
WRDC-TR-90-8007
Volume V
Part 26

AD-A250 463

INTEGRATED INFORMATION SUPPORT SYSTEM (IISS)
Volume V - Common Data Model Subsystem
Part 26 - Distributed Request Supervisor Development Specification

J. Althoff, M. Apicella

Control Data Corporation
Integration Technology Services
2970 Presidential Drive DTIC
Fairborn, OH 45324-6209

S ELECTE
MAY 2 2 1994,

September 1990 "

Final Report for Period 1 April 1987 - 31 December 1990

Approved for Public Release; Distribution is Unlimited

MANUFACTURING TECHNOLOGY DIRECTORATE
WRIGHT RESEARCH AND DEVELOPMENT CENTER
AT- FOPCF SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6533

92-135819 P .-H I



NOTICE

When Government drawings, specifications, or other data are used for any purpose other
than in connection with a definitely related Government procurement operation, the United
States Government thereby incurs no responsibility nor any obligation whatsoever, regardless
whether or not the government may have formulated, furnished, or in any way supplied the
said drawings, specifications, or other data. It should not, therefore, be construed or implied
by any person, persons, or organization that the Government is licensing or conveying any
rights or permission to manufacture, use, or market any patented invention that may in any way
be related thereto.

This technical report has been reviewed and is approved for publication.
This report is releasable to the National Technical
Information Service (NTIS). At NTIS, it will be

available to the general public, including foreign netions

//

DA sD L. J SN, Pr ect Manager DATE
WRCMI
Wri ht-Patt rs AFB, OH 45433-6533

FOR THE COMMANDER:

BRUCE A. RASMUSSEN, Chief DATE 6;7
WRDCAM
Wright-Patterson AFB, OH 45433-6533

If your address has changed, if you wish to be removed form our mailing list, or if the
addressee is no longer employed by your organization please notify WRDC/MTI, Wright-
Patterson Air Force Base, OH 45433-6533 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.



Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution is Unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

DS 620341310 WRDC-TR-90-8007 Vol. V, Part 26

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Control Data Corporation; (if applicable) WRDC/MTI
Integration Technology Services

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
2970 Presidential Drive
Fairbom, OH 45324-6209 WPAFB, OH 45433-6533

8a. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUM.
ORGANIZATION (if applicable)

Wright Research and Development Center, F33600-87-C-0464
Air Force Systems Command, USAF WRDC/MTI

10. SOURCE OF FUNDING NOS.
8c. ADDRESS (City, State, and ZIP Code)

Wright-Patterson AFB, Ohio 45433 PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

11. TITLE (Include Security Classification)
See block 19 78011F 595600 F95600 20950607

12. PERSONAL AUTHOR(S)
Control Data Corporation: Althoff, J. L., Apicella, M. L.

13a. TYPE OF REPORT 113b. TIME COVEFRED 11A DATE OF REPORT (Yr.,Mo.,Day) 15. PAGE COUNT
Final Report 4/1 /87-12/31/90 1990 September 30 32

16. SUPPLEMENTARY NOl, i .ii'i

WRDC/MTI Project Priority 6203

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify block no.)

FIELD GROUP SUB GR.

13Q8 1090b

19. ABSTRACT (Continue on reverse if necessary and identify block number)

This Development Specification (DS) describes the functions, performance, environment, interfaces, test, qualification.
and design requirements for the Distributed Request Supervisor omputer program.

BLOCK 11:

INTEGRATED INFORMATION SUPPORT SYSTEM

Vol V - Common Data Model Subsystem

Part 26 - Distributed Request Supervisor Development

Specification

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED x SAME AS RPT. DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 2b. TELEPHONE NO. 22c. OFFICE SYMBOL
(Include Area Code) I

David L. Judson I (513) 255-7371 WRDC/MTI

EDITION OF 1 JAN 73 IS OBSOLETE

DD FORM 1473,83 APR Unclassified

SECURITY CLASSIFICATION OF THIS PAGE



DS 620341310
30 September 1990

FOREWORD

This technical report covers work performed under Air Force
Contract F33600-87-C-0464, DAPro Project. This contract is
sponsored by the Manufacturing Technology Directorate, Air Force
Systems Command, Wright-Patterson Air Force Base, Ohio. It was
administered under the technical direction of Mr. Bruce A.
Rasmussen, Branch Chief, Integration Technology Division,
Manufacturing Technology Directorate, through Mr. David L. Judson,
Project Manager. The Prime Contractor was Integration Technology
Services, Software Programs Division, of the Control Data
Corporation, Dayton, Ohio, under the direction of Mr. W. A.
Osborne. The DAPro Project Manager for Control Data Corporation
was Mr. Jimmy P. Maxwell.

The DAPro project was created to continue the development, test,
and demonstration of the Integrated Information Support System
(IISS) . The IISS technology work comprises enhancements to IISS
software and the establishment and operation of IISS test bed
hardware and communications for developers and users.

The following list names the Control Data Corporation

subcontractors and their contributing activities:

SUBCONTRACTOR ROLE

Control Data Corporation Responsible for the overall Common
Data Model design development and
implementation, IISS integration and
test, and technology transfer of IISS.

D. Appleton Company Responsible for providing software
information services for the Common
Data Model and IDEFlX integration
methodology.

ONTEK Responsible for defining and testing a
representative integrated system base
in Artificial Intelligence techniques
to establish fitness for use.

Simpact Corporation Responsible for Communication
development.

Structural Dynamics Responsible for User Interfaces,
Research Corporation Virtual Terminal Interface,and Network

Transaction Manager design,
development, implementation, and
support.

