
Ln /
CO- WRDC-TR-90-8007

~"'~ Volume V
- Part 30

INTEGRATED INFORMATION SUPPORT SYSTEM (IISS)
Volume V - Common Data Model Subsystem
Part 30 - File Utilities Development Specification

M. Apicella, S. Singh

Control Data Corporation T <
Integration Technology Services
2970 Presidential Drive E- L EE C T E
Fairborn, OH 45324-6209 MAY 19 1992

September 1990

Final Report for Period 1 April 1987 - 31 December 1990

Approved for Public Release; Distribution is Unlimited

MANUFACTURING TECHNOLOGY DIRECTORATE
WRIGHT RESEARCH AND DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6533

92-13190
I +IEfll~lllIlllllllIlll



NOTICE

When Government drawings, specifications, or other data are used for any purpose other
than in connection with a definitely related Government procurement operation, the United
States Government thereby incurs no responsibility nor any obligation whatsoever, regardless
whether or not the government may have formulated, furnished, or in any way supplied the
said drawings, specifications, or other data. It should not, therefore, be construed or implied
by any person, persons, or organization that the Government is licensing or conveying any
rights or permission to manufacture, use, or market any patented invention that may in any way
be related thereto.

This technical report has been reviewed and is approved for publication.
This report is releasable to the National Technical
Inforeation Service (NTIS). At NTIS, it ill be
available to the general public, including foreign nations

DA D L. J S N, Pr ect Manager DATE

Wriht-Pat rs AFB, OH 45433-6533

FOR THE COMMANDER:

BRUCE A. RASMUSSEN, Chief DATE
WRDC/MTI
Wright-Patterson AFB, OH 45433-6533

If your address has changed, if you wish to be removed form our mailing list, or if the
addressee is no longer employed by your organization please notify WRDC/MTI, Wright-
Patterson Air Force Base, OH 45433-6533 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.



Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution is Unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
DS 620341330 WRDC-TR-90-8007 Vol. V, Part 30

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Control Data Corporation; (if applicable) WRDC/MTI
Integration Technology Services I
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

2970 Presidential Drive
Fairbom, OH 45324-6209 WPAFB, OH 45433-6533

8a. NAME OF FUNDING/SPONSORING 9b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUM.
ORGANIZATION (if applicable)

Wright Research and Development Center, F33600-87-C-0464
Air Force Systems Command, USAF WRDC/MTI

10. SOURCE OF FUNDING NOS.
8c. ADDRESS (City, State, and ZIP Code)

Wright-Patterson AFB, Ohio 45433-6533 PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

11. T IT LE (Include Security C lassification) 78011 F 5 60 F O . 2 9 6

See block 19 78011F 595600 F95600 20950607

1 2. F'I-:5UNAL AU I HUIb)

Control Data Corporation: Apicella, M. L., Singh, S.

13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Yr.,Mo.,Day) 15. PAGE COUNT
Final Report 4/1/ -12/3e/9e 1990 September 30 17

16. SUPPLEMENTARY NO iA i 1UN

WRDC/MTI Project Priority 6203

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify block no.)

FIELD GROUP SUB GR.
1308 01905

19. ABSTRACT (Continue on reverse if necessary and identify block number)

This Development Specification (DS) describes the functions, performance, environment, interfaces, test, qualification, and
design requirements for the File Utility computer programs. These utilities provide file transfers, file deletes, and unique file
naming services to other components of IISS.

BLOCK 11:

INTEGRATED INFORMATION SUPPORT SYSTEM
Vol V -Common Data Model Subsystem

Part 30 - File Utilities Development Specification

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED x SAME AS RPT. DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NO. 22c. OFFICE SYMBOL
(Include Area Code)

