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FOREWORD

This technical report covers work performed under Air Force
Contract F33600-87-C-0464, DAPro Project. This contract is
sponsored by the Manufacturing Technology Directorate, Air Force
Systems Command, Wright-Patterson Air Force Base, Ohio. It was
administered under the technical direction of Mr. Bruce A.
Rasmussen, Branch Chief, Integration Technology Division,
Manufacturing Technology Directorate, through Mr. David L. Judson,
Project Manager. The Prime Contractor was Integration Technology
Services, Software Programs Division, of the Control Data
Corporation, Dayton, Ohio, under the direction of Mr. W. A.
Osborne. The DAPro Project Manager for Control Data Corporation
was Mr. Jimmy P. Maxwell.

The DAPro project was created to continue the development, test,
and demonstration of the Integrated Information Support System
(IISS). The IISS technology work comprises enhancements to IISS
software and the establishment and operation of IISS test bed
hardware and communications for developers and users.
The following list names the Control Data Corporation

subcontractors and their contributing activities:

SUBCONTRACTOR ROLE

Control Data Corporation Responsible for the overall Common
Data Model design development and
implementation, IISS integration and
test, and technology transfer of IISS.

D. Appleton Company Responsible for providing software
information services for the Common
Data Model and IDEFIX integration
methodology.

ONTEK Responsible for defining and testing a
representative integrated system base
in Artificial Intelligence techniques
to establish fitness for use.

Simpact Corporation Responsible for Communication
development.

Structural Dynamics Responsible for User Interfaces,
Research Corloration Virtual Terminal Interface,and Network

Transaction Manager design,
development, implementation, and
support.

Arizona State University Responsible for test bed operations
and support.
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SECTIQN L

INTRODUCTION

The Neutral Data Manipulation Language, hereafter NDML, was developed by the U. S.
Air Force to provide access to the databases of the Integrated Information Support System (ISS)
Testbed. The NDML allowed its users to work with the heterogeneous, distributed databases on
the USS Testbed as though they constituted a single relational database.

The NDML has been designed to provide as much functionality as possible while
attempting to be logical in application and convenient. The NDML is intended to be used by data
processing personnel and by manufacturing personnel who may have limited knowledge of
database systems.

The NDML is a language similar to SQL (Structured Query Language, pronounced"sequel") and Quel, two well-known languages used to access relational databases. The utility of
the access method provided by the NDML is supported by extensive theory and practical tests of
these relational languages.

The NDML is designed for use either as a stand-alone language or as embedded statements
in the host languages of COBOL or FORTRAN. Currently, only embedded statements are
supported and this manual applies only to embedded NDML. The NDML examples in the
command descriptions in this manual neglect the embedding characters (*# for COBOL or C# for
FORTRAN) for simplicity, but their use is shown in succeeding sections.

When stand-alone requests are supported, deviations from the embedded language will be
as few as possible. The differences are due mainly to the requirement that a retrieved table be
presented to host programs a row at a time, while the entire table can be presented in response to a
stand-alone request from an interactive NDML user.

The NDML Precompiler is used to process the application program containing embedded
NDML statements before the host language (COBOL or FORTRAN) compiler is used. The host
language compiler can be used first to debug host language statements, but the NDML precompile
step must precede host-language compilation before executable object code is produced. The use
of the Precompiler is described in the NDML Precompiler Users Manual.
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The important property of the NDML to keep in mind when using this manual is that you
perceive all data to be in the form of tables. Data within the database can be considered to be stored
as tables even if containing only one row of values. Similarly, only tables can be retrieved from
the database, even if the table consists of a single "row" with a single "column" (i.e., only a single
value). This important property of relational databases allows the output of one retrieval command
to be utilized as the input to another operation without worrying about the structure of the data.
Furthermore, "chunks" of data can be retrieved and used without having to specify the structure of
the data for each application and the size of the data chunk.

Tables are usually called "relations" and the terms table and relation will be used
synonymously here. Similarly, rows of the table may be called "records" or "tuples" and columns
may be called "data fields", "data items" or "attributes". An individual number or character string
entry in the table will be called a "value".

Each of the following sections on specific commands begins with the syntax of the
command. The syntax is presented using a method that is described at the beginning of Section 3;
it is similar to the method used in the NDDL manual. The rigorous BNF description of the
language is presented in appendix A. Following the syntax of the command, semantic notes point
out conflicting commands and restrictions that are not supported by the system. This document
should provide sufficient information for an application programmer to begin work. Moreover,
you will find it an appropriate reference in the future when you have become familiar with NDML.

If you are unfamiliar with SQL, you should consult tutorials and references on that
language before using this guide.

References include:

Chamberlin, D.D., et al., "Sequel 2: A Unified Approach to Data Definition, Manipulation, and
Control," IBM Journal of Research and Development. Vol 20, No. 6, Nov. 1976, pp. 560-575.

Date, C.J., A Guide to DB2. Addison-Wesley Publ. Co., 1984.

In addition, many commercial relational database systems offer interface languages similiar
to SQL. The manuals for these languages are useful for becoming acquainted with the general
syntax of SQL.
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SECTION 2

SYSTEM OVERVIEW

The processing system is known as the Common Data Model Processor (CDMP). The
CDMP provides the application programmer with important capabilities to:

Request database accesses in a non-procedural data manipulation language (the
NDML) that is independent of the data manipulation language (DML) of any
particular data base management system.

Request database access using a NDML that specifies accesses to a set of related
records, rather than to individual records (i.e., using a relational DML).

Request access to data that are distributed across multiple databases with a single
NDML command, with minimum knowledge of data locations or distribution
details.

Information about external schemas, the conceptual schema and internal schemas (including
data locations) are provided by CDMP access to the Common Data Model (CDM) database. The
CDM is a relational database of metadata pertaining to IISS. It is described by the CDM1
information model using IDEF1. The Precompiler parses the application program source code,
identifying NDML commands. It applies external-schema to conceptual-schema and conceptual-
schema to internal-schema transforms on the NDML command, thereby decomposing the NDML
command into internal-schema, single database requests. These single database requests are each
transformed into generic data manipulation language (DML) commands. Programs are generated
from the generic DML commands which can access the specific databases to accomplish the
request. These programs, referred to as Request Processors (RP), are stored at the appropriate
host machines. The NDML commands in the application source program are replaced by host-
language code which, when executed, activates the run-time request evaluation processes
associated with the particular NDML command.

The Precompiler also generates a CS/ES Transformer program which will take the final
results of the request, stored in a file as a table with external-schema structure, and convert the data
values into the correct form for presentation. The CS/ES Transformer also performs NDML
function operations on the data.

Finally, the Precompiler generates a Join Query Graph and Result Field Table which are
used by the Distributed Request Supervisor (DRS) during the run-time evaluation of the NDML
request.
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The DRS is responsible for coordination of the run-time activity associated with the
evaluation of an NDML command. It is activated by the application program, which sends it the
names and locations of the query processors to activate along with run-time parameters which are
to be sent to them. The results generated by the query processors are stored as files in the form of
conceptual-schema relations on the host which executed the query process. Using the Join Query
Graph, transmission cost information and data about intermediate results, the DRS determines the
optimal strategy for combining the intermediate results of the NDML command. It issues the
appropriate file transfer request, activates aggregators to perform unions, joins, and NOT IN SET
operations, and activates the appropriate CS/ES Transformer program to transform the final
results. Finally, the DRS notifies the application program that the request is completed, and sends
it the name of the file which contains the results of the request.

The Aggregator is activated by the DRS. An instance of the Aggregator is executed for
each union, join, and NOT IN SET operation performed. It is passed information describing the
operation to be performed and the file names containing the operands of the operation. The DRS
ensures that these files already exist on the host which is executing the particular Aggregator
program. The Aggregator performs the requested operation and stores the results in a file whose
name was specified by the DRS.
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ECION 3

NDML COMMANDS

The following conventions are used in the description of the NDML commands at the
beginning of the following subsections:

3.1 Conventns

3.1.1 Notation

UPPER CASE WORDS denote keywords in the command

LOWER CASE WORDS denote user-defined words (entered in upper case)

{ } denotes that exactly one of the options within the braces must be selected by the
user

-.. denotes repetition of the last element

[ denotes that the entry within the brackets is optional

I denotes an "or" relationship among the entries

_ denotes default option

3.1.2 Pntion

1. A "." is used to separate the table-label (i.e., table alias) from the column-name. The
table-label is used to match a column to a specific table in the list of tables referenced
in the FROM clause.

