicate applies the reified action relation pickup(b) to two
moments separated by the duration 6. Since 6 is usually assumed to be one, i.e.
actions constrain moments and their immediate successors, it is notationally sufficient
to drop the third argument and simply write occurs(pickup(b), m) [Georgeff. 1987,
Weber, 1988].
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2.2.4 Causal rules

For an explicit time line, a causal rule is a material implication that has the truth
of fluent preconditions and the occurrence of an action imply the truth of a fluent
during the next moment. i.e.

holds(clear(b), m) A occurs(try-pickup(b), m) -+ holds(grasping(b), m') (2.2)

Intuitively, the action try-pickup is an attempt at picking up the block, which will
succeed if the block is clear. Some approaches, rather than represent (2.2) explicitly,
split it into two axioms like the following:

holds(clear(b), m) A occurs(try-pickup(b), m) - occurs(pickup(b), m)

occurs(pickup(b), m) --+ holds(grasping(b), in')

The first axiom expresses a generation [Goldman, 1970] relation between the two ac-
tions try-pickup(b) and pickup(b). i.e. that in all contexts such that holds(clear(b), m),
the try-pickup(b) constitutes a successful pickup(b) action. The second axiom ex-
presses the effects that an action like pickup(b) is known to have. When taken
together, these two axioms imply (2.2). These two approaches to causal rules are for
the most part interchangeable.

2.2.5 Simultaneous actions

It is simple to represent simultaneous actions when using an explicit time line: if
both actions a and b occur at moment m, then both the literals occurs(a,m) and
occurs(b. is) will be true. The ability to represent simultaneous action has often been
cited as a motivation for explicit time over the situation calculus [Georgeff, 1987,
Morgenstern and Stein, 1988, Weber, 1988], but in actuality, the situation calculus
can represent simultaneous action if we add action types [Schubert, 1989], using literals
of the form isa(a, A) where action a is of type A. We can define the effects when
an action of type Pickup(b) is applied (as opposed to the action instance pickup(b)
used above) in the following way:

clear(b, s) A isa(a, Pickup(b)) --- grasping(b, do(a, s))

That is, whenever an action of type Pickup(b) is applied to a clear block b, the robot
will be grasping b. Since actions may be of multiple types, the following is a theorem:

clear(b1 , s) A clear(b2, s) A isa(a, Pickup(b)) A isa(a, Pickup(b2 )) -*

grasping(bx, do(a, s)) A grasping(b2, do(a, s))

which captures the simultaneous application of two action types Pickup(bl) and
Pickup(b2 ). Note that this discussion, and indeed the entire thesis, ignores the inter-
actions of simultaneous actions, e.g. trying to pick up two blocks at the same time
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with a single arm'. For enlightening discussion about this problem see Georgeff [1987]
or Pelavin [1986, 19881.

The concept of simultaneous action has caused much confusion in comparisons
between the situation calculus and explicit time representations. This is because, as
demonstrated above, they involve two different notions of what an action is. In the
situation calculus, an action is a complete specification of the changes that happen
from one situation to the next. With explicit time, an action is a partial specification
of the changes from one moment to the next (this distinction will be important in
Chapter 3, when I discuss solutions to the frame problem). Above we saw that the
situation calculus can represent partial specifications through the addition of action
types. Conversely, an explicit temporal model can assert a complete specification of
the changes as in the following way:

occurs(a, 4) E (a = pickup(blockl))

This axiom says that pickup(blockl) is the only action to occur at time 4. Thus
situation calculus and explicit time models are not as expressively different with
respect to simultaneous action as is typically claimed. However, it should be clear
that explicit time models are more convenient for expressing partial knowledge about
action occurrences. Since this will be the case for agents in realistic domains, explicit
time is more appropriate than the situation calculus as a representation for causal
reasoning.

2.3 Temporal Intervals

Allen [1984] suggested a generalization of the above temporal model where temporal
objects are intervals, which may overlap, as opposed to moments, which may not.
In this approach, the stretches of time over which fluents are asserted to hold need
not conform to some a priori partitioning of the time line, producing a more elegant
representation of fluents over time as shown in Figure 2.2. Intervals have been in-
fluential in temporal representation, but it is interesting to note that many uses of
intervals have actually defined them in terms of their end-moments [Shoham, 1988,
Williams, 1986]. Conversely, moments can be defined in terms of the intersection of
two intervals!

There has been significant discussion about the relative merits of intervals versus
moments (a.k.a. points), but in fact there have been no convincing arguments demon-
strating expressive or computational advantages of either approach. Therefore, this
thesis will concentrate on representations using moments, to facilitate comparisons
with the most relevant work in causal reasoning.

1Actually. the statistical approach that starts with Chapter 5 offers a general mechanism for
reasoning about interactions, since conditioning on more information (the occurrence of additional
actions) can change the probability of a prediction.
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raining raining
1 I I I

sunny sunny

(a)

raining

sunny

(b)
Figure 2.2: Comparative temporal representations using moments and intervals: (a)
uses disjoint moments and (b) uses overlapping intervals.

2.4 Fluents as Sets

A main point of this chapter is that the notational differences in causal representations
are mostly superficial. However, the choice of representation does affect the simplicity
and clarity of solutions to problems they are used to solve. For example, reified
fluent representations are more convenient than non-reified versions when applying
circumscription [McCarthy, 1984, Lifschitz, 19871, since predicates on fluents are easy
to construct. Also, Shoham's special semantics for time facilitates his operation of
chronological minimization [Shoham, 1988). Therefore, when presenting the work of
others, this thesis will use the original notation or some variant that I believe will
make the contribution clearer.

This thesis also uses a superficially different notation for the purposes of simplicity
and clarity. Instead of representing fluents as atomic objects which are related to
moments by a "truth" predicate, I will represent fluents as explicit sets of moments
during which the fluent is "true". This representation is motivated by the work on
causal statistics in Chapter 5, since the basic mechanisms I will use for statistical
inference are based on set-theoretic concepts, e.g. relative frequencies of common
elements of sets. The notation is essentially a discrete explicit temporal model, as
described previously in this chapter. In addition to the syntactic representation of
fluents as sets, a notable difference is that actions are a special case of fluents. These
differences are described in the following sections.
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2.4.1 Moments and fluents

A fluent is simply a set of moments. Intuitively, a fluent is "true" over a moment
if and only if the moment is an element of the fluent. Thus fluents and moments
are related by set membership, where "15 E raining" means that it was raining at
moment 15. This is essentially the same relation as T(raining, 15) from reified explicit
temporal models [Shoham, 1988], although casting fluents as sets has the following
advantage: set theory provides operations for manipulating fluents, whereas those
operations must be explicitly defined in the standard notation. For example, consider
representing the logical relationship between a fluent and its negation. In the standard
reified approach, a new function must be defined, e.g. T(not(f),m) = -'T(f, in).

This function already exists in set theory as the complement operator, i.e. the set of
moments that a fluent does not hold is equal to the complement of the set of moments
that the fluent does hold (-'(in E f) = m E 7). The set operations of intersection
and union can also be used for logical "and" and "or" of fluents, i.e.

(mE f AmE g) -( E fng)

(m E V m E9 g) = (r EfUg)

Following this course, we could also write sentences that describe the material impli-
cation of fluent memberships, i.e.

Vm[m E raining --. m E precipitating]

as the (improper) subset relation, i.e.

raining 9 precipitating

Despite the comparative succinctness of the latter sentence, I will use the material
implication version because it is more recognizable.

2.4.2 Temporally-relative fluents, actions, and causal rules

The representation of fluents as sets is a more general concept than the intuitive
reading of a fluent as the set of moments a particular "physical" domain property is
true. For example, we could define a fluent to be "{m : m' E raining)", i.e. the set of
moments such that it will be raining during the next moment. Similarly, a fluent can
be defined to be another fluent two moments ahead, four moments prior, etc. I call
fluents defined in this way t emporally,-relative. This construction will be particularly
useful in Chapter 5, where I use statistics like "the proportion of moments whose
successors are in the fluent raining, given that those moments are in the fluents
cloudy and humid".
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Sets of moments can also capture changes in other fluents. For example, we could
define a fluent pickup-b in the following way:

rn E pickup-b = (m E grasping-b A m' E grasping-b) (2.3)

Informally, block b is picked up at moment m if and Only if b is not grasped at m
but is at in'. This manner of constructing fluents subsumes the role of actions in
explicit temporal approaches. making the addition of distinct action objects superflu-
ous. Therefore, in this notation, actions are treated as a special kind of fluent defined
in terms of other fluents over multiple moments. This approach has the practical
advantage of not requiring a special syntax for the construction and application of
actions.

Representing actions as fluents also has philosophical advantages. Typically,
causal reasoning systems have had no mechanism for inferring the occurrence of ac-
tions other than that the reasoning agent "wills" them to occur. This is fine in the
rare domains that permit the single agent assumption, namely that all changes in the
domain are directly caused by the reasoning agent. However, when so-called external
events (not caused by the reasoning agent) are allowed, the problem arises of how to
deduce that they occurred, and therefore predict changes based on their occurrence.
Some approaches [Morgenstern and Stein, 1988, Georgeff, 1987, Pelavin, 1988] al-
low generation [Goldman, 1970] rules which imply the occurrence of arbitrary events
based on the occurrence of other events, but at some level external event occurrence
should be deduced purely in terms of observable fluents. Therefore, external actions
must ultimately be expressible as a combination of fluents, which in my notation is
just another fluent.

It is also reasonable to treat "internal" events, i.e. an agent's actions, as a complex
fluent. When an agent "wills" an action, the agent causes primitive fluents to hold
over the moments involved. For example, when an agent opens a door, she causes a
torque to be applied to the door handle on one moment and then a force vector to
be applied to the edge of the door during the next moment.

2.4.3 Domain objects and fluents

An example in the previous subsection used a fluent pickup-b which applied to a
particular block b. Thus distinct fluents would need to be defined for each block
that could be picked up. It will be more convenient to be able to define fluents that
apply to a class of domain objects, say any block. Recall that with the reified fluent
approaches described in the beginning of this chapter, this was done through the
definition of functions that return fluents, e.g. pickup(b) would return the fluent
corresponding to pickup-b. In my notation, this is done using sets of tuples which
contain moments. For example, to generalize (2.3) for all blocks b, I would write:

(in, b) E pickup = ((m, b) E grasping A (n', b) E grasping)
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where pickup and grasping are block-fluents, i.e. subsets of blocks x moments.
Again, this notation will be more convenient when representing statistics later in this
thesis. To minimize confusion, most of the examples in this thesis will use simpie
fluents that are not generalized over domain objects.

2.5 Chapter Summary

Logical causal representations differ not so much in expressibility, but the ease with
which we can encode various solutions to causal reasoning problems. I briefly de-
scribed several popular representations, including the situation calculus, explicit time
and action occurrence, and interval-based time. In addition, I presented a superficially
different representation, based on the representation and manipulation of fluents as
sets, which will be more convenient to use in later chapters when discussing statistical
causal inference.



Chapter 3

The Frame Problem and Domain
Dependence

The frame problem, so named for the part of a cartoon that remains the same when an
object moves, proclaims the need for a mechanism that decides what world properties
do not change during an action as well as deciding what does change. It was originally
presented as a technical difficulty within the situation calculus but in the intervening
years the frame problem has surfaced in all formal approaches to reasoning about

action and causality. Judging by the amount of research and discussion it has inspired,
it is generally regarded as THE problem of causal reasoning. To establish a context
for my approach, in this section I review the more significant progress on the problem.

3.1 Frame axioms

In the situation calculus, actions are objects that may be applied to a world state to
produce a new state. The fact that an action (such as pickup(a)) produces a world
state in which a property (such as grasping(a)) holds is typically represented as:

Vs [holds (grasp ing(a), result(pickup(a), s))] (3.1)

Formulas such as these very concisely capture what does change, but we still must
have a mechanism for capturing what does not change: we should be able to deduce
that picking up a does not change the position of b. One way to provide the inferential

power is to encode explicit frame axioms, as in the following:

Vs[holds(on(b, table), s) - holds(on(b, table), result(pickup(a), s))] (3.2)

Axioms such as these, for all combinations of actions and properties, would give us
the ability to exactly determine the effects of actions.

This approach is rarely taken seriously because of the large number of such frame
axioms needed for a complex domain. For a domain with n properties and m actions,
we would require n x m frame axioms in the worst case. Even when one considers

the use of quantification over objects, the number of frame axioms needed is still

16
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very daunting. Faced with this obstacle, work on the frame problem turned to the
search for a more economical domain-independent mechanism that does the work of
the frame axioms. It remains the dominant direction to this day, although refuting
its fundamental premises is an important part of this thesis (cf. Section 3.5).

It is important to note a subtle fallacy in the above historical argument against
frame axioms. The argument interprets a large number of theorems as a space re-
quirement, yet there could be a compact implementation representation that together
with an inference procedure generates such a large number of theorems. In fact, an-
other formulation of the frame axiom (that was only recently made explicit) is as
inferentially powerful yet suggests a more economical implementation. I will discuss
this formulation in Section 3.7; first I have a bit more history to elaborate.

3.2 Minimizing changes

McCarthy [1984] suggested that circumscription could be applied to solve the frame
problem to formulate that properties should remain static by default. His solution
was to introduce a predicate like the following:

abnormal(a, p, s) -(holds(p, s) =- holds(p, result(a, s))) (3.3)

This predicate captures when properties change due to applied actions. For example,
if -holds(Grasping(A), SO) then from (3.1) and (3.3) we can infer:

abnormal(Pickup(A), Grasping(A), So)

The nonmonotonic component is that we now circumscribe the abnormal predicate.
If we assume our domain theory cannot prove abnormal(Pickup(A), On(B, Table), SO),
then its negation will become a theorem after circumscription1 which together with
(3.3) entails the frame axiom in (3.2). I call this approach to the frame problem that
of minimizing changes.

3.2.1 The shooting problem

Hanks and McDermott [1986] showed that the minimizing changes approach exhibits
an unnatural temporal ambiguity, demonstrated by the "Yale Shooting Problerg".
The standard exposition involves a planning agent who loads a gun, waits momen-
tarily, and then fires the gun at a would-be victim. They used a situation calculus
representation of the scenario, which I simplify by removing the gun-loading action
leaving:

holds(loaded, So) A holds(alive, So)

1Ignoring the possibility of multiple minimal models, of course.



18 CHAPTER 3. THE FRAME PROBLEM AND DOMAIN DEPENDENCE

holds(loaded, s) - -holds(alive, result(shoot,s))

-holds(loaded, result(unload, s)) (3.4)

If s, = result(wait, so) and s 2 = result(shoot, sl), the theory has many different
models (i.e. interpretations of the formulas), including the following two classes:

A B
holds(loaded. sl) -holds(loaded, si) (3.5)
-'holds(alive, s2) holds(alive, s2)

abnormal(shoot, alive, si) abnormal(wait, loaded, so)

In A, alive is abnormal with respect to shoot, and in B loaded is abnormal with
respect to wait. The popular intuition is that models of class A are reasonable to
consider, but class 8 models are not. since in B the gun is unloaded during the wait
without explanation. Both classes, however, are minimal with respect to the abnor-
mality predicate defined above. Hanks and McDermott interpreted this to mean that
the minimizing changes approach does not produce intuitively correct inferences, and
that some other solution to the frame problem is needed that makes the distinction
between A models and B models.

3.2.2 Chronological minimization

Almost immediately, three researchers [Shoham, 1986, Lifschitz, 1986, Kautz, 1986
responded to the shooting problem by developing new circumscription variants that
resolved the ambiguity. The approach they used was essentially the same, now called
chronological minimization (Shoham's term). It stems from the observation that in
(3.5), the abnormality tradeoff involves two different states, so and si. They suggested
that the distinction Hanks and McDermott called for is that si is derived from so
and not vice versa, so in a sense sl is chronologically after go. If we augment our
circumscription to prefer chronologically later abnormality when given a choice, A
models will be chosen over B models. Since this involves the notion of temporal
order, these approaches used explicit temporal representations.

As popular as the chronological minimization technique was when it was intro-
duced, it is now generally considered a dead end. It does give the results Hanks and
McDermott proposed for the shooting problem, but it produces other results that
question its fundamental soundness. The first such problem was mentioned by Kautz
himself:

Recall the example using persistence to infer that my car is in the parking
lot. Suppose I learn at time 1000 that my car is gone. Using the tech-
niques just described, I can infer that the car was in the parking lot up
to the shortest possible time before I knew it was gone. This is clearly an
unreasonable inference. Someone could have stolen it five minutes after I
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left it there; I have no reason to prefer an explanation in which it vanished
five seconds before I glanced out my office window. [Kautz, 1986]

This problem was later rediscovered by Haugh [Haugh, 1987] and then dubbed the
problem of unexpected results by Goodwin [Goodwin, 1988]. Another problem men-
tioned by Haugh is even worse, which I summarize with the following prose example:
suppose I tell you two previously unknown facts that either a) the president died
yesterday, or b) Columbus discovered America in 1492. Chronological minimization
tells you that a should default to true and b to false merely because of temporal order.

3.3 Circumscribing Causality

Lifschitz [Lifschitz, 1987 and Haugh [Haugh, 1987 independently pursued an ap-
proach to the shooting problem that does not use chronological minimization. I will
review Lifschitz's version because it is slightly simpler. In Chapter 2, I discussed Lifs-
chitz's use of the causes and precond predicates in the situation calculus with reified
fluents. Instead of using the universally quantified formulas in (3.4), he represented
the shooting problem as2 :

causes(unload, not(loaded))
causes( shoot, not(alive)) (3.6)

precond(loaded, shoot)

Recall that these literals were related to changes in fluents by the Law of Change:

causes(a, e) A Vp[precond(p, a) --+ holds(p, s)] -+ holds(e, do(a, s)) (3.7)

To solve the frame problem, Lifschitz added an axiom that guarantees that every
change must be due to an appropriate action with its preconditions satisfied. He
called this axiom the Law of Inertia:

(-'causes(a, not(p)) A -causes(a,p)) V 3q[precond(q) A -'holds(q, s)] - (38)
(holds(p, s) = holds(p, do(a, s)))]

In words, the value of a fluent p will stay the same after an action a is applied if a
does not cause p or not(p), or some precondition of a does not hold. If the causes
predicate is minimized (i.e. the negations of all causes literals not in (3.6) added),
the Law of Inertia derives what properties do not change when an action is applied.
In particular, since wait does not appear in any of the causes assertions of (3.6), no
property will change when a wait action is applied, including loaded. Thus class B
models are excluded, solving the shooting problem.

2 Actually, Lifschitz had a third argument in his causes literals, namely the truth value that the
fluent will have in the resulting state. In my description, that argument is unnecessary due to the
definition of the not() function for fluent negation. This technique also simplifies his laws of change
and inertia to follow.
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CARRY( ?OBJ ECT,?LOCATION 1 ,?LOCATION2)
Pre: AT(ME,?LOCATION 1), GRASPING(?OBJECT)
Del: AT(ME,?LOCATION 1), AT(?OBJECT,?LOCATION 1)
Add: AT(ME,?LOCATION2), AT(?OBJECT,?LOCATION2)

Figure 3.1: STRIPS action for the agent carrying an object

3.3.1 The STRIPS Assumption

Lifschitz' solution to the frame problem similar to the STRIPS Assumption, a.k.a the
sleeping dog strategy. The STRIPS planner [Fikes and Nilsson, 1971] introduced a
very influential representation of action using precondition, delete, and add lists, an
example of which appears in Figure 3.1. The current state of the domain is a database
of facts like AT(BLOCK 5,Loc 12), and when an action is applied whose preconditions
are true (according to the database), those facts on the delete list are removed and
those on the add list inserted. The STRIPS Assumption summarizes the inherent
solution to the frame problem: when an action is applied, database facts that are
not explicitly on the action's delete list are not affected. This technique is identical
in principle to Lifschitz" use of nonmonotonicity, where "p is not on a's delete list"
translates to -causes(a,p).

