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Interval-Based Decisions for Reasoning Systems

Ronald P. Loui Jerome A. Feldman Henry G. E. Kyburg. Jr.
Departments of Computer Science and Philosophy
University of Rochester
Rochester. NY 14627

Abstract and Claims.
This essay tries to expound a conception of interval measures that permits a particular

approach to partial ignorance decision problems. [he % irtue of this approach foc artificial
reasoning systems is that the following questions become moot: 1. which secondary criterion to
apply after maximizing expected utility, and 1. how much indeterminacy to represent. rhe cost of
the approach is the need for explicit epistemological foundations: for instance, a rule of acceplance
with a parameter that allows various attitudes toward error. Note that epistemological foundations
are already desirable for independent reasons.

The development is as follows: I. probability intervals are useful and natural in A.1. s stems:
2. wide intervals avoid error, but are useless in some risk-sensitive decision-making: 3. vet one
may obtain narrower, or otherwise decisive intervals with a more relaxed attitude toward error: 4.
if bodies of knowledge can be ordered by their attitude to error, one should perform the decision
analysis with the acceptable body of knowledge that allows the least error, of those that are useful.
The resulting behavior differs from that of a Bayesian probabilist because in the proposal. 5.
intervals based on successive bodies of knowledge are not always nested: 6. the use of a probabilityfor a particular decision doe's not require commitment to the probability for credence: and 7. there

may be no acceptable body of knowledge that is useful: hence, sometimes no decision is mandated.

A. Interval Measures. A Q) = I - 8. then WA. P&Q) = [1 - e - . II.By now. the use of an interval measure is If probabilities are based on direct inference from the
regarded highly for probability judgements in class A. the probability of " Px & Qx" for some r E I
reasoning systems. Researchers selecting formalisms *ould bean interval, despite haing startd with
for quantifying belief have all recognized the irtues or probabilities that were points see f iS831. Che8 i.
(partial) 1 indeterminacy in probability judgement indbabi tas e 1 hi ([BarStl. [GLF8 ll, [Di182], [!.owS21. [W ell82l, IouiS3I. and INi184D).
([We3l, [Gin84I. [DIuS841, [Sr81. [ et . (Many advocates of inter% ai belief measures in
[Wesg3 1. [Gin841, [LuS , [ tr841. e . I\.1 link their arguments to Shafer*% interpretation

nteralsSha76 of Dempster's inference system em68.
in probability assertion. At the extreme 'A I I = [. Shafer's theory is claimed to provide a aluable
11' is uncommitted. while'P1 1) = (.76. .'61' is representation of intervals I via mass functions), and a

consummate. Some have argued that indeterminacy simple. consistent approach to resolving apparent
captures "pre-systematic" notions of belief and disputes whendisbelief[(Sha76I, [[e.e80al. 2 Since 0 < infP1.4) + inf dsuewhncombining evidence (via Dempster's

rule). These claims are evaluated else% here [Ky b851.IP(.it) < e. the agent can assign tero belief to a [Lev8Oa], [Zad791. Shafer's theory is not unique in itsproposition ev en though he is not certain that it is ability to cope with disagreeing evidence, indeed. a
false. Indeterminacy is useful to the subjectivist when a bili e wth disag ri ed inde asystem of belief would be impoverished if it made no
eliciting bounds on probabilities (especially from provisions for disagreement (see Levi's remarks
equivocating experts). and to the empiricist for (Iev8aI: also, there are indeterminate systems due toexpressing the Neyman-Pearson confidence results of I.evi. Smith. Schick. Gqod. and Kyburg). Further.
population sampling.popultionsamplng. empster's rule for combining evidence is relatively

(nternalism is also natural in detachment. When
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rI
presumptuous as a form of conditionalization [Dem681, the decision problem: which act should be chosen
[I .evaUbl, [Kyb85I. among available acts, when the agent is not indifferent

Putting aside the prospects for Dempster's rule. about them all? In the estimation problem. error is
we are left with these indeterminate probabilities, and avoided by using intervals. In the decision problem.
with an ensuing decision problem. Barnett [Bar8lI and ambiguity is avoided by eschewing intervals. In order
.owrance [Low821 have both suggested that a research to solve both problems simultaneously. there must be

goal should be a fully de% eloped decision theory based some compromise.
on interval measures.

