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BAYESIAN AND NON-BAYESIAN EVIDENTIAL UPDATING

Heary E. Kyburg, Jr.
Abstract

Four main results are arrived at ino this paper. (1) Closed
coavex sets of classical probability fuanctions provide a
represeatation of belief that includes the representations
provided by Shafer probability mass functions as a special case.
(2) The 1impact of “uncertain evidence” can be (formally)
represer .d by Dempster conditioning, in Shafer's framework. (3)
The impact of “uncertain evidence™ can be (formally) represented
in the framework of convex sets of classical probabilities by
classical conditionalization. (4) The probability iantervals that
result from Dempster/Shafer updating on uncertain evidence are
inscluded in (and may be properly iancluded iam) the intervals that

result from Bayesian updating on uncertain evidence.
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Bayesiau aud Non-Bayesisn Evideatial Updatiang*

1. Recent work im both visiou systems (Wesley) and in

kuowledge represestation (Lowrance, Barsett, Quiolan, Dillard)
has employed an alteruative, often referred to as Dempster/Shafer
updating, to classical Bayesiao updating of uncertain kaowledge.
Various other investigators have goue beyond classical Bayesian
conditionalization (MYCIN, EMYCIK, DENDRAL,...) but in a less
systematic mauner. It is appropriate to examine the formal
relations between various Bayesian and nou-Bayesian approaches to
vhat has come to be called evidence theory, in order to explore
the question of whether the nev techauiques are really more
powerful than the old, and the question of whether, if they are,
this increment of power is bought at too high a price.

2. Orthodox probability theory supposes (1) that we
commence with known statistical distributions, (2) that these
distributions are such as to give rise to real-valued

probabilities, and (3) that these probabilities can be modified

by using Bayes' theorea to conditionalize on evideunce that is

pram-.

taken to be certain. There are thus three ways to modify the

classical theory.
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We may dispense with the supposition that we are dealing

with known statistical diuﬂbutiono. The best koown advocate of
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this gambit was L. J. Savage, wvho argued that probadbilities
represent personal, subjective, opinions, and not objective

distributions of quantities ia the world. This approach has
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given rise to Bayesian statistics, based on that fact that the
opinions of most people are such that, faced with frequeacy data,
they will converge reasocnably rapidly. FPurthermore, in practice,
it is common to recogunize that some opinions are better than
others, and to use as prior distributions io statistical iunference
distributions representing the opinions of knowledgeable experts.
This approach has been incorporated is some expert systems, for
example, PROSPECTOR. It has doth virtues and limitations. A
purely pragmatic virtue is that it allows us to get om with our
business even when we don't have the knowledge of prior
distributions we would like to have. It has the practical virtue
that the considered opinions of genuinely kanowledgeable experts
are formed in respouse to, aud reflect with some degree of
accuracy, relative frequencies in nature. But it has two
dravbacks: it does oot incorporate any iondication of whether the
opinion is a wild guess, or a considered judgement based oo long
experience; aund it calls for expert opinicas even in the face of
total, acknowledged ignorance.

This suggests the secoud departure from the classical
picture; abandoniang the assumption that our probabilities are
point-valued. This has recently been hailed as a sovel departure
(Lowrance, 1982, p. 21; Garvey, et. al., 1981, p. 319; Dillard,
1982, p. 1; Lowrsace and Garvey, 1982, p. 7; Wesley and Hauson,
1982, p. 16; Quianlan, 1982, p. 9). The idea of represeanting
probabilities by intervals is oot new (cf. Kyburg, Good, Levi,
Smith), and the notion of probabilities that coanstitute a field

richer than that of the real asumbers goes back even further




(Keyues, 1921, pp. 38-40, offers a formal philosophical treatsmeat
of such entities; B. 0. Koopman, 1941, 1942, offers a mathematical
characterization). Bven the staundard subjectivistic or
personsalist view of probability cao be coustrued in this way;
vhile each person has a set of real-valued probabilities defined
over a given field, a group of people will reflect a set of
probability functions defined over the field. We may quite
reasonably focus our atteation ou the maximus and minimum of these
functions evaluated at a member of the field.l

In general the representation in terms of iantervals seems
superior to the representation in terms of point values. Even in
the ideal case, in which all of our measures are based on
statistical inference from suitably massive quantities of data, it
is most satural to coastrue these measures as being constrained by
intervals. In confidence interval estimation, for example, what
wve get from our statistics is a high confidence that a given
parasmeter is contained in a certaio interval. This trauslates
neatly aad cooveniently into an interval counstraint. The results
of statistical inference should reflect indeterminacy or
vagueness. What we can properly clais to konow is aot that a
parameter has certain value, but (with probability or high
coufidence) that it lies within certain limits. This limftation
of buman koowledge should surely be mirrored in computer based
systems.

T?e third departure from the classical scheme is to coansider
alteraatives to Bayes' theores as a way of updatiog probabilities
ia the 1light of new evidence. This departure is receat, aad wvas

first stated in Dempster, 1967. Dempster's uovel rule of




coabination, subsequently adopted by Shafer (1576), is often
referred to as s “generalisation” of Bayesian infereace (Sbafer,
1981, p. 337: “The theory of bellef fumctioss ... 1is a
thoroughgoing generalization of the Bayesiano theory ...”; Lowrance
and Garvey, 1982, p. 9: “Dempster's rule can be viewved as a direct
generalization of Bayes' rule ..."; Dillard, 1982, p. 1; Garvey,
et. al., p. 319; Lowraance 1982, p. 21). This suggests, on the ome
band, that Bayes' rule can be regarded ss a special or limiting
case of Dempster's rule, which is true, and on the other hand that
Dempster's rule can be applied where Bayes' rule cannot, which is
false. Denpster himself recognizes (1967, 1968) that his rule
results froam the imposition of additiounal coustraiants on the
Bayesian acalysis (see unote 5).