3.3.2 Why minimizing causes cheats the frame problem

Lifschitz's solution to the shooting problem, and therefore the frame problem, relies
on two crucial assumptions: 1) that the reasoning agent has complete knowledge
of what fluents are affected by the application of each action, and 2) that the rea-
soning agent has complete knowledge about which actions are applied. Given these
two assumptions, the frame problem is easy to solve. Assumption 1 is implemented
explicitly by minimizing the causes predicate, and merely suggests that the agent
is an expert on the domain. This is perhaps too strong, but not entirely unrealis-
tic. Assumption 2 is much more subtle, being implicit in the use of action constants
in the do function. Recall the discussion in Section 2.2.5, which demonstrated that
although it is straightforward to represent simultaneous actions in the situation cal-
culus, one must resort to action types to represent partial knowledge about which
actions occurred. Since Lifschitz uses action constants such as loaded and vait, he
is invoking the assumption that the agent knows precisely which actions occur, and
more importantly for the frame problem, which actions do not occur.

The "omniscience" assumption is implicit in virtually every use of the situation
calculus. Unfortunately, it is doubtful that many useful domains exist in which this
assumption is justified.
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3.4 The Persistence Problem

The incarnation of the frame problem in causal representations involving an explicit
time line is often called the persistence problem.3 Recently, some researchers have
attempted to solve the persistence problem by importing Lifschitz's situation calculus
solution to the frame problem [Lifschitz, 1987]. Surprisingly, the pursuit of such a
formal system has discovered that the generalization is quite tricky.

The difficulty arises from the new lack of complete knowledge about which actions
actually occur at a given time. Lifschitz's solution to the frame problem depends on
knowing the action constant that produces a new state. No matter how complex this
action may be, its functional character tells us exactly what occurred. Thus in the
shooting problem, an unload action did not occur precisely because a wait action
did. Whereas do(a, s) is many-to-one, occurs(a, s) is many-to-many.

3.4.1 Minimizing action occurrences

A significantly new solution to the frame problem is required when considering ex-
plicit time and action occurrences. Several researchers [Morgenstern and Stein, 1988,
Sandewall, 1988, Weber, 1988] have suggested circumscribing action occurrences in
addition to causal connections. I will concentrate on my own previous work on the
subject since its notation fits better into this discussion, and I feel justified in making
certain simplifications.

An analogue to the Law of Inertia for explicit occurrence can be established by
the following Axiom of Blame:

(holds(p, t) A -'holds(p, t')) -(39)
3a[occurs(a, t) A Vu[occurs(a, u) - -holds(p, u')(3

A predicate defined by Aa, p(occurs(a, u) --* - holds(p, u')] is circumscribed to mini-
mize causal connections. Action occurrences are minimized by simply circumscribing
the occurs predicate.

Now let us see how the shooting problem is solved by this approach. We will use
the following version of the shooting scenario with explicit time and action occurrence:

holds(loaded, 0) A holds(alive, 0)

occurs(vait, 0) A occurs(shoot, 1)

Vm[holds(loaded, m) A occurs(shoot, m) - -'holds(alive, in')]

Vt[occurs(unload, m) -+ -holds(loaded, m')]

'Normally I wouldn't support a new term for the same old problem, but the word "persistence"
is so much more suggestive than "frame".
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Before circumscribing, this formulation has many different models including the fol-
lowing three classes:

A B C
occurs(a,0) -- a = wait occurs(a.0) -* a = wait occurs(unload 0)

holds(loaded, 1) -holds(loaded, 1) -holds(loaded, 1)
-holds(alive, 2) holds(alive, 2) holds(alive. 2)

As before, the desired models fall into class A. Class B models are eliminated
when we circumscribe the causal connections, since we know that only a wait oc-
curs at 0 and we can make the default that wait does not affect loaded. Class
C models are not eliminated until we circumscribe occurs, thus creating the de-
fault -,occurs(unload, 0). This leaves only the intuitively correct models of class
A. Incidentally, it is not necessary to check that unnamed action occurrences are
circumscribed away, since by circumscribing causal connections those actions have no
effects.

3.4.2 The generation/minimization problem

Unfortunately, although the "minimizing occurrences" approach solves the shooting
problem in the popular manner, it exhibits some serious technical and philosophical
problems. One problem appears when we try to represent action negation, as in the
following:

occurs(HoldDoorOpen, 0) -= occurs(LetDoorClose, 0)

One may wish actions like HoldDoorOpen; after all, the agent applies a force in order
to achieve an effect. When we circumscribe, we cannot assume that neither action
occurred, thus creating an ambiguity. It may be reasonable to live with the model
ambiguity that these actions instigate, but this ambiguity did not exist until we simply
added another action object to our ontology.

An even more serious problem appears when we try to represent the generation re-
lation. In their formal theory that circumscribes occurrences, Morgenstern and Stein
explicitly allow the occurrence of actions in certain contexts to imply the occurrence
of other actions, in order to "express causal chains of action" [Morgenstern and Stein,
1988], i.e. generation. For example, when representing the shooting problem we may
wish to use an axiom of the form:

occurs(pulltrigger, m) A holds(loaded, m) --+ occurs(uurder, m) (3.10)

Note what happens in the following scenario: at some moment we know that a
pulltrigger occurs, but we do not know whether loaded holds. When we circum-
scribe occurs, we infer that a murder does not occur. This fact taken with (3.10)
implies that loaded does not hold. This is clearly a ridiculous consequence, especially
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considering that the description of the problem said we do not know whether the gun
is loaded. I call this the generation-minimization problem. In fact, this problem ap-
plies to more than just representing generation; it appears whenever a system has a
mechanism for inferring the occurrence of an action under some conditions. Action
minimization will arbitrarily decide that those conditions are false when the action
doesn't necessarily occur.

These two problems are fixed somewhat by being careful about which actions'
occurrences are circumscribed [Weber, 19881, but the result is not very appealing.
The distinction between "basic" and "inferred" actions is reminiscent of the artificial
distinction in STRIPS between essential and inessential database facts. In both cases
the distinction is more a property of the way knowledge is represented than of the
domain.

Another objection stems from the observation that minimizing occurrences uses
nonmonotonicity in quite a different way than minimizing causal connections. Like the
original minimizing changes approach, minimizing occurrences makes a claim about
what actually is happening in the domain at a specific time, rather than making a
claim about the domain theory. Morgenstern and Stein [1988] say that minimizing
occurrences 'formalizes the intuition that we typically reason that events in a chronicle
happen only when they have to happen'. Certainly this intuition is popular, but is it
reasonable? In the next section, I discuss this issue with respect to the entire history
of work on the frame problem.

3.5 The Myth of Domain Independent Persistence

The challenge of the shooting example is to supply a domain-independent mechanism
which produces the intuitive conclusion that the gun stays loaded during a wait.
Many published responses to this challenge have been subsequently refuted here and
elsewhere [Haugh, 1987, Lifschitz, 1987, Loui, 1987a] on the grounds that they pro-
duce unintuitive results in some cases. This is at least partially due to the fact that
the mandate for domain-independent mechanisms is ill-founded. All discussion that
I have seen upholds Hanks and McDermott's moral that a more powerful domain-
independent persistence mechanism is needed. If this is true, then a scenario with
the same morphology (i.e. only changing constants) should have the same intuitive
inferences. I refute this with the following example, called the hesitation scenario:,

A famous desert bird is enjoying a bit of seed while standing on a large
black "X". Overhead, an anvil is suspended over a pulley, with the rope
leading to an equally famous desert canine hiding behind a rock. The
would-be villain knows that if he lets loose of the rope now, he will finally
get that blasted bird. However, he suddenly notices he must wait first, as
the rope is tangled around his foot. What happens to the bird?
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A simple representation of this scenario can be achieved by giving new meanings to
the predicates in the shooting scenario above, which I signify by new predicate names
in the following version:

holds(onx, 0) A holds(alive, 0)

occurs(wait, 0) A occurs(drop, 1)

Vt [holds(onx, m) A occurs(drop, m) -- -'holds(al ive, m')]

Vt[occurs(leave, m) -- -holds(onx, m')]

A C
-occurs(leave, 0) occurs(leave, 0)

holds(onx, 1) -holds(onx, 1)
-holds(alive, 2) holds(al ive, 2)

Given that this bird is not known to linger. occurs(leave, 0) seems more likely than
-'occurs(leave. 0) and thus C seems more intuitive than A. This choice directly
opposes the popular interpretation of the shooting problem.

This point is demonstrated with a simpler example, where I replace the constant
wait with sleep, as follows:

holds(loaded, 0) A holds(alive, 0)

occurs(sleep, 0) A occurs(shoot, 1)

Vm[holds(loaded, m) A occurs(shoot, m) --+ -holds(alive, m')]

Vt[occurs(unload, m) --o -holds(loaded, m')]

The intuitive scenario becomes: you point a loaded gun at a would-be victim, sleep
for a few hours, then shoot. The representation of this version has the same syntactic
structure, so a domain-independent treatment of the problem will be the same. Yet,
the intuitive understanding of the problems are different: whereas we would expect
the gun to stay loaded over a short wait, we might would expect the gun to become
unloaded over a long sleep (if the would-be victim has any sense). This leads us
to the conclusion that solving the persistence problem requires domain-dependent
information about the actions involved. No such information exists in the standard
representation of the shooting example, rendering it unsolvable.

3.6 Domain-Dependent Persistence

I believe that the compelling intuitive interpretation of the shooting example (where
the victim dies) is a product of domain-dependent details furnished by the reader.
One source of information uses communication maxims for puzzles, such as "the
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puzzle maker will include all information I need that I don't already have". This is
a subtle source of confusion in the intuitive reading of many Al problems (Tweety
flying, Missionaries and Cannibals, etc.) Since the shooting example is intended to
be an example of general autonomous reasoning, we will avoid such inferences and
concentrate on knowledge about the domain, as in the following simple argument for
the persistence of loaded:

1. The reasoner is holding a loaded gun, and then waits.

2. No agent can unload the gun while it is held by the reasoner (assuming the
reasoner will not unload it).

3. Therefore, the gun will not be unloaded during the wait.

Item 1) is the initial specification of the scenario, represented as before except that
we have added that the reasoner is holding the gun:

holds(hasgun, 0) A holds(loaded, 0) A occurs(wait, 0)

Item 2) is a new domain-dependent rule that infers the non-occurrence of unload:

Vm[holds(hasgun, m) - -occurs(unload, m)]

From these axioms it is trivial to deduce item 3), -'occurs(unload, 0).

This simple example demonstrates how sufficient conditions can be used to prove
action non-occurrences as well as action occurrences. Note that I did not use the
traditional frame axioms, which would specify the persistence of all unrelated facts for
every action, and therefore might suffer from a space blowup due to the number of such
axioms. Instead, this approach exploits domain knowledge about the relationships
between property change and action occurrence, and action occurrence and property
values.

When such domain-dependent information is not available, the reasoner will not
be able to make a prediction about that property change. This is to say that these
causal theories may be incomplete, 16t we do not consider this to be a deficiency of our
approach. Indeed, we should be more suspicious of approaches that grant omniscience
no matter what is known about the domain [Lifschitz, 1987, Shoham, 1988]. The
long-standing emphasis on domain-independent rules in causal reasoning is overly
optimistic, leading to unwarranted inferences (such as the generation-minimization
problem) when such rules are included.

3.7 Domain-Dependent Axioms

In this section I construct a formal framework of action based on a discrete time
line that solves the persistence problem in a domain-dependent way. This framework
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consists of several different axiom forms that serve different roles in the reasoning:
one form infers property changes from action occurrences; another infers action occur-
rences from property changes; yet another infers action non-occurrences from unsatis-
fied necessary conditions, and the last form infers action occurrences from temporally
prior sufficient conditions. Together they solve a number of interesting problems in
causal reasoning.

I use the notation of Chapter 2, including a negation function (not(p)) on prop-
erties, defined by holds(not(p), m) S -holds(p, n). To facilitate the representation
of change, I first make the following predicate definition:

changes(p, m) -def (-'holds(p, rn) A holds(p, in')) (3.11)

Note that to represent that a property goes from holding to not holding, we assert a
change on its negation, i.e. it follows that:

changes(not(p), m) _ (holds(p, rn) A -'holds(p, rn')) (3.12)

Ramification axioms specify the effects of actions through the use of implication,
where 0 is a property and f ... , , are events:

V occurs(4, m) --+ changes(o, m) (3.13)
i=1

Note that an instance of this form says nothing if v equals 0, thereby making the
disjunction false (by definition). Here, and in the rest of the forms, greek letters
are used for terms that are replaced by domain-specific constants in instances of the
forms. The above form could be rewritten as a list of forms in the following way:

occurs(I, m) - changes(o,m)
occurs(E2 , m) -* chnges(O, m)

occurs(f.,m) -- changes(4,m)

This presentation is more verbose, but perhaps more readable. The choice is purely
a matter of personal taste.

I also use axioms that specify when a particular property change must be due to
an appropriate action, called cause closure axioms. These are similar to ramification
axioms, except that the implication goes in the opposite direction, as expressed by
the following form:

changes(O, m) - V occurs(e,, m) (3.14)
i=1

Note that v could equal 0, in which case by definition the disjunction is false and the
property can never be changed. Closure axioms were described by Len Schubert,4

4in a talk entitled "Solving the original frame problem without frame axioms or nonmonotonicity"
at the 1988 meeting of the Society for Exact Philosophy.
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and also constructed by Morgenstern and Stein for their causal reasoning framework
[Morgenstern and Stein, 1988]. Interestingly enough, these axioms also look very
similar to theorems that are added in Lifschitz's system when the causes predicate
is circumscribed, e.g.

(-holds(p, s) A holds(p, do(a, s))) -* (a = al V a = a2 V a = a3)

Cause closure axioms perform the same role as traditional frame axioms: they are used
to prove that particular properties are not changed by the occurrence of a particular
action. However, this new form requires far fewer axioms (at worst the number of
properties) and if actions are fairly independent then the disjunctions will be fairly
short.

Together, ramification and cause closure axioms specify necessary and sufficient
conditions for property change solely in terms of event occurrences. For conciseness,
we can generally combine both implication directions into an equivalence, and I will
call these combinations change conditions. For example, I might represent that my
office door can only be opened by key or force in the following way:

changes(open, m) a (occurs(unlock, rn) V occurs(bash, m))] (3.15)

The above forms are sufficient to solve the persistence problem when ,he reasoning
agent knows exactly which actions occur at each time, as in the idealized domains
for the situation calculus where all property changes are intentionally performed by
a single agent. In more realistic domains, there must exist mechanisms for inferring
the occurrence or non-occurrence of events.

One way to deduce non-occurrence is through the absence of effects. For example,
from -,holds(open, m') and (3.15), we can infer -'occurs(bash, m). This is a valid and
useful kind of inference to make, but it does not help solve the persistence problem
since it is not a prediction. To solve the persistence problem, there must be axioms
that. support the derivation of -occurs(a,,m) based entirely on information no later
than %. This is the motivation behind the next axiom form, called executability
axioms:

V

occurs(e, m) -- A holds(oi, rn) (3.16)
i=1

This constitutes specifying necessary conditions for an event's occurrence, and when
at lea-t one such condition does not hold then the event cannot occur.

To infer when events did occur, the reasoner must have jointly sufficient conditions
available. Interestingly enough, many previous causal theories do not provide such
sufficient conditions, and therefore cannot infer occurrences unless explicitly told.
This is usually due to the functional model of action [Lifschitz, 1987, Ginsberg, 1987,
Haugh. 1987] where actions are "willed" by the reasoning agent, but also even in
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theories with a more general temporal model [Morgenstern and Stein, 1988].' To
allow external events, it is essential that the sufficient conditions be expressed entirely
in terms of properties, at least at some level. These event enabling axioms take the
following form:

A holds(oi, m) --+ occurs(e, m) (3.17)
i=1

The properties in (3.16) and (3.17) are often termed preconditions, although usually
it is unclear whether they are necessary, jointly sufficient, or both for the event's
occurrence. Here I have made that distinction clear. Also, note that if the necessary
and sufficient conditions are identical, they can be combined into an equivalence as
we did with ramification and cause closure axioms.

When we have necessary and sufficient conditions for events as above, events are no
longer "primitive" in the sense that an event's occurrence can always be rewritten in
terms of properties that hold. Events, then, really just stand for convenient groupings
of properties, allowing more concise and intuitive axioms. For example, instead of
using the forms in (3.16) and (3.17), one could use a generation rule of the following
form:

(occurs(el, m) A A holds(€,,m)) --+ occurs(c2, m) (3.18)
i=1

This is a shortcut for specifying sufficient conditions for C2 by augmenting those of f1.
If the implication were in the reverse direction, the axiom would do the same with
necessary conditions. In addition, event abstraction via implication [Tenenberg, 1988,
Kautz and Allen, 1986] (i.e. Vm[occurs(C2,m) --+ occurs(ci,m)]) is a shortcut for
specifying the inheritance of sufficient conditions. These relationships follow directly
from this basic axiomatization of events in terms of properties. Note that this ap-
proach does not have the generation/minimization problem, simply because it does
not use minimization of occurrences to infer that events do not occur.

Now I present the shooting problem using the above forms. The change conditions
are:

changes(not(loaded), n) occurs(fire, m) V occurs(unload, m) (3.19)
changes(alive,m) occurs(fire,m) (3.20)

For demonstration purposes, I have added the commonly included fact that the gun
becomes not loaded through being fired. I specify necessary and sufficient con,litions
for fire in terms of a pulltrigger event, via the following rule (note the use of
equivalence):

occurs(pulltrigger, m) A holds(loaded, m) =_ occurs(f ire,m) (3.21)

5 Morgenstern and Stein do allow generation rules like (3.10), but one of the sufficient conditions
must be another event, leading to a "chicken and egg" problem.
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The conditions for pulltrigger need not be specified for this example. Given these
domain axioms, we are interested on what can be predicted in the follov, ing scenario:

holds(loaded, 0) A holds(al ive, 0)

-loccurs(pulltrigger, 0) A occurs(pulltrigger, 1) (3.22)

Since pulltrigger did not occur at moment 0 (the more temporally general interpre-
tation of the wait in the original version of the shooting problem), we can infer using
(3.21) and (3.20) that holds(alive, 1). However, since we cannot ascertain the sta-
tus of occurs(unload, 0), we cannot decide about holds(loaded, 1). Consequently.
we cannot decide about occurs(f ire, 1), and finally (as we have argued is proper)
cannot predict whether holds(alive, 2) is true or not. Thus we have avoided wishful
thinking.

