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Ronald Prescott Loui
Departments of Computer Science and Philosophy

University of Rochester

abstract:
Israel's remarks [1sr80J about non-monotonic logic are

used as a springboard for studying some thoughts on defeasible
reasoning among contemporary philosophers of science: thoughts that
A.I. workers have so far neglected. Israel's criticism, that A.I. has
misconceived rules of belief fixation and revision, and his
constructive comment, that we should look to the philosophers of
science I r understanding and inspiration, are the two central themes.
(Conclusions are made in the last full paragraph).

Israel's Lament.
David Israel made some immoderate statements at AAAI 1980 Accesion For

about the state of A.I. research on defeasible reasoning. "What's
wrong with non-monotonic logic?" he asks. NTIS CRA&I

DTIC TAB L'

Theanswer, briefly, is that the motivation behind Unannou.,,ed

the wonderfully impressive work.., is based on a Justi.ic.tion
confusion of proof-theoretic with epistemological issues. By
... A.I. researchers interested in 'the epistemological Dy I
problem' should look, neither to formal semantics nor to Distribution!
proof-theory; but to -- of all things -- the philosophy of Avaifabifity Cou ..

science and epistemology. [lsr80 I Avai ;; i, or -Di ti Specalf

Israel was dead right about where knowledge engineers should look for PcCIal

guidance. Work on non-monotonic reasoning has indeed seemed
unnecessarily encumbered by the semantics and proof theory of energetic
logicians. Though some of Israel's complaints can be rebutted by -.

A.l.'s sophists, I think it's worth reflecting on Israel's comments.
worth understanding his complaint and his proposal.

Sadly, the most important passages read like riddles:

The researchers in question seem to believe that logic --
deductive logic, for there is no other kind -- is centrally
and crucially involved in the fixation and revision of
belief. Or to put it more poignantly, they mistake
so-called deductive rules of inference for real,
honest-to-goodness rules of inference.

Consider that old favorite: modus (ponendo) ponens. It
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is *not* a rule that should be understood as enjoining
us as follows: whenever you believe that p and believe
that if p then q, then believe that q. This, after all,
is one lousy policy. What if you have overwhelmingly
good reasons for rejecting the belief that q? [IsrOJ

What could Israel mean by the phrase "real rules of inference," which
somehow excludes modus ponens? How could a belief logic fail to
recognize a computable deductive consequence of premises that are
already believed? Of course there are logics of belief, like
Hintikka's and Levesque's, which purport to analyze "belief." Perhaps
such logics limit the scope of modus ponens or substitutivity of
identicals for belief. It may be that the meaning of "belief' is not
violated by holding Bp, but not Bq, when B(p -> c). That doesn't mean
it's not an excellent idea to hold Bq, when the "proof' of q has been
discovered. A normative theory of rational belief, it seems, should
plop into its knowledge base whatever can be derived from its knowledge
base, and intuitively at least, it seems that the familiar deductions
count as ploppable derivations.

I shall discuss some of the epistemologists' "real" rules of
inference and show what's honest and good about them. It should then
become clear why there are people who think modus ponens can't be used
blindly, and why automated inference, including non-monotonic
inference, should be tied more closely to the work of some
post-Carnapian epistemologists. It will turn out that A.I. has already
re-invented some real rules of inference, but with none of the
sophistication or appreciation of pitfalls found among the
epistemologists. Finally, I'll puzzle over the significance to A.I. of
the philosophers' "epistemological problem". Who should care and why?

Some Real Rules.
Some statements in knowledge bases are supposed to be at once

infallible and corrigible. They are *infallible* because they wouldn't
be treated any differently, roughly speaking, if more evidence were to
support them. They aren't attached to their probabilities or degrees
of confirmation, for instance. For the purposes of inference and
decision, all these statements are of equal pedigree. They are
*corrigible* because they can have this status revoked at a later time,
perhaps in the light of additional evidence. It could have been an
error to have treated a statement as if it were infallible.

This kind of knowledge can't be reflected by truth,
deducibility, or extreme probability in the obvious ways. A statement,
once true or of unit probability is genuinely infallible, but it is
also incorrigible. Truth and deducibility are monotonic notions. Likewise,
probability does not permit of revision downward by conditioning, if
the unconditional probability is one. Non-extreme, high probability
won't work in the obvious way either; a statement with anything less
than unit probability is held fallible, and the question of its
corrigibility is not even meaningful.

Philosophers have been interested in accepted knowledge
or *rational* belief. The modifier, rational, is intended to
distinguish the concept from any descriptive or psychological concept



of belief; whether logical or not, the descriptive concept is not
welcome here. Rational belief, or acceptance, is what A.I. wants for
its knowledge bases. What I take to be Israel's point is that
acceptability has been confused with something else.

The epistemologist [saac Levi has the following picture.
There is the corpus, K, to which only infallible statements belong. A
small subset of this is the Ur-corpus, of incorrigible, infallible
statements. The rest of the corpus, the bulk of it, is corrigible.
K is given more structure, but I'll try to avoid those details.
Then there is a set of confirmation functions, Q, each member of which
measures the degree to which statements in some formal language are
confirmed with respect to the total evidence in the corpus. In present
A.I. work, this is the body of probabilistic knowledge. Naturally,
the degree to which any statement in the corpus is confirmed is one.

I shall adopt Levi's terminology because of its generality.
Most major positions are special cases of this view: A.l's
non-monotonic reasoning and automatic theorem proving deal exclusively
with the corpus. Evidential reasoning is concerned with the
confirmation functions. For evidentialists, the corpus contains only
the statements used as evidence for conditioning, and perhaps
meta-linguistic constraints on distributions, like the constraints on
which entropy-maximizers rely. If probabilistic knowledge is real-valued
and precise for you, then your Q is a singleton; if you use intervals,
then your Q is the largest convex set satisfying particular upper and
lower bounds.

At a time, t, the agent's <K(t), Q(t)> constitutes her credal
state. There are questions about credal statics. Given a
partial description of<K(t), Q(t)>, to what else in K(t) must the
rational agent be committed? And given a partial description again,
what else is known about the Q(t) which the rational agent must adopt?
The answers depend on what kinds of partial descriptions one assumes.
Confirmation theory tries to construct Q(t) from K(t). Acceptance
rules typically try to construct K(t) from Q(t). The confirmation
theory and the acceptance rules together define an inductive logic,
where induction connotes something more general than it did in the last
century. Inductive logic suggests what must be in K(t) given sorn e
subset Rules of inference borrowed from familiar deductive logics
have also been supposed to describe K(t) from a given subset, though
some think they aren't very good at that, notably David Israel. One
might suspect the logic's rules, for instance, if they disagreed with
the confirmation and acceptance rules. On the other hand, one might
fashion the acceptance rule so that it conforms to the logic when
combined with the confirmation theory. These alternatives will be a
central point of discussion. Then there are harder questions about
credal dynamics. Given some partial description of<K(t), Q(t)>
and <K(t+ 1), Q(t+ 1)>, what else is known about the agent's <K(t+ 1),
Q(t+ 1)>? Minimal revision rules address questions of this kind.
Conditional logics also appear to have concerns here.

Real rules of inference are the ones that answer any of these
questions. The challenge is to find a set of compatible real rules of
inference. It's easy to write down some clean and simple rules that
answer some of the questions, while begging the others. That's often



good enough -- especially if the questions left unanswered are
unimportant in applications.

For example, in the simple Bayesian model that's so popular in
engineering circles, there's no acceptance rule: one just assumes that
statements are added to K(W at t+ 1 by observation and only by
observation. That's fine if you know what evidence to treat infallibly
and you neither want nor need to infer that a statement is infallible.
It's fine if, like the later Carnap [Car62], you hold that there can be
no rational induction from the data. But then you'd better not be
caught conditionalizing on anything that's not strictly observational.
Or using an empirical universal generalization as if it were fully
accepted. Or using scientific theory as if it were definitional. Or
discussing the fallibility of observational knowledge. As Peter
Cheeseman notices (Che85], this view "insist[s] that the only
propositions that can be known with certainty are tautologies -- any
empirical proposition can only be known probabilistically...,
however, this insistence forbids... logically reasoning... about
the real world!" One must thus view everything but probabilistic
reasoning as an "approximation" to the real thing.

