
AD-A250 536 N PNTATIN PAG OPMWo 0704-0188

SNl WhIIHi-N
1. AGENCY USE ONLY (Lve Bak) Z REPORT DATE 3- REPORT TYPE AND DATES COVERED

1) 1989 Unknown
4. TITLE AND SUBTITLE S. FUNDI NUMBERS

Beyond Specificity DAABO-86-C-0567

S.AUTHOR(S) 77

Henry E. Kyburg, Jr.

7 . P E R F O R M I N G O R G A NIZ A T I O N N A ME( S ) A N D A DRE S S ( E S ) E C T E PUniversity of Rochester REPORT NUMBER

Department of PhilosophyA

Rochester, NY 14627

9. SPONSORING/MONrTORING AGENCY NAME(S) ANDADORESS(ES) 10. SPONSORING/MONITORING AGENCY

U.S. Army CECOM Signals Warfare Directorate REPORT NUMBER

Vint Hill Farms Station I
Warrenton, VA 22186-5100 92-TRF-0007

I. SUPPLEMENTARY NOTES

12& DISTRSJTIONAVALABLIJY STATEMENT 12b. DISTRIBUTION CODE

Statement A; Approved for public release; distribution
unlimited.

13. ABSTRACT (Madmum 200 words)

A number of writers have suggested that specificity can be called upon to adjudicate
competing default inferences. In the foundations of statistics, specificity is one of
several ways to adjudicate the claims of competing reference classes. This suggests
that in default inferences also other principles than specificity may be needed. This
paper gives examples substantiating this suggestion, and ,provides formulations of the
few other principles needed.

'.SUSJECTTERMS iS. NUMBER OF PAGES

Artificial Intelligence, Data Fusion, Specificity 8
16. PRICE CODE

IO, REPRT C 18. SECURIY CLAS=IIAATION -IS. SECURITY CLASSSI CASION 20. LIMITATION OF ABSTRAcrOF REPORT OF THES PAGE OF ABSTRACT,
UNCLASSIFIED j UNCLASSIFIED UNCLASSIFIED ULNSN 7540--2b.00 ,

I ve"I



Accesibn For

NTIS CRA&
DTIC TAB
Unai-,nou;.,ed F]
Justf i;cation

BEYOND SPECIFICITY*
13Y ....... ..- --.... ....... ......... .. .

(area: B6) Distribution I

by Avditabitity o,.e:.
Henry E. Kyburg, Jr. •*.........

University of Rochester Dist i da!, Or
SSpe .at

kyburg@cs.rochester.edu

A number of writers have suggested that specificity can be called upon to
adjudicate competing default inferences. In the foundations of statistics, specificity
is one of several ways to adjudicate the claims of competing reference classes. This
suggests that in default inferences also other principles than specificity may be
needed. T' paper gives examples substantiating this suggestion, and provides
formulations of the few other principles needed.

I. It has been suggested (Poole, 1985; Touretzky, 1984, 1987; Neufeld, 1988;
Bacchus, 1988; Etherington, 1987) that considerations suggested by probability
theory may throw light on non-monotonic inference. The problems of non-
monotonic inference and probability do seem to be very close to each other, it is the
purpose of this paper to explore that relation further. It may seem that we are using
probabilistic considerations to throw further obscurity on non-monotonicity. To
avoid this impression, we shall first present intuitive cases of non-monotonic
inference, without reference to probability, and only subsequently point out the
connections.

The general nature of the problem we are considering is the following: We
have a set of premises in our body of knowledge or knowledge base, from which
we would ordinarily expect to be able to infer a certain statement S. But there is
another set of statements, that may equally well be regarded as being part of our
knowledge base, in that same situation, from which we could infer the denial of S.
In many cases, what we suppose ourselves to know in the first place entails that
these conclusion upsetting statements are part of our knowledge. (Note: this is not
just a matter of not being able to infer S, but a matter of being able to infer the
denial of S.)

The classical case is that of Tweety the penguin. We want to infer that
Tweety does not fly, even though we know at the same time (ipso facto, we might
even say!) that Tweety is a bird and that typically birds fly. By themselves, these
facts would warrant the opposite conclusion, namely: Tweety flies.

One approach to this problem, suggested in various forms by the authors
cited above, is to observe that when these two possible arguments clash, we prefer
the argument with the "most specific" premises. In this case that specificity picks
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out the argument that classifies Tweety as a penguin rather than the argument that
merely classifies Tweety as a bird. This situation is represented by figure 1.

