
WRDC-TR-90-8007
Volume V
Part 1

AD-A250 448

INTEGRATED INFORMATION SUPPORT SYSTEM (IISS)
Volume V - Common Data Model Subsystem
Part 1 - CDM Administrator's Manual

M. Apicella, R. Palumbo, S. Singh

Control Data Corporation D TIC
Integration Technology Services LECT1
2970 Presidential Drive
Fairborn, OH 45324-6209 SMAY0 1992 U

September 1990

Final Report for Period 1 April 1987 - 31 December 1990

Approved for Public Release; Distribution is Unlimited

MANUFACTURING TECHNOLOGY DIRECTORATE
WRIGHT RESEARCH AND DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6533

92-122229 2 1111 11 IfIII IIIlifI IIJI 111lii ;i

NOTICE

When Government drawings, specifications, or other data are used for any purpose other
than in connection with a definitely related Government procurement operation, the United
States Government thereby incurs no responsibility nor any obligation whatsoever, regardless
whether or not the government may have formulated, furnished, or in any way supplied the
said drawings, specifications, or other data. It should not, therefore, be construed or implied
by any person, persons, or organization that the Government is licensing or conveying any
rights or permission to manufacture, use, or market any patented invention that may in any way
be related thereto.

This technical report has been reviewed and is approved for publication.
This report is releasable to the National Technical
Information Service (NTIS). At NTIS, it vill be

avail.ablt to the general public, includifg foreign nations

DA L. S N, Prdiect Manager DATE

Writ-Pa rsJ AFB, OH 45433-6533

FOR THE COMMANDER:

9RUCE A. RASMISEN, Chief DATE
WRDCQMT
Wright-Patterson AFB, OH 45433-6533

If your address has changed, if you wish to be removed form our mailing list, or if the
addressee is no longer employed by your organization please notify WRDC/MTI, Wright-
Patterson Air Force Base, OH 45433-6533 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release;

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution is Unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
LIM 620341001 WRDC-TR- 90-8007 Vol. V, Part 1

$, 6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Control Data Corporation; (if applicable) WRDC/MTI
Integration Technology Services

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
2970 Presidential Drive

Fairbor, OH 45324-6209 WPAFB, OH 45433-6533

8a. NAME OF FUNDING/SPONSORING 3bE OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTFNCATION.NUM.
ORGAN IZATION (if applicable)

Wright Research and Development Center, F33600F87-C-0464
Air Force Systems Command, USAF WRDC/MTI

10. SOURCE OF FUNDING NOS.
8c. ADDRESS (City, State, and ZIP Code)

Wright- Patterson AFB, Ohio 45433-6533 PROGRAM PROJECT TASK WORK UNIT
11. TITLE (Include Security Classification) -ELEMENT No. No. NO. NO.

See Block 19 78011 F 595600 F95600 20950607

12. PERSONAL AUTHOR(S)
Control Data Corporation: Apicella. M. L., Palumbo, R., and Singh, S.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.,Mo.,Day) 15. PAGE COUNT
Final Report 1 4/1/87-12/31/90 fgOSeptember30 222

16. SUPPLEMEN, .-YNOTATION

WRDCMT Project Priority 6203

17. COSATI CODES 18. SUBJECT TERMS t Continue on reverse if necessary and identify block no.)

FIELD GROUP SUB GR.

1308 10905

19. ABSTRACT (Continue on reverse if necessary and identify block number)

This document is the Common Data Model Adminstrator's User Manual. Its purposes are several and include:

o Describing the philosophical and practical objectives of the CDM Administrator.
o Discussing the CDM, its design, and its role in the IISS environment.
o Descnbing the steps necessary to entenng and maintaining data kept in the CDM.

Block 11 - INTEGRATED INFORMATION SUPPORT SYSTEM (IISS)

Vol V - Common Data Model Subsystem

Part I - CDM Administrator's Manual

20. DISTRIBUTIONAVAILABILIT tOF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATiON

UNCLASSIFIED/UNLIMITED x SAME AS RPT. DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NO. 22c OFFICE SYM11©0L
(Include Area Code)

David L. Judson (513) 255-7371 WRDC MTI

EDITION OF 1 JAN 73 is OBSOLETE
DD FORM 1473, 83 APR Unclassified

SECURITY CLASSIF'CATION OF TWHS !AGE

UM 620341001
30 September 1990

FOREWORD

This technical report covers work performed under Air Force
Contract F33600-87-C-0464, DAPro Project. This contract is
sponsored by the Manufacturing Technology Directorate, Air Force
Systems Command, Wright-Patterson Air Force Base, Ohio. It was
administered under the technical direction of Mr. Bruce A.
Rasmussen, Branch Chief, Integration Technology Division,
Manufacturing Technology Directorate, through Mr. David L. Judson,
Project Manager. The Prime Contractor was Integration Technology
Services, Software Programs Division, of the Control Data
Corporation, Dayton, Ohio, under the direction of Mr. W. A.
Osborne. The DAPro Project Manager for Control Data Corporation
was Mr. Jimmy P. Maxwell.

The DAPro project was created to continue the development, test,
and demonstration of the Integrated Information Support System
(IISS). The IISS technology work comprises enhancements to IISS
software and the establishment and operation of IISS test bed
hardware and communications for developers and users.

The following list names the Control Data Corporation
subcontractors and their contributing activities:

SUBCONTRACTOR ROLE

Control Data Corporation Responsible for the overall Common
Data Model design development and
implementation, IISS integration and
test, and technology transfer of IISS.

D. Appleton Company Responsible for providing software
information services for the Common
Data Model and IDEFIX integration
methodology.

ONTEK Responsible for defining and testing a
representative integrated system base
in Artificial Intelligence techniques
to establish fitness for use.

Simpact Corporation Responsible for Communication
development. Acoess10n For

ANNTIS '27?A&IDTIC TABI C1
'UNP-mL3unced El

By-

Dt tl ai/on

iii ' K

UM 620341001
30 September 1990

Structural Dynamics Responsible for User Interfaces,
Research Corporation Virtual Terminal Interface,and Network

Transaction Manager design,
development, implementation, and
support.

Arizona State University Responsible for test bed operations
and support.

iv

UM 620341001
30 September 1990

Table of Contents

Page

SECTION 1. INTRODUCTION I......1-1
1.1 Managing Data as a Corporate

Resource 1-1

SECTION 2. CDM OVERVIEW 2-1
2.1 The Fundamental Approach 2-1
2.1.1 The Three Schema-Architecture 2-1
2.1.2 Representation of the Three

Types of Schemas 2-7
2.1.3 Integration Methodology 2-7
2.1.4 Contributions to IRRIASSPA 2-10
2.2 Basic Components of the Design 2-10
2.2.1 The CDM Database 2-11
2.2.2 CDM1 2-11
2.2.3 The CDM Processor 2-12

SECTION 3. RESPONSIBILITIES OF THE
CDM ADMINISTRATOR 3-1

3.1 Establishing Data Standards 3-1
3.2 Maintaining the CDM 3-1
3.3 Protecting the CDM 3-1
3.4 Facilitating Use of the CDM 3-1

SECTION 4. MAINTAINING THE CONCEPTUAL SCHEMA .-. 4-1
4.1 Methodology Overview 4-1
4.1.1 CS Structure 4-1
4.1.2 Basic Approach 4-3
4.1.3 Modeling Forms 4-4
4.2 Building the Initial CS 4-15
4.2.1 Phase 0: Starting the Project 4-15
4.2.2 Phase 1: Defining Entity

Classes 4-13
4.2.3 Phase 2: Defining Relation

Classes 4-20
4.2.4 Phase 3: Defining Key Classes 4-22
4.2.5 Phase 4: Defining Nonkey Attribute

Classes 4-29
4.3 Expanding the CS 4-30
4.3.1 Phase 0: Starting the Project 4-31
4.3.2 Phase 1: Defining Entity

Classes 4-33
4.3.3 Phase 2: Defining Relation

Classes 4-34
4.3.4 Phase 3: Defining Key Classes 4-36
4.3.5 Phase 4: Defining Nonkey Attribute

Classes 4-46

v

UM 620341001

30 September 1990

Table of Contents

Page

SECTION 5. MAINTAINING THE CDM 5-1
5.1 Methodology Overview 5-1
5.1.1 Generic NDDL Commands 5-1
5.1.2 Transaction NDDL Commands 5-2
5.2 Loading the Initial CS

Description 5-3
5.2.1 Loading Domains 5-7
5.2.2 Defining the Model 5-7
5.2.3 Loading Attribute Classes 5-8
5.2.4 Loading Entity Classes 5-10
5.2.5 Loading Key Classes and

Relation Classes 5-12
5.3 Modifying/Deleting CS Objects 5-15
5.3.1 Domain Class Changes 5-15
5.3.2 Model Changes/Deletes 5-17
5.3.3 Attribute Class Changes/Deletes 5-18
5.3.4 Entity Class Changes/Deletes 5-19
5.3.5 Relation Class Changes/Deletes 5-21
5.4 Modeling & Validating Tools 5-23
5.5 Reviewing the Contents of the CDM 5-23

SECTION 6. MAINTAINING INTERNAL SCHEMAS
AND MAPPINGS 6-1

6.1 Methodology Overview 6-1
6.1.1 Internal Schema and CS-IS

Mapping Structure 6-2
6.1.2 CS-IS Mapping Modeling Forms 6-16
6.2 Loading The Initial Internal

Schema 6-40
6.2.1 Loading The Distributed Database

Environment 6-40
6.2.2 Loading User-Defined data types 6-41
6.2.3 Loading Databases 6-41
6.2.4 Loading Record Types And

Data Fields.... 6-43
6.3 Loading the Initial CS-IS Mapping

Definition 6-50
6.3.1 Loading CS to IS Mappings 6-50
6.3.2 Loading Record Unions 6-51
6.3.3 Loading Horizontal Partitions 6-52
6.3.4 Loading Tranformational

Algorithms 6-52
6.4 Modifying/Deleting IS Objects 6-65
6.4.1 Distributed Database Environment

Changes 6-65

vi

UM 620341001
30 September 1990

Table of Contents

Page

6.4.2 Modifying User-Defined data
types 6-67

6.4.3 Database Changes/Deletes 6-67
6.4.4 Record Type Changes/Deletes 6-69
6.4.5 Datafield Changes/Deletes 6-70
6.4.6 Modifying/Deleting CS-IS

Mappings 6-71
6.4.7 Record Union Changes/Deletes 6-73
6.4.8 Horizontal Partition Changes/

Deletes 6-74
6.5 Specific Considerations 6-74
6.5.1 IMS Specific Considerations 6-74
6.5.2 VSAM Specific Considerations 6-83
6.5.3 Sequential Files Specific

Considerations 6-83

SECTION 7. MAINTAINING EXTERNAL SCHEMAS
MAPPINGS 7-1

7.1 Methodology Overview 7-1
7.1.1 External Schemas and CS-ES

Mapping Structure 7-1
7.1.2 Modeling Forms 7-10
7.2 Loading the Initial ES & CS-ES

Mapping Definition 7-13
7.2.1 Loading User-Defined data types 7-13
7.2.2 Loading User Views and Data

Items 7-14
7.2.3 Loading Transformation

Algorithms 7-15
7.3 Modifying/Deleting ES Elements and

CS-ES Mappings 7-18
7.3.1 Modifying User-Defined data

types 7-18
7.3.2 User View Changes/Deletes 7-18

APPENDIX A GLOSSARY A-I

APPENDIX B USEFUL REFERENCES B-I

vii

UM 620341001
30 September 1990

List of Illustrations

Figure Title Paqe

1-1 Data as an Integral Part
of the Decision-Making Process 1-3

2-1 Two Fundamentally Different
Views of Data: Logical and Physical 2-3

2-2 Direct Mapping of Logical and
Physical Views 2-4

2-3 The Three-Schema Architecture 2-6
4-1 Relation Classes Form 4-6
4-2 Relation Classes Form Example 4-7
4-3 Owned Attribute Classes Form 4-11
4-4 Owned Attribute Classes

Form Example 4-12
4-5 Inherited Attribute Classes Form 4-13
4-6 Inherited Attribute Classes

Form Example 4-14
4-7 Refinements of Nonspecific

Relation Classes Example 4-48
4-8 Triads and Other Dual-Path

Structures 4-49
4-9 Migration Through

Two Relation Classes 4-50
4-10 Guidelines for Determining Key

Classes of Dependent Entity Classes 4-51
5-1 CDM Objects 5-4
5-2 CDM Object Description 5-4
5-3 CDM Conceptual Schema 5-6
5-4 Owned Attribute Classes Form Example 5-10
5-5 Figure Entity Class Glossary

Form Example 5-12
5-6 Inherited Attribute Classes

Form Example 5-14
5-7 Relation Classes Form Example............. 5-15
6-1 Entity Class/Record Type Mapping 6-3
6-2 Join Examples 6-8
6-2 Join Structures 6-11
6-4 Record Type/Entity Class

Mapping Form 6-19
6-5 Record Type/Entity Class

Mapping Form Example 6-20
6-6 Record Type Join Structures Diagram 6-21
6-7 Record Type Join Structures

Diagram Example 6-22
6-8 Data Field/Attribute Use

Class Mapping 6-24
6-9 Data Field/Attribute Use Class

Mapping Example 6-25
6-10 Set Type/Relation Class Mapping 6-27

viii

UM 620341001
30 September 1990

List of Illustrations

Figure Title Page

6-11 Set Type/Relation Class Mapping
Example 6-28

6-12 Data Field/Attribute Use Class
Mapping Example 6-31

6-13 Record Type Join Structure
Diagram Example 6-38

6-14 Incomplete Join Structure Example 6-39
6-15 CDM Tables Distributed Data Bases 6-46
6-16 CDM Tables Domains and Data Types for

Internal Schema 6-47
6-17 CDM Tables Relational Database Internal

Schema 6-48
6-18 CODASYL Internal Schema. 6-49
6-19 CS to IS Entity Mapping 6-54
6-20 Record Type/Entity Class Mapping 6-55
6-21 S to IS Attribute and Relation

Mapping 6-56
6-22 Datafield to Attribute Use Class

Mapping 6-58
6-23 Set Type to Relation Class Mapping 6-59
6-24 Record Union 6-60
6-25 horizontal Partition 6-61
6-26 Complex Mapping Algorithm 6-62
6-27 IMS Internal Schema 6-63
6-28 IMS Internal Schema 6-80
7-1 Data Item/Attribute Use Class

Mappings 7-2
7-2 Vertical Partition 7-3
7-3 Entity Joins 7-4
7-4 ES-CS Join Examples 7-5
7-5 ES-CS Join Structures 7-8
7-6 Single Entity Views 7-10
7-7 Domains and Data Types External Schema... 7-16
7-8 External Schema and CS/ES Mapping 7-17

ix

UM 620341001
/ 30 September 1990

SECTION 1

INTRODUCTION

The purposes of this document are several and include:

a) Describing the philosophical and practical objectives of
the Common Data Model (CDM) Administrator;

b) Discussing the CDM itself, its underlying design, and its
role in the IISS environment;

c) Describing in detail the steps necessary in entering and
maintaining data kept in the CDM.

After reading and understanding this document, the CDM
Administrator should not be able only to collect, enter, and
maintain CDM-related data, but also be able to understand the
reasons why such activities are performed.

The NDDL statements used to perform the actual CDM
maintenance activities are described in detail in the NDDL User
Guide.

1.1 Managing Data as a Corporate Resource

Managing data as a corporate resource is a philosophy about
the importance of data to an organization. The approach
recognizes that data are assets to be managed along with the other
more generally recognized resources of an enterprise, including
its personnel, inventories, capital, and so forth. Organizations
spend tremendous sums of money collecting and manipulating data,
trying to extract information needed to support decision making.
The CDM Administrator has as one of his or her primary objectives
the preservation of that continuing, substantial investment in
data resources. The CDM Administrator plays a major role in
protecting and properly managing that investment by managing
common data rather than just managing applications that access
data.

Data management includes all the activities that ensure that
quality data are available to produce needed information and
knowledge. The objective of data management is to keep data
assets resilient, flexible, and adaptable to supporting
decision-making activities in the business. Data management
responsibilities include: 1) the representation, storage, and
organization of data so that they can be selectively and
efficiently accessed, 2) the manipulation and presentation of data
so that they suppcrt the user environment effectively, and 3) the
protection of data so that they retain their value.

The philosophy of the CDM recognizes that data are absolutely
necessary to the decision-making cycles of organizations (Figure
1-1). Individuals must not only be able to collect and retain
data for their own use, but also be able to share data and pool
their knowledge resources. The ability to correlate information
across traditional applications boundaries and to provide

1-1

UM 620341001
30 September 1990

information that supports all levels of decision making, from
operational through tactical through strategic, is increasingly
important as management at all levels is becoming more aware of
the potential power of information systems.

The CDM provides the capability to pull the enterprise's
database resources together to form an integrated, common source
of information to support decision making.

The objectives of data management include the following:

o Independence of data access from data descriptions
o Increased data accessibility
o Improved data integrity
o Improved data shareability
o Improved data resiliency
o Improved data administration and control
o Improved data security
o Improved performance

The CDM Administrator needs to understand each of these
objectives.

Independence between data access and data descriptions
improves control over the data descriptions, facilitates
standardization of data-naming conventions, and rpduces the
programming effort required to accommodate modified data
descriptions. Data independence is perhaps the single most
important factor in determining the long-range success of a
data-driven environment.

1-2

UM 620341001
30 September 1990

Knowledge - o Decisions

Actions

Information Facts

) 0 00

• 0 0 0

Data Pool

Figure 1-1. Data as an Integral Part of the Decision Making
Process.

1-3

UM 620341001
30 September 1990

Data accessibility refers to the capability for a user to
extract needed information from the data resource. Data
accessibility is enhanced by user-friendly interface languages
and well designed screens. Good accessibility is characterized
by being able to relate data in many different ways to produce
information, and by being able to represent that information in
a variety of suitable forms. Data accessibility is improved by
the CDM in its support of multiple access paths and retrieval
sequences through the physical databases. Programming effort
for data manipulation is decreased and cost-effective, general-
purpose query facilities such as the NDML become possible.

Data integrity is essential to maintain the quality of the
data resource. Data integrity is measured by the completeness
and consistency of the data resource. Does it contain the data
that are relevant to the decision-making needs of the user?
Does it contain all required interrelationships among types of
data, and are all consistency constraints satisfied?

Data shareability is needed to keep common data truly
common. Without shareability, data proliferate and their
quality becomes uncontrollable. Without shareability, data are
private and personal; their quality is each individual user's
responsibility. The main difficulty with this distribution and
redundancy of control is that it results in no control at all.
Improved shareability can be achieved by supporting multiple
access paths through the physical databases, thereby enabling
them to serve many diverse needs. Shareability is also achieved
by separating individual user's views of the data resource from
the actual physical implementation of databases.

Data shareability refers not just to database contents, but
also to logic that accesses and manages data. Reduced data
duplication streamlines data access, reduces the programming
effort required for updating data, and reduces the potential for
inconsistent data. Reduced redundancy in the data management
effort improves the productivity of data processing personnel.

Data recoverability is needed to keep the data resource
resilient in the wake of errors. Error conditions need to be
detected and corrected. Better yet, errors should be prevented
from occurring in the first place. Part of the difficulty in
providing a resilient data resource is continuing to make the
data available to users while recovering from errors.

The CDM Administrator should help to ensure that the data
resource continues to satisfy users' information needs, even as
those needs change through time. Many organizations have
successfully established data administration functions to help
develop and protect data assets. The CDM Administrator plays a
similar role for the integrated, overall data resource.

Data security is essential to prevent unauthorized access
to data. Certainly not all environments require the same,
elaborate security schemes, but nearly all organizations' data
assets need to have some degree of access protection. Some data
are wide open to public retrieve-only access; others require

1-4

UM 620341001
30 September 1990

strict authentication to provide retrieval. Many databases have
more stringent restrictions on accesses that will change
database contents than on accesses that only read database
contents.

Performance of the data resource has two facets: efficiency
and effectiveness. Efficiency is a measure of how well the data
system utilizes physical computer support, while effectiveness
is a measure of how well the data system meets users'
information needs. The characteristics are closely related; for
example, a user may be totally dissatisfied with the system if
response time is measured in hours rather than seconds.
Response time is generally considered to be an efficiency
measure, but it certainly has an impact on effectiveness.

1-5

UM 620341001
30 September 1990

SECTION 2

CDM OVERVIEW

2.1 The Fundamental Approach

2.1.1 The Three-Schema Architecture

A key to implementing effective data-oriented environments
lies in a framework that is called the Three-Schema
Architecture. This approach was proposed in the mid-1970s, then
developed, and finally published in 1977 in a report from a
committee of the American National Standards Institute - "The
ANSI/X3/SPARC DBMS Framework: Report of the Study Group on Data
Base Management Systems."

The basic concepts proposed in the report have the power to
lead us to more effective information resource management. They
are implemented in the CDM.

The Three-Schema Architecture is based upon several
fundamental facts:

o Computers and users need to be able to view the same
data in different ways

o Different users need to be able to view the same data
in different ways

o It is (more or less) frequently desirable for users
and computers to change the ways they view data

o It is undesirable for the computer to dictate or
constrain the ways that users view data

Thus, it is necessary to be able to support different types
of views of a data resource. Users need to be able to work with
logical representations of data, which are independent of any
physical considerations of how the data are actually stored and
managed on computer facilities. Users view data in terms of
high-level entities, e.g., staff members, tools, vehicles,
products, orders, and customers. Meanwhile, computer
facilities, access methods, operating systems, and DBMSs, for
example, need to be able to work with more physical
representations. They view data in terms of records and files,
with index structures, B-trees, linked lists, pointers,
addresses, pages, and so forth.

These requirements lead us to conclude first that there are
two fundamentally different types of data views: logical and
physical. The logical views are user-oriented, while the
physical views are computer-oriented (Figure 2-1).

A second conclusion is that there must be a mapping or
transformation between the logical and physical views. After
all, the ultimate objective is to enable users to gain access to
their data that reside on computerized media. This mapping

2-1

UM 620341001
30 September 1990

might be simple if there were only one user view and one
database, but that is not the real-world situation. Rather,
there are multitudes of user views and commonly many (sometimes
hundreds or thousands) databases in an enterprise.

Each user view could be mapped directly to the underlying
databases (Figure 2-2). This solution suffers, however, when
change is introduced in either type of view. If a physical
database is restructured on a disk to provide more efficient
performance, then the mapping to each of the user views that
references that database can be affected. If a logical view is
revised to present information in a somewhat different way, then
the napping to each of the referenced databases may be affected.
Independence of logical and physical considerations would not
have been achieved, and we would find that physical computer
factors would constrain the ways that users logically view their
data. This is undesirable.

Using three-schema architecture terminology, "external
schemas" represent user views of data, while "internal schemas"
represent physical implementations of databases. Schemas are
metadata, i.e., they are data about data. As a simple example,
CUSTOMER-NAME and CHARACTER (17) are metadata describing the
data value CHRISTOPHER ROBIN.