Modern philosophers of science have taken a different tack and
have avoided this probabilist view. They hold that there can be
promotion of a statement into K. on the basis of satisfactory
confirmation values in Q. It's possible to infer that a statement must
belong to K. Philosophers have worked on developing the acceptance
rules required to do the promotion: rules that say when the
confirmation values in Q are satisfactory for admission into K. For
A.I., it means that not just any old "approximation" will work. In
fact, it shouldn't be called approximation at all: a program can use
reasoning other than probabilistic reasoning, and be doing the real
thing. It means that a statement in a knowledge base can be
simultaneously infallible (accepted in K(t)) and corrigible (removed at
t+ 1) for reasons. A statement can be granted infallibility and have
infallibility revoked on the basis of defeasible inferential rules:
not just on the authority or whim of some external source (or deduction
therefrom).

Acceptance rules solve one of the static questions. A..'s
quest in the name of non-monotonicity appears to be a quest for the
dynamic rules. Still, the acceptance rule together with the confirmation
theory trivially gives an answer to the dynamic question that's
interesting. As evidence grows, which non-monotonic inferences remain
valid? Just ask what can be accepted in K(t) on the basis of some
"evidential" subset, what can be accepted in K(t-t- 1) on the basis of a
slightly larger "evidential" subset, and compare the two. That's the
answer. For this reason, inductive logic construed widely has lots to
do with rational non-monotonic reasoning. They are so closely related
that it's an interesting question whether there are any non-monotonic
inferences worth making that aren't licensed by induction. A.I. writers
have supposed that there are, and epistemologists can't understand why
they have so supposed.

An acceptance rule is exactly the solution philosophers have
proposed for Israel's epistemological problem. Soon we'll have to take
a close look at why knowledge engineers should care; what has motivated



the philosophers are considerations that seem irrelevant in the field.
Ironically, it'll turn out that what motivates A.I. practitioners to
use the philosophers' undecidable acceptance rules is the desire to
compute inference effectively in evidential situations! At the moment,
a quick look at acceptance will be instructive in distinguishing rules
that are really quite good epistemological maxims from those that have
only been confused to be so.

So what's a good acceptance rule? The obvious one is the
high-probability rule,

Acc(h) iffProb(h I K) > 1- e,
for small e;

or, in terms of Q, which can be thought of as containing many probability
measures,

Acc(h) iff for all Qi in Q, Qi(h I K) > 1 - e,
for small e.

To philosophers, the rule is associated with W. Sellars, H. Kyburg, C.
Hempel, R. Chisholm, and even Jacob Bernoulli. In A.I., we find it
mentioned in Quinlan [Qui83]: "Converting the probabilities to
categorical form by thresholding..."; and in Ascher [Asc84]: "What
we do is examine the probability of each one of [our default
inferences] conditional upon K U K 4-: those whose conditional
probabilities continue to exceed a will be included in the expansion,
(K U K+)*." We also saw something like it in MYCIN, when positive CF's
indicated belief, and in Rich [Ric831: "If there are no CF's
represented, then there must be a threshold CF value (not normally
explicit or consistent) below which statements must simply be thrown
out by the knowledge base creator, or the statements must be refined
with additional premises until their CF's cross the threshold."
According to Cheeseman [Che85], "A reasonable compromise is to treat
propositions whose probability is close to... I as if they are know n
with certainty -- i.e., thresholding probability values if they are
'beyond reasonable doubt."'

The only problem is that for any non-zero e, this acceptance
rule leads to corpora that are inconsistent in a significant sense: it is
possible to accept statements pl, .. pk, such that pl, .. ., pk I-

~ = x. If pl is the proposition that "ticket one will not win" in a fair
lottery, and if the number of tickets in the lottery exceeds l/e, pl is
always acceptable. So is p2, that ticket two will not win, and p3, etc.
Since some ticket must win, there is a serious problem with the resulting
corpus.

No one in A.I. seems to have cared about this, or even noticed
this, though the philosophers have worried about it for some time.
It's certainly the case that if you want to follow Quinlan, Ascher, or
Rich and threshold, someone had better worry about it soon. It also puts
some punch into Israel's remarks, because the lottery paradox has driven
some authors to avoid even deductive consistency as a desirable property
of the corpus.

Robert Nozick's acceptance rule [Noz81],



Acc(h) iff Prob(K I h) > = I- e
and Prob(K I -h) <= e
and Prob(h) > Prob(K I -h),
for small e:

and I.J. Good and A. McMichael's rule [GMc84,

Acc(h) ifftlog Prob(K I h) - log Prob(K) + k log Prob(h)
is sufficiently high for reasonable k;

will also accept inconsistencies, no matter what non-extreme parameters
are chosen. The problem seems inherent in the thresholding method.

There are two ways to bite the bullet. One way is to require
that the acceptance rule accept only consistent sets of statements.
The other way is to keep the high probability rule, but weaken the
inference rules that apply to statements in the corpus, so that
inconsistency of this kind is harmless. Recent work in A.I. on local
consistency seems to be sympathetic to the latter approach. There is
the third proposal to accept statements one-by-one in some temporally
significant order, so that each augments the K relative to which the
next will be judged, until no more can be consistently accepted (a weak
analog of Ethenngton and Reiter's [EtR83] solution to multiple
extensions). But no one seems to like it because it reeks of
arbitrariness and diachronicity. Incidentally, there are workers in
A.I. who should be notified that falsificationism has passed, for its
arbitrariness and diachronicity.

The new acceptance rules belong to Keith Lehrer [L eh70], Jaakko
Hindkka and Risto Hilpinen [HiH661, and Levi [Lev8Oa. K, burg [Kyb70
and Hilpinen [Hil68J are the best sources for details.

Lehrer's rule accepts the most probable of the various
alternatives, if there is one.

Acc(h) iff
(i) for any minimally inconsistent set of statements S

that includes h, ifs is in S and different from h,
then Prob(h I K) > Prob(s I K),

and
(ii) not(K I- -h)

S is minimally inconsistent iff S, K I- x - = x and there is no
subset of S which is minimally inconsistent.

It can be shown that K is deductively closed: i.e. if K I- h
then Acc(h). The rule has been criticized for ignoring the absolute
probability of h, though this is easily remedied. It accepts no
statements about the lottery.

Hintikka and Hilpinen accept only universal generalizations on
the basis of high confirmation, and they use a threshold on the
quantity of evidence in such a way that inconsistencies don't arise.

Acc(h) iff



(a) (i) h is a universal generalization,
(ii) Prob(h I K) > 1- e,

for small e,
and
(iii) the number of statements in K of a certain

observational class exceeds some critical nO.
or
(b) K I- h.

Their critics mainly charge that the language they inherited from
Carnap is too restricted (though A.I. may find it quite expressive).
They too accept no statements about the lottery.

Levi uses decision theory to accept statements, where decisions
are based on a kind of information measure called cognitive utilities.
M(h) measures the informational utility of h.

Acc(h) iff
(a) (i) h is E-admissible

and
(ii) there is no E-admissible h', h' - = h, which

is preferred to h on lexicographic considerations.
or
(b) K I- h.

h is E-admissible iff
(i) for h = hl v h2 v... v hk, each hi

is a potential answer to a specific question of
interest,

and
(ii) for some Qj in Q, for suitable q:

h maximizes Qj(h) + qM(h);
or equivalently,
hi is a disjunct of h iffQj(hi) > qM(hi);

In the lottery example, Levi's behavior depends on whether utilities
are all equal. Usually, the informational value of each maximally
consistent extension will be the same, so the disjunction "ticket I
wins v ticket 2 wins v. . ." will be accepted.