For a more complicated example, we will consider adding appropriate domain
dependent information so that we can prove that the victim is no longer alive a time
2. Recall the description in Section 3.5 of suspected intuitions behind the popular
interpretation of the shooting problem: the gun can only be unloaded by the bearer,
and because the bearer (the reasoning agent) has no reason to do so the gun will not
be unloaded. There are several parts to the representation of the knowledge for this
inference. I start with the change conditions (3.19) and (3.20) and the generation-like
rule (3.21) from the previous example. I add another generation-like rule describing
the Unload event, as follows:

occurs(unload, m) -3arholds(hasgun(a),m) A holds(fearsgun(a),m)] (3.23)

We need another type of axiom, called a domain constraint that ensures that only
one agent may have the gun at any given moment:

holds(hasgun(a), rn) A holds(hasgun(b), m) --+ a = b (3.24)

We must also have some information about the fearsgun property function for both
the reasoning agent (me) and the victim (it):

-'holds(fearsgun(me, rn)) A holds(fearugun(it, in)) (3.25)

The reasoning scenario is similar to before, except for the addition of assumed inf6r-
mation about hasgun:

holds(loaded, 0) A holds(al ive., 0)

holds(hasgun(me, 0) A holds(hasgun(me, 1)

-'occurs(pulltrigger, 0) A occurs(pulltrigger, 1) (3.26)
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Step Inference Reason
a. -'holds(FearsGun(Me), 0) 3.25
b. holds(HasGun(Me), 0) 3.26
c. a Me --+ -'holds(HasGun(a), 0) b,3.24
d. -occurs(Unload, 0) a,b,c,3.23
e. -occurs(PullTrigger, 0) 3.26
f. -'occurs(Fire, 0) e,3.21
g. -'changes(Loaded, 0) d,f,3.19
h. holds(Loaded, 1) g,3.12
i. occurs(PullTrigger, 1) 3.26
j. occurs(Fire, 1) h,i,3.21
k. changes( e, 1) j,3.20
1. -'holds(Alive, 2) k,3.12

Table 3.1: Proof showing causal derivation of -holds(Alive, 2)

Given this scenario, we can infer - holds(Alive, 2), detailed by the abbreviated6 proof
in Table 3.1, where numbers refer to the above axioms and letters to proof steps.

Thus I have shown how to encode domain information so that our intuitions
about the shooting problem are justified. The origins of this information seem to
be a combination of knowledge about guns and conversational maxims about the
problem statement being informative and not misleading. Details about the source
of the knowledge, however, is beyond the scope of this thesis.

3.8 Nonmonotonicity and Domain-Dependence

Theories using the above framework are monotonic. If desired, we can add non-
monotonic rules in one of the many ways, e.g. using Reiter's default rules [Reiter,
1980]:

holds(Loaded, m) A holds(HasGun(Me), n) : M holds(Loaded, m')

holds(Loaded, in')

Literally, this rule says "if you are holding a loaded gun and it is consistent that it
is still loaded at the next time point, then assume it will still be loaded". Another
way to phrase this is "you we 'd (probably) know if a gun became unloaded while
you were holding it", in the se that provability means knowledge. There are many
uses for this type of default rules.

6Abbreviated in the sense that the implicit inference rules are more complex than but reducible
to modus ponens.
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Condoning the use of nonmonotonicity may appear to contradict my arguments
against wishful thinking, but this is not actually the case. It is the domain-independent
use of nonmonotonicity that I criticize. Nonmonotonic rules such as the above make
claims about particular properties, i.e. that these properties will usually persist. How
often the default rule must be right depends on how costly it is to be wrong, and the
cost of ascertaining a more accurate evaluation of that property. There is no doubt,
though, that there are cases where the use of such rules is justifiable.

3.9 Chapter Summary

The traditional approach to the frame problem has been to look for some domain-
independent constraints on causal reasoning situations that infer the persistence of
fluents by default. This approach is fraught with philosophical and technical prob-
lems that question its fundamental soundness. Instead, the reasoner can succinctly
axiomatize the domain-dependent information needed to infer that a fluent persists,
and reason about persistences in the same manner as changes. A short version of this
chapter appears in Weber [1989a).



Chapter 4

Default Logic and the
Qualification Problem

The previous chapter frequently used "causal rules" to infer action occurrences (and
non-occurrences, to solve the frame problem). The antecedents of these rules consisted
of a list of sufficient conditions (usually called preconditions, all of which must be
proven true in order the infer the action occurrence. The qualification problem says
that in many domains, this list will be so long as to make its evaluation impractical;
yet agents are still obliged to make predictions about the occurrence.

McCarthy [1977] introduced the most famous example of the qualification prob-
lem, called the "potato in the tailpipe" scenario. Suppose you get in your car, and
turn the key. You might expect the car to start, despite not knowing (for sure)
whether the battery is still charged, whether the ignition system is intact, whether
there is a potato in the tailpipe, nor whether any of a long list of relevant fluents hold.
The qualification problem asks how a reasoner can make a causal prediction based on
a reasonable body of evidence. This chapter examines some proposed solutions to this
problem, pointing out strengths and weaknesses, and concludes with a generalization
of the use of default logic in solving the qualification problem.

4.1 The Qualification Problems

The qualification problem actually consists of several levels [Elgot-Drapkin et al.,
1987, Ginsberg and Smith, 1987]. On the one hand, the list of preconditions may be
infinitely long, or at least so large that a reasoning agent with a limited lifetime would
find it impossible to completely examine all elements. Even if it is possible to examine
the entire list of preconditions, a reasoning agent may find it impractical to do so in
reasoning situations due to time limitations. And even if the list is of manageable
length, it may be impractical to determine the truth of all the preconditions. For
example, it would be a chore to check the tank for gas, the engine for timing, and the
tailpipe for potatoes whenever starting a car, even if those were the only preconditions.

Most work on the qualification problem has concentrated on the last version, i.e.
assuming the list of preconditions is of manageable length, how can we avoid the

32
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explicit determination of the truth values of the preconditions? To answer this, these
approaches employ some technique for non-monotonic reasoning that assigns default
truth values to the majority of the preconditions, called qualifications. Due to the
nature of defaults, contradictory information about these qualifications will override
the defaults, and change the prediction.

4.2 Minimizing Disability

McCarthy [1977] proposed a solution to this dilemma, which is similar to a later
solution due to Shoham [1988]. The solution is to assume that an action is successful
if its important preconditions hold, using rules such as:

ignition(s) A -disabled(start, s) --+ running(do(start, s) (4.1)

In words, if the ignition is engaged and the car-starting action is not disabled, then
the car will be running after the action is applied. The disabled is circumscribed
[McCarthy, 1980], a.k.a minimized, to implement the assumption that actions are not
normally disabled. Thus, when lacking any evidence to the contrary, the reasoner will
assume -disabled(start, s) for any situation s, making knowledge of ignition(s)
imply the conclusion running(do(start, s). Exceptions to the successful starting of
the car are captured by individual axioms implying disability, e.g.

-charged(s) -- + disabled(start, s) (4.2)
potato(s) -+ disabled(start, s)

For example, suppose ignition(s) is known when attempting to start a car while
in situation s. If neither potato(s) nor -charged(s) are known to hold in s, then
circumscription will produce the conclusion -'disabled(start, s). When this fact
is taken with (4.1), and the knowledge about the ignition, the reasoner concludes
running(do(start, s). In addition, by the contrapositives of the rules in (4.2),
the reasoner also may conclude -potato(s) and charged(s). However, if the rea-
soner comes to know potato(s), then by the latter rule in (4.2) it may conclude
diuabled(start, s), and therefore may no longer conclude running(do(start, s) (nor
may it conclude -running(do(start, a)). Incidentally, the reasoner is no longer al-
lowed to conclude charged(s). The fact that knowledge about the tailpipe overturned
a conclusion about the battery is quite odd. This is due to the fact that qualifications
are given defaults as a side-effect of assumptions about actions, instead of through as-
sumptions about the typical value of the qualifications themselves. This "minimizing
disability" approach has a number of additional problems, detailed in the following
sections.
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4.2.1 Not the shooting problem, again

When the minimizing disability technique is applied to a series of actions, multiple
minimal models are produced in similar manner to Hanks and McDermott's shooting
problem (cf. Section 3.2). For example, suppose you are working on the car and
decide to disconnect the battery from the ignition system. Removing a lead will
probably accomplish this, although the qualification problem says we cannot be sure.
This can be represented by the rule:

-disabled(disc, s) --+ -charged(do(disc, s))

where "disc" stands for the action of disconnecting the lead. So given the knowl-
edge charged(s), the reasoner defeasibly concludes -charged(do(disc, s)) when the
disabled predicate is minimized. Now suppose we try to start the car, knowing
ignition(do(disc, s)) and the axioms in (4.1) and (4.2). Intuitively, we would ex-
pect the car starting action to be disabled, but this is not the case in all disabled-
minimal models, since in some models -disabled(disc, s) is true and in others
- disabled(start, do(disc, s)) is true. After disability is minimized the reasoner
cannot conclude either of -charged(do(disc, s)) or running(do(start, (disc, s))),
since there are no models where both are true.

4.2.2 Defaults out of context

The minimizing disability approach also has a subtle problem stemming from the fact
that a qualification of a particular action defaults to false even when that action is not
being performed. For example, suppose you have one of those cars that complains
when the ignition is engaged and the seat belts have not been fastened. If your
routine is such that you rarely have the seat belt on when starting the car, then "seat
belt on" is a qualification of the automatic complaint buzzer. Using the disability
representation, this could be written as:

ignition(s) A -disabled(complain, s) --+ buzz(do(complain, s))

seat-belt-on(s) --+ disabled(complain,s) (4.3)

However, when the disabled predicate is minimized, seat-belt-on(s) defaults to
false for all situations. This was not the intent of the rule, which was supposed
to assert that the seat belt is rarely on when starting the car, not over arbitrary
situations. Thus qualifications should really be evaluated with respect to the context
established by the regular preconditions for the action. In Section 5.3.3 I show a
simple way of evaluating qualifications in context using conditional statistics.
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4.2.3 Exceptions to exceptions

Ginsberg and Smith [1987], noted that a problem with this approach is that exceptions
to action occurrence, such as potatoes in tailpipes, may themselves have exceptions.
such as a special exhaust system with two tailpipes. In other words, the sufficient
conditions for concluding disability also have the qualification problem. A solution
to this problem would be to allow disability terms in the sufficient conditions for
disability, as in:

potato(s) A -disabled(potato-effect, s) -- disabled(start, s)

dual-tailpipe(s) -- disabled(potato-effect, s)

Informally, it is usually true that the unusual appearance of a potato in a tailpipe
actually keeps the car from running. Of course, the exception to the exception may
itself have an exception, to be handled in the same fashion.

Now consider how the disabled terms interact in the above example. If potato(s)
is not known, then both disabled(start, s) and disabled(potato-effect, s) de-
fault to false during circumscription. However, if potato(s) later becomes known to
be true, then we must choose whether the potato actually disables car-starting, or
some other factor renders the potato ineffective. This choice can be written as the
following disjunction:

-disabled(potato-effect, s1) V disabled(start, s1)

This disjuction becomes a theorem, resulting in conflicting defaults a.k.a multiple min-
imal models. This means that the disabled predicate is not completely determined
by circumscription; in particular, disabled(start, s) is not a theorem nor a non-
theorem, meaning that the reasoner cannot predict the truth of running(do(start, s)).
This runs contrary to the intuition behind the axioms, which says that if there is a
potato in the tailpipe, then assume it will stop the car from running.

4.3 Qualifications and Ramifications

Ginsberg and Smith [1987] observed an interesting relationship between the qualifi-
cation, frame, and ramification problems. If an effect of an action contradicts the
persistence of a known domain fact, either 1) the action was in fact qualified by the
domain fact and the effect is not achieved, or 2) the negation of the domain fact is
an additional effect of the action. For example, if a car cannot be running and yet
have a potato in its tailpipe, and there is a potato in the tailpipe of a car that is
attempting to start. then either 1) the car will not start, or 2) the car will start and
in so doing remove the potato. Which case will occur depends on additional domain
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knowledge, e.g. an axiom that says that the potato will be expelled if and only if it
does not fit snugly.

Any qualification can therefore be represented as a conflict between a persistence
default and a qualified action effect with respect to some known constraint about the
domain. Ginsberg and Smith described a technique whereby each action is associated
with a set of constraints upon which its effects may differ. The reasoner compares
the expected outcomes with and without these constraints, and a prediction is made
based on what they have in common. They call these expected outcomes closest pos-
sible worlds, after the semantic notion from the theory of counterfactuals [Ginsberg,
19861. However, as Winslett [19881 points out, they try to capture the semantic no-
tions of "closest" worlds and what worlds "have in common" through crude syntactic
comparisons such as the number of identical formulas in axiomatizations. For these
reasons, their techniques come across as either vague or ad hoc, not really providing
a versatile, testable solution to the qualification problem.

4.4 Circumscribing Qualifications

In his influential paper "Formal Theories of Action" Lifschitz [1987] described a solu-
tion to what he called the qualification problem. Actually, he solved a more limited
problem quite different from what was addressed by the preceding schemes. I describe
it here for the sake of clear comparisons with the terminology in the literature.

The above solutions divided up domain fluents known to be preconditions between
those that have reasonable default values and those that must be checked explicitly.
Lifschitz presented a representation that divided up fluents into those known to be
preconditions and those assumed to not be related as preconditions. Recall that his
Law of Change stipulated that for an action to imply an effect, all preconditions
of that action must be true. A fluent f is asserted as a precondition of action a
using the literal precond(f, a). In order to prove that all preconditions of an action
are true, however, we require assertions about what fluents are not preconditions,
i.e. negated literals like -precond(f, a). Lifschitz's approach provides the necessary
negated precond literals by circumscribing the precond predicate. This is better
than completely specifying the precond predicate explicitly as a list of positive and
negative literals, although compact representations can be constructed that avoid the
need for minimization (e.g. adding precond(p, a) -- (p = q V p = r)).

Thus the two kinds of solutions to the "qualification problem", and therefore the
problems they solve, are orthogonal. The solutions could be combined, where Lifs-
chitz's solution defines the preconditions and McCarthy's solution imposes the finer
distinction of which preconditions are given defaults; the notations, however, are dif-
ferent enough that it would take some careful formalization to combine them yet
retain the perceived advantages of each. Besides, in Chapter 5 1 show how the use of
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statistical inference subsumes both solutions, in the following way: statistical inde-
pendence makes Lifschitz's distinction between preconditions and non-preconditions,
and the values of conditional statistics suggest degrees of belief in qualifications in-
stead of defaults.

4.5 Defaults and Qualifications in General

It is more appropriate to view logical solutions to the qualification problem as rep-
resentational rather than computational, especially when semantic notions such as
possible worlds or model elimination are used to capture defaults. The above solu-
tions often try to capture performance issues, e.g. by writing the axioms so that a
mixture of forward and backward chaining can be used, but it is not clear if abstract
measures such as numbers of facts actually dominate the computational fluents at
the unspecified algorithmic level. Proof theory does not easily support computa-
tional claims without the underlying mechanism for inference; this is especially true
for nonmonotonic entailment.

This section dispenses with claims that axioms should be written this way or
that way and examines how default logic can be used to solve representational and
inferential aspects of the qualification problem. Computational aspects will ignored
until Chapter 6, which discusses algorithmic heuristics for statistical causal reasoning.

4.5.1 Default logic and qualifications

Consider adding a defeasible version of the implication operator to first-order logic,
in order to use the sentence 0 -- 0 to mean "the sentence 4 defeasibly implies 0".
The formal properties of such a task have been investigated in numerous places [Loui,
1987b, Nute, 1986, Reiter, 1980]; here we will rely on the following informal definition:
if 4 -,.+ 0 is a default rule, 4 is considered true by the reasoner, and ¢P is consistent
with everything considered true, then 0 is also considered true. This is the same
reading as the more familiar but notationally awkward default rule of Reiter [1980]:

0:M0

This operator is used to solve the qualification problem by writing causal rules whIch
capture reasonable conclusions from appropriate evidence, e.g. for car starting, using
an explicit time line:

ignition(m) -, running(m') (4.4)

ignition(m) A -charged(m) .-- running(m') (4.5)

In words, if the car is not running and the key is turned, then it is reasonable to
assume the car will be running at the next moment; however, if the battery is dead.,
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then it is reasonable to assume that the car will not be running at the next moment.
Since the conclusions of these two rules conflict, the prediction about the car starting
depends on the order that the rules are applied (in Reiter's terminology, there will
be multiple extensions of the rule set). If both ignition(l) and -charged(l) have
been asserted, then when (4.4) is invoked, running(2) will be concluded. This new
fact blocks the invocation of (4.5), since -running(2) is no longer consistent; the
reverse happens if (4.5) is applied first. Reiter suggested that the conclusions of a
set of default rules are those sentences true in all extensions. This stipulation is
not appropriate for our purposes, since no qualified predictions would be true in all
extensions, and therefore no predictions would be made. Since in general there will
always be exceptions to causal rules, and therefore conflicting default rules, we must
derive a conclusion even in the face of this ambiguity.

4.5.2 Resolving conflicting defaults through specificity

Intuition tells us that that the application of default rule (4.5) should be preferred to
the application of (4.4), since (4.5) involves more knowledge about the situation; if we
know a fact such as potato(l), then we should prefer rules that use this knowledge
over ones that don't. This intuition is captured by the principle of specificity [Bacchus,
1988] a.k.a. inferential distance [Touretzky, 1984, Etherington, 19871. To use another
more familiar example, suppose that Tweety is a penguin and therefore also a bird;
we would prefer to use the rule that most penguins don't fly over the rule that most
birds do fly. In general, we can define the following principle:

Heuristic 4.1 (Specificity for Default Logic) Given two conflicting default rules
E -,.+ h and F -. + -h, if E entails F with respect to some background knowledge (and

the reverse is not true), E is said to be more specific and the rule E --.+ h should be
applied first.

I should note that there are many cases where conflicting defaults are not resolved
by appealing to specificity. A famous example is the "Nixon diamond", where the
reasoner has the following defaults rules:

Quaker(z) -,4 pacifist(x)

Republican(x) -4 -pacifist(x)

The default truth of pacifist(Nizon) depends on the order of application of these
rules, since we know both Quaker(Nixon) and Republican(Nixon). We cannot apply
specificity to resolve this conflict, since their antecedents are not logically related;
there must be some other mechanism that disambiguates these defaults. However, if
there is also the default rule:

Republican(x) A Quaker(x) -,- -pacifist(x)
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then the conflict is resolved, since by specificity this rule is applied before both other
rules, and the first becomes blocked and the second redundant.

4.5.3 How default logic solves the qualification problem

This general view of default rules for causal reasoning makes a solution to the qual-
ification problem much more apparent. Recall the following two default rules about
car-starting:

ignition(m) -,-+ running(r')

ignition(m) A -chargod(rn) -,., -running(r')

The first rule implicitly captures that the car's battery is seldom dead. Otherwise,
if the battery often died, then it would not be a reasonable assumption that the car
will start when the ignition is engaged.

In other words, a default rule makes implicit default assertions about the sufficient
preconditions that do not appear in the antecedent. When these other preconditions
become known, however, the reasoner is forced to use a more specific default rule.
This is the essence of all the default logic solutions to the qualification problem.
An analogue of this feature will also be crucial to my statistical solution to the
qualification problem, discussed in Section 5.3.

4.5.4 The lottery paradox

A classic problem of default logic approaches is the lottery paradox [Kyburg, 1970].
Imagine reasoning about a lottery where one of a large number of people will win a
prize. The chance that any particular person will win is certainly very small, making
it a reasonable default that the person will not win. Since this can be uniformly
applied to all people involved, the conjunction of all the defaults implies that no
person will win. This contradicts the definition of the lottery, which says that there
will be a winner. The reason for this contradiction is that defaults do not lose force
when composed, yet the statistical facts they reflect do.

The lottery paradox appears in the use of defaults for causal reasoning. The above
car-starting default rules allow the reasoner to assume, for a particular car-starting
instance, that the car will start and therefore the battery will not be dead. This seems
perfectly reasonable. However, when taken together, these particular assumptions
imply that since the reasoner has no future counter-evidence, the car will always
start and the battery will never be dead. This would indicate that battery cables or
preventive replacement of batteries are superfluous, and other conclusions we know
to be wrong in practice. To correct this problem, it has been suggested that the facts
in the antecedent of a default rule must not be true by default themselves; this would
prevent far-reaching predictions, but also prevent reasonable predictions even two
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moments ahead. Shoham [1988] suggested attaching a number to each default rule
(actually the projection of a "potential history") that bounds the number of times
the rule can be applied in a chain. This solution is too ad hoc for examples such as
the car battery, where there is no most reasonable cutoff period (although things do
tend to break as soon as the warranty expires).