2. A ":" is placed before the name of a host-language program variable, structure or file
name that will receive returned values.

3. A "," is inserted between entries in the list of tables in a FROM clause.

4. A "," is inserted between subscripts to an array variable.

5. Parentheses are used to enclose the column-list in an INSERT statement.

6. Parentheses are used to enclose the object column of a function.

7. Parentheses are used to enclose the values to be inserted in an INSERT statement.
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8. Parentheses are used to enclose a program variable subscript list.

9. A mandatory ";" or "loop construct" (see Loop Construct, subsection 3.7) is affixed at
the end of the command.

3.1.3 Ch trCas

Only upper-case letters are recognized by the NDML Precompiler.

3.1.4 WordJ.eaglh

Table labels are limited to 2 characters.

Table and column names are defined by the relational view in use.

3.2 Data Retrieval Commands

3.2.1 Syna

Data are retrieved from the database using the SELECT command. The command has the
following syntax:

SELECT [WITH { EXCLUSIVE) LOCK]
(SHARED
(NO )

[INTO {FILE 'file-name' }]
FILE ':variable-name'
STRUCTURE :variable-name}

[DISTINCT] { [table-label] ALL
:variable-name [(subscript, ... )] = expr-spec ...

FROM table-name [table-label],...
[WHERE predicate-spec
[AND predicate-spec ...1]
[ORDER BY column-spec [direction] ...]

loop construct

where

file-name and variable-name are defined in the host program,

table-label is a one- or two-character name,

table-name and column-spec are defined for the relational view,
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predicate-spec is either a column-, join-, between-, or null-predicate (see Appendix A)

subscript is an integer or a subscript-list

direction is ASCDESC
ASCENDING
DESCENDING
UP
DOWN

expr-spec is / column-spec

AVG ([DISTINCT] column-spec
MEAN
MAX /
MINS SUM

COUNT
X /

column-spec is column-name }
{ table-name.column-name}
{ table-label.column-name}

loop construct is a list of program and/or NDML statements enclosed in braces for the
purpose of transferring retrieved values to program variables, processing host language
statements with the values retrieved, etc.

3.2.2 Comments

(a) SELECT Keyword

The SELECT command is the only command used in NDML to retrieve data from the
distributed database. This keyword must be the first word in the command.
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(b) LOCK Phrase

A lock limits access to specific rows of tables while a transaction is being processed to
prevent alteration these rows during the transaction. A lock is owned by the transaction in which
the SELECT statement occurs. An EXCLUSIVE lock denies access to all rows accessed by the
transaction to all other processes. In addition, a request by any other transaction for any type of
lock on the row will be caused to wait until the EXCLUSIVE lock is released. An EXCLUSIVE
lock is normally used only when using an update command on a row, but might be needed in a
SELECT request in a transaction to ensure that no other transaction can obtain a lock on the row.
A transaction issuing a SELECT request may need to lock a selected row if it intends to update the
row based on values retrieved earlier.

A SHARED lock also locks rows but allows other transactions also to lock a row. A
SHARED lock is used normally in a SELECT command to ensure that a row is not changed by a
contemporary MODIFY or DELETE transaction that must obtain an EXCLUSIVE lock to perform
its function.

If no type of lock is specified in a lock-request, a NO lock is assumed unless the SELECT
falls within an explicitly specified transaction. For example,

BEGIN TRANS

COMM1T/UNDO;

causes a SHARED lock to be requested automatically.

The lock placed by a transaction depends on the implementation of locks in the particular
database systems of the internal schema. The lock placed on the data in the internal schema by the
local database manager usually locks either (1) only the accessed record or (2) the entire accessed
table, depending on the local database. A "LOCK TABLE" command that will ensure that an entire
table, rather than just a record, is locked is not provided in NDML at present. You should assume
onl) that each record accessed is locked.

(c) INTO Phrase and Variable Assignments

The data retrieved by a SELECT command can be either (1) placed into a file or program
structure with the INTO phrase or (2) assigned to program variables using a variable-assignment
construct. Selecting into a program structure is not applicable if you embedded the NDML
statement in a FORTRAN program because structures do not exist in the language.
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The file name can be specified by using the keyword FILE and enclosing the file name in
single or double quotes. If a colon is not the first character following the first quote, then the literal
contents of the quoted character string will be taken to be the name of the file. If the first character
following the first quote is a colon, then the rest of the character string will be taken to be the name
of a program variable, the contents of which is
the name of the file.

There is no default extension or file type for the filename specified in the SELECT
statement. You must explicitly state the extension or file type as part of the file name.

You must supply either the COBOL SELECT and FD layout or the FORTRAN format
statement for the file if the file is to be accessed by the application program.

The file specified on the SELECT statement does not have to have been previously created.
Code will be generated into the application program to create, open, populate, and close the file.
Note, that during execution of the actual modified application program, the file will be closed when
you receive control after the completion of the NDML processing.

The entire result of the SELECT will be placed in the file, one row per record, in the order
normally produced by the SELECT command. A loop construct should not be specified when the
INTO phrase is used to place the results in a file. There will be a one character (COBOL PIC 9 or
FORTRAN CHARACTER *1) null value flag at the beginning of the record for each column
selected; 1 means null, 0 means null. The null field itself will contain the null value specified in the
NDDL DEFINE DATABASE command.

If the user has embedded the NDML statement in a FORTRAN program and is selecting
into a file, the following rules apply. If selecting a character data item, the exact size of the data
item will be allotted in the record. If selecting the statistical function COUNT, 9 spaces will be
allotted. If selecting a floating point data item, or the statistical functions AVG, SUM, or MEAN,
19 spaces will be allotted in the record. These 19 spaces will be in character format. When the
user accesses the final result file, a conversion routine must be called to convert the 19 character
string to a floating point value. If selecting an integer data item, 10 spaces will be allotted in the
record. These 10 spaces will also be in character format. As with the floating point, a conversion
routine must be called to convert the 10 character string to an integer value. If selecting the
statistical functions MIN or MAX, the size allotted will depend on the type of the operand.
Character results will be left justified in the space allotted for the result. Numeric results will be
right justified in the space allotted for the result.

A structure is indicated to receive the retrieved data by the keyword STRUCTURE
followed by a space, a colon and the program name of the structure. The defined data types for the
fields in the structure must agree exactly with those for the corresponding column. For a structure
target, only the first row returned will be placed in the target unless the application program
contains code for a loop construct following the SELECT command. The syntax of the loop
construct is described in subsection 7.2.
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If the user has embedded the NDML statement in a FORTRAN program and is selecting
into program variables, the following rules apply. If selecting a floating point data item, the result
variable must be defined as DOUBLE PRECISION. If the data item is integer, the result variable
must be defined as INTEGER. If the data item is character, the result variable must be defined as
CHARACTER *n, where n is the value of the external schema size. If statistical functions MEAN,
AVG, or SUM are used, the result variables must be defined as DOUBLE PRECISION. If
statistical function COUNT is used, the result variable must be defined as INTEGER. If statistical
function MIN or MAX is used, the result variable must be defined according to the data type of the
data item being selected.

If neither a file, a structure, nor variables are specified to receive the result of the select
command in embedded NDML within an application program, the Precompiler will reject the
NDML SELECT statement. Thus, an assignment of retrieved columns to program variables or an
INTO clause must be specified, but both cannot be specified. Also note that if ALL is specified for
columns, an INTO phrase must be specified.

The following are examples of valid SELECT statements.

SELECT INTO FILE 'DEPT-FILE'
D.DNO D.DNAME D.DLOC D.DSIZE
FROM DEPT D
ORDER BY D.DNO;

SELE'(' INTO STRUCTURE :DEPT-STRUCT
D.DNO D.DNAME D.DLOC D.DSIZE
FROM DEPT D
ORDER BY D.DNO
loop construct

SELECT :DEPTNO = D.DNO :DEPTNAME = D.DNAME
:DEPT'LOC = DDLOC :DEPTSIZE = D.DSIZE
FROM DEPT D
WHERE D.DLOC != 'LAX'
loop construct

(d) SELECT DISTINCT Phrase

The DISTINCT clause on a SELECT statement is used to specify that duplicate rows are to
be removed prior to presentation of the results. Omitting the DISTINCT clause implies that
duplicate rows are not removed unless you specified this clause at NDDL Create View time. If
DISTINCT clause is specified in both the NDML select and the NDDL Create View, the result is
the same as if it had been specified.
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The DISTINCT phrase refers to the entire set of selected columns following it. For
example, SELECT DISTINCT ALL FROM T1 removes only those rows from T1 for which all
column values are identical to those of another row in T1. The DISTINCT processing is applied to
rows in their external-schema formats.