David L. Judson (513) 255-7371 WRDC/MTI

EDITION OF 1 JAN 73 IS OBSOLETE
DD FORM 1473,83 APR Unclassified

SECURITY CLASSIFICATION OF THIS PAGE



DS 620341330
30 September 1990

FOREWORD

This technical report covers work performed under Air Force
Contract F33600-87-C-0464, DAPro Project. This contract is
sponsored by the Manufacturing Technology Directorate, Air Force
Systems Command, Wright-Patterson Air Force Base, Ohio. It was
administered under the technical direction of Mr. Bruce A.
Rasmussen, Branch Chief, Integration Technology Division,
Manufacturing Technology Directorate, through Mr. David L. Judson,
Project Manager. The Prime Contractor was Integration Technology
Services, Software Programs Division, of the Control Data
Corporation, Dayton, Ohio, under the direction of Mr. W. A.
Osborne. The DAPro Project Manager for Control Data Corporation
was Mr. Jimmy P. Maxwell.

The DAPro project was created to continue the development, test,
and demonstration of the Integrated Information Support System
(IISS). The IISS technology work comprises enhancements to IISS
software and the establishment and operation of IISS test bed
hardware and communications for developers and users.

The following list names the Control Data Corporation

subcontractors and their contributing activities:

SUBCONTRACTOR ROLE

Control Data Corporation Responsible for the overall Common
Data Model design development and
implementation, IISS integration and
test, and technology transfer of IISS.

D. Appleton Company Responsible for providing software
information services for the Common
Data Model and IDEFIX integration
methodology.

ONTEK Responsible for defining and testing a
representative integrated system base
in Artificial Intelligence techniques
to establish fitness for use.

Simpact Corporation Responsible for Communication
development.

Structural Dynamics Responsible for User Interfaces,
Research Corporation Virtual Terminal Interface,and Network

Transaction Manager design,
development, implementation, and
support.

Arizona State University Responsible for test bed operations
and support.

iii

u ! !"



DS 620341330

30 September 1990

TABLE OF CONTENTS

Page

SECTION 1.0 SCOPE .................................... 1-1
1.1 Identification ........................ 1-1
1.2 Functional Summary .................... 1-2

SECTION 2.0 DOCUMENTS ............................. 2-1
2.1 Reference Documents ................... 2-1

SECTION 3.0 REQUIREMENTS .......................... 3-1
3.1 Computer Program Definition ......... 3-1
3.1.1 System Capacities ................... 3-1
3.1.2 Interface Requirements ............. 3-1
3.1.2.1 Interface Block Diagram .......... 3-1
3.2 Detailed Functional Requirements .... 3-2
3.2.1 Function FSD - File Send .......... 3-3
3.2.1.1 Inputs

(from requesting process) ........ 3-3
3.2.1.2 Processing ...................... 3-3
3.2.1.3 Outputs ................ .3-4
3.2.2 Function FRC - File Receive....... 3-4
3.2.2.1 Inputs .......................... 3-4
3.2.2.2 Processing ...................... 3-4
3.2.2.3 Outputs .......................... 3-5
3.2.3 Function FDL - File Delete ........ 3-5
3.2.3.1 Input ............................. 3-5
3.2.3.2 Processing ..,...................... 3-5
3.2.4 Function FNM - File Namer .......... 3-6
3.2.4.1 Input ............................ 3-6
3.2.4.2 Processing ...................... 3-6
3.2.4.3 Outputs .... ..................... 3-6
3.2.5 Function MNM - Module Namer........ 3-7
3.2.5.1 Input ............................. 3-7
3.2.5.2 Processing ....................... 3-7
3.2.5.3 Outputs ......................... .3-7

SECTION 4.0 QUALITY ASSURANCE PROVISIONS .......... 4-1
4.1 Introduction and Definitions ........ 4-1
4.2 Computer Programming Test

and Evaluation ........................ 4-1

SECTION 5.0 PREPARATION FOR DELIVERY .............. F-1

iv



DS 620341330
30 September 1990

o To delete a file containing intermediate aggregation
results.

o To delete a file containing the final aggregated results
after it has been transformed from Conceptual to
External format by the C/E transformer.

o To delete a file containing the final results from an
NDML request after the information has been processed by
the requesting application.

o To delete temporary files used by the NDML precompiler.

