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Statistical Inference and Causal Reasoning

Jay C. Weber
Computer Science Department

University of Rochester

Abstract

In this paper, we show how degrees of belief about causal predictions can
be derived from statists about the truth of properties over time. By using sta-
tistical information analogous to traditional non-statistical rules of causation
and knowledge about a specific time point, predictions can be made about both
the change and persistence of properties for the next time point with some de-
gree of belief. We show how to incrementally compute this degree of belief by
combining statistics conditioned on successively larger subsets of the reasoner's
knowledge. Furthermore, we solve the qualification problem through a power-
ful heuristic that builds these subsets by considering properties with highest
impact first. This heuristic ignores relatively unlikely, redundant, or unrelated
properties when deriving a prediction, while directing the focus along causal
chains. The iterative formula and this heuristic define an algorithm that pro-
duces predictions with quickly increasing confidence, allowing computational
resources to trade off against accuracy.

1 Introduction

Causal reasoning is the representation and use of the relationships between causes
and effects. Traditionally, these relationships have taken the form of implications
between sufficient preconditions and necessary future effects, e.g. the following rule
about starting your car:

Vt(holds(fueled, t) A occurs(turn-key, t) - holds(running, t'))

where "t"' is the first time point following "t". The truth of holds(running, 5)
follows from the truths of both holds(fueled,4) and occurs(turn-key,4). The
well-known qualification problem [McC77 tells us, however, that in complex realistic
domains the antecedent cannot definitively entail the consequent; to do so, it must
contain impractically many or even infinitely many preconditions. Thus any causal
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prediction must have some degree of uncertainty. The key is to be able to quantify
the uncertainty, allowing reasoning to progress in a probabilistic fashion.

Recent work has suggested capturing this relationship between degrees of belief
with subjective conditional probability [DI(S8, Han88J. For example, such a reasoning
system might believe the following rule (cf. [DKS8]):

P(holds(running, t')Iholds(fueled, t) A occurs(turn-key, t)) = te (1)

This rule should be read as "r. is the probability that running will hold after turn-key
occurs while fueled holds". Despite its intuitive appeal, this approach leaves several
important questions:

1. Where do these probabilities come from, i.e. what knowledge about the world
does this rule really capture?

2. What is t? Presumably it is a universally quantified variable, but if it is quan-
tified in the probabilisitc metalanguage, what relationship does it have to the
temporal objects in the language of properties and events?

3. How does this rule interact with other rules conditioned on different facts? For
example, if we also have the rule:

P(holds(running, t')Iholds(cold, t) A occurs(turn-key, t)) = 7 (2)

which assignment of probability is more correct? Which assignment is more
practical?

This paper addresses these questions by casting a representation for uncertain causal
reasoning within a logic for statistical inference, Lp [BacSSb]. Specifically, our an-
swers to the above questions are:

1. The conditionals are statistics from actual domain observations, or perhaps
statistical generalizations to which the agent is predisposed.

2. These statistics are part of the object language Lp and the variable t stands
for a randomization over individuals. An induction mechanism can be used to
generate a degree for particular individuals based on relevant statistics.

3. By the popular rule of specificity [BacS8b, Eth87, TouS4], conditioning oin more
knowledge (a more specific reference class) leads to more confidence in the de- l
gree of belief.' Thus a statistic conditioned on both fueled and cold would L.

'This principle has its limits [Kyb89a]; in particular, it assumes that the sample sizes are arbi-
trarily large. Otherwise, a very specific statistic may be based on such a small sample size that it..........
loses significance. We discuss this in more detail in [WebS9].
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be considered more correct than (1) and (2). Since no specificity relationship
holds between (1) and (2), they are themselves incomparable. A more prac-
tical comparison would decide which statistic's incorporation more profoundly
affects the degree of belief of the effect. This leads us to an algorithm that in-
crementally builds more specific reference classes by considering (heuristically)
more important statistics first. Thus the confidence in the prediction depends
on the amount of time allowed for the computation. This is a solution to the
qualification problem.

The remainder of this paper presents details on these answers. Section 2 describes the
statistical logic Lp, section 3 introduces the use of statistical statements to capture
causal relationships, and section 5 presents an algorithmic approach for solving the
qualification problem with these statistical causal theories.