SELECT INTO FILE 'FILE-NAME' DISTINCT ALL
FROM DEPT D
WHERE D.LOC = 'LAX';

SELECT INTO FILE 'FILE-NAME' DISTINCT
D.DNO D.DNAME D.LOC
FROM DEPT D

WHERE D.SIZE = 'LARGE';

(e) Restrictions on Column Specifications

Only columns from a table can be specified; quoted literal data to be duplicated in a column
are not allowed, but can be introduced easily by the application programmer. Arithmetic
expressions involving column data are also not supported; they also can be implemented easily
directly in the application program. For example, the following commands are not supported:

SELECT INTO FILE 'FILE-NAME'
EMP'IS IN DEPARTMENT' EMPDEPT
FROM EMP;

SELECT INTO FILE 'FILE-NAME'
'OVERHEAD IS '0.5 * AMOUNT
FROM CONTRACTS;

The column specification ALL indicates all columns of the single table specified by the rest
of the SELECT statement. The table can be derived from a single table indicated in the FROM
clause, as (optionally) qualified by a WHERE clause. Alternatively, multiple tables can be
specified in the FROM clause if a join operation is specified in a WHERE clause, but columns
from only one table can be retrieved at a time using the ALL specification. For example, the
following query is not supported:

SELECT INTO FILE 'FILE-NAME' ALL 1

FROM TABLE1, TABLE2;

but these following queries are supported:

SELECT INTO FILE 'FILE-NAME' ALL
FROM TABLE1, TABLE2
WHERE TABLE1.CITY = TABLE2.CITY;

SELECT INTO FILE 'FILE-NAME' E.ALL
FROM EMP E, DEPT D
WHERE E.DNO = D.DNO;
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An important requirement that must be observed to use the ALL column specification is that
an INTO phrase must indicate where to place the results of the SELECT because individual
columns cannot be explicitly assigned to program variables in this syntax. The number of data
fields and data types in the target structure or file must correspond to those of the columns, as
discussed in the subsection above on the INTO phrase. In the ALL specification, the layout of the
retrieved columns is in alphabetical order. For example, if there are columns TEAMNO and
TEAM.NAME, their order of retrieval will be TEAMNAME first and then TEAMNO.
Howevcr, the ALL specification is prone to error in embedded NDML because the number and
order of the columns can change if the table is reorganized. Note also that the ALL specification
can refrr to only one table. If more than one table is specified in the FROM clause, the appropriate
table to which the ALL designation applies must be indicated using a table-label.

(f) Statistics Functions

Function expressions can be presented as the result of a SELECT statement only; they
cannot be used in a WIHERE or ORDER BY clause. These functions are used to specify that
column statistics of AVG value, MAX value, MIN value, SUM value, or COUNT of rows are to
be produced. AVG and MEAN are synonyms.

The results of AVG (column) are the same as the results of
SUM(column)/COUNT(column). All values are considered unless the optional DISTINCT phrase
within the function clause is included; in which case, duplicate values are removed prior to the
function application. Null values do not contribute to the SUM, MAX, MIN or COUNT function.

SELECT cannot return both a table and the result of functions in a single statement. Thus, if one
function is specified in an expr-spec, then all values to be retrieved must be the one result of
functions. It is permissible to retrieve the several functions, but the user should be aware that the
values in the single row returned will not necessarily have any logical relationship.

MIN, MAX and COUNT can be applied to both numeric and string columns. AVG,
MEAN and SUM can be applied only to numeric columns. Functions are applied to columns in
their external-schema formats. Statistic functions ignore nulls in the data. For the empty set,
COUNT returns zero and other functions return an undefined result; the existence of the empty set
for non-COUNT functions results in a condition code set in NDML-STATUS, as discussed
below.

The ORDER BY clause should not be used when functions are specified because
unnecessary processing will be performed (the system may not allow the clause to be specified).
Specification of function DISTINCT before MIN or MAX is ignored. Functions cannot be used in
a WHERE clause because the result of a function is a property of a group of rows rather than of
each row. A SELECT DISTINCT specification should not be used with functions because it
causes unnecessary processing.
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The formats of function results in COBOL are AVG, MEAN and SUM: $9(9)V9(9);
COUNT: S9(9). The formats of function results in FORTRAN are AVG, MEAN and SUM:
F19.9; COUNT: 19. The number of rows returned by the request is contained in the variable
NDML-COUNT (or NDMLCT in FORTRAN) and generated into the application program by the
Precompiler, obviously, it will always have a value of one for function requests. The variable
NDML-STATUS (or NSTATS in FORTRAN) is generated into the applications program by the
Precompiler, obviously, it will always have a value of one for function requests. The variable
NDML-STATUS (for NDMLST in FORTRAN) generated into the application program contains a
code that indicates the success or failure of the request. An all zero code indicates successful
completion; any other code indicates an error. If a function operates on an empty column, a result
may be returned that is not really valid (for example, SUM will return 0.). The NDML-STATUS
(or NDMLST in FORTRAN) flag and associated null indicator should be checked by the
application program before using the result returned by a function.

SELECT INTO FILE 'FILE-NAME'
AVG(P.LEAD-TIME) MIN(P.LEAD-TIME) MAX(P.LEAD-TIME)
FROM PART P WHERE P.SIZE > 100;

SELECT INTO FILE TILE-NAME' COUNT(D.DNAME)
FROM DEPT D, EMP E
WHERE E.DNO = D.DNO;

SELECT INTO 'FILENAME.DAT
MIN(SE.SALARY) MIN(HE.RATE)
FROM SALARIED-EMP SE, HOURLY-EMP HE;

SELECT INTO FILE 'FILE-NAME' COUNT(DISTINCT E.JOB)
FROM EMP E
WHERE E.DNO = 10;

SELECT INTO FILE 'FILE-NAME' COUNT(DISTINCT D.LOC)
FROM DEPT D, NEWDEPT N
WHERE D.NAME = N.DNAME;

Not,. User-defined functions and explicit arithmetic functions (e.g., WEIGHT * 2.2) are not
supported in this release.

(g) FROM Clause

Table labels or table names may or may not be required by the syntax of the particular
request. If two or more tables are specified in the table-list, it is a good idea to be concise and use
table labels or table names to designate columns. When a table is joined with itself, it is necessary
to use table labels to distinguish columns.

(h) WHERE Clause

The WHERE clause is used to limit the information returned from one or more tables. If
the WHERE clause is not specified, all rows from the first table indicated in the table-list are
returned.
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Only column-predicate or join-predicate comparisons are allowed in WHERE clauses. The
column-predicate compares the value of a column with a single specific value indicated by the
contents of a scalar program variable, a literal string in quotes, or a number. Either the column
name or value can be the first object of the comparison (only the case in which the value is second
is shown in the syntax above). AND clauses can be used to specify multiple qualifications on the
table selected. The comparison operator (bool-op) includes most common operations but does not
include an "IN" comparison that would allow a column to be compared with many values. If there
are any join-predicate comparisons in the WHERE clause, they must all be listed first or all listed
last. They cannot be interspersed with the column-predicate comparisons.

The qualifications specified in the WHERE clause of an NDML statement will be "ANDed"
with those specified in the WHERE clause of the CREATE VIEW. These qualifications include
the entity to entity joins (equi-joins and outer-joins) and the column to value qualifications
(including parenthesis, NOT, AND, OR, XOR, Boolean operators, Between and Null operators).
The precompiler will ignore the WHERE ALL qualifications of the NDML statement when
CREATE VIEW WHERE clause will be enforced by the NDML precompiler. A description of the
CREATE VIEW command may be found in the Neutral Data Definition Language (NDDL) User's
Guide.

The NDML command can easily be placed within a user-defined program loop within an
application program. Consequently, subqueries, in which the comparison values are returned by
another SELECT request, are not supported because more than one value can be returned by the
subquery. Other possible comparison operators currently not supported include EXISTS, ALL
and ANY.

Note that changing the contents of a program variable within the loop construct of the
SELECT command will have no effect on the result because the query has already been executed
before the loop construct is activated. A loop construct is used only to transfer data from a
completed SELECT query to program variables or to a structure. The loop construct is described
in subsection 3.9.