Kyburg's way of biting the bullet is a little different. He
accepts all statements based on the high probability rule, then rejects
the standard deductive closure of K, by rejecting and-introduction. If
sin K,sl-t, thentin K. Butifsl in K,s2in K,sl,s2 1-tt
in K is still not guaranteed. Kyburg gets a weak deductive closure,
but not the familiar strong deductive closure; similarly, he has weak
deductive consistency: ifs in K then not(s [- x - = x); but doesn't
satisfy the strong version, if sl in K and s2 in K, then not(sl, s2 I-
x - = x). In the lottery example, each of the statements "ticket 1
loses," "ticket 2 loses," etc. finds its way into the corpus. So does
the tautology that some ticket must win, which makes K inconsistent.
Inferences based on this corpus must be warranted by each of the
maximally consistent subsets of the corpus. Or even better, the
inference rules are designed to deal with the inconsistencies directly;



would-be inferences over K are defeated whenever the inconsistencies
make a difference. Since the acceptance rule and confirmation theory
together are sufficient to augment K, based on evidential subsets of K,
deductive logic needn't be used, at least not directly for the purpose
of augmenting K. So inconsistency doesn't lead to absurdity.

Now we can make sense of David Israel's remarks about n-odus
ponens. Israel equivocates, suggesting first that not(Acc(q)), with"overwhelmingly good reasons for rejecting the belief that q," then
that Acc(-q), due to "your previously settled beliefs on the basis of
which you were convinced that not-q" [sr80J. Both of the credal
states suggested make sense. If we use the high probability rule, we
may fail to have strong deductive closure. Prob(p) may be above
threshold, and Prob(p -> c may be above threshold, but Prob(q)
might be below it. So Acc(p), Acc(p -> q), but not(Acc(q)). And if
local inconsistency makes any sense to you, as clearly it does to
Kyburg (see also Peter Klein [Kle851, N. Rescher and R. Manor [ReM70]),
then it's even cogent to Acc(-q). To be fair, Israel probably had in
mind a situation wherein -q in K(t-1); prima facie reasons (evidence
normally sufficient) for -q in K(t); prima facie reasons for p, and for
p -> q in K(t); and the question was whether q belonged to K(t).
Nevertheless, the weak consistency example reveals the depth of
Israel's comments.

What has happened is that epistemological intuitions favor the
high probability rule so strongly that the plausibility and
desirability of deductive closure has been cast in doubt. In Kyburg's
system, if Acc(p) and Acc(q), then frequently Acc(p & q). But the
frequency goes down with the length of the conjunction. Conjunction (or
adjunction) is a good epistemological maxim only when it is limited.

Note that there are as many lousy systems of deductive logic as
one can dream up which have terrible epistemological properties: their
inference rules could not reasonably be expected to generate acceptable
statements when other accepted statements are taken as premises. The
source of confidence in familiar rules must therefore be empirical:
the history of human reasoning has shown entailment from accepted
premises (in familiar logical systems) to be a good indication of
acceptability; hence, conjunction is normally an acceptability-preserving
transformation. But the history of human reasoning has also shown it
to be a bad policy to accept massive, long conjunctions of arbitrarily
selected, individually accepted statements. Simultaneously using both
kinds of rules can lead to disagreement. We want to know whether a
massive conjunction is acceptable. Deductive rules say that it is.
Appeal to the inductive acceptance rule may say that it is not,
especially if acceptability depends critically on probability. When
they disagree, which is right? Since the premises in the deduction are
based on the inductive acceptance rule, it would seem hypocritical to
permit the inductive acceptance rule to be undermined. The attempt to
augment the repertoire of real inference rules leads to the
inconsistency. So do not augment the primary rules.

Isn't it the case that: 1. If the premises in a deductive
argument are known, then they are true; 2. If deductive rules of
transformation preserve truth, then the conclusion must be true; 3. If
the conclusion is true, then it must be acceptable?



However, the premises in the argument are not known, they are
merely accepted or believed. In order for the contents to be known,
they must be correctly justified, true beliefs. Who knows whether they
are true? The contents must not be knowledge, at least not in the
sense that guarantees truth. The contents are merely those statements
we have ascertained to be the best candidates for knowledge via
truth-conducive procedures. It is a mistake to confuse the analysis of
knowledge with the recipes for ascertaining whether one knows (see
[Leh74; p. 481). The semantics of knowledge and the real rules of
inference live in two separate worlds. The skeptics, who doubt that
the truth condition of knowledge can be satisfied, still cannot
conclude that the truth condition in the semantic analysis of knowledge
must be rejected. Conversely, even when one has decided that one knows
and has justified one's claim, one cannot thus be certain of the
claim's truth. Apparently, "knowledge base" is a misnomer.

The truth that is preserved by a logic's transformations is
a semantic truth, not an epistemological one. It's an interesting
question what else it is that these rules actually preserve (see [Nut84]).
Few would argue that they preserve warranted assertability. They
probably take supposable statements and generate other statements which
must concomitantly be supposed. They clearly do not take statements of
high probability and produce other statements of iOigh probability. Because
of this, there are some who think they don't preserve acceptability.
And at least Israel thinks they don't preserve the property "should be
in the knowledge base."

A Pragmatic View of Infallibility.
There is clearly a dispute over the logical properties of the

corpus, over what should be its closure and consistency properties.
This dispute must also pertain to the knowledge base, since it is just
a corpus with a less philhellenic name. The logical properties will
depend on the corpus' acceptance rule. But some want to discover good
acceptance rules by identifying the logical properties that a good rule
respects. Hence, there is discussion about target properties.

The dispute is not related to the discussions with which A.I.
is familiar regarding resource limitations, decidability, or human
performance. It is a dispute over the correctness of deductive closure
for corpora under idealized computational ability and decidability. It
is essentially the question of whether the usual truth-preserving
transformations are inherently acceptability-preserving.

Of course, the logical properties of the corpus will depend on
what it's being used for. The lesson is from Levi, who writes:

Bayesians have been s[kjeptical of inductive acceptance
rules. They challenge those who are friends of acceptance
to identify a use for acceptance rules. Friends of
acceptance disagree among themselves concerning the
properties acceptance should have; and such disagreements
are not likely to be resolved by an appeal to intuition. I
suggest that a more promising avenue of attack is to
consider the intended applications of acceptance rules.
[LevS0b}



I put it this way: infallibility is needed for inference schemata that
can make no sense of graded distinctions among beliefs. These schemata
are often specifiable meta-linguistically, and include
conditionalization, direct inference, decision rules, and the familiar
deductive rules. The logical properties a corpus should have depend on
the particular schema one has in mind: what is going to be done with
statements accepted into the corpus?

If the intended use of the statements in the corpus is
conditionalization ofconfirmstion functions, then the corpus should be
strongly consistent and might as well be deductively closed. If the
intended use is as the premises in a logical analysis, with a
traditional interpretation, then the corpus may have to be strongly
consistent and deductively closed. If the corpus is used for cognitive
modeling, to reflect psychological commitment, it had better not be
closed or strongly consistent.

If the schema is direct inference, inconsistency is ok. For
direct inference to the probability of a ball's redness, one needs to
find the smallest reference class to which the ball is known to belong,
and use the frequency of redness in that class as the probability. If
there is no uniquely smallest class, so that neither subset(C1, C2) in
K, nor subset(C2, CQ) in K, then something else must be done. Whatever
the something is, it can also be done when an inconsistency in the
corpus is detected, e.g., when subset(C1, C2) in K as well as
subset(C2, Cl) in K, and the classes have different frequencies, hence
cannot be equal. Or suppose that the frequencies of some property Z
among members of C1 is the same as the frequency of Z among members of
C2. According to K, C1 is distinctly not C2, and C1 U C2 is not
projectible: i.e., not a reference class. Then for the event in
question, x, if "x in Cl" in K and "x in C2" in K, K is inconsistent.
Still, the probability is just the frequency which is the same for Z's
among Cl and for Z's among C2. Accepting the weaker "x in C1 U C2"
instead. to preserve consistency, would not have allowed either of the
frequencies to be used, since C1 U C2 isn't a reference class.

If the use of the corpus is to generate certain kinds of
explanations, there is no profound implication of both p and -p in K.
Imagine the following schema for explanations. If p is in K, it can be
used in an explanation (this says nothing about requiring the absence
of p's contraries). Two statements explain q(a) if each can be used in
an explanation, if one is a nomological generalization of the form,
(x). p(x) -> q(x), and if the other is p(a). The presence of some
contrary of p(a) in K: r in K and r I- -p(a), doesn't interfere with
the explanation. It may even be that such a corpts can explain both
q(a) and -q(a). Because of the nature of this schema for explanation,
it does not follow that x - = x can be explained, or other such
absurdity.