The primary uses of the File Namer are:

o To provide system wide unique file names for any
requesting process.

o Specifically, unique file names are needed by the NDML
precompiler for generated software:

- request processor main routines
- request processor subroutines
- conceptual to external transform
- conceptual level selection modules

o Specifically, unique file names are needed by the NDML
precompiler for temporary files and for storage of
generated programs.

The primary uses of the Module Namer are:

o To provide system wide unique software module names for
a requesting process.

o Specifically, unique module names are needed by the NDML
precompiler for all generated software:

- request processor main routines
- request processor subroutines
- conceptual to external transforms
- conceptual level selection modules Accein For

NTIS CRA&I
OT!rC TAB

justitication

aY... . .............
1i 3ti,-, I

1-3



DS 620341330
30 September 1990

SECTION 2

DOCUMENTS

2.1 Reference Documents

1. DeJean, J.P., Test Bed System Development
Specification,-eneral Electric Company, Schenectady,
New York, November 9, 1982.

2-1



DS 620341330
30 September 1990

SECTION 3

REQUIREMENTS

3.1 Computer Program Definition

3.1.1 System Capacities

The File Transfer operates on ASCII files with records that
are fixed in length (all same size) or variable length record
files that do not exceed a maximum; records exceeding the
maximum are truncated.

The File Delete operates on ASCII files.

3.1.2 Interface Requirements

3.1.2.1 Interface Block Diagram

------------ FILE -------- INITIATION +-----------
TRANSFER MESSAGE

REQUESTING REQUEST FILE -------------- > FILE
------------ > ACKNOWLEDGE

PROCESS SEND < --------------- + RECEIVE
COMPLETION DATA RECORDS
& STATUS -- >

< ------------ COMPLETION
& STATUS

< ..............--S+
+------------ --------- -----------

The File Transfer CI is composed of two
functional components, File Send and File
Receive.

A requesting process sends a File Transfer
message to the File Send at the host where the
original file to be transmitted resides. The
File Send then sends an initiation message to the
File Receive at the host where the file is to be
created. After receiving acknowledgment from
File Receive the File Send reads the source file
and creates messages containing the file data.
It transmits these messages to the File Receive
where they are reconstructed into a new file.
When the file transfer is completed, File Send
notifies the requesting process.

3-1



DS 620341330
30 September 1990

+-------------- -----------------
DELETE REQUEST

REQUESTING ---------------------- > FILE

PROCESS DELETE

--------- + ----- ---------------

A requesting process sends a File Delete request
in the form of a messaqe to the host where the
file to be deleted resides.

------------ FILE NAME REQUEST --------- NEXT

REQUESTING FILE <-------
PERMANENT

PROCESS NAMER --------
< .............. .LAST FILE
FILE NAMES & STATUS NAME

------------- +-------- USED -------------
"LAST FILE
NAME USED"

A requesting process sends File Name request in
the form of a message to the File Name queue
server. After generating the next group of
names, the File Namer sends a reply message with
a status to the requesting process. The file
"LAST FILE NAME USED" is used to periodically
record the last file name assigned for each host.

--------------- MODULE NAME 4--------------- +--------------
REQUEST NEXT NAME--- - - -- - - > < ---------

REQUESTING NODULE NAMES NODULE LAST NAME PERMANENT
PROCESS AND STATUS NAMER USED FILE

+--------------- --------------- --------------
"LAST MODULE
NAME USED"

A requesting process sends a Module Name request
in the form of a message to the Module Name queue
server. After generating the next group of
names, the module namer sends a reply message
with a status to the requesting process. The
file "LAST MODULE NAME" is used to periodically
record the last module name assigned.

3.2 Detailed Functional Requirements

The following subsections document the File Utility's major
functions and describes the input-output requirement.

3-2



DS 620341330
30 September 1990

3.2.1 Function FSD - File Send

The file send function transfers files from host to host in
the testbed environment. The file send function residing at one
host sends its contents to a file receive function on a remote
host. The file send receives file characteristics and operaving
instructions from a requesting process. It, in turn, passes
control information to the file receive function.