2 A Logic with Statistical Statements

Lp is a superset of standard first-order logic, extended in two basic ways. First, it
has a separate domain sort for a field of statistical objects, with defined arithmetic
operations. More importantly, it contains an additional syntactic construct for mak-
ing statistical statements. Given a formula a with a vector of free variables i, the
term [a]z evaluates to one of the statistic objects. For example, if [f lys(x) = .2,
then two out of ten objects in the domain can fly. Such statements are seldom useful
when relative to the entire domain, so we conditionalize on other information in the
following manner:

[flys(x)Jbird(x)]x = [flys(x) A bird(x)], - [bird(x)]

Lp also contains the axioms of probability.
These statements capture useful information about the domain, yet they say noth-

ing about particular objects, e.g. about whether tweety can fly. The degrees of belief
we seek require an inductive mechanism that relates them to the statistics available.
The inductive mechanism for Lp is as follows: given a ground formula a(c-) containing
constants 6 (and no others), the degree of belief in a relative to some knowledge p(c)
(written B(a(c)p(c) 2) equals [a(i)p(i)],. For example:

B(flys(tweety)Ibird(tweety)) = [f1ys(x)Ibird(x)] r

Notice that the degree of belief in a fact is always with respect to some knowledge, and
different knowledge may inspire different degrees of belief. As is commonly done with
statitical inference, we assume that all statements are additionally conditioned on so-
called "general knowledge", e.g. the definitions of predicates, taxonomic information,
etc. For more information on Lp we refer the reader to [Bac88a].

7This formula is not a valid term of Lp since B is not a function of Lp. Thus degrees of belief
are outside of the logic, although with some care it could be added.
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3 Statistical Causality

Our ultimate goal is to extend a traditional causal reasoning approach so it can deal
with uncertainty. We start with a reified temporal logic, where the time points arc
isomorphic with the integers and therefore discrete (t' = t + 1). Properties are related
to time points via the holds predicate; we adopt the stance that events can be defined
in terms of properties, so for simplicity we omit events from our notation. It will be
convenient to have the following defintion of property negation:

Vp, t(holds(3, t) -- holds(p, t))

In previous work [Web88], we presented a framework for causal reasoning without
statistics that used domain-dependent causal rules to prove, when possible, when
a property change did or did not take place (thus solving the persistence problem).
Here, those causal rules are replaced by conditional statements concerning a particular
property 0 as in the following:

[holds(4, t') holds( ,t) A A holds('i,,t)(t)= Change(4, i.) (3)
i=O

[holds(O, t')Iholds(o,t) A A holds( p,t)](t) = Persist(O, ,) (4)
i=O

Rules of type (3) are used to found a degree of belief that 4 becomes true, and rules of
type (4) that 4 stays true. Thus together they solve the persistence problem within
our statistical setting. Note that there is symmetry in these rules for a property and
its negation, i.e. Change(O, ',) = 1 - Persist(-, ',,)

so, as would be expected, the behaviour of a property completely determines the
behaviour of its negation.

We return to the example of starting a car, and we will represent some simple
statistical statements using the facilities defined above. Suppose that the reasoner
requires a degree of belief in the fact holds(running, 0'). This degree will be relative
to some knowledge p so by the induction mechanism:

B(holds(running, O')fp(running, 0)) = [holds(p, t') p(p, t)](,t)

where p is knowledge used to determine the degree of belief. The inductive mechanism
replaced the property constant as well as the time point; this feature can lead to the
use of statistical generalizations about property types given appropriate knowledge
in p. However, since in this paper we are more interested in temporal generalizations,
we will assume that the general knowledge contains enough information to define the



property in question, thereby establishing the following simplified induction mecha-
nism:

B(holds(running, 0')jp(0)) = [holds(running, t')Ip(t)]()

Our choices of p will be conjunctions as in (3) and (4). For starting a car, one example
might be:

[holds(running, t')Iholds(running, t) A holds(ignition, t)](,) = .9

In words, the car starts 90% of the time that its ignition system is engaged. As in
(3), we could more succinctly express this as

Change(running, (ignition)) = .9 (5)

Perhaps the car does not like cold weather, signified by the following change in belief
when it is also known to be cold:

Change(running, (ignition, cold)) = .2 (6)

This example shows the non-monotonic behaviour of belief; whereas if we based our
belief on (5) we might act as if the car will start, if we based our belief on more
information in (6) we might act as if it would not. As we add more information to the
reference class, we become more confident in the resulting degree of belief. Ideally, we
would therefore base belief on the impact of all available knowledge and the problem
would be solved. Unfortunately, this approach fails because there is an exponential
number of different (very complex) contexts, and the relevant statistic may not be
available. Furthermore, even if the statistic is derivable from the knowledge base, the
computational effort to do so might be prohibitively expensive. We would like some
way to trade reference class specificity for speed, which we do in the next section.