Arizona State University Responsible for test bed operations
and support.

iii



DS 620341310
30 September 1990

Table of Contents

Page

SECTION 1. SCOPE ................................. 1-1
1.1 Identification ........................ 1-1
1.2 Functional Summary .................... 1-3

SECTION 2. DOCUMENTS ............................. 2-1
2.1 Applicable Documents .................. 2-1
2.2 Terms and Abbreviations .............. 2-2

SECTION 3. REQUIREMENTS .......................... 3-1
3.1 Computer Program Definition ......... 3-1
3.1.1 System Capacities ................... 3-1
3.1.2 Interface Requirements ............. 3-1
3.1.3 Design/Implementation Differences . 3-2
3.2 Detailed Functional Requirements .... 3-2
3.2.1 Function DRS1 Initiate

Subtransaction Processing ......... 3-2
3.2.2 Function DRS2 Schedule Stages ..... 3-6
3.2.3 Function DRS3 Transfer Final

Results ........................... 3-16
3.3 Special Requirements .................. 3-16
3.4 Human Performance ..................... 3-17
3.5 Database Requirements ................ 3-17
3.6 Adaptation Requirements .............. 3-17

SECTION 4. QUALITY ASSURANCE PROVISION ............ 4-1

SECTION 5. PREPARATION FOR DELIVERY ............... 5-1

ITIS 13DTIC
U onced 

su titieeftio

Ave~bit~YCod.05

AV D tN secia

iv



DS 620341310
30 September 1990

SECTION 1

SCOPE

1.1 Identification

This specification establishes the performance, develop-
ment, test, and qualification requirements of a collection of
computer programs identified as Configuration Item "Distributed
Request Supervisor."

This CI constitutes one of the major subsystems of the
"Common Data Model Processor" (CDMP) which is described in the
System Design Specification (SDS) for the ICAM Integrated
Support System (IISS). The CDMP scope is based on a logical
concept of subsystem modules that interface with other external
systems of the IISS. The CDMP has been decomposed into three
configuration items: the Precompiler, the Distributed Request
Supervisor, and the Aggregator. The scope of the CDMP and its
configuration items are described in the following narrative.

Common Data Model Processor (CDMP)

The CDMP consists of three CIs that manage users' accesses
to distributed databases in IISS. Input to the CDMP consists
of user transactions, which may be in the form of neutral data
manipulation language (NDML) commands embedded in COBOL host
programs or NDML commands phrased as stand-alone requests.
These development specifications address only the management of
embedded NDML commands.

The Precompiler CI parses the application program source
code, identifying NDML commands. It applies external-schema-
to-conceptual-schema transforms on the NDML command, and decom-
poses the conceptual schema command into single database re-
quests. These single database requests are each transformed
into programs (called Request Processors) to access the
specific databases to retrieve or update the data as required
by the NDML command. The NDML commands in the application
source program are replaced by function calls which, when
executed, will activate the run-time query evaluation processes
associated with the particular NDML command.

The Precompiler also generates a CS/ES Transformer pro~ram
which will take the final result of the query, stored in a file
as a conceptual schema relation, and transform it into the
appropriate external schema relation.

Finally, the Precompiler generates a Join Query Graph and
Result Field Table, which are used by the Distributed Request
Supervisor during the run-time evaluation of the query.

i-1



DS 620341310
30 September 1990

The Distributed Request Supervisor (DRS) CI is responsible
for coordination of the run-time activity associated with the
evaluation of an NDML command. It is activated by the
application program, which sends it the names and locations of
the Request Processors to be activated, along with run-time
parameters which are to be sent to the Request Processors. The
DRS activates the Request Processors, sending them the run-time
parameters. The results of the Request Processor executions
are stored as files, in the form of conceptual schema
relations, on the hosts which executed the Request Processors.
Using the Join Query Graph, transmission cost information and
data about intermediate results, the DRS determines a good
strategy for combining the intermediate results of the NDML
command. It issues the appropriate file transfer requests,
activates Aggregators to perform join, union, and outer join
operations. Finally, the DRS notifies the application program
that the query is completed, and sends it the name of the file
which contains the results of the query.

The Aggregator CI is activated by the DRS. An instance of
the Aggregator is executed for each join, union, or outer join
performed. It is passed information describing the union, outer
join or join to be performed, including the file names
containing the operands of the union, outer join or join. The
DRS ensures that these files already exist on the host that is
executing the particular Aggregator program. The Aggregator
performs the requested union, outer join or join, storing the
results in a file, whose name is passed to the DRS, and is
located on the host executing the Aggregator.

The CDMP provides the application programmer with
important capabilities to:

1. Request database accesses in a non-procedural data
manipulation language (the NDML) that is independent
of the DML of any particular Data Base Management
System (DBMS),

2. Request database access using a DML that specifies
accesses to a set of related records rather than to
individual records, i.e. using a relational DML,

3. Request access to data that are distributed across
multiple databases with a single DML command, without
knowledge of data locations or distribution details.

Information about external schemas, the conceptual schema,
and internal schemas (including data locations) are provided by
CDMP access to the Common Data Model (CDM) database. The CDM
is a relational database of metadata pertaining to IISS. It is
described by the CDM1 information model using IDEFI.

Please refer to the Software Availability Bulletin, Volume
III, Part 16, CI# SAB620326000, for current IISS software and

1-2



DS 620341310
30 September 1990

documentation availability.

1.2 Functional Summary

The overall objectives of this CI are to:

a. Determine the appropriate sequence of inter-database
JOIN, UNION and OUTER JOIN operations required to
produce the result for a multi-database transaction.

b. Coordinate and control the interactions among a
user's Application Process (AP), the generated
Request Processors (RP) and the Aggregator(s) for
both single- and multi-database transactions.