These schemata are formalized in a first order language that
includes names for sentences in the corpus, and the relation "in K",
with standard rules of inference, semantics, and consistent deductions
from consistent premises. But that's not the point. It is the
*corpus* which is not necessarily governed by deductive notions of
consistency or inference.



Levi discusses more complicated stances which take the
evidential subset of the corpus to be deductively closed and strongly
consistent, but the corpus in general not to be [Lev80b].
Infallibility for evidential purposes is more privileged than
infallibility for practical deliberation. The former is the status for
statements to be used in confrmation; the latter is for statements
taken as given in a decision. The acceptance rules that govern the
membership of each could differ wildly, or at least have different
thresholds. With EK, the evidential subset of a corpus distinguished,
there is yet another logical property discussed: feeble cogency is the
property that holds just in case EK is deductively closed and strongly
consistent; and if -h in EK then not(h in K). Piecemeal cogency adds the
additional requirement: if h in K then not(-h in K).

Lehrer discusses equally fine distinctions between desirable
and undesirable properties of acceptance rules. Let I(h, K) stand for
Acc(h) when K is the corpus, or "h may be inductively inferred from the
total evidence K." Then Lehrer counts

if I(h, K) and I(g, K) then I(h, K & g), and
if l(h, K) and l(g, K) then I(h & g, K)

among the desiderata, while excluding
if 1(h. K) and I(g, h & K) then l(g, K), and
if I(S, K) and S I- h then (h, K).

Narrow minded logicians tend to think either of the whole
deductive pie, or of nothing at all. What I have tried to emphasize is
that there is a rich set of intermediate positions (Fagin and Halpern
have appreciated this in [FaH85], but perhaps only for descriptive
belief logics). Leaving familiar logical rules is not intellectual
suicide. If knowledge bases are to be used as repositories of theorems
in a system with an idealized conception of validity, then the rules
and properties of deductive logic are just fine. If knowledge bases
represent the result of empirical inquiry and are used for rational
deliberation, then they should conform to the rules of inductive logic.
whatever your conscience may tell you about *those* rules.

Induction and Non-Monotonicity.
Nobody should be surprised that inductive logic and A.I.s

non-mcnotonic reasoning are related. Lehrer distinguishes two principles:

If h may be deductively inferred from K, then for any i, h may
be deductively inferred from K and i.

If h may be inductively inferred from K, then for any i, h may
be inductively inferred from K and i.

The first is true and the second is false. Non-monotonicity is just a
defining property of inductive inference. Lehrer [Leh70 credits
Carnap's "The Aim of Inductive Logic" (Car621 with the statement that
additional evidence can undermine inductive inference, but cannot
undermine deductive inference (even earlier was [Car5O; p. 1991).

Inductive logic has its "total evidence requirement": de jure
confirmation and acceptance must be relative to a specified body of
evidence, and de facto confirmation and acceptance must be relative to
the total body of knowledge accepted as evidence. As the evidence



changes (even if it just grows), past inferences that a sentence is
acceptable are no longer relevant and are consequently defeated. Hence
inferences are defeasible: i.e., they are non-monotonic, and this
implies that inductively inferred statements are corrigible.

Corrigibility is anomalous only when researchers feel obligated
to use concepts and formalisms designed for monotonic reasoning and
incorrigible knowledge. It's all right to try, but it's not all right to
talk as if there's no alternative, or as if the other problems having to
do with real rules of inference are less important.

Clark Glymour and Richmond Thomason comment on the prevailing
deductivist investigation and explication of non-monotonicity:

... of course, a straightforward logical account with a
model-theoretic definition will not serve this purpose, since
monotonicity is built into such definitions. [GT841

Israel obviously concurs.
There are payoffs for talking induction. In inductive logic,

the deference of a type's default to the default of its sub-type is
reflected in the total evidence requirement. Elaine Rich [Ric83J tried
to guarantee this behavior without the total evidence requirement,
using a suspicious "monotonic consistency constraint." She requires
the likelihood of p3 = > p4 to be greater than that of pl = > p2 (here,
= > is her symbol for a default or conditional rule) whenever p3 l- pl
and p4 I- -p2, because she'd like to conclude p4 on pl and p3. She
draws the conclusions of the most likely rule when rules are in
conflict, irrespective of the specificity of the antecedents of those
rules. So she must impose a constraint on the likelihoods to get the
deference desired.

But with the total evidence requirement, the behavior is
simpler than she leads us to believe. If p4 is acceptable on evidence
p3, and pl is entailed by p3, then p4 must be acceptable on the
evidence {p3, pl}. Every acceptance rule in the book conforms to this
logic (where each pi is a single sentence in the language, not a set of
sentences). So in Rich's example, p4 must be acceptable on evidence
{p3, pUl. Her less specific default, that p2 is acceptable on pl, must
defer if {p3, pl} is the total evidence.

The literature on induction is rich with concepts yet
to be introduced to A.I. The more complex the inferences one is
willing to talk about, the more complex the ways in which those
inferences can be defeated. By moving from sound inference, where
there is no concept of defeat, to defeasible inference, where defeat is
central, A.I. has opened the gate to a new pen of playpals.

John Pollock distinguishes "rebutting" defeaters from
"undercutting" defeaters (Pol74,831. Rebutting defeaters attack the
conclusion of a would-be inference. A.'s only rebutting defeater is
detected inconsistency. How about rebutting on the basis of the
strength of the conclusion? Conclusions too weak or too strong might
be unacceptable, especially in the presence of other conclusions of
different strength. Undercutting defeaters attack the connection
between evidence and would-be conclusion, in virtue of which the
evidence was prima facie warrant for the would-be conclusion. B is an



undercutter of A for C in conditional logic when "B > -(A > C)" for
example. A.l.s only undercutter is the explicit exception. Inductive
logicians have considered defeat mechanisms based also on the relevance
and specificity of antecedents and all sorts of statistical matters:
sample size, sufficiency, Bayesian information, etc.

It's surprising that default logic hasn't yet had to face the
tradeoff between strength and specificity defeaters. b is an exception
to the inference from a to h if

a: Mh l- h
and

a&b : M-hI- -h.

But let a & b & c be accepted. Surely

a&b&c : M(h v -h) I- hv -h

can be a default rule, too. If rules with less specific antecedents are
defeated without regard to strength, then c must be an exception to the
a & b: ... rule: an exception that doesn't lead to a contradictory
conclusion, but rather to a weaker, diluted one. h v -h is concluded
on a & b & c. If specificity matters only when there is inconsistency,
then c is not an exception to the a & b : ... rule, so h is concluded
on a & b & c. A system with strength defeaters apparently can't have
implicit exceptions.

Everyone seems to forget detachment. It is detachment that
often makes Prob(C I A) the relevant assessment of the probability of
C, upon learning A. Similarly, detachment is what happens in Glymour
and Thomason's system for "theory perturbation" [GIT841 when, upon
adding A, they add B > C to a theory that once contained A & B > C
(hence, the policies for revising the knowledge base when B is added
may have changed, to include B > C).

Because of detachment, the total evidence requirement doesn't
destroy all of the locality that is characteristic of familiar
inference rules such as modus ponens. McDermott has been worrying
about these issues [McD85]. One of the desirable features of monotonic
systems is that their inference rules are local. If it is the case
that "if a then b", then to infer that b, one need no more than that
a. In contrast, induction requires that all inferences be made with
respect to the total evidence to date. So there are no eternal
conditionals of the simple form; there is only the rule that one needs
a body of evidence that confirms b. However, it is a simple matter to
derive relations such as K U {a} confirms b. Then, if K is the total
evidence at some time, it is true that to infer b, one need simply
accept a. Of course, there is the proviso that a be all that is
accepted, because the inferences are defeasible (e.g., it may be that K
U {a, c} fails to confirm b). One can mourn the existence of such
provisos. But then one is mourning the loss of monotonicity, not the
loss of locality. With provisos, attention can be focused in the
locality of the new evidence; the detached evidence is irrelevant after
the detachment.