Luce and Raiffa call decision problems with I1l. Secondary Criterion Solutions.
indeterminate probabilities "partial ignorance" Let I1 be the largest set of prohahility 
problems. and earlier work on partial ignorance is distributions satisfying all of the interal constraints.
discussed in [L.ou851. Wesley, Lowrance. and Gar%ey Calculating expected utilities in the usual way. for act
[WI.G84I offer a candidate theory that is tor use with a, in the presence of uncertainties f.',:
Shaferian beliefs and that ignores risk: it has been uk(aX) = {Pk(E14aX)u(Qt.;. aX>)Af

discussed elsew here [Iou841. V E:
U~ax) I uka\) : Pk E 11

II. 1..tsmaion and Decision. ua,) = [inJU(a), sup U(a)j.
With inter\al prohabilities or inter\al utilties. The natural way to Ipartial-) order acts with

expected utilities are interxals. If inter'al probabilities indeterminate utilities is b% duminance: a/ > a, iff injy
are narrw ()r otherwise rortucus) there is no U(ai) > sup U(aI. If there is a unique maximal
problem: expected uulit. intervals can be ordered in element in the order. a*. then the decision problem is
the natural way isee below), and the best act identified. solved. The probabilities, though indixidually
In a 1: 1 lottery that depends on the outcome of a coin indeterminate, are nevertheless collectiIely decisive.
toss. if Ptheads) is [.7. .81 the decision should be clear But in general. there %ill be some set of maxima. {a.
'ia the obvious ordering: if it is [.3. .81, the decision Some authors i[Hur51I. [Goo831. [Fis651.
may not be clear. The decision may also not be clear if [I e%80bl) suggest that a* can be identified in the
the interval is narrow. but unfortuitous. e.g.. [.49..521. maximal set by one of the so-called weaker methods:

If the maximization of expected utility (MEL) is maximin. min-regret. or lexi-min methods. These are
the sole solution criterion, there may be no defensible the methods recommended for decision problems
ordering of the utility inter'als that identifies a best under uncertainty, and their common character that is
act. Of'course. MEL w ith point-probabilities can be crucial here is that they make no use ofprobabilit.%
ambiguous too. [his latter ambiguity is often judgement. Presumably the probability information
tolerated: if two acts ha%e the exact same expected has been milked for all it is worth, under the primary
utilit., the sameness of utility is supposed to reflect method of MEU. and secondary methods % ill finish
indifference. But ambiguity with interval probabilities the job of identifying a*. Unless there is an unforseen
may not be tolerable because inter\ als often model equality of point- alued utilities, the weaker method
ignorance, not indifference. It is not the case that the guarantees identifying a unique act. ihe weaker
two acts couldn'i be ordered in a relevant and method couidhae been applied in the first place but
accountable way. Rather, not enough is known to for its admitted weakness. It is considered weak
order them. precisel, because it ignores probability judgement. It

I here are two problems here. First. there is the is employed secondanl. precisely because it

estimation problem: what should be the degree of presuppo.Nes that probabilit judgement w ill be of no
.ertain', attributed to a proposition? Second. there is further use. which is exactl, the case among the
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maximal set after the application of MEU. purposes of decision without changing the

For programmed systems. there is still the indeterminacy of the credal state.
problem of choosing one from among the various 'Ibis representation finesses the question of how
secondary criteria. Clearly there are situations in narrow intervals ought to be. Imagine the expert who
which maximin is inappropriate, and similarly for min- first reports the interval is [.3, .71, but can be coaxed

regret. for optimism-pessimism, etc. Supervaluations into reporting to the more useful [.35. .651. Which
would be cautious, but impotent: taking the most interval gets represented? In this proposal. both

popular mandate among various criteria would be ad should be represented. Intervals should be as narrow
hoc. One could attempt to discriminate those as permitted given the magnitude of error (a)
situations in which one method applies and others do associated with the body of knowledge on which the
not, but no such attempt has been successful. intervals are based. K(a). ['hey will be [0. 1j in fl 0 .