Historically it is worth noting that the idea of specificity goes back at least to
Reichenbach (1949). The term "specificity" was employed by Hempel (Hempel,
1968), and there has been some philosophical discussion of the notion. It is also
worth observing that exceptions -- even singleton exceptions -- are conveniently
handled by reference to specificity. If Tweety is the only penguin in the world who
can fly, and we happen to know it, then the facts that Tweety is in (Tweety) (or
has the property of being Tweety), and that all the members of (Tweety) (or
everything with the property of being Tweety) fie(s), lead us to the conclusion that
Tweety flies after all.

We may present the problem more formally this way: We have a
knowledge base containing premises

P 1, P 2, ..., Pn
On this basis we want to obtain the conclusion C . But if our knowltdge base
contains the Pi , it also contains

R 1, R2, ...,Rk
either because they are implied by the Pi or because (like "Birds typically fly") they
represent natural assumptions. But given the Ri in our knowledge base, in the
absence of the Pi , we would conclude the denial of C , -- C.

2. Specificity solves examples of the form illustrated in figure 1. But even
minor variations call for something more. Even in the case of Tweety, this can be
seen. If we know that Tweety is a penguin, and that penguins don't typically fly,
then we also know
(1) "(Tweety) is a subset of birds."
And in general we know that
(2) '"rypically subsets of birds are also subsets of

flying objects."
From which it is natural to infer that Tweety flies.

Now this may be thought to be a strange and unnatural way of expressing
our knowledge about the ability of birds to fly. No doubt. But it represents a fairly
straight-forward logical translation of the R-premises of the first example. (If one
didn't like the We of which Tweety is the only member, one could talk about the
prope of being Tweety.) True, our knowledge base cannot be closed under
logical implication, but it seems artificial to rule out any particular forms of
inference as illegitimate. How would we draw the line? If we are looking to allow
non-monotonic inferences, we should surely allow some simple deductive
inferences as well.

So it is not unreasonable to suppose that (1) and (2) are in our knowledge
base. What prevents the inference to (Tweety) is a subset of the flyers?

In the original form of Tweety's problem, specificity did it. That won't
work here, since penguins are not a subset of st of birds. (Sets of anything are
abstract objects; penguins aren't.) But we can employ almost the same principle
here, as illustrated in figure 2. Here is a rough statement of the specificity principle
that takes care of the two cases we have considered so far.
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If "A 's are typically C 's" and "x is an A "are in our
knowledge base, and "B 's are typically D 's" and "y is
a B "are in our knowledge base, and "x is a C if and
only iffy is not a D "is in our knowledge base, then
the first inference is to be preferred to the second
whenever we also know that there is a subset B * of B
such that "y is in B *" and "Typically members of
B * are not members of D "are in our knowledge base.

This rule applies to the first example, with penguin for B * = A, bird for B, flies
for C , and x = y = Tweety. It applies to the second example with non-fliers for D,
and (Tweety) for y.

3. The "artificial" form of the Tweety example is rather baroque, and unlikely
to arise except in the mind of a perverse logical or a perfectly logical computer
program. The second counter-example to simple specificity, represented in figure
3, is much more natural and in can no way be construed as a matter of "specificity."

Here we know that a room contains ten cages, nine of which contain one
healthy sparrow and two fat penguins, and the tenth cage containing 171 sparrows
and only two penguins. We select a cage, and then a bird (whom we call Tweety)
from the cage. Typically, this bird will not be a flier. But note: we also know that
the selected bird is a bird in the room, and typically birds in that room do fly.

Observe that there is no subset (no specification) of the set of birds in the
room to which we know that Tweety, the selected bird, belongs, and in which the
typical bird is a non-flier. "For all we know," Tweety was selected from the tenth
cage.

It is no answer to say that "most of the time" the selected bird will have
come from one of the other cages, whatever "most of the time" means here. We
can adjust the numbers of cages and numbers of each kind of bird in each cage so
that it is no the case that "most of the time" we will select the cage with typical non-
fliers, but it is the case that "most of the time" we will select birds that do not fly.1

A general form on an appropriate rule is this:
If "A 's are typically C's" and "x is an A " are in our
knowledge base, and "B 's are typically D 's" and "y is
a B "are in our knowledge base, and "x is a C if and
only if y is not a D "is in our knowledge base, then
the first inference is to be preferred to the second
whenever we can find a cross product B * X B , a pair
<z ,y >, and a predicate of pairs, D *, of which the
following are known to be true in our data base:
<z,y>isD*justincasey isD;<zy>isin
B * X B; our knowledge about B * X B and D * matches
our knowledge about B and D ; and, finally, there is a
subset E of B * X B such that <z ,y > belongs to it,
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and our knowledge about E and D * matches our
knowledge about A and C.