To enable multiple users to share a data resource that is
implemented on potentially many physical databases, we insert
between the users' views and the physical views a neutral,
integrated view of the data resource. This view is called a
"conceptual schema" in three-schema architecture terminology.
Others sometimes call it an "enterprise view."

2-2

UM 620341001
30 September 1990

Logical Data Views Physical Data Views

Figure 2-1. Two Fundamentally Different Views of Data: Logical
and Physical

2-3

UM 620341001
30 September 1990

Database A
user view 1 -

User View 2

User View 3

Database 0

Figure 2-2. Direct Mapping of Logical and Physical Views

2-4

UM 620341001
30 September 1990

As the vehicle for data integration and sharing, the
conceptual schema also carries metadata for enforcement of data
integrity rules. It is extensible, consistent, accessible,
shareable, and enables the data resource to evolve as needs change
and mature.

Figure 2-3 illustrates the relationships between the three
types of schemas. The schemas and the mappings between them are
the mechanism for achieving both data independence and support of
multiple views. An internal schema can be changed to improve
efficiency and take advantage of new technical developments
without altering the conceptual schema.

The conceptual schema represents knowledge of shareable data.
There may be access controls and security restrictions placed upon
these common data, but they are not restricted to access by only
one user. The conceptual schema does not describe personal data.

The scope of the conceptual schema expands through time. The
conceptual schema extension methodology continually expands the
conceptual schema to include knowledge of more shared data. The
external-conceptual mappings protect the external schemas and the
transactions/programs that depend on them from most modifications
incurred in evolving the conceptual schema.

Adding data to the integrated, common resource does not start
over in defining the data resource, nor does it create another
stand-alone database. Rather, development of its database must
examine questions of how those data relate to what is already
known by the conceptual schema. The result will be an integrated
data resource whose scope is expanded gradually. It is absolute
folly to approach integration of the data resources of an
organization all at once; the job must be taken on piecemeal. The
conceptual schema is the integrator.

The CDM contains all three types of schemas, as well as the
interschema mappings. It not only documents these metadata, but
also supplies appropriate metadata to support transaction
processing.

2-5

UM 620341001

30 September 1990

Internal

Schem Schchem

SSchema 2

Internal
Schema 2

ExternalC

Schema 2Nch m Internal

Schema 4

Figure 2-3. The Three-Schema Architecture: One Conceptual Schema
That Provides for Integration and Independence of
Many External Schemas and Many Internal Schemas

2-6

UM 620341001
30 September 1990

2.1.2 Representation of the Three Types of Schemas

In the IISS, the Three-Schema Architecture is implemented
through the CDM facilities to store each of the three types of
schemas and the interschema mappings. An appropriate
representation mode has been selected for each of the three types
of schemas.

The conceptual schema is represented by an IDEFl model. The
CDM stores this model in terms of entity classes, attribute
classes, and relation classes.

The external schemas are represented by tables. The user
views the common data resource in terms of flat, simple tables.
The mappings between these tables and the IDEFI model of the
conceptual schema are part of the CDM database.

The internal schemas are represented in terms of physical
database components, including record types and inter-record
relationships. The CDM Processor routines convert the users' data
access requests, which are phrased in terms of tables, into
requests against the conceptual schema IDEFl model, then into
requests against the physical database structures described in the
internal schema part of the CDM.

2.1.3 Integration Methodology

The Integration Methodology is the set of procedures and
quidelines that are used to expand the conceptual schema and to
increase the sphere of common data available to support users and
applications. The schemas and schema mappings in the CDM are
built, maintained, and accessed using the Integration Methodology
and the CDM Processors. (CDMP)

The Integration Methodology is intended to guide the CDM
Administrator in building and maintaining the conceptual schema
and in keeping its mappings to the internal and external schemas
highly accurate. This methodology consists of a set of techniques
for building the conceptual schema in gradual increments, for
building external and internal schemas from portions of the
conceptual schema, for developing schema mappings, and for keeping
these various CDM components current.

The first step in populating the CDM is to select a portion
of the data and to document it in the conceptual schema. Then
external and internal schemas for those data are built and mapped
to the conceptual schema. Subsequently, other portions of the
data resource are incorporated into the conceptual schema, and new
external and internal schemas and mappings are developed. The CDM
is populated gradually, in increments, rather than all at once.
It evolves through time.

A conceptual schema is represented by a semantic data model.
The IISS uses the IDEFl methodology, with certain extensions from
DACOM's Data Modeling Technique. (Subsequent to the development
of CDM subsystem, IDEF1 was formally extended. See Appendix B for

2-7

UM 620341001
30 September 1990

references.) The data model reflects business policy, provides a
rigorous view of the meaning of the data resource, and is
independent of the physical implementation of the data resource.

Building a data model is a rigorous procedure, whose
objective is to discover and document the semantic data structure
in its most fundamental terms. The modeling is a multi-step
process that requires substantial input from users who are expert
in the subject area.

The fundamental steps of the CDM Integration Methodology are
as follows:

1. Identify the scope of the initial increment of the
conceptual schema.

2. Develop the data model for that initial increment of the
conceptual schema.

3. Load the data model into the CDM database.

4. Identify any physical databases or files within the scope
of data in the conceptual schema.

5. Load their internal schemas into the CDM database.

6. Build the conceptual-to-internal schema mappings for the
internal schemas loaded in Step 5.

7. Load the conceptual-to-internal schema mappings into the
CDM database.

8. Determine which users/application programs should have
external schemas mapped from the conceptual schema.

9. Design the external schemas identified in Step 8, and
their mappings to the conceptual schema.

10. Load the external schemas and external-to-conceptual
schema mappings into the CDM database.

11. Identify the scope of the next increment to the
conceptual schema.

12. Develop the data model for the next increment of the
conceptual schema.

13. Integrate the data model from Step 12 with the data model
of the existing conceptual schema.

14. Load the integrated data model into the CDM database.

15. Verify that the conceptual-to-internal and
external-to-conceptual schema mappings are still valid,
correcting them as needed.

16. Identify any additional physical databases or files that
are now within the scope of the extended conceptual
schema.

2-8

UM 620341001
30 September 1990

17. Load their internal schemas into the CDM database.

18. Build the conceptual-to-internal schema mappings for the
incremented portions of the conceptual schema.

19. Load the conceptual-to-internal schema mappings into the
CDM database.

20. Identify any additional users or application programs
that should be supported by the extended conceptual
schema.

21. Design external schemas to support the users/application
programs identified in Step 20, and develop their
external-to-conceptual schema mappings.

22. Load the external schemas and external-to-conceptual
schema mappings from Step 21 into the CDM database.

23. Repeat Steps 11 through 22 for each increment to the
conceptual schema.

The evolutionary strategy for the conceptual schema should be
developed early in the life of the above cycle. The strategy
should ensure that the common data resource evolves in a manner
that serves the enterprise's need for controlled, shared data.
One tactic is to define the initial scope by that of an existing
database that has a corresponding data model. Ideally, that
database would contain core information of high interest to the
target user community.

Perhaps the most important point to understand about the CDM
Integration Methodology is that the incorporation of additional
data into the common data resource MUST be done in conjunction
with the existing conceptual schema. No data can be accessed
using the CDM integrated facilities, including the Neutral Data
Manipulation Language, unless they are known to the CDM. Adding
data causes the conceptual schema to expand in a consistent manner
that enables integration to occur. By contrast, adding data to an
environment that does not use conceptual schema technology just
adds more fragmentation to what is probably already at best an
interfaced (not integrated) system.

Applying the CDM Integration Methodology is not like
swallowing a pill. It requires precise knowledge of the meanings
of the data that are to be available in the integrated common data
resource. It means not just building IDEFl models for those
databases, but also analyzing the models for overlap, synonyms,
homonyms, and all the incipient anomalies and quirks that somehow
have crept into our database structures over the years. The cost
is measured in man-months of effort; the benefits are integration
and a knowledge base that can be built on and evolved in the
future.

2-9

UM 620341001
30 September 1990

2.1.4 Contributions to IRRIASSPA

The use of the Common Data Model and the Three-Schema
Architecture allows an organization to benefit from contributions
to IRRIASSPA, which are part of the objectives of the USA's
Integrated Computer Aided Manufacturing (ICAM) project to develop
the Integrated Information Support System (IISS). The
contributions can best be summarized as follows:

Independence - the IISS allows the separation of the
description and manipulation of logical data structures
from the actual physical data representations and isolates
implementation changes from user views and programs.

Relatability - the NDDL used in building the CDM allows
the CDM Administrator to define, modify, and maintain
relationships among data.

Resiliency/Recoverability - although not specifically
addressed by the CDM, the design of the CDM Processor
provides the ability to recover from failures without
damage to the data resource.

Integrity - is provided through the use of data integrity
constraints, which the application may specify and the CDM
Processor enforces.

Accessibilit - the NDDL allows the definition of data
that resi es not only in different databases but also on
different computers.

Security - not expressly addressed by the CDM.

Shareability - is provided by support of multiple user
views (i.e., external schemas) of the data resource.

Performance - the NDML, by use of the CDM, allows data [B
from multiple resources to be addressed in a cost-
effective manner in a distributed environment.

Administration - by providing a means of documenting the
meanings in the data resource and of providing a vehicle
by which consistency can be maintained even as the scope
of the CDM is extended. It also allows the maintenance of
information about data in different databases.

2.2 Basic Components of the Design

The Common Data Model(CDM) subsystem is comprised of three
components:

1. The CDM database, which is the database dictionary of
the IISS

2. A logical model of the CDM database called CDM

3. The CDM Processor (CDMP), which is the distributed
database manager of the IISS

2-10

UM 620341001
30 September 1990

This section will briefly discuss each of these basic
components and show how they interrelate, one with another.

2.2.1 The CDM Database

The CDM database is the database dictionary of the IISS. It
captures knowledge of the locations, characteristics, and
interrelationships of all shared data in the system. The most
significant feature of the CDM database is that it implements the
ANSI/X3/SPARC concepts of the three-schema approach to data
management. These three types of schemas are the conceptual
schema (CS), the internal schemas (IS), and the external schemas
(ES).

The conceptual schema describes a neutral, integrated view of
the shared data resource. There is one conceptual sche,. in an
enterprise. It is independent of physical database structures and
boundaries and is neutral to biases of individual applications.
Each external schema represents a user or application view of
data. Requests are made against external schemas. Each internal
schema represents an external schema to the local DBMS.

The CDM database is implemented as a relational database,
which presently resides on a VAX 11/780 computer. It is accessed
by the CDMP at compile-time to generate appropriate local DBMS
calls against internal schemas to process a user's NDML request
against an external schema.

The CDM database is repzesented logically using a semantic
data modeling technique called IDEFI. This method of data
modeling is a hybrid of the entity-relationship approach, the
relational model, and the Smith's 2D data abstraction approach.
This logical model of the CDM database is called CDM1.

2.2.2 CDM1

CDM1 is a model of metadata, i.e., data about data. It gives
the logical structure of the CDM database which maintains the
metadata. These metadata describe the meanings and
characteristics of user data.

The conceptual schema portion of the CDM1 model is related to
portions that describe internal and external schemas. An internal
schema describes a local database structure in just enough detail
to give the CDMP adequate information to generate code that can be
processed by the pertinent local DBMS. Because one of the
requirements of the IISS is that it provide integration of data in
existing databases, the mappings between the conceptual schema
metadata and the internal schema metadata are not simple. IISS
does not have the luxury of supporting only certain clean database
structures. It is very likely that an attribute may be
represented by one or more data files, which may be in different
databases and even on different computers, or by relationships
between record types.

An external schema describes the portion of the conceptual
schema that is within the purview of a user or application. An
external schema is equivalent to a view in the relational model.

2-11

UM 620341001
30 September 1990

The conceptual-to-external schema mapping part of the CDMI is
straightforward. The present implementation of the CDM subsystem
supports any external schema that can be formed by joining
conceptual schema entities and selecting attributes.

Thus, the CDMI model is a semantic data model that describes
the logical structure of the CDM database. The CDM1 represents
the conceptual schema, the internal schemas and their mappings
from the conceptual schema, and the external schemas and their
mappings from the conceptual schema.

2.2.3 The CDM Processor

The CDMP is the distributed database manager of the IISS. It
builds on top of local DBMS services to provide data access. The
CDMP plays both a compile-time and a run-time role in the
processing of transactions. The compile-time component is called
the CDMP Precompiler. The run-time components are called the CDMP
Distributed Request Supervisor (DRS) and the CDMP Aggregator.

2.2.3.1 CDMP Precompiler

The CDMP Precompiler performs the following functions for
each data request:

1. Parses the request

2. Transforms the request f . an external schema access to
a conceptual schema ac-ess

3. Decomposes tle request into subrequests, each of which
accesses one internal schema

4. Determines an appropriate access path for each subrequest
generating code that can be processed by the pertinent
local DBMS

5. Generates code to transform any data to be extracted from
local databases from internal to conceptual schema format
(this code is called a Request Processor or RP)

6. Generates code to transform any data results from
conceptual to external schema format and to perform
statistical calculations (this code is called a C/E
Transformer or CEX)

7. Generates code to invoke appropriate RPs and CEXs at
run-time, via calls to the NTM Subsystem

The CDMP Precompiler accesses the CDM database to find
metadata for the inter-schema transforms and integrity
constraints for update requests.

After successful precompilation of a user's program, which
contains embedded data requests in a SQL-like language called
the Neutral Definition/Manipulation Language (NDML), the CDMP
has produced the following code modules:

2-12

UM 620341001
30 September 1990

1. Modified user program will activate appropriate
processes (RP's and CEX's) at runtime.

2. One Request Processor (RP) per DBMS that manages data
to be accessed by the user program.

3. One Conceptual-to-External Transformer (CEX), which
will deliver query results to the modified user program
at run-time.

2.2.3.2 Distributed Request Supervisor

There are presently two CDMP Distributed Request Supervisor
(DRS), one residing on the IBM node, the other on the VAX which
have responsibility for scheduling and coordinating the various
subrequests of user transactions. The DRS uses request graphs
produced by the CDMP Precompiler to determine which operations are
to be performed where. The DRS also uses knowledge of
communications costs and intermediate result volumes in its
algorithm for scheduling RPs.

Request Processors always deliver results as relations. The

relations are operated upon by the Aggregators.

2.2.3.3 Aggregators

An Aggreqator is called to perform a single function; for
example, a union or a join, or an outer join on two sets of data,
each of which exists in a single sequential file. These data sets
are the results of an RPP or another Aggregator.

An Aggregator always deals with data in conceptual schema
format.

2-13

UM 620341001
30 September 1990

SECTION 3

RESPONSIBILITIES OF THE CDM ADMINISTRATOR

The role that the CDM Administrator plays in the IISS
environment is not unlike that of the database administrator in
that the CDMA is responsible for the following:

1. Establishing Data Standards

2. Maintaining the CDM

3. Protecting the CDM

4. Facilitating Use of the CDM

Each of these areas is of major importance to the
organization and a failure to properly administer either of
these areas of responsibility can cost the organization dearly.

3.1 Establishing Data Standards

One of the early roles of the CDMA is the establishment of
data standards. Part of this work has already been initiated
during the development of the CDM1. The work that remains is to
determine what types of standards to implement and to gain
acceptance for the use of these standards. It should be noted
that, without acceptable standards, it will be difficult, if not
impossible, for the CDMA to enforce any level of
standardization.

3.2 Maintaining the CDM

The CDMA must maintain the CDM. This entails the building
of the initial conceptual schema (CS), internal schemas (IS), CS
to IS mappings, external schemas (ES), and ES to CS mappings, as
well as extending the model and modifying and deleting elements
as needed. It is to be expected that the need for extending and
modifying the CDM will grow over time, slowly at first, then
growing rapidly as the benefits of the concept are proved before
leveling off after several years.

3.3 Protecting the CDM

One of the most important responsibilities of the CDMA is
the protection of the CDM against loss, theft, and corruption,
be it intentional or not. At issue is the substantial
investment that went into the development of the CDM and the
potential damage that can be caused to the enterprise should the
data fall into the wrong hands.

3.4 Facilitating Use of the CDM

The CDMA must make the CDM available to all those who can
potentially gain from the use of the CDM and have legitimate
reason to do so. This may involve making the CDM available on
other computers in the network. It also involves communicating

3-1

UM 620341001
30 September 1990

with the CDM user and potential users as to the contents and
performance of the CDM, as well as the usability of the data.
Part of this communication will involve solving problems and
answering questions and reporting the status of the CDM.

3

3-2

UM 620341001
30 September 1990

SECTION 4

MAINTAINING THE CONCEPTUAL SCHEMA

4.1 Methodology Overview

This section and its subsections (4.2 - 4.3) introduce the
methodology for building and updating a conceptual schema. The
portion of the CDM database that contains a conceptual schema is
described, and the basic approach to developing a conceptual
schema is presented. Detailed instructions for filling out the
modeling forms are included.

4.1.1 CS Structure

A conceptual schema is essentially a single IDEFI model
that describes all of the common data in an enterprise.
Consequently, its components are those of any IDEFI model:

Entity Classes
Relation Classes
Attribute Classes
Attribute Use Classes
Inherited Attribute Use Classes
Key Classes
Key Class Members

Detailed explanations of these can be found in the IDEFI
documentation. (Extensions to the IDEFI language, referenced in
Appendix C, simplify the IDEFI terminology used here.)

In addition to the usual metadata (data about data)
contained in any IDEFI model, the conceptual schema requires
certain new elements of metadata. Key class numbers are
assigned to enable alternate key classes for the same entity
class to be distinguished from one another. Tag numbers, tags
(names), and tag labels are assigned to enable attribute use
classes within the same entity class to be distinguished from
one another. Data types and sizes are identified for all
attribute classes.

The conceptual schema must conform to several rules that
cause the data relationships and descriptions to be as explicit
as possible. (Note: In these rules the phrase "any number"
includes the possibility of zero.)

1. Single-Owner Rule: An entity class can own any number of
attribute classes. Every attribute class is owned by
exactly one entity class.

2. Every entity class contains one or more attribute use
classes. Every attribute use class is contained in
exactly one entity class.

4-1

UM 620341001
30 September 1990

3. Every attribute class appears as exactly one attribute
use class in its owner entity class. An attribute class
can also appear as any number of attribute use classes in
any number of other entity classes. Every attribute use
class corresponds to exactly one attribute class.

4. Every entity class has one or more key classes. Every
key class is for exactly one entity class.

5. Every key class is composed of one or more key class
members. Every key class member is in exactly one key
class.

6. An attribute use class can be used as a member of any
number of key classes for the entity class in which it is
contained. An attribute use class cannot be used as more
than one member of the same key class; i.e., every member
of a key class must be a different attribute use class.
An attribute use class in one entity class cannot be used
as a member of a key class for any other entity class.
Every key class member is exactly one attribute use
class.

7. An entity class can be independent in any number of
relation classes and dependent in any number. An entity
class cannot be both independent and dependent in the
same relation class. Every relation class has exactly
two entity classes: one independent, one dependent.

8. A key class can migrate through any number of relation
classes in which its entity class is independent. A key
class cannot migrate through a relation class in
which its entity class is dependent or one in which its
entity class is not involved. Every relation class has
exactly one key class from the independent entity class
migrating through it into the dependent entity class.

9. Every relation class is a migration path for one or more
inherited attribute use classes, one for each member of
the key class that migrates through it. Every inherited
attribute use class has exactly one relation class as its
migration path.

10. Every member of the key class that migrates through a
relation class creates exactly one inherited attribute
use class in the dependent entity class for that relation
class. Every inherited attribute use class is created
from exactly one key class member.

11. Every attribute use class in an entity class represents
either one attribute class that is owned by that entity
class or one inherited attribute use class that migrated
into that entity class. Every inherited attribute use
class is represented by exactly one attribute use class.

4-2

UM 620341001
30 September 1990

12. Unique-Key Rule: No two entity instances in an entity
class can have identical values in the samekey class for
that entity class. For a multi-member key class,
instances can have identical values for some members, but
not for all.

13. No-Null Rule: Every entity instance in an entity class
has a value in each attribute use class in that entity
class.

14. No-Repeat Rule: No entity instance in an entity class
can have more than one value in any attribute use class
in that entity class. This rule is equivalent to the
first normal form in the relational database model.

15. Full-Functional-Dependency Rule: No entity instance in
an entity class can have a value in an owned, nonkey
attribute use class that can be identified by less than
the entire key value for that entity instance. This rule
applies only to entity classes with multi-member
key classes and is equivalent to the second normal form
in the relational database model.

16. No-Transitive-Dependency Rule: No entity instance in an
entity class can have a value in an owned, nonkey
attribute use class that can be identified by the value
in another owned or inherited, nonkey attribute use class
in that entity class. This rule is equivalent to the
third normal form in the relational database model.

17. Smallest-Key-Class Rule: No entity class with a
multi-member key class can be split into two or more
entity classes, each with fewer members in its key class,
without losing some information. This rule is a
combination and extension of the fourth and fifth normal
forms in the relational database model.

4.1.2 Basic Approach (Onion Concept)

The complete conceptual schema for an enterprise contains
thousands of entity classes and a corresponding number of relation
classes, attribute classes, etc. It is much too large to be built
all at once. Instead, it must be built in increments -- each one
building on the prior ones, until the conceptual schema is
complete. The increments are like the layers of an onion; as each
layer is added, the onion gets a little larger.

The process of "growing" the conceptual schema involves two
procedures, both of which are enhanced versions of the IDEFI
modeling procedure. The first is used to build the initial
increment only. The second is used to build each additional
increment. The only difference between the two is that the second
must be concerned about the integration of the new increment with
the existing conceptual schema. This involves being continually
aware of which components of the conceptual schema are within the
scope of the new increment and how any of those components will be
affected by the addition of the new increment. These two
procedures are in Sections 4.2 and 4.3, respectively.

4-3

UM 620341001
30 September 1990

4.1.3 Modeling Forms

Because the methodology for maintaining the conceptual schema
is based on the IDEFI information modeling methodology, it uses
most of the IDEFl forms:

Source Material Log
Source Data List
Entity Class Pool
Entity Class Definition
Relation Class Matrix
Attribute Class Pool
Kit Cover Sheet
Entity Class Diagram (optional)
Relation Class Definition (optional)
Attribute Class Diagram (optional)
Entity Class/Attribute Class Matrix (optional)
Attribute Class Migration Index (optional)
Author Page Control Log (optional)
Index Control Log (optional)
Kit Control Log (optional)
Text Control Log (optional)
FEO Control Log (optional)
Entity Class Set Control Log (optional)
Entity Class/Function View Matrix (optional)

Please refer to the IDEFI documentation for detailed
descriptions of these forms.

A few of the regular IDEFI forms have certain shortcomings
that make them unsuitable for use in directly loading the
conceptual schema tables into the CDM database. The forms listed
below were designed to eliminate those shortcomings:

Relation Classes
Owned Attribute Classes
Inherited Attribute Classes

The rest of this section contains a detailed description and
two samples (one blank, one filled in) of each of these forms.