Oune criticism of the usual Bayesian approach to evidential
updating is the quantity of information that may be required to
specify the probability fumction covering the field of
propositions with which we are concerned. This may be empirical
information (if the underlying probabilities are thought of as

beiog based on statistical kuovwledge), psychological iaformation

(1f a personalistic interpretation of probability is adopted), or
logical information (if we interpret prodbability as degree of
coufirmation, a la Carusp 1951). Suppose ve counsider a field of
propositions based on the logically indepeundeat propositioans
P1+--Pg; the set of what Carnap called "state descriptions:”
indue:d by this basis consists of 22 atoms, each of which 1s the
coa junction of the u (negated or usnegated) Py It is obvious

that for reasonably large a this assigameat of probabilities




presents great difficulties. But ouce we have those 2o aumbers,
ve're done - we cao calculate all conditional probabilities as
well as the probability of any proposition in the field based on
h...‘zl-

Is there a saving in effort if we go to a Dempster/Shafer
Systen? Using the haady represestation in Shafer (1976), we take
6, the universal set, to be the set of all 22 possibilities
represented by the state descriptions, and assign a mass to each
subset of 0. This requires 2 exp 22 assignments! As far as the
oumber of parameters to be taken accouat of is concerned, we are
expouentially worse off. But if ve construe probabilities as
iatervals, or represent them by sets of simple probability
functions, we are just as badly off. (For ac example relating
mass assigonments to ioterval assignments, see table I in the
appendixz. PFor the general equivalence, see theoream 1 below.)
Dillard (p. 4) refers to “computational limitations”™ aad Lowraace
and Garvey (1982) mention that with large 0, maintainiag the model
is “computationally infeasible”.

Jao either case, we need to find some systematic aad
computationally feasible procedure for obtaining the wmasses or
probabilities we uneed. Bayesian aond non-Bayesian approaches are
in essentially the same difficult situstion iao this respect,
although there are often plausible ways of systematizing the

parameter assignments on either viev.

3. Whether the representation of our ianitial knowledge.
state 1s given by an assigament of masses to subsets of 6 or by a

set of classical probability distributions over the atoams of 0, it




is importaat that these masses or probabilities be justifisble.
As already suggested, a straightforvard wvay of obtainiag thea is
through statistical inference, which (wvhen possible) yields
interval valued estimates of relative frequencies. But there may
also be other ways to obtain masses or iatervals of probability.
If so, theo the deep and difficult problem arises of how to
combine both statistical and wuvon-statistical sources of
tnforution.z

It has been suggested that Dempster/Shafer updating relieves
us of the necessity of wmaking assumptions about the joiat
probabilities of the objects we are coancerned about. Thus,
Quinlsn claims that INFERNC "makes uo assumptions whatever about
the joiant probability distributions of pieces of knowledge ...”
(Quinlan 1982). Other writers have made similar claims — e.g.,
Wesley and Hanson,1982, p. 15. (To make independence assuaptions
is exactly to make assumptions about joint probability
distributions.)

It is clear that the assignment of masses to subsets of 6
invlioves just as much in the way of “assumptions”™ as the
assignment of a priori probabilities to the corresponding
propositions. In view of the reducibility of the Dempster/Shafer
formalisa to the formalism provided by convex sets of classical
probability functious (to be shown below), moreover, we may
recapture the assumptions about joint probability distributions

from the coanvex Bayesian representatioan.

4, One iamportant sovelty clsimed for the Dempster/Schafer




systum is its abllity to handle uuncertain evidence. But even this
is not in itself anti-Bayesisn. there are also Bayesian methods
for handling uncertaio evidence. Ome of these, used in PROSPECTOR
and meotioned by Lowrance (1982, p. 17) is known {a the
philosophical world as Jeffrey's rule. (It is preseated aand

discussed in Jeffrey, 1965.) 1t follows from Bayes' theorem that

If you adopt a new (coherent) probability fuaction P', there are
essentially oo coustraiots on P'(A). But ome often coufrouts
situations where if a shift ia probability originates ian the
assigoment of a uevw probability to B, that should uwot affect the
conditional probability of A given B: P(A/B) = P'(A/B). We have
learned something sew about B, but we haven't learned anything aew
about the bearing of the truth of B oo the truth of A.

Given such a situation the response of a shift im the
probability of B from g(_n_) to 2'(!), resulting from anewv evideace,

should propagate itself accordimg to:

B(A) = P(A/B)P'(B) + P(A/-B)P'(-B)

When newv evidence leads us to shift our credence in B from P(B) to
P'(B), a correspoudisg shift io probability is iaduced for every
other proposition io the field: the unew probablility of a
proposition A is the weighted average of the probability of A,
given B, and the probability of A given anot-B, weighted by the new

probabilities of B and not-B.




Lovrance (1982) wvorries about the problem of iteratiag this
move. Having made it, should we then update the probability of B
ia the 1ight of the new probability P'(A)? Wesley aand Hansoo
(1982, p. 15) worry about a potesntial “violation of Bayes' law".
But what is offered is not a relaxation method; it is a method of
evaluating the impact of evidence which warraats a shift im the
support for B. It makes no sense to cousider updating P'(B) 1o
the light of the sew value of P(A); P'(B) is the source of the
updating. No contradiction lurks here. But there is a difficuley
for mechanical updating - the notion of a source is clear to us,
but may anot even be represented in an artificial system.

Other Bayesian updating procedures are possible (cf. Hartry
Field, 1978; Diacounis and Zabell, 1982), but it is hard to thiak
of one so simple and often so anatural. This is particularly true
in the epistemological framework considered by Shafer; the weights
of the subsets of 0 assigned masses reflect our s priori
igtuitions; there is no way ion which the values of these masses,
51::5 our observatious, can be changed without changing the model
eatirely. What impact given evidence has should not also change
according to the evideance we happen to have. Shafer himself has
explored the relation between Jeffrey's rule and his own updating

recommendations in (Shafer 1981).