Supported Query:

SELECT INTO FILE 'FILE-NAME' DNO DNAME
FROM EMP
WHERE DTYPE = 'SALES'
AND DLOC = 'SOUTH';

Unsupported Query:

SELECT INTO FILE 'FILE-NAME' DNO DNAME
FROM DEPT
WHERE DNO IN

(SELECT DNO
FROM LOCATION
WHERE DEPTLOC = 'LA');
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The join-predicate comparison allows only the equi-join (=) and NOT IN SET (!=)
operations; the operators <, <=, > and => are not implemented. The join fields compared in a join
or NOT IN SET operation need not have identical data types in the user's (external) view of the
table, except that numeric data must be compared with numeric data and character strings with
character strings.

The equi-join connects a row from each of two tables to form one row in the result table if
the values in the specified columns in the tables are identical. Duplicate rows will be returned if
duplicate rows exist in either table. Rows for which a match is not found are not included in the
result table.

The outer-join operation is a selection procedure that is similar to join, but when rows from
the table specified to the left of the != operator do not match entries in the table to the right, a
"partial" results row will be considered for retrieval. For a more detailed explanation, refer to C.J.
Date, An Introduction to Database Systems. 3rd Edition. Because columns from the table on the
right may have been selected, null values may be introduced. The query may specifically exclude
or include those "partial" rows by use of the IS[NOT] NULL predicate applied to one of the
columns from the right table. For example, with the following request:

SELECT INTO 'FILENAME.TMP' D.DNO D.DNAME E.NAME
FROM DEPT D, EMP E
WHERE D.DNO != E.DNO;

if the following data are found,

D.DNO E.DNO
1 2
2 3
4 5
5 6
7 8
8 9

the result will have "full" rows (without a null E.ENAME) for

D.DN
2
5
8
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and "partial" rows (null E.NAME) for

E.DNO
1
4
7

since these departments did not have employees.

In the example below, the outer-join is applied to the employee table. This is useful often in
validating the subset constraints (entity dependence) defined in the conceptual schema.

SELECT INTO 'FILENAME.FOR' E.DNO E.ENAME
D.DNO D.DNAME

FORM DEPT D , EMP E
WHERE E.DNO U = D.DNO;

The result will have "full" rows for

E.DNO
1
4
7

Some columns cannot be specified in a WHERE clause because the column in the
conceptual schema maps to non-normalized database structures in the intrnal-schema databases.
In particular, a conceptual-schema column that maps to a data field in a repeating group in the
internal database will not have a unique value for each row. The Precompiler should recognize this
problem and reject the NDML request. The CDM Administrator (CDMA) should inform the user
of these restrictions before precompilation. The CDMA can determine those by examining
conceptual-internal schema mapping relationships.

(i) ORDER BY Clause

The ORDER by clause is used to specify the sequencing rules for presentation of the results
of a SELECT operation. Omitting the ORDER by clause on a SELECT statement implies that the
rows of the result table are presented in a system-determined order.

The columns in the order-spec-list control the sorting of result rows in major-to-minor
order. If the direction phrase is omitted for a column, then ASC (ascending) is assumed. The
columns of an order-spec-list need not all have the same accompanying direction. Also, the
columns need not appear in the column-list of the SELECT phrase.
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Sorting is done on the columns in their external-schema formats and will be done on the
machine running the application program. The order of the sorted result will depend on the storage
code used by the computer running the applications program. ASCII is to be used whenever
possible. Thus, the result of the same program can differ if it is precompiled and run on different
machines. Note that ASC, ASCENDING and UP are equivalent and that DESC, DESCENDING
and DOWN are equivalent. Null values are treated as the largest representation and will appear last
when the ASCENDING option is chosen and first when the DESCENDING option is chosen.

SELECT INTO 'FILENAME.COB' E.NAME E.DEPT E.PHONE
FROM EMP E
WHERE E.JOBCODE > 50
ORDER BY E.NAME;

SELECT INTO FILE 'FILE-NAME' PART# SIZE
FROM PART
ORDER BY SIZE DESCENDING;

SELECT INTO 'FILENAME.DAT D.DEPT# D.LOC D.CITY
FROM DEPT D
ORDER BY D.CITY ASC D.LOC DESC D.SIZE ASC;

(j) Nulls

Nulls are intentionally introduced in-to a query result by use of the outer join along with
selection of columns from the second table when the data does not match. These can be tested for
with the IS [NOT] NULL predicate. A value to be recognized as NULL for the internal schema
databases will be stored in the CDM. These shall be used when qualifying (use of IS [NOT]
NULL) on an external schema data item that maps to this internal schema value, outside of the
outer join application.

To allow testing of retrieved data values within the loop construct a COBOL condition (or
FORTRAN string) will be added to the user's program that can be tested with an IF statement.
This condition actually will be an array of flags, one occurrence for each selected item, left to right.
The COBOL or FORTRAN element (FLAG-X in COBOL and FLAGAR in FORTRAN) is set to I
if a null value is encountered, zero otherwise. If a null value is found, the value of the user's
variable will be set to the null value specified in the NDDL DEFINE DATABASE command. For
example,

SELECT :X1 = A.B :X2 = A.C :X3 =A.F :X5 = A.K

FROM TABL1 A

IF FLAG-X (3) =1
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In this example, the user has tested the column A.F for a potential null value. The user
must be careful with nested selects in one routine. The null-column array only refers to the last
row returned (the inner most SELECT on nested selects).

SELECT(
test here for outer SELECT NULLS
SELECTI
test here for inner SELECT NULLS
I
test here for inner SELECT NULLS of last inner row retrieved

As can be seen, the null column array is not a "stack" of flags.

In FORTRAN, the array "FLAGAR" can be tested for a non-zero value:

SELECT :X1 = A.B :X2 = A.C :X3 = A.F :X5 = A.K

FROM TABLI A

IF (FLAGAR(3:3) .NE. '0') THEN
ENDIF

(k) Grouping Clauses

This release does not support GROUP BY and HAVING clauses to determine aggregate
properties of multiple rows of a table. These operations must be performed by the application
process.

(1) Logic Rules for WHERE clause

NOT
The NOT operator will be translated according to DeMorgan's Law: Operators are

reversed, AND becomes OR and OR becomes AND.

EXCLUSIVE OR

(See Appendix A for exact syntax definitions)

WHERE X.A < 5 XDR X.B = 12
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will be translated to

WHERE (X.A <5 OR X.B = 12) AND (X.A > = 5 OR X.B! =12)

WHERE NOT (X.A < 5 XOR X.B = 12)

will be translated to

WHERE (X.A > 5 AND X.B !=12) OR

(X.A < 5 AND X.B = 12)

The XOR translation is done before the NOT translation.

BETWEEN
A column can be compared to other columns of the same table, literal values, numeric

constants, or program variables. The statement translates as follows:

WHERE A.X BETWEEN 7 AND :VAR-X

will be translated to

WHERE (A.X> = 7 AND A.X = < :VAR-X)

and

A.X NOT BETWEEN 'AAA' AND 'KKK'

will be translated to

(A.X < 'AAA' OR A.X > "KKK').

BETWEEN is understood to be inclusive of the end points.

ILQ.EUAL

Note that both <> and != are allowed for inequality tests.
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(m) Logic Definitions

These definitions are adapted from the current draft of the proposed SQL standard.

In a single column-predicate:

1. Let X denote the result of the first value or column-spec and let y denote the result
of the second value or column-spec. The values x and y must be comparable
values.

2. (x bool-op y) is unknown if x and y must be comparable values.

3. If x and y are non-null values, (x bool-op y) is either true or false:

(x = y) is true if x and y are equal.
(x <> y) is true if x and y are not equal.
(x < y) is true if x is less than y.
(x > y) is true if x is greater than y.
(x <= y) is true if x is not greater than y.
((x >= y) is true if x is not less than y.
(x != y) is true if x and y are not equal.

4. Numbers are compared with respect to their algebraic value.

5. The comparison of two character strings is determined by the comparison of
<characters> with the same ordinality. If the character strings do not have the same
length, the comparison is made with a temporary copy of the shorter character
string which has been extended on the right with space characters so that it has the
same length as the other character strings.

6. Two character strings are equal if all <characters> with same ordinality are equal.
If two character strings are not equal, their relation is determined by the comparison
of the first pair of unequal <characters> from the the left end of the character
strings. This comparison is made with respect to implementor-defined collating
sequence.

7. Although (x = y) is unknown if both x and y are null values, a null value is identical
to or is a duplicate of another null value.

8. (x IS NULL) is either true or false.
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9. (x IS NULL) is true if x is the null value.