NOTE: When using the NDDL (see Neutral Data Definition Language
Users Guide, Pub. No. UM 620341100) for maintaining the
conceptual schema in the CDM database, names should be substituted
for any/all numbers on the modeling forms. A discussion of the
NDDL can be found in Subsection 5.1.1.

Relation Classes Form

Purpose:

To provide a single source of information about relation
classes that are to be described in the conceptual schema.

4-4

UM 620341001
30 September 1990

Instructions:

Fill in one or more pages for each entity class that is
independent in a relation class. List only those relation
classes in which the entity class is independent; do not
list any relation classes in which it is dependent. Do
not fill in a page for an entity class that is dependent
in all of its relation classes.

* Form Area Explanation

1. Independent Entity Name of the entity class that is
Class Name independent in the relation

class. This will be the same for
all relation classes entered on a
page. It is included only to
make the entry readable; it is
not used in loading the
conceptual schema.

2. Relation Class Label Label of the relation class.
This is part of the unique
identification of a relation
class.

3. R.C. Card. Symbol for the cardinality of the
relation class.

4. Dependent Entity Name of the entity class that is
Class Name dependent in the relation class.

It is included only to make the
entry readable; it is not used in
loading the conceptual schema.

5. Dep. E.C. No. Number of the entity class that
is dependent in the relation
class.

6. Ind. K.C. No. Number of the key class in the
independent entity class that
migrates through the relation
class into the dependent entity
class.

7. Node Number of the entity class that
is independent in all of the
relation classes listed on the
page.

All other form areas correspond to areas on the regular IDEFI
forms. Please refer to the IDEFI documentation for details about
those areas.

4-5

UM 620341001
30 September 1990

Independent flelabon Class Ai C. Dependent De. Ind.
Entity Class Narne Label Card Enit 2 C.ss Narne E C. No. K C. No.

Relation Classes Nmr

Figure 4-1. Relation Classes Form

4-6

UIM 620341001
30 September 1990

USE OAT AUTIMM OAC01A ICEM. OAR) DATE Aug t963 X VX"4x Arn Of COWnEXI
SMOJICI 6201M MCMM WV row- 1

I nrc nqrtgx
NO eTES 2 4~SS' ___1__1_0_H_1____A

Independent Relation Class nl c Dependent Dei,. Ind

Enity Class Namne Label Card Enfily Clas% Name EzC. No K C No

0Exec Plan Is OEP Group M .of E03 KI

00 Exec Pion Has -- > EP Slowed ItemY Req E6I KI

OR Exec Plan is Used To Manuwitive OP E20c Plan~ Pall EIs KI

00 E.gc Plan is -4. Op Exec Plan Cosp E14 PCI

op Exec PIMs Has Opration Elo KI

op c sMn Has ..- > Op Exec Plan ObsI E71 PCI

40(Ell Irit Relation Classes 62IT 6

Figure 4-2. Relation Classes Form Example

4-7

UM 620341001
30 September 1990

Owned Attribute Classes Form

Purpose:

To provide a single source of information about owned
attribute use classes that are to be described in the
conceptual schema.

Instructions:

Fill in one or more pages for each entity class that owns
an attribute use class, either key or nonkey. List only
those attribute use classes that are owned by the entity
class; do not list any attribute use classes that are
inherited by the entity class. Do not fill in a page for
an entity class that contains only inherited attribute use
classes.

Form Area Explanation

1. Tag No. Tag number for the attribute use
class.

2. A.C. Name & Label Name, label, and any synonyms of
the attribute use class. The
name is listed first. The label
is enclosed in parentheses and
placed on the line below the
name. If the name and label are
identical, the label can be
omitted. If the attribute use
class has any syn.;nyms, the term
"Synonyms:" is placed below the
name and label and the synonyms
are listed under it.

3. A.C. No. Attribute class number for the
attribute use class.

4. A.C. Definition Definition of the attribute use
class.

5. Type ID. Format description for the
attribute use class indicating
data type (numeric, character,
etc.), length, and decimal length
(if applicable). The data type
must be one from the CDM Data
Type Table.

6. Mbr. of K.C. No. Number(s) of the key class(es) to
which the attribute use class
belongs, if any.

7. Node Number of the entity class that
owns all of the attribute use
classes listed on the page.

4-8

UM 620341001
30 September 1990

All other form areas correspond to areas on the regular IDEFl
forms. Please refer to the IDEFI documentation for details about
those areas.

Inherited Attribute Classes Form

Purpose:

To provide a single source of information about inherited
attribute use classes that are to be described in the
conceptual schema.

Instructions:

Fill in one or more pages for each entity class that
inherits an attribute use class. List only those
attribute use classes that are inherited by the entity
class; do not list any attribute use classes that are
owned by the entity class. Do not fill in a page for an
entity class that contains only owned attribute use
classes.

Form Area Explanation

1. Tag No. Tag number for the attribute use
class.

2. Tag & Label Name, label, and any synonyms of
the attribute use class. The
name is listed first. The label
is enclosed in parentheses and
placed on the line below the
name. If the name and label are
identical, the label can be
omitted. If the attribute use
class has any synonyms, the term
"Synonyms:" is placed below the
name and label, and the synonyms
are listed under it.

3. A.C. No. Attribute class number for the
attribute use class.

4. Ind. E.C. No. Number of the independent entity
class from which the attribute
use class was inherited.

5. Ind. K.C. No. Number of the key class in the
independent entity class that
migrated through the relation
class named in the "Migration
Path R.C. Label" area.

6. Ind. Tag No. Tag number of the attribute use
class in the independent entity
class that migrated to become
this attribute use class.

4-9

UM 620341001
30 September 1990

7. Migration Path Label of the relation class
through which the attribute use
class was inherited.

8. Mbr. of K.C. No. Number(s) of the key class(es) to
which the attribute use class
belongs, if any.

9. Node Number of the entity class that
contains all of the attribute use
classes listed on the page.

All other form areas correspond to areas on the regular IDEFI
forms. Please refer to the IDEFl documentation tor details about
those areas.

4-10

UM 620341001
30 September 1990

USDA AU71,401% DATE O"(IWAIV1I flAT i I E
MoACf ntv O NF (

IO
T S 1 2 3 4 S 7

_ _
t o I_ _ __IA IO_

Tag AC Type Mb Of
No A C Name & Label No. A C. Defnlion 1_ KC No

0 0 © 0

CO((TIVL Owned Atribute Classes NU4 n

Figure 4-3. Owned Attribute Classes Form

4-11

UM 620341001
30 September 1990

US OT UIK)I ACF (EMon) AT Ag19e3 IX VIN 41I All It fli CONTEXT
JIO,(C T 6201M MCMM ntv f IAr

NOES 12 3a5 6 7 0 I j'll C OMW P D _____

Tog A N &IiA C. AC DiType Mbr of
No. ACNae&LblNo. _______ Definition ___ ID K C. No

737 Opetamon Eveculoon Plan Group ldenbticaIton AtO A unklue idinler aSSqned To wientify Nfdf K01
(01 P 0VID) groups ol opefalion excclool pLins

T134 Stalus A34 A CO that 'inifatei uwee a gimi, of c(sf
Operalen .secubon plA14 IS WdhWn 13S
lile cyci.

TM3 Toua Opetation Esecubion Plans A35 The Wlo riumbt of operalion erpectron Mitt
(70WEPS)plansthVat makie up Ihe cyoup

F~t 12l Owned Altribute Classes NUM1 69

Figure 4-4. Owned Attribute Classes Form Example

4-12

UM 620341001
30 September 1990

USEO AT ALrflKG (ATE WOOIK G ITAl 01 nAf COM lEXT

I II c c~kffl NIF(

NOTtS 1 22 4 S6 7 9 10 J
Tag A C. Ind Ind, Ind. Mbr of
No. Tag & Label No.o Ta No M ation athRC Label KC No

@ :,O Il(C Inheiled Atlibute Classes I R

Figure 4-5. Inherited Attribute Classes Form

4-13

UM 620341001
30 September 1990

USEAflUHM VACOM (CEM. DAM~ OATE Aug 190 j D I OdG I WVV~ A rn oAT? CO#E1XET

TMW3JCT 6201M MCMM MYE FTW
NOTS 23 45 & ?89 $0 V.IJtJIN CAION I J

Tag A C Ind. Ind. Ind ftoPahRCLbl Mbr of
No, Tag & Label No E C. No. K.C. No. Ta No. MgainPm ae .. N

T73 Ftemfon Number A09 E20 K01 T28 IsFor X01?
(Roq NO)

T191 IS" sn~mauackw rea A07 E20 X1O? 7182 fs Far K01

(hs M19 Area 01

T192 Desimatioe manuiacluin Area A07 E24 K01? 140 IS
kknorcalon

Figure 4-6. Inherited Attribute Classes Form Example

4-14

UM 620341001
30 September 1990

4.2 Building the Initial CS

This section and its subsections (4.2.1 - 4.2.5) describe the
procedure for initiating an enterprise's conceptual schema. The
procedure is concerned with creating a detailed description (an
information model) of a portion of the enterprise's common data
and with collecting the data required to place that description in
the CDM database as the first piece of the conceptual schema (the
first layer of the onion). It is not concerned with deciding
which portion of the common data to describe nor with setting up
the CDM database and its utilities; these things must be done
before starting the procedure. The procedure consists of six
phases, the first five of which are patterned after those in
IDEFI. The five IDEFI phases are as follows:

o Phase 0 - Starting the Project

o Phase 1 - Defining Entity Classes

o Phase 2 - Defining Relation Classes

o Phase 3 - Defining Key Classes

o Phase 4 - Defining Nonkey Attribute Classes

The procedure for the sixth phase, which consists of populating
the CDM database with the conceptual schema, is described in
Section 5. Each IDEF phase is described in a subsequent
subsection.

4.2.1 Phase 0: Starting the Project

Objectives:

o State the purpose, scope, and viewpoint for the
information model.

o Establish the project team.

o Develop a phase-level project schedule.

o Collect and catalog relevant source material.

This phase is patterned after Phase 0 of IDEFI, and the
description presented here is less detailed than the one in the
IDEFI documentation. Please refer to that documentation for
further information.

Tasks:

1. The CDM Administrator appoints a project manager.

Usually, this will be the CDM Administrator.

2. The project manager states the purpose for building the
information model.

4-15

UM 620341001
30 September 1990

This explains why the model is needed, i.e., what it will
be used for. A model built with this procedure is
primarily used to initiate the enterprise's conceptual
schema. (It is not necessary to explain why the
conceptual schema is needed.) If the model has other
purposes, they should be mentioned also.

3. The project manager states the scope of the information
model.

This sets the boundary of the model. It should be
specific enough to be useful in deciding whether or not a
particular element of common data should be included in
the model. Some of the things that can be used as the
basis for scoping a model are the following:

o Information subjects: parts, employees, sales
orders, etc.

o Functions: engineering release, shop floor
control, etc.

o Existing computer files or databases

o Existing computer application systems

4. The project manager states the viewpoints for the
information model.

This explains the mental attitude or role that people
should adopt when looking at and thinking about the
model, i.e., in whose place they should put themselves.
Usually, this will be the job title of someone who is
intimately involved with the common data being modeled.

5. The project manager appoints the project team members.

The four roles to be filled are as follows:

o Modeler - one or two IDEFI experts.

o Source - several subject experts, i.e., people
who have in-depth knowledge about some or all of
the common data being modeled.

o Reviewer - several subject experts; some sources
may also serve as reviewers. The CDM
Administrator must also serve as a reviewer to
ensure that the model, as it is developed, is
properly documented for loading into the CDM
database tables.

o Librarian - a person who is trained and
experienced in coordinating kit reviews and in
maintaining files of model documentation; a
modeler may also serve as the librarian.

4-16

UM 620341001
30 September 1990

6. The project manager appoints t -ceptance review
committee members.

This committee should consist of subject experts from the

area being modeled and from other, related areas.

7. The project manager schedules the project phases.

Estimate the amount of effort needed to complete each
phase (usually in man-weeks or man-months) and then
convert those estimates to elapsed times and milestones
based on the availability of the project team members.
At this point, only the phases are scheduled; the
individual tasks within a phase will be scheduled when
that phase is started.

8. The project manager schedules the remaining Phase 0
tasks.

Estimate the amount of effort needed to perform each
remaining task in this phase (usually in man-hours or
man-days) and then convert those estimates to elapsed
times and milestones based on the availability of the
project team members who will perform those tasks. The
schedules for the subsequent phases should be adjusted if
they are inconsistent with these task schedules.

9. The modeler develops a data collection plan.

Determine what kinds of source material are needed and
where and how to get that material.

10. The project manager conducts a project kick-off meeting
attended by the project team members.

The objectives of the meeting are as follows:

o To introduce the team members to one another and
to the roles they will be performing.

o To determine which members need IDEFI training.

o To present, discuss, and finalize the statements
of purpose, scope, and viewpoint.

o To present and discuss the project schedule.

o To present, discuss, and finalize the data

collection plan.

11. The modeler collects source material from the sources.

Gather the documents, policies, procedures, database
designs, etc., and interview the sources in accordance
with the data collection plan (Task 9).

4-17

UM 620341001
30 September 1990

12. The modeler catalogs the source material.

Prepare Source Material Log Forms and Source Data List
Forms. If a database design is among the source
material, the record names and data field names should be
included in the source data list.

13. The modeler explains any author conventions.

These are deviations from or additions to the regular
IDEFI methodology. Mention the use of the three
specially designed modeling forms: Relation Classes
Form, Owned Attribute Classes Form, and Inherited
Attribute Classes Form.

Deviation from IDEFl:

Usually, kits are not used to accomplish the review of the
Phase 0 model documentation; the essentials are reviewed during
the kick-off meeting (Task 10). However, the project manager may
require that kits be used to supplement or replace the kick-off
meeting.

4.2.2 Phase 1: Defining Entity Classes

Objective:

o Identify and define the apparent entity classes that
are within the scope of the model.

This phase is patterned after Phase 1 of IDEFI, and the
description presented here is less detailed than the one in the
IDEFI documentation. Please refer to that documentation for
further information.

Tasks:

1. The project manager decides what method to use to review
the Phase 1 model.

The options are to distribute review kits, to hold a
walk-through meeting, or to do both. The factors to
consider are the following:

o Some team members may have to travel to attend a
walk-through. How many trips can the project
budget afford?

o A review can usually be accomplished faster with
a walk-through than with kits. Is there enough
time to circulate kits, perhaps two or three
times?

o Some reviewers may have very limited time to
spend on the project. How can their time be
used most effectively, by reviewing a kit or by
attending a walk-through? Will they devote time
to reviewing a kit on their own?

4-18

UM 620341001
30 September 1990

2. The project manager schedules the Phase 1 tasks.

Estimate the amount of effort needed to perform each task
in this phase (usually in man-hours or man-days) and then
convert those estimates to elapsed times and milestones
based on the availability of the project team members who
will perform those tasks. The schedules for the
subsequent phases should be adjusted if they are
inconsistent with these task schedules.

3. The modeler builds an entity class pool.

Examine the entries in the source data list and deduce
what sort of thing each entry identifies, describes,
refers to, etc. For example:

o Employee number, name, birth date, and salary
are data elements about an employee; hence, an
"Employee" entity class.

o Part number, description, and dimensions are all
about a part; hence, a "Part" entity class.

Each sort of thing is represented by an entity class.
Talk to the sources when additional information is
needed. The entity instances within an entity class
should be distinguishable from one another by some unique
identifier. Assign an entity class number to each entity
class, and record it on an Entity Class Pool Form.

When examining record names from a Catabase design, be
careful to think about the "real-world thing" that each
kind of record represents. Realize that several kinds
of records may represent the same thing or, conversely,
that one kind of record may represent several different
things. Also, realize that certain kinds of records may
be present for technical reasons only (performance,
backup/recovery, etc.). Such records do not represent
"real-world things" and should not result in entity
classes being added to the pool.

4. The modeler defines each entity class.

Fill out an Entity Class Definition Form for each entity
class in the pool. Talk to the sources when additional
information about an entity class is needed. Check off
each pool entry as it is dealt with.

Watch for synonyms (different names for the same thing)
and homonyms (same name for different things). When
there are synonyms for something, there is only one
entity class to define. Use the most commonly used name
as the "official" entity class name, and record it and
the corresponding entity class number on an Entity Class
Definition Form. Record the other names as synonyms on
the form. In the pool, add a note to each synonym entry
referring to the official name or number.

4-19

UM 620341001
30 September 1990

For a homonym, there are two or more entity classes to
define, one for each thing that the term represents.
Pick a new name for each thing to clarify the
differences. Record the new names in the entity class
pool along with a new entity class number for each, and
fill out Entity Class Definition Forms. For example, if
an order can be either something received by an
enterprise from a customer, or something sent by an
enterprise to a vendor, call the first a sales order and
the second a purchase order, and fill out two definition
forms.

5. The modeler, reviewers, and librarian participate in
reviewing the Phase 1 model.

The method of review was selected in Task 1. The
modelers prepare the review materials (kits or
walk-through handouts), the reviewers read and comment on
the materials, and the modelers respond to the
comments. If kits are used, the librarian coordinates
their circulation. The CDM Administrator reviews the
model to ensure that all model documents are prepared
properly for loading the CDM database tables.

4.2.3 Phase 2: Defining Relation Classes

Objective:

o Identify and define the apparent relation classes
that are within the scope of the model.

This phase is patterned after Phase 2 of IDEFl, and the
description presented here is less detailed than the one in the
IDEF1 documentation. Please refer to that documentation for
further information.

Tasks:

1. The project manager decides what method to use to review
the Phase 2 model.

See Phase 1, Task 1, for the options and factors to
consider.

2. The project manager schedules the Phase 2 tasks.

See Phase 1, Task 2, for details.

3. The modeler builds a relation class matrix.

List all of the entity classes across the top and down
the left side of Relation Class Matrix Forms or on a
large sheet of grid paper; the matrix is easier to work
with when it is all on one sheet of paper. Then,
determine which pairs of entity classes are related to
each other. Look for data about one thing that is also
data about another. For example:

o Customer and Sales Order

4-20

UM 620341001
30 September 1990

A sales order has some data about the customer

that placed it, such as customer number, name,
address, etc.

o Part and Purchase Order

A purchase order contains some data about the
parts being ordered, such as part numbers,
descriptions, dimensions, etc.

o Department and Employee

One element of data about an employee is the
department to which he/she is assigned, such as
department number, name, etc.

o Manufacturing Order and Employee

A manufacturing order has some data about the
employees who performed its operations, such as
employee numbers, names, etc.

Such sharing of data implies a relationship of some sort.
Talk to the sources when additional information about
such sharing of data is needed. If a database design is
among the source material, the relationships it depicts
may be useful. Place an "X" in the matrix at the
intersection of each pair of related entity classes.

4. The modeler prepares overview diagrams (FEOs).

These diagrams are intended to show all of the entity and
relation classes on just a few pages. Reviewers can
usually understand overview diagrams better than
individual entity class diagrams, so they will be the
primary (or sole) depiction of the model. Each diagram
should focus on a particular subject with which the
reviewers will be comfortable (e.g., major activities),
and each should contain about 10-to-20 entity classes and
their relation classes. Use large sheets of paper (e.g.,
11x17) and photo-reduction, if necessary.

Every entity and relation class in the matrix must appear
in at least one diagram. Use some author
convention to signify the entity classes that appear in
more than one diagram (e.g., by broadening or
double-lining the entity class boxes) and to identify
which other diagrams they are in (e.g., by listing the
diagram numbers near the entity class boxes). For
example, if entity class E27 is in diagrams Fl, F3, and
F4:

o List F3 and F4 near E27's box on Fl.
o List F1 and F4 near E27's box on F3.
o List F1 and F3 near E27's box on F4.

4-21

UM 620341001
30 September 1990

Add the appropriate cardinality and a meaningful label to
each relation class as it is drawn in a diagram. Talk to
the sources when additional information about a relation
class label and cardinality is needed. Cardinalities may
be either specific or nonspecific; derived entity classes
should not be introduced yet to avoid getting ahead of
the reviewers. Check off each relation class in the
matrix as it is drawn in a diagram (e.g., by circling the
X in the matrix).

5. The modeler defines any additional entity classes that
are introduced during this phase.

Whenever a new entity class is introduced, immediately
document it by performing the tasks in Phases 1 and 2
that are needed to:

o Update the entity class pool.
o Prepare an Entity Class Definition Form.
o Update the relation class matrix if it has been

started.
o Update the overview diagrams if they have been

started.

6. The modeler, reviewers, and librarian participate in
reviewing the Phase 2 model.

See Phase 1, Task 5 for details.
Deviation from IDEFI:

Usually, individual entity class diagrams are not prepared
because the overview diagrams are easier to understand and review,
and Relation Class Definition Forms are not filled out because the
relation class labels are supposed to be self-descriptive. Also,
the Related Entity Class Node Cross-Reference Form is replaced by
the specially designed Relation.

Classes Form, which is called for in Phase 3. However, the
project manager may require the use of any or all of these to
supplement the model documentation called for above.

4.2.4 Phase 3: Defining Key Classes

Objectives:

o Refine all nonspecific relation classes in the model.

o Identify the apparent attribute classes that are
within the scope of the model.

o Identify and define a key class for each entity class
in the model.

o Validate every relation class in the model via key
class migration.

This phase is patterned after Phase 3 of IDEFI, and the
description presented here is less detailed than the one in the
IDEFl documentation. Please refer to that documentation for

4-22

UM 620341001
30 September 1990

further information. Also, please refer to Subsection 5.2.2.1 for
details on how to fill out the Relation Classes, Owned Attribute
Classes, and Inherited Attribute Classes Forms.

Tasks:

1. The project manager decides what method to use to review
the Phase 3 model.

See Phase 1, Task 1, for the options and factors to
consider.

2. The project manager schedules the Phase 3 tasks.

See Phase 1, Task 2, for details.

3. The modeler refines the nonspecific relation classes.

Introduce a derived entity class for each nonspecific
relation class and convert that relation class to a pair
of specific relation classes as shown in Figure 4-7 at
the end of this section. Assign entity class numbers to
the derived entity classes, record them in the entity
class pool, and fill out Entity Class Definition Forms.
The sources may be able to recommend appropriate names
and definitions for some derived entity classes.

Remove the nonspecific relation classes from the relation
class matrix and the overview diagrams. Add the derived
entity classes and the specific relation classes to the
matrix and the diagrams. Retain the same focus for each
diagram unless the reviewers suggested a change.

Also, update any optional documents that are affected.

4. The modeler eliminates any unneeded triads or other
dual-path structures.

A dual-path structure is one composed of two or more
related entity classes in which:

o There are two paths connecting one entity class
to another

o One path is a single relation class

o The other path is a series of relation classes
(unless the structure has only two entity
classes in which case the second path is a
single relation class also)

See the examples in Figure 4-8 at the end of this
section. Talk to the sources to determine whether the
two paths are equal, unequal, or indeterminant. The paths
are equal if, for each dependent entity instance,
they both lead to the same independent entity instance.
The paths are unequal if, for each dependent entity
instance, they each lead to a different independent
entity instance. The paths are indeterminant if they are

4-23

UM 620341001.
30 September 1990

equal for some dependent entity instances and unequal for
others. If the paths are equal, the
single-relation-class path is redundant and must be
removed from the relation class matrix and the overview
diagrams (and from any optional docume:±r ir which
appears).