5. Ino order to iavestigate more closely the relations
betwveen the Bayesian and Dempster/Shafer strategies for updating,
it will be helpful to have several formal results. In the present
section we establish the partisl equivalence between the

assigument of masses to subsets of O (the space of possibilities)
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and the assigament of a convex set of simple classical prodability
functions defined over the atoms of 6. The equivalence is oaly
partial, since some plausible situatious do oot have & natural
represeatation in terms of aass functious.

Shafer's belief functions are defined relative to a frame of

discerumeat 9, and are given by either a belief fun~tion or a

mass function defined over the subsets of 6. The atoms of O are
the most specific states of affairs that coacern us ic a given
coatext. The belief function Bel and the mass fuaction m are
related by:

Bel(X) = lm(Ad)
AcX

Throughout, "f" is to be understood as allowing improper
inclusioh- Proofs have been relegated to Appendix A.)

Our first observation is that to every belief fuunction
defined over a frame of discerument, there correspouds a closed
set of classical probability fuanctions S, defined over the atoms

=2
of 8 such that for any Xc 6,

Bel(X) = min  B(D).
RS

This result is stated as Theorem 1 iun appeudix A, and proved
there. The proof gives a way of coanstructiang members of the set
of classical probadbility fuactions, bdut the iaotuitive idea is
simply this: Cousider a set X, to which s assigued mass a(X).
That mass may be construed as probability mass that may be

assigned in any way (subject to other constraints) to the atoms




11

of X. We obtain the set of classical probability functiouns that
correspouds to the mass fuanction m by considering all the ways io
vhich the mass that is not assigned to atoms by m caa be assigned
to atoms while maintainiang the counstraiants imposed by the
assigoment of mass to sets of atoms. 'r?blcs I and 1II in the
appendix show both the general and a specific computation for a
simple four-atom frame of discerament.

An example that shows the counverse does not hold is the
folloving3: Consider a compound experiment consisting of either
(1) tossing a fair coin twice, or (2) drawing a coin from a bag
containing 402 two headed and 602 tvo tailed coins and tossing it
twice. The two parts (1) and (2) are performed in some uanknown
ratio P, so that, for example the probability that the first toss
lands heads is p*1/2 + (1-p)*0.4, O <p <1. Let A be the event
that the first toes. lands heads, and B the event that the second
toss lands tails. The representation by a coanvex set of

probability functions is straight-forward, but where P, is

Py(AuB) = 0.75 <0.9 = Py(A) + Pu(B) = Pa(AnB) = .6 + .5 - 0

By theorem 2.1 of Shafer 1976, Bel(AuB) > Bel(A) + Bel(B) - Bel(A
nB); Ps is therefore not a belief fuaction. It is possible to
compute a mass fuanctiou, but the masses assigned to the union of
any three atoms must be negative.

Subject to the condition, however, that P,(AUB) > Pa(A) +
Pa(B) - g_.(_A_n!), wve can represent any closed coavex set of

classical probability fuanctions by a Shafer mass fuanction. This




2]

ie theorem 2 ia the appendix.

These two theorems shov that the representation of uacertaias
knovledge provided by Shafer's probability mass fuactioans is
equivaleut to a representation provided by a convex set of
classical probability functious, and that the representation of
uncertain knowvledge by a coanvex set of classical probability
fuactions is equivaleat to a representation provided by a
probability mass function so long as the convex set of
probability fuactions satisfies the general relation g_.(AU!)?_

Pa(A) + Pa(B) - Pe(AnB).

6. Of more interest that the mere representation of belief
is the possibility of representing the way that beliefs should
change iao respouse to new evideasce. Thus what we propose to look
at in this section is the relation between Dempster/Shafer
updating, aand counvex Bayesian updating. We shall first look at
the relation in the case of evidence that is "certain”; aand then
ve shall look at it in the case of "uncertain evidence”.

Suppose that our beliefs can be represented either by a
closed couvex set of classical probsbility fuunctions §£? or by a
Shafer mass function. Let B be evidence assigned probability 1,
or support 1. Shafer defines upper and lower couditional support

functions thus:
Bel(A [B) = (Bel(AuB) - Bel(B))/(1 - Bel())

P*(A[B) = P*(AnB)/B*(B),
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vhere P*(X) = 1 - Bel(X) 1s called the plausibility of X.
Theorem 3 in the appendix shows that the following
inequalities hold:

ain P(A|B) < Bel(A(B) < P*(A|B) < max P(A|B)

) L)

For the case of a frame of discernment with four atoms,
illustrated in table 1 of the appendix, we have the following,
where 51 is the mass assigned to the set i in 8, 5&1 is the mass

assigned to the union of sets i abd j, etc.

LS

nin P(AJD)

(B 48304 (%) 34853830+ (8) 238, 30 Ep34 Ky

gt P TSP

Eﬁ(ém) ) + + )X+ [X, . #X_,+X ]

6300 0020 JE00 FP00 STRALE SP TN SR VAL OF VRAL T AdR IV 2 SPAL ST

S0 3P0 TP SRadt SPE N P TR ST VR

P -

(6300 39006 S0 S0 SVRALS SR SPTA JE MRl gt EACS ISR

' xl+(x12+x13+x1‘.)+(x]_23+X12l.+xl3l‘)+}'.e

max P(A[B) =

(xl+113)+(xl:,_+)t1 3+x1 4)+(X12 3+x12 4 %13 4)+Xg

We observe that:
(1) mio P(AB) = Bel(AB)  iff  Xjp¥X4X5p4 = 0
(2) Bel(A|B) = P*(A|B) 1 Xy3tEyp3%y34+4%e = O
(3) max P(A[B) = P*(A[B)  1ff  Xyy#Xy,¢Xp34 = O
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Before turuing to a discussion of the ianequalities of
theoren 3, we shov that they hold in general, and are not
restricted to the case of “certain” evideace. Given two lemmas,
the proof of the general result (theorem & of the appendix) is

trivial. The two lemmas themselves may not be without ianterest.