4 Incremental Refinement of Belief

Instead of choosing particular reference classes, our approach will be to start by
computing the degree of belief for simple classes, and incrementally refine the result by
making the class more complex. In this way, the longer the computation progresses the
more confidence the answer will be attributed. If the reasoner decides that it must act,
then the current result can be used at the current accuracy. Similarly, if an estimate of
the current accuracy is made and found to fall within desired limits, the computation
can be stopped. We will do this using recursive Bayesian updating [PeaSS, p. 371
which is based on the following theorem from the definition of conditionalization:

n

[holds(,, ](,')IAholds(, t) olds(, t')l A7"__1 holds(tp, t)](t)
i=0

X
[holds(k-, t) Ai=o holds(k,, t) A holds(O, t')](0

r)1 N=0 holds(0,, t)](0



According to this formula, a property P,, that is known to hold may be added to
the previous evidence for 0 holding to produce a statistic for the compound reference
class. The impact of the new property is determined by the quotient in the above
formula, which we will abbreviate as Impact(,,, O, ,). When reasoning about
change, the base case Vo will be , and when reasoning about persistence V50 = &.
By the principle of specificity, the reasoner's confidence in the use of the statistic for
inducing a particular time's degree of belief should be greater for the new reference
class. In this way, each iteration makes the reasoner more confident in the degree of
belief.

The rate of confidence increase should depend on the order that the property are
considered. For example, when starting a car, a statistic based on the weather and
condition of the car would inspire more confidence than one based on the arrangement
of furniture at the office, at least in realistic scenarios. At each iteration, we employ a
heuristic that we call highest impact first (HIF). This heuristic chooses the property
whose quotient will most affect the previous degree of belief. Since the new quotients
are multiplied in, those with the most impact will be those farthest from the multi-
plicative idenity, namely 1. This amounts to first considering properties that have a
strongly positive or strongly negative influence on the degree of belief in the change.
For example, consider the following car-starting scenario involving the following five
properties (together with their informal meanings):

r the car is running
i the car's ignition is engaged
c the weather is cold
d the weather is damp
b the car has a new battery

For brevity, we will use the shorthand 0(t) for holds(o,t). We are interested in
evaluating whether the car will start at time 0' given F(0), i(O), c(0), d(0), and b(0).
The induction mechanism says that our degree of belief in r(O') with respect to some
subset of our knowledge p(O) and equals the statistical statement [r(t')p(t)J(j,. We
will incrementally compute p, starting with the base case [r(t')I?(t)](t) = C. The
statistical object f is, of course, very small assuming that the car is started often with
respect to all time points. Our method proceeds by computing the impact quotients
for each property (since they have no data dependencies, they may be computed in
parallel). The impact of the ignition system property i is described by:

fmpact(i, r, (F)) = [i(t)ll(t) A r(t')]() - .99 _ .95
[i(t)tF(t)](C) 1.04c

Here we supplied some reasonable numbers for this example; the numerator captures
that engaging the ignition system is almost certain given that the car starts (leaving

some room for hot-wiring), and the denominator captures that most of the time that
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the car is idle the ignition system is not engaged. The constant f is used to ensure
that although the denominator is probably quite small, it should at least be slightly
larger than the small number [r(t')Y(t)(t). For cold, the impact is the opposite; it is
less likely that it is cold given that the car started (the numerator) than it is given
that the car is idle (tile denominator), giving us an impact less than one, say

Impact(c, r, (r)) = .042/.1 = .42

Similarly, we choose .7 as the impact of d and 1.2 as the impact of b. The HIF heuristic
is now applied, and it is easily seen that i has the most impact on the degree of belief,
since c is very small. Thus the ignition system is factored in, which drastically pulls
the degree of belief into the realm of the probable at .95, capturing that most of the
time the car starts when the ignition is engaged. Although this belief is large, our
confidence in the belief is still low since we have not used much of our knowledge in
founding it. The reason for this is demonstrated by examining the impact quotients
on the next iteration; given that our other properties are independent of the ignition
system (reasonable in this example), the impacts do not change. The impact of i
does change, since now i(t) is conditioned on itself, i.e.

Impact(i, r, (f, i)) = [i(t)I?(t) A r(t') A i(0t)

This impact will be ignored by the HIF heuristic, thus preventing redundant consid-
eration in a natural way. Instead, HIF will choose c's impact of .42, decreasing our
belief to:

[r(t')I?(t) A i(t) A c(t)](t) = .95(.42) = .4

On the next iteration, the new property c changes the impacts of both d and b, but
in two different ways. Since many damp days are also cold days, tile knowledge c(t)
in a sense already covers much of d(t)'s statistical impact. Therefore, the impact
of d becomes closer to one, say .95. On the other hand, the fact that it is cold
augments the impact of the new battery (since new batteries perform better than old
batteries in cold weather), say raising it from 1.2 to 2. The HIF heuristic chooses this
constructive impact, and the new degree of belief is .4(2) = .S, a reasonable chance of
success. When we consider the next iteration, there are no properties remaining that
have significant impact, so (depending on the accuracy desired for the prediction) it
may be reasonable to stop augmenting the reference class. The final answer would
be:

B(r(0')IF(0) A i(0) A c(0) A b(0)) = Change(r, (i, c, b)) = .8

A belief in a persistence could be computed in an analogous way, simply by using the
different base case [r(t')Ir(t)]().
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The computation is even easier to orchestrate if it works with the negative loga-
rithm of the belief V(a) = -log(Ia](t)), i.e.