'hey may be degenerate in the very late [l's. And they

IV. A Different Proposal. should be variously narrow (though not necessarily
Here is an entirely different way of sol, ing nested) in between.

partial ignorance problems. If MEU with the given In practice. this proposal requires additional

probability intervals is indecisive. MFL can he represented information, or additional inference rules
retained and the probability intervals refined. In the and epistemological assumptions. It may he possible
Bayesian tradition. refinement of interals is done simply to assert and to represent both sequences. < Ili>
subjecti.ely. % ith no additional empirical information. and <Ki>. But more likely. [l's will have to be
In the \e man-Pearson tradition, refinement is done generated from K's. and successive K's from some

objecti' c. and requires additional empirical initial base. Kinit. A combination of the two methods.
information. In either case. refinement further generation and assertion, is convenient.
determines probabilities. :\n automatic reasoning Generating [l's from K's requires the adopti n

system may be required to be objective. may not have of some theor of probability. It could be as simple as
recourse to additional information, and may require taking statements in K to be constraints on
the preservation of indeterminacy. Fortunately. it's distributions, or conditionali7ing some prior on the
possible to refine intervals objectively, with no ,ontents of K. or it could be some theory of frequency-
additional empirical information, and without losing based or chance-based direct inference.

the indeterminacy of probabilities. rhis latter Generating sucd K) amounts to making
possibllit. is presented more carefull in [I ou851. additional assumpuons. It could be done in a number

I.et credal state be described not by one set of ,)fays: one possibilit, IS to use an acceptance rule

feasible distributions. ri. but by a sequence oftsets. Isee also below, on "higher-order" probabilities). Such
<Ili>. Each 11 is based on a body of know ledge a rule would describe when a statement is acceptable
formed with some quantifiable attitude toward error and would thus determine to which K's it belongs. If
(so there is a companion sequence. <K>. where each the rule is based on probabilities relative to Kinit. for

body of knowledge. K. has an integer index and a real instance, then .4 belongs to all those successor K's. K

error). Successive K's are more informati'e. but such that I - P( A I Kinit) is less than the error
predecessors are less prone to error. Each associated with Ki. A different probabilistic rule
indeterminate expected utility calculation is done with would take succK) to be K U { .4 . where A is the next

respect to one element in the f-sequence. but the most probable statement relative to K. of statements of
%hole fl-sequence constitutes the credal state. some special form. Note that w ith these rules. the K-
rherefi)re. different indeterminate probabilities, with sequence is nested. Acceptance rules in the literature
different maximal sets. can be consulted for the are more elaborate. See [K. b'01 for additional
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acceptance rules and their evaluation. informative. But if the maximal set under narrower

Decision-making amounts to exploring the 1- intervals is unsatisfactory, and the limit of tolerable
sequence in best-first order until either (1) the maximal potential error has not been reached, why not use still
set under fl is a singleton, in which case the problem is narrower intervals? One is already willing to forego
solved, or (2) n is a singleton, which leaves the certainty, and the amount of certainty one is willing to
standard decision problem under risk: or (3) the error forego depends on the other desiderata. including
associated with 1i is intolerably large for this decision decisiveness.
problem. in which case MEU with no acceptable set of We still avoid error by using indeterminacy: we
assumptions can legislate unambiguously. retain the early elements in the< nili> sequence. rither

ihe reasonableness of this proposal depends on than settling immediately on the most specir,. clement
whether there is independent reason to use interals of (or of some P. s.t. P E [i ror all i). Ihere ma% not he a
a particular width. It may be that epistemological most specific element in the sequence (this is explored
considerations require that certain inter% als be used: in example C. below). \nd there ma. he genuine
e.g.. the narrowest intervals at .95 confidence tKy h85I. instances in which no suh,;tantiable set of assumptions
But if not. if confidence levels .94 and .96 are also legislates a unique decision or formulates a standard
useahle. then decision analysis might as well proceed risk problem. In such cases. indeterminacy is required
\ith inter, als that are decisi.e. rather than ,ith those to indicate ignorance, or if either is possible. the need
that are indecisive. Ihere is no reason to aioid for more sampling. or for suspension of judgement.
tolerablc error ifdong so results in uninformatie For example. consider a probabilistic acceptance
anal;, ss. If the MEL calculation is not satistactor. rule: statements are accepted in K(a) 'hen their
under the assumptions held. it could he that the agent probability relative to Kinit exceeds I - a. For a
has not assumed enough. The anahsis should then be decision problem where the maximum ratio of odds is
founded on an augmented set of assumptions. w. it would be pointless to pei,'cnrm an *FL anal sis in