7. The first lemma (lemma 1 of the appendix) states that
by expanding the frame of discerument 8, we can represeant the
impact of uncertain evidence as the impact of “certain” evidences.
This is not to say that we need to specify that evidence; it is
that there is an algoritha by means of which the impact of the
uacertain evidence can be represented as the impact of other
“certain” evidence.

The general idea of the argument is this. Suppose that 0 is
the frame of discernment, and that our initial belief fuaction 1is
Bel,. The impact of uuncertain evidence cac be represeanted by a
simple support fuanction Beln, whose single focus 1is 3520, to which
;l:_c attributes mass s (and therefore mass 1-s to 0). To give a
rcp:escutntion by “certain” evidence, we split every atom of 6

into two new atoms to obtain 0'. We define¢ a new belief function

on 8', Bel,’, which 1s such that
(s) 1f Xc®, Bel;'(X) = Bel;(X)

(b) 1f X O, (Bel; ¢ Belc)(X) = Bel '(X[E). where E is
subset of 0' such that the evidence partially supportiang C
provides total support for B.

Two remarks on this coanstruction are in order. First, we
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bave given vo rule for findiag the “possibilicy” E. But fa
geueral that should be so probles. Suppose C is the propositica
that there is s squirrel on the roof of the baru. The light is
bad, so Bel, assigns a mass of only .8 to C, and assigus the
remaioing mass to 8. We take E in 6' to be the proposition that
it seems (.8) to be the case that there is a squirrel oo the
roof, for which the evidence is conclusive. The iandex 0.8
indicates the force of the seeming, and is reflected im our
assigument of rasses in 68'. In many situations it seems quite
natural to replace "uacertain evideuce™ by the “certain”™ data ou
which it is based.

Even the case discussed by Daiconis aand Zabell (1982) does
not seem too difficult. The case is one in vhich we have one
degree of belief that a Shakespearean actor to be heard oo a
record 1s Gielgud (say a half), but after hearing his voice for a
while, we come to h.?e a degree of belief of .8 that it is
Gielgud. It is quite true that wve would be hard put to it to
describe in language the acoustic characteristics we come to
assign to that voice with probability 1 that in turn provide
evidence that it is the voice of Gielgud. But we can always
refer to those characteristics as "the characteristics I have
been (coausciously or uncousciously) reacting to".

Second, however, whether or not we can always do this is
vaimportant for the comparison of Bayesian aud Dempster
conditiouing. We can regard the iatroduction of E to be merely a
computational device that helps us to compare the distribution of
masses in © accordiug to the fuaction Bel; ¢ Bels to the

corresponding set of Bayesian couditional distributioans.
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Lesna 2 of the appeadix proves a correspoudiasg fact about
Jeffrey's rule for uacertaian evicence.t It, too, may be
represented as the effect of (possibly artificial) “certain”
evidence. The argument is similar. Suppose our origianasl degrees
of belief are defined over a certain field of propositions. We
iatroduce a vev elementary statement iato that field, thereby
dividiang each atom of the original field into two new atoms. The
nev elementary statement stands for that statement that, if f{t
wvere “certain”, would bave just the effect that our “uncertain”
evideace does. We then show that the resultiag new probabilities
obtained by counditionaliziog on our unew statement are exactly
those yielded by applying Jeffrey's rule to the shift ian
probability of the “uncertain” evidence.

With these two results, aand our previous theorem that shows
the relation of Dempster/Shafer and couvex Bayes updating to the
case of “certain” evidence, it follows immediately that the
inequalities of theorem 3 hold whether or not the updatiang is
done on the basis of "certain”™ evideunce. 1In any case, the
fatervals resulting from Dempster/Shafer updating will be
subiatervals, aad may be proper subiatervals, of the iatervals
resulting from the application of conditionalization to sets of

classical probability functiono.s

8. Dempster/Shafer evideantial updating, we have seen,
leads to more tightly constrained represeantatioans of ratiomal
belief than does convex Bayesian updat1n3.6 It might be thought

that this is a virtue. But whether or not this is a Good Thing
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is open to questioa.

Suppose thst D = &,...,D are alterpative decisions open to
you, aud that you have a utility function defined over the crou;
product of D and the set 0 of possidle states. TYou begin with a
belief function, sad you obtain some evideance. If you combioe
this evidence with your iuitial belief function accordiag to
convex Bayesian conditionalization, your newvw beliefs will be
characterized by a set of probability functioas _P' If you
parfors the combimation of evidence according to vou-Bayesian
procedures, your newv beliefs will be chsracterized by a set of
probability functions Py that is (in general) a proper subset of
B’

Given any probability function P in either Py or Py, you can
calculate the expected value of each decision: E(D,, P). Let us
say that D; is admissible relative to a set of probability
functioans j:lt in case there is some probability fuaction ia the
set sccording to which the expected value of & is at least as

great as the expected value of any other dcciuon.s Since Py is
included ia Pg, the adaissible decisions we obtain if we update
in a non*-hye:ian way are included among those we obtain if we
update in a Bayesian way.

There are three cases to cousider. (1) We obtain the same
set of admissidle decisions by either updating procedure. 1In
this case we have gained nothing by using the strouger procedure.
(2) If Py leads to a set of adaissible decisiouns containiang more
thao one meaber, theu so does Pp, and we must in either case

invoke additional constraints is order to generate a uanique

decision. (3) If Py leads to a unique admissible decision and Py
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does not, we appear to have accoaplished something useful by
means of unon-Bayesiao updating.

But it is open to question whether the added power should be
built iato the evidential updatiag rule, or whether it should
appear as part of a decision procedure that takes us beyond the
evidence. Many pecple feel that principles of evidence and
principles of decision should be kept distinct.