4.6 Chapter Summary

A causal reasoner will not have complete knowledge about a realistic domain. Solving
the qualification problem involves making causal predictions in the face of this igno-
rance. Default rules provide a mechanism for making reasonable predictions from
limited information, thereby addressing the qualification problem. However, since
default rules are forced to round "usually" to "always" valuable information is lost
and inconsistencies may develop in the resulting theory. A condensed version of this
chapter (and the next chapter) appears in Tenenberg and Weber [1989].



Chapter 5

Statistical Causal Inference

A default rule works well when its antecedent implies that its consequent is almost
always or almost never true, because it assigns one of two truth values, true or
false. Default rules do not handle the middle ground, where the antecedent provides
information about the consequent, but not to the point of declaring it true or false.
For example, suppose the car is known to have difficulty starting in cold weather:
certainly cold(0) is an important fact to consider when predicting running(l). but
to say that the car will start anyway or definitely not start is inappropriate.

This chapter describes a generalization of the default logic approach that derives
a degree of belief in the consequent (effect) given the knowledge that the antecedent
(precondition list) is true. This degree can be based on actual domain observations
about the relative frequency of the effect given the preconditions, e.g. the car starts
70% of the time in cold weather. This allows for much more expressive relationships
between preconditions and effects. It also captures the "non-monotonic flavor" of the
qualification problem. For example, the car may start 95% of the time that the key
is turned, only 70% of the time the key is turned and the weather is cold, but back
up to 90% of the time the key is turned, the weather is cold, and the anti-freeze is
extra strength.

There may be multiple relative frequencies applicable to the same prediction. In
the percentages above, if the reasoner ignores the fact that the weather is cold, it may
derive a 95% degree of belief instead of the 70% degree of belief. This is the reference
class problem [Kyburg, 19831 that has concerned philosophers and statisticians for
several decades. A reference class is simply a set containing the object in question;
this set is used to suggest a degree of belief that the object belongs to another set.
Thus a reference class can be thought of as "relevant evidence", analogous to the
antecedent of a default rule. There may be multiple reference classes that suggest
different degrees of belief; a commonly accepted principle is to use the more specific
reference class. This is the analogue of the rule preference from default logic described
in Section 4; in fact, specificity was discussed for degrees of belief before default logics
were even invented.

This approach does not suffer from the lottery paradox as does the default logic
approach. since degrees of belief do not need to be "subsidized" in order to be as
strong as true or false. For example, given the belief that the car starts 95% of the

41
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time, the reasoner derives that there is a 95% • 95% ; 90% chance that the car will
start twice1 , a 85% chance for three times, etc. This captures the intuition that the
more times an action is attempted, the more likely it will fail during one of those
attempts. This commonsense fact is totally lost in the default logic approach.

As with default logic, the essence of how this approach solves the qualification
problem comes from what a rule says about those preconditions that do not actually
appear in the rule. For example. if it is believed that the car starts 95% of the time,
and it is believed that a dead battery prevents the car from starting (all of the time),
then it must also be believed that the battery is dead less than 100% - 95% = 5%
of the time. In fact, all the situations that would prevent the car from starting are
believed to total exactly 5%. Thus these causal rules capture statistical generalizations
about the combined effect of an action's qualifications.

5.1 Basic Statistical Notation and Inference

This section outlines the statistical notation to be used throughout the rest of this
thesis. The notation is modeled after that of Kyburg [1974, 1987], and I refer the in-
terested reader to his work for a more detailed and rigorous treatment of the technical
and philosophical issues involved in the representation of uncertainty. The notation
to follow will be sufficient to convey the concepts involved in this treatment of uncer-
tainty and causality.

5.1.1 Statistics and basic theorems

Kyburg makes an important distinction (which is often ignored in Al work [Dean and
Kanazawa, 1988]) between a statistic, which captures the relative frequency between
sets of objects, and a probability that a particular object is a member of a set with
respect to some knowledge about that object. These two concepts are often confused
because they both assign a value to similar syntactic objects from the interval [0, 1]
within a field of numbers. However, it is important to bear in mind the difference:
a statistic is a generalization over a class of objects, whereas a probability is a belief
about a particular object.

A statistic is written using the "%" predicate, e.g. "%(fliers I birds) = .95"
means that 95% of the objects in the set of birds also belong to the set of fliers (I
use the conditional bar (1) instead of comma (,) for this predicate to keep the order

'Assuming that the car starting trials are independent. If they are not, information about how
they are dependent can be used to combine the individual chances.
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of arguments clear). In the case of finite sets, a statistic can be defined in terms of
cardinality (the predicate "#"), in the following way:

I b) = #(a n b)
#(b)

provided #(b) # 0. This definition of statistics, together with standard axioms from
set-theory, is sufficient to prove the following traditional "Laws of Probability" for
statistics:

Range: 0 < %(a Ib) < 1

Additivity: if%(afnb Ic) =0, then%(aUbI c) =%(a I c)+%(bI c)

Chain rule: %(anc I b)= %(a I b) .%(c I afn b)

The chain rule can also be written as the familiar Bayes Theorem:

%.(c I a n b) = %(a n c l b) % (cj b) "%(a I cn b)
%(a I b) =(a b)

which shows how to "swap" sets on different sides of the conditional bar.

5.1.2 Rational corpora, probabilities, and specificity

A set of these statistical assertions, plus other sentences in first-order logic (with
axiomatic set theory, identity, and arithmetic operations) comprise an agent's rational
corpus. This corpus can be used to derive a probability for a ground sentence that is
equivalent to asking if an object is a member of a set, e.g. we might need a degree of
belief for the sentence "Tweety E fliers." Formally, if 0 is a sentence and KB is a
rational corpus. probability P(O I KB) = p iff there exist terms x, y, z such that:

1. "0 E x E z" is a sentence in KB,

2. "x E y" is a sentence in KB,

3. "%(z I y) = p" is a sentence in KB, and

4. x is a random element of y w.r.t z relative to KB.

For example, suppose an agent's KB contains only the logical consequences of the

following facts:

%(fliers I birds) = .95

Tweety E birds
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then P(Tweety E fliers I KB) = .95 since condition 1 is trivially satisfied 2, binding z
to fliers, condition 2 binds y to birds, condition 3 defines the result, and condition
4 is true because as far as the agent knows, x could be any element of y. The set y
is what we have been calling the "reference class". As remarked earlier, the choice of
reference class can change the resulting degree of belief.

It is interesting to note that condition 4 above subtly imposes the principle of
specificity, i.e. a statistic with a more specific reference class is preferred when as-
signing probabilities. To see how, consider adding the following sentences to the
KB:

K.(fliers I penguins) = .005

Tweety E penguins

penguins C birds

Now our previous derivation of .95 no longer holds since condition 4 is violated:
Tweety is no longer an epistemically random3 element of birds, since it is now a
belief that Tweety is in penguins. Condition 4 is satisfied for the reference class
penguins, so the resulting degree of belief is .005.

As with default logic (cf. Section 4.5.2), this notion of specificity does not choose
between some competing statistics. An analogous version of the "Nixon Diamond"
can be constructed for statistical beliefs, as follows:

%(pacifists I Quakers) = 19

%(pacifists I Republicans) = 1/9

Nixon E (Quakers n Republicans)

Specificity does not say which statistic to use to establish a belief in "Nixon E
pacifists", unless we also have a statistic that conditions pacifists on both
Quakers and Republicans, in which case this more specific statistic is preferred.

These definitions comprise a statistical interpretation of probabilistic belief. There
are other interpretations of probability, but a statistical. approach is the choice of this
thesis because it emphasizes that the meaning of the probabilities is grounded in
distributional facts about the domain. It also suggests that the statistical beliefs
of the agent might be derived from empirical observations about the relationships
between domain properties.

2All examples in this thesis use O's of the form "z E a", so condition 1 will always be trivially
satisfied.

3This term is due to Josh Tenenberg. who also contributed substantially to the development of
the ideas in this chapter.
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5.1.3 Considerations other than specificity

Actually, Kyburg's rational corpora contain more general statistical assertions of the
form:

%(z I y) E [p, q]

which is taken to mean "the proportion of y's that are z's is in the interval from p to
q", where p < q. Statistical assertions of this form can be used in the obvious way to
capture a belief that the proportion of birds that fly is somewhere between .9 and .95.
Two special cases of this form are important: when p = q the assertion is equivalent
to asserting a point value, and when p = 0 and q = 1 the assertion is a tautology
and therefore conveys no information. Kyburg also presents a stronger version of
specificity, where the relative vagueness of the intervals is considered in addition to
the relative specificity of the reference classes. For example, if instead I told you that
Tweety was a "speckled nuthatch" you might not have a statistic about flying that
has a reference interval more informative than [0, 1], and it would be better to just
use the statistic conditioned just on birdhood. More formally, his modified principle
states that statistics for a reference set Y will always be preferred to a reference set
W whenever Y C W, as long as the reference interval [yl, Y2] for Y is not weaker than
the reference interval [z1 , z21 for Z, i.e. [zi, z21 0 [YI, Y21. Loui [1987b] has successfully
implemented a system that applies this principle to retrieve the interval probability
that reflects the statistic with the most appropriate reference class.

In the interest of simplicity, this thesis will largely ignore the advantages of in-
tervals and the more complex version of specificity, as well as other limitations of
specificity [Kyburg, 1989]. I will assume that the reasoning agent has enough statis-
tical knowledge to reason effectively with the point-valued statistical assertions that
follow from her experience in the domain.

5.1.4 Odds and belief

An odds statistic $(h I r) or just odds is defined in terms of relative frequency to be
the following:

$(h r) = %(h r) %(h Ir)
\ X(hjr) 1-X(h Ir)

provided, of course, that %(h b) > 0. Thus odds values are rationals in [0, +o); a
value from [0, 1) says that more Rs are r's than are h's; a value in (1, +0) says the
opposite. This relationship between odds values and frequency values is depicted in
Figure 5.1. I define the degree of belief predicate B to be:

P(Z E h IX E r) P(XE h I zEr)
B(x h x E r)r=) 1-P(xEhIxEr)

That is, beliefs are to probabilities as odds are to relative frequencies.
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1-

Frequency 0.5
%(a I b)

0

0 5 10 15 20
Odds $(a I b)

Figure 5.1: The relationship between the odds and relative frequency statistical values

Note that the odds statistic carries no less information than the relative frequency
statistic, since

$(h I r)
(hlt)- 1+ $(h Ir)

and therefore it is not surprising that frequencies and odds have very similar proper-
ties. I will usually use the odds formulation, especially in examples, since the numbers
involved tend to be more intuitive, being so similar to the common notion of odds
making, e.g. "I'll be you ten to one that it isn't true". When it does not matter
which formulation is used, I will use the term "statistic".

5.1.5 Conditional Independence

Definition 5.1 (Conditional Independence) Two sets a and b are conditionally
independent given a third set c if and only if X(a I b n c) = %(a I c).

This statistical constraint is also equivalent to each of the following:

I(a, b, c)

(b Ian c) =(b I c)

%(-a Ib n c) -%(-,a Ic)

$(a bfnc) =$(a I c)

In words, if you are already considering that an object is a c, then knowing that
it is a b does not bear on it being an a, and vice versa. Systematic information
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about independence allows us to only represent a subset of the statistics needed for
reasoning, since the remaining statistics will be equal to or derivable from the subset.
For example, independence can be used to derive the frequency for a conjunction,
since together with the chain rule:

%(a n b I c) = Y.(a I c) -. (b I a n c) = %(a I c) -. (b I c)

This fact is often presented as a definition of independence; while being equivalent,
it is more numerical than the definition given above, and therefore less intuitive.

5.1.6 Acceptance and the lottery paradox

It is sometimes useful to speak of the set of sentences that an agent believes with
enough strength to be considered certain for all practical purposes. The process
that defines the set of practical certainties is called acceptance. A simple mechanism
for acceptance involves applying a threshold to beliefs, although a better acceptance
mechanism would apply different thresholds depending on the context; for example,
one should be very certain that a gun is not loaded when cleaning it.

Inference is performed on the statistics, which derive beliefs, and then accepted
sentences become practical certainties. It is important to note that inference is not
generally performed within the set of practical certainties; this fact provides an answer
to the lottery paradox (cf. Section 4.5.4), since it is entirely consistent that "x will
not win" is a practical certainty for all participants z, yet "someone will win" is also
a practical certainty.

5.2 Statistics as Causal Rules

Having now outlined the basics of statistics and probabilities, I turn to their applica-
tion to causal reasoning. In Chapter 2, I described a causal notation that represented
fluents as sets of moments, and then used standard set operators to combine fluents.
For example, ignition is the set of all moments at which the car's key is turned.
I represent that a fluent is true of a particular moment through set membership,
e.g. t E ignition. Since I have described a statistical notation using sets, it will
be convenient to use the set-based causal notation when combining the concepts of
statistical inference and causal reasoning.

An agent's domain knowledge consists of set membership assertions such as 1 -E
ignition. This knowledge represents what is known about the domain at a partic-
ular time of interest. An agent's statistical causal knowledge consists of conditional
statistical assertions about fluents. This knowledge represents what is known about
the domain in general. Specifically, I will use statistical assertions about how fluents
that contain a moment m influence whether other fluents contain m', e.g.

(m : n' E running} I ignition) = p (5.1)



48 CHAPTER 5. STATISTICAL CA USAL LNFERE.N\CE

That is. the proportion of time points in which the car is running preceded by a time
point in which the key was turned is equal to p. Since I will be using rules of this
form extensively, I will use the shorthand notation X" for the set {m : m' E X}.

5.2.1 Causal probabilities

The union of the domain knowledge with the statistical causal theory yields a rational
corpus from which we may derive probabilities that moments belong to fluents. For
example, suppose the KB contains only the logical consequences of the following
sentences:

%(running* I ignitionfn running) = .95 (5.2)

0 E ignition

According to principles described in Section 5.1.2, this KB derives a degree of belief
of .95 for "0 E running", which by the definition of our shorthand is equivalent to
"1 E running". This mechanism allows the agent to make causal predictions between
certainty and falsehood, a capability that standard default logic approaches do not
have. The agent can use this added power to make quantitative judgments about the
relative merits of different courses of action.

5.2.2 Domain objects in causal statistics

In Chapter 2, I stated that it is convenient to write causal rules that apply to an entire
class of domain objects, using quantification. For example, to describe a car-starting
situation that applies to all cars, a standard non-statistical approach could write:

Vc[c- ignit ion(c, m) -- c-running(c, m')]

i.e. when any car's ignition is engaged it will start, as opposed to a particular car.
The above rule uses car-fluents instead of regular fluents, due to the addition of the
domain object argument c. This universal formula can be instantiated for a particular
car c and a particular moment m, simply by substituting for the variables c and m.

Statistical causal rules can also quantify over classes of objects. In Section 2.4.3, I
described how domain objects can be parameters to fluents using tuples of objects and
moments. This notation can be applied in a manner analogous to the non-statistical
causal rule above, to produce:

$(c-running" I c-ignition) = v

where v is the odds value, which can be less than certainty (unlike the non-statistical
rule above). This rule also uses car-fluents, i.e. subsets of cars x moments, and
captures that the proportion of objects with their ignitions engaged (presumably just
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cars) that will also be running during the next moment, is v. This statistical rule is
"instantiated" for particular cars and moments by constructing the degree of belief

B((c,m) E c-running" I (c,m) E c-i-nition) = v

where the "individual" is now a pair of individuals.

This tuple construction easily extends to cases where statistics are specific to sub-
classes of objects. For example, suppose the reasoner needed to represent a statistic
that encodes the observation "Chevys4 start only half of the time in cold weather".
This is a generalization over both moments and Chevys. I represent this observation
by conditioning on additional constraints, namely that the moment must be cold and
the car must be a Chevy, in the following way:

$(c-running" I c-ignition n (cars x cold) n (Chevys x M)) = 1

The first cross product generates all car-moment tuples in which the moment is cold.
and the second cross product generates the car-moment tuples in which the car is a
Chevy. Both constraits are intersected with the car-fluent c-ignition, to produce
all those tuples where a Chevy's ignition is engaged during a cold moment. The
statistical value of 1 captures that the odds are even money that such a car will be
running during the next moment. Using this technique, statistics can generalize not
just over moments, but any relevant domain class.

5.3 Competing Causal Statistics

This section introduces one of the main ideas of this thesis: that the reality of com-
peting statistics is not a bug, it's a feature. In particular, competing statistical
causal rules can be used to solve the representational side of the qualification prob-
lem, which proclaims the need to make predictions based on limited evidence. In
statistical causality, this limited evidence is the most specific reference class implied
by the current information about the objects involved in the prediction. This idea is
detailed in the following sub-sections.

5.3.1 Potatoes in tailpipes

It is well known that statistically-founded beliefs such as I have described have non-
monotonic characteristics [Bacchus, 1988], i.e. the preferred statistical belief in the
proposition "x E a" can change (increase of decrease) as a result of new knowledge
about x's inclusion in other sets. This approach handles exceptions to action success

11 do not intend to case aspersions on any particular manufacturer of automobiles, but if I did,
it would be Chevys.



50 CHAPTER 5. STATISTICAL CAUSAL INFERENCE

by the way that new reference classes are chosen when additional sentences are added
to the KB. For example, we add the following additional sentences to the KB:

(runming* I ignition n running n potato) = .1 (5.3)

0 E potato (5.4)

This new KB derives the degree of belief of .1 for "1 E running" rather than the
previous degree .95.

5.3.2 Exceptions to exceptions

Ginsberg and Smith [1987]. noted that a problem with McCarthy's default solution
to the qualification problem is that exceptions to action success, such as potatoes in
tailpipes, may themselves have exceptions, such as a special exhaust system with two
tailpipes. In other words, determining the sufficient conditions for concluding that a
qualification defeats an action also gives rise to the qualification problem. This is not
a problem in my approach: exceptions to exceptions simply give rise to more specific
reference classes. For example, suppose that we know that the car has a special dual-
tailpipe exhaust system, written as the assertion "0 E dual-tailpipe". Given the
following statistic:

%(running7 Iignition n runi-Fjr potato nl dual-tailpipe) = .8 (5.5)

our degree of belief that the car runs will be based upon this new reference class.
My approach simply treats exceptions (and exceptions to exceptions, ad infinitum)
precisely in the same fashion as it treats all qualifications: as evidence for choosing
the appropriate reference class.

These features capture the defeasible behavior that default logics were created to
emulate, yet the underlying inferences on statistics are monotonic; the nonmonotonic
component exists entirely within the assignment of degrees of belief and acceptance.

5.3.3 Causal generalizations

As I mentioned at the beginning of this chapter, a crucial feature of this use of
statistics for causal reasoning is how statistics generalize over what does not appear
in the description of the reference class. For causal reasoning, this means that fluents
that do not appear in a reference class are generalized over when that reference class
is used in a statistic. For example, the statistic

%(running* I ignition) = .95 (5.6)

embeds within it the relative impact of potatoes in tailpipes, dead batteries, and every
other qualification that might defeat the car starting. For example, if it is believed
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that a dead battery will prevent a car from starting (all of the time), (5.6) can be
used to derive the following bound:

%(chaxged I ignition) < .05

In fact, we can say something much stronger: the union of all the car-starting disabling
qualifications q, (conditioned on ignition) must have a statistical value less than or
equal to .05. Thus causal statistics implicitly express generalizations over "what can
go wrong". This solves the qualification problem.