3.2.1.1 Inputs (from requesting process)

A. Name of file to be sent.
B. Record length of records contained in file.
C. Name of file to be built.
D. Logical location where file is to be sent.
E. Indicator on whether to delete or keep input file after

transfer.
F. "Ready to Receive"' (from File Receive).
G. "End of File Transfer" or "File Transfer Unsuccessful"

(from File Receive).

3.2.1.2 Processing

A. Receive File Transfer initiation message from
requesting process via the NTM, to transfer file. The
message contains the inputs A thru E from 3.2.1.1,
above.

B. Send message to location where file is to be sent to
initiate File Receive routine. Send name of file to be
created and record length from step B, above.

C. Receive "Ready to Receive" message from File Receive
routine.

D. Open input file to be sent.
E. Read input records and place in output buffer.

Continue until output buffer is full or all records
from file have been read. Keep a count of total number
of records in file.

F. Send message to File Receive routine containing data
from E, above.

G. Repeat E and F, as necessary, to send entire file.
H. Send message to file receive routine inidcating all

records have been sent and total record count from step
E.

I. Wait for "End of File Transfer" or "File Transfer
Unsuccessful" completion message from File Receive.

1. If "File Transfer Unsuccessful" is received, check
to see if this is first or second attempt to send
the file. If first, try again by restarting from
the beginning. If second try, send unsuccessful
message to requesting process and terminate.

2. If "End of File Transfer" continue with K, below.

3-3



DS 620341330
30 September 1990

K. Check input parameter E, under 3.2.1.1 above and delete
original input file if the delete parameter is set.
Note: use the File Delete utility to execute this
step.

L. Send a completion message to the process requesting the
file transfer.

M. Terminate the File Send.

3.2.1.3 Outputs

A. Message to receiving host to initiate File Receive.

o Name of file to be created
o Record length

B. Records containing data to be transferred.

C. "End of File" message (containing count of number of
records sent).

D. Completion message to requesting process containing
transfer status.

3.2.2 Function FRC - File Receive

The File Receive function operates in conjunction with the
File Send function in the test bed environment. File Send,
residing at one host, sends its contents to File Receive on a
remote host. Prior to receiving any of the file contents, File
Receive receives control information from File Send that
contains the name of the file to be built and other file
characteristics.

3.2.2.1 Inputs

A. Message from File Send to initiate receive process.

o Name of file to be created.
o Record length of records in the file.

B. Data records to build new file.

C. "End of File" message from File Send, which includes a
count of the records sent.

3.2.2.2 Processing

A. Receive initiation message from File Send. (See input
A in 3.2.1.1, above).

B. Create (open) output file to be written.

C. Send "Ready to Receive" message to File Send.

3-4



DS 620341330
30 September 1990

D. Read input records being sent by File Send and place on
output file opened in B, above. Keep a count of number
of logical records received and written.

E. Repeat Step D until all records have been written to
output file as denoted by "End of File" message from
File Send.

F. Compare count of number of logical records written
against number of records sent. Then take one of the
following actions:

o If the counts are equal, send "End of File Transfer"
message to File Receive.

o If the counts are not equal, delete the output file
being created and send "File Transfer Unsuccessf,1"
message to the File Send routine.

G. Close the output file.

H. Terminate.

3.2.2.3 Outputs

A. "Ready to Receive" message to File Send.

B. Newly created data file.

C. "End of File Transfer" message or "File Transfer
Unsuccessful" message

3.2.3 Function FDL - File Delete

The File Delete utility purges files residing on the local
host. The request to delete a file can originate on any host in
the IISS environment.

3.2.3.1 Input

A. File Delete initiation message containing name of file
to be deleted.

3.2.3.2 Processing

A. An interface module, upon receiving the file name and
its host of residence, will issue an operating system
call to delete or purge the file if the file is on the
same host as the interface module.

B. If the file is "off-host", a message is sent to the
file delete process on that host which will then
execute a call to the operating system (on local host)
to delete the file using the file name supplied in
input A, above.

3-5



DS 620341330
30 September 1990

C. No status reply is expected from the file delete

interface or the file delete process.