Consider an urn filled with black and white iron balls, some
of which are magnetized and some of which are not. It is easy to
imagine that by exteosive sampling, or by word of the
manufacturer, our statistical koowledge about the conteats of the
uras may be as represented in table II of the appendix, where the
set of black balls is represented by A, and the set of maguetized
balls is represeated by B. Given that this is our initial state,
we may ask what our attitude should be toward the proposition
that a ball selected from the uru is maguetic, gives that it is
white.

Denpster conditioning yields the degenerate interval {0.8,
0.8].

Bayesian conditionalization yields the interval [0.5, 0.@].
Suppose you are offered a ticket for §$.75 that returns a dollar
if the ball is maguetic. On the view identified with Dempster
and Shafer, it is not ouly permissible, but, given the usual
utility functiou, maundatory to buy it. Oun the convex Bayesiaa
viev either accepting or rejecting the offer would be admissible.

It is true that, for all you know, the true expectation 1is

positive; but it is also true, for all you know, the true
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expectation is segative. If evearything you kunow is true, the
expected loss may still be $-.25.

0o the other hsnd, there are cases vhere Dempster's rule of
combination leads to iptuitively appealiang results, but the
convex Bayes approach does uoc’ Suppose you knov that 702 of
the soft berries io a certain area are good to est, and that 602
of the red berries are good to eat. What are the chances that a
soft red berry is good to eat? Dempster's rule yields .42/.54
= .78, which has intuitive appeal. But the set of distributioans
compatible with the couditions of the probles as they have been
stated leaves the probability of a soft red berry being good to
eat completely undetermined: it is the entire interval [0,]]! It
is possible that 1002 of the soft red berries are good, and it 1is
possible that 0X of the soft red berries are good.

It 1is clear that in applying the rule of combination, we are
implicitly constrainiag the set of (joint) distributions we
regard as possible. This is suggested by Shafer's requiremeat
that the items of evideunce to be combined be “distimct”™ or
“independent”. The most unatural sufficient coadition that leads
to the same result as Dempster's rule of combination is that all
the probability fumctions in our convex set satisfy the three

counditions:

(1)  B(G) = 1/2
(11)  R(S/GER) = B(3/G)

(111) P(S/G6R) = P(S/G)

Condition (1), of course, 1is our old frieud, the priaciple of
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indifference. Coaditiocns (ii1) and (1ii) represeat counditiomal
{iadependence, and it is vot hard to imagice that we have warraat
for supposiag they are satisfied.

The exact necessary and sufficient couditions for agreement
between the two methods are that our set of probability fuanctiocas

satisfy one of the two couditions

(1v)  P(CsR&S)/P(GERES) = P(C&R)*P(CES)/P(GER)*P(GES)
or (v) g(g@&g)/g(g@) - _g@)/_r(g) * _P(_§I_Gi§)/g(§l§)

If our evideace is statistical f{u character, it clearly
behooves us to unpack the statistical assumptions underlyiag our
employment of non-Bayesian updatiag procedures. But what if our
evidence is oot statistical ian character?

On§ plausible response is that Dempster’'s rule of
combination is not desiguned for all cases in which you have
statistical data to serve as input. Sometimes the masses ia the
belief function are determined by frequencies, and sometimes they
are unot; ouly wvhen they are aot determined by frequencies should
ve apply non-Bayesisn updating. It is difficult to make a case
agaiast this respounse except by making a case for the clsim that
all responsible asud useful probabilities, even very vague ounes,
are based ou statistical kaowledge. But even grantiang the claim,
we nust face the problem of how to treat evideance which is aixed
-—— which coatains both statistical components and intuitive
compoanents. While it is a theorem that Dempster coabination 1is

both commutative and assoclative, it is obviously not the case
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that & wumixture of Dempster anvd Bayesian methods need be
commutative and associative.

It should be stroagly emphasized that the present argumeats
are vot intended as arguments in favor of the general
applicability of convex Bayesian conditionalization. Rather,
wvhat I have shown is (1) that the represeantation of belief states
by distributions of masses over subsets of a set 0 of
possibilities is a special casse of the convex Bayesian
representation in terms of simple classical probabilities over
the atoms of 6, (2) that the treatments of uncertain evidence in
both Bayesian and nou-Bayesias updatiang are reducible to the
corresponding treatments of certain evidence, and (3) that noa-
Bayesian updating yields more determicate belief states as
outcomes, but that the benefits afforded by non-Bayesian updating

are limited and questionable.
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APPENDIX

Theores 1:

Let 8 be s probadility mass function defined over a frame of
disceroment 6. Let Bel be the corresponding belief fusetion,

Bel(X) = _ m(A). Theo there is a closed, convex set of
Ael
classical probability functicns Sp defined over the atoms of ©

such that for every subset X of 8, Bel(X) = min P(X).
PeS

Proof: Let _b_P be the set of classical probability functions P defined

on the atoms of 6 such that for every X € 6, Bel(X) < P(X) < 1-Bel(X).
S_ 1s closed, since P(X) = Bel(X), F(X) = 1-Bel(X) is a classical

probability function. is convex, since for 0 <a < 1, _a_Pl(g) + (1-3)32(5_)

S
T
lies between Bel(X) and 1-Bel(X) wvhenever P, (X) and P,(X) do. Since for any given

= Bel(X), Bel(X) > min P(X). And min p(x
there is a g_cgp such that P(X) = Bel(X), Bel(X) > pig B(X @_(_)

> Bel(X) since this inequality holds for every PeS,. -

To show that Sp is nou-empty, it suffices to show that there
1s a PeSy such that for every 550, Bel(X) < P(X), siace 1if this
s o0, then Bel(X) < P(X) and 1 - Bel(X)> 1 - P(X) = B(X).