Con'erseh. there is no reason to invite error in some K(, ) where a > I - K:. If the lottery pays 20: 1.
the analysis if the analysis is already sufficiently w = .95. If all [I's based on less error than .05 are
informative. So of the many n's that are decisive, the indecisive. no decision is legislated (,ee (K. h851 and
one that is least prone to error has epistemic priority. [I-ou85] for discussion).
The augmented set of assumptions should be the next-
least in order of presumptiN eness. No more V. Examples and Contrasts.
assumptions should be made than are necessary for We discuss the follow ing decision problem.4

decision. L pon finding a berry., the agent has to decide whether
Consider the claim that rational commitment to eat it (al). or not to eat it (a i). If it is eaten. it

ceases with the restricuon to the maximal set. or that matters whether or not it was a good berry (( ). If it is
the agent must sometimes suspend judgement when not eaten. it matters whether or not the agent later gets
the set of maxima is not a singleton. Lopes. voicing a hungry(h). Letu <a I . GD) = 10: u <al. -t,) =
common intuition, quips that suspending judgement - 30: ul<a,, H)) = - 10: and td<a,. ~H>) = 0.
among choices with overlapping expected utility
ranges is no more defensible than suspending -\..;o,,erIe, ei cot~tidence interais.

judgement among choices with overlapping ,utcome Suppose the probability reports for t and for H
ranges [l.op831. Lopes* remark is forceful precisely ire based on Clopper-Pearson interals. Of 4 berries
because it points out the arbitranness of inter-al w idth. eaten. 4 w1ere good. On 14 excursions of this kind. the
'A h. in% ite error b. using inter' ais narr,,er than [,) ivent iot hungr. (without eaunge) 3 times. At .99

11? FK-cause (0. 11 interxalsare not -tIt.srturi.\ rnidence. PiG) = (.35. 11 and PI1 = [0. .551. So
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uia) = [- 16.8. 101: u(a2) = [-5.5.01. The maximal indeterminacy of the preceding sets. If all the sets are
set is {al. a21. But at the confidence level .75. P(G) = nested (for all i >j, llj D FI i), there is no differenceI .75, 11 and R H) = f.15, .3J. So u(al) = 10. 101: (a21  between the decisions made by this convex Bayesian
- [-3. - 1.51. a, > a2. a, is uniquely maximal. Note and by Savage's Bayesian.

that if a, and a, had been ranked by utility midpoints But sets are not nested. The most obvious
at .99, mpt = - 3.4: mp2 = - 2.75: one would have source of non-nesting is due to conditionalization.b

concluded contrarily that a2 > al! Suppose 111 is based on acceptance so stringent that
probabilities are conditional only on A. -1- takes both
A and f as conditions: B is acceptable as a condition at

B. direct inference and probabilistic acceptance rule. this level (perhaps 8 is treated by Jetfre's rule i [1i:I Suppose ,a'berriex good) = [.3. .81 and it doesn't matter here). Then there's no reason for [1,
%(excursions get-hungry) = [0, I and %(soft berries. to be a subset of rl 1.
good) = [.84..881. Presumably this is accepted based let -1 entail - H: PGI .4) = [.6..81: P(i .G . 8)
on sampling with. say, at least .999 confidence. If PIG) = [.3..41. Intuitively. A might be the conjunction "just
is based on the [.3, .81 interval. both a/ and a, are ate & the bern looks good" while B might be "the
maximal. The decisive [.84..881 interval can't be used !ightng is misleading". I'1. with PG) = [.6 .81.
for PIG) unless it is accepted that the berry is soft. indicates both a, (eating) and a) (not eating) as

Even if there is independent reason to believe PIthis maximal. 11, mandates a). with P(G) = [.3_ .41, which

bern, E soft berries) = .999. the probability of G would is not a sub-interval of[.6. .81. Now suppose the next
be [.3. .81. It's natural to consider the acceptance of decision invol ring PIG) is a 1:1 lottery. lI mandates
"this bern E soft berries". This allows direct inference: entering the lottery, and because [l1 is decisive and

PIG) must be [.84..881 if this is all that is known. 5  epistemically prior. 112 is ignored. Savage would
Decision to do a, is based on dominance with the continue to use P(GC) from "12, and would avoid the
narrower inea.lottery.

So preservation of the "excess" indeterminac i

necessary despite temporary refinement for theI C. convex Bayesian vs. Savage's Bayesian. purposes of the current decision.
A Bayesian who considers all the distributions in

a closed convex set can accept different constraints on

this set at different levels of acceptance icf. [Lev80bI). D. Shatirian discounting.
Fypical constraints could be conditions (as in example It's tempting to consider Shafer's discounting
B). or bounds on marginal probabilities (as in example parameter to generate successive 11's.
A). A\dditional knowledge can lead to additional The belief with mass , G) = .7 and n - G) =
constraints, which can decrease membership in I' and .3 is to be combined v ith a belief mi6) = .6: mE - ,()
so are more informative Ithough additional knowledge .4 based on a new. independent source. -rhe latter's
does not always lead to additional constraints: impact is to be discounted by some amount r. Let -H
sometimes it can invalidate a constraint). Some be accepted. If r( .23. then PIC > .75. and al = a*-
constraints may not be as warranted as others. and otherwise a, = a*. Note that for any value of r here.
their use introduces more possibility of error. If the set the resulting probability of G is determinate.
is indecisive, try the MEU analysis with the next set of Are some values of r more cautious than others'
constraints. If r is large. the informative impact of the second belief