Tenenberg and Weber [19891 present a way to formally demonstrate how statis-
tics generalize over properties not explicitly included in the reference class, via the
following theorem about conditioning on the elements of a partition:

I b) = %(a I b n c) . %(c I b) + %(a I b n z) /.(7 I b)

which follows easily from Additivity and the Chain Rule (it can also be expressed in
terms of odds, but the result is much more cumbersome). This theorem says that
a statistic can be expressed as itself conditioned on some additional evidence and
weighted by the statistic about the new evidence, summed with the same quantity
for the negation of the evidence. This can be written in terms of potatoes and
car starting in the following way (using two letter abbreviations for the properties
ignition, running and potato):

%(ru"I ig) = %(ru" I ig n po). X(po I ig) + %(ru" I ig n p"). -%(po I ig)

This also demonstrates how the statistical approach evaluates qualifications in con-
text, e.g. the statistic about the potato is conditioned on the evidence already being
considered, namely ignition. Recall that the lack of context sensitivity was a criti-
cism of the default logic approach of minimizing disability (cf. Section 4.2.2).

5.4 Statistics vs. Defaults

This section compares the statistical inference and default theory representations of
causal reasoning by way of an example. In case the reader is weary of cars and
starting them, the scenario of this example involves factors that affect whether a
certain computer is "up", i.e. executing instructions. I will describe a feature of the
scenario and follow with its representation in both statistical and default causal rules,
and then compare the two.

The time line will be divided roughly into minutes. The computer in question
continues to run fairly reliably, going down or being taken down about once in every
sixteen hours. This fact could be represented as follows, first using a statistic and
then a default:

$(up* I up) = 1000/1 up(t) - up(t') (5.7)
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We may also know of mechanisms that may affect the state of the computer, such
as the running of the shutdown program, where the computer is usually not up after
shutdown has been run. This is written as:

$(up* I shutdovn) = 1/100 shutdown(t) - -,up(t')

When these rules are applied to particular moments, they lead to conflicting statistics
and conflicting defaults that neither definition of specificity can resolve. However,
we may know that the computer is up when the shutdown program is running, by
definition, i.e. add the following sentences to the two approaches:

shutdown C up shutdown(t) --* up(t)

Therefore, in both approaches, this fact permits specificity to prefer the use of infor-
mation about the shutdown program.

To see some important differences in the two approaches, recall the rules in (5.7).
The default rule says that it is always reasonable to assume that the computer re-
mains operating from one minute to the next. The statistic says the same if the
acceptance mechanism declares that thousand-to-one odds are convincing enough.
In many situations they will be, but suppose that the computer in question is part
of an international banking system, and 1000/1 may not be sufficient to reasonably
guarantee that a funds transfer has taken place. Thus unlike default logic, the use
of statistics allows a context-sensitive acceptance mechanism, e.g. by incorporating
aspects of decision theory to evaluate costs and therefore define "reasonable".

As I have mentioned previously, the lottery paradox highlights an important differ-
ence between the two approaches. The default that allows us to persist the operation
of the computer from one minute to the next also allows us to persist the operation
from hour, day or decade to the next. This is not true of the statistical approach,
where the belief can "decay" over time. We can construct the frequency distribution
corresponding to the number of moments that the computer stays up based on the
statistic in (5.7), i.e. the function:

f()= (fm: m + i Eup} l up)
i=1

By the chain rule, we can rewrite this function definition as:

x i-I

f(X) = f : m + i E up I nfm: m +j E up)
i=1 j=0

This can be simplified further if the fluent "up" is independent of its far past given
its immediate past. i.e. for all i > 0:

%(up* I up n f{m : m - i E up}) = %(up* I up)
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Figure 5.2: Exponential distribution of how long a hypothetical computer will remain
"up", demonstrating the way that statistical persistences decay over time.

This distribution corresponds to an exponential parameterized by the frequency value
corresponding to the odds given in (5.7), as shown by Figure 5.2.

Statistical rules are also more expressive even when actual numbers are not spec-
ified. For example, suppose that the computer tends to go down more often during
thunderstorms. This can be represented using statistics as follows:

%(up* I up A thunder) < %(up* I up)

There is no corresponding statement in default logic, since defaults (and even analyti-
cal truths) are all given the same weight. Thus default logic cannot support decisions
based on the relative strength of evidence.

5.5 Survivor functions and Persistence

Dean and Kanazawa [19881 developed a statistical solution to the frame (persistence)
problem by using a concept from queuing theory called a survivor function. Using
our notation and terminology, these survivor functions were expressed as statistics
for each fluent set p:

fp(6)=%({t :t+6Ep} IP)

Intuitively, these functions derive the probability that a fluent will remain true after
a given length of time b. Dean and Kanazawa derive this function from the simpler
statistic for one moment ahead, i.e. %(p I p) = A, as I did in the preceding section.
Under certain conditions, the resulting survivor function is a geometric distribution
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fr(b) - A6 (or in the continuous case, an exponential distribution fp(5) = e-6).
For example, suppose there is a 90% chance that your car will not be towed from
an illegal parking space during a given hour. Given certain assumptions about the
independence of the trials, this means that there is a 81% chance that the car will
not be towed after two hours, a 73% chance after three hours, etc. Therefore, the
survivor function can be used to derive a degree of belief that a fluent persists over
time, solving the frame problem.

5.5.1 Survivor functions are a special case

My approach subsumes the use of survivor functions, because the statistics they
embody are a special case of the statistical causal rules I have described. In fact,
my approach allows for much more flexible survivor functions that are sensitive to
contextual information. For example, suppose the illegally parked car above is parked
next to a fire hydrant, which defines the more specific reference class in the statistic:

(not-towed* I not-towed n by-hydrant) = .85

This statistic can be used to define a survivor function that incorporates this contex-
tual information.

5.5.2 Projection rules

In addition to survivor functions, Dean and Kanazawa do allow an additional form
of statistical assertion called a projection rule, which they use to derive a degree of
belief that a fluent changes, e.g. in our notation:

%(running* I running n ignition n has-gas...) = x (5.8)

In words, this statistic captures the proportion of times that the car will be running
given that previously it was not running, its key was turned, it had gasoline, plus
the truth of all other relevant preconditions. Projection rules are much the same as
another special case of our statistical causal rules.

5.5.3 Survivor functions and competing statistics

The principal deficiency of Dean and Kanazawa's approach is that they do not handle,
or even recognize, the problem of conflicting reference classes. The reference class
problem appears even within their restricted statistical assertions, when representing
survivor functions and projection rules for both a fluent and its negation. Information
about w hether a fluent will change competes with information about whether the
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fluent's negation will persist. For example, consider the survivor function for the
negation of running:

(running- running) = z

from which it follows that:

%(running I running) = 1 - z

which can be applied whenever (5.8) can be applied, leading to a choice between x and
1 - z as the probability of a sentence such as "1 E running". Therefore, since they
do not provide a mechanism like specificity for resolving competing reference classes,
they do not solve the frame problem in a consistent way. For the same reason, they
also do not address the qualification problem at all.

5.6 Chapter Summary

The mechanisms of statistical inference are similar to those of default logic, including
the principle of specificity. Thus the default logic solution to the qualification prob-
lem works in statistical causal reasoning as well. However, the statistical approach to
causal reasoning has the following advantages: it can avoid "lottery paradox" incon-
sistencies, statistics are more directly connected to empirical domain observations,
and statistics are more expressive than default rules. Also, this statistical approach
can represent the domain-dependent knowledge needed to infer the persistence of flu-
ents, which is needed to solve the frame problem. A condensed version of this chapter
(and the previous chapter) appears in Tenenberg and Weber [1989].



Chapter 6

Highest Impact Heuristics

The previous chapter showed how to derive a statistical probability for a prediction
given knowledge about other fluent/time combinations. Taking the principle of speci-
ficity to its logical extreme, the most appropriate reference for this prediction is that
which incorporates the most domain knowledge. This most specific reference class
may contain many fluents which are largely or completely irrelevant to the prediction
at hand. For example, by specificity, the reference class of the best statistic for car
starting will include the day of the week, the color of the car, and other fluents that
the agent can be said to know (or even is aware of) yet they will not significantly
bear on the statistical value of the prediction.

This problem requires more than a distinction between independent and depen-
dent preconditions; there are fluents that fall in between. Consider knowing that it
is cold when starting your car. Depending, of course, on the extent of the chill and
the fortitude of the car, being cold is perhaps to big a factor to be ignored, yet it is
relatively unimportant compared with fluents such as the key being in the ignition,
gas in the tank, etc. Thus there is an intuitive ordering on factors when making a
prediction, e.g. ignition is considered before cold is considered before friday.

Considering fluents in a reasonable order can lead to valuable computational sav-
ings. In many approaches to evidence combination, the statistic for a complex refer-
ence class is computed incrementally by adding individual pieces of evidence one at
a time. Although the statistical value for a reference class is the same for any order
that the fluents are added, the accuracy after n fluents have been added depends on
the choice of the fluents. A performance goal for statistical prediction is to achieve
adequate accuracy with a relatively small n. If the most relevant knowledge is con-
sidered first, then an estimate of the accuracy may show that the computation can
be curtailed.

This chapter proposes a solution to this problem for the classic Bayesian method
of incrementally computing statistics. Given a set of primitive fluents, my approach
incrementally builds more specific reference classes by considering these fluents in
order of decreasing magnitudes of their statistical impacts. As more fluents are con-
sidered. the magnitude of the impacts are used to estimate the current error, and
when this is small enough or time is critical, the computation terminates.

56
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6.1 Bayesian Updating and Impact

A key theorem in Bayesian techniques is the following "recursive evidential updating-
rule:

%(fl h r)

which follows easily from Bayes rule. It tells us how to compute the new statistical
value for a hypothesis h, obtained when a reference class r is made more specific by
adding a new factor f. A version using odds is derived by dividing by the update
rule for h, i.e.

%(h I rnf) %(h I r) %(f I hnr)
%(FI r n f) %(h r) %(f I h n r)

which by the definition of odds, gives:

$(h I rf f) =.$(h I r). %(f I h n r) (6.1)

%(f I hr)

Thus the quotient on the right-hand side provides a numerical way to update the
statistical value for a reference class given a new constraint f This quotient is very
important in my approach, so it will be worthwhile to define a special term to denote
it:

Definition 6.1 (Impact) The term h(f, h, r) is the odds impact (or just impact)
of f on h given r, defined to be

h, %(f I h nr)

%(f Ihnr)

Therefore, (6.1) can be simplified to read:

$(h I r nf) = $(h Ir). !(f,h,r) (6.2)

Impact values are all non-negative numbers, as axe odds values. If f is independent
(cf. Section 5.1) of h given r, then ! (f, h, r) = 1. Since the impact value is multiplied
in, a value of one will not change the odds value. Impact values in the interval
[0, 1) will decrease the odds and therefore capture a negative effect, and values from
(1, +oo) increase the odds, capturing a positive effect.

6.1.1 Impact ordering

Applying (6.2) recursively derives the following theorem:

$(h I n fi) =$(h) .1 ! (f,,h, f )
'---- t=l 1=
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In words. the statistical value for a hypothesis h conditioned on a reference class
consisting of the intersection of factors f, is equal to the product of the prior odds for
h and the product of the impacts of all the factors, with each impact conditioned on
the previous factors (with respect to some ordering). Since this theorem is derived
from the chain rule. the resulting value is the same for any ordering of the factors.
For example. consider deriving a statistical value for the hypothesis that the car will
be running, given that the weather is very cold and the car has a block heater1 , using
the following statistical impacts:

!(cold, running", M) = .3

!(heater, running*, M) = 1.06

!(cold, running', heater) = .85

!(heater, running', cold) = 3

where M is the set of all moments (an implicit condition on all causal statistics). The
posterior odds for the prediction $(running* I cold n heater) is independent of the
order that cold and heater are considered, as evidenced by the calculations:

!(cold, running*, M) ! (heater, running*, cold) = .3(3) = .9

'(heater, running*, M) '(cold, running, heater) = 1.06(.85) = .9

which are each multiplied by the prior odds $(running* I M) to derive the posterior
odds for the prediction.

6.1.2 Impacts and likelihoods

In traditional Bavesian evidential updating, it is considered important that the do-
main is such that the new factor is independent of the current reference class given
the hypothesis (or the negation of the hypothesis). When this is true, the quotient
in (6.1) (i.e. the impact) is simplified in the following way:

%(f h nr) (fI h)
%(fI T'nr) %(flh) 

since by the definition of conditional independence, the reference class can be removed
from the right-hand side of the conditional bar. This simplified quotient is usually
called the likelihood ratio L(f I h) of f given h [Pearl, 1988]. Since likelihoods are
not evaluated with respect to a current context (reference class) as are impacts, the

1A block heater is an AC device that keeps the car's engine block warm, so that the car will
start in very cold weather. Contrary to what the Californians may think, Rochester rarely gets cold
enough to demand such a device.
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posterior odds for the hypothesis is simply the prior odds times the product of the
(static) likelihoods, i.e.

$(hIn f,) =$(h). - 1L(/, I h).

i=1 i=1

This formulation is certainly simpler, but it is not suitable for the task of causal
reasoning since the conditional independence assumption between the factors pre-
cludes the interesting dynamic relationships between the impacts of fluents. In the
preceding example, the example impact of heater is much greater when relative to
the reference class for cold. This captures the intuition that some factors make other
factors more significant, such as the way knowing it is cold increases the significance
of the presence of a block heater. Similarly, notice that the impact of cold becomes
closer to one, and therefore less significant, when made relative to the reference class
heater. This captures the intuition that coldness matters less when starting a car
if the car has a block heater. Thus dynamic interactions between fluents, such as
between cold and heater, are an interesting and essential part of causal reasoning.
Section 6.2.3 examines this behavior in more detail.

6.1.3 Logarithmic impact and odds

Impact and odds values are in some ways more intuitive if we use a logarithmic
version of (6.1). Taking the (natural) logarithm of both sides of (6.2) and simplifying
produces:

ln($(aIbfnc)) = ln($(ajb). (c,a,b))
= ln($(a I b)) + In(!(c,a,b))
= $(a I b) +(c,a,b)

where the hat symbol () is used as a shorthand for logarithmic versions of both odds
and impact. Because of the nature of logarithms, this new formula expresses the
update of a logarithmic odds ratio as the addition of a logarithmic impact. The loga-
rithmic version maps impacts in [0, 1) to negative numbers, and impacts in (1, +oo) to
positive numbers. A fluent with a negative log impact will have a negative number as
an impact value, positive log impacts will have positive values, and a log impact value
of zero means the fluent is independent of the prediction. Logarithmic odds also have
an interesting interpretation: a log odds ratio of zero means equal weight to a fluent
and its negation, a positive value means more weight to the unnegated fluent, and a
negative value means more weight to the negated fluent. Also, for both log impact
and odds, the positive and negative values are symmetric, i.e. i(c, a, b) --i(c, U, b),
and $(a. b) = -$(a, b). The relation between regular and logarithmic odds values is
depicted by Figure 6.1. A belief derived from a logarithmic odds will be written in
the obvious way using i(p) = ln(B(O)).
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Figure 6.1: Odds values vs. logarithmic odds values. A log odds ratio of zero means
equal weight to a fluent and its negation, a positive value means more weight to the
unnegated fluent, and a negative value means more weight to the negated fluent.

6.2 Highest Impact First

The above discussion of impacts and their relative magnitudes suggests that fluents
with high impact are more salient when deriving an appropriate reference class for
a prediction; after all. fluents with zero log impact need not be considered at all,
being independent. This section expresses this intuition as a heuristic ordering on
the incremental inclusion of fluents in reference classes, and explores why this heuristic
may promote fast convergence to a reasonable statistical value.

6.2.1 Higher impact preference

When reference classes are built incrementally, as with Bayesian updating, there
will be a choice as to which order the fluents are added. This amounts choosing
which statistic $(h I r n fi) for fluent fi is best as the belief B(x E a). Specificity
says little about this choice, since in general the fi's will not be related by the subset
relation. Impact, however, can be used to arbitrate these statistics, using the following
heuristic:

Heuristic 6.1 (Higher Impact Preference) If it is known that x E f n g n r,
g t f, and I .(f,h,r) > i(g,h,r)j, then prefer the use of$(h I rff) over $(h I rng)
as the belief B(x E h).

Thus the term "highest" is used here and henceforth to mean "highest magnitude"
a.k.a. "highest absolute value". The first requirement, x E f n g n r, merely states
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that x is known to be in all three sets. The second requirement, g f, ensures
that the heuristic does not conflict with a preference of the statistic using g by speci-
ficity. Given these requirements, the fluent with the higher log impact magnitude is
incorporated in the the preferred statistic.

The higher impact preference does not conflict with specificity, by definition. In-
stead, it complements specificity by providing a mechanism for comparing other pairs
of statistics. For example, take the Nixon Diamond (cf. Section 4.5.2). Suppose that
being a Republican somewhat decreases your chance of being a pacifist, as evidenced
by the following statistics:

$(pacifists I people) = 1/2

$(pacifists I Republicans n people) = 2/5 (6.3)

Where I have explicitly constrained the domain of the statistics to people and not
other objects like cars and moments. Also suppose that being a Quaker greatly
increases your chance of being a pacifist:

$(pacifists I Quakers n people) = 3/1 (6.4)

In retrospect, the impacts are as follows:

S(Republicans, pacifists, people) = In(4/5) - -0.1
'(Quakers,pacifists,people) = ln(6) z +0.78

The higher impact preference heuristic says that if a choice is to be made between
(6.3) and (6.4) as the degree of belief B(Nixon E pacifists), prefer (6.4). This is
because, according to the numbers I used above, being a Quaker is more relevant to
pacifism than being a Republican. Of course, if we have statistics that condition on
being a Quaker and being a Republican, then they will be preferred (by specificity).

6.2.2 Justifying the higher impact preference

Does the higher impact preference always choose the statistic that is most indicative of
the actual value of the fluent? Clearly the answer is no. Assuming that Nixon's record
shows him to not be a pacifist, the negative indication of $(pacifists I Repubiicans)
is closer to the truth than the positive indications of $(pacifists I Quakers), which
was actually preferred.

The principle of specificity also has this problem; generalizations will be incorrect
when applied to exceptions, by definition. This is why the impact and higher impact
preferences are heuristics, which must be justified with respect to the domain. One
approach would be to collect relative data from a specific domain and analyze the
performance of the heuristics on the fluents of individuals. This has not been done
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to test specificity, and I will not do this for the higher impact preference; even if
such data could be collected without bias in the sample, it would only reflect the
performance in one domain.

Perhaps a psychological experiment would demonstrate that humans tend to in-
voke the higher impact preference. Since humans are successful reasoners in the real
world, this would indicate a fact about our domain. However, the construction of
such an experiment is beyond the resources and goals of this thesis.

The most compelling arguments are intuitive. If I told you that Tweety is both
a bird and dead, which fact would you consider first when predicting whether she
flies? Certainly the fact that she is dead bears more on the prediction. You might
even ignore the fact that she is a bird if you believe that bird-ness is conditionally
independent of flight given dead-ness, i.e. if dead Tweety is going to fly it's not because
she has feathers. The key assumption behind the higher impact first heuristic is: it
is more often true that fluents with small impacts are independent of the prediction
given fluents with large impacts, than large impact fluents are independent given
small impact fluents. Certainly this is true for the smallest impact of zero, since no
other fluent can become conditionally independent when its evidence is added.