Suppose the atoms of O are ordered lexicographically. For
every set X, X<0, add the mass assigned to X, m(X), to the mass
assigned to {_a_i}, where {_a_i} is the lexicographically earliest atom

in X. Let the new mass function be m'. Define P(X) = ) m'({a}).

aeX
P(#)=0; P(0)=1, since all the original mass ends up on the atoms,
and P(X) > Bel(X), since the mass assigned to any subset of X

ends up on the atomg of X.
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Theorem 2
1f §? is a closed convex set of classical probability functions

defined over the atoms of 6, and for every A, B<6, min P(AvB) > min P(A)

+ min P(B" - min

min pin P

(AnB), then there is a mass function m defined over
the subsets of © such that for every X in @, the corresponding Bel

function satisfies

Bel (X) = minP(X)
P

€S
g
Proof: Since 22 is closed and convex, for every X¢8 there is
a PtS such that P(X) = min P(X). For every Xe®, define P,(X) to be minp(X).
2 PeS PES
-2 - R
By Shafer's Theorem 2.1, if 0 is a frame of discernment

function Bel 2° +{0,1) is a belief. function if and only if

[
o

(1) Bel (§) = 0 P,(P) =

l
-

(2) Bel (8) =1 Pu(®) =

(3) For every positive integer n and every collection él""’én

of subsets of 6,

) > 1 (-1) 7 Bel (NA)

Bel (Alu.
14,...,n} iel 2

Y.
-n

Since Shafer's theorem 2.2 gives an algorithm to recapture the mass

function from the belief function, we need merely establish (3) for

our function Px.
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1ls1

Q" z‘(‘lu ..;én) lli{l (-1) .({\Igi)

veooop}

Suppose, on the contrary, (3') fails. Then there is a specific collection

AyserorhAly of smallest cardinality m, for which (3') is false, i.e.,

: . i+ A
B (Ao ) < -1 Pa(f A
Loty 1eil,...,n; fe] =

But z.(glu...cgg) 3_3.(5,_,) + L(Alu---tég_l) -'Ll“"’mu-l)"‘\ ),

by the hypothesis of the theorem. Now

1.((%{;...;;59_1)152) - 20((5{#%)0(&?%) u---u(%_lnén))

and by hypothesis, (3') holds for collections of cardinality of (n-1). Thus

and

Let us compute

(4) Pu((AnA )L (ANA ) u...u (A ad)) > Z (;1).lll +1 P, (A A,
-n 2 —o-1""n 1e1,...,n-1} ™ ier &
(5) P.(Ajve..d ) > 0T 5 A s
4 21" Trenn,..n1r T 1el =
I+ e Ny,
) (-1) z*(ieﬁ)'

I<{1,...,n

We evaluate the sum by cases: ll’ =1, il: >1l and n ¢ 1, and |ll > 1

and nel, in each case writing the result in general terms for ease of collection.
I+l
b1l =1 : 2,00+ ] (-I)U I NN
= 1 <{1,...,n-1} iel =
|Zl=1
Bl

- 3 (-1) =P (N A )-r,(a)ﬁpu)
IC{I ,n‘ 15_1_ - 1<n -

-1
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1! > 1, 11, ...,0-1}: 012+ N 4
o . - LZ{I....._Q-I} Tt L
|1} > 1, Teld,...,n-1}: 1= 1'uln}, I'ef1,...,n-1}
11" |+2
} (-1) B, (N1 AnAy)

I'e{,...,n~1

. - e N A

1°(1, } il

Combining the three terms, we have,

Pala U...w) > (-1 1141 p ¢ n

1<{1,...,n}

Tif=1 afl
|Z1>1
+ ] (-1 121+ B.CN A
Lc{lv ,2} _i_-_ -
nel
11>
= -1y 1141
L (LSRR ()
I<il,...,n: ===

contradicting our assumption that there was an n for which (3')

was false.

)
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Theorea 3:

Let © be a frame of discernment, Bel a belief function, and Sp the
corresponding set of Bayesian probability functions. Let B : evidence
assigned probability 1, or support 1, and suppose P(B) > 0 for every

EEP' Then for every AcH,

min  P(A[B) < Bel(A|B) < P*(A|B) < max P(A|B)
sz, FAD) <IIGID <TUID gl

where .’;*(AIE) =] - gﬂ.@'&) is Shafer's plausibility function-

Proof: (All maxima and minima are taken over £e§P.)

For Xe, Bel(X) = min P(X), and P*(X) = max P(X).

Bel(AvB)-Bel(B) min P(AvB)-min(E)
Bel(A|B) = —= =
1-Bel(B) 1-min(B)

P(AnB) P(AvB)-P(B)
min P(A(B) = min = min
2(B) 1-P(B)

Let ge§2 be such that Q(AuB) = min P(AuB).

Then

Q(AUB)-Q(B)  Q(AuB)-minP(B)
min P(A|B) <

= < = Bel(A|B)
1-q(B) l-ain P(B) T
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max P(A[B) = maxj

ax P(AnB). Ther

R(AnB) max P(AnB)
max P(A|B) > > = P*(A|B).
R(B) ~ max P(B)

[

Lemma 1l: Let © be a frame of discernment. Let our initial belief

function be Be;ll. We obtain new evidence whose impact on the frame
of discernment 8 can be represented by a simple support function
(Shafer 1976, p. 7) B_e_l_c whose single focus is C 28- B_el_C attributes
mass s to C and mass (1l-s) to 8.
Let the foci of Bel, — the subsets A of & receiving mass s,(A)>0 -a
be A, 52...., _g.ﬂ We can construct a new frame of discernment €' and

a new belief function Beli, such that

' ™
(a) For every Xcég, Bel‘(x_) Bell(i)

(b) For every Xcé€, (BQIIOBel-c)(i) = Bell'(yg), vhere _E_EZB , and

the evidence partially supporting C provides total support for
E. T0" represents the application of Dempster's rule of com—

bination to Bel. and Bel

1 —

¢’ Bell'(ils) represents Deapster's
rule of conditioning on E -wthe analog of Bayesian condition-

alization (Shafer 1976 p. 67).
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Proof: Let ¢ be nev to €, and for every pcb gensrate two sev “possibi-~

lities™ pe ond pe. Let 6" = {p': dpeO(p'~pe v p'~pO)}. Llet E= (p': Zped(p'=pe)}.
Since the evidence that supports C is to reocder E certain, we have C'cf
1.e. €' = {p': FpeC(p'=pe)}.