5. The modeler fills out Relation Class Forms.

Record each relation class on a Re]ption Classes Form.
Leave the Ind. K.C. No. column biank for now. As each
relation class is recorded on a form, check it off on a
copy of each overview diagram in which it appears (e.g.,
by circling the relation class labels).

6. The modeler builds an attribute class pool.

Examine the entries in the source data list and deduce
what sort of characteristic each represents, where a
characteristic is a data element that identifies,
describes, refers to, etc., a thing being modeled. Each
sort of characteristic is represented by an attribute
class. Talk to the sources when additional information
is needed. Assign an attribute class number to each
attribute class, and record it on an Attribute Class Pool
Form.

When examining data field names from a database design,
realize that several data fields may represent the same
kind of "real-world characteristic" or, conversely, that
one data field may represent several different
characteristics. For example:

o SALES-ORDER-CUSTOMER-NUMBER, INVOICE-CUSTOMER-
NUMBER, and ACCOUNTS-RECEIVABLE-CUSTOMER-NUMBER
all represent the same characteristic of a
customer, i.e., customer number.

o SALESMAN-ASSIGNMENT-CODE may represent both the
territory and the product for which the salesman
is responsible.

Also, realize that certain data fields may be present for
technical reasons only (e.g., record codes) and should
not be included in the attribute class pool.

7. The modeler defines the key classes of the totally
independent entity classes.

A totally independent entity class is one that is not
dependent in any relation class. Select any one and find
the attribute classes in the pool that make up its key
class. Watch for attribute class synonyms and homonyms,
and handle them like those for entity classes (Phase 1,
Task 4). A few totally independent entity classes have
two or more alternate key classes (e.g., employees can be
uniquely identified by either employee numbers or Social

4-24

UM 620341001
30 September 1990

Security Numbers). Be sure to identify all key classes
for such an entity class. Also, be sure each key class
conforms to the following rules:

o Single-Owned Rule
o Unique-Key Rule
o No-Null Rule
o No-Repeat Rule
o Smallest-Key-Class-Rule

See Section 4.1.1 for explanations of these rules.
Define any new entity and relation classes needed to
resolve rule violations. See Tasks 11 and 12 for
details. Talk to the sources when additional information
about a key class is needed.

Assign a key class number to each key class of the entity
class (K1 for the first; K2 for the second, if any, etc.)
and a tag number to each key class member. Fill out an
Owned Attribute Classes Form, and record the key classes
in the overview diagrams. Check off each attribute class
in the pool as it is used.

8. The modeler migrates the key classes of the totally
independent entity classes.

One of the key classes of the entity class from Task 7
must migrate through every relation class in which the
entity class is independent. If it has two or more
alternate key classes, only one can migrate through each
relation class. The same one need not migrate through
all of them however; one can migrate through some,
another through others. The sources should be able to
indicate which key class to use for each relaLion class.
Record the number of the key class that migrates through
a relation class in the Ind. K.C. No. column of the
Relation Classes Form from Task 7.

Each member of the key class that migrates through a
relation class becomes an inherited attribute class in
the entity class that is dependent in that relation
class. Fill out an Inherited Attribute Classes Form for
each dependent entity class, i.e., those listed in the
Dep. E.C. No. and Name columns of the Relation Classes
Form. Record each inherited attribute class as follows:

o Tag No. column: Assign a new tag number to each
inherited attribute class.

o Tag and Label column: Use the name and label of
the key class member except in the following two
situations:

4-25

UM 620341001
30 September 1990

o If the key class member migrates through
two relation classes into the same
dependent entity class, it will appear as
two inherited attribute classes, each of
which must have a distinct name and label
within the entity class. In this case,
assign a new name and label to each. See
Figure 4-9 at the end of this section for
an example.

o If a new name and label would be more
descriptive, they may be used.

o A.C. No. column: Use the attribute class number
of the key class member even if a new name and
label were assigned.

o Ind. E.C. No. column: Use the number of the
entity class that the key class member migrated
from.

o Ind. K.C. No. column: Use the key class number
of the key class member.

o Ind. Tag No. column: Use the tag number of the
key class member.

o Migration Path R.C. Label column: Use the label
of the relation through which the key class
member migrated.

o Mbr. of K.C. No. column: Leave blank for now.

On copies of the overview diagrams, keep track of which
relation classes have been used for key class migration
(e.g., by circling the relation class labels).

Repeat Tasks 7 and 8 for each totally independent entity
class.

9. The modeler defines the key classes of the remaining
entity classes.

The remaining entity classes are those that are not
totally independent, i.e., those that are dependent in at
least one relation class. Key classes have migrated
through some relation classes to appear as inherited
attribute classes in some of these entity classes. Some
have received all of their inherited attribute classes;
others have not. One way to determine whether an entity
class has is to examine the copies of the overview
diagrams that were used to keep track of key class
migration in Task 8. If each relation class in which the
entity class is dependent has been used for key class
migration, then the entity class has received all of its
inherited attribute classes; otherwise, it has not.

4-26

UM 620341001
30 September 1990

Select any one entity class that has received all of its
inherited attribute classes, and define its key
class(es). The members of its key class(es) may include
some of its inherited attribute classes or some new
attribute classes from the pool or both. See Figure 4-10
at the end of this section for guidelines. Handle any
synonyms and homonyms in the attribute class pool in the
same way as those for entity classes (Phase 1, Task 4).
Remember that the entity class may have two or more
alternate key classes; be sure to identify all of them.
Be sure each key class conforms to the following rules:

o Single-owner Rule
o Unique-Key Rule
o No-Null Rule
o No-Repeat Rule
o Smallest-Key-Class-Rule

See Subsection 4.1.1 for explanations of these rules.
Define new entity and relation classes needed to resolve
rule violations. See Tasks 11 and 12 for details. Talk
to the sources when additional information about a key
class is needed.

If a key class member comes from the attribute class
pool, assign a tag number to it, check it off in the
pool, and record it on an Owned Attribute Classes Form.
Assign a key class number to each key class (K1 for the
first; K2 for the second, if any, etc.), and record it in
the Mbr. of K.C. No. column on the Owned Attribute
Classes Form or the Inherited Attribute Classes Form
where each key class member appears. If an attribute
class, either owned or inherited, is a member of more
than one key class, record the key class number of each.
Also, record the key classes and any nonkey inherited
attribute classes in the overview diagrams.

10. The modeler migrates the key classes of the remaining
entity classes.

If the entity class from Task 9 is not independent in any
relation classes, its key class does not migrate; see the
last paragraph of this task. If it is independent in one
or more relation classes, record the number of the key
class that migrates through each one in the Ind. K.C. No.
column of the Relation Classes Form. If the entity class
has alternate key classes, record only one key class
number for each relation class, although not all relation
classes have to get the same number; the sources should
be able to indicate which key class to use for each.

For each entity class that is listed in the Dep. E.C. No.
and Name columns of the Relation Classes Form, fill out
an Inherited Attribute Classes Form as described in Task
8. Also, as each relation class is used for key class
migration, mark it on the overview diagram copies from
Task 8.

4-27

UM 620341001
30 September 1990

Repeat Tasks 9 and 10 until key classes for all remaining
entity classes have been defined and migrated.

11. The modeler defines any additional entity classes that
are introduced during this phase.

Whenever a new entity class is introduced, immediately
document it by performing the tasks in Phases 1 - 3 that
are needed to:

o Update the entity class pool.
o Prepare an Entity Class Definition Form.
o Update the relation class matrix.
o Define the relation classes in which it is

involved. See Task 12 for details.
o Update the overview diagrams.
o Define and migrate its key class(es) at the

appropriate time during Tasks 7 - 10.
o Update any optional documents that are affected.

12. The modeler defines any additional relation classes that
are introduced during this phase.

Whenever a new relation class is introduced, immediately
document it by performing the tasks in Phases 2 and 3
that are needed to:

o Update the relation class matrix.
o Update the overview diagrams.
o Refine it if it is nonspecific.
o Eliminate any unneeded dual-path structures.
o Record it on a Relation Classes Form.
o Validate it via key class migration at the

appropriate time during Task 8 or 10.
o Update any optional documents that are affected.

13. The modeler, reviewers, and librarian participate in

reviewing the Phase 3 model.

See Phase 1, Task 5, for details.

Deviation from IDEFI:

The specially designed Relation Classes, Owned Attribute
Classes, and Inherited Attribute Classes forms are used in place
of the regular IDEFI forms: Related Entity Class Node
Cross-Reference, Attribute Class Definition (2), and Inherited
Attribute Class Cross-Reference. The forms used are designed to
facilitate loading the conceptual schema. Also, the following
IDEFl forms are not called for, but may be used at the discretion
of the project manager:

o Attribute Class Diagram
o Entity Class/Attribute Class Matrix
o Attribute Class Migration Index
o Refinement Alternative Diagram
o Entity Class/Function View Matrix

4-28

UM 620341001
30 September 1990

4.2.5. Phase 4: Defining Nonkey Attribute Classes

Objectives:

o Identify and define the nonkey attribute classes that
are within the scope of the model.

o Identify the entity class that owns each nonkey
attribute class.

This phase is patterned after Phase 4 of IDEFI, and the
description presented here is less detailed than the one in the
IDEFI documentation. Please refer to that documentation for
further information. Also, please refer to Section 4.1.3 for
details on how to fill out Owned Attribute Classes Forms.

Tasks:

1. The project manager decides what method to use to review
the Phase 4 model.

See Phase 1, Task 1, for the options and factors to
consider.

2. The project manager schedules the Phase 4 tasks.

See Phase 1, Task 2, for details.

3. The modeler populates the model with the nonkey attribute
classes.

The nonkey attribute classes are those that were not used
as members of any key classes in Phase 3, i.e., those
that have not been checked off in the attribute class
pool. Find the entity class that owns each of these
according to the following rules:

o Single-Owner Rule
o No-Null Rule
o Full-Functional-Dependency Rule
o No-Transitive-Dependency Rule

See Section 4.1.1 for explanations of these rules.
Define any new entity and relation classes needed to
resolve any rule violations. See Tasks 4 and 5 for
details. Talk to the sources when additional information
about a nonkey attribute class is needed.

Assign a tag number to each nonkey attribute class, and
record it on an Owned Attribute Classes Form. Check off
each in the pool as it is used.

4. The modeler defines any additional entity classes that
are introduced during this phase.

Whenever a new entity class is introduced, immediately
document it by performing the tasks in Phases 1 - 3 that
are needed to:

4-29

UM 620341001
30 September 1990

o Update the entity class pool.
o Prepare an Entity Class Definition Form.
o Update the relation class matrix.
o Define the relation classes that it is involved

in. See Task 5 for details.
o Update the overview diagrams.
o Define and migrate its key class(es).
o Update any optional documents that are affected.

5. The modeler defines any a~ditional relation classes that
are introduced during this phase.

Whenever a new relation class is introduced, immediately
document it by performing the tasks in Phases 2 and 3
that are needed to:

o Refine it if it is nonspecific.
o Eliminate any unneeded dual-path structures.
o Update the relation class matrix.
o Record it on a Relation Classes Form.
o Update the overview diagrams.
o Validate it via key class migration.
o Update any optional documents that are affected.

6. The modeler, reviewers, and librarian participate in

reviewing the Phase 4 model.

See Phase 1, Task 5, for details.

Deviation from IDEFI:

The specially designed Owned Attribute Classes Form is used
instead of the regular Attribute Class Definition Forms to
facilitate loading the conceptual schema. Also, the following
IDEFI forms are not called for, but may be used at the discretion
of the project manager:

o Attribute Class Diagram

o Entity Class/Attribute Class Matrix

See Subsection 5.2.1 for instructions on how to load.

4.3 Expanding the CS

This section and its subsections describe the procedure for
expanding an enterprise's conceptual schema. The procedure is
concerned with creating a detailed description (an information
model) of a portion of the enterprise's common data, some or all
of which is not already described in the conceptual schema, and
with collecting the data required to place that description in the
CDM database as an additional piece of the conceptual schema
(another layer of the onion).

The procedures described in the following subsections
correspond to the five IDEFl phases discussed in the previous
section.

4-30

UM 620341001
30 September 1990

4.3.1 Phase 0: Starting the Project

Objectives:

o State the purpose, scope, and viewpoint for the
information model.

o Establish the project team.

o Develop a phase-level project schedule.

o Collect and catalog relevant source material.

This phase is patterned after Phase 0 of IDEFI, and the
description presented here is less detailed than the one in the
IDEFl documentation. Please refer to that documentation for
further information. Also, please refer to Subsection 4.1.2 for
details on how to fill out the Relation Classes, Owned Attribute
Classes, and Inherited Attribute Classes forms.

Tasks:

1. The CDM Administrator appoints a project manager.
Usually, this will be the CDM Administrator.

2. The project manager states the purpose for building the
information model.

See Task 2 of Subsection 4.2.1.

3. The project manager states the scope of the information
model.

See Task 3 of Subsection 4.2.1.

4. The project manager states the viewpoint for the
information model.

See Task 4 of Subsection 4.2.1.

5. The project manager appoints the project team members.

See Task 5 of Subsection 4.2.1.

6. The project manager appoints the acceptance review
committee members.

This committee should consist of subject experts from the
area being modeled and from other, related areas.

7. The project manager schedules the project phases.

See Task 7 of Subsection 4.2.1.

8. The project manager schedules the remaining Phase 0
tasks.

See Task 8 of Subsection 4.2.1.

4-31

UM 620341001
30 September 1990

9. The modeler develops a data collection plan.

Determine what kinds of source material are needed and
where and how to get that material.

10. The project manager conducts a project kick-off meeting

attended by the project team members.

See Task 10 of Subsection 4.2.1.

11. The modeler collects source material from the sources.

Gather the documents, policies, procedures, database
designs, etc., and interview the sources in accordance
with the data collection plan (Task 9).

12. The modeler catalogs the source material.

Prepare Source Material Log Forms and Source Data List
Forms. If a database design is among the source
material, the record names and data field names should be
included in the source data list.

13. The modeler examines the existing conceptual schema.

Identify the entity, relation, and attribute classes in
the existing conceptual schema that appear to be within
the scope of the model. Fill out the following forms from
the descriptions in the conceptual schema:

o Entity Class Definition Forms
o Relation Classes Forms
o Owned Attribute Classes Forms
o Inherited Attribute Classes Forms
o Relation Class Matrix Forms

To distinguish these elements of the conceptual schema
from the new ones that will be documented during the
course of this modeling project, prefix all of the
identification numbers with the letter "C." For example:

o Entity Class Number = CE12
o Attribute Class Number = CA94
o Tag Number = CT156
o Key Class Number = CKI

14. The modeler explains any author conventions.

These are deviations from cr additions to the regular
IDEFl methodology. Mention the use of the three
specially designed modeling forms: Relation Classes
Form, Owned Attribute Classes Form, and Inherited
Attribute Classes Form. Also, explain that in order to
distinguish between model elements that are already in
the conceptual schema and those that are not, the
identification numbers of the former will be prefixed
with the letter "C" for conceptual while those of the
latter will be prefixed with the letter "N.Y." for new.

4-32

UM 620341001
30 September 1990

Deviation from IDEFI:

Usually, kits are not used to accomplish the review of the
Phase 0 model documentation; the essentials are reviewed during
the kick-off meeting (Task 10). However, the project manager may
require that kits be used to supplement or replace the kick-off
meeting.

4.3.2 Phase 1: Defining Entity Classes

Objective:

o Identify and define the apparent entity classes that
are within the scope of the model.

This phase is patterned after Phase 1 of IDEFI, and the
description presented here is less detailed than the one in the
IDEFI documentation. Please refer to that documentation for
further information.

Tasks:

1. The project manager decides what methcd to use to review
the Phase 1 model.

See Task 1 of Subsection 4.2.2.

2. The project manager schedules the Phase 1 tasks.

See Task 2 of Subsection 4.2.2.

3. The modeler builds an entity class pool.

Examine the entries in the source data list and deduce
what sort of thing each entry identifies, describes,
refers to, etc. For example:

o Employee number, name, birth date, and salary
are data elements about an employee; hence, an
"Employee" entity class.

o Part number, description, and dimensions are all
about a part; hence, a "Part" entity class.

Each sort of thing is represented by an entity class.
Determine whether any of these entity classes are already
in the conceptual schema and, if so, whether modeling
forms were prepared for them in Phase 0, Task 13. Rely
on the entity class definitions more than the names or
labels in deciding whether a conceptual schema entity
class represents the same sort of thing as an entity
class deduced from the source data list. If any entity
class is in the conceptual schema, but modeling forms
weri not prepared, prepare them now; see Phase 0, Task 13
for details. Talk to the sources when additional
information is needed. The entity instances within an
entity class should be distinguishable from one another
by some unique identifier. Assign an entity class

4-33

UM 620341001
30 September 1990

number, prefixed with "N," to each new entity class, and
record them on an Entity Class Pool Form. Do not record
any conceptual schema entity classes in the pool.

When examining record names from a database design, be
careful to think about the "real-world thing" that each
kind of record represents. Realize that several kinds of
records may represent the same thing or, conversely, that
one kind of record may represent several different
things. Also, realize that certain kinds of records may
be present for technical reasons only (performance,
backup/recovery, etc.). Such records do not represent
"real-world things" and should not result in entity
classes being added to the pool.

4. The modeler defines each entity class.

See Task 4 of Subsection 4.2.2.

Also, review the names, labels, and definitions of the
conceptual schema entity classes, record any changes that
are required on the Entity Class Definition Forms, and
write "UPDATED" below the entity class number in the
lower left corner.

5. The modeler, reviewers, and librarian participate in
reviewing the Phase 1 model.

The method of review was selected in Task 1. The
modelers prepare the review materials (kits or walk-
through handouts), the reviewers read and comment on the
materials, and the modelers respond to the comments. If
kits are used, the librarian coordinates their
circulation.

6. The CDM Administrator reviews the model to ensure that it
is compatible with the conceptual schema.

Definitions are compared to see whether any entity,
relation, or attribute classes that are identified as new
in the model are really the same as those that are
already in the conceptual schema, possibly with different
names or labels. Also, each proposed conceptual schema
update is evaluated to gauge its impact on the existing
CS/ES and CS/IS mappings.

4.3.3. Phase 2: Defining Relation Classes

Objective:

o Identify and define the apparent relation classes
that are within the scope of the model.

4-34

UM 620341001
30 September 1990

This phase is patterned after Phase 2 of IDEFI, and the
description presented here is less detailed than the one in the
IDEFI documentation. Please refer to that documentation for
further information.

Tasks:

1. The project manager decides what method to use to review
the Phase 2 model.

See Phase 1, Task 1, for the options and factors to
consider.

2. The project manager schedules the Phase 2 tasks.

See Phase 1, Task 2, for details.

3. The modeler builds a relation class matrix.

See Task 3 of Subsection 4.2.3.

4. The modeler prepares overview diagrams (FEOs).

See Task 4 of Subsection 4.2.3.

5. The modeler defines any additional entity classes that
are introduced during this phase.

Whenever a new entity class is introduced, double-check
the conceptual schema to see if it is already there.
Rely on the entity class definitions more than the names
or labels in deciding whether a conceptual schema entity
class represents the same sort of thing as a new entity
class. If a new entity class is already described in the
conceptual schema, prepare the modeling forms listed in
Phase 0, Task 13. If it is not, immediately document it
by performing the tasks in Phases 1 and 2 that are needed
to:

o Update the entity class pool
o Prepare an Entity Class Definition Form.
o Update the relation class matrix if it has been

started.
o Update the overview diagrams if they have been

started.

6. The modeler, reviewers, and librarian participate in
reviewing the Phase 2 model.

See Task 5 of this section for details.

Deviation from IDEFI:

Usually, individual entity class diagrams are not prepared
because the overview diagrams are easier to understand and review,
and Relation Class Definition Forms are not filled out because the
relation class labels are supposed to be self-descriptive. Also,
the Related Entity Class Node Cross-Reference Form is replaced by
the specially designed Relation Classes Form, which is called for

4-35

UM 620341001
30 September 1990

in Phase 3. However, the project manager may require the use of
any or all of these to supplement the model documentation called
for above.

4.3.4 Phase 3: Defining Key Classes

Objectives:

o Refine all nonspecific relation classes in the model.

o Identify the apparent attribute classes that are
within the scope of the model.

o Identify and define a key class for each entity class
in the model.

o Validate every relation class in the model via key
class migration.

This phase is patterned after Phase 3 of IDEFI, and the
description presented here is less detailed than the one in the
IDEFl documentation. Please refer to that documentation for
further information. Also, please refer to Section 4.1.3 for
details on how to fill out the Relation Classes, Owned Attribute
Classes, and Inherited Attribute Classes Forms.

Tasks:

1. The project manager decides-what method to use to review
the Phase 3 model.

See Task 1 of Subsection 4.2.1.

2. The project manager schedules the Phase 3 tasks.

See Task 2 of Subsection 4.2.1.

3. The modeler refines the nonspecific relation classes.

Introduce a derived entity class for each nonspecific
relation class and convert that relation class to a
pair of specific relation classes as shown in Figure
4-7 at the end of this section. Assign entity class
numbers, prefixed with "N," to the derived entity
classes, record them in the entity class pool, and
fill out Entity Class Definition Forms. The sources
may be able to recommend appropriate names and
definitions for some derived entity classes.

Remove the nonspecific relation classes from the
relation class matrix and the overview diagrams. Add
the derived entity classes and the specific relation
classes to the matrix and the diagrams. Retain the
same focus for each diagram unless the reviewers
suggested a change. Also. update any optional
documents that are affected.

4. The modeler eliminates any unneeded triads or other
dual-path structures.

4-36

UM 620341001
30 September 1990

A dual-path structure is one composed of two or more
related entity classes in which:

o There are two paths connecting one entity class
to another

o One path is a single relation class

o The other path is a series of relation classes
(unless the structure has only two entity
classes in which case the second path is a
single relation class also)

See the examples in Figure 4-8 at the end of this
section. Talk to the sources to determine whether
the two paths are equal, unequal, or indeterminant.
The paths are equal if, for each dependent entity
instance, they both lead to the same independent
entity instance. The paths are unequal if, for each
dependent entity instance, they each lead to a
different independent entity instance. The paths are
indeterminant if they are equal for some dependent
entity instances and unequal for others. If the
paths are equal, the single-relation-class path is
redundant and must be removed from the model, i.e.,
from the relation class matrix and the overview
diagrams (and from any optional documents in which it
appears).

If the relation class that must be removed is already
described in the conceptual schema, it should already
be listed on a Relation Classes Form from Phase 0,
Task 13. Write "DELETE" in the margin next to it and
write "UPDATED" below the entity class number in the
lower left corner.