Determination of JOIN, UNION, OUTER JOIN

The DRS will calculate costs for each inter-site join,
union, and outer join possibility, select the alternative with
minimum cost and will generate the appropriate sequence of
join, union, and outer join operations that will collapse the
intermediate relations into the proper destination relation.
The sequence is generated at run-time by the DRS at the node of
the transaction's originating AP cluster.

The Distributed Request Supervisor receives information
about a set of intermediate relations, which are the result of
processing portions of a transaction at the local databases.
Once all local processing is complete, the intermediate
relations must be joined together. The Distributed Request
Supervisor solves the problem of determining in which order
these relations should be combined, which includes the
sequencing of transmission of relations from one database to
another in order to perform the operations in such a way as to
minimize the amount of data transferred. The operations are
performed by the Aggregator CI.

In order to process a transaction efficiently, the
Distributed Request Supervisor determines all possible inter-
database operations and calculates the transmission costs for
each possibility. It selects the operation with the least
cost, sends the appropriate transmission commands to the
identified Aggregator site, and updates information tables as
each is performed. If a join or outer join is chosen as the
next step to schedule, the two relations may not be
partitions; only "whole" relations are joined. After the last
operation is performed, the resulting relation is transmitted to
the site at which the result is to appear. A CS/ES Transform
process is then initialized to perform the required
transformations.

AP/RP/Agqregator Coordination

Each user AP that contains NDML requests has a copy of the
DRS, which it calls as a subroutine. All these copies are
exactly the same. Each copy is responsible for the coordination

1-3



DS 620341310
30 September 1990

and control of all the local and remote RPs and Aggregators that
are used to process the NDML requests from its user AP (see that
it is called as a subroutine by the DRS and that it accesses a
database on the same node as the user AP). A remote RP is one
that is called via the NTM; the database it accesses may be on
the same node as the user AP or on a different node. The DRS
uses the NTM message handling facility to communicate with any
remote RPs and Aggregators. It calls any local RPs and
Aggregators via dynamic call capability of COBOL 74. This
allows each copy of the DRS to (indirectly) call a variety of
RPs, Aggregators, and CS-ES Transformers while still being
identical to all other DRS copies (PREI5 assigns the same name
to all the Subroutine Callers).

The initiation of a transaction occurs when the AP sends a
message to the DRS to initiate activity on the specified
transaction. The DRS will then initiate the proper DRS tables
and Request Processors (RPs) in preparation for the first NDML
request from the AP. When the AP makes an NDML request, the AP
will 'go to sleep' and wait for the DRS response. The DRS will
activate/reactivate the proper RP(s). The DRS will wait until
the RPs have completed, then will decide if an Aggregator
needs to be called. If so, the DRS will do so and wait until
it receives a message from the Aggregator indicating
completion. The DRS will then return directly to the AP.

Since the proper execution of recovery units in the local
DBMSs requires that a specific AP communicate with a consistent
instantiation of an RP during the life of the AP recovery unit,
the DRS must guarantee that, once an AP initiates a recovery
unit, the RP to which the first local DML request was sent
(within the confines of the recovery unit) must be the RP to
which all further local DML requests (for the specific
DBMS/node) are sent, until the recovery unit termination re-
quest is received from the AP. Therefore, the DRS will main-
tain a table of the RPs for each AP with which the DRS is
communicating, regardless of the type of NDML verbs being
executed by the AP.

Compile-time Activities

Compile-time activities include building skeleton process
information tables. At run-time, the Distributed Request
Supervisor send- messages for the local Request Processor to
begin processing. As the local Request Processor finishes its
subtransactions, it sends back information for the Distributed
Request Supervisor to use in deciding the sequence of steps to
be taken. The Distributed Request Supervisor then, as needed,
initiates file transfer requests and activates appropriate
Aggregators.

1-4



DS 620341310
30 September 1990

The ma~or functions to be described in this document

for this CI are:

DRSl: Initiate Subtransaction Processing

DRS2: Schedule Stages

DRS3: Transfer Final Results

1-5



DS 620341310
30 September 1990

SECTION 2

DOCUMENTS

2.1 Applicable Documents

Following is a list of applicable documents relating to
this Computer Program Development Specification for the system
identified as the Common Data Model Processor (CDMP)
Distributed Request Supervisor.

Related ICAM Documents included:

UM620341001 CDM Administrator's Manual

TBM620341000 CDM1I, An IDEFI Model of the Common
Data Model

UM620341100 Neutral Data Definition Language
(NDDL) User's Guide

PRM620341200 Embedded NDML Programmer's Reference
Manual

UM620341002 ICAM Definition Method for Data
Modeling (IDEFI - Extended)

DS620341200 Development Specification for the IISS
NDML Precompiler Configuration Item

DS620341320 Development Specification for the
IISS Aggregator Configuration Item

Other references include:

Astrahan, M.M. et al., "System R: Relational Approach to
Database Management," ACM Transactions on Database Sys-
tems, Vol. 1, No. 2, June 1976, pp. 97-137.

Bernstein, P.A. and Chiu, D.M., "Using Semi-Joins to Solve
Relational Queries," Journal for the Association for
Computing Machinery, Vol. 28, No. 1, January 1981, pp. 25-
40.

Bernstein, P.A. et al., "Query Processing in a System
for Distributed Databases (SDD-l)," ACM Transactions on
Database Systems, Vol. 6, No. 4, December 1981, pp. 602-
625.

Chang, J.M. "A Heuristic Approach to Distributed Query
Processing," Proceedings of the Eighth International

2-1



DS 620341310
30 September 1990

Conference on Very Large Data Bases, Mexico City,
September 1982, pp. 54-61.

Epstein, R., M. Stonebraker, and E. Wong. "Distributed
Query Processing in a Relational Database System," Pro-
ceedings of the ACM SIGMOD International Conference,
Austin, June 1978, pp. 169-180.