We saw some fine distinctions among revision strategies when we



looked at consistency and inductive rules. Here's another fine
distinction. In most normative systems, an agent's initial"confirmational commitments," together with her total evidence to date,
uniquely determine her present credal state. Levi calls this
"confirmational tenacity," and argues that there's no reason for it
[Lev80a]. In his view, agents can spuriously revise not only their
knowledge and their policies of revision, but also their confirmational
commitments. So the set of confirmation functions, Q, could shift for
reasons other than conditionalization followed by detachment. They
could change unsystematically. The issue comes up in the design of
revision policies, when one wonders whether K revised by a, then -a,
then a again, should always equal the original K.

Some Intellectual History.
How is it possible A.I. should have so much work on

non-monotonicity, none of which relates to the philosophers' work on
defeasible and inductive inference? The obvious answer is that A.!.
was attacking a different problem, though that mustn't be right, since
most people working on induction can't see any difference. The better
answer is that A.I. was interested in a different kind of solution.
This will turn out to be a defensible position, from which one can
rebuke even Israel's vehement remarks. But if one goes to the early
papers, I think a strong case can be made that there were less
deliberate causes. I'll trace the philosophers' and A.I.'s parted
company to a Palo Alto probability phobia, to a Canadian closed world
cultural precedent, and to the MIT modal-mania.

McCarthy and Hayes [McH69] can be found legitimating what may
have been a widespread opinion at the time, on the use of numerical
probabilities; it certainly became the standard view once they stated
it: "The information necessary to assign numerical probabilities is
not ordinarily available. Therefore, a formalism that required
numerical probabilities would be epistemologically inadequate." These
were leaders of A.I. dismissing probability in , o lines. Since the
literature on inductive logic is filled with the use of numerical
probabilities, inductive logic too had to be dismissed without further
appraisal, despite the useful concepts it had to offer.

Last year, McCarthy restared his position (and last month,
Hayes reavowed his! [Hay85]):

Why don't we use finite probabilities combined by
the usual laws? That would be fine if we had the numbers,
but circumscription is usfejable when we can't get the
numbers or find their use inconvenient. Note that the
general probability that a bird can fly may be irrelevant,
because we are interested in the facts that influence our
opinion about whether a particular bird can fly in a
particular situation.

Moreover, the use of probabilities is normally
considered to require the definition of a sample space,
i.e. the space of all possibilities. Circumscription
allows one to conjecture that the cases we know about are
all that there are. However, when additional cases are



found, the axioms don't have to be changed. [McC85]

This is a good argument against the use of determinate
probability models as a substitute for inductive reasoning in A.I. But
of course, there's no reason to confine oneself to undergraduate
mathematical probability theory. Once one recognizes that an inductive
logic can be based on measures that are not real-valued, or on
indeterminate probabilities, the "can't get the numbers" argument is
enfeebled. I think the convenience argument is a tenable one, but it
is certainly not the tale of epistemological inadequacy he wants to tell.
From the philosopher's point of view, what is really epistemologically
inadequate is determining non-inferentially which predicates may be
circumscribed and which default rules are acceptable.

McCarthy seems to have problems determining the reference class
for a particular bird with respect to flight. He supposes that we
would want to appeal to "the general probability that a bird can fly ..
Perhaps he supposes this because we may never have sampled from
the class of birds identical to this particular bird. He reminds us
that the general probability may not be relevant; relevance must be
determined. Philosophers have always faced this fact squarely; it is
the mathematicians who have idealized the relevance problem away. The
probability of flight for this bird is determined by the information
that we have that is relevant.

Reichenbach thought that the probability of the statement of an
event comes directly from estimates about the narrowest class
containing the event, *of those classes about which adequate estimates
are accepted*. The last qualification is important, since any event
will always belong to the singleton class containing only the event
itself, and this singleton will always be narrowest. Informative
statistics are not ordinarily known about this class. In these cases,
the knowledge that the event belongs to its own singleton should not
interfere with the calculation. Note that this is different from the
Bayesian who is obliged to condition on all known class memberships of
the event -- to wit, on all that is known -- even though the resulting,
ultimately particular conditional may be poorly estimated or impossible
to estimate: the Bayesian has her own ways of constructing
probabilities in these situations (of which Cheeseman has told us
[Che85]). Anyway, the non-Bayesian, Reichenbachian, "epistemological"
conception of probability (see [Kyb74]) has the *krestomatheia*
McCarthy desires, allowing that only useful knowledge should enter into
the calculation of a probability. And it's not sensitive to the form
and number of unobserved possibilities in the "sample space."

It may still be true that "enough information" to assign useful
numerical probabilities is not available, or that in some domains, the
numbers are simply unimportant. But don't poke your eyes out because
it's dark and you can't see. There may be enough information in some
domains to assign useful bounds on measures, and it may be good enough
to know where these bounds lie. If you stick to an indeterminate
numerical formalism, then when there is enough information to get
narrow bounds, in McCarthy's words, "the axioms don't have to be
changed." What McCarthy and Hayes should say is that A.L. has
developed an alternative style of formalizing inference, with different



tradeoffs between expressiveness and convenience: one that doesn't bother
with the numbers. They should not be talking of epistemological inadequacy.

From the fact that McCarthy was attacking an unworthy opponent,
determinate probability representations, it's tempting to conclude that
McCarthy simply doesn't see who the worthy opponents are. More likely,
the inconvenience of numerical calculations was so terrible a thought
that epistemological arguments had to be invented against quantitative
approaches.

The strong possibility that the A.I. world was simply ignorant
of what inductive logic had to offer was most poignantly manifest in
Winograd's comment at a conference for applications of inductive
logic:

Inductive logic has not traditionally dealt with the
problem of the acceptance of a conclusion which is not
certain. In a practical situation, it is often necessary
to act as if a particular conclusion were true, even though
the formal rules of evidence can do no more than assign it
a plausibility or demonstrate that is has not been
falsified. (Win80a

Winograd's complaint is exactly true of the ongoing A.I work in
evidential reasoning in the probabilist or Bayesian mold. But it is
simply false to say of inductive logic that it does not deal with the
problem of acceptance: as [ have illustrated, the acceptance problem is
inductive logic's central issue: indeed, its defining issue. Winograd
is to be praised for identifying the acceptance problem, but not to be
praised for his narrow view of inductive methods. Incidentally, in the
revised, *AI Journal* version of this remark [Win80bJ, Winograd attacks
"mathematical logic" instead.

Going back to Reiter's closed world assumption paper, one
discovers an amazing historical fact. Reiter was originally interested
in a genuinely semantical problem, and the interest in semantics must
have persisted as he turned to inferential problems. Reiter disclaimed
an interest in inference; he was concerned with representation:

... the number of negative facts about a given domain
will, in general, far exceed the number of positive ones so
that the requirement that all facts, both positive and
negative, be explicitly represented may well be
unfeasible. [Rei78a]

He enjoined us, "merely *explicitly* represent *positive* facts";
negative facts were to be implicitly represented. "*The implicit
representation of negative facts presumes total knowledge about the
domain being represented*...; fortunately, in most applications,
such an assumption is warranted." So if it was the case that neither p
nor -p was explicitly represented, then it was the case that -p was
known and was implicitly represented. If p later became explicitly
represented, this was outright revision: the revision from -p to p;
not non-monotonic inference. It couldn't be non-monotonic inference
(or monotonic inference, or any kind of inference) since there was no



inference. The closed world assumption was an inference, perhaps
inductive, but that was an inference made by the data base designer, not
by the inference engine (what inference engine?).

In the original formalism, belief fixation and revision pretended
to be nothing more than unexplained change in the set of represented
beliefs. Reiter had no reason to look at the philosophers' work on
inferential mechanisms for beliefs.

In default logic [Rei78b,801, some belief revision was
inferential: change that was explainable in terms of inferences that
were defeated. The interesting problems of default reasoning weren't
semantic: everyone agreed what beliefs were represented (implicitly or
explicitly) by a set of sentences in the language. Unfortunately, with
the closed world "assumption" already in the air, it was more important
to relate default reasoning to A.I.'s closed world assumption than to
the defeasible reasoning styles in another discipline.