Ve define Bel,' on the basis of m,' as follows:

Bel ’ has n foci of the form "i’ esch with mass “"’51‘5.1." where

8, is the mass function associated with kll'

For every i such that _Q_Lng -9, &ni fs to be a focus with mass

g-gl(_L_i). For couvenience we take the first p of the 4, to be those for

which _A_Ing' = §. ©BNote thst p may be O, but cannot be p, else Bel, @

MC would be undefined.

The remaining i give rise to the remaining foci. These are of the
foruw (éing')u(.\__l_ni). and receive the remaining mass.  Since (élng')u
(4, rE)=(A nC") v (_A_inD is a possibility for 1¥j, we write

2004 )rD) = T m(a)s
= - {1: Apeu@eD = Anc D)

B
Note that Zgl'((_A_ing')u(_A_in-_f)) - zl 8,(A/)°s, sioce
L L.z.. =

these sets have positive mass only if A_ing_'fﬂ- :
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We first shov that !_11' is a belief function. Obviously its mass

function ®' 1s nou-pegstive for every Ac€’, so we need only show that

Z 2'(A) = 1. Susming over the three kinds of focl, we have:
A<@'

o
 ='(a) - Zu-g) @)+ Zg-un L gena)=1.
Acﬁ' i=1 ! 1 i=1 1771 i=p+l 5 3

We next show that Bel,' is equivalent to Bel =~ f.e. that for say

X<6, Bel "(X) = Bel (X).

Bl (1) = LE'(A) = L 2@)+ Lp@AnD+ Z-'((Ancw( nE))
AcX 'A'l"’ - -

A, rEc (4,10 AP D)X

The first term yields 4 -0z, (4) = (1-9) T = . ()

Alc X Alc X =

Since X = (!.n!)u(!nf), An-_éc E if aod only if -A-fl' in view of the

fact that Le nE if and only if ~E and the same holds for X. Thus

_51.
the second term yields z s 1(_& )
ger d

lsi<p
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To evaluate the third term, wve claim that (gingu (Ainz) ¢ X if and only

if _A_ic_x_. If Af'x" then A.nC <X and 51"5 c X and so (AfQ)u(_AinE)c X.

-

Suppose (5{«9).; (éjng) c X. Then _A_fn_f_ cX, A_‘ng ‘!’E: and by the prece-
ding argument A{:_&. Thus the third term yields z !!'I(Lx)
—i -
i

Putting the three parts together, we have !Lll'(;_) = _&11(9.

We oow show that conditioning on E in the frame of discernmeat 6°'
is equivalent to coabining uncertain evidence C with ;lg.l in the frame
of discermment 6 according to Dempster’'s rule of coabinatioa:

For every X0, (Bel ®Bel Xx= Bel,'(X|E)

L ya)rs + Tr)d-y

A_i_nﬁfo. .AlﬂQCL A;L
(1) (Bel ®Bel )(X) =
- 1 - Z 31(51)'3
TXE

(The numerator comprises two sums, since gg.c has two foci: C and €

vith aasses s and (l-s) respectively.)

(2) Bel, '(X|E) =
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Z_ n,'w . : _._21(‘91), since oaly the foci of the form _ein:i_

ere included in E: A - (Air\;_)u(_l.i@ is oot included in E, and
since C<E, (Aitg')u(gini) is included in i ounly {f

)
A .lnC =4, 1o
which case it has no mass.

4
A = . .
Lo mle T L amay

fence the denominators of (1) and (2) sre the same.

It remains to evaluate Z - 8 '(4). Consider foci of the forw

A }_f!“i if and only 1if A <X, so these foci yleld mass

)} 2'() -
st

(1-ps, (4,)
X

c
-i-

cotrespoading to the right haod term in the unumerator of (1).

Consider foci of the form _éinz All of these are fincluded in

XuE; they yield

}_é ') - ;:1 £g () - zc:'z: 2'W,

20 they drop out of the npumerator of (2).
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Finally, coansider foci of the form (é_lng')u(&in_i_). We first show

that (Aing')u(éini)c_x_u}:: if and omly if ANC'S X.  Suppose

’ 3 3 M 3 - t ’ =
(A, C")u(A ME) © WE.  Thes AnC’ < (BE). But CEE, so ANC
A nC'nE c XuE only 1f ANC' < X. Suppose ANC'S X. Then since
AnE c E < BE, (ginswu(gi@ < RE.

We compute the mass in the numerator of (2) due to foci of
this sort. They have aass only when Alnc‘#O- And thea they have

s

T ee )
{3: (ging' )u(élng) - (Aing' )u%@}

. L4
each _A_i such that Alng c X contributes s 91(51). Their total mass

is therefore

5 (A),
:£3£’1°-

nC’

nC'#0

L&

corresponding to the first term of the oumerator of (1).

We have therefore shown that (!s.lﬂmi)(gg)-pe_ll'(;lg).

0
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Lemma 2

Suppose that P, is an assigoment of probabilities to the field
of propositions whose basis is 215 83, 83,000,8,¢ Let 21 be generated
by a shift in the probability assigned to A ; this shift is the

source of our nev probability 31. By Jeffrey's rule, for all X

Pi(X) = Po(X|A) Py (A) + Po(X|A)B (A).

Then there exists a new field of propositions _F_' , and a proposition

E, and a new probability function go' defined on F' such that for every

proposition X in the old field F,

(a) BA(X) = Bo(X)

(b) R4(X|E) = By(X)

Proof:

Add a newv atomic proposition e to the basis of f_to obtain
the field [', and represent it by E. We impose the constraint 36 (1) 4
- _gl(g); ;6 (E) may have any value that strikes our fancy.