In the case at hand, C is the property of pairs consisting of a cage and a bird that
holds when the bird can't fly. B * is the set of cages. E = A is the subset of B *
X B that satisfies the condition that the bird part of the pair comes from the cage
part of the pair.

4. The final form of inference to be considered is a bit more specialized than
the preceding two, but again cannot be explained in terms of specificity. The
situation is illustrated in figure 4.

Suppose we have examined a sample of 10,000 birds, and observed that
75% of them are fliers. Under the right conditions, it is reasonable for us to
conclude that more than 70% of birds fly, since under the right conditions samples
of 10,000 typically represent the populations from which they are drawn.

But then we also have in our knowledge base knowledge of a sample of
5,000 birds, of which only 50% are fliers. Under the right conditions, it would be
reasonable to conclude that less than 70% of birds fly, since samples of 5,000
typically represent the populations from which they are drawn.

As we have told the story, if the "right conditions" have been met for the
first inference, we want to be able to show, that the "right conditions" cannot be
met for the second inference. We want to prefer the first inference. Again,
"specificity" doesn't help. But the fact that the sample of the second inference is
included in the sample of the first inference provides a reasonable criterion.

We can state the rule as follows:
If "A's are typically C 's" and "x is an A " are in our
knowledge base, and "B 's are typically D 's" and "y is
a B "are in our knowledge base, and "x is a C if and
only if y is not a D "is in our knowledge base, then
the first inference is to be preferred to the second
if it is possible to construe the two inferences as
statistical inferences differing only in that the sample of
the second inference is a subset of the sample of the
first inference.

The particular case under discussion corresponds to this rule in an obvious way.

5. Are there other forms of competition among plausible inferences than those
mentioned here? I think not. My evidence is that the three forms of preferences
just illustrated (actually, two, since "specificity" can be construed as a special case
of the cross product construction) are the only forms that seem to be necessary in
accounting for the choice of a reference class in an epistemic probability theory.
See Kyburg (1983, 1988) for more details. There may be other structures that
should be taken account of that have not yet been noticed. But for the moment, at
least, these three correspond to our most clear-cut intuitions.
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It may be observed that "typicality" and "frequency" are different ideas, and
may not be subject to the same rules and constraints. This may be so, but there is
some reason to think that they cannot conflict too severely.

In the first place it is clear that we cannot claim that A 's are typically C 's,
when most A's aren't C 's - at least without a long and fairly complicated story.
We might suppose that x is an A , that most A 's are C 's, and at the same time that
x is a B , while B 's are not typically C 's. The upshot of this knowledge would
depend on the relation between A and B. If it is one of those relations addressed
above, then the considerations adumbrated there should determine the outcome
rather than a contest between "typicality" and "frequency".

Another problem that may seem worrisome is whether the process of
specification, Bayesianization, or sample expansion will always end. Specification
and sample expansion clearly do: it is no big deal to constrain our references to
finite sets; and no finite set can admit of arbitrarily fine specification. Before long
we must come to that most specific class: that class of which the object in question
is the only member. Analogously, our samples can only be so big. There is a
largest, and we may assume that our knowledge base knows about it. The
problematic case concerns cross product formation. But even this case cannot lead
us on indefinitely, the complexity of any compound experiment must be bounded.

We thus conclude, tentatively, that the enumerated considerations are all the
ones that are relevant to the adjudication of the claims of competing non-monotonic
inferences. We also conclude, definitively, that specificity, even if construed quite
broadly, doesn't do the trick. And we conclude, quite generally, that however
"typicality" is construed, statistical considerations can thrown light on inferences
that depend on typicality.

notes.

* Research underlying this paper was supported in part by the U. S. Army
Signals Warfare Center.

1. Suppose "most of the time" means with a relative frequency of greater than
1 - 10-n of the time. Then we need 10" cages, in all but one of which we have
10+1 birds, all but one of which are non-fliers. The number of birds in the final
cage that are required to have it come out that most of the time birds from the aviary
are fliers is (approximately) 103n .
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