If the dependent entity class in that relation class
is from the conceptual schema, the inherited attri-
bute classes that it received via key class migration
through that relation class must be removed also.
Write "DELETE" in the margin next to each one on the
Inherited Attribute Classes Form, and write "UPDATED"
below the entity class number in the lower left
corner. If any of them is a key class member in the
dependent entity class, that key class is now incom-
plete and must be removed; see Task 13 for details.

5. The modeler fills out Relation Class Forms.

See Task 5 of Subsection 4.2.4.

6. The modeler builds an attribute class pool.

Examine the entries in the source data list and
deduce what sort of characteristic each represents,
where a characteristic is a data element that identi-
fies, describes, or refers to, a thing being modeled.
Each sort of characteristic is represented by an at-

4-37

UM 620341001
30 September 1990

tribute class. Determine whether any of the attri-
bute classes are already in the conceptual schema
and, if so, whether modeling forms were prepared for
them in Phase 0, Task 13. Rely on the attribute class
definitions more than the names or labels in deciding
whether a conceptual schema attribute class repre-
sents the same sort of characteristic as an attribute
class deduced from the source data list. If an attri-
bute class is in the conceptual schema, but modeling
forms were not prepared, prepare them now; see
Phase 0, Task 13, for details. Talk to the sources
when additional information is needed. Assign an
attribute class number, prefixed with "N," to each
new characteristic deduced from the source data list,
and record them on Attribute Class Pool Forms. When
examining data field names from a database de-
sign. realize that several data fields may represent
the same kind of "real-world characteristic" or,
conversely, that one data field may represent several
different characteristics. For example:

o SALES-ORDER-CUSTOMER-NUMBER, INVOICE-CUSTOMER-
NUMBER, and ACCOUNTS-RECEIVABLE-CUSTOMER-NUMBER
all represent the same characteristic of a
customer, i.e., customer number.

o SALESMAN-ASSIGNMENT-CODE may represent both the
territory and the product for which the salesman
is responsible.

Also, realize that certain data fields may be present
for technical reasons only (e.g., record codes) and
should not be included in the attribute class pool.

7. The modeler defines the key classes of the totally
independent entity classes.

A totally independent entity class is one that is not
dependent in any relation classes. Select any one and
find the attribute classes in the pool that make up
its key class. If the entity class is already in the
conceptual schema, at least one key class has already
been defined for it. However, others may be dis-
covered here because of new owned attribute classes.
Watch for attribute class synonyms and homonyms, and
handle them like those for entity classes (Phase 1,
Task 4). A few totally independent entity classes
have two or more alternate key classes (e.g.,
employees can be uniquely identified by either Social
Security or employee numbers). Be sure to identify
all key classes for such an entity class. Also, be
sure each key class conforms to the following rules:

o Single-Owned Rule
o Unique-Key Rule
o No-Null Rule
o No-Repeat Rule
o Smallest-Key-Class-Rule

4-38

UM 620341001
30 September 1990

See Subsection 4.1 for explanations of these rules.
Define any new entity and relation classes needed to
resolve rule violations. See Tasks 11 and 12 for
details. If an attribute class that is needed as a
key class member for a new entity class is already
owned by a conceptual schema entity class, a rela-
tionship exists between those two entity classes. If
it is not already documented as a new relation class,
it must be before the key class of the new entity
class can be defined; see Task 12 for details. If the
new entity class is dependent in the new relation
class, it is no longer totally independent, so its
key class cannot be defined until Task 9. If the new
entity class is independent in the relation class,
the ownership of the attribute class must be changed;
it is owned by the new entity class, not by the one
in the conceptual schema. Record it on an Owned
Attribute Classes Form for the new entity class,
using the same name, label, definition, domain (type
and size), and attribute class number, prefixed with
"C," but assign a new tag number, prefixed with "N."
Write "DELETE" in the margin next to the attribute
class on the form for the conceptual schema entity
class and write "UPDATED" below the entity class
number in the lower left corner. If it is a key
class member in the conceptual schema entity class,
that key class is now incomplete and must be removed;
see Task 13 for details. Talk to the sources when
additional information about a key class is needed.

Assign a key class number, prefixed with "N," to each
new key class of the entity class (NKI for the first;
NK2 for the second, if any, etc.). Assign a tag
number, prefixed with "N," to each new attribute
class that is a key class member; record it on an
Owned Attribute Classes Form, and check it off in the
attribute class pool. Record the key classes, both
new ones and ones from the conceptual schema, in the
overview diagrams.

Also, review the name, label, and definition of each
conceptual schema attribute class that is a key class
member; record any changes that are required on the
Owned Attribute Classes Form where it appears, write
"CHANGE" in the margin next to it, and write
"UPDATED" below the entity class number in the lower
left corner.

8. The modeler migrates the key classes of the totally
independent entity class.

One of the key classes of the entity class from
Task 7 must migrate through every relation class in
which the entity class is independent. A key class
has already migrated through every conceptual schema
relation class, but some may have had that migration
undone in Task 13, i.e., those with a circled key
class number in the Ind. K.C. No. column of a
Relation Classes Form and with "OMIT" written in the

4-39

UM 620341001
30 September 1990

margin. Only these and the new relation classes,
i.e., those without a key class number in that
column, need to be considered here. If the entity
class has two or more alternate key classes, only one
can migrate through each relation class. The same
one need not migrate through all of them; however,
one can migrate through some, another through others.
The sources should be able to indicate which key
class to use for each relation class. For a new
relation class, record the key class number in the
Ind. K.C. No. column of the Relation Classes Form
from Task 7. For a conceptual schema relation class
that is having its key class migration redone, if the
key class number is the same as the one that is
already in Ind. K.C. No. column, erase the circle
around it and erase "OMIT" in the margin. If the key
class numbers are different, replace the circled one
with the new one and change "OMIT" to "CHANGE" in the
margin.

Each member of the key class that migrates through a
relation class becomes an inherited attribute class
in the entity class that is dependent in that
relation class. Fill out an Inherited Attribute
Classes Form for each dependent entity class, i.e.,
those listed in the Dep. E.C. No. and Name columns of
the Relation Classes Form. If the dependent entity
class is already in the conceptual schema, use the
Inherited Attribute Classes Form that was prepared in
Phase 0, Task 13. Record each new inherited attribute
class as follows:

o Tag No. column: Assign a new tag number,
prefixed with "N," to each inherited attribute
class. If an inherited attribute class replaces
an owned attribute class whose ownershin was
changed in Task 8 or 10, use the tag number
prefixed with "C" that was assigned to that
owned attribute class, and change "DELETE" to
"NEW OWNER" in the margin next to that owned
attribute class on the Owned Attribute Classes
Form.

o Tag and Label column: Use the name and label of
the key class member except in the following two
situations:

o If the key class member migrates through two
relation classes into the same dependent entity
class, it will appear as two inherited attribute
classes, each of which must have a distinct name
and label within the entity class. In this
case, assign a new name and-label to each. See
Figure 4-9 at the end of this section for an
example.

o If a new name and label would be more
descriptive, they may be used.

4-40

UM 620341001
30 September 1990

o A.C. No. column: Use the attribute class number
of the key class member, even if a new name and
label were assigned.

o Ind. E.C. No. column: Use the number of the
entity class from which the key class member
migrated.

o Ind. K.C. No. column: Use the key class number
of the key class member.

o Ind. Tag No. column: Use the tag number of the
key class member.

o Migration Path R.C. Label column: Use the label
of the relation class through which the key
class member migrated.

o Mbr. of K.C. No. column: Leave blank for now.

If an inherited attribute class that was removed from
a conceptual schema entity class in Task 4 or 13 is
being re-established, do not record it as described
above. Instead, reuse the one that is already
recorded on the Inherited Attribute Classes Form.
Erase "DELETE" from the margin. If any of the values
in the following columns need to be changed, replace
them with the new values and write "CHANGE" in the
margin:

o Tag and Label Column
o Ind. E.C. No. Column
o Ind. K.C. No. Column
o Ind. Tag No. Column
o Migration Path R.C. Label Column

If the Mbr. of K.C. No. column contains any key class
numbers, circle each and write "OMIT" in the margin.

On copies of the overview diagrams, keep track of
which relation classes have been used for key class
migration, including those from the conceptual schema
that had already been used (e.g., by circling the
relation class labels).

Repeat Tasks 7 and 8 for each totally independent
entity class.

9. The modeler defines the key classes of the remaining
entity classes.

The remaining entity classes are those that are not
totally independent, i.e., those that are dependent
in at least one relation class. Key classes have
migrated through some relation classes to appear as
inherited attribute classes in some of these entity
classes. Some have received all of their inherited
attribute classes; others have not. One way to
determine whethe-r an entity class has is to examine

4-41

UM 620341001
30 September 1990

the copies of the overview diagrams that were used to
keep track of key class migration in Task 8. If each
relation class that the entity class is dependent in
has been used for key class migration, then the
entity class has received all of its inherited
attribute classes; otherwise it has not.
Select any one entity class that has received all of
its inherited attribute classes, and define its key
class(es). If the entity class is already in the
conceptual schema, at least one key class has already
been defined for it. However, if one was removed in
Task 13, it must be re-established or a new one must
be defined. Also, other key classes may be discovered
here because of new owned or inherited attribute
classes. The members of its key class(es) may
include some of its inherited attribute classes or
some of the new attribute classes from the pool or
both. See Figure 4-10 at the end of this section for
guidelines. Handle any synonyms and homonyms in the
attribute class pool in the same way as those for
entity classes (Phase 1, Task 4). Remember that the
entity class may have two or more alternate key
classes; be sure to identify all of them. Be sure
each key class conforms to the following rules:

o Single-Owner Rule
o Unique-Key Rule
o No-Null Rule
o No-Repeat Rule
o Smallest-Key-Class-Rule

See Subsection 4.1 for explanations of these rules.
Define new entity and relation classes needed to
resolve rule violations. See Tasks 11 and 12 for
details. If an attribute class that is needed as a
key class member for a new entity class is already
owned by a conceptual schema entity class, a
relationship exists between those two entity classes.
If it is not already documented as a new relation
class, it must be before the key class of the new
entity class can be defined; see Task 12 for details.
If the new entity class is dependent in the relation
class, its key class cannot be defined until one from
the independent entity class has migrated through the
new relation class. If the new entity class is
independent in the relation class, the ownership of
the attribute class must be changed; it is owned by
the new entity class, not by the one in the
conceptual schema. Record it on an Owned Attribute
Classes Form for the new entity class, using the same
name, label, definition, domain (type and size), and
attribute class number, prefixed with "C," but assign
a new tag number, prefixed with "N." Write "DELETE"
in the margin next to the attribute class on the form
for the conceptual schema entity class and write
"UPDATED" below the entity class number in the lower
left cornet. If it is a key class member in the
conceptual schema entity class, that key class is now

4-42

UM 620341001
30 Sept..aber 1990

incomplete and must be removed; see Task 13 for
details. Talk to the sources when additional
information about a key class is needed.

Assign a key class number, prefixed with "N," to each
new key class (NKI for the first; NK2 for the second,
if any, etc.). If a key class that was removed in
Task 13 is being re-established, reuse its original
key class number, prefixed with "C." Assign a tag
number, prefixed with "N," to each new key class
member that comes from the attribute class pool,
check it off in the pool, and record it on an Owned
Attribute Classes Form.

Also, review the name, label, and definition of each
conceptual schema attribute class that is a key class
member, record any changes that are required on the
Owned Attribute Classes Form where it appears, write
"CHANGE" in the margin next to it, and write
"UPDATED" below the entity class number in the lower
left corner.

Identify each new key class member by recording its
key class number in the Mbr. of K.C. No. column on
either the Owned Attribute Classes Form or the
Inherited Attribute Classes Form. If an attribute
class, either owned or inherited, is a member of more
than one key class, record the key class number of
each. If an attribute class is being re-established
as a member of a key class that was removed in
Task 13, erase the circle around the key class number
in the Mbr. of K.C. No. column of the Owned or
Inherited Attribute Classes Form and erase "OMIT"
from the margin. Also, record the key classes and
any nonkey inherited attribute classes, both new ones
and ones from the conceptual schema, in the overview
diagrams.

10. The modeler migrates the key classes of the remaining
entity classes.

If the entity class from Task 9 is not independent in
any relation classes, its key class does not migrate;
see the last paragraph of this task. If it is
independent in one or more relation classes, one of
its key classes must migrate through each. A key
class has already migrated through every conceptual
schema relation class, but some may have had that
migration undone in Task 13, i.e., those with a
circled key class number in the Ind. K.C. No. column
of a Relation Classes Form and with "OMIT" written in
the margin. Only these and the new relation classes,
i.e., those without a key class number in that
column, need to be considered here. Record the
number of the key class that migrates through each
new relation class in the Ind. K.C. No. column of the
Relation Classes Form. If the entity class has
alternate key classes, record only one key class
number for each relation class, although not all

4-43

UM 620341001
30 September 1990

relation classes have to get the same number; the
sources should be able to indicate which key class to
use for each. For a conceptual schema relation class
that is having its key class migration redone, if the
key class number is the same as the one that is
already in Ind. K.C. No. Column, erase the circle
around it and erase "OMIT" in the margin. If the key
class numbers are different, replace the circled one
with the new one and change "OMIT" to "CHANGE" in the
margin.

For each entity class that is listed in the Dep. E.C.
No. and Name columns of the Relation Classes Form,
fill out an Inherited Attribute Classes Form as
described in Task 8. Also, keep track of which
relation classes have been used for key class
migration, including those from the conceptual
schema, by marking them on the overview diagram
copies from Task 8.

Repeat Tasks 9 and 10 until key classes for all
remaining entity classes have been defined and
migrated.

11. The modeler defines any additional entity classes that
are introduced during this phase.

Whenever a new entity class is introduced, double-
check the conceptual schema to see if it is already
there. Rely on the entity class definitions more
than the names or labels in deciding whether a
conceptual schema entity class represents the same
sort of thing as a new entity class. If a new entity
class is already described in the conceptual schema,
prepare the modeling forms listed in Phase 0,
Task 13. If it is not, immediately document it by
performing the tasks in Phases 1 - 3 that are needed
to:

o Update the entity class pool.
o Prepare an Entity Class Definition Form.
o Update the relation class matrix.
o Define the relation classes in which it is

involved. See Task 12 for details.
o Update the overview diagrams.
o Define and migrate its key class(es) at the

appropriate time during Tasks 7 - 10.
o Update any optional documents that are affected.

12. The modeler defines any additional relation classes that
are introduced during this phase.

See Task 12 of Subsection 4.2.4.

13. The modeler removes any incomplete key classes and all
resulting inherited attribute classes.

4-44

UM 620341001
30 September 1990

Either the removal of a relation class that is
already in the conceptual schema (Task 4) or the
change in ownership of an attribute class that is
already in the conceptual schema (Tasks 7 and 9) can
cause a key class member to be removed from a
conceptual schema entity class, either temporarily
(until Task 8 or 10) or permanently. When this
happens, the key class that lost the member becomes
incomplete, so it can no longer fulfill its function.
Consequently, it must be removed also. The other
attribute classes that are members of that key class,
if any, can remain in the entity class, but their
membership in that key class must be removed. Circle
the key class number in the Mbr. of K.C. No. column
on the Owned or Inherited Attribute Classes Form
where each member appears, write "OMIT" in the margin
next to it, and write "UPDATED" below the entity
class number in the lower left corner.

If the key class migrated to other conceptual schema
entity classes, that migration must be undone.
Circle the key class number in the Ind. K.C. No.
column of the Relation Classes Form for each relation
class that is affected, write "OMIT" in the margin
next to each, and write "UPDATED" below the entity
class number in the lower left corner. If any of the
affected dependent entity classes are not already in
the model, dd them now; see Phase 0, Task 13 for
details. Write "DELETE" in the margin of the
Inherited Attribute Classes Forms next to each
inherited attribute class that resulted from the
migration of that key class, and write "UPDATED"
below the entity class number in the lower left
corner.

If any of these inherited attribute classes is a key
class member itself, this task must be repeated, and
it must continue to be repeated until all key classes
and all inherited attribute classes that are contin-
gent on the original key class have been marked for
removal. Key classes and inherited attribute classes
of all affected entity classes will be re-established
in Tasks 8 - 10, but they may not be exactly the
same.

14. The modeler, reviewers, and librarian participate in

reviewing the Phase 3 model.

See Task 5 of Sub section 4.2.4.

Deviation from IDEFI:

The specially designed Relation Classes, Owned Attribute
Classes, and Inherited Attribute Classes Forms are used in place
of the following regular IDEFI forms: Related Entity Class Node
Cross-Reference, Attribute Class Definition (2), and Inherited
Attribute Class Cross-Reference. The forms used are designed to

4-45

UM 620341001
30 September 1990

facilitate loading the conceptual schema. Also, the IDEFI forms
listed below are not called for, but may be used at the discretion
of the project manager:

o Attribute Class Diagram
o Entity Class/Attribute Class Matrix
o Attribute Class Migration Index
o Refinement Alternative Diagram
o Entity Class/Function View Matrix

4.3.5 Phase 4: Defining Nonkey Attribute Classes

Objectives:

o Identify and define the nonkey attribute classes that
are within the scope of the model.

o Identify the entity class that owns each nonkey
attribute class.

This phase is patterned after Phase 4 of IDEFI, and the
description presented here is less detailed than the one in the
IDEFl documentation. Please refer to that documentation for
further information. Also, please refer to Subsection 4.1.3 for
details on how to fill out Owned Attribute Classes Forms.

Tasks:

1. The project manager decides what method to use to review
the Phase 4 model.

See Task 1 of Subsection 4.2.1.

2. The project manager schedules the Phase 4 tasks.

See Task 2 of Subsection 4.2.1.

3. The modeler populates the model with the nonkey attribute
classes.

See Task 3 of Subsection 4.2.1.

Assign a tag number, prefixed with "N," to each
nonkey attribute class, and record it on an Owned
Attribute Classes Form. Check off each in the pool
as it is used.

Also, review the name, label, and definition of each
conceptual schema attribute class, record any changes
that are required on the Owned Attribute Classes Form
where it appears, write "CHANGE" in the margin next
to it, and write "UPDATED" below the entity class
number in the lower left corner.

4. The modeler defines any additional entity classes that
are introduced during this phase.

4-46

UM 620341001
30 September 1990

Whenever a new entity class is introduced, double-
check the conceptual schema to see if it is already
there. Rely on the entity class definitions more
than the names or labels in deciding whether a con-
ceptual schema entity class represents the same sort
of thing as a new entity class. If a new entity class
is already described in the conceptual schema, pre-
pare the modeling forms listed in Phase 0, Task 13.
If it is not, immediately document it by performing
the tasks in Phases 1-3 that are needed to:

o Update the entity class pool.
o Prepare an Entity Class Definition Form.
o Update the relation class matrix.
o Define the relation classes that it is involved

in. See Task 5 for details.
o Update the overview diagrams.
o Define and migrate its key class(es).
o Update any optional documents that are affected.

5. The modeler defines any additional relation classes that
are introduced during this phase.

See Task 5 of Subsection 4.2.1.

6. The modeler, reviewers, and librarian participate in
reviewing the Phase 4 model.

See Task 5 of Subsection 4.2.1.

Deviation from IDEFI:

The specially designed Owned Attribute Classes Form is used
instead of the regular Attribute Class Definition Forms to
facilitate loading the conceptual schema. Also, the following
IDEFI forms are not called for, but may be used at the discretion
of the project manager:

o Attribute Class Diagram
o Entity Class/Attribute Class Matrix

See Subsection 5.2 for instructions on how to update the CS
tables.

4-47

UM 620341001
30 September 1990

a I 1 2 A z'!:

Figure 4-7. Refinements of Nonspecific Relation Classes
Example

4-48

UM 620341001
30 September 1990

TRIAD)

B 2., Bf 2
C .- A

CC

fA
I

A
1

B 2 B 2

C 3C 3

D. . .. A - -

E *

Figure 4-8. Triads and Other Dual-Path Structure Examples

4-49

UM 620341001
30 September 1990

Part Number is the key class of Part. It migrates
through each relation class to appear twice in
Component Part. The inherited attribute class that
results from the left relation class could be named
"Assembly Part Number: and the one from the right
could be called "Component Part Number" to associate
each with the appropriate relation class.

PAMT NUEF

SPART

IS IS
COMPOSED USED

OF AS

ASSY PART NUMBER
COMP PART NUMBER

COMPONENT PART 2

Figure 4-9. Migration Through Two Relation Classes Example

4-50

UM 620341001
30 September 1990

A. In a one-to-zero-or-one relation class the key class of
the dependent is usually the same as that of the
independent:

PAPT N FVP NO VPA NO STATIC% %0

PART EEPLOYEE ' |EPLOYEE I STATION 2

IS IS IS HA:

:P.___ NO'6. t,

(Bjy NSTATION NO

B STATION
.,! 7 2)D0UYER 2 !o To P 3

Figure 4-10. Guidelines for Determining Key Classes of
Dependent Entity Classes

4-51

UM 620341001
30 September 1990

B. The key class of an entity class that was derived to
refine a many-to-many relation cliss is usually composed
of attribute classes inherited from the two independent
entity classes:

TO OF AS

VENDOR NO ASSY PART NO
PART NO ICON= PART NO

QUOTE 13 COMP PART 2

Figure 4-10. Guidelines for Determining Key Classes of
Dependent Entity Classes (Continued)

C. In this example, Bin Wrhs No and Item Wrhs No always have
the same value so only one must be in the key.

D. In this example, Proj Plan No and Tool Plant No do not
always have the same value, so both must be in the key
class.

4-52

UM 620341001
30 September 1990

,'-

_

S CPE CONAINS ISS t

As BAS:S t) ,v

I IN-

Figure 4-10. Guidelines for Determining Key Classes of
Dependent Entity Classes (Continued)

4-53

UM 620341001
30 September 1990

SECTION 5

MAINTAINING THE CDM

5.1 Methodology Overview

This section provides the CDM Administrator with the
methodology to populate and maintain the conceptual schema tables
of the CDM. As was explained in Subsection 2.2.1, the CDM
database is the database dictionary of the IISS. It captures
knowledge of the locations, characteristics and interrelationships
of all shared data in the system. The CDM database is implemented
as a relational database. The information in the CDM Tables is
populated and maintained using the Neutral Data Definition
Language, hereafter NDDL. NDDL is an interpretive language that
serves two basic purposes. It is a modeling support tool that
enforces IDEFI rules and it is a dictionary definition and
maintenance tool. As detailed instructions on the use of NDDL are
provided in the NDDL User's Guide. Pub. No. UM 62034110, this
manual will not describe NDDL syntax and only references NDDL
commands, within the context of the methodology.

The definition of the conceptual, internal and external
schema objects along with their inter-schema mappings enable
schema transformations to be performed. The precompiler generates
software modules and code direcely into the user's application to
do these schema transformations.

The CDM Impact Analysis Utility identifies and reports which
software modules are affected by a change to the CDM and also
identifies and reports affected external schemas used by these
software modules. Changes to the CDM may require:

- Modification to the application programs to work with the
new CDM model

- Reprecompilation of Neutral Data Manipulation Language
(NDML) software modules.