Doyle and McDermott's contribution to the split was a matter of
dubious ambitions. In the TMS paper, Doyle clearly recognizes that
truth and acceptability should not be confused:

Briefly put, the problems with the conventional view of
reasoning stem from the monotonicity of the sequence of
states of the reasoner's beliefs: his beliefs are true,
and truths never change ....... To study rational
thought, we should study justified belief or reasoned
argument, and ignore questions of truth. [Doy79

He talks about the "philosophical literature [that] includes many
treatments of belief revision and related problems." One wonders
whether David Israel would have complained the way he did if he had
focused on the TMS paper instead (Doyle has actually said something
like this [Doy85]). It was clear to Doyle that TMS and non-monotonic
logic could be embedded in the philosophical tradition. McDermott and Doyle
rehearsed the idea that non-monotonic logic fit into a framework that
included belief revision, logic of counterfactual conditionals, and
"world-model reorganization," citing Quine and Ullian, Rescher, and
Scriven. If not for the choice of presentation, Doyle and McDermott would
clearly be talking about real rules.

But in order to provide "theoretical foundations," Doyle and
McDermott represent belief by assertion, thus taking all of deductive
systematization's rules as belief fixation's rules. They take the
Lehrer-Levi- Hintikka-Hilpinen position for granted. And they treat
consistency as a proposition-forming modality. They wanted to add to
deductive logic, not subtract from it. The obvious alternative, which
had always been used in the philosophical literature, was to discuss
consistency and inferential relations in a meta-language.

Surely they knew they could have gone the meta-linguistic
mute. Careful reading again shows that their choice was an informed
one. The TMS paper mentions the meta-theoretic approach of Weyhrauch
right next to the modal approaches of Hintikka and Moore. The joint
paper notes the meta-linguistic approach of Kramosil. They are
disappointed by Kramosil's "pessim[ism] with regard to the possibility
of formalizing [non-monotonic] rules" and they export the



disappointment to the whole meta-linguistic approach he uses:
"Non-monotonic inference rules need not appear in the explicit forms
discussed by Kramosil." Furthermore, McDermott and Doyle seem bent on
analyzing default locutions in a structure-mimicking form. So

if something is an animal with a beak then unless proven otherwise,

it is a bird,

must be composed of constituents like

if [animal x & has-beak x] unless [I- -bird x]
then [bird x],

entirely in the object language. One alternative is to say

animal x & has-beak x is a prima facie reason for bird x

and simply leave it at that. Apparently it was the McCarthy and
Hayes paper that influenced them here; McDermott and Doyle refer to it
for an explanation of the modality M. McCarthy and Hayes proposed that
problems related to frames could be handled by introducing modal
operators, and they added a warning, "We hereby warn the reader, if it
is not already clear to him, that these ideas are very tentative and
may prove useless." The MIT Al lab duo may simply have taken this
disclaimer to be an irresistible challenge.

Perhaps because of the success and prominence of the McDermott and
Doyle work, A.I. never returned to the meta-linguistic approach, and some
philosophers have been quietly pointing and laughing at our A.I. ilk
ever since.

What about the pointing and laughing? Apparently what resulted
was pretty good, despite its presentation or history. The prominent
philosophers Glymour and Thomason even applaud the uninhibited steps:

Artificial Intelligence has done us the service not only of
reminding us of the importance of non[-]monotonic
reasoning, but of demanding a qualitative, logical account
of it, and of suggesting how such an account might be
formulated.

There is room for creativity and judgement here, and we can
naturally expect different solutions to evolve. [GIT841

A.I.-style non-monotonicity really was a coup in knowledge
philosophizing and engineering. Someone notice that even with great
simplifications in formalism, something like a conditional logic could
reproduce most of the characteristics of inductive reasoning. Like
acceptance, qualitative defeasible reasoning also produces infallible,
corrigible statements for reasons.

Take Doyle's epistemological programme, for example. His agent
would declare defeasible policies in advance, and they would be
time-invariant. Doyle focused not on inferring the policies, but on
inferring with them. This is all that is needed when the agent is



ideally cooperative and declares all the dependencies among beliefs of
interest, rationally or otherwise. The agent would shift subjectively
from state to state, report partial descriptions of the new state, and
Doyle would help fill out the description by following the invariant
policies.

Contrast this with inductive logic: the evidential base
of the agent changes from state to state (it grows) and is reported;
then a *general* principle completes the description of what must be
the beliefs rationally held in light of this evidence. This general
principle is an acceptance rule in a traditional form, e.g., "accept p
iff the probability of p relative to blah blah is blah high blah and p
coheres/explains blah blah blah." This acceptance rule is presumably
invariant like TMS's invariant policies. But it doesn't look like any
of TMS's policies. TMS policies are particular; they contain predicate
and term names of the object language, and there's a long list of them.
Theoretically, the invariant CP and SL statements that encode
defeasible policies in TMS could be derived from the general principle
for acceptance. If so, the derived CP and SL statements would be no
arbitrary set; they would have those logical properties that are
characteristic of the acceptance rule (such as the consistency of
k-membered subsets).

Still, the distinction is subtle.
Inductive logic was slightly better for use in revision

because with it and the current evidential corpus, all warranted
defeasible policies were determined. K may not be specified
completely, but the policies warranted with respect to what is
specified are completely determined (though not enumerable because of
undecidability). Doyle needs to supply his policies one by one, and he
pays the price when the defeasible policy needed isn't supplied. He
won't know whether a conclusion couldn't be drawn (or decided) or
whether a conclusion could be drawn but its rule simply wasn't stated.
There's always a nagging suspicion that the missing rule could have
been supplied. How big a problem this is depends on what you think
about the relation between computation, information, error, decision,
and unsound inference, which I elaborate below. Let's just say that
not everyone considers the closed world assumption for CP and SL
statements (or default rules, or conditionals, etc.) compelling in
practice. Inductive logic doesn't need an explicit list of policies or
prescriptions. Confirmation theory always says which among the
alternative rules is better confirmed and by how much; acceptance rules
tirelessly say whether the "how much" is "enough." Since they are
inherently quantitative, they can also be made sensitive to various
attitudes toward error and demands for information.

This is what Doyle and the rest have given up. But there may
be nothing else of importance that has been sacrificed, for this price,
AI. buys the ability to leave quantitative confirmation theory and its
messy issues of statistics, decision, and measurement. Clearly a
possible line of future research is the pursuit of default systems with
more structure or more inference rules, so that the closed world
assumption for these defaults can be widely accepted, and the boldness
of inference can be sensitive to the demands for information.

To sum at this point, we should agree with Israel that the



presentation of reasoning systems in the past has been confused, and
agree that there is much to be learned from a serious look at the
post-Carnapian philosophical literature. In the same breath, we should
also agree that pursuing qualitative, defeasible, real rules of
inference is a promising line of research that is independently
motivated.

Folk Myths.
To Glymour and Thomason, inductive inference is a subspecies

of non-monotonic reasoning:

Philosophers and logicians have of course payed attention
to [non-monotonic] reasoning, which includes not only
ceterfils paribus reasoning, but all forms of inductive and
statistical inference. But it has been fashionable to
treat such matters as fundamentally quantitative, by
subsuming them under probability theory. [GIT84]

They don't say what is the relation between inductive inference and
*rational* non-monotonic reasoning. I have left open the question of
whether all rational non-monotonic reasoning is subsumed by the
epistemologists' inductive reasoning, broadly construed. If there is a
dispute here, it probably depends on whether you classify the rules for
theory formation as inductive, and on how you view rationality.

I want to focus on two related but different claims. Both
challenge the autonomy of non-monotonic reasoning and both are clearly
false. The first is that non-monotonic reasoning can be reduced to
probabilistic reasoning. If rational, it may or may not reduce to
induction; but it certainly doesn't reduce to probability. The second
is that induction or probability "solves" the multiple extension
problem. It solves decision problems that may relate to the multiple
extension problem, but inferentially, it does nothing that default
logic, say, couldn't do. I think the claims express sentiments that
are true when worded precisely, but that as they stand, they are
dangerously misleading folk myths.