Sa. age would ha'e the agent setle on the most is lessened, and it is combined with caution. But a
.pe'Ct'IC Set I if there is one). and eliminate the excess cautious attitude toward the new belief is not
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necessarily a cautious attitude toward the possibility of MELI.

error. unless the new belief is the only possible source There are enormous implications of this

of error. When conditions were not accepted in revelation-through-behavior stance for the

example C. it was because they were relatively management of knowledge bases. No matter how

uncertain, not because they were new. Here. it may be tentative the decision, and whatever its content or
that the full weight of the new belief is required to manner of selection. the knowledge base must
avoid error. it would be erroneous, for instance, to represent only the distributions that are MEU-
ignore the new belief completely. The parameter r admissible for that decision. If only a single

here v, being used like Carnap's A. There is no distribution is MEU-admissible. then that distribution
epistemic relation given hetween rand error. hence, no specifies the new state of the programs belief. And
priority of one solution over the other, this has been done with the addition of no relevant

Perhaps caution should be reflected by empirical knowledge! All that distinguishes the new
discounting both belief functions. [his begs the state from the old is the actualization of one particular

question, in what proportion should they be problem structure. among the many that could have

discounted? If there are two parameters that can be been faced.
varied. the II's generated will be only partially If the interpretation of probability is subjective

ordered. as well as behavioral, the agent or reasoning system can
It may he possible to use Shafers formalism to spuriously return to the more permissive credal state.

generate the f--sequence. but its use would require [n. But if this is to be a rule for revision, there seems

more argument. no point in making the contraction. If it is not a rule.

then there is still the onerous possibility of spurious
change to some other credal state, and worse. the

V!. Epistemological Considerations. possibility of no change whatsoever after contraction.

\. On Revisions of ihe Knowledge Base. Either course violates legitimate counterfactual

A behavioral interpretation of probability intuitions pertaining to the past decision. Suppose the
suggests the identification of a* as additional evidence secondary method is always a tournament of coin-
about probability judgement. Whatever the means of flipping. L pon the last toss of heads. a I is chosen. and
a"'s identification, there is a set. ,*'. of admissible fl' is obtained from i by the deletion of all

pr4)habilit% distributions, according to each of which, distributions that do not mandate a,. Thus. it no

a* is the unique maximum by MEU means alone, longer is the case that "had the toss been tails, a,
Hehav iorijts hold that once a* is identified, the agents would have been mandated." though we quite
\redl state contracts to the more precise n', the reasonably take such to have been the case.
intersection of *P and Ii. at least as a description Starr [Sta661 suggests a normative criterion for
appropriate at the time or'decision. Presumably. it identifying the optimal act when I1 is not a singleton.

there is no subsequent revision, the more precise Suppose the distributions in Ii can be parameterized
description of past state continues to describe the by some 8. Suppose also that the set of parameter
current state. If this is right, then credal state depends values 0. corresponding to the 1 distributions, is
on the decisions made. Faced with a different decision measured by an additive indifference "prior". So
structure. a*. hence *4,. and finally credal state, might subsets of 1i are also measured. Consider %arious acts.
have been different. An act is mandated b% each of its ,I EU-admissible

Upon each decision, the agent must be distributions, which collectively form some subset w C

-,nsistent. in this behaviorally strong sense. Iecisions I1. Starr's criterion chooses the act %ith the w that
dla.v' reveal credal state and alwa.ys do so through maximizes the measure I i.e.. that has the greatest
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number of feasible admissible distributions), that the order of the sums can be reversed). Just as a

Start's criterion is a prescription for decision. small error in a probability can change a decision, so

not for the adopt on of a narrower credal state. can a small error in a higher-order probability change a

Behaviorists would contract to v. decision.