- Revision of the NDDL commands causing the CDM changes.

Whenever changes are to be made to the CDM, a CDM Impact
Analysis should be run to venerate reports giving information
necessary as to what additional action must be taken. The CDM
Impact Analysis is described in more detail in its User's Manual,
Pub. No. UM 620341420.

5.1.1 Generic NDDL Commands

Figure 5-1 contains the list of CDM objects that are defined
to the CDM using NDDL. They are grouped according to schema.
Each object may be described with descriptive text in the CDM by
using the NDDL CREATE DESCRIPTION TYPE and DESCRIBE commands.
Figure 5-2 contains the CDM Tables updated by these commands. The
CREATE DESCRIPTION TYPE command stores legal description types in

5-1

UM 620341001
30 September 1990

the DESCRIPTION TYPE CDM Table. The DESCRIBE command refers to
these description types and populates the DESC TEXT CDM Table with
descriptive text for the specified CDM object.-

Also, the actual names given to these objects when they were
initially defined can be changed by using the NDDL RENAME command.
The CDM assigns unique identification numbers to all objects when
they are defined. Changing the name of the object associated with
the identifying number has no impact on any other information
about that object. Only the "object" NAME column of the
appropriate CDM Table is modified.

5.1.2 Transaction NDDL Commands

Transaction NDDL commands don't populate or update the tables
of the CDM database. They give the CDM Administrator control over
the NDDL session. The NDDL transaction commands are:

SET COMMIT
COMMIT
ROLLBACK
SET OUTPUT
HALT

Whenever the NDDL Processor is activated to build or change
the information in the CDM, the CDMA can change the commit mode
from its default of "automatic". This is done by using the NDDL
SET COMMIT command. After issuing this command the CDMA can gain
control over the CDM database changes by issuing the NDDL COMMIT
and ROLLBACK commands manually.

The NDDL COMMIT command will make the changes to the CDM
database permanent. The changes are caused by any prior NDDL
commands. This command is only effective if the SET COMMIT NDDL
command has assigned the NDDL session to "manual" commit.

The NDDL ROLLBACK command will "un-do" any changes made to
the CDM database by prior NDDL commands. This command, like the
COMMIT command, is only effective if the current setting of the
commit mode has been assigned to "manual". In the default
"automatic" commit mode the rollback process is automatically
initiated upon an error in the previous NDDL command.

The NDDL SET OUTPUT command will direct the output of certain
NDDL commands to be either the screen or a file. Generated NDDL
commands are the output that is directed by this command. The
NDDL commands that generate NDDL as output are described further
in Subsections 5.4 and 5.5.

The NDDL HALT command terminates the NDDL Session.

CONCEPTUAL SCHEMA OBJECTS INTERNAL SCHEMA OBJECTS

Domain Database
data type (Standard) Host
Model Record
Entity Datafield
Attribute data type
Relation Set

5-2

UM 620341001
30 September 1990

EXTERNAL SCHEMA OBJECTS

View
Dataitem
data type

Figure 5-1. CDM Objects

40

DESCTYPE CHAR(30)

DESCRIPTIONTYPE 7

APPLIESTO

175
OBJECT TYPE CHAR(30)
OBJECT NO NUMBER (6)
DESC TYPE CHAR(30)
LINE NO NUMBER(3)
DESCTEXT CHAR(80)

DESCTEXT

Figure 5-2. CDM Object Description

5.2 Loading the Initial CS Description

The conceptual schema's objects are defined to the CDM in the
following order:

Domains
data types (Standard)
Model
Attributes
Entities
Relations

NDDL commands that define these objects to the CDM:

5-3

UM 620341001
30 September 1990

a) CREATE DOMAIN
b) CREATE ATTRIBUTE
c) CREATE ENTITY
d) CREATE RELATION

The conceptual schema CDM Tables that are updated by these
commands are shown in Figure 5-3.

5-4

UM 620341001
30 September 1990

155
.MODEL NO NUMBER(6)

IDENTIFIES DATE CfREATED DATE
______ DATE-MODIFIED DATE

MODELNAME CHAR(30)
MODELSTATUS CHAR(10)

MODELCLASS

IDENTIFIES

2 4
.AC NO (.INDEC NO NUMBER(6)
MOD5ELNO NUMBER(6) .DEP EC-NO NUMBER(6)
DOMAINNO NUMBER(6) .RC_-NAME CHAR(30)

____________(.RCNO) NUMBER(6)
ATTRIBUTECLASS NO IND ENT NUMBER(6)

_____________MINNODEPENT NUMBER(6)
ISASSIGNEDTO - I I

RELATIONCLASS

.EC NO NUMBER(6) ISINDEPENDENTIN
MODELNO NUMBER(6) ___________

ENTITYCLASS SDPNETI

DWN CONTAINSHA

1405 3
.AC NO NUMBER(6) (.KC NO) NUMBER(6)
BC-NO NUMBER(6) (.KC_NAME CHAR(30)

_____________ EC-NO) NUMBER(6)
OWNEDATTRIBUTEI

_____________KEY-__CLASS

V_________
5
(.TAG_NO) NUMBER(6)

---------> (.TAGNAME CHAR(30)
.BCNO) NUMBER(6)
AC-NO NUMBER(6)

ATTRIBUTE USE CL I__
Figure 5-3. CDM Conceptual Schema

5-5

UM 620341001
30 September 1990

4
(.INDEC NO NUMBER(6)
.DEPECHNO NUMBER(6)

_____________.RC NAME CHAR(30) I

5 (.RCNO) NUMBER(6)
(.TAGNO) NUMBER(6) NO IND ENT NUMBER(6)
(.TAGNAME CHAR(6) MIN NO DEP ENT NUMBER(6)

.BC_-NO) NUMBER(6) MAXNO-DEP-ENT NUMBER(6)
ACNO NUMBER(6) ________

________________RELATIONCLASS

ATTRIBUTEUSECL L_ _ _ _ ISMSPCFCB

SERVES_
AS _ _ _ _ _ _ _ _ _ _ _

3
(.KC_NO) NUMBER(6)
(.KC_-NAME CHAR(30)
.ECNO) NUMBER(6)-

ISA ______

KEYCLASS

ISCOMPOSED O

-- KCNO NUMBER(6)

____ ___________ J.TAGNO NUMBER(6)

.TAG NO NUMBER(6) jKYCASMME
KC NO NUMBER(6) BECOMES
KCM TAGNO NUMBER(6) <----------------------------- MAKES_
RCNO NUMBER(6) SPECIFIC,

_______________IS MIGRATION- _____V v___
INHERITEDATTUSE PATH_':FOR 143

- --- -. RC-NO NUMBER(6)
KC-NO NUMBER(6)

COMPLETE-__RELATION;I

Figure 5-3. CDM Conceptual Schema (Continued)

5-6

UM 620341001
30 September 1990

5.2.1 Loading Domains

A Domain Class is the set of rules for setting the values and
ranges allowed for an attribute. A Domain Class can have several
different data types. It always has one standard data type which
supplies the CDM with data storage formats for representing its
attributes. Any other data types for the domain are called user
defined data types which represent other formats for internal
schema data fields and external schema data items. An example of
a domain is "DATE". The standard data type may be defined as
numeric, unsigned format, six positions long. Other formats and
sizes necessary to represent the date in the enterprise's data may
use Julian, a date format having a size which can be defined as a
user data type.

T1> CDM Administrator loads the domains for the attribute
class't from the Owned Attribute Classes Forms (Figure 5-4). For
'aL' attribute, use the NDDL CREATE DOMAIN command STANDARD TYPE
clause to load domains and its standard data type. The allowable
types of values for a standard data type are character, signed and
unsigned. This and the data storage formats are indicated by the
Type ID. column on the form. The CDM tables updated by the CREATE
DOMAIN command are DOMAINCLASS and USERDEFDATATYPE.

The CDM assigns a unique number to the domain (DOMAINNO) and
the standard data type (USDF DT NO). The DATA TYPE IND column of
the USER DEFDATA TYPE table-is-set to "STD". -If the VALUE and/or
RANGE clause is used in the CREATE DOMAIN command, the
DOMAIN VALUE and/or DOMAIN RANGE CDM Table is updated and a
verification module is generated. The VERIF MODULE and
SOFTWARE MODULE CDM Tables are updated with This module's name and
Id. At runtime this verification program is initiated to validate
the domain values of an attribute being inserted or modified.
These verification modules as well as domains an be shared across
different models of conceptual schemas.

The CDM Administrator uses the NDDL DESCRIBE command with an
object identifier of "DOMAIN" to load descriptions for each
domain. This same command can be used with an object identifier
of "data type" to load descriptions for data types.

5.2.2 Defining the Model

A model is a representation of the information requirements
of all or part of an enterprise in terms of entity classes,
relation classes, and attribute classes. More specifically, it is
the IDEFl model of the conceptual schema. As mentioned in Section
2, the Integration Methodology which is intended to guide the CDM
Administrator in building the CDM, starts with a select portion of
the enterprise's data and documents it in the conceptual schema.
Subsequently other portions of the data resource are identified
and modeled. The model is then loaded into the CDM database.
This evolutionary approach of the conceptual schema qives rise to
multiple models that are incorporated into the existing
enterprise's conceptual schema, the INTEGRATEDMODEL.

5-7

UM 620341001
30 September 1990

To define a new model to the CDM, use the NDDL CREATE MODEL
command. The MODEL CLASS CDM Table is populated with an assigned
unique MODELNO, MODELNAME, the current date as DATE CREATED and
DATE MODIFIED, and a MODEL STATUS set to "UNCHECKED". When the
CDM Administrator wishes to add entity, attribute and relation
classes to an existing model, the model must be established for
the NDDL session with the NDDL ALTER MODEL command. Commands to
merge and check models will be covered in Subsection 5.4.

5.2.3 Loading Attribute Classes

The CDM Administrator loads the attribute classes from the
Owned Attribute Classes Forms (Figure 5-4) and assigns a domain to
each one. Obviously, domain classes must be defined to the CDM
before attribute classes can be assigned a domain. For each
attribute class, use the NDDL CREATE ATTRIBUTE command and assign
its domain using the DOMAIN clause. An attribute can be created
without specifying a domain. The CDM assigns these attributes
with a domain named "UNDEFINED". An attribute with an "UNDEFINED"
domain cannot be mapped to and consequently cannot be accessed by
an application. This NDDL command populates the ATTRIBUTECLASS
and ATTRIBUTENAME CDM Tables.

Keywords are a way to group a number of attribute, entity or
relation classes across models by using the same identifier, or
keyword. For example, if attribute A, B and C model the
enterprise's finance department or function, the keyword can be
"FINANCE". Keywords are assigned with the KEYWORD clause of the
NDDL CREATE ATTRIBUTE command. The IISS KEYWORD and AC KEYWORD
CDM Tables are populated with this clause.

Besides its preferred name, an attribute class can have an
alternate name, or more frequently referred to as a synonym in
IDEFl Methodology. The NDDL CREATE ALIAS command can assign this
alternate name or alias to the attribute class. The
ATTRIBUTE NAME CDM Table is populated with this command. The CDM
uses the AC NO assigned during the CREATE ATTRIBUTE command, the
alias name for the AC NAME and sets ACNAME TYPE to "alias". The
attribute name and its alias can then be used interchangeably in
subsequent NDDL commands. Since both names represent the same
attribute, the alias name of an attribute class cannot be used to
define another attribute class to the CDM.

The CDM Administrator loads the descriptions for the
attribute classes from the Owned Attribute Classes Forms (Figure
5-4) A.C. Definition column. For each attribute class, use the
NDDL DESCRIBE command with an object identifier of "ATTRIBUTE".

5-8

UM 620341001
30 September 1990

USEDAt AJJ I IlY A C Ncpwle OATIE 23 Doc 82 IX IWnIMG jrAIWnI flATIF CONILXT

F4 OlAC T lvv sw-i

NO. JTS 1 2 3 a a 9 to P11 :(CAT"

En~lty, class Narn. User Assigntrwnl

Ent'y, Class LaWe User Assign

Enlity Class Drentin Spectk Ivkditidae assqied responsib~ies Icr a vaneil 01 roes
Sucht assqmI Iii alc,.'s dM .on lo be Made ma controllable rira
Eachs assogned rwdr-s*ij is uniqunely KlrlsIed by a user Bk4e5~5w(

MO E35 GI 7TCUser Assignmenrtel

Figure 5-4. Owned Attribute Classes Form Example

5-9

UM 620341001
30 September 1990

5.2.4 Loading Entity Classes

The CDM Administrator loads entity classes into the CDM
using the Entity Class Glossary Form (Figure 5-5) and the Owned
Attribute Classes Form (Figure 5-4) which have the same "NODE"
(lower left corner of form). For each Entity Class Glossary
Form define the entity class to the CDM using the NDDL CREATE
ENTITY command. The CDM assigns a unique EC NO to the entity
being defined and populates the ENTITY CLASS-and ENTITY NAME CDM
Table. Assign owned attributes to the-entity class by using the
OWNED ATTRIBUTE clause of the command. An attribute can be
owned by only one entity in the model. Obviously the attributes
assigned as owned to the entity must have been defined to the
CDM, prior to this step. The OWNED ATTRIBUTE and
ATTRIBUTE USECL CDM Tables are populated by this clause.

Keywords are a way to group a number of attribute, entity
or relation classes across models by using the same identifier,
or keyword. For example, if entity ENTA, ENTB and ENTC model
the enterprise's Payroll department or function, the keyword can
be "PAYROLL". Keywords are assigned with the KEYWORD clause of
the NDDL CREATE ENTITY command. The IISS KEYWORD and ECKEYWORD
CDM Tables are populated with this clause.

Besides its preferred name,. an entity class can have an
alternate name, or more frequently referred to as a synonym in
IDEFI Methodology. The NDDL CREATE ALIAS command can assign
this alternate name or alias to the entity class. The
ENTITY NAME CDM Table is populated with this command. The CDM
uses tHe ECNO assigned during the CREATE ENTITY command, the
alias name for the EC NAME and sets EC NAME TYPE to "ALIAS".
The entity name and its alias can then be used interchangeably
in subsequent NDDL commands. Since both names represent the
same entity, the alias name of an entity class cannot be used to
define another entity class to the CDM.

The CDM Administrator loads the descriptions for the entity
classes from the Entity Class Glossary Form's (Figure 5-5)
Entity Class Definition area. For each entity class, use the
NDDL DESCRIBE command with an object identifier of "ENTITY".

Another optional clause of the CREATE ENTITY command is KEY
CLASS which defines a key class for the entity. This option is
provided for a model that is not developed in the recommended
IDEFl phases, but is explained in Subsection 5.2.5.

5-10

UM 620341001
30 September 1990

US D At ?M1 DATE I1WOOIN~G IrT Al A IFI CONtE17MOX C1 fli J~ I)Arv
MOTS1 S 6 a * to II co"WF

Ta TbA C Ind Ind Ind. "Mbr aNo Tag & Label NO E C, No K C No Tag No, 'gratin Path R C Label K C. No
T 105 Op-alla Pin kenliicabn A68 Eli KI 734 fr'.liles

TiOS 11SuM9 eesource kkmlif"klinl A7S E21 K1 759 Issual
V's$ Fesoutte to)

1 107 enefthiq ReSolpce Identificaton A76 E21 K A T59 WA Btnek Fiomy
(Ben Resoutce 10)

T08 Slack Ara Idenhiiaa A83 E30 K 1 T42 is Orplled By
(Slack Arta 10)

TAGS ttq qd rant A24 ra 30 l ki 143 Is Deplored 1Dy

NOCE E T Inhetred Attribute Classes NtJII t

Figure 5-5. Entity Class Glossary Form Example

5-11

UM 620341001
30 September 1990

5.2.5 Loading Key Classes and Relation Classes

The CDM Administrator loads the key and relation classes
using the final IDEFl Model Diagram, Inherited Attribute Use Class
Form (Figure 5-6) and the Relation Class Form (Figure 5-7). For
each entity class of the final IDEFI model; in top-down order
(level by level) for each entity at that level:

- Use the NDDL ALTER ENTITY command and the optional ADD KEY
clause to name the key class and specify the attributes that
comprise the entity's key. The KEY CLASS and KEYCLASSMEMBER CDM
Tables are populated by the ADD KEY clause.

- Define to the CDM each relation class originating from this
entity by using the NDDL CREATE RELATION command. The
RELATION CLASS CDM Tables is populated by this command. Migrate
the key class which was just defined by the prior step, using the
MIGRATES clause. It is recommended that the CDM Administrator
designates one key class as the primary key and migrates this key
to all its dependent entities in order to provide for an easy
transition to the IDEF1X methodology. Migrating the key class
completes the relation and populates the COMPLETERELATION,
ATTRIBUTE USE CL and INHERITED ATT USE CDM Tables. The MIGRATES
clause of-the-CREATE RELATION '(ommand also allows the option of
renaming the tag names (i.e. providing role names) of the key
class attributes in the dependent entity. Use of role names
become necessary when defining relations in a Bill of Materials
Structure.

Keywords are a way to group a number of attribute, entity or
relation classes across models by using the same identifier, or
keyword. For example, if relation classes DEPARTMENT ENT
SERVES AS PROD CENTER ENT and MACHINE ENT MAKES SPECIFIC
TOOLS ENTC model the enterprise's Manufacturing-department or
functlon, the keyword can be "MANUFACTURING". Keywords are
assigned with the KEYWORD clause of the NDDL CREATE RELATION
command. The IISSKEYWORD and RC_KEYWORD CDM Tables are populated
with this clause.

The CDM Administrator loads the descriptions for the relation
classes by using the NDDL DESCRIBE command with an object
identifier of "RELATION".

5-12

UM 620341001
30 September 1990

USIEO AI AWI crl DAlE VIIW" NG I 'rn tr)Alt O0lEXT

NTES 1 234S 7 1 1 0

Tag A C. TyDO Mbr ol

No A C Name A Label No A.C Oefrnon p ID K C No,

TI? Localmn kofi~ecabon A08 Lin" Ifdlrscaihfln Assigned To C(a) X01

(tac t0) Each Location Whoe Icms Am. Skofed

NODE Owned AIF,bute Cl.-sses

Figure 5-6. Inherited Attribute Classes Form Example

5-13

UM 620341001
30 September 1990

USE 0At AU111011 ()ATE Waflela if ~IAM~ 1 MIT CONTfEXT 1
N OTS* 11E I Ic3v A S 6 -od "4CT

Tag A AC. Ind. d. Ind. Mbr. of
No. Tag & Lahel 'No. E.C. No. K C. No Tao No. Mograipon Paih f1 C Label K C. No.

TiS S~oag Area Wn~itialpon Ao7 E29 K01 T13 Is CaTvosed Of K01
(Saw ArJea 10)

71%0 Sloagetaculeon Slaus AT@ E72 1(01 TIM Is AssiQWeTo
(ICC Stlhs)

Figure 5-7. Relation Classes Form Example

5-14

UM 620341001
30 September 1990

5.3 Modifying/Deleting CS Objects

Prior to modifying or deleting elements of the conceptual
schema, the CDM Administrator must assess the impact of the
proposed change on the other components of the CDM. As stated
earlier, whenever changes are to be made to the CDM, a CDM Impact
Analysis should be run to generate reports giving information
necessary to determine what additional action must be taken.
Refer to the CDM Impact Analysis Use Manual for instructions on
how to use the Impact Analysis Tool.

The objective of this subsection is to provide the CDM
Administrator with the information necessary to make these
changes, determine the prerequisites before the changinq or
dropping CS objects, and beirg aware of the options available when
changing each CS Object. As a general rule, the NDDL processor
does not allow CS objects to be dropped if mappings exist to the
internal or external schemas.

The following NDDL commands are used for modifying and
deleting the conceptual schema objects (i.e., domain, standard
data type, model, attribute, entity and relation classes):

ALTER DOMAIN
DROP DOMAIN
ALTER MODEL
DROP MODEL
ALTER ATTRIBUTE
DROP ATTRIBUTE
ALTER ENTITY
DROP ENTITY
ALTER RELATION
DROP RELATION

5.3.1 Domain Class Changes

The values and ranges specified in a domain class govern the
content of attribute classes in schema transformations. The
standard data type stipulates the data storage formats for the
conceptual schema object - attribute class. Domain classes are
modified using the NDDL ALTER DOMAIN command. The following
domain changes apply to the conceptual schema:

* Change a user defined data type to the standard data type.

Use the ALTER DATA TYPE clause. The DATA TYPE IND in the
USER DEF DATA TYPE CDM Table is changed from "user" to
"stdW. This clause also permits the representation format
to be altered.

* Change the valid values and ranges for the attribute class
associated with the standard data type of a domain class.

Use the ADD VALUE, ADD RANGE, DROP VALUE, and/or DROP
RANGE clauses to add and delete valid values and ranges.
The DOMAIN VALUE and DOMAINRANGE CDM Tables are updated
with this clause. Another verification module is

5-15

UM 620341001
30 September 1990

generated and the VERIF MODULE and SOFTWARE_ MODULE CDM
Tables are updated with-the generated software module's
name and Id.

Domain Classes are deleted from the CDM by the NDDL DROP
DOMAIN command. Before a domain class can be dropped:

* Change the domain assignment of any attributes assigned to
the domain being deleted.

Use the NDDL ALTER ATTRIBUTE command DOMAIN clause.
-OR-

* Drop all attributes that use this domain.

Use the NDDL DROP ATTRIBUTE command.

* Change the data type assignment of any internal schema
datafields using any data types of the domain to be
dropped.

Use the NDDL ALTER FIELD command.
-OR-

* Drop all internal schema datafields that use any data
types of the domain to be dropped.

Use the N-, DROP FIELD command.

* Change the data type assignment of any external schema
data item using any data types of the domain to be
dropped.

Use the NDDL DROP VIEW command, then re-create the view
assigning a different data type to the data item using the
CREATE VIEW command.

* Drop all external schema data items that use any data
types of the domain to be dropped.

Use the NDDL DROP VIEW command.

* Chanqe the data type assignment for all module parameters
specifying any data types of the domain to be dropped.

Use the NDDL ALTER MODULE command.
-OR-

* Drop all module parameters that use any data types of the
domain to be dropped.

Use the NDDL DROP MODULE COMMAND.

The DROP DOMAIN command will drop all data types associated
with the domain from the USER DEF DATA TYPE CDM Table. Any
values and/or ranges associated with the domain class will be

5-16

UM 620341001
30 September 1990

deleted from the DOMAIN VALUE and DOMAIN RANGE CDM Tables. The
generated verification module entry will-be dropped from the
VERIFMODULE and the SOFTWAREMODULE CDM Tables.

5.3.2 Model Changes/Deletes

Models are modified by adding and/or dropping entity,
attribute and relation classes to an existing model. Before a
model can be modified:

* The model must be established as current for the NDDL
session.

Use the NDDL ALTER MODEL command. All subsequent NDDL
conceptual schema commands will be applied to the current
model.