3.2.4 Function FNM - File Namer

The File Namer utility generates unique file names for the
requesting process.

3.2.4.1 Input

A. File Namer must be told by the requester that it needs
a file name. The fact that a call is made to the
interface module indicates this.

B. The interface module may send a message to the file
name server for a group of file names. The fact that a
requesting message arrives at the file name server
indicates that a group of file names is desired.

3.2.4.2 Processing

A. The file name interface maintains a group of file names
received from the server. When this group has been
distriuted, one per request, the interface module will
request another group from the server.

B. The file name server will maintain an in-memory table
of the last name assigned for each host. This was
loaded from the CDM table FILE NAME HOST at process
initiation. When a request comes in, a block of names
is generated by incrementing the numeric portion of the
name. If the numeric portion "rolls" past all 9's,
then the letter portion of the name is incremented.
The group of file names is sent back to the requestor
in the reply message.

C. This function assumes no other users of the host
computer will be generating file names of the type
developed, as no operating system calls or checks are
made. This can be insured by reserving a special
directory or file name logical for IISS use.

3.2.4.3 Output

A. A database table (FILE NAME HOST) of the next file
names to be used is stored in the CDM database to
prevent re-use of file names across system shutdown and
startup.

B. A group of file names is sent in a reply message to the
requesting file name interface routine.

C. A single file name is returned from the file name
interface routine to the requesting application.

3-6



DS 620341330
30 September 1990

3.2.5 Function MNM - Module Namer

The Module Namer utility generates unique module names for
the requesting process.

3.2.5.1 Input

A. Module Namer must be told by the requester that it
needs a module name. The fact that a call is made to
the interface module indicates this.

B. The interface module may send a message to the module
name server for a group of module names. The fact that
a requesting message arrives at the server indicates
that a group of file names is desired.

3.2.5.2 Processing

A. The module name interface maintains a group of module
names received from the module server. When this group
has been distributed, one per request, the interface
module will request another group from the queue
server.

B. The module name queue server will maintain an in-memory
table of the last name assigned. This was loaded from
the CDM table NEXTMOD NAME at process initiation.
When a request comes iii, a block of names is generated
by incrementing the numeric portion of the name. If
the numeric portion "rolls" past all 9's, then the
letter portion of the name is incremented. The group
of module names is sent back to the requestor in the
reply message.

C. This function assumes no other users of the host
computer will be generating module names of the type
developed, as no operating system calls or checks are
made.

3.2.5.3 Output

A. A database table (NEXT MOD NAME) of the next module
names to be used is stored-in the CDM database to
prevent re-use of module names across system shutdown
and startup.

B. A group of module names is sent in a reply message to
the requesting module name interface routine.

C. A single module name is returned from the module name
interface routine to the requesting application.

3-7



DS 620341330
30 September 1990

SECTION 4

QUALITY ASSURANCE PROVISIONS

4.1 Introduction and Definitions

"Testing" is a systematic process that may be preplanned
and explicitly stated. Test techniques and procedures may be
defined in advance and a sequence of test steps may be
specified. "Debugging" is the process of isolation and
correction of the cause of and error.

4.2 Computer Programming Test and Evaluation

The quality assurance provisions for testing will consist
of the normal testing techniques that are accomplished during
the construction process. They consist of design and code
walk-throughs, unit testing, and integration testing. These
tests will be performed by the design team.

The integation test developed for the file utilities will
consist of a number of test cases developed for other components
of the CDM. Because file utilities are essentially service
modules, they will be tested by other CDM components.

Unit testing will primarily involve testing each of the
utilities with skeleton routines calling the "service" interface
module directly.

4-1



DS 620341330
30 September 1990

SECTION 5

PREPARATION FOR DELIVERY

The implementation site for the constructed software will
be the ICAM Integrated Support System (IISS) Test Bed Site
located in Tempe, Arizona. The software associated with the
file utilities will be clearly identified and will include
instructions on procedures to be followed for installation of
the release.

*U.S. GOVERNMENT PRINTING OMCE: 192 - 648-12762320

5-1