Whatever the behaviorist arguments, the If on the other hand there is unmeasured

revelation of credal state through decisions and MEU indeterminacy, the expected-expected utilities will be

is unattractive in A.I. A system's probability estimates intervals. 'his is essentially no different from the

are based on objective analysis of samples, or on the interval expected utilities from indeterminate zero-

opinions of experts. not on the future decision order probabilities.

problems to be faced by the system. So acceptance can be conceptually related to
higher order probabilities, but is not immediately

B. On Higher-Order Probabilities. subsumed or improved by them.

Some Bayesians intuit the existence of"higher
order" probabilities (e.g.. (Goo831). ihese would be VII. Conclusion.

probability distributions on probability distributions. AAI. systems that use interval judgements must

formalized perhaps, like the indifference "prior" in sometimes solve partial ignorance decision problems.

Starr's criterion. [here are now two approaches. Maximizing expected
If one approves of and has access to such utility can be followed by maximin. or some other

measures, then acceptance can be based on the secondary criterion. Alternatively. additional
measure. For instance, successi've i'l's could beme s r .F ri sa c . u c sieic ud b assum ptions can be m ade that change probabilities .

generated by eliminating the next-least probable asmptio ca madetazng e pbilitis

members of the preious i. (his strategy leads to temporarily. so that maximizing expected utility is

nested ''s: all decisions would be those mandated by sufficient. This paper has discussed how to implement
the distrbution with the greatest higher-order- the latter approach. Assumptions are accepted in an

measure. It would not, in general, be the same as order that tnes to avoid error. and they are accepted

taking an expectation over the expected utility only temporarily, for the purposes of decision.

intervals, and ranking the resulting real-values: There is still the problem of choosing an

u(aX) = z{ [Pk(EaA)uA<Ei. aX>)IM(Pk)1 acceptance rule, which iteratively generates the next-
V k V i. best assumption. This choice requires considerably

where M is the higher-order measure.

Perhaps the expectation is appropriate if there is

such a measure. However. one should have misgivings

about the identification of these measures.
There may be uncertainty about the higher-

order measure. reflected in some still higher measure.
IThis induces a hierarchy of measures. Presumably the

height of the hierarchy is finite. There must be, at
some high order, either a determinate measure, or else

unmeasured indeterminacy. If the former. then one
should be suspicious about the source of a determinate

higher-order-measure: why is the probability of a

distnbution certain, but the distribution uncertain.
Ihe higher-level is not inherently more robust i note

[2U



the judgements Prob(A) EI0 1(cmlt)adPo()E 11 dgnrt) rbA 33
(bounded) and [Prob(A) = .4 or Prob(A) = .81 (disjunctive).

2Sam have charged that the specification of an interval requires two numbers rather than one: hence. it
requires more information. 'That's silly. Given that some quantity p is in fact 0.67. it follows that p is in
the interval [0.34. 0.971. Furthermore, in a very natural canonical form. namely the number of hyper-
planar constraints required in the space of all probability distributions: the inormation (number of
constraints) in interval reports of a particular probability is lea than the information in point reports.
Information measures are dependent on canonical form. hence can be misleading.

Intervals are chosen because they offer robust behavior. If practice shows that they are not robust
indeterminate upper and lower bounds, or with fuzzy sets. Surely one would not revert to point
probabilities because they contain "less information."

3Here, we've taken informativeness w r.t. decision to be singularity ot f1 or singularity of thie mnaximalI
set. Other interpretations of "informative" are possible (such as any restriction of the maximal set to
decisions which cannot differ in outcome more than e p. ['hese lead to different decision theonies.

Also note that in [Loug~i. the amount of tolerable error is addresed (see the discussion of I)-
meaningful corpora)P.

4We call this the problem of Jerr' s Berre.
5We've appealed to the epistemological conception of probability here. If explicit statement of chancesI

is required, the exIample can be changed

6 It's also possible to violate nesting when constraints are ordered jointly. and not all constraints are
compatible. So ifel. .c4 are constraints on I1's. I1 , may be delimited by (cli. and [12 by {c2l, andn y cl before r3by 1c,- c2) rl mas be delimited by {c, C41 . where (c I. c.I. C41 is over-I
determining. If constraints are accepted I rather than knowledge that generates constraint). and
acceptance is purely probabilistic, then this kind of situation requires acceptance levels at or below .5
With not purely probabilistic acceptance, this situation is more natural.I

Note that non-nestedn[ls would seem irrational via a Dutch Book argumenL. but the agent still posts
consistent odds whenever he considers two or more lotteries simultaneously. It's only when he posts odds
independently and they are subsequently collected that leads to inconsistency. Consult the Fllsberg
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