Hevner, A.R. and S.B. Yao. "Query Processing in Distri-
buted Database Systems," IEEE Transactions on Software
Engineering, May 1979, pp. 177-187.

Rothnie, J.B. et al. "Introduction to a System for
Distributed Databases," ACM Transactions on Database Sys-
tems, Vol. 5, No. 1, May 1980, pp. 1-17.

Rothnie, J.B. and N. Goodman. "A Survey of Research and
Development in Distributed Database Management."
Proceedings Third International Conference on Very Large
Databases, Tokyo, 1977, pp. 48-62.

Takizawa. "Distributed Database System - JDDBS-1,"
JIPDEC, Japan, 1982.

Wong, E. and K. Youssefi. "Decomposition - A Strategy for
Query Processing," ACM Transactions on Database Systems,
Vol. 1, No. 3, September, 1976, pp. 223-241.

2.2 Terms and Abbreviations

The following acronyms are used in this document:

APL Attribute Pair List

AUC Attribute Use Class

CDMP Common Data Model Processor

CI Configuration Item

CS Conceptual Schema

DML Data Manipulation Language

DRS Distributed Request Supervisor
(previously SS: Stager/Scheduler)

ES External Schema

ICAM Integrated Computer Aided Manufacturing

IISS Integrated Information Support System

IS Internal Schema

NDML Neutral Data Manipulation Language

2-2



DS 620341310
30 September 1990

RFT Result Field Table

RP Request Processor
(previously QP: Query Processor)

SDS System Design Specification

2-3



DS 620341310
30 September 1990

SECTION 3

REQUIREMENTS

3.1 Computer Program Definition

3.1.1 System Capacities

The DRS must operate within the capacity of the host
computer and is functionally dependent upon NTM Services.

3.1.2 Interface Requirements

3.1.2.1 Interface Blocks

This CI is the mechanism that determines the order of
aggregating intermediate results of accesses to distributed
databases, and coordinates interactions among the
AP/RP/DRS/Aggregators during updates.

There is a Distributed Request Supervisor program for each
site or host in the IISS network. An instance of the
Distributed Request Supervisor (DRS) program runs as a
subroutine to each user AP that contains NDML commands. This
DRS takes on the role of master control program for all the
transactions from that user AP. Instances of Distributed
Request Supervisor at other sites become the master control
programs for transactions initiated at those sites.

The Distributed Request Supervisor CI has responsibility
for run-time scheduling of activities comprising distributed
database accesses and updates. It initates local Request
Processors and receives replies when they have completed. It
sends subtransactions to appropriate application clusters,
initiates file transfer requests to transmit intermediate
relations, and initiates corresponding Aggregators to perform
join, union, and outer join operations on intermediate
relations.

The interfaces of each Distributed Request Supervisor
include input in the form of messages indicating completion of
activities under the Distributed Request Supervisor control and
the Join Query Graph from the Precompiler CI. Outputs are in
the form of "staging sequences" that direct activities of other
run-time modules.

3.1.2.2 Detail Interface Definition

The specific interface relationships of this CI to other
CIs and modules are described in detail for appropriate functions
in Section 3.2.

The DRS depends heavily upon three capabilities of the

3-1



DS 620341310
30 September 1990

NTM, and without these facilities, will not properly function.

a. If a process dies or is killed, the NTM must notify,
via an unsolicited message, the parent process.

b. If a process dies or is killed, the NTM must kill all
processes which are children of the dead process.
The children processes must not be given the option
of continuing or dying; they must be killed.

c. The DRS will communicate with other processes via
messages which are guaranteed to be delivered. The
NTM must provide this facility in an efficient
manner, and must include a mechanism to properly
handle the node-dropping/node-returning/node-isolated
problems.

3.1.3 Design/Implementation Differences

This section describes the significant differences between
the design of the Distributed Request Supervisor (DRS) that is
documented in this Development Specification and the software
that has been produced to implement the DRS. This section is
not concerned with minor differences such as the exact
structure of tables that are passed from one module to another
within the DRS.

The only difference is the way in which CS-ES transformers
are invoked by user APs at run-time. The design indicates that
they are invoked via the Distributed Request Supervisor (DRS),
but the Precompiler software generates code into the user APs
to invoke them directly. This is possible because every CS-ES
transformer must run on the same host computer as its user AP.
Consequently, the DRS (and the NTM) are not needed. This was
not forseen when the design was prepared and time did not
permit the design to be changed later. This difference affects
the PRE10 and PRE15 modules of the Precompiler as well as the
DRS. The design of PRE10 should indicate that code is
generated into the user AP source program to invoke each CS-ES
transformer directly as a subroutine, rather than via the DRS
and a local subroutine caller (LSC). The design of PRE15
should not indicate that LSCs are generated containing code to
invoke CS-ES transformers. The design of the DRS should not
indicate that DRSs are involved in invoking CS-ES transformers.

3.2 Detailed Functional Requirements

The following subsections respectively document each of
the Distributed Request Supervisor major functions identified
in Section 1.2.

3.2.1 Function DRSI: Initiate/Resume Subtransaction Processing

This function directs appropriate Request Processors to
begin or resume processing. The Request Processors were built
by the Precompiler CI and are co-located with their target
databases.

3-2



DS 620341310
30 September 1990

3.2.1.1 Inputs

Inputs to this function are:

o The program ID (PID) and runtime parameters for each
Request Processor which is to be activated for the
NDML request. Four data items are input for each
Request Processor to be activated: the PID, a code
indicating whether to use a subroutine call or the
NTM, a string containing the corresponding run-time
parameters, and the length of the string.