6.2.3 Highest impact first iteration

The higher impact preference induces an ordering on all candidate fluents that could
be added to the reference class, by pair-wise orderinig the resulting statistics. Thus
the higher impact preference defines a Highest Impact First ordering for constructing
incremental reference classes. For example, consider the logarithmic belief A(0 E
running' I KB) where the KB contains the necessary statistical causal rules and the
following knowledge:

0 E (running n cold n heater n ignition n damp n friday)

This domain knowledge will be used incrementally, i.e. the above fluents will be
considered one at a time. I will signify the fluents currently under consideration
by placing assertions of set membership in place of the KB, e.g. B(O E running7 I
running n cold).

The iteration starts with the base case (using artificial values for the sake of an
example):

E( E running I 0 E M) i(running I M) = -1.06

using the (logarithmic) prior odds for the prediction, the only statistic with a vacuous
reference class. The known fluents have the following logarithmic impacts:

.(ruinning, running*, M) = -1.64 i(cold, running, M) = -0.5

'(heater. running*, M) = +0.02 '(ignition, running*, M) = +3.06
'(damp, running*, M) = -0.7 i(friday, running', M) = +0.06
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and we notice that the impact with the highest absolute value is +3.06, for the ignition
being turned, ignition. Some of the other impacts may seem odd. In particular, the
fluent for "Friday" has a positive impact. Remember, though, that so far, impacts
are computed for the car running, not starting. It may actually be true that the car
is driven around more on Fridays (bar-hopping, for instance). Impacts become more
focused when the reference class gets larger, as we see after we add the highest impact
to the prediction's prior, giving:

b(E running* 10 E ignition) $(running* I ignition)
= $(runninge IM) + I(ignition, running', M)
= -1.06+3.06
=+2

and then evaluate the new impacts conditioned on the ignition being engaged:

i(running, running', ignition) = -0.05
i(cold, running', ignition) = -0.5
i(heater, running', ignition) = +0.02
i(ignition, running*, ignition) = 0
.(damp, running', ignition) = -0.1

(friday, running', ignition) = +0.01

Note that the impact of a fluent such as ignition drops to zero after it has been
added. This is because it makes no difference if a fluent is added a second time; thus
the Highest Impact First heuristic automatically avoids redundant consideration of
fluents. Also note that the consideration of the ignition severely decreases the impact
of the car not previously running. This is simply because the ignition is not often
engaged when the car is already running; therefore, ignition covers much of the
statistical impact of running.

The big winner of this next impact comparison is the coldness fluent, cold. Adding
its impact produces the new belief of 2 + -0.5 = 1.5. Incidentally, this means the
believed odds of the car starting are approximately 32/1. The non-zero impacts of
the remaining fluents become:

i (running. running', ignition n cold) = -0.03
i (heater, running', ignition n cold) = +0.4
(damp, running', ignition n cold) = -0.05

i(friday, running', ignition n cold) = +0.01

Now that we have considered coldness, the impact of the block heater rises sharply;
this is one of the most interesting features of this approach. It is due to the fact
that potential components of a reference class always have their impacts evaluated
with respect to the current reference class, recall that the lack of this ability was a
criticism of the "minimizing disability" default logic approach (cf. Section 4.2.2). In
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the example above, the presence of a block heater has a large impact only in contezts
in which it is cold. Thus fluents will often be ignored until a context (reference
class) is constructed that raises their impacts. Conversely, notice how the impact of
damp diminished when cold was considered. This is because since many cold days
are also damp. the addition of cold already captures some of the statistical impact
of damp; therefore, the impact of damp must scale proportionately. In these ways,
the Highest Impact First heuristic leads the reasoner down paths of conditionally
dependent evidence. Whereas at first it may have seemed unfortunate that impacts
must be recomputed at every iteration, this fact is precisely how the reasoner can
dynamically consider the relevance of fluents in context.

6.3 Highest Impact Remaining

Since these degrees of belief are computed incrementally, at each step of the iteration
the reasoner has a value which can be used as the belief. The Highest Impact First
heuristic will tend to -nake this value a better estimate (with respect to the degree
suggested statistic in the KB with the most specific reference class) as more iterations
are performed. In this way, the reasoner can trade speed (number of iterations) off
against accuracy (specificity of the reference class). The reasoner can respond to
requests for both a "quick guess" or a "slow analysis", by performing a different
number of iterations.

It would be even more interesting for the reasoner to be able to decide for itself how
many iterations are necessary to provide a given accuracy. That way, the reasoner
can spend only as much time computing as the situation requires. This judgment is
inherently contingent on the impacts of the known dependent factors, e.g. one can
predict whether the sun will rise tomorrow with great accuracy in very little time,
whereas it takes much longer to make a reasonable prediction about the next hockey
game. Since highest impact iteration involves scrutinizing these impacts, it provides
a promising framework to make the accuracy judgment.

I propose that a reasonable estimation of the error of the prediction at a given
iteration is the magnitude of the highest impact over all the fluents known to contain
the moment in question. If this highest impact is zero, then the current prediction
is exactly the value of the statistic in the KB with the most specific reference class.
When all impacts but the highest are zero, the absolute error is exactly that highest
impact. In other cases, the highest impact is merely an estimate of the error, but it
will tend to be reasonable because of the way the statistic for the current reference
class generalizes over the fluents not currently included. The current statistic asserts
that over all the possible states of knowledge the agent may have with respect to the
fluents not yet considered, the average sum of all of the impacts will be zero. The
current highest impact is an upper bound on how much the incorporation of a single
fluent can defy this average.
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function Bel(fluent h, moment m, accuracy a)
refclass - 0
belief - prior(h)
repeat

foreach f in known(m) compute i(f,h,refclass)
find g with maximum i - abs(i (g,hrefclass))
belief - belief + i(g,h,refclass)
refclass - refclass U {g}

until i <_ a

return belief

Figure 6.2: Algorithm for computing statistical predictions based on highest impact
heuristics.

To use this heuristic, an accuracy value is attached to each request of the causal
reasoner to make a prediction. The causal reasoner performs a highest impact it-
eration, and at the end of each iteration it examines the highest impact that was
just incorporated into the prediction. If this highest impact is less than or equal to
the accuracy specified, then the iteration will stop and return the current value of
the posterior probability. Note that as a special case, if the accuracy is zero, then
highest impact iteration will continue until all knowledge about dependent fluents is
incorporated into the reference class.

Alternative related heuristics are imaginable. For example, instead of using the
highest impact as an accuracy estimation, the reasoner could use the sum of all
impacts available, or perhaps even the average impact. An important advantage
of using the highest impact is that it is automatically available from the process
of highest impact iteration. Thus it expends virtually no computational resources
ascertaining the value of expending more computation on the prediction at hand.

6.4 Prediction Algorithm

To make the description of the computation more concrete, Figure 6.2 contains a
pseudo-code version of a prediction algorithm that incorporates the Highest Impact
First and Highest Impact Remaining heuristics. The algorithm is expressed as a
function with three inputs: the fluent that is wished to be predicted (presumably
a starred version of a primitive fluent e.g. running*), the moment for which the
prediction is to be made, and the accuracy needed for the prediction. The variable
ref class is a set of primitive fluents whose intersection is the reference class. The
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variable belief will contain the floating point logarithmic odds degree of belief as it
is refined during the iteration. The function call known(m) returns the set of primitive
and temporally-relative fluents f such that a E f.

When the function is invoked, ref class starts as empty (meaning the actual
reference class is the set of all moments M), and the belief starts as the prior statistic
%(h I M). During each iteration to follow, all impacts for the fluents known at m are
computed, and the largest magnitude selected. This impact is added to the belief.
and the corresponding fluent name added to ref class, thereby intersecting the fluent
g stands for with the former reference class. This iteration continues until the highest
impact is less than or equal to the accuracy specified.

This function is guaranteed to halt and return a value, provided that there is a
finite number of fluents and the accuracy a is non-negative. This is because at worst
the iteration will continue until all impacts are zero.

6.5 Fooling Highest Impact Heuristics

Again, these heuristics are not guaranteed to be optimal, and it is easy to construct
such cases where the behavior is less than optimal. For instance, the Highest Impact
First heuristic is fooled by impacts that cancel each other, i.e. one is the negative of
the other (for logarithmic impacts). Recall the example of reasoning about starting a
car while knowing that the weather is cold and damp yet the car has a block heater.
At one point during the iteration, the current degree of belief was +2 and the impacts
for these three fluents were as follows:

I(cold, running', ignition) = -0.5
!(heater, running, ignition) = +0.02
i(damp. running', ignition) = -0.1

leading the iteration to chose the impact of cold, changing the degree of belief to 1.5.
The new impacts, relative to this new fact, became:

i (heater, running, ignition n cold) = +0.4
. (damp, running, ignition n cold) = -0.05

whereupon the impact of heater was added to derive a new belief of 1.9; assuming
the impact of damp is independent of the new fact heater, it will remain at -0.05,
therefore rendering a final degree of belief of 1.85. Note that this highest impact
ordering of the fluents, i.e. cold, heater, then damp, is actually less optimal than the
ordering damp, heater, then cold. In fac a reasonable strategy would be to consider
damp, which derives a belief of 1.9, and then ignore cold and heater altogether. This
is because the impacts of cold and heater cancel each other out, being roughly the
negation of one another. The Highest Impact First heuristic lead the iteration "into
a dead end" by considering cold first.
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This example also demonstrates how the highest impact remaining heuristic may
make overly conservative estimates of the accuracy. At the beginning of the example
above, the highest impact was that of cold, at magnitude 0.5. In fact, the current
value of 2 is much closer to the final value of 1.85. A conservative accuracy is not
so much a problem, since the iteration will continue and tend to derive a tighter
estimate.

Of more concern are the cases where the accuracy estimate is overly optimistic,
since it could cause the iteration to stop and the error will not be discovered. For
example, suppose the car has four spark plugs. If one spark plug malfunctions, or
perhaps even two, the car still may start most of the time. However, if all four plugs
malfunction, then the car has very little chance of starting. This is a case where four
individual fluents (corresponding to the health of each spark plug) have relatively
low impacts, but the impact of the intersection of the fluents is monumental. If the
highest impact remaining heuristic looks at the individual impacts, it may decide
that the current prediction is accurate, when in fact, if it continued for four more
iterations, the resulting belief would be drastically different.

These degenerate cases all stem from the fact that it is not always possible to
assess the impact of the intersection of multiple fluents in terms of the impacts of the
individual fluents. One solution to this problem is to add problematic intersections
to the set of primitive fluents used in the iteration. For example, in addition to the
primitive fluents dead-plugl,..., dead-plug4, the reasoner can explicitly represent
the fluent fl dead-plugn. This latter fluent will become known for a moment m (i.e.
in the KB) exactly when the four individual fluents are known during m. In such
a case, it will assert itself with a large impact, and be immediately noticed by the
highest impact heuristics (if it is chosen to construct the reference class, the impacts
of the individual fluents will fall to zero, since they are conditionally independent
of the prediction). This technique is intuitively appealing (especially to believers in
holistic meaning), since there appears to be a qualitative difference between the cases
where a single plug malfunctions versus when all the plugs malfunction.

The logical extreme of this technique would compute the impacts of all intersec-
tions of primitive fluents. This would be a ridiculous approach, since it would only
take one iteration to pick the intersection corresponding to the most specific reference
class, thereby precomputing the iterative computation in the impacts of the intersec-
tions. To avoid the exponential explosion of the number of impacts to be computed,
intersections should be explicitly added only for problematic examples, as described
above.
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6.6 A Performance Solution to the Qualification
Problem

Highest Impact heursitics provide a unique solution to a previously unexplored level
of the qualification problem. In Chapter 4, 1 said that the qualification problem says
that predictions must still be made despite incomplete knowledge. Later on in that
chapter, I described how default logic can be used to make predictions commensurate
with all the situational knowledge the agent has. In Chapter 5 1 described how
statistics can be used to make more robust and detailed predictions than default
logic, but still with respect to all the situational knowledge of the agent. Highest
Impact heuristics go beyond this by providing a quantitative way to ascertain what
subset of the agent's situational knowledge is most practical to consider.

Any decision about how much reasoning is practical must be defined in terms
of the cost of the reasoning, the quality of the result, and the demands on these
values imposed by the situation. Evidential updating specifies a simple way to trade
reasoning cost for accuracy: more iterations means a more specific reference class
and therefore a (heuristically) better estimate. On top of this, the Highest Impact
First heuristic increases the expected accuracy for a given number of iterations. And
finally, the Highest Impact Remaining heuristic decreases the number of iterations
performed for a given estimated accuracy.

6.7 Chapter Summary

It may not be practical for the reasoner to base a degree of belief in a prediction on all
fluents known to contain the moment in question. The Highest Impact First heuristic
defines an order of importance of these fl.ents, based on their relative statistical
impacts on the prediction. This inspires an iterative procedure where the degree of
belief is incrementally refined, allowing the reasoner to trade prediction speed for
accuracy. Furthermore, the Highest Impact Remaining heuristic provides a way to
estimate the current accuracy given the value of the highest impact. A condensed
version of this chapter (and the next chapter) appears in Weber [1989b].



Chapter 7

Parallel Computation of
Statistical Impacts

In the last chapter. I presented an algorithm that incrementally refines a degree of
belief in a prediction. At each iteration, a fluent is chosen for intersection with the
current reference class by examining the impacts of every fluent and picking the
highest. Since these impacts are sensitive to the nature of the current reference class,
they must all be recomputed at each iteration, or at least examined to see if they
must be recomputed. This would seem to be a prohibitively expensive operation.
It would be senseless to use an algorithm where the complexity of a single iteration
rivals the entire running complexity of more "naive" algorithms.

Fortunately, this problem is solved by the power of a key insight: the impacts for
the individual fluents can be computed in parallel. The parallel time complexity to
compute the impacts is then merely the maximum time it takes to serially compute
a single impact. This chapter discusses the implementation of this insight both in an
abstract machine architecture, and in a program called HITEST that runs on parallel
hardware.

7.1 Design of a Prediction Machine

Imagine the role of a causal prediction "server" as part of a larger reasoning system.
This server accepts requests for the probabilities of fluents at particular times, e.g.
"2 E runnineg to within specified estimated accuracies. The probabilities returned
are based on a KB of domain knowledge and statistical causal rules that are available
to the server.

Now imagine that this server is not just one program, but a collection of programs
communicating and running in parallel. Requests are received by a program which
orchestrates the computation, and accumulates the impacts towards the incrementally
refined prediction. This program communicates with a field of other programs, one
for each fluent, who compute the impacts of their fluents with respect to the current
reference class at each iteration. This architecture is depicted in Figure 7.1. The
statistical causal rules are encoded in the fluents' prior probabilities, stored in the

69



70 CHAPTER 7. PARALLEL COMPUTATION OF STATISTICAL iMPACTS

Prediction Server

Property Accumulator Belief
Accurac -
Moment

A A A A

Figure 7.1: Parallel architecture within a statistical prediction server. The round
nodes compute of the impact of fluent f, on the prediction fluent with respect to the
current reference class when the moment in question belongs to f,.

central accumulator, and the reference class dependent impacts stored at the fluent
processors. The domain knowledge is encoded by which fluent processors respond
to the input moment m, i.e. exactly those processors whose corrn':ponding fluents
contain rn.

7.1.1 The central accumulator

The accumulator "accumulates" the impacts into a degree of belief. The initial value
of this belief is the prior probability of the input fluent h that is to be predicted,
which is equal to the statistic %(h I M), where M is the set of all moments.

The accumulator collects incoming impacts from the fluent processors, and picks
the largest impact magnitude. The winning impact is then added to the current
degree of belief, implementing the Highest Impact First heuristic described in the
last chapter. If the winning impact is less than or equal to the input accuracy,
then the accumulator answers the original request by returning the current degree
of belief, implementing the Highest Impact Remaining heuristic. Otherwise, it sends
the "name" of the winning fluent processor to every fluent processor, and repeats the
procedure in this paragraph. This algorithm is summarized by the pseudo-code in
Figure 7.2. Note that this algorithm does not use the value of the input moment. The
prior probability is the same for all input moments, since the corresponding statistic
is conditioned on the entire set of moments, and the domain knowledge about the
input i.ioment is implicit in which fluent processors respond by sending impacts. In
other words, the accumulator does not need to be sent the input moment since it
deals with the values of statistics, which are generalizations over all moments.
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Accumulator(fluent h, accuracy a)
belief a prior(h)
loop

receive incoming messages <source,impact>
find message f with largest i = abs(impact(f))
belief = belief + impact(f)
if i < a then break
broadcast source(f)

forever
return belief

Figure 7.2: Algorithm for the central accumulator of an abstract prediction machine.

7.1.2 The fluent processors

The fluent processors all perform the same computations, just for different fluents.
They also receive the same messages from the accumulator (the last winner) in tan-
dem. The individual impacts they produce are different, since the value 7 (f, h, r) can
be different for each fluent f, though for the same prediction fluent h and reference
class r. Thus this parallel architecture is best described as SIMD (single instruction,
multiple data).

A fluent processor is enabled, i.e. allowed to send impacts to the accumulator, if
the input moment belongs to the processor's fluent. The domain knowledge needed for
this decision is stored at each processor. An enabled processor for fluent f starts by
sending its prior impact i (f, h, M) to the accumulator. It waits until the accumulator
returns the name of the winner, and then computes the new revised impact, and
repeats the send-revise loop.

The impact revision process will be more efficient if it is Derformed incrementally.
A fluent processor can be thought of as a finite state machine, whose transitions
are labeled by the values of the attest highest impact winner. Each transition, or
equivalently, the new state the transition points to, causes a specific impact value to
be output'. Therefore, the state of the FSM is an encoding of the current reference
class in the computation, with the start state corresponding to the vacuous reference
class 4. With this approach, impact revision takes only the (presumably constaiit)
time to index to and follow a state transition. This common fluent processor algorithm
is summarized in Figure 7.3. An added feature of this algorithm is that a fluent
processor will update its state even if it is not enabled; this allows fluent processors

'Perhaps it is more appropriate to call the processors "Moore-Mealy" machines, which are FSMs
with outputs added to transitions.
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Processor(fluent h, moment m)

state = 0
loop

if Icontain(m) then send impact(state, h)
receive broadcast message m

state - transition(state, h, winner(m))
forever

Figure 7.3: Algorithm for each fluent processor. These processors differ on the data
captured by the functions I-contain. impact, and transition.

to be enabled during a computation. at which point they will immediately assert their
impacts.

7.2 A Parallel Programming Environment

The University uf Rochester Computer Science Department is very interested in par-
allel computing. Ongoing research is examining the construction of parallel program-
ming environments and their use for specific applications. Several machines, operating
systems, languages, libraries and interfaces are available to support experimentation
with both simulated parallelism and actual parallelism. This section briefly describes
one combination of these resources that was used to implement the algorithmic con-
structions of this thesis.

7.2.1 The BBN Butterfly

Bolt. Baranek and Newman designed and sells a MIMD (multiple instruction, multi-
ple data) multiprocessor machine called the BBN Butterfly Parallel Processor. This
machine consists of a small to medium number of Motorola 680x0 processors with sig-
nificant amount of memory per node, communicating over an FFT-topology switch.
I used a 120-node version, with one megabyte of memory per node, software floating
point, and no file system (programs are loaded over the Ethernet). The primary But-
terfly operating system is called Chrysalis, an object-oriented operating system with
superficial kernel-call similarities to UNIX. Windowing and node-allocation software
allows multi-user use of the machine with limited protection.
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7.2.2 SMP

SMP is a Simple Message Passing parallel programming environment implemented
under Chrysalis on the Butterfly [LeBlanc et al., 1986]. This package provides C-
language functions for the creation of families of heavyweight processes with fixed
communication topologies. Processes communicate using explicit send and receive
functions. Processes are balanced among available physical nodes, which can run
several processes using context-switching.