All models, except the INTEGRATED MODEL can be dropped from
the CDM. This is performed with the NDDL DROP MODEL command.
The CDM Impact Analysis will report all software modules and
external views affected by the deleted model. Before a model can
be deleted:

* Drop all software modules reported that use the external
views comprised of attributes and entities of the model.

Use the NDDL DROP MODULE command.

* Drop all complex mapping algorithms of the model.

Use the NDDL DROP ALGORITHM command.

* Drop all external views used in these modules.

Use the NDDL DROP VIEW command. This command deletes CS
to ES mappings that exist for attribute classes of the
model.

* Drop all the CS-IS mappings including partitions and
unions that map to the cs objects of the model.

Use the NDDL DROP MAP, DROP PARTITION and DROP UNION
commands.

When the model is deleted with the NDDL DROP MODEL command,
everything associated with the model will be dropped from the
following CDM Tables:

MODEL CLASS
ATTRIBUTE CLASS
ATTRIBUTE NAME
ENTITY CLASS
ENTITY NAME
RELATION CLASS
OWNED ATTRIBUTE
ATTRIBUTE USE CLASS
INHERITED-ATT-USE

5-17

UM 620341001
30 September 1990

KEYCLASS
KEY CLASS MEMBER
COMPLETERELATION

Also, all descriptions, aliases and keywords for the
entities, attributes and relations of the model will be dropped
from the CDM. Entries for the model in the ACKEYWORD,
ECKEYWORD RCKEYWORD and DESCTEXT CDM Tables are deleted.

5.3.3 Attribute Class Changes/Deletes

The CDM Administrator can modify an attribute class with the
NDDL ALTER ATTRIBUTE command. The changes that can be made with
this command are:

* Change the attribute class domain assignment

Use the DOMAIN clause. The CDM Table ATTRIBUTECLASS will
be updated with the new DOMAINNO.

* Change or delete the attribute class keyword

Use the ADD KEYWORD and/or DROP KEYWORD clauses to add
and/or delete keyword references for the attribute class.
The ACKEYWORD CDM Table is updated.

* Change the entity class that owns the attribute class

Use the OWNERSHIP to ENTITY clause. The CDM Impact
Analysis will report all software modules and external
views affected by this NDDL command. Before ownership of
the attribute can be altered:

- Drop all software modules reported that use the external
views comprised of this attribute class. Use the NDDL
DROP MODULE command.

- Drop all complex mapping algorithms that use the
attribute class as an input or an output parameter. Use
the NDDL DROP ALGORITHM command.

- Drop all external views used in these modules. Use the
NDDL DROP VIEW command. This command deletes CS to ES
mappings that exist for the attribute class.

- Drop all the CS-IS mappings including partitions and
unions that map to the attribute class. Use the NDDL
DROP MAP, DROP PARTITION and DROP UNION commands.

Attribute classes are deleted from the CDM by the NDDL DROP
ATTRIBUTE command. The CDM Impact Analysis will report all
software modules and external views affected by this NDDL
command. Before the attribute class can be dropped:

- Drop all software modules reported that use the external
views comprised of this attribute class, use the NDDL
DROP MODULE command.

5-18

UN 620341001
30 September 1990

- Drop all complex mapping algorithms that use this
attribute class as an input or output parameter. Use
the NDDL DROP ALGORITHM command.

- Drop all external views used in these modules. Use the
NDDL DROP VIEW command. This command deletes CS to ES
mappings that exist for the attribute class.

- Drop all the CS-IS mappings including partitions and
unions that map to the attribute class. Use the NDDL
DROP MAP, DROP PARTITION and DROP UNION command.

The DROP ATTRIBUTE command will drop all entries for the
attribute class in the ATTRIBUTE CLASS, OWNED ATTRIBUTE,
ATTRIBUTE USE CLASS, KEY CLASS_MEMBER, ATTRIBUTE NAME, ACKEYWORD
and INHERITED ATT USE CDM Tables. If the attribute class was the
last member in a key class, the entry is deleted in the KEY CLASS
CDM Table. All migrations of this attribute are also deleted.
Refer to Subsections 5.3.4 and 5.3.5 for more information on
modifying an attribute that is owned by an entity, participates
ir. a key class or is migrated through a relation class.

5.3.4 Entity Class Changes/Deletes

This section covers modifications made to an entity class,
its owned attributes and its key class. The CDM Administrator
can modify an entity class with the NDDL ALTER ENTITY command.
The changes that can be made with this command are:

* Establish a new key class for the entity

Use the ADD KEY clause. The CDM Tables KEY CLASS and
KEYCLASSMEMBER will be updated.

* Assign attributes as owned by the entity

Use the ADD OWNED ATTRIBUTE clause. If the attribute
class being assigned as owned has not been created with a
CREATE ATTRIBUTE command, a new ATTRIBUTE CLASS entry is
created as well as an entry in the ATTRIBUTE USE CL and
OWNED ATTRIBUTE CDM tables for the entity class. An
attriSute can be owned by only one entity in a model.

* Delete a key class from the entity

Use the DROP KEY clause The entry for the key class is
deleted from the KEY CLASS CDM Table. All
KEY CLASS MEMBER entries for the key class are deleted.
All ATTRIBUTE USE CL, INHERITED ATT USE and
COMPLETE RELATION-entries that were-created by the
migration of this key class are deleted. The CDM Impact
Analysis Utility will report all software modules and
external views affected by this NDDL command. Before the
key class of the entity can be dropped:

- Drop all software modules reported that use the external
views comprised of the attributes belonging to this key
class. Use the NDDL DROP MODULE command.

5-19

UM 620341001
30 September 1990

- Drop all complex mapping algorithms that use the
attributes belonging to this key class as input or
output parameters. Use the NDDL DROP ALGORITHM command.

- Drop all external views used in these modules. Use the
NDDL DROP VIEW command. This command deletes CS to ES
mappings that exist for the attributes that are key
class members.

- Drop all the CS-IS mappings including partitions and
unions, that map to the attributes that are key class
members. Use the NDDL DROP MAP, DROP PARTITION and DROP
UNION command.

* Drop attribute classes that are owned by the entity class

Use the DROP OWNED ATTRIBUTE clause. Entries in the
OWNED ATTRIBUTE and ATTRIBUTE USE CL CDM Tables are
deletid for the attribute being dropped from the entity
class. All migrations of this attribute, if any, will
also be deleted. The CDM Impact Analysis will report all
software modules and external views affected by this NDDL
command. Before the owned attributes of this entity class
can be dropped:

- Drop all software modules reported that use the external
views comprised of the owned attribute classes being
dropped. Use the NDDL DROP MODULE command.

- Drop any complex mapping algorithms that use the owned
attribute class as an input or output parameter. Use
the NDDL DROP ALGORITHM command.

- Drop all external views used in these modules. Use the
NDDL DROP VIEW command. This command deletes CS to ES
mappings that exist for the attributes classes being
dropped.

- Drop all the CS-IS mappings including partitions and
unions that map to the attributes that are being
dropped. Use the NDDL DROP MAP, DROP PARTITION and DROP
UNION command.

* Change or delete the entity class keyword

Use the ADD KEYWORD and/or DROP KEYWORD clauses to add
and/or delete keyword references for the entity class.
The ECKEYWORD CDM Table is updated.

* Change the tag names of attribute classes that belong to
the entity class being altered.

Use the ALTER ATTRIBUTE clause. The TAG NAME or role name
of the ATTRIBUTEUSECL CDM Table is changed to the new
name.

* Change a key class of the entity class being altered.

5-20

UM 620341001
30 September 1990

Use the ALTER KEY CLASS clause. This clause allows the
key class name to be changed. Also additions, deletions
and substitutions can be made to the key class members.

The KEY CLASS and KEY CLASS MEMBER CDM Tables are updated.
Entries-in the INHERITED ATT USE CDM Tables caused by the
key class migration are aele-ed if key class members are
dropped. The key class member (attribute class) still
belongs to the entity class, though it isn't part of the
entity's key class any longer.

Entity classes are deleted from the CDM by the NDDL DROP
ENTITY command. The CDM Impact Analysis will report all software
modules and external views affected by this NDDL command. Before
the entity class can be dropped:

- Drop all software modules reported that use the external
views comprised of this entity class. Use the NDDL DROP
MODULE command.

- Drop all complex mapping algorithms that use the attribute
classes of the entity class to be dropped as input or
output parameters. Use the NDDL DROP ALGORITHM command.

- Drop all external views used in these modules. Use the
NDDL DROP VIEW command. This command deletes CS to ES
mappings that exist for the entity class.

- Drop all the CS-IS mappings including partitions and
unions that map to the attributes that belong to the
entity class. Use the NDDL DROP MAP, DROP PARTITION and
DROP UNION command.

The DROP ENTITY command will drop all entries for the entity
class in the ENTITY CLASS, OWNED ATTRIBUTE, ATTRIBUTE USECLASS,
INHERITED ATT USE, KEY_CLASS, KEY CLASSMEMBER, ENTITYNAME, and
EC KEYWORD CDM Tables. If the entity class was involved in a
reTation class, the entry is deleted in the RELATIONCLASS CDM
Table. Please note that dropping an entity will cause its
dependent entity chain to be deleted, along with these entity's
attributes, keys and relations.

5.3.5 Relation Class Changes/Deletes

The CDM Administrator can modify a relation class with the
NDDL ALTER RELATION command. The changes that can be made with
this command are:

* Change the cardinality of the relation class.

If any of the cardinality integers specified in the ALTER
RELATION command are different than the original
cardinality integers specified when the relation was
created, the cardinality of the relation class is
modified. The RELATIONCLASS CDM Table is updated with
the new cardinality.

5-21

UN 620341001
30 September 1990

* Migrate a key class from the independent entity class.

Use the ADD MIGRATES clause. The ATTRIBUTEUSECL and
INHERITED ATT USE CDM Tables are added to for each key
class member that migrated to the dependent entity. The
COMPLETE RELATION CDM Table is updated. This clause also
allows te tag names of the key class members to be
changed in the dependent entity when the key class is
migrated.

* Delete key class migrations through a relation class

Use the DROP MIGRATES clause. Entries in the
ATTRIBUTE USE CL and INHERITED ATT USE CDM Tables for key
class members-previously migrated to their dependent
entity are deleted. The CDM Impact Analysis Utility will
report all software modules and external views affected by
this NDDL command. Before the key class migration can be
dropped:

- Drop all software modules reported that use the external
views comprised of the inherited attribute classes being
deleted because the key class migration is being
dropped. Use the NDDL DROP MODULE command.

- Drop all complex mapping algorithms that use these
dropped inherited attribute classes as input or output
parameters. Use the NDDL DROP ALGORITHM command.

- Drop all external views used in these modules. Use the
NDDL DROP VIEW command. This command deletes CS to ES
mappings that exist for the inherited attribute classes
being deleted.

- Drop all the CS-IS mappings including partitions and
unions that map to the inherited attributes being
deleted by dropping the key class migration. Use the
NDDL DROP MAP, DROP PARTITION and DROP UNION command.

* Change or delete the relation class keyword.

Use the ADD KEYWORD and/or DROP KEYWORD clauses to add
and/or delete keyword references for the relation class. The
RCKEYWORD CDM Table is updated.

Relation classes are deleted from the CDM by the NDDL DROP
RELATION command. The DROP RELATION command will drop the
entries for the relation class in the RELATION CLASS and
COMPLETE RELATION CDM Table. The key class that was migrated
through the relation class is "unmigrated". The entries or the
dependent entity in the ATTRIBUTE USE CLASS and INHERITED ATT USE
CDM Tables are deleted. Please note that deleting a relation-can
cause deletion of all inherited attributes down the migration
chain. The CDM Impact Analysis will report all software modules
and external views affected by this NDDL command. Before the
relation class can be dropped:

5-22

UM 620341001
30 September 1990

- Drop all soJftware modules reported that use the external
views comprised of the inherited attributes of the
"unmigrated" keys. Use the NDDL DROP MODULE command.

- Drop all complex mapping algorithms that use the inherited
attributes of the "unmigrated" keys as input or output
parameters. Use the NDDL DROP ALGORITHM command.

- Drop all external views used in these modules. Use the
NDDL DROP VIEW command. This command deletes CS to ES
mappings that exist for the inherited attributes that are
not deleted because of the "unmigrated" keys.

- Drop all the CS-IS mappings including partitions and
unions that map to the inherited attributes that will be
deleted when the key classes are "unmigrated". Use the
NDDL DROP MAP, PARTITION and UNION command.

- Drop all the relation class to set mappings that exist for
the relation class. Use the NDDL DROP MAP command.

5.4 Modeling & Validating Tools

Several NDDL commands have been designed and developed as
modeling tools and to help the CDM administrator validate models.
The output of these commands can be directed to a file or the
screen (see SET OUTPUT in Section 5.1.2) then reviewed, edited
and resubmitted. These NDDL commands are:

CHECK MODEL
COMBINE ENTITY
COMPARE MODEL
MERGE MODEL

Refer to the NDDL User's Manual for the syntax and semantics
of these zommands. Section V of the NDDL User's Manual displays
examples for each of these NDDL commands.

Another modeling tool is the CDM Compare Utility. It should
be used by the CDM Administrator, after making changes to the
CDM, to ensure the CDM remains in a consistent state. The CDM
Compare Utility is used to compare two versions of a CDM and
report their differences. Refer to the CDM Compare Utility
User's Manual for information on its use.

5.5 Reviewing the Contents of the CDM

Specific NDDL commands were developed to copy all the
information recorded in the CDM. These are the NDDL COPY
commands. If there is information recorded in the CDM, there is
an NDDL COPY statement that will allow that information to be
copied. The copied information (or output of these commands) is
in the form of NDDL statements that, if re-submitted to the NDDL
processor, will again produce the information stored in the CDM.
This output can be directed either to a screen or a file. Other
optional clauses allow related objects to be copied along with
the CDM object initially specified on the command. Refer to the
NDDL User's Manual for the specific syntax and optional clauses
of the command.

5-23

UM 620341001
30 September 1990

Another method of reviewing the information stored in the
CDM is to initiate the CDM Reports. These display the CDM
contents of the specified conceptual, internal or external schema
definition in report format. Refer the CDM Reports User's Manual
or the formats and commands to initiate these reports.

5-24

UM 620341001
30 September 1990

SECTION 6

MAINTAINING INTERNAL SCHEMAS AND MAPPINGS

6.1 Methodology Overview

This section provides the CDM Administrator with the
methodology for building and maintaining internal schemas and for
mapping them to the conceptual schema. The tables of the CDM
database that are populated to describe internal schemas and
CS-IS mappings are illustrated in the applicable subsections. As
mentioned in Section 5, the internal schema objects are:

Database
Host
Record
Datafield
data type
Set

Each object represents a CDM database table which is
populated using NDDL. There are various generic database models
(CODASYL, relational, hierarchical, etc.) and most database
management systems (DBMSs) are based on one or another of them
though the terminology may be different. These objects are
common to all DBMS' models. The mapping between the conceptual
schema and internal schema has three levels:

1) Entity class to record type
2) Relation class to record set relationship
3) Attribute use class to data field

This section will explain how to define existing physical
database models to the CDM and how to determine their mappings to
the conceptual schema. The database models and their DBMSs whose
definitions are supported by the CDM are:

a) Relational (ORACLE, DB2)
b) CODASYL (VAX-lI, IDMS, IDS-ll)
c) Network (TOTAL)
d) Hierarchical (IMS)

Of these DBMSs that control the various database models,
only ORACLE, DB2 and VAX-11 have been fully implemented by the
IISS precompiler. Therefore, this section will explain the
definition of database models created and maintained by these
DBMSs in-depth. Differences in network and hierarchical database
models will be addressed in Section 6.5, "Specific
Considerations". Forms are used to assist in the CS-IS mappings
and instructions on their use are provided. The NDDL commands
necessary to initially load internal schemas and CS-IS mappings
are described along with the NDDL commands to change the internal
schema objects.

6-1

UM 620341001
30 September 1990

This methodology does not address the creation of physical
database designs. DBMS vendors, books, classes, etc., offer much
more guidance in this area than can be provided here.

6.1.1 Internal Schema and CS-IS Mapping Structure

As mentioned in the previous subsection, the various
generic database models are the basis for most DBMSs. In
addition, a particular model may be modified or extended for a
particular DBMS. Each of these models generates its own style of
internal schema. While many internal schema components are
common to all styles, some are peculiar to only one or a few.
The CDM does not contain a separate structure for each style of
internal schema. Instead, a single, composite structure that can
support any style is provided. Each internal schema component is
conceptually represented by one entity class regardless of how
many styles that component is in. Additional relevant entity
classes for each style are listed in the appropriate subsection
of Section 6.5, "Specific Considerations".

A CS-IS mapping is intended to show which components of an
internal schema correspond to those of the conceptual schema. A
record type maps to an entity class if they both represent the
same kind of "real-world" things. For example, in Figure 6-1,
the EMP-MAST record type maps to the Employee entity class
because both represent employees. There is a one-for-one
correspondence between the record type and the entity class; each
employee is represented by one instance of the record type and by
one instance of the entity class. Notice that even though the
record type contains data fields (DIV-NO, DEPT-NAME, SPOUSE-NAME)
that correspond to attribute use classes in other entity classes,
the record type does not map to those other entity classes. It
represents a different kind of "real-world" things than any of
those entity classes and is not in a one-for-one correspondence
with any of them. For example, one instance of the Department
entity class exists or each department while several instances of
the EMP-MAST record type exist, one for each employee in a
department, or if a department has no employees, no record type
instances exist for that department. As another example, the
Married Employee entity class has an instance for each employee
who is married, while the EMP-MAST record type has an instance
for every employee, married or not.

6-2

UM 620341001
30 September 1990

CONCEPTUAL SCHEMA INTERNAL SCHEMA

DIV NO
DIV NAME

DIVISION _

HAS

DEPT NO
DEPT NAME
DIV NO

DEPT

HAS
< > EMPMAST

EMP NO EMP NO
EMP NAME EMP NAME
DEPT NO MAPS TO DIV-NO

< ----------- > DEPT NO
EMPLOYEE DEPT-NAME

SPOU SE_NAME

is

EMP NO
SPOUSE NAME

MARRIED
EMPLOYEE

Figure 6-1. Entity Class/Record Type Mapping

6-3

UM 620341001
30 September 1990

In a similar manner, a data field maps to an attribute use
class if they both represent the same kind of data about "real-
world" things. Using the example in Figure 6-1 again, the EMP-
NO, EMP-NAME, and DEPT-NO data fields in the EMP-MAST record type
map to attribute use classes in the Employee entity class; DIV-NO
and DEPT-NAME, to those in the Dept entity class; and
SPOUSE-NAME, to one in the Married Employee entity class. Notice
that some data fields could map to more than one attribute use
class. For example, EMP-NO and DEPT-NO could have mapped to
attribute use classes in the Married Employee and Department
entity classes, respectively, instead of those in the Employee
entity class. They map to those in the Employee entity class
because the record type maps to that entity class. DIV-NO is
another example; it could have mapped to an attribute use class
in the Division entity class rather than to one in the Department
entity class. The reason it maps to the one in the latter is
that the Department entity class is more closely related to the
Employee entity class than the Division entity class is. Notice
also that all these examples involve attribute use classes that
belong to key classes. This is because only they can migrate to
other entity classes; an owned, nonkey attribute use class
appears only in its owner entity class. These situations are
summarized in the following mapping rules:

o If a data field could map to either an attribute use
class in the entity class to which the record type
maps or to one in another entity class, it always
maps to the former (e.g., EMP-NO and DEPT-NO).

o If a data field could map to more than one attribute
use class, none of which are in the entity class to
which the record type maps, it always maps to the one
in the entity class that is most closely related to
the entity class to which the record type maps (e.g.,
DIV-NO).

Finally, a record set maps to a relation class if they both
represent the same kind of association between "real-world"
things. This implies that the two record types in the record
set, the owner and the member, map to the two entity classes in
the relation class, the independent and the dependent,
respectively.

The following subsections (6.1.1.1 - 6.1.1.6) present
various subjects to consider when dealing with CS-IS mappings.

None of them are mutually exclusive; each can be combined with
one or more of the others.

6.1.1.1 Vertical Partitions

An entity class is vertically partitioned when some of its
attribute use classes map to data fields in one record type and
others map to those in another. An entity class can have several
v-rtical partitions. Each record type maps to the entity class.

6-4

UM 620341001
30 September 1990

CONCEPTUAL SCHEMA INTERNAL SCHEMA

EMP NO EMP NO EMP NO
EMP NAME EMP-NAME EMP-SKILL
EMPSKILL

EMP

6.1.1.2 Horizontal Partition

An entity class is horizontally partitioned when some of
its entity instances map to instances of one record type and
others map to instances of another record type. Usually, the
horizontal partitioning of an entity class is governed by the
values in a particular attribute use class.

The attribute use class governing the partition may be in
the entity class being partitioned (as in the first example
below), or it may be in one that that entity class is dependent
on, either directly or indirectly (as in the subsequent example
below).

6-5

UM 620341001
30 September 1990

CONCEPTUAL SCHEMA INTERNAL SCHEMA

CALIF. EMPLOYEE ARIZ. EMPLOYEE

EMP NO EMP NO EMP NO
EMP NAME MAPS TO EMPNAME EMPNAME
STATE < ------- >

EMPLOYEE2

DIV NO
DIV NAME
STATENAME

DIVISION

DEPT NO
DIV NO

DEPT j

< > CALIF. EMPLOYEE ARIZ. EMPLOYEE

EMP NO EMP NO EMP NO
EMP NAME MAPS TO EMP -NAME EMP-NAME
DEPT NO < ------- > DEPT-NO DEPT NO

EMPLOYEE

6-6

UM 620341001
30 September 1990

An entity class can have several horizontal partitions. Each

record type maps to the entity class.

6.1.1.3 Joins

If some data fields in a record type map to attribute use
classes in one entity class and others map to those in another,
the two entity classes must be combined to form that record type.
This is done with a relational "join" operation, which
concatenates the entity instances of one entity class with those
of the other. The two entity classes must be directly related by
a relation class so that their entity instances can be matched
using the key class of the independent and the corresponding
inherited attribute use class(es) of the dependent.

CONCEPTUAL SCHEMA INTERNAL SCHEMA

EMP NO
EMPNAME

EMP DEPTEMP

DEPT NO
EMP NO
EMP NAME
DEPTNAME

DEPT NO
EMP NO
DEPTNAME

DEPT I

If the relation class cardinality is one-to-many, each
independent entity instance is concatenated with each entity
instance that is dependent on it. In the first example in
Figure 6-2, each PO-HEADER instance is formed by concatenating a
Vendor instance with a PO instance based on identical values in
Vendor No. If a Vendor instance has no dependent PO instances,
it is not represented by a PO-HEADER instance. This produces
one record instance for each instance in the dependent entity
class, so the mapping must be to that entity class. If the
mapping was to the independent entity class, i.e., if there was
one record instance for each Vendor instance, P. 0. NO. and any
other attribute use classes from the P. 0. entity class could
occur multiple times in each record instance. Since a
relational join cannot form record instances with repeating data
fields, this situation is prohibited.