10. (x IS NOT NULL) has the same result as NOT(x IS NULL).

11. NOT(true) is false, NOT(false) is true, and NOT(unknown) is unknown. AND
and OR are defined by the following truth tables:

AND true false unknown

true true false unknown

false false false false

unknown unknown false unknown

OR true false unknown

true true true true

false true false unknown

unknown true unknown unknown

12. As implied by the syntax. expressions within parentheses are evaluated first and
when the order of evaluati a is not specified by parenthesis, NOT is applied before
AND, AND is applied before OR, and operators having the same precedence level
are applied from left to right.

(n) Mapping Rules for Select, Query-Combination

The NDML precompiler will be modified to choose a secondary copy of data for retrieval if
the requesting process is on the same host and if the CDMA has permitted it through the use of the
host and if the CDMA has permitted it through the use of the ALLOW RETRIEVAL clause of the
CREATE MAP command. If DIALLOW RETRIEVAL has been specified, which is also the
default, only the primary copy of data will be retrieved. A description of the CREATE MAP
command may be found in the Neutral Data Definition Language (NDDL) User's Guide.

(o) Mapping Rules for Precompiler Generated Referential Integrity Checks

The NDML precompiler will continue to select the primary copy of data.
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3.3 SELECTION COMBINATION Command

3.3.1 Syax

SELECT

[INTO { 'file-name' 1]
{ ':variable-name'
{ STRUCTURE :variable-name

[DISTINCT]

wariable-name [(subscript,...)]

FROM

simple-select-combination

I;
{ Loop construct

where simple-select-combination is a parenthesized combination of simple selections using the
operators UNION, DIFFERENCE and INTERSECT.

A simple select is

SELECT [DISTINlICT] column-list
FROM table-list
[WHERE predicate-list].

A more precise specification of allowable syntax is contained in the appendix, as rule
named query-spec.

The following rules have been derived or extracted from the draft ANSI proposed SQL
standard of December, 1985.

1. The simple, or inner selections within parentheses are evaluated first, and when the
order of evaluation is not specified by parentheses, INTERSECT is applied before
UNION or DIFFERENCE and the set-operators at the same precedence level are
applied from left to right.

2. Each inner selection is evaluated and stored in temporary tables.

3. Let T and T' denote tables. The result of T set-operator T' is a table R, derived as
follows:
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Case:

4. If the set-operator is UNION, then:
a. Initialize R to an empty table.
b. Insert each row of T and each row "' into R.

5. If the set-operator is INTERSECT, then:
a. Initialize R to an empty table.
b. For each row of T, if a duplicate of that row exists in T", insert that row of T into
R.

6. If the set-operator is DIFFERENCE, then:
a.Initialize R to an empty table.
b.Insert each row of T into R.
c.For each row of R, if a duplicate of that row exists in T, eliminate that row from R.

7. T and T' must have the same number of columns. Corresponding columns in T and
T' must have identical data type descriptions.

8. The degree of R is the same as the degree of T and "P.

9. The columns of the final relation representing the combinations of the inner selections
are mapped by the first selection (before the FROM keyword). The columns of the
final result can be mapped into a file, program variables or an internal structure.
DISTINCT operations can be applied to the final resultant table and to the inner
selection.

3.4 DELETE Command

3.4.1 S

The DELETE Command removes rows from an external-schema table. The DELETE
command has the following:

DELETE FROM table-name [table-label]
[USING table-name [table-label],...
WHERE { ALL

predicate-spec
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where

table-label is a one-or two-character name,

table-name and column-name is defined for the relational view,

predicate-spec is either a column-, join-, between-, or null-predicate (see Appendix A).

3.4.2 Comments

(a) Locking

A DELETE command inside a transaction usually places a "key lock" on deleted rows until
a COMMIT command is encountered. This lock ensures that another process cannot insert a row
with the key of the deleted row until the DELETE action has been finalized by a COMMIT
command. A DELETE command outside of a transaction is usually committed immediately and no
lock is used. Actual lock mechanisms depend on the internal-schema databases.

(b) USING Clause

The USING clause specifies tables that are accessed by the WHERE clause to qualify the
request. These tables are not to have rows deleted from them. To be meaningful, tables indicated
in the USING clause must be related to the table on which the DELETE command acts by a join-
predicate.

(c) WHERE Clause

The WHERE clause is used to specify which rows qualify to be deleted. The WHERE
clause is mandatory and the Precompiler will reject the request if it is not present. If all the rows of
a table are to be deleted, the WHERE ALL clause should be used. For selective qualification of
rows, the WHERE clause has the same power of expression as it does in a SELECT statement.
Because distributed update is not supported, a WHERE clause mapping to multiple subtransactions
per preference (horizontal partitioning) is not supported, since the query results of one
subtransaction would dictate the actual rows to be deleted by another subtransaction.
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The qualifications specified in the WHERE clause of an NDML statement will be "ANDed"
with those specified in the WHERE clause of the CREATE view. These qualifications include the
column to value predicates and may be expressed within nested parentheses. This parenthesized
logic will be enforced by the precompiler. The NDML precompiler will ignore the WHERE ALL
qualification of the NDML statement when CREATE VIEW qualifications exist.

Note: It is permissible to modify rows in the view that are moved thereby out of the view.

Some columns cannot be specified in a WHERE clause because the column in the
conceptual schema maps to non-normalized database structures in the internal-schema databases.
In particular, a conceptual-schema column that maps to a data field in a repeating group in the
internal database will not have a unique value for each row. The Precompiler should recognize this
problem and reject the NDML request. The CDM Administrator should inform the user of these
restrictions before precompilation. The CDMA can determine these by examining the conceptual-
internal schema mapping relationship.

(d) Mapping Restrictions

The external-schema table (your view of the table) must map to one complete conceptual-
schema entity class. This means that a request to DELETE a row in a table in your view can be
rejected by the system because other information that you are is not (necessarily) aware of would
also have to be deleted in the conceptual-schema representation of the database. Thus, it may be
necessary to determine the conceptual-schema structure and mapping to external views to formulate
a correct DELETE command to explicitly delete all the columns of a row in the conceptual schema.

The entity class (in the conceptual schema) may map to just part (or all) of one or more
record types in the actual database (in the internal schema). If just part of a record type is mapped
to, that deleted part is filled will null-values and the remainder is left as is. The null values used are
those specified in the CDM.

The NDML precompiler will generate update transactions for secondary copies if the
CDMA has permitted it through the use of the ALLOW UPDATE clause of the CREATE MAP
command. If DISALLOW UPDATE has been specified, which is the default, only the primary
copy will be updated. The update of these secondary copies are not guaranteed.

Furthermore, the precompiler will not reject multiple subtransactions being generated by an
update action, one subtransaction per copy of data. The precompiler will continue to reject cases,
where for a specified preference one entity class maps to a non-normalized database structure
resulting in multiple subtransactions.
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(e) Integrity Constraints

A request to delete a conceptual-schema entity that has dependent entities will be rejected at
runtime. Those dependent entities cannot be ignored; their existence depends on the existence of
the independent entity.

A future release may support DELETE WITH CASCADE, which will delete any dependent
entities associated with the specified entity.

(f) Null Values

The specification of internal-schema null-values is DBMS dependent. The values specified
in the CDM will be stored when required.

(g) Examples:

DELETE FROM OFFER F
WHERE F.STATUS = 'EXPIRED';

DELETE FROM OFFER
WHERE ALL;

DELETE FROM OFFER F
WHERE F.STATUS = 'OLD'
AND F.DATE < :CUT-DATE
AND F.TYPE != 'RETRO';

DELETE FROM OFFER F
USING PRODUCT PR
WHERE F.TYPE = PR.TYPE
AND PR.CLASS = 'REPLACED';

3.5 INSERT Command

3.5.1 Syntax

The INSERT command adds rows to an external-schema table.
The INSERT command has the following syntax:
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INSERT INTO table-name (column-name ...)

VALUES FROM { FILE 'file-name' }
FILE ':variable-name'

STRUCTURE :variable-name}
value...

where

file-name and variable-name are defined in the host program,

column-spec is defined for the relational view,

table-label is a one- or two-character name,

value is a scalar variable a quoted variable, a number in the host program, or a
character string.

column-spec is { column-name }
(table-name.column-name )
{table-label.column-name I

3.52 Comments

(a) Locking

An INSERT command issued inside a transaction usially places an EXCLUSIVE lock
automatically (on rows or on tables, depending on the particular internal-schema database
managers) until a COMMIT command is encountered.