7.3 HITEST: A Program for Statistical Causal
Reasoning

HITEST (Highest Impact Techniques for Empirical STatistics) is a parallel program
family that implements the Highest Impact First and Highest Impact Remaining
heuristics to incrementally refine a degree of belief in a causal prediction. HITEST
runs on the BBN Butterfly, creating processes that communicate using SMP library
calls.

7.3.1 Command line invocation

Rather than implement a server that answers a series of requests for predictions
(cf. Section 7.1), HITEST creates a family of processes to answer a single request.
HITEST is invoked from the Butterfly shell using a command line of the form:

hitest target accuracy [fluents ...I

where target is the fluent that is to be predicted (actually the prediction is for targer,
i.e. that fluent over the next moment), accuracy is an upper-bound on the highest
impact that may be ignored, and fluents is a list of fluents known over the current
moment, each prefixed by a "+" or "-", depending on whether the moment is known
to belong to the fluent or its negation, respectively. For example, the command line

hitest running 0 -running +ignition

would start a computation of the statistic

i.(running* I running n ignition)

which is equal to the posterior probability

B(m E running* I m E runningfr ignition)

for the current moment m. Accuracy values of greater than zero cause HITEST to
compute a heuristic estimate of these values.
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7.3.2 Accumulator code

The HITEST program does three things: parses the command line arguments, spawns
the processes corresponding to the known fluents, and accumulates the sum of the
highest impacts until the desired accuracy is reached. The accumulator code is very
similar to Figure 7.2: messages are received from the fluent processors and serially
examined as they arrive to determine the winner. The winning impact is added to
the current belief, and the name of the winner is sent to all fluent processors.

The accumulator waits only a limited amount of time for impact messages. After
the allotted time, the accumulator chooses the highest impact thus far and continues.
This "timeout" feature has two advantages: the accumulator i eed not know how
many fluents are connected to it, and individual fluent processors may die or take
too long yet the computation will still progress at proper speed. Both advantages
would be important in a large implementation of HITEST, with many information
sources. This strategy, however, requires a more complicated message protocol, in
order to avoid late messages arriving at the accumulator and reporting obsolete im-
pacts. This is implemented by adding a field to messages that relates the iteration
number to which the message pertains. The accumulator ignores impact messages for
old iterations, and the fluent programs ignore winner messages for old iterations.

7.3.3 Fluent FSMs and canonical reference classes

The fluent programs invoked by HITEST are implementations of the finite-state ma-
chines discussed earlier in this chapter. Each program consists of a table of impact
values and a small driver routine (the same driver is linked into each fluent pro-
gram). Each program contains the impact values for both a fluent and its negation;
the program will never have to respond for both fluents since the current moment
cannot belong to both. When the fluent program is invoked, it is sent whether it
should respond as the fluent or its negation, as well as the name of the fluent to be
predicted.

The fluent program starts in state zero (the vacuous reference class), sends the
impact of this state to the accumulator, and then waits for a response from the
accumulator as to the winner. The transition to a new state is computed from the
current state and the name of the winner, and the process continues.

One approach to the implementation of the transitions is to construct a table of
new states with three dimensions corresponding to the current state, the latest winner,
and the fluent being predicted. This way, the transition function from the algorithm
in Figure 7.3 would be simply a table lookup. This is not in fact how the transition
function is implemented in HITEST fluent programs. Instead, the transition function
is a closed form expression using the values for the three table dimensions. It is simple
enough to assign integers to some arbitrary ordering of fluents, but this approach also
requires a canonical ordering of the states corresponding to reference classes.
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Since each fluent can be known to contain, known not to contain, or not known
to contain or not contain a given moment, a set of n primitive fluents will generate
3" different descriptions of intersections corresponding to reference classes. Given the
fluents fi .. , f, HITEST fluent programs use the following canonical ordering:

0,T,f, nf 2,...,fl,f, nf 2,..., n fi
j=1

The ordinal number of each reference class corresponds to a state number. Therefore.
given s, the number of the current state, w the number of the last winning primitive
fluent, and v, whether the current moment belongs to w or its negation (1 or 0.
respectively), the next state t is computed by:

t = s +3w . ( + v)

This expression obviates the need for an explicit transition table. Thus the fluent
programs require only a table of impacts for each combination of a state, the fluent
being predicted, and whether the program's fluent or its negation is known.

Although the above approach using a canonical ordering of reference classes is
simple and does not require a transition table, there is a disadvantage that will
make it impractical for large numbers of fluents. This disadvantage is that it cannot
exploit the savings in the number of states that stems from conditional independence
information. For example, if fluent f is conditionally independent of g given h and r,
then the two impacts i.(f, h, r) and h(f, r n g) will be identical. This means that
with respect to fluent f's impact on the prediction h, the two reference classes r and
r n g are identical, and do not require separate states. An explicit transition table
can simply wire the transition on winner g while in state r back to state r; a large
number of conditional independence assumptions would soften the exponential blowup
of reference classes. It is not possible to eliminate states when using a canonical
ordering of reference classes. However, since the representation and exploitation of
conditional independence information is beyond the scope of this thesis (but see Pearl
[1988]), HITEST uses the canonical ordering approach in the interests of simplicity
and worst-case space complexity.

7.3.4 HITEST examples

This section contains three example runs of the HITEST program. They are, of
course, based on the scenario of starting ones car when faced by factors such as cold,
damp, weather and the presence of a block heater (recall that a block heater helps
keep the engine warm when the car is not running).

Figure 7.4 shows the results from a request to know the degree of belief that the
car will be running to an accuracy of 0, given that the car is currently not running, the
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[21 hitest running 0 -running +ignition +cold +damp +heater
Prediction is now -1.935520

+cold -. 139392
+ignition 4.733500
+damp -.037231
+heater .001621
-running -1.590289

+ignition has highest impact 4.733500
Prediction is now 2.797979

+cold -.765457
+damp -.314173
+ignition -.000000
+heater .037387
-running -.465519

+cold has highest impact -.765457
Prediction is now 2.032521

+ignition .000000
+damp -.254750
+heater .331753
+cold .000000
-running -.779762

-running has highest impact -.779762
Prediction is now 1.252759

+cold .000000
+damp -.196710
+ignition -.000000
-running -.000000
+heater .514899

+heater has highest impact .514899
Prediction is now 1.767658

+cold .000000
+damp -.301324
+ignition -.000000
+heater -.000000
-running -.000000

+damp has highest impact -.301324
Prediction is now 1.466333

+ignition .000000
+heater .000000
+damp .000000
+cold .000000
-running .000000

Iteration complete with final prediction of 1.466333
Elapsed time: 1.525624 seconds

Figure 7.4: Example run of HITEST program. The fluents are considered one at a
time in an order determined by the dynamic values of the fluents' impacts.
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ignition is engaged, the weather is cold and damp, and a block heater is present. The
accumulator spawns the processes corresponding to these fluents. and then starts
the iterative refinement of the degree of belief. At the start of each iteration. the
accumulator prints out the current belief, which starts out as the prior probability
of running. This value, like all other values manipulated by HITEST, is a (natural)
logarithm. Thus the (non-logarithmic) prior odds starts as approximately e-2 - 1/7,
i.e. the car is running one-seventh of the moments. The data used to derive the
priors and impact values is artificial; see Section 7.3.6 for more information on the
derivation of these values.

The doubly-indented lines following the "Prediction..." line contain the impacts
for the individual fluent programs. Notice that ignition jumps out as the winner,
with running as a distant second. After ignition is chosen to be added, the belief
jumps from (non-logarithmic) 1/7 to 16/1. This belief reflects that the car starts
fairly reliably, and also the fact that the car will also generally remain running when
the ignition is engaged. In the next iteration, notice that the fact that the car isn't
currently running is a negative influence on the car subsequently running, although
not as much as it was before ignition was considered. The fluent cold, however,
is the winner in this iteration, since considering ignition amplified the impact of
cold. This reflects the fact that cold interferes with the car's ignition more than it
interferes with the continued running of the car.

In the third iteration, the impact of heater has risen by an order of magnitude,
since the presence of a block heater only becomes relevant when the weather is known
to be cold. The impact of damp has become less negative after the consideration
of cold, since many cold days are also damp days. Both impacts, however, are
dominated by the impact of the fact that the car is not running. The impact of
heater is incorporated into the belief in the fourth iteration, and the impact of damp
in the fifth. When all fluents have been considered, and therefore all impacts have
fallen to zero. the desired accuracy of zero is reached and the iteration stops. The
final prediction of 1.466 says that the odds are approximately 13/3 in favor of the car
starting in this scenario.

Figure 7.5 contains another example HITEST run. This time, the weather is
known to not be cold. The interesting feature of this example is how the impact of
heater is small but positive during the first three iterations, because it might be cold
outside, but when the fact that it is not cold is explicitly considered, the block heater
has no impact on the prediction that the car will be running.

Figure 7.6 illustrates how HITEST applies the Highest Impact Remaining heuristic
by interrupting the iteration when the highest impact falls below .3. This point is
reached in the third iteration, when ,he highest impact is found to be only .224 for
damp. The accumulator stops the execution of the fluent programs, and returns a
value of 2.56. The actual error, as evidenced by the impact that heater would have
had on the next iteration, is less than .1, well within the accuracy desired.
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(2] hitest running 0 -running +ignition -cold +heater
Prediction is now -1.935520

-cold .009906
-running -1.590289
+ignition 4.733500
+heater .001621

+ignition has highest impact 4.733500
Prediction is now 2.797979

+ignition .000000
+heater .037387

-running -.465519
-cold .078690

-running has highest impact -.465519
Prediction is now 2.332459

+ignition .000000
+heater .071792
-cold .135637
-running .000000

-cold has highest impact .135637
Prediction is now 2.468096

+ignition .000000
-running .000000
-cold .000000

+heater .000000
Iteration complete with final prediction of 2.468096
Elapsed time: .843312 seconds

Figure 7.5: Another example run of HITEST program. Note how the fluent +heater
(the car has a block heater) has little impact in the beginning, and when -cold (the
weather is not cold) is considered the impact of +heater falls to zero, since it is only
relevant when the weather is cold. Thus +heater is never considered.



7.3. HITEST: .A PROGRAM FOR STATISTICAL CA USAL REASONING 79

[2) hitest running .3 -running +ignition -damp +heater
Prediction is nov -1.935520

-running -1.590289
-damp .012499
+ignition 4.733500
+heater .001621

+ignition has highest impact 4.733500
Prediction is nov 2.797979

+heater .037387
+ignition .000000
-running -.465519
-damp .128041

-running has highest impact -.465519
Prediction is nov 2.332459

+ignition .000000

-running .000000
-damp .224135
+heater .071792

-damp has highest impact .224135
Iteration complete vith final prediction of 2.556595
Elapsed time: .693687 seconds

Figure 7.6: One more example run of HITEST program. This time the fluent +heater
is not considered because it always remains below the accuracy threshold.
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Aculator

0 f
Figure 7.7: A tree topology for HITEST, where the accumulator is at the root and
fluent programs at the leaves. This allows for impact comparisons to be computed in
parallel.

7.3.5 Parallel comparison of impacts

The "star" communication topology of Figure 7.1 is actually a special case of the
topology used in HITEST. HITEST builds a tree of communicating processes, where
the accumulator is at the root and the fluent programs are at the leaves, as in Fig-
ure 7.7. The maximum number of children for any node in this tree is called the
fanout. A star topology is a special case when the fanout is greater than or equal to
the number of primitive fluents.

The use of a multi-level tree allows the search for the maximum impact to be con-
ducted in parallel. Recall that in the previous discussion, the accumulator processes
the incoming impact messages serially, spending time proportional to the number of
fluents in finding the highest impact. In the tree topology, the accumulator need only
spend time proportional to the fanout, which can be a small constant. This is be-
cause the interior nodes of the tree are also receiving the impact messages from their
children and passing on the highest. Thus the highest impact is decided in parallel,
for greater computational savings.

A price for parallel computation of the highest impact is an increase in the time
it takes for messages to travel from the fluent programs to the accumulator. This
difference is only a factor of log1 n, where f is the fanout and n is the number of fluents.
A more significant price may be that the entire family sends an exponential number
of messages rather than a linear number. Depending on the actual communications
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hardware used for the message passing, this could generate a substantial amount of
message collision. I did not find this to be a problem in my experiments.

7.3.6 Building statistics from data

A fluent program's impact table is what distinguishes it from other fluent programs.
This table contains the impact of the program's fluent on every "future" fluent, with
respect to every possible reference class, For n fluents the dimensions of this table are
n by 3n by 2. The last factor of two comes from the fact that a fluent program knows
the impacts of both the fluent and its negation (one is not derivable from the other,
although they must satisfy a consistency constraint).

Even ignoring the tedium of constructing these tables by hand2 , subtle errors
in the table values can make the impact assignments inconsistent. The constraint
between the impact of a fluent ij and the impact of its negation i2 is as follows: there
must exist two real numbers x and y such that i1 = x/y and i2 = (1 - )/1 - y).
In addition, there is a constraint on impacts of different fluents that stems from the
fact that the posterior probability is the same for any order of consideration of the
fluents, i.e.

$(h I rnf g) = $(h I rn f) -(ghrnf) = $(h I rng). !(f,h,rfng)

or expressed purely in terms of- impacts:

!(f,h,r). !(g,h,r n f) = (g,h,r). (f,h, rrg)

Thus the impacts contain some redundancy, both within a single fluent program
and between fluent programs. This makes it very difficult to ensure consistency in
hand-coded tables.

The program FILLERUP (Fabricated Impacts Locally ... forget it) program per-
forms the off-line compilation of these impact tables. The input to FILLERUP is
an array of weighted outcomes each of which contains a before part, an after part,
and a weight. The before and after parts are each boolean assignments to the set
of primitive fluents, i.e. an encoding of what was true during a moment m and its
successor m'. The weight expresses how many times that particular "confluence of
fluents" was observed 3. For example, Figure 7.8 shows a portion of the outcome data
used in the examples from the preceding section. Most of these outcomes deal wth
situations where the car starts when the ignition is engaged. The second through
fourth outcomes are weighted much more than the last four outcomes to reflect the
relative infrequency of (significantly) cold weather.

2Believe me, it is tedious. I nearly went out of my mind hand-coding an example with only two
fluents!

3Thanks to my officemate Jack Veenstra for suggesting the use of weights.
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/* r i c d h r i c d h */
{ {o,o,1.1,1}, {1,o,1,I'1}, o},
{ 0,1,0,0,01, o1,,,o,}, 450},
{ {o,1,o,0,11, ,,,O,1, 450},
{ {o,,o,1,o}, {1,oO,1,O}, 140},
{ {o,1,o,1,1}, {1,o,o,1,1}, 140},
{ {o,I,1,o,o}, {1,O,1,O,}, 26},
{ {o,1,1,o,1}, {1,o,1,0,o1, 28},
{ {o,1, ,1,o}, {1,o,1e,,o}, 1o},
{{0,1,1,1, 1}, {1,0,1,1,1}, 13},

Figure 7.8: A portion of the outcome data used by the FILLERUP program to build
impact tables. Each line contains the before and after values of the fluents running,
ignition, cold, damp, and heater, plus the number of moments this outcome was
observed.

FILLERUP scans each outcome, enumerating through the 2' "before" reference
classes represented by each outcome (all subsets of the given fluent values). For each
fluent that is true in the "before" and "after" data, FILLERUP adds the weight to
the cardinality of the set which is the intersection of the fluent with the reference
class. This is also done for the sets that are intersections of the reference class and
pairs of true fluents, one "before" and one "after". The resulting cardinalities, by the
cardinal definition of relative frequency (cf. Section 5.1), are sufficient to compute all
combinations of impacts. In addition, the priors can be computed by simply totaling
the weights of outcomes in which the fluent is true "after", and dividing by the total
of all weights.

In a real sense, the FILLERUP program derives statistical causal rules from do-
main observations (simulated observations, in my examples). This removes the bur-
den of specifying informative and consistent causal rules from the knowledge engineer.
Though FILLERUP is not a very complex program, this is quite an innovative ap-
proach to the origin of causal rules. This feature further demonstrates the power of
a statistical approach to causal reasoning. The derivation of causal rules is rarely
even discussed in non-statistical approaches to causal reasoning, largely due to the
disparity between empirical observations and constructions like default rules.

The cardinality values can be computed by scanning the outcome data in a single
pass. This means that the cardinalities, and therefore the impacts they characterize,
can be incrementally computed as new outcome data arrives. Though HITEST and
FILLERUP do not attempt to do this, it is straightforward to construct a system that
"trains" on domain observations, even when intermixed with requests for predictions.
This approach is reminiscent of the work on the encoding of relative frequencies for
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evidential reasoning about classes in connectionist networks [Shastri, 1985].

Ideally, the input to the FILLERUP program would be actual data from some
interesting domain. Unfortunately, I am still looking for a source for data that would
support interesting experiments. Some ideas I had were: the stock market (or eco-
nomic indicators), success or failure of purchasing soda from a machine, and sports
statistics [Loui, 1987b]. None of these ideas ended up being practical. I hope that
when the ideas of this thesis are embedded in some larger project, such data will be
accessible.

7.4 Chapter Summary

Highest Impact Iteration becomes a practical approach when the statistical impacts
can be computed in parallel. This suggests a parallel architecture where individual
asynchronous units compute relevant impacts and send these values to a central node
that accumulates the highest impacts for each iteration. HITEST is a working pro-
gram on the BBN Butterfly that performs this incremental refinement of statistical
beliefs from impacts computed in parallel. The priors and impacts for this computa-
tion are compiled from real or simulated empirical observations. A condensed version
of this chapter (and the previous chapter) appears in Weber (1989b].



Chapter 8

Propagating Causal Uncertainty

An intuitive objection to the use of conditional statistics for causal reasoning is that
when deriving a degree of belief in a prediction, the evidence or KB must consist
entirely of practical certainties. For example, when predicting "1 E running", in
order to use the statistic

%(running' I ignition n cold) = p (8.1)

the reasoner must have "0 E ignition" and "0 E cold" as practical certainties. How
can the reasoner derive a degree of belief in "1 E running" if the sentence "0 E cold"
is not a practical certainty, but instead believed with some degree q? This question
is addressed in the following sections.

8.1 Incorporating Indirect Evidence

A quick answer is that (8.1) is the wrong statistic; the correct reference class incor-
porates the reference class that was used to derive the degree of belief in "0 E cold",
instead of cold itself. For example, suppose that the certainty "-1 E snowing"
was used to derive the degree of belief for "0 E cold". This knowledge can be used
directly in deriving a belief for "1 E running", using the value of the statistic:

%(running" I ignitionfn {m : m - 1 E snowing}) = q

i.e. here I have incorporated the temporally-relative fluent (cf. Section 2.4.2) that is
the set of moments such that it was snowing during the previous moment. Incorpo-
rating all the evidence used in deriving the degree of belief for "0 E cold" covers the
effect of that value on the degree of belief in "1 E running".

This approach generalizes recursively to handle the case where "-1 E snowing"
is believed to a non-certain degree: simply use the reference class that incorporates
the knowledge used in deriving this latter degree of belief. Degrees of belief must
ultimately ground out in certainties, or as Pearl [1988] puts it, the posterior prob-
ability of a random variable depends only on its prior probability and the values of
instantiated variables.
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Although this solution is representationally sufficient, it is not likely to be practical
in automated reasoning. The statistics required must include reference classes over
combinations o" all tempor ally-relative fluents ("snowing two moments ago", snowing
three moments ago", etc.). which is much greater than the presumably already large
set of primitive fluents. It would be ridiculous to require an explicit statistic that
conditions car starting on the words in the weather report from the previous day.
This grossly violates the practical stipulation that causal rules should only involve
direct influences.