Run-time parameters are to be applied by the Request
Processors to the subtransactions. These parameters
are the values of the COBOL variables that were part
of the NDML query. The first variable must contain
the CASE statement number generated by the
Precompiler.

o Responses from the NTM as a result of the DRS START-
REMOTE requests for the RPs. These responses will
contain the Logical Channel ID and the local process
ID for the initiated RPs.

o Response from the Request Processor as a result of a
START-LOCAL request. These responses will contain the
Logical Channel ID assigned.

o Join Query Graph corresponding to the NDML request
being processed.

o An attribute pair list. This list contains
information concerning the join fields of the join
edges of the Join Query Graph. This list will not be
present for an update request.

o A Result Field Table. This table contains information
about the result and join attributes of the query.
This list will not be present for an update request.

o A Request Processor Information Table (RPIT) (see
3.2.2.4).

The first input is received from the Generate Request
Processor function (PRE9) of the Precompiler CI. The other
inputs are from the Decompose CS NDML function (PRE5) of the
Precompiler CI.

A join query graph (JQG) corresponds to a CS NDML
verb. Each node of a JQG represents an intermediate
relation that will result from processing a single
subtransaction, which accesses one database. Each edge of a
JQG represents an inter-database join, union, or outer join
operation between two relations. The set of edges represents
the join, union, and outer join operations that in combination

3-3



DS 620341310
30 September 1990

will result in the response to the CS NDML transaction. The
format of the JQG is a table, with an entry for each edge of
the graph. Each entry contains the following information:

rell rel2 edge-type attr-ptr PIDI PID2

where

rell = one of the edge nodes (PID of the RP that
will create rell)

rel2 = the other node (PID of the RP that will
create rel2)

edge-type = (join) = 4
(union) = 5
(outer join) = 7
(deleted) = *

attr-ptr A pointer into the attribute pair list.
It is null if the edge type is UNION.

The format of the attribute pair list (APL) is a group of
linked lists of attribute pairs, one linked list for each edge

of the JQG. Each
entry in each list
contains the
following:

rell rel2 attrl comparison-op attr2 link

where

rell = the name of one edge node
rel2 = the name of the other edge node
attrl = the Attribute Use Class number (AUC) of the

attribute of rell which is participating in
the join with attr2.

attr2 = The AUC of the attribute of rel2 which is
participating in the join with attrl.

link = a pointer to the next entry in the list. (A
join can have more than one join field
pair). The field is null if there are no
more entries in the list.

comparison-op the operator (=, <, >, <=, >=, !=) used to
compare two attributes.

Each entry in the Result Field Table (RFT) has the

following format:

rel attr type size nd PID is-ptr

where

rel = the name of the relation (subtransaction)
that contains the field

attr = the Attribute Use Class number (AUC) of the
field

3-4



DS 620341310
30 September 1990

type = the type of the field (alphabetic, numeric,
etc.)

size = the size, in bytes, of the field
nd = the number of decimal places maintained in

the field
PID = not used
is-ptr = not used

3.2.1.2 Processing

This function starts the processing of the subtransactions
that comprise a distributed database access or update. The
following steps are performed by this function.

1. Initialize the Relation Information Table (RIT). The
format of this table is described in Section 3.2.2.4.
An entry is placed in the RIT for each relation to be
constructed or accessed by a Request Processor.

2. Replace the Rell and Rel2 values in the JQG with an
index number into the RIT, which corresponds to the
entry for the appropriate relation.

3. Replace the Rel values in the RFT with the
corresponding index number into the RIT if this
request is an access request.

4. If the RPIT (Request Processor Information Table)
(implemented as the QIT, see 3.2.2.4) has not been
initialized for the specific instance of the AP, or if
an existing RPIT has been set to "uninitialized" by
the appearance of an NDML recovery unit termination
request, the RPIT is now initialized by establishing
such a table with one entry per RP name contained in
the input message stream. If the RPIT had already
been established, continue.

5. If Step 4 initialized the RPIT:

First, initiate each RP with RP-call-type "R" in
the QIT by issuing a STARTREMOTE message to the
NTM. Then, initiate each RP with RP-call-type =
"L" by calling it as a subroutine. The informa-
tion given to the subroutine or the NTM will
include the RP PID and the runtime parameters
for each RP. The CASE statement number passed
to the RP during this initiation phase is to be
zero.

The NTM will return, for each remote RP
initiated, the Logical Channel ID and the local
process ID. The Logical Channel ID is to be
placed into the corresponding entry in the RIT.

3-5



DS 620341310
30 September 1990

The local process ID for each remote RP is to be
placed into the corresponding entry in the RPIT.

The Host ID of the corresponding entries in the
RIT are to be set to the Host ID of the hosts
upon which each local or remote RP is running.

The status fields in the RIT are to be set to

"BUSY".

If Step 4 did not initialize the RPIT:

Update the RPIT with any RPs that have a PID in
the input message but do not currently appear in
the RPIT. For those RPs added to the QIT,
perform the functions stated in the above
description for a newly-initiated RPIT.

Processing a subtransaction involves performing local
restricts (a.k.a. selects), projects, and single-database
joins. These operators have been translated to the DML
appropriate for the local DBMS by the NDML/Generic DML
Transformer function (PRE7) and the RP Generator function
(PRE9) of the Precompiler CI. The local result relations
should contain only join attributes and (final) result
attributes.

3.2.1.3 Outputs

The outputs of this function are:

o STARTREMOTE messages that activate or resume remote
Request Processors. These messages contain the run-
time parameters of the subtransaction.

o An initialized RIT, if the request is an access
request.

o The modified JQG, if the request is an access re-
quest.

o An initialized or modified RPIT.