Induction is of course what many have had in mind when they've
championed probability theory as the cure for non-monotonic reasoning's
woes. The confusion of induction and probability is due to the
popularity of Bayesian decision theory as a means of getting along
without a rule of acceptance. Inductive logics are characterized by
their confirmation theory and their acceptance rules. Supposing that
there are no acceptance rules and that confirmation is just probability
makes probability look like an inductive logic. But it is induction.
if anything, that is the candidate for subsuming rational non-monotonic
inference.

Some think acceptance requires more than probability.
Levi uses cognitive utilities (so do Hempel [Hem62] and others).
Real-valued measures have been used for confirmation, which do not
satisfy finite additivity (see (Kyb64]).

Even if confirmation is just a matter of high probability,
probability by itself does not lead to non-monotonic inference. Unless
statements are accepted, they aren't inferred: there is just a



calculation of probabilities. Having probability -- whatever the value
-- is not the same as having been inferred. Non-monotonicity refers to
the set of statements that may be inferred, as evidence grows; it does
not refer to evolution of probability quantities, except when they lead
to inference. The only kind of inference that's non-monotonic in the
Bayesian scheme is the inference that a particular decision is
optimal. Probability couldn't generate this non-monotonic behavior
without the decision theory; it's the decision theory that leads to the
acceptance of the statement of optimality. Probability doesn't subsume
non-monotonic inference unless it combines with an honest-to-goodness
rule of acceptance. If there is such a rule, one that introduces
corrigibility and infallibility, then it's an inductive logic.

An interest in probability in A.I. is undoubtedly a good thing:
probability is potentially useful to A.I. for reasons other than
subsumption, including its importance in confirmation and in
decision-making under risk. What probabilists should say is that
whenever practitioners have applied non-monotonic reasoning, they could
have used probabilistic reasoning, with some decision theory.

McCarthy speaks of circumscription as a "streamlined expression
of probabilistic information when numerical probabilities, especially
conditional probabilities, are unobtainable." [McC84] We must
remember that even if the conditional probabilities were obtainable, we
still wouldn't be able to duplicate the reasoning without a theory of
acceptance. It's more aptly a streamlined expression of inductive
information. Elaine Rich explains "If we ask what default reasoning
really is, we see that it is a form of likelihood reasoning." [Ric83]
We must remember that she has in mind a non-trivial connection between
default reasoning and likelihood. Cheeseman [Che85I says that the default
"All birds fly unless proved otherwise" should really be "Most birds
fly," where the latter is "used as a piece of evidence in evaluating
the probability of the proposition 'this bird flies'...." Default
rules in non-monotonic inference engines are like conditional
probabilities in probabilistic inference engines. But that doesn't
mean defaults can simply be reduced to conditional probabilities.
People may "force intrinsically probabilistic situations into a logical
straight-jacket," but it is equally wrong to force intrinsically
inductive situations into the straight-jacket.

As for multiple extensions, appeal to an inductive logic in
a weak sense preempts discussion of what can or should be done when there
are multiple extensions. In principle, the logic says exactly what is
and isn't acceptable on current evidence. Note that this property of
the logic depends on the acceptance rule: if the high probability rule
had been ambiguous between Acc(h) and not(Acc(h)) when

there are Qi, Qi in Q s.t. Qi(h) ( 1 - e ( Qj(h),

then this wouldn't be the case. Undecidability of the accepunce rule
also tempers the claim that inductive logic fares better than
non-monotonic A.I. systems. Suppose ambiguity and decidability of the
acceptance rule aren't at issue.

Still, whenever the problem can be solved by induction or by
using probability, it can also be solved within the framework of



default or non-monotonic logic. Consider the simple case:

A:MCI-C
B: M-CI- -C
A&B&K.

If induction says that C is acceptable on A & B & K, then there is
nothing peculiar to the *formalism* that prohibits the rule

A&B&K:MCI-C,

which presumably defeats the rules with less specific antecedents.
Epistemologically and practically speaking, we don't expect that the
rule will always be present; it would require an infinitude of default
rules to reflect the behavior of the inductive logic. Nevertheless,
multiple extensions are a problem for non-monotonic reasoning systems
only because the required rule might not be declared, and the closed
world assumption not assumed. With the right rule present, there's
no problem.

If induction "solves" the multiple extension problem, so does the
presence of adequately specific defaults. The claim that induction or
probability "solves" multiple extension problems is either a trite claim,
or a myth.

What is less trite is the idea that unsound inference is
associated with decision. Induction and probability are better mates
for decision theory than any of A.I.'s existing non-monotonic systems.
Apparently the multiple extension problem, the demand to know whether C or
-C (or neither, or both) looks like a demand for information, or a
decision. If these ideas are right, they explain why inductive logic
and probability theory appear to handle multiple extension situationsbetter. Decision rules based on logical or personal probability make
explicit use of degrees of belief. Acceptance rules used to construct
particular bodies of knowledge use parameters appropriate to the
pragmatic considerations of informational demand and attitude toward error.
Both kinds of rules are sensitive to the stakes. Each in its own way
allows variation of the boldness of its inferences. Each can respond
differentially to various practical demands. "C is inferrable on A & B
& K if it matters *this* much to you." In contrast, the boldness of
inference in an A.I. system's fixed set of defeasible rules is implicit
and immutable. These rules cannot be made to respond to the particular
decision at hand; C is either inferrable on A & B & K or it isn't, now
and forever. Here's an analogy: the Bayesian view of confirmation in
science presupposes there are fixed utilities for objective, scientific
inquiry. Utilities can't be changed relative to objectives.
Confirmation for one is confirmation for all. The result: a whole
dimension of critical control is lost.

Whether it's a feature or a flaw is not the main issue; clearly
people who need an inference mechanism with variable boldness are free to
forego existing non-monotonic systems. In short, they're free to use
decision theory on decision problems. It's also straightforward to
augment Al's non-monotonic systems so that they are sensitive to varying



practical demands, so that inference can be made cautious to degrees
[LFK85].

The main point is that there's something to the folk myth, even
though it takes a mouthful to say it right. And it's now possible to
say why the closed world assumption is so bad for defeasible rules.
When creating knowledge bases, there is the problem of writing down
particular defeasible rules, each with its own boldness or propensity
to err. Unless the boldness of a system's defeasible inference can be
set a priori, univocally, and appropriately for all future inquiry and
action, it's not clear which rules are warranted and which are not.
Stipulation is fine. But when we legitimately demand to know whether C
or -C (or neither, or both), the prior stipulation to exclude A & B & K

MC I- C on insufficient warrant may be called into question.
Perpetrators of the myth should say something like this:

real rules of inference are sensitive to tradeoffs between desiderata
of information and error.

Are We Interested in
"The Epistemological Problem"?

No doubt, we are all interested in the epistemological aspects
of non-monotonic reasoning problems, rather than the semantical or
proof-theoretical aspects. So much for who is interested in Israel's
epistemological problem.

What about the acceptance problem that the philosophers are so
willing to give on loan? It will be interesting to those who
will represent Q, including the evidential reasoning people. Even avid
Bayesians like Cheeseman recognize that pure probabilism commits its
adherent to multiplicatively large measure spaces or algebras.
Eliciting, manipulating, and maintaining probability measures over such
spaces is impracticable computation.

Abduction, presupposition, and convention place inquiry in
deductive channels that are fruitful and efficient. Induction does too,
and unlike the others, it is eminently accountable to rationality.

Inference that leads from probability to infallibility is
desirable because it allows subsequent inference that is
informationally effective and computationally efficient. It permits
conditioning on statements that are not strictly observational. It
perhaps even permits familiar heuristic deductive inference. It
permits the acceptance of(x).Ax -> Cx. Taking the generalization to
be infallible allows it to be used as if it were theoretical or
analytic knowledge, which is good; it is what Brachman has fussed about
[Bra851 (though Brachman seems to want generalizations that are
incorrigible, too, and doesn't really care whether they're inferred).
The related statistical generalization, P(Cx I Ax) > 1 -e, is less
informative. With the infallible generalization, -Ca I- -Aa, and Aa &
-Ca can be omitted from serious possibility in inquiry.