8.2 Virtual Evidence and Reasoning by Cases

Suppose we are simply given a degree of belief for "0 E cold", without access to
the particular evidence used in deriving it. This could be for practical reasons, as
described above, or the evidence may have even been forgotten. In such cases, the
evidence for the degree of belief in a direct influence is said to be virtual. In general,
virtual evidence is not suitable for deriving a degree of belief in some other fact. For
example. suppose I tell you that I have evidence that leads me to a 5/1 odds that
Tweety is a bird; this would seem to be enough to derive a high degree of belief that
Tweety flies. However. the evidence I actually used could involve that Tweety lives
in Antarctica (lots of penguins live down there). I also could have used evidence
including that Tweety lives in Australia (lots of parakeets live down there). These
two alternatives for evidence imply very different probabilities that Tweety flies.

Certain conditional independence assumptions are necessary to utilize virtual evi-
dence [Pearl, 1988]. Let h be the fluent being predicted, let f be the fluent considered
to be a "direct" influence, and let e be the intersection of the temporally-relative flu-
ents that comprise the virtual evidence that was used to derive the degree of belief in
f. We would like to derive the statistical value for %(h I e) in terms of more accessible
statistics concerning the statistical relationships between h and f, and between f and
e. To do so involves the following theorem for case-based reasoning:

%(h Ie)= %(h Ilenf).%(fle)+%(h I ef).X(l e) (8.2)

This formula expresses conditional statistics in terms of the disjoint and exhaustive
cases for another fluent and its complement. The statistical value for Y.(f I e) is equal
to a degree of belief we are given for f, which is also equal to 1 - %(f 1 e). If we
assume that the the evidence e influences h only through f, i.e. e is conditionally
independent of h given f, (8.2) simplifies to:

%(h Ie) = %(h I f)" Y.(f Ie) + %(h 17)" (1 - (f Ie)) (8.3)

This is the relationship we have been looking for: the statistic for the prediction con-
ditioned on virtual evidence can be derived from the statistic for the direct influences
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Moments

0 0 ignition

Fluents - 0 running

oz 0 cold

1 2
Figure 8.1: A piece of a causal reasoning network. Fluents at moment 1 are direct
influences on themselves at moment 2, plus ignit in and cold at moment 1 are
direct influences on running at moment 2.

Again, conditional independence assumptions can help. If the direct influences are
independent of each other (except through h), then the joint distribution of direct
influences (problem 1) is simple to compute locally as the product of the individual
conditional statistics. In terms of networks (graphs), this assumption amounts to
requiring that the nodes are singly connected, i.e. there is at most one path for
evidence to flow between any two nodes.

Pearl [1988] also showed how a model of canonical interactions between the influ-
ences and the hypothesis, based on independence assumptions about exceptions, can
be used to reduce the number of statistics needed (problem 2) and also the number of
terms in the summation (problem 3). Thus statistical reasoning can be very efficient
in domains that support the independence assumptions needed.

8.3.1 Temporally-Staged Networks

Unfortunately, it appears that causal reasoning1 is not well-suited to these inde-
pendence assumptions. Dean and Kanazawa (1989] have pursued the application of
Bayesian networks to causal reasoning, and have subsequently rejected the assump-
tion that nodes are singly connected.

To see why, consider the fragment of a causal reasoning network in Figure 8.1.
The nodes correspond to the random variables "1 E ignition", "2 E ignition",
... "2 E cold". All three fluents at moment 1 are direct influences on themselves-at
moment 2, i.e. whether the car is currently running is a direct influence on whether
the car will be running subsequently. In addition, the nodes for ignition and cold
at moment 1 are direct influences on running at moment 2. When these causal
connections are duplicated in order to span several moments (done by Dean and

'I.e. explicit reasoning about how fluents change over time, as opposed to the more general way
that Pearl uses the term "causal" to mean influences between random variables.
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Moments

.---- --. ...- 0 ignition

Fluents Q-" 0 .- 0 - 0 running

0cold
1 2 3 4 5

Figure 8.2: Several stages of a temporally-staged network. Note that a loop has
formed (dashed lines), rendering the network multiply-connected.

Kanazawa [1989]) as in Figure 8.2, the network is definitely not singly-connected.
One such loop is shown by the dashed lines. These loops occur whenever fluents at
one moment are allowed to directly or indirectly influence themselves at the next
moment. Given that this appears to be a fundamental feature of causal reasoning, it
is still an open problem to provide a scheme for efficient propagation of uncertainty
on temporally-staged networks. Solving this problem is beyond the scope and goals
of this thesis; however, the following section presents an interesting approach that
may provide a solution.

8.4 Clustered Causal Reasoning Networks

Pearl (19881 describes a technique for eliminating loops in causal networks called clus-
tering. This technique combines selected nodes in a network, producing a new network
which is singly-connected. For example, to eliminate the dashed parallelogram from
the network in Figure 8.2, we could combine the nodes for "1 E ignition" and
"2 E ignition", and also combine the nodes for "2 E running" and "3 E running".
This would produce a pair of nodes with a single connection between them. These
new nodes can then pass information and compute posterior probabilities as described
before, except that the random variables they represent have four values correspond-
ing to the values of the combinations of the two possible values for the two nodes
from which they were created. In general, a clustered node will have n- possible
values if it was created by combining m other nodes each with n possible values. The
update process must compute the posterior probabilities for each of these n- values,
and pass these values on to its neighbors.

To eliminate all loops due to the influence of a fluent at one time on itself in the
future, we can cluster all nodes for each fluent over time This produces a network
with one node for each fluent f which incorporates the nodes in the original network
representing the random variables "m E f" for each moment m. The clustered version
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igiion cold

Figure 8.3: A version of Figure 8.2 where all nodes over time for each fluent are clus-
tered into single nodes. This operation eliminates loops caused by fluents influencing
themselves in the future.

of Figure 8.2 is depicted in Figure 8.3. In general, the result is not guaranteed to be
singly-connected', since this depends on the particular causal connections between
fluents. However, now that the loops between the same fluent have been eliminated,
it is more feasible to find domains for which the clustered network is singly-connected.

The clustered network is also more realistic than the temporally-staged network as
a topology for distributed causal computations. In the staged version, the same causal
connections are duplicated between all columns of nodes for each moment. This is
not only an inefficient use of connections, but it also is not suitable for a model that
learns or corrects causal connections, since these changes would have to be repeated
for each moment. In addition, all fluents are explicitly represented at all moments,
and the number of computational units bounds the number of moments that can be
reasoned about. In the clustered version, there is only one network connection for
a given causal connection, making it more realistic for the dynamic nature of causal
theories. Furthermore, the computational unit corresponding to a fluent can sparsely
represent the values of that fluent over time, depending on which fluent/moment pairs
are considered relevant. This can also be extended to allow the network to reason
about an arbitrary number of moments.

Unfortunately, the combinatorial difficulties of updating such large-scale clustering
are apparent. Even if we limit the network to reasoning about a finite number of
moments, say 100, then the nodes will computing and communicating distributions
of 21' values. I believe, however, that the situation is not so bad. In causal reasoning,

2
1t is interesting to note that clustering can actually create loops. Suppose that in the original

network with nodes A through E, A is connected to B which is connected to C, and A is also
connected to D which is connected to E. There are no loops in this network. However, if we cluster
nodes C and E into a new node CE, there are two paths from A to CE, one through B and the other
through D. For causal reasoning, a loop in the clustered network corresponds to a loop in the staged
network only iff the clustered loop contains the same number of forward going and backward going
connections. This footnote appears only for those readers really interested in this sort of thing.
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evidence about one fluent at a particular moment will tend to affect other fluents only
for a limited number of other moments. Information that it is raining today will only
affect my belief in fluents for today, tomorrow, and perhaps yesterday. That is,
updates due to new information will be largely temporally local. When a fluent node
makes such local changes, it need only send the changes to its neighbors, instead of
the entire distribution over all moments. The receiving node may then apply these
local changes to produce local changes to the knowledge about its own fluent, and
pass those changes on.

8.5 Chapter Summary

Causal statistics can also be used to derive degrees of belief from other degrees of
belief instead of certainties. This derivation is performed by reasoning about the con-
ditional statistics given all possible values of the variables involved. In general, this
computation is combinatorially explosive, but the presence of particular conditional
independencies allows for efficient distributed computation. It is an open problem
whether this is possible for network-based causal reasoning, though a promising ap-
proach applies clustering techniques to make efficient computation more feasible.



Chapter 9

Conclusions

The traditional approach to the frame problem has been to look for some domain-
independent constraints on causal reasoning situations that infer the persistence of
fluents by default. This approach is fraught with philosophical and technical prob-
lems that question its fundamental soundness. Instead, the reasoner can succinctly
axiomatize the domain-dependent information needed to infer that a fluent persists,
and reason about persistences in the same manner as changes.

A causal reasoner will not have complete knowledge about a realistic domain.
Solving the qualification problem involves making causal predictions in the face of
this ignorance. Default rules provide a mechanism for making reasonable predictions
from limited information, thereby addressing the qualification problem. However,
since default rules are forced to round "usually" to "always" valuable information is
lost and inconsistencies may develop in the resulting theory.

The mechanisms of statistical inference are similar to those of default logic, in-
cluding the principle of specificity. Thus the default logic solution to the qualifica-
tion problem works in statistical causal reasoning as well. However, the statistical
approach to causal reasoning has the following advantages: it can avoid "lottery
paradox" inconsistencies, statistics are more directly connected to empirical domain
observations, and statistics are more expressive than default rules. Also, the statis-
tical approach can represent the domain-dependent knowledge needed to infer the
persistence of fluents, which is needed to solve the frame problem.

It may not be practical for the reasoner to base a degree of belief in a prediction
on all fluents known to contain the moment in question. The Highest Impact First
heuristic defines an order of importance of these fluents, based on their relative statis-
tical impacts on the prediction. This inspires an iterative procedure where the degree
of belief is incrementally refined, allowing the reasoner to trade prediction speed for
accuracy. Furthermore, the Highest Impact Remaining heuristic provides a way'to
estimate the current accuracy given the value of the highest impact.

Highest Impact Iteration becomes a practical approach when the statistical im-
pacts can be computed in parallel. This suggests a parallel architecture where in-
dividual asynchronous units compute relevant impacts and send these values to a
central node that accumulates the highest impacts for each iteration. HITEST is a
working program on the BBN Butterfly that performs this incremental refinement of
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statistical beliefs from impacts computed in parallel. The priors and impacts for this
computation are compiled from real or simulated empirical observations.

Causal statistics can also be used to derive degrees of belief from other degrees of
belief instead of certainties. This derivation is performed by reasoning about the con-
ditional statistics given all possible values of the variables involved. In general, this
computation is combinatorially explosive, but the presence of particular conditional
independencies allows for efficient distributed computation. It is an open problem
whether this is possible for network-based causal reasoning, though a promising ap-
proach applies clustering techniques to make efficient computation more feasible.



Chapter 10

Future Work

There are several interesting directions to go from this thesis. This chapter outlines
a few of the more obvious ones.

10.1 Improvements

This first category of future work is improvements that can be made on the solutions
this thesis has proposed. All of these improvements were already mentioned in the
thesis as they became relevant, but it is worth reviewing them again.

10.1.1 Confidence intervals

Usually, an agent must derive its statistics about a class from knowledge about only
a sub-class. For example, my statistic that captures "most birds fly" is based on my
limited exposure to birds. I have certainly not been exposed to all birds, most birds,
or even most species of birds. Therefore, my statistic about the proportion of birds
that fly may actually be way off. How accurate my statistic is depends on the size of
my sample and the way that those samples were selected.

If the sample size and bias (e.g. the samples are random elements of the pop-
ulation) are known, then confidence intervals can be constructed that approximate
the proportion of the entire population. These confindence intervals are probabilities
that the actual population proportion falls within a certain interval1 . For example,
based oa my experiences with birds, I may be 95% sure that the actual proportion
of birds that fly falls within the interval [.85, .95]. An interval can be constructed for
any dersired probability; the greater the probability, the wider the resulting interval
(e.g. 99% sure of [.83, .97]).

If the reasoner has a uniform level of acceptance, say that sentences with proba-
bility 2! .95 are practical certainties, then sentences such as the following

%(fliers I birds) E [.85, .95]
1These probabilities follow from the knowledge about the sample size and bias plus statistics

about sampling. in the same way that other probabilities follow from knowledge about the objects
and statistics about object classes.

93



94 CHAPTER 10. FUTURE WORK

will become practical certainties. These can be used to derive interval probabilities
that particular birds (such as Tweety) are in the set of fliers, using the techniques of
Kyburg [1987] and Loui [1987b].

As I mentioned in Section 5.1.3, the interval approach is a proper generalization
of the point-valued statistics and probabilities used in this thesis. In other words, this
thesis does not exploit any information the agent may have about the sample size and
bias. It is clear that doing so is not just a matter of performing impact calculations on
both the upper and lower probability bounds, and treating the results as bounds on
the impact - the bounds quickly diverge to provide uninformative intervals. There is
more information in the distribution of confidence intervals for different probabilities,
which can be used to construct tighter bounds. The particulars of the use of interval
probabilities in computing (and ordering!) impacts is a topic for future work.

10.1.2 Virtual evidence

The subject of Chapter 8 was the derivation of beliefs (statistically-founded probabil-
ities) from other beliefs, rather than certain knowledge. This is motivated by a desire
to support local computations and statistics, i.e. to explicitly represent only "direct"
statistical influences between fluents. It is an open problem whether the efficient
singly-connected Bayesian networks of Pearl 11988 can be used for causal reasoning
[Dean and Kanazawa, 1989]. However, Section 8.4 discussed a promising approach
that clusters the random variables for a single fluent over time, which may allow for
efficient propagation of belief. The investigation of this approach is a topic for future
work.

There is an interesting related pursuit. In singly-connected Bayesian networks, the
general update rule for a given node (random variable) has a complexity exponential
in n, the number of direct causal influences. Even for modest values of n, the update
computation may become prohibitively expensive. Pearl [1988] describes an approach
to this problem that involves additional conditional independence assumptions about
the causes. A different approach is to compute an approximation of the actual update
using a small subset of the direct influences.

Highest Impact Iteration seems ideally suited for this latter approach. Each direct
influence computes its impact on the given node, and the highest is used as the single
direct influence for the purpose of updating the node's posterior probability. This
first approximation can be computed and propagated to other nodes quickly. Then
the impacts are recomputed given the chosen influence, and an additional influence
is chosen, and so on. The Highest Impact Remaining heuristic can also be employed
to decide that the node need not consider additional influences, allowing the node to
stabilize on the current posterior probability (unless, of course, the probabilities of its
direct influences change). This same process is performed on all nodes, producing a
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network that quickly arrives at a first approximation, then gradually refines its values.
The details of this idea is a topic for future work.

10.1.3 Learning and using conditional independence

The statistical causal reasoners this thesis describes require a great deal of statis-
tical knowledge. The reliability and consistency of this knowledge will be greater
if the statistics are learned from actual domain observations, rather than compiled
by knowledge engineers, not to mention the cost of such a hand-compilation. In
Section 7.3.6, I described a technique and a program that precompiles the impacts
needed for each fluent, given data about the outcomes of trials. It even appears
straightforward to update the impacts incrementally as new data becomes available.
In this way, the reasoner can learn the impacts, and therefore the statistical causal
rules, directly from interactions with the domain.

However, explicitly learning and storing all the n13' impacts (for n fluents) will
not be feasible for even a modestly large n. To deal with large numbers of fluents, the
reasoner must discover and use the conditional independence relations that are (hope-
fully) abundant in the domain (cf. Section 7.3.6). By the definitions of conditional
independence (Definition 5.1) and impact (Definition 6.1), we find:

I(h,f, r) = ('(h,f,r) = 1) = (I(f,h,r) - 1)

That is, two sets h and f are conditionally independent given a third set r if and only
if their mutual impacts given r are equal to one (their log impacts are zero). Thus the
more conditional independence relationships the reasoner knows, the fewer impacts it
needs to represent. Broad classes of independence relations can be efficiently repre-
sented using graphs, e.g. Markov random fields (Kanal, 19811 and Bayesian networks
(Pearl, 19881.

These conditional independence relationships must themselves be learned. There
must be more to the method than having the reasoner notice when impacts are triv-
ial; this would require that statistics be gathered and stored for a while before that
decision could be made, plus there must be some way to retract an independence
assumption. Perhaps independence assumptions can be communicated effectively be-
tween agents, or perhaps they can be ported between domains through some analogy
mechanism. The pursuit of these mechanisms is a topic for future work.

10.2 Planning

This thesis has discussed principles and algorithms for causal reasoning, being pri-
marily concerned with how to predict the future. The obvious next step is to figure
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.1-0 u = 100

.5 U =10

U = -50

a22

u = 30

Figure 10.1: An example decision tree. The first level correponds to the two choices
of action. a, or a2: the second level shows the different states the world may be in
after an action is performed, with probabilities for each outcome. These states have
associated utilities which can be "backed up" to calculate an expected utility for each
action.

out what to do about it. The joint process of predicting and acting is usually called
planning.

Decision Theory is the study of techniques for making optimal action choices
[Chernoff and Moses, 1959]. The standard approach requires a quantitative measure
of utility over the different states of the domain. This utility function depends on
the character, strengths, and interactions of the goals of the reasoning agent. Given
the ability to predict the resulting state of the domain for different action choices,
the agent can identify the optimal choice by examining the expected utilities of the
resulting states, and picking the largest.

For example, see the decision tree in Figure 10.1. The agent has two action choices,
and as far as it knows the first action can lead to three different states, and the second
action two. It can calculate the expected utility of performing each action by the sum
of the possible utilities, weighted by its probabilistic belief in each state outcome. In
this case, the expected utility of action a, (25) is higher than that of action a 2 (24),
making a, a better choice. This tree can be extended recursively by adding additional
levels corresponding to additional action choices, backing the expected utility through
all levels, thereby defining an optimal path through the space of decisions.

Traditional planning can be viewed as a special case of decision theory, where there
is but a single outcome for each action with a weight of one. The planner chooses
the action(s) that best satisfy its goals, as reflected by the utility of the outcome.
Multiple weighted outcomes offer many advantages over the traditional approach, as
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discussed in the scant but important work on the importance of decision theory in
Al [Feldman and Sproull, 1977, Loui, 1987b, Hartman, 1989].

Thus decision analysis involves two main components: the assignment of utilities
to domain states, and the assignments of weights to an action's possible outcome
states. This thesis has shed some light on the latter, for applications of decision
theory to causal reasoning. There is, however, an important difference between the
assignment of probabilities to states, for decision analysis, and the assignment of prob-
abilities to set-membership sentences, as I have described in this thesis. Certainly an
exhaustive assignment of probabilities to states generates an exhaustive assignment
of probabilities to sentences, and vice versa; it is more difficult to apply partial in-
formation about sentence probabilities to evaluating the expected utility of actions.
One approach is to define action outcomes to be classes of states, with utilities cor-
responding to the mean utility over the class; the probabilities of sentences would be
used to generate these classes.

In summary, by proposing techniques for statistical causal reasoning, this thesis
has also made progress on statistical planning. Much work remains to be done, pri-
marily concerning the application of decision theoretic techniques that evaluate the
utility of actions using probabilistic predictions. The incorporation of these tech-
niques, the investigation of effective search strategies for the resulting decision trees,
and the relationship of utilities to goals, are all topics for future work.
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