3.2.2 Function DRS2: Schedule Stages

This function iteratively determines the sequence in which
intermediate relations are combined to form the result of a
distributed database access. The sequence ofjoin/union/outer
join activities may include both parallel and serial processing.

3.2.2.1 Inputs

Inputs to this function are:

o Join Query Graph corresponding to the
NDML request being scheduled.

3-6



DS 620341310
30 September 1990

o Result Field Table, if the request is an access

request.

o CS-ACTION-LIST, if the request is an access request.

o ENDLOCAL messages

o ENDREMOTE status parameter

o ENDJOIN, ENDUNION, ENDOUTERJOIN messages

o ENDFILESEND MESSAGES

o Request Processor Information Table

The Join Query Graph (JQG) and Result Field table (RFT)
inputs are also inputs to function DRSI which modified them,
and are described in section 3.2.1.1.

The CS-ACTION-LIST (CSAL) is a list of the attributes
which will comprise the result relation. The order of this
list is the order of the attributes in which the CS/ES
Transformer will expect the final results to be. The format of
the CSAL is the following:

ent-class auc workptr type size nd

where

ent-class = not used
auc = Attribute Use Class of the attribute
workptr = not used
type = not used
size = not used
nd = not used

ENDREMOTE messages are issued by the Request Processors and
contain information about the intermediate relations that re-
sult from local processing. They arrive on the same logical
Channel ID as was assigned when the Request Processor was
initiated or via a parameter if the RP was called as a sub-
routine. ENDREMOTE indicates that processing of a
subtransaction has been completed. The form of an ENDREMOTE
message is:

ENDREMOTE length filename

where

length = the number of tuples in the resultant
relation

filename = the name of the file on which the output
was stored

3-7



DS 620341310
30 September 1990

ENDJOIN, ENDUNION, and ENDOUTERJOIN messages are issued by
the Aggregator CI and contain information about the relations
that result from combining intermediate relations. As in
ENDREMOTE messages, they arrive on the same logical channel as
was assigned when the Aggregator was invoked or via subroutine
parameters.

ENDJOIN indicates that processing of an inter-database
join has been completed. The form of an ENDJOIN message is:

ENDJOIN length filename

where

length = the number of tuples in the resultant
relation

filename = the name of the file on which the output
was stored

ENDUNION indicates that the processing of an inter-
database union has been completed. The form of an ENDUNION
message is:

ENDUNION filename

where

filename = the name of the file on which the output was
stored

Length is not available since one of the input operands is
not read or counted; it is merely appended to by the UNION
aggregator. The DRS knows a priori the length of each UNION
operand and hence can sum the two to arrive at a total length of
the resultant relation.

ENDOUTERJOIN indicates that the processing of an inter-
database outerjoin has been completed. The form of an
ENDOUTERJOIN message is:

ENDOUTERJOIN length filename

where

length = the number of tuples in the resultant
relation

filename = the name of the file on which the output
was stored

ENDFILESEND messages are sent by the File Transfer process

to acknowledge that a file has been sent as requested.

3.2.2.2 Processing

This function receives information about the results of
processing of intermediate results.

3-8



DS 620341310
30 September 1990

The following describes the algorithm used by this module
to control the runtime evaluation of a request. The general
strategy is to break the request into stages, execute the
stages serially, but execute the components of each stage in
parallel. The first stage is comprised of all the request
processors. Subsequent stages consist of file transfer re-
quests, join requests, union requests, and/or outer join re-
quests. Step 4, described below, determines which requests
comprise subsequent stages.

Step 1. Initialize Scheduler Tables

Create or update the following Performance
Information Tables (PITs):

a. Read the Transmission Cost Table (TCT) from a
file. There is one TCT file at each site. The
format of this table is described in Section
3.2.2.4. Implementation Note: this table is
compiled into the DRS.

b. For each entry in the RIT, calculate the width
of the relation to be constructed by the
corresponding request processor. This is
calculated by examining the corresponding
entries in the RFT. Enter each width into the
appropriate RIT entry. Add 1 for each
coresponding RFT entry to account for the null
flag.

c. Initialize the Cost Information Table (CIT).
Each entry in the CIT corresponds to a candidate
union, join or outer join action. The format of
this table is described in Section 3.2.2.4. For
each entry in the JQG, there will be two entries
in the CIT. The first entry will have rell as
the source relation and rel2 as the dest
relation, and the other entry will have rel2 as
the source relation and rell as the dest
relation. For each entry placed in the CIT, set
the source and dest fields as just described, set
the i-p field to null, and set the edge-id field
to the appropriate index into the JQG.

Step 2. Process Incoming Messages

This step processes reply messages sent by the
Request Processors, Aggregators and return parameters
from local subroutines and aggregators. The Logical
Channel ID, which is a part of each message or
parameter is used to locate the entries in the RIT and
CIT which correspond to the relation created by the
process issuing the message.

3-9



DS 620341310
30 September 1990

a. Process ENDREMOTE messages

o Update the RIT entry corresponding to this
message. Set the length field with the
value returned in the message, and set the
status field to FREE. Store the results file
name in the RIT entry.

o Scan the RIT. If there are any entries
with the status field equal to Busy,
go to Step 2, else go to Step 3.

b. Process ENDJOIN, ENDUNION and/or ENDOUTERJOIN
messages

o Update the RIT entry corresponding to this
message. Set the length field with the
value returned in the message, and set the
status field to FREE. Store the results
file name in the RIT entry.

o Remove the corresponding CIT entry from the
CIT.

o Scan the CIT. If there are any entries
with an i-p value of T or P, go to
Step 2, else go to Step 3.

c. Process ENDFILESEND messages

o Locate the RIT and CIT entries associated
with the logical channel ID of the message.
Store the results file name in the RIT
entry.