(b) Specified Columns

The columns of the table are specified in the column-list. Values are supplied either from
an external file, in which case many rows may be created, or from a source-list or data structure, in
which case one row is created for each set of values. The values are related to columns in the
column-list by their respective orders of appearance. The columns in the column-list need not be
specified in the same order as the columns in the external-schema table were initially described to
the system.
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(c) File Input

If the values to be inserted are taken from a file, then multiple records can be inserted. The
specification of file input causes an implicit loop to be generated that repeatedly executes the
INSERT command until the file is empty. The file is read as string input. Each row is a record;
the end of the rows is marked by the end-of-file. There are no delimiters between fields. It is
assumed that the record format matches the format of the column list. The file-name is a logical
file-name which should be related to a physical file through the system's job control language. The
input file must be defined in the application program (by COBOL SELECT and FD statements).

If you have embedded the NDML statement in a FORTRAN program, the following rules
apply. If inserting a character or integer value, the exact size of the external data item being
inserted must be allotted in each input record. If a floating point value is being inserted, the exact
size of the data item being inserted plus one extra space for the decimal point must be allocated.
The actual decimal point must be included in the number if a floating point number is inserted.
Character values must be left-justified in their space allocated. Floating point numbers must be
both preceded and followed by the appropriate number of zeros to fill up the allocated space.
Integer numbers must be preceded by the appropriate number of zeros to fill up the allocated space.

(d) Structure Input

The format of a data structure must match the format of the column list. It is assumed that
the data type of structure fields exactly match that of the corresponding table columns in the
external-schema format. Only one row can be inserted by this method without explicitly placing
the NDML command within a program loop. Structure Input is not applicable if embedding the
NDML statement in FORTRAN because structures as such do not exist.

(e) Value and Variable Input

A source list enclosed in parentheses can contain values and/or program variables for input.
Multiple source-lists can be specified to cause an implicit loop to be generated that executes the
INSERT command once for each source list. The data types of values explicitly given must agree
with the data type of target columns. In this release, values cannot be calculated by an arithmetic
expression within the INSERT statement.

If you have embedded the NDML statement in a FORTRAN program and you are inserting
from variables, the following rules apply. If a character value is being inserted, the insert variable
must be defined as CHARACTER *n, where n is the exact size of the external data item into which
it is being inserted. If an integer value is being inserted, the insert variable must be defined as an
INTEGER. If a floating point value is being inserted, the insert variable must be defined as
DOUBLE PRECISION.
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(f) Mapping Restrictions

The external-schema table (your view of the table) must map to one complete conceptual
schema entity class. This means that a request to INSERT a row in a table in your view can be
rejected by the system. Thus, it may be necessary to determine the conceptual-schema structure
and mapping to external views to formulate a correct INSERT command to explicitly insert all the
columns of a row in the conceptual schema.

The entity class (conceptual schema) may map to just part (or all) of one or more internal-
schema (actual databases) record types. If just part of a record type is "mapped to," that part not
inserted is filled will null-values. Moreover, if a record type in the internal database maps to two
conceptual-schema entity classes, inserting in one conceptual entity, followed by the other, will
result in two partial record instances in the internal database, rather than one complete instance; the
Precompiler does not view this result as incorrect and will not issue a rejection or warning.

The NDML precompiler will generate update transactions for secondary copies if the
CDMA has permitted it through the use of the ALLOW UPDATE clause of the CREATE MAP
command. If DISALLOW UPDATE has been specified, which is the default, only the primary
copy will be updated. The update of these secondary copies are not guaranteed.

Furthermore, the precompiler will not reject multiple subtransactions being generated by the
update action, one subtransaction per copy of data. The precompiler will continue to reject cases,
where for a specified preference, one entity class maps to a non-normalized database structure
resulting in multiple subtransactions.

(g) Integrity Constraints

A request to insert a conceptual-schema entity that is dependent in a relation class but for
which no independent entity exists will be rejected at runtime. A dependent entity cannot exist
without its associated independent entities, one for each relation class in which it is dependent.

A request to insert a conceptual-schema entity with key value equal to that of an entity
already in the database will be rejected at runtime. Key values must be unique.

(h) Null Values

The specification of internal-schema null-values is DBMS dependent. The null values
stored on the CDM for database by the CDMA will be used.
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(i) WHERE clause of CREATE VIEW

It is permissible to insert rows not in the external view. Therefore, the qualifications in the

WHERE clause of the CREATE VIEW will have no significance for NDML processing.

(j) Examples:

INSERT INTO DEPT
(DNO DNAME DLOC DSIZE)
VALUES FROM DEPT-FILE;

INSERT INTO DEPT
(DNO DNAME DLOC DSIZE)
VALUES (12 'ENGR' 'BI' 'SMALL');

INSERT INTO DEPT
(DNO DNAME DLOC DSIZE)
VALUES (12 'ENGR' 'BI' 'SMALL')

(40 'CUST' 'F4' 'SMALL')
(36 'SW' 'G2' 'LARGE');

INSERT INTO DEPT
(DNO DNAME DLOC DSIZE)
VALUES (:DEPT-NUM :DEPT-NAME 'BI' :DEPT-SIZE);

INSERT INTO DEPT
(DNO DNAME DLOC DSIZE)
VALUES FROM STRUCTURE :DEPT-REC;

where DEPT-REC has the structure:

01 DEPT-REC.
03 DEPT-NUM PIC 99.
03 DEPT-NAME PIC X(4).
03 DEPT-LOC PIC XX.
03 DEPT-SIZE PIC X(5).
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3.6 MODIFY Command

3.6.1 Synta

The MODIFY command changes values in an external-schema table. The MODIFY
command has the following syntax:

MODIFY table-name [table-label]
[USING table-name [table-label], ... ]
SET column-spec = value ...
WHERE { ALL }

predicate-spec }

where

table-label is a one- or two-character name,

table-name and column-spec are defined for the relational view,

value is a scalar variable, or a quoted variable, or a number in the host program

column-spec is: (column-name
{table-name.column-name }

table-label.column-name I

predicate-spec is either a column-, join-, between-, or a null-predicate (see Appendix A).

The columns to be changed and the values to be entered must be explicitly specified in the
SET clause; values cannot be read from a structure or file.

3.6.2 Comments

(a) Integrity Constraints and Mapping Restrictions

Three specific integrity constraints are enforced by the system. First, the MODIFY
command cannot be used to change the values of a column that corresponds to the key class of an
entity class in the conceptual schema. Thus, some requests that have an apparently correct syntax
might be rejected. To modify a key class, it is necessary to first DELETE and then INSERT the
entity. Second, referential integrity is enforced. If a foreign key class is to be modified, there
must exist a parent for the new key. Third, it is not permissible to change just part of a foreign key
class; the entire foreign key must be changed.
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Some columns cannot be modified alone because the column in the conceptual schema
maps to non-normalized database structures in the internal-schema databases. In particular, a
conceptual-schema column that maps to a data field in a repeating group in the internal database
will not have a unique value for each row. The Precompiler should recognize this problem and
reject the NDML request. You can determine these restrictions before precompilation only by
examining conceptual-internal schema mapping relationships.

The NDML precompiler will generate update transactions for secondary copies if the
CDMA has permitted it through the use of the ALLOW UPDATE clause of the CREATE MAP
command. If DISALLOW UPDATE has been specified, which is the default, only the primary
copy will be updated. The update of these secondary copies are not guaranteed.

Furthermore, the precompiler will not reject multiple subtransactions being generated by the
update action, one subtransaction per copy of data. The precompiler will continue to reject cases,
where for a specified preference, one entity class maps to a non-normalized database structure
resulting in multiple subtransactions.

(b) Locking

A MODIFY command within a transaction usually places an EXCLUSIVE lock
automatically (on rows or on tables accessed, depending on the particular internal-schema database
managers) until a COMMIT cjmmand is encountered. A MODIFY command issued outside of a
transaction usually co,- . ., the result immediately. The specific lock used is determined by the
particular internal-scher t database manager.

(c) USING Clause

The USING clause specifies tables that are accessed by the WHERE clause to qualify the
request. These tables need not necessarily include the one that is being modified. To be
meaningful, tables indicated in the USING clause must be related to the table on which the
MODIFY command acts by a join-predicate.

(d) SET Clause

The SET clause specifies the new values that are to be given to values in designated
columns. The new value can be contained in a program variable or be given explicitly. In this
release, new values cannot be calculated by arithmetic expressions in the MODIFY command, nor
can they be contained in a structure or file.