Whenever the generalization is so confirmed that it is
acceptable, it must be that treating the counter-examples to the
generalization, the long shots, as serious possibilities is just a
nuisance. In these cases, treating them and not treating them both
lead to the same decisions. A view of this kind, which worries about
the (computational) limitations of practical deliberation, is developed



by Harsanyi [Har85]. From this view, the acceptance problem is indeed
interesting to practical evidential reasoning.

The more various the inferential rules governing infallibility,
the more the criteria for the rationality of the corpus. When
relevant evidence for an infallible statement can be completely specified,
acceptance rules serve as a coherence constraint. Statements had better
be acceptable on represented evidence, lest there be le~itimate demand for
external justification. Deductive consistency is often a coherence
constraint demanded of knowledge bases. Acceptability from evidence may
serve as a constraint too, at least for special classes of statements in
knowledge bases, such as empirical generalizations. So designers of
coherent knowledge bases and careful eliciters of expert knowledge should
care about acceptance.

Acceptance will be interesting even to those who do not presently
use Q. Consider Mitchell's learning work [Mit83]. Integration problems
take various forms, depending on the functions used in the integrand.
Forms can be transformed by operations, such as separation by parts.
Mitchell's program infers from past experience that particular
operations are best on particular forms. Whenever each of two
operations independently appears to be best, the program attempts to
divide the form into subforms, so that operations are unambiguously
best on their subforms.

Unfortunately, the language may not provide any way to divide a
form, in such a way that the best operation becomes unambiguous; the
best operation may be ambiguous on a primitive form. Presently
Mitchell can choose on,: operation based on recent experience, or leave
the ambiguity and underdetermine the solution strategy for the form in
question. There is an evidential alternative: take previously
encountered problems as empirical data, from which future problem
character can be inferred. So "trigonometric integrand" may be a
primitive, indivisible form. OPI and OP2 have each been observed to be
best on this form. on various respective occasions. If the evidence in
favor of OPI is sufficient to accept that OP is unequivocally best for
that form, the action taken on trigonometric integrands can be
simplified. If the action taken when there is ambiguity is already
simple, such as rolling a die, nothing has been achieved. But if
ambiguity leads to special, information-seeking behavior, such as
experimentation, there will be a payoff. OPI may be so overwhelmingly
acceptable that further analysis is a waste of time.

Symbolic learning in A.[. has generally been conceived as
induction of a statement, criterion, or procedure based on inconclusive
evidence. Research on learning has adopted induction in name; one sees
the %ork referred to as induction; but implementers have not seriously
tapped the philosophers* work. There's an explanation: symbolic
learning in A.I. to date has been a search for the simplest account, in
some language, that fits given data perfectly. The paradigm example is
Winston's program [Win75], which looks for the shortest description of
an arch that correctly distinguishes all of the externally supplied
examples. He presupposes that there is such a description.

As soon as learning problems become so complex that no
description in the supplied language corroborates with the data



perfectly, as soon as there is no choice but to quantify error,
acceptance will become interesting. Also, when autonomy is increased,
when there is a decision to obtain data, rather than just receive it
whenever it pleases the teacher, confirmation and acceptability will
become an issue.

Acceptance generally addresses problems of independent knowledge
acquisition. Acceptance just says what knowledge can be acquired on the
basis of what. In their work on conditional logic, Glymour and Thomason
note:

For a system that approximates our logical theory to work
successfully, it must have many default rules, expressed by
conditionals. And it is clear that these conditionals have
to be *generated* somehow, rather than simply listed. [GIT84]

They announce the generation of conditionals as a forthcoming attraction.
They are caught in the same position as Doyle and the rest of the
qualitative non-monotonicity researchers. General acceptance rules can
generate defeasible policies, which otherwise have to be supplied
externally. But their system doesn't use a general acceptance rule. It
relies on external suppliers.

Why shouldn't all knowledge simply be supplied? Something has
to be supplied externally. Inference to the infallibility of
contingent statements can't be done in a vacuum. Epistemological
problems in A. . always come with a class of statements that is
"directly observational." It is convenient to consider a certain class
of potential statements infallible and incorrigible, as evidence for
the acceptability of less privileged statements. These infallible,
incorrigible statements are the observation reports: e.g., "pixel on
at line y, column x," "force at tip measures f mg/st2," or "apparently
an object at time t and position p."

The conceptual level of observation reports is several abstractions
below the level presumed by much of the A.I. work on inference.
Something has to bridge these levels. That's the work done by
acceptance. The alternative is to represent probability measures over all
levels simultaneously.

The philosophers have their own reasons for acceptance;
they have primarily to do with the formalization of inference. At some
point, someone has to write something down. C.I. Lewis, for instance,
thinks "If anything is to be probable, then something must be certain."
[Lew46]. But the value to A.I. is definitely in the bridging.

With good bridging, knowledge bases can be founded on
empirical data in an effective, systematic, and rational way. Undoubtedly,
comprehensive reasoning systems (if any are ever built) will be based on
local induction.

Epistemological Eyes.
Must we avert our epistemological eyes? A.I. has yet to look

at the epistemological foundations of knowledge bases.
How do statements come to be regarded as infallible? Which

statements are to be corrected in light of additional given evidence?



What is the nature of the commitment to infallible statements; i.e.,
what good is commitment if it is held corrigible, and what is done with
infallible statements that can't be done with statements qualified by
their degrees of confirmation? There should be answers to these
questions and they should be principled. A.I. workers seem to be
operating without awareness of these questions, and without any answers.

I have argued that a major failure for A.I. has been a failure
to appreciate the work on inductive logic and epistemology. Of course
the traditional epistemological topics (skepticism, justification of
induction, and semantic analysis of knowledge) have proven to date mere
impractical philosophical primping. But that's not all there is.
Induction is construed broadly these days: not merely the inference to
the general from particulars. It is considered the unique problem in
philosophy the answer to which bears on the problem of legislating rational
belief. Contemporary epistemologists following Carnap's lead have been
constructing formal rules for the acceptance of statements and
expounding the foundations of probability and confirmation. This is
the work that should be interesting to A.I.. Oddly, none of this
appears in the classic old "Epistemological Problems of A.I." [McC77],
or in the suspect new "Intelligent Systems and Applied Epistemology,"
[vDa85] or in any other A.I. paper with "epistemology" in the title in
between. It was disappointingly absent from Dennett's correspondence
reports, too [Den82,84].

A.I. researchers familiar with probability and with logic from
mathematics and engineering backgrounds (or worse) should understand
that there is a discipline mediating the two, and that it is this
discipline which is best suited to interact with A.I. in the study of
reasoning. Winograd's remark is irrefutable evidence of the need for
understanding.

A.I. work on inference has chosen to ignore the acceptance
problem, while A ork on evidential reasoning has either considered
acceptance inessential, or displayed ignorance of its pitfalls. We
have proceeded in the past without visible epistemological foundations
by way of declaration. The contents of knowledge bases have been
merely declared, and so have the policies for revision. BLOCK7 has
borne the ON-relation to TABLE by declaration. The ability of TWEETY
to FLY has yielded in the presence of the statement that TWEETY is a
CARTOON-CHARACTER, by declaration. What has been said is that
declaration of knowledge is unprincipled, and that any principled
alternative is going to be inductive, which could require that
deduction play second seat.

If A.. were to draw more heavily from the work in inductive
logic, especially the work on acceptance, it wouid not have to proceed
solely by declaration. A more pnincipled way of proceeding would allow
automated construction and maintenance of large knowledge bases.
Israel and I have also claimed that appreciation of inductive logic and
related work on defeasible reasoning solves conceptual puzzles that
have been mentioned in the A.I. literature. Because this appreciation
clears conceptual confusion, it will result in research effort directed
in the appropriate places, with the right formalisms and the right
context. It will also suggest entirely new ways of implementing
non-monotonic inference systems. Philosophers in turn will benefit



from dialogue, motivation and feedback: from the observations of the
system's synthetic performance, and from A.I.'s help on some of the
heuristics needed in practice.

Israel said to go to the philosophers. I have been to the land
of the philosophers of science and this is what I have seen.
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