Go to Step 4.c.

Step 3. Calculate Costs

This step removes duplicate entries in the CIT, and
calculates the cost for each remaining entry. If the
CIT is empty, then Function DRS2 is completed.

a. Remove all entries in the CIT which have the
same source and dest relation as a previous
entry.

b. If the CIT is empty, the RP operations requested
for the NDML request have been completed, with
the possible exception of an Aggregator step for
the termination of a recovery unit, the RPs that
have been operating on behalf of the AP must now
be stopped. Each of the RPs has, by this time,
executed a local recovery unit termination as a
result of the NDML request itself. The DRS must

3-10



DS 620341310
30 September 1990

now request that the NTM terminate the RPs
indicated by the entries in the RPIT. Therefore,
for each entry in the RPIT, the DRS will send a
termination request to the NTM, indicating the
host-id and the local process id that is to be
terminated. (implementation has shown this step
to be incorrect).

c. Calculate the cost for each remaining entry by
multiplying the length of the source relation by
the width of the source relation by the trans-
mission cost factor. The lengths and widths are
obtained from the RIT, and the transmission cost
factor is obtained from the TCT. Put the cost
value in the corresponding entry in the CIT.

Step 4. Process Join, Union, and Outer Join Edges

This step selects which join, union, or outer join
is to be performed next, updates the PITs
appropriately, sends FILE-TRANSFER messages, and
invokes Aggregators to perform the selected join,
union, or outer join.

a. Select the next join, union, or outer join to
process.

o Select the next lowest cost entry in the
CIT; call that entry c-i.

o If the edge-type is JOIN or OUTER JOIN
(found in JQG) AND either the source or
dest relation appears elsewhere in an
CIT entry which has an edge type of UNION,
then go to Step 4.1a

o If the status of either the source or dest
relation (found in RIT) is not FREE, then
go to Step 4.a.

b. Update the PITs

o Change the status field of the RIT for the
source and dest relation entries to BUSY.

o Remove the other entry in the CIT with the
same edge-id.

o Add a new entry to the RIT, which
corresponds to the results of the join,
union, or outer join to be performed. Set
the status to BUSY.

3-11



DS 620341310
30 September 1990

o Add an RFT entry for each attribute which
will appear in the result relation. All
fields of both the source and dest op-
erands, except join or outer join fields,
will appear in the result relation. For
each join or not-in-set field, scan the
APL for an entry which contains it. If it
appears in the APL entry other than the
current one, then it must appear in the
result relation. Calculate the width of
the resultant relation, and place the
value in its RIT entry.

o Change all Rel fields in the JQG, CIT, and
APL whose value equals either the source or
dest relation RIT index to the RIT index
of the result relation.

c. Send FILE-TRANSFER, JOIN, UNION and/or OUTER JOIN
messages

o If the source relation is not at the same
site as the dest relation, send the source
file. Update the appropriate RIT and CIT
entries with Logical Channel ID associated
with the file transfer, and change the Host
ID field appropriately. Set the i-p field
in the current CIT entry to T. Go to Step
4.a.

o Initiate the appropriate Aggregator to
perform the join, union, or outer join
operation, as designated by the edge-type.
If the Aggregator is to run on the same
node as the user AP, initiate
the Aggregator via direct call; otherwise,
initiate it via the NTM. Update the
appropriate RIT and CIT entries with the
lo~ical channel ID associated with the
join. Set the i-p field of the current C-T
entry to P. Set the Host-id field in the
RIT appropriately. The formats of the JOIN
and UNION messages are described in Section
3.2.2.3; that of the OUTER JOIN message, in
AGG1.

o If we got to Step 4.c as a direct result of
an ENDFILESEND message, go to STEP 2,
else go Step 4.

3.2.2.3 Outputs

The outputs of this function are the FILE-TRANSFER, JOIN,
UNION, and NOT-IN-SET messages, and NTM requests for process
termination.

3-12



DS 620341310
30 September 1990

a. A FILE-TRANSFER message has the following format:
FILE-TRANSFER stage-id from-site to-site rell

rel2

where

from-site = the current site location of
the relation

to-site = the destination site for the
relation

rell = the file name of the relation to
be sent

rel2 = the file name of the relation on
the to-site

b. A JOIN message has the following format:

JOIN rell rel2 APL rell-rft rel2-rft
result-rft

where

rell = the file name of one of the
relations to be joined

rel2 = the file name of the other
relation to be joined

APL = An attribute pair list of the
join fi ld pairs for this
join

rell-rft = An RFT for the fields of Rell
rel2-rft = An RFT for the fields of Rel2
result-rft = An RFT for the fields of the

result relation

c. A UNION message stage has the following format:

UNION rell rel2

where

rell = the file name of one of the
relations to be unioned

rel2 = the name of the other relation to
be unioned

d. See AGGI for the format of the OUTER JOIN message.

e. An NTM message requesting process termination has the
following format:

STOP host-id RP-process-id

3-13



DS 620341310
30 September 1990

where

host-id = id of the host upon which
the RP is running

RP-process-id = local process id of the RP
that is to be stopped

3.2.2.4 Internal Data Requirements

Working data requirements include the following per-
formance information tables (PITs):

a. Transmission Cost Table (TCT):

The TCT contains transmission rates between each pair
of application clusters and has the following format:

ac-l ac-2 cost

This table should already exist in a file at each
site. This has been implemented as a host specific
COBOL copy member at each node.

b. Relation Information Table (RIT):

The RIT contains information about each relation in
the transaction, with the format:

rel-id length width status log-ch Host-id

where

rel-id = The file name where the relation
resides

length = number of tuples in the relation
width = size of one tuple, in bytes
status = the present status of the

relation (FREE or BUSY)
subtrans the subtrans id of the relation

c. Request Processor Information Table (RPIT):