3-28



PRM 620341200
30 September 1990

(e) WHERE Clause

The WHERE clause is mandatory. The WHERE clause is used to specify which rows
qualify to be changed. If all the rows of a table are to be modified, then the WHERE ALL clause
should be used. For selective qualification of rows, the WHERE clause has the same power of
expression as it does in a SELECT statement. If the WHERE clause is not included in a MODIFY
statement, the Precompiler will reject the statement and issue an error code. Because distributed
update is not supported, the WHERE clause mapping to the multiple subtransactions per preference
is not supported, since the query results of one subtransaction dictates the actual rows to be
modified by another transaction.

The qualifications specified in the WHERE clause of an NDML statement will be "ANDed"
with those specified in the WHERE clause of the CREATE view. These qualifications include the
column to value predicates and may be expressed within nested parentheses. This parenthesized
logic will be enforced by the Precompiler. The NDML precompiler will ignore the WHERE ALL
qualification of the NDML statement when CREATE VIEW qualifications exist.

Note: It is permissible to modify rows in the view that are moved thereby out of the view.

Some columns cannot be specified in a WHERE clause because the column in the
conceptual schema maps to non-normalized database structures in the internal-schema databases.
In particular, a conceptual-schema column that maps to a data field in a repeating group in the
internal database will not have a unique value for each row. The Precompiler should recognize this
problem and reject the NDML request. The user can determine these restrictions before
precompilation only by examining conceptual-internal schema mapping relationships.

(f) Examples:

MODIFY OFFER F
SET F.STATUS = 'EXPIRED'
WHERE F.DATE < :CUTDATE;

MODIFY OFFER F
SET F.RESPONSIBLE-DEPT = 'BENEFITS'
WHERE ALL;

MODIFY DEPT D
USING EMPLOYEE EMP
SET D.STATUS = 'INACTIVE'
WHERE D.DNO != EMP.DNO;
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MODIFY DEPT D
SET D.STATUS = 'INACTIVE'

D.LOC = 'INACTIVE'
D.RESPONSIBLE-MNGR = :MNGR-INPUT

WHERE D.DNO = :DEPT-NO-INPUT;

3.7 Transaction Commands

3.7.1 BEGIN TRANSACTION Command

The BEGIN TRANSACTION command indicates the start of one or a group of NDML
commands that must be completed successfully as a unit in order to maintain the integrity of the
database system. All automatic locks issued (for SELECT, INSERT, DELETE and MODIFY
commands) and an explicit EXCLUSIVE lock placed by a SELECT command refer to this
transaction. If locks exist from prior commands for an open transaction that have not been
removed by a preceding commit-command or rollback-command, the BEGIN TRANSACTION
command will issue a rollback-command to undo any uncommitted previous commands.

A transaction ends at the next UNDO, ROLLBACK or COMMIT statement. Transactions

cannot be nested.

3.7.2 UNDO and ROLLBACK Commands

These NDML commands cause the system to undo any actions accomplished since the last
BEGIN TRANSACTION command. The databases will be returned to their previous states.

3.7.3 COMMIT Command

The COMMIT command causes all actions accomplished since the last BEGIN
TRANSACTION command to become permanent and all existing locks on records for this
transaction to be removed. The following is an example use of the COMMIT command:

*# BEGIN TRANSACTION;
*# MODIFY OFFER F
*# SET F.RESPONSIBLE-DEPT = 'BENEFITS'
*# WHERE ALL;

IF NDML-STATUS = 'ERROR'
*# ROLLBACK;

ELSE
*# COMMIT;
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3.8 Loop Construct

3.8.1 When a LooP Construct Is Needed

The host language compiler expects that all input and output in an application program be
done a record at a time. In contrast, a single NDML SELECT command can return many records.
The loop construct is provided to allow NDML to interact with the application program one record
at a time.

A loop construct is necessary for assignment of multiple returned values to program
variables or to a structure, even if the variables or structure fields are vectors. The major reason
that implicit looping is not generated is that there is no way to determine the number of records to
be returned during the precompile step; therefore, the programmer should test the number of
records returned within an NDML loop construct to ensure that storage dimensions of the variables
are not exceeded during execution.

It is not necessary to use a loop construct if only the first record returned is to be used. For
example, a loop construct will never be necessary when functions are specified in a SELECT
because only one row is returned. Specification is used because looping is implicit (the file is
assumed to be capable of growing to hold all output).

Note that the loop executes after the SELECT retrieval is complete. Therefore, changing
values in the WHERE or ORDER BY clauses within the loop will have no affect on the result.

3.8.2 Sytax

A loop must immediately follow a SELECT command. If a loop construct follows, do not
end the SELECT command with a ";" because the end of the NDML procedure is indicated by the
closing bracket. The start of the loop is indicated by "{" and the end by ")", both of which are
embedded NDML statements and must be preceded on the line in the application program by
appropriate NDML designation characters. The body of the loop can contain both host-language
statements and embedded NDML commands.

It is permissible to include NDML statements within loop constructs for a SELECT
statement. A transaction defined by a BEGIN TRANSACTION statement must either enclose the
entire SELECT statement and associated loop construct or must be contained within the loop
construct. An example of ti'e latter is given under 3.7.4.
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The following two restrictions on the use of loop constructs are important. Programmers
should not attempt to exit a loop by using a host language GOTO or equivalent statement. The
result of such a jump is undefiaied. Secondly, the NDML commands SELECT, INSERT,
DELETE and MODIFY should not appear within a host-language "IF" statement because the
Precompiler will not be able to gua -antee the integrity of the logic path. The NDML statements
listed under 3.7.4 are provided to control the processing of loops. (The NDML commands
COMMIT, UNDO and ROLLBACK can also be placed within a host-language IF statement).

3.8.3 NDML Loop Control Statements

(a) CONTINUE or NEXT
This statement causes the current iteration of the loop to terminate and the next iteration to

be generated. The NDML statement CONTINUE should not be confused with the FORTRAN
statement.

(b) BREAK or EXIT
This statement causes the loop to be terminated and control to be passed to the program

statement following the end of the loop.

3.8.4 Evaluation

The following actions are taken by the system to evaluate an embedded NDML SELECT
statement:

1. The system evaluates the query and stores the resulting rows in a result file. If a file
name has been specified by the programmer in an INTO phrase to receive the results,
the result file is given the specified name and the command is finished. Otherwise,
proceed.

2. The code within the loop specified in the SELECT command is executed, once for each
row generated by the query. Values are moved to the program variables or structure
fields specified to receive them. It is necessary that the host language code either move
those values to safe storage or specify new variables (for example, new indices of array
variables) for each execution of the loop if more than one row is returned. The host
language code should also test the number of loops to ensure that the allocated storage
for rturmed information is not exceeded.
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The following example illustrates how program variables that receive information from a
SELECT statement can be manipulated in a loop construct (this and the following examples are
COBOL). Note that the braces should be on a separate line without following code.

*# SELECT :PART-NUMBER = P.PARTNO,
*# :PART-NAME = P.NAME
*# FROM PARTS P

DISPLAY PART-NUMBER, PART-NAME
COMPUTE NUMBER-OF-PARTS = NUMBER-OF-PARTS + 1.*# }

The following example shows how a COBOL variable can be used in the WHERE clause
and how the CONTINUE statement can be used. Parts with a null part name are skipped.
Otherwise, counters are incremented depending on the value of the work number.

*# SELECT :PART-NAME = P.NAME, :WORK-NO - P.WORKNO
*# FROM PARTS P
*# WHERE P.SIZE = 'SMALL'
*# AND P.PARTITYPE = :PART-TYPE

IF PART-NAME = SPACES
*# CONTINUE .

IF WORK-NO < BREAK-POINT
ADD I TO ODD-LOT-COUNT

ELSE
ADD 1 TO REGULAR-LOT COUNT.*# }

The following example shows the inclusion of a transaction within a loop construct.