V(holds(o, t)l A.-o holds(Oki, t)) =

t (holds(qo, 01Ait=o holds(Vki, t))+
V(holds(o., t) '-' holds(tpi, t) A holds(o, t))-

1/t~o~d~vP,, 01=A holds(tpi, t)))

This form computes degrees of belief through addition and subtraction of positive
reals. The HIF heuristic is also simpler, since it now selects impacts with the largest
absolute values, with an impact of 0 being no impact.

We started this section by saying that statistics such as Change(o, v) may not
be readily available for all states of knowledge ,. Our remedy was to incrementally
build an appropriate statistic, but in the process we required that a large number of
other statistics be available to compute the impact quotients. We feel, however, that
these latter statistics are more practically accessible. The quotient denominators are
statistical relationships between properties for the same time point, and as suggested
by the above example, they are often independent. The numerators involve the
same relationships, but also conditioned on the effect. This relationship can be easy
to determine, especially for highly necessary properties such as i (ignition), since
it involves assessing the causes given the effect rather than the other way around.
Also, since we do not necessarily need to iterate until the entire state of knowledge
is incorporated in the reference class, the statistics needed (especially early in the
iteration) will be much simpler.

Another possible criticism of our approach is that the knowledge used to form the
reference class must be certain, e.g. in the above example we had to know F(0) A
c(0) A i(O) A b(0) with a degree of belief of 1. We can relax this somewhat by only
requiring that reference class components be practical certainties [KybS9bJ, i.e. close
to 1. Consider the standard qualification problem example, involving the fact that
a potato jammed into a car's tailpipe prevents it from starting. Such circumstances
rarely happen, so in practice this fact should be ignored. If spud(t) is the f-unlikely
fact that a potato is in the tailpipe at t, then spud(t) is a practical certainty and can
therefore be included in the reference class. Note that the HIF heuristic will actually
ignore it, because if we assume that g is independent of otr currCit rcfcrencc class
p, we find that:

fnipact(sp-ud, r, (Y,p)) = lspud(t)IF(t) A r(t') A p(t)]I() 1
Yipud(t)Ir(t) A p(t)]() = 1 -

Thus Tpud has very little impact, despite the fact that spud has a devestating impact
(the numerator of its quotient is zero). In this way we have solved the qualification
problem for very unlikely properties as well as properties with little impact.
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5 Summary and Conclusions

In this paper, we have shown how degrees of belief about causal predictions can be
derived from statists about the truth of properties over time. By using statistical
information analogous to traditional non-statistical rules of causation and knowledge
about a specific time point, predictions can be made about both the change and
persistence of properties for the next time point with some degree of belief. We have
shown how to incrementally compute this degree of belief by combining statistics
conditioned on successively larger subsets of the reasoner's knowledge. Furthermore,
we solved the qualification problem through a powerful heuristic that builds these
subsets by considering properties with highest impact first. This heuristic ignores
relatively unlikely, redundant, or unrelated properties when deriving a prediction,
while directing the focus along causal chains. The iterative formula and this heuristic
define an algorithm that produces predictions with quickly increasing confidence,
allowing computational resources to trade off against accuracy.

We are far from done with this line of rearch. We are currently investigating
the following extensions:

" Parallel algorithms where each property is related to a processor that computes
the impact of that property on the current prediction. The results are sent to
a central arbiter who picks the largest impact and then informs the other pro-
cessors of the choice, and then the process repeats until the desired confidence
is reached.

" An iterative algorithm that computes the belief in a prediction using the belief
in a reference class rather than its practical certainty. Note that this is underde-
termined, unless the evidence for the belief in the reference class can be applied
directly to the belief in the prediction. It does, however, bound the probability
due to the following theorem:

[a I](t)[P](,) > [ lp](t)(p(,)

[P I a](t)
Thus the belief can be determined if [pla](t is known, or bounded from below
if not. An upper bound can be derived analogously by considering z.

* The relationship to -easoning about knowledge and planning. The HIF heuristic
can lead the reasoner to properties that, if known to be true or false, would
generate a large impact on the degree of belief. This analysis would inspire
the performance of appropriate tests to increase the confidence in the degree of
belief. Similarly, information about the utility of different outcomes could be
used to inspire actions by the reasoning agent that would increase the future
degree of belief in a property with a high utility.

For more details and issues we refer the reader to [VebS9].
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