The RPIT contains information about each RP that is
currently operating on behalf of the AP. It has the
format:

RP-host-id RP-process-id RP-call-type
RP-commit-roll-status RP-updates-attempted
RP-updates-Succ RP-begin-time RP-end-time

where

RP-call-type = code indicating whether the RP
is activated via the NTM (type

3-14



DS 620341310
30 September 1990

= "R" for remote) or is called
as a subroutine (type = "L"
for local)

RP-host-id = id of the host upon which the
RP is running

RP-process-id = process id of the RP on the
specific host

RP-commit-roll-status = the status of the commit or
rollback performed by the RP
(if any)

RP-updates-attempted = the number of database updates
attempted by the RP

RP-updates-succ = the number of database updates
that were successfully
completed by the RP

RP-begin-time = the clock time that the RP
commit or rollback was started
(if any) (used for RP logging
purposes)

RP-end-time = the clock time that the RP
commit or rollback ended (if
any) (used for RP logging
purposes)

d. Cost Information Table (CIT):

The CIT contains information regarding all possible
inter-database joins and unions, with the format.

i-p edge-id source dest cost log-ch

where

i-p a flag to mark the join as P
(in progress) or T (file
heirs transferred)

edge-id = the index of the particular
edge into the JQG

source = the RIT index of the
relation that will be
transmitted

dest = the RIT index of the other
relation

cost = the cost of transmitting the
source relation

log-ch = the logical channel ID
associated with the
Aggregator process which is
performing the join, union,
or outer join.

The cost value is determined by multiplying the
length of the source relation from the RIT, times the
width of the source relation from the RIT, times the

3-15



DS 620341310
30 September 1990

appropriate cost formula from the TCT.

e. Result Field Table (RFT):

The RFT is originally input from the Decompose CS
NDML function (PRE6), but must be updated to keep
track of result attributes as joins are processed.

3.2.3 Function DRS3: Transfer Final Results

This function will, if necessary, move the final results
file to the node on which the user AP and DRS is operating. It
is executed only for access requests (actions S, 1, 2, or K).

3.2.3.1 Inputs

The inputs to this function are:

o The host id on which the user's AP is running

o The current host on which the final results of the
query or aggregation are stored.

o The name of the final results file.

The first input is hardwired into each host specific
version of the DRS. The second is obtained from the only entry
in the RIT marked as free. The third input is also found in the
same entry of the RIT.

3.2.3.2 Processing

o Compare the host of the user AP and the host of the
final results. If they differ, issue a FILE TRANSFER
message to move the file.

o Wait for the reply from FILESEND.

o When the FILESEND is complete, delete the final
results file that was on the other host

3.2.3.3 Outputs

The outputs of this function are the following:

o The file send message, if required, to move the final
result

o A transaction complete message, which is returned as
a parameter to the application process requesting the
transaction. This message includes the file name of
the results.

3.3 Special Requirements

Principles of structured design and programming will be
adhered to.

3-16



DS 620341310
30 September 1990

3.4 Human Performance

Not applicable.

3.5 Database Requirements

Not applicable.

3.6 Adaptation Requirements

The system will be implemented at the ICAM IISS Test Bed
site. The first Distributed Request Supervisor process will be
implemented on the VAX VMS host.

3-17



DS 620341310
30 September 1990

SECTION 4

QUALITY ASSURANCE PROVISION

Among the tests that should be incorporated into the

software are:

a. input data checks

b. interface data checks, i.e. tests to determine
validity of data passed from calling routine

c. database verification

d. operator command checks

e. output data checks

Not all tests are required in all routines, but error
checking is an essential part of all software.

The CI quality assurance provisions must consist of three
levels of test, validation and qualification of the constructed
application software.

a. The initial level can consist of the normal testing
techniques that are accomplished during the
construction process. They consist of design and
code walk-throughs, unit testing, and integration
testing. These tests will be performed by the design
team which will be organized in a manner similar to
that discussed by Weinberg in his text on software
development team organization (THE PSYCHOLOGY OF
COMPUTER PROGRAMMING, Van Nostran Reinhold, 1971).
Essentially a team is assigned to work on a sub-
system or CI. This approach has been referred to as
"adaptive teams" and "egoless teams." Members of the
team are involved in the overall design of the sub-
system; there is better control and members are ex-
posed to each other's design. The specific advantage
from a quality assurance point is the formalized
critique of design walk-throughs which are a
preventive measure for design errors and program
"bugs." Structured design, design walk-throughs and
the incorporation of "antibugging" facilitate this
level of testing by exposing and addressing problem
areas before they become coded "bugs."

b. Preliminary qualification tests of the CI are per-
formed to highlight the special functions of the CI
from an integrated point of view. Certain functional
requirements may require the cooperative execution of
one or more modules to achieve an intermediate or
special function of the CI. Specific test plans will

4-1



DS 620341310
30 September 1990

be provided for the validation of this type of
functional requirement including preparation of
appropriate test data. (Selected functions from 3.2
must be listed).

c. Formal Qualification Tests will verify the functional
performance of all the modules within the CI as an
integrated unit that accept the specified input,
perform the specified processes and deliver the
specified outputs. Special consideration must be
given to test data to verify that proper interfaces
between modules have been constructed.

4-2



DS 620341310
30 September 1990

SECT.ON 5

PREPARATION FOR DELIVERY

The implementation site for the constructed software will
be the ICAM Integrated Support System (IISS) Test Bed site. The
required computer equipment will have been installed. The
constructed software will be transferred to the IISS system via
appropriate storage media.

*U.S. GOVERNMENT PRINnNG 0MCE: 1I - 64WI27/62ir,

5-1