*# SELECT :PART-NAME = P.NAME, :PART-COLOR = P.COLOR
*# FROM PARTS P*# {
*# BEGIN TRANSACTION;
*# INSERT INTO COLORTABLE (CNAME CCOLOR)
*# VALUES (:PART-NAME :PART-COLOR);

IF NDML-STATUS = 'ERROR'
*# ROLLBACK;

ELSE
*# COMMIT;
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3.9 Distributed Update Restrictions

For examples 1 through 5, assume that the CDMA has "allowed" update for entity EMP-
MAST. Also, there is a 1 to 1 mapping for AUCs EMP-NAME and SPOUSE-NAME, whereas
the keyed AUC EMP-NO is mapped for preference 1 to database: 1 and mapped for preference 2 to
database:2

Conceptual Schema Internal Schema

(Assume EXTERNAL SCHEMA
is the same) DATABASE: I

*EMPNO EMPNO
EMP_NAME EMPLNAME
SPOUSENAME

EMP_MAST EMPL

DATABASE: 2

EMPLNO
SPOUSENAME

MARRIED EMPL

NDML Transaction Examples:

1. INSERT INTO EMPMAST
(EMP-NO EMP-NAME SPOUSE-NAME) VALUES
(100 'MR X' 'MRS X');

2. MODIFY EMP_MAST
SET SPOUSENAME = 'NEW MRS X'
WHERE EMPNO = 100
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3. MODIFY EMP_MAST
SET SPOUSENAME = 'NEW MRS X'
WHERE EMPNAME = 'MR X'

4. DELETE FROM EMPMAST
WHERE EMPNO = 100

5. DELETE FROM EMPMAST
WHERE EMPNAME = 'MR X' OR

SPOUSENAME = 'MRS X'

Example 1:
Two subtransactions will be generated to insert into records EMPL of Database: 1 and
MARRIEDEMPL of Database: 2.

There are no restrictions for "insert" Actions. All copies or sources will be updated.

Example 2:
1 subtransaction will be generated to modify record MARRIEDEMPL of Database:2 with
the appropriate qualifications (i.e., where EMPLNO = 100)

Example 3:
This NDML request will be rejected because the record we are attempting to update
(MARRIEDEMPL of Database:2) does not contain the relevant qualification (i.e.,
EMPNAME = 'MR X').

Example 4:
Two subtransactions will be generated to delete records EMPL of Database: 1 and
MARRIEDEMPL of Database:2. The CS to IS Transformer Module (where CS is
conceptual schema and IS is internal schema) will recognize that the qualification criteria is
present in all the records being deleted.

Example 5:
This NDML Delete will fail because both the qualifications are not present in both the
records being deleted.
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3.10 E

Error code values are defined by the IISS error handling philosophy. NTM and
communication system errors are returned to the NDML application. Other codes of interest to the
NDML application are:

49901 - failure of a type 1 referential integrity test on an insert or modify

49902 - failure of a type 2 referential integrity test on a delete

49903 - failure of a key uniqueness test on an insert

44306 - failure of a domain verification module

This error code will be found in the variable NDML-STATUS (or NDMLST in
FORTRAN) after every NDML statement. This is a variable generated into the user program.

Note: A referential of an empty set is not considered as an error.
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NDML PRECOMPILER OVERVIEW

The IISS Precompiler will precompile your application process containing embedded
NDML commands. The Precompiler parses the application program source code and identifies the
NDML commands. It will modify the original application process to include numerous variables
and subroutine calls necessary to implement the NDML commands in the host language. The
Precompiler will generate code (generated query processes) that will be activated at run time to
access the identified internal-schema databases and to perform the required internal-schema to
conceptual-schema transforms. It will also generate code (generated conceptual/external
transformer) that will be activated at run time to perform the required conceptual to external
transforms, statistics functions, ordering of results, and other processes necessary to present the
requested results to the application process.

In order to activate the HSS Precompiler, the procedure file GENAP must be used. This
procedure file enables you to use the IISS Interface Application Generator (GAP), the IISS
Precompiler, the IISS RP-Main Generator, and the required link/load options.
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APPENDIX A

BNF OF THE NDML

A. 1 Conventions

A. 1.1 Notation

Certain conventions are used to describe the form of command

UPPER CASE WORDS denote keywords in the command

LOWER CASE WORDS denote user-defined words

{ } denotes that exactly one of the options within the braces must be selected by the user

or ")" denotes a literal brace character without special meaning

[ ] denotes that the entry within the brackets is optional

I denotes an "or" relationship among the entries

_ denotes default option

A. 1.2 Punctuation

1. A "." is used to separate the table-label (i.e., table alias) from the column-name. The
table-label is used to match a column to a specific table in the list of tables referenced in
the FROM clause.

2. A ":" is placed before the name of a host-language program variable, structure or file
name that will receive returned values.

3. A ","is inserted between entries in the list of tables in a FROM clause.

4. A " is inserted between subscripts to an array variable.

5. A set of parentheses is used to enclose the column-list in an INSERT statement.

6. A set of parentheses is used to enclose the object column of a function.

7. A set of parentheses is used to enclose the values to be inserted in an INSERT
statement.

8. A set of parentheses is used to enclose a program variable subscript list.
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9. A mandatory ";" or loop construct is placed at the end of the command.

10. A set of parentheses of group logical conditions in the WHERE clause. They may be
nested.

11. A set of parentheses may be used to group combinations of SELECT statements.
They may be nested.

A.2 NDML Backus-Normal Form (BNF)

ndml-command select-command I insert-command I
delete-command I modify-command I
begin-recoverable-unit-command I
commit-command I rollback-command

query-expression

select-command SELECT [lock-request]
[INTO extemal-struct] [DISTINCT]
([table-label] ALL I expr-list I

var-assgnmt- list)
FROM table-list
[WHERE predicate-list]
[ORDER BY order-spec-listj
{; I loop construct }

insert-command INSERT INTO table-name
(column-list)

VALUES (FROM external-struct I
source-list);

delete-command DELETE FROM table-name
[table-label]

[USING table-list]
WHERE (ALL I predicate-list);

modify-command MODIFY table-name [table-label]
[USING table-list]
SET column-assgnmt-list
W-LERE (ALL I predicate-list);

query-spec :. SELECT [DISTINCT] column-list
FROM table list
[WHERE predicate-list];
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query-expression SELECT
{ INTO external-struct I
scalar-variable-list I
function list )
FROM (query-combination)
[ORDER by scalar-variable-list]

query-combination query-spec I
query-combination set-operator
query-combination

I (query-combination)

set-operator UNIONIINTERSECTIDIFFERENCE

begin-recoverable unit-command BEGIN TRANSACTION;

commit-command COMMIT;

roUback-command UNDO; I ROLLBACK;

bool-op I >= I < I <= I <>

column-assignment-list column-assgnmt-spec I
column-assgnmt-list
column-assgnmt-spec

column-assignment-spec column-sper = value

column-list column-spec I column-list column-spec

column-predicate column-spec bool-op value I value
bool-op column-spec

column-spec - column-name I table-name.column-
name I table-label.column-name

digit 111213141516171819

direction ASC I DESC I ASCENDING I
DESCENDING I UP I DOWN

expr-list expr-spec I expr-list expr-spec
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expr-spec column-spec I function([DISTINCT]
column-spec)

external-struct 'file-name' I
':variable-name' I
STRUCTURE :variable-name

function AVG I MEAN I MAX I MINI SUM I COUNT

function-list function-spec I function-list I function-spec

function-spec scalar-variable = function

integer digit I integer digit

join-op ==!=

join-predicate column-spec join-op column-spec

lock-request WITH [EXCLUSIVE I SHARED I NO] LOCK

loop construct "{" statement-list "1"

number integer [.[integer]]

order-spec-list column-spec [direction] I
order-spec-list column-spec
[direction]

predicate-list boolean-terml
predicate-list {OR I XOR)

boolean-term
boolean-term boolean-factor

I boolean-term AND boolean-factor

boolean-factor :- [NOT] boolean-primary

boolean-primary predicate-spec I (predicate-list)

predicate-spec column I join-predicate I between-predicate I
null-predicate

quoted-variable 'literal-string'
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scalar-variable :variable-name [(subscript-list)]

source-list (value-list)

scalar-variable-list scalar-speclscalar-variable-list
scalar spec

scalar-spec: scalar-variable

between-predicate column-spec [NOT] BETWEEN
{column-spec I value) AND
{column-spec I value)

null-predicate column-spec is [NOT] NULL

statement host-language-statement I
ndml-command I BREAK I EXIT I
CONTINUE I NEXT

statement-list : statement I
statement-list statement

subscript-list integer I subscript-list , integer

table-list table-name [table-abel] f table-
list, table-name [table-label]

value scalar-variable I quoted-variable I
number

value-list value I value-list value

var-assgnmt-list : var-assgnmt-spec I
var-assgnmt-list var-assgnmt-spec

var-assgnmt-spec scalar-variable = expr-spec
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