We extend to' so that for any Xef, 26 () = 2,(X); _Po' is fully
equivalent to g_o, so far as f is concerned, before we obtain information

about A. Specifically, set

. - 5_9_); - 5(‘5) R O 8 ST
XV XUV X7V 1-24 (D)
For Xs[', set
RH(XAD) = By (B) ° [k B(X) + &' B(XAD]
B, (XAD) = Ro(D) - B} (XAD)
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Clearly, for Xef,
2 (D = 2y (XA + By (XD = Ro(D)
Ve nov show that for Xef, probsbilities conditional on E are equal

to the probsbilities given by Jeffrey's rule: Z‘.(D - l(') (Ll]).

R, (XD
2, ®

By (E) -« [k Bo(XA) + k' B (XAD)]

Yor XeE, By alp -

By (X 1 0 T R
L | NUVIR B @ = X
i

D

Theorem &
Let a distribution of beliefs be given both by the function

Bel1 and by the prior set of probability distributions §P' Suppose

nevw evidence is obtained whose impact is given by a simple support
function Bell assigning positive mass to A and 6, or, alternatively,
by a shift in the probability of A on each of the distributions
in §P ; let Sp be the result of propagating this shift by Jeffrey's
-1 -2
rule, and let Bel2 be the result of applying Dempster's rule of combination.

Then

for all subsets X of 0.

Proof:

Iamediate from leama 1, lemma 2, and Theorem 3.
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Mass
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& X
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0.9 52
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Qu® X34
0v@vQ x,,
000 1y,
DuvQud xy,
@.Qu@ xy,,
e Xa

X, = 1-IX

Table 1

Lowver Measure

!

X

x
xb
R AP
L+E,
L¥E+K,
MM T
L4555
X3+X, 43,
AL R O P AL EAL E R S PY
RS RS VAL AL PY)
e R A AL AL PR TAL eV

x2+x3+x4+x23+x26+x34+x234

Upper Measure
1"‘2"‘3"&'53"26“34"234
e R R TR A SV X5
e R B At P Ph S ST
R S PR L T I S

1—13-16-X3‘

1-Xy-X~Xy,
1-%)-%-K)5
%% 5,
1-X-5 Xy,
1-%-%"%12
1-X,
1-X,

1-x2
1-

1
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Table 1I

A: vhite B: magnetic

Set mass
X 0.2
¥ 0.2
X, 0.1
X, 0.2

52 0.1

X, 0.0

X, 0.1

X, 0.0

xzk 0.1

X, 0.0

X123 0.0

X 0.0

X134 0.0

X34 0.0

o 0.0

Bel

Frequency
[0.2,0.4)

[0.2,0.4]
{0.1,0.1]
{0.2,0.4]
{0.5,0.7]
{0.3,0.5]
[0.5,0.7]
{0.3,0.5)
[0.5,0.7]
[0.3,0.5]
[0.6,0.8]
{0.9,0.9]
[0.6,0.8]
[0.6,0.8)
{1.0,1.0]
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WOTES

* Resesrch for this paper was supported inm part by the U.S. Army
Signals Warfare Laboratory, aad was stimulated io large part by
conversations with Jerry Feldman and Ron Loui of the Department
of Computer Science at the University of Rochester. Judea Pearl
carried out his duties as referee vith exemplary efficiency and
offered much good advice. I hope I have succeeded in following
it. An anonymous referee pointed out aun error io the original

proof of theorem 3, aud provided a suggestion to correct it.

1. This approach is similar to that of Smith (1961). It is also
similar to the approach of Levi (1974, 1981), Good (1962), and
Kyburg (1974), but as Levi points out in (1981) there are
important differences. Levi represeunts a credal state by a set
of conditional probability fuanctions, Q(x,y). For every y
counsistent with background kuowledge, the set of functions Q(x,y)
is coanvex. Since distinct convex sets of conditiounal probability
functions give rise to the same couvex sets of absolute
probability functionms, ¢the two representations are not
equivalent. Smith and Kyburg represent a credal state by the
convex closure of all probabilities consistent with a set of
probability iantervals. Shafer, as will be seen, implicitly
offers the same characterization. Dempster (1968) offers a more
restricted characterization: the convex set represeantiang the
credal state is the largest that both satisfies the interval

coustraints, and can be obtained from a space of "simple joiat




propositious”™ ia a certain way. Levi has showo (1981, pp. 338-
392) that these additional restrictioas are incompatible with
certain vatural forms of direct inference of probabilities froms

kunowo statistics.

2. 1o another place I shall argue that we can found all our
probabilities on direct or indirect statistical inference, or on

set-theoretical truths. No other source is needed.

3. This aexample was suggested in coaversation by Teddy

Seidenfeld.

4. This result was stated informally by Levi (1967), and is

reflected in Diaconis and Zabell, 1982, Theorem 2.1.

S. Dempster (1967, 1968) was well aware that his rule of
combination led to results stronger thaa those that would be
given by a mere generalization of orthodox Bayesian inference.
His reasons for preferring the rule at which he arrives are
essentially philosophical: io an orthodox Bayesian framework,
uniless you restrict the family of priors, you don't get useful
results startiag with zero information. But iao expert systems,

wve have no desire or need to start with zero information.

6. Quinlan's (1982) subtitle suggests the opposite: "A cautious

approach to uncertain inference.”

7. 1t is oot clear that Shafer's belief functions were inteunded




to be used in a decision-theoretic context. Even if they were,
there would be serious difficulties standing io the way of such
employment. (See Levi (1978, 1980, 1983), aund Seidenfeld
(1978)). PFor present purposes, these difficulties uneed not

coucero us.

8. This corresponds to Levi's notion (1981) of E-admissibility.

9. This elegant and simple example was proposed by Jerry

Feldman.
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