If the relation class cardinality is one-to-zero-or-one,
the mapping can be to either the independent or the dependent
entity class because neither can cause a repeating data field.

6-7

UM 620341001
30 September 1990

The second and third examples in Figure 6-2 show these two
situations. In the second, there is one BUYER record instance
for an employee who is not a buyer. In the third example, there
is one EMP-MAST instance for each Employee instance. If an
employee is not married, the SPOUSE-NAME data field in the
record instance for that employee is null.

CONCEPTUAL SCHEMA INTERNAL SCHEMA

ONE-TO-MANY-RELATION CLASS:

VENDOR NO

VENDOR NAME

VENDOR

RECEIVES
< > POHEADER

P.O. NO <-- P.O. NO
VENDOR NO. VEND NO

---------- > VEND_NAME

P.O. _

Figure 6-2. Join Examples

6-8

UM 620341001
30 September 1990

CONCEPTUAL SCHEMA INTERNAL SCHEMA

ONE-TO-ZERO-OR-ONE RELATION CLASS:

EMP NO
EMP NAME

EMPLOYEE

is [BUYER

BUYER NO BUYERNO
EMP NAME < --------------------- > BUYERNAME

BUYER _

EMP NO
EMP NAME <-

EMPMAST
EMPLOYEE I

EMP NO
EMP NAME

- > SPOUSE NAME

EMP NO
SPOUSE NAME

MARRIED
EMPLOYEE

Figure 6-2. Join Examples (Continued.)

6-9

UM 620341001
30 September 1990

If a record type has data fields that map to attribute use
classes in several entity classes, they must all be combined to
form the record type. This is done with a series of the join
operations described above, each of which combines two of the
entity classes. All of the entity classes must be inter-related
such that they form one of the following (See Figure 6- 3):

1. A regular hierarchy, i.e., a structure in which:

o One entity class, called the apex, is not
dependent on any of the others (e.g., ECl)

o Every other entity class is dependent on exactly
one entity class (not necessarily the same one
for all)

o Every relation class cardinality is one-to-zero-
or-one

2. A confluent hierarchy (an upside-down hierarchy), i.e.,
a structure in which:

o One entity class, called the apex, has none of
the others dependent on it (e.g., ECI4)

o Every other entity class has exactly one entity
class dependent on it (not necessarily the same
one for all)

o Any specific relation class cardinality is
permitted

3. A combination of:

o One confluent hierarchy and

o One or more regular hierarchies, each of whose
apex entity classes are also in the confluent
hierarchy (e.g., EC15, EC20, and EC25).

Each hierarchy is called a join structure. As shown in the
examples in Figure 6-3, the record type must map to the apex
entity class of the regular or confluent hierarchy. If a
combination of hierarchies exists, the mapping must be to the
apex of the confluent hierarchy.

6-10

UM 620341001
30 September 1990

REGULAR HIERARCHY: CONCEPTUAL SCHEMA INTERNAL SCHEMA

APEX ----- > MAPS TO

j ECi

I---
EC5 EC6 EC7

Figure 6-3. Join Structures

6-11

UM 620341001
30 September 1990

CONFLUENT HIERARCHY: CONCEPTUAL SCHEMA INTERNAL SCHEMA

__ _ _ C 9 1 Ij EC10

EC8 < >< >

< > EC12

EC11 ___

IEC13 RT-B

APEX ------ >

Figure 6-3. Join Structures (continued)

6-12

UM 620341001
30 September 1990

COMBINATION: CONCEPTUAL SCHEMA

EC16

_____ EC11 8__

EC 1-7 -- EC20 L

EC2 1

EC2 3

< > < >RT-C

APEX--> MAPS To

I EC2 5

EC 2-6 ____

-T EC27

EC29

Figure 6-3. Join Structures (Continued)

6-13

UM 620341001
30 September 1990

6.1.1.4 Unions

A record type can map to two or more entity classes. This
is the case when there is one record instance for each entity
instance in one entity class and one for each in another. In
the example below, each RESUPPLY record instance corresponds to
either one Shop Order instance or one P. 0. Item instance.

The creation of this sort of record type involves the use of
the relational "union" operation. This allows the instances from
both entity classes to be treated as if they were all the same
kind of entity instances. Each data field can map to an
attribute use class in each entity class, but that is not
required. A data field can map to an attribute use class in one
entity class without mapping to one in another. In the example
above, these mappings are:

RESUPPLY SHOP ORDER P.O. LINE

ORDER-NO maps to S.O. No. and P.O. No.
LINE-NO maps to Line No.
PART-NO maps to Part No. and Part No.
QUANTITY maps to S.O. Qty. and P.O. Qty.
AVAIL-DATE maps to Finish Date and Due Date

LINE-NO does not map to an attribute use class in the Shop
Order entity class. Consequently, each record instance that
corresponds to an instance of that entity class is null in that
data field.

Usually, the entity classes involved in a union are

directly related, although this is not a requirement.

6.1.1.5 Phantoms

Some DBMSs discourage the creation of data fields that would
map to inherited attribute use classes. In the example below,
P.O. No. in the P.O. Line entity class has no corresponding data
field in the PO-DETAIL record type. Instead, when the purchase
order number for an instance of that record type is needed, the
one in the related PO-HEADER record instance is used.

6-14

UM 620341001
30 September 1990

CONCEPTUAL SCHEMA INTERNAL SCHEMA

P.O. HEADEP

P.O. NO. P.O. NO.
P.O. DATE P.O. DATE

P.O < ---------- > SHOP ORDER

OBTAINS P.O. DETAIL
<>

P.O. NO LINE NO LINE NO.
P.O. QTY P.O. QTY
DUE DATE DUE-DATE

< ---------- >

P.O. LINE _

In this example, the P.O. No. in the P.O. Line entity class
is called a "phantom" attribute use class because values for it
can be retrieved from the database even though it does not map
to any data field.

6.1.1.6 Duplications (Replications vs Redundancy)

Data duplication exists when the va]ae in an attribute use
class for a particular entity instance is stored in two or more
data fields. In general, this is when an attribute use class
maps to more than one data field. However, there are
exceptions. When an entity class is horizontally partitioned,
some or all of its attribute use classes map to more than one
data field. If the partitions do not overlap though, i.e., if
each entity instance corresponds to only one record instance,
then each value is stored only once. Then, there is no data
duplication. To summarize, data duplication exists when an
attribute use class maps to two or more data fields unless all
of those mappings result from a non-overlapping horizontal
partition.

There are two types of data duplication:

Data Redundancy: The values in one of the data
fields to which c'n attribute use
class maps are not kept
synchronized with those in
another to which it maps.

Data Replication: The values in one of the data
fields to which an attribute use
class maps are updated and
controlled to be kept
synchronized with those in
another to which it maps. Data
replication may be used for
performance purposes or for

6-15

UM 620341001
30 September 1990

purposes of joining across
physical record (but not for
joining entity classes).

As indicated by these definitions, data replication can be
useful, but data redundancy is always undesirable. With data
replication, updates to those multiple copies are controlled from
a single source. The multiple copies are kept synchronized such
that they reflect the same history of updates. By contrast, with
data redundancy, updates to the multiple copies can be controlled
by multiple sources, for example, by different applications. The
result is that the copies may reflect different histories of
updates and carry different values. When a user accesses
redundant data, there can be no guarantee of the integrity or
quality of that data. Depending on which copy is accessed, the
user may receive very different results.

Whenever an attribute use class maps to more than one data
field, the CDM Administrator must specify which is the "preferred
copy." This is the data field that the CDM Processor will use
for retrievals and qualifications in all NDML requests,
regardless of application. The others will be used for joining
across physical records when necessary. If an entity class has
been horizontally partitioned, there should be a preferred copy
designated in each partition. If a particular application wishes
to use other than the preferred copy, it must bypass the CDM
Processor and access that data field directly. It cannot use
NDML for the request.

The CDM Processor treats all duplication as data replica-
tion; it must consider the values in all data fields to be
synchronized. If, in fact, some duplication is really data
redundancy, improper physical record joining may be performed,
resulting in spurious responses.

6.1.1.7 Complex MapRinqs

A datafield to attribute use class mapping exists if they
both represent the same "real-world" thing. Sometimes a
datafield to attribute use class mapping can only be obtained by
the programmatic manipulation of datafields or a record and
attributes. Using the complex mapping example in Figure 6-26,
the datafield BILL TO COUNTRY ZIP is derived from the
transformation of the two attributes BILL TO COUNTRY and
BILL TO ZIP. A program is written in either-COBOL or FORTRAN to
perform this transformation. Likewise a program is written to
process the datafield BILL TO COUNTRY ZIP and break it down into
the two attributes BILL TO-COUNTRY and BILLTOZIP. These
programs provide CS to IS mappings and are called complex mapping
algorithms.

6.1.2 CS-IS Mapping Modeling Forms

The following forms were developed to assist the CDM
Administrator in determining the mappings between internal and
conceptual schema objects. Most DBMSs provide a language for
defining databases, for example, Data Definition Language (DDL).
These NDDL statements for each database are referenced to compose
the NDDL statements to define these internal schema objects to

6-16

UM 620341001
30 September 1990

the CDM (see Subsection 6.2, "Loading the Initial Internal Schema
Objects"). Consequently, no internal schema modeling forms are
needed. The following forms are used to model the mappings
between internal schemas and the conceptual schema objects:

1. Record Type/Entity Class Mapping Form
2. Record Type Join Structure Diagram
3. Data Field/Attribute Use Class Mapping Form
4. Set Type/Relation Class Mapping Form

What follows is a detailed description and two samples (one
blank and one filled in) of each of the Internal Schema Modeling
Forms.

Record Type/Entity Class Mapping Form

Purpose: To provide a single source of information about the
mappings between record types and entity classes.

Instructions:

Fill in one or more pages for each database. List
each entity class to which record type maps. Refer
to Figures 6-4 and 6-5.

Form Area Explanation

1. Database Name Unique 30 character name
assigned to the database by the
CDMA.

2. Record Type ID Name or code that the DBMS uses
to identify the record type.

3. Entity Class Name Name of the entity class to which

the record type maps.

Record Type Join Structure Diagram

Purpose: To provide a single source of information about the
join structures for a record type.

Instructions:

Fill in one page for each record type that involves
joining two or more entity classes. Refer to Figures
6-6 and 6-7.

Form Area Explanation

1. Database Name Uniue 30 character name
assigned to the database by the
CDMA.

2. Record Type ID Name or code that the DBMS uses
to identify the record type.

6-17

UM 620341001
30 September 1990

3. (Diagram Area) Depiction of the entity classes
and relation classes that make up
the join structure.

6-18

UM 620341001
30 September 1990

USED AT: AUTHOR: DATE: WORKING READER DATE CONTEXT
PROJECT: REV:

DRAFT

RECOM-
MENDED

NOTES: 1 2 3 4 5 6 PUBLI-
7 8 9 10 CATION

DATABASE RECORD TYPE ID ENTITY CLASS NAME
NAME

1 2 3

NODE: TITLE: NUMBER:
5 RECORD TYPE ENTITY CLASS MAPPING

Figure 6-4. Record Type/Entity Class Mapping Form

6-19

UM 620341001
30 September 1990

USED AT: AUTHOR: DATE: WORKING READER DATE CONTEXT
PROJECT: REV:

DRAFT

RECOM-
MENDED

NOTES: 1 2 3 4 5 6 PUBLI-
7 8 9 10 CATION

DATABASE RECORD TYPE ID ENTITY CLASS NAME
NAME

PARTS DB CPPLANGROUP OP EXEC PLAN GROUP

PARTS DB OPPLANOPPLAN OP EXEC PLAN COMPONENT

PARTS DB OPPLANPART OP EXEC PLAN PART

PARTS DB PERSON EMPLOYEE

NODE: TITLE: NUMBER:
5 RECORD TYPE ENTITY CLASS MAPPING 2

Figure 6-5. Record Type/Entity Class Mapping

6-20

UM 620341001
30 September 1990

USED AT: AUTHOR: DATE: WORKING READER DATE CONTEXT
PROJECT: REV:

DRAFT

RECOM-
MENDED

NOTES: 1 2 3 4 5 6 PUBLI-
7 8 9 10 CATION

DATABASE NAME: 1 jRECORD TYPE ID: 2

3

NODE: TITLE: NUMBER:
RECORD TYPE JOIN STRUCTURE DIAGRAM

Figure 6-6. Record Type Structure Diagram

6-21

UM 620341001
30 September 1990

USED AT: AUTHOR: DATE: WORKING READER DATE CONTEXT
PROJECT: REV:

DRAFT

RECOM-
MENDED

NOTES: 1 2 3 4 5 6 PUBLI-
7 8 9 10 CATION

DATABASE NAME: PARTS DB IRECORD TYPE ID: MATERIALREQ

ITEM

__ _ IS

IS REFERENCED BY

PRODUCT ITEM <I
[~ <>

'PRODUCT ITEM
MATERIAL REQT

NODE: TITLE: NUMBER:
RECORD TYPE JOIN STRUCTURE DIAGRAM 34

Figure 6-7. Record Type Join Structure Diagram Example

6-22

UM 620341001
30 September 1990

Data Field/Attribute Use Class Mapping Form

Purpose: To provide a single source of information about the
mappings between data fields and attribute use
classes.

Instructions:

Fill in one or more pages for each record type in a
database. List each attribute use class to which
each data field maps. Refer to Figures 6-8 and 6-9.

Form Area Explanation

1. Database Name Unique 30 character name
assigned to the database by the
CDMA.

2. Record Type ID Name or code that the DBMS uses
to identify the record type.

3. Data Field ID Name or code that the DBMS uses
to identify the data field.

4. Entity Class Name Name of the entity class that
contains the attribute use class
tag in the next column.

5. Attribute Use Class Tag name of the attribute use
class

to which the datafield maps.

6-23

UM 620341001
30 September 1990

USED AT: AUTHOR: DATE: WORKING READER DATE CONTEXT
PROJECT: REV: DRAFT

DRAFT

RECOM-
MENDED

NOTES: 1 2 3 4 5 6 PUBLI-
7 8 9 10 CATION

DATABASE NAME: 1 1RECORD TYPE ID: 2

DATA FIELD ID ENTITY CLASS NAME ATTRIBUTE USE CLASS TAG

3 4 5

NODE: TITLE: NUMBER:
DATA FIELD/ATTRIBUTE USE CLASS

MAPPING

Figure 6-8. Data Field/Attribute Use Class Mapping

6-24

UM 620341001
30 September 1990

USED AT: AUTHOR: DATE: WORKING READER DATE CONTEXT
PROJECT: REV:

DRAFT

RECOM-
MENDED

NOTES: 1 2 3 4 5 6 PUBLI-
7 8 9 10 CATION

DATABASE NAME: PARTS DB IRECORD TYPE ID: RESOURCE

DATA FIELD ID ENTITY CLASS NAME ATTRIBUTE USE CLASS TAG

RESID MFGRESOURCE MFG AREA ID

RESSTATUS MFGRESOURCE MFG AREA STATUS

RESNEXTPMDATE MFGRESOURCE NEXT PM DATE

RESNEXTPMR MFGRESOURCE NEXT REQ NO

RESNEXTOPG MFGRESOURCE NEXT GROUP NO

RESMAXOPG MFGRESOURCE MAX GROUP NO

RES TONNAGE_
RATING MFGRESOURCE TONNAGE RATING

RESTYPE MFGRESOURCE MFG AREA TYPE

NODE: TITLE: NUMBER:
DATA FIELD/ATTRIBUTE USE CLASS 20

MAPPING

Figure 6-9. Data Field/Attribute Use Class Mapping Example

6-25

UM 620341001
30 September 1990

Relation Class/Set Type Mapping Form

Purpose: To provide a single source of information about the
mappings between CODASYL set types or IMS paths and
relation classes.

Instructions:

Fill in one or more pages for each database. List
all of the set types that map to relation classes and
all of the record types that are members in each set
type. Refer to Figures 6-10 and 6-11.

Form Area Explanation

1. Database Name Unique 30 character name
assigned to the database by the
CDMA.

2. Set Type ID Name that the DBMS uses
to identify the set type.

3. Member Record Type ID Name that the DBMS uses
to identify a record type that is
a member in the set type.

4. Independent Entity Name Name of the entity class that
is independent in the relation
class to which the set type maps.

5. Relation Class Label Label of the relation class to
which the set type maps.

6. Dependent Entity Name Name of the entity class that
is dependent in the relation
class to which the set type maps.

6-26

UM 620341001
30 September 1990

USED AT: AUTHOR: DATE: WORKING READER DATE CONTEXT
PROJECT: REV:

DRAFT

RECOM-
MENDED

NOTES: 1 2 3 4 5 6 PUBLI-
7 8 9 10 CATION

DB SET MEMBER RECORD INDEPENDENT RELATION DEPENDENT
NAME TYPE ID. TYPE ID ENTITY NAME CLASS ENTITY

LABEL NAME

1 2 3 4 5 6

NODE: TITLE: NUMBER:
SET TYPE/RELATION CLASS MAPPING

Figure 6-10. Set Type/Relation Class Mapping

6-27

UM 620341001
30 September 1990

USED AT: AUTHOR: DATE: WORKING READER DATE CONTEXT
PROJECT: REV:

DRAFT

RECOM-
MENDED

NOTES: 1 2 3 4 5 6 PUBLI-
7 8 9 10 CATION

DB SET MEMBER RECORD INDEPENDENT RELATION DEPENDENT
NAME TYPE ID. TYPE ID ENTITY NAME CLASS ENTITY

LABEL NAME

PARTS CAN BE iNORTHRUP ALT IASSEMB_OP IS PER- IALTERNATEI
DB PERFORM- RESOURCE FORMED BY _RES

EDBY

PARTS CARRIED_ ALTRESOURCE DRAWINGOP IS PER- ALTERNATE
DB OUTBY FORMED BY _RES

PARTS CONTAINS RESOURCE_ MFG HAS OPGROUP
DB RESOURCE RESOURCE

PARTS CON- OPERATION ASSEMBDEPT HAS OPGROUP
DB SISTSOF

PARTS CON- STOCKAREAITEM MFGPART IS MFGITEM
DB TROLLED-

BY

PARTS CON- STOCKAREAITEM MFG STORES MFG-ITEM
DB TROLS WAREHOUSE

STORAGE

NODE: TITLE: NUMBER:
SET TYPE/RELATION CLASS MAPPING

Figure 6-11. Set Type/Relation Class Mapping Example

6-28

UM 620341001
30 September 1990

The following subsections describe the methodology the CDM
Administrator must follow in order to determine the CS-IS
mappings for relational and CODASYL databases.

6.1.2.1 Relational Database Modeling Forms

ORACLE and DB2 relational DBMSs represent data as relations
or two dimensional tables. These tables consist of columns
(i.e., attributes) and rows (i.e., tuples). Figure 6-12 is an
illustration of a relational implementation of the conceptual
data model. All non-specific relationships have been resolved.
All keys have been migrated and no role names are used. This
makes the mapping from the conceptual schema to a relational
database very straightforward. When mapping to this relational
DBMS:

* each entity class maps to a corresponding table
* each attribute of the entity maps to the corresponding

column of the table
* the key of each entity becomes the primary key in thecorresponding table

a relationship is represented by foreign keys in the
dependent entity

The modeling forms pertinent to relational databases are
the Record Type/Entity Class Mapping Form and the Data
Field/Attribute Use Class Mapping Form. Refer to Figures 6-4
and 6-8. The CDM Administrator determines the primary mapping
for each table by determining what sort of "real-world" thing
the table represents. Each instance of a record type within a
table contains data about a specific person, place, object,
etc., that is significant to the enterprise. With a relational
DBMS, all of the instances of the same type are about the same
sort of thing and map directly to an entity. Once the entity
class in the conceptual schema that represents the same sort of
thing as the table is determined, the information is recorded in
the Record Type/Entity Class Mapping Form. Using Figure 6-12 as
an example:

El maps to Supplier Table
E2 maps to Order Table
E3 maps to Line-Item Table
E4 maps to Quotation Table
E5 maps to Part Table

Next, the CDM Administrator uses the Data Field/Attribute
Use Class Mapping Form to assist in determining the primary
mappings for each column of the tables. A one-for-one mapping
should always exist between the attributes of an entity and the
columns (i.e. datafields) of its corresponding table. A table,
however, could contain datafields that exist only to maintain a
relationship. These datafields will not have a mapping.

A few datafields may not contain data about "real-world"
things and exist for technical reasons only. Examples include
record codes and record activity dates. Such datafields do not
map to any attribute use classes and can be ignored. The way
the CDM Administrator determines which attribute use class in

6-29

UM 620341001
30 September 1990

the conceptual schema represents the same sort of data as the
datafield is by finding the attribute use class whose definition
or migration path corresponds to the intent of the datafield.
This mapping information is recorded on the Datafield/Attribute
Use Class Mapping Form. The relationship from the conceptual
schema in Figure 6-12 are represented by attributes within
tables and map as follows:

RTl maps to Supplier # in the QUOTATION Table
RT2 maps to Supplier # in the ORDER Table
RT3 maps to Supplier # in the LINE-ITEM Table
RT4 maps to Part # in the QUOTATION Table
RT5 maps to Part # in the LINE-ITEM Table

6-30

UM 620341001
30 September 1990

INTERNAL SCHEMA

SUPPLIER

I SUPPLIER-NO SUPPLIER-NAME IBILL-TO-ADDRESS SHIP-TO-ADDRESS

KEY

PART

PART-NO IPART-NM PART-DESCRIPTION QT-ON-HAND

KEY

QUOTATION

SUPPLIER-NO PART-NO QUOTE-PRICE LEAD-TIME I

KEY

ORDER

ORDER-NO SUPPLIER-NO ORDER-DATE DELIVERY-DATE

KEY

LINE-ITEM

ORDER-NO LINE-ITEM-NO PART-NO QUANTITY PRICE

KEY

Figure 6-12. Relational Implementation of the Conceptual
Model

6-31

UM 620341001
30 September 1990

CONCEPTUAL SCHEMA

SUPPLIER-NO

PART-NO

SUPPLIER El RT1

PART I E5
RT2 ___

< >
RT4

SUPPLIER-NO
ORDER-NO PART-NO
SUPPLIER-NO
ORDER IQUOTATION E4
ORDER E2__________

RT3

ORDER-NO
LINE-ITEM-NO
PART-NO <-

LINE-ITEM E3

Figure 6-12. Relational Implementation of the Conceptual
Model (Continued)

6-32

UM 620341001
30 September 1990

6.1.2.2 CODASYL Database Modeling Forms

The CODASYL VAX-Il DBMS offers two database design features
that are not available in most others: multi-member set types
and optional membership set types. The first is a single set
type that has one owner record type and two or more member
record types. Figure 6-13 is an example of a multi-member set.
An owner instance can be associated with any number of instances
of each type of member; they are not mutually exclusive. In
essence, several logical relationships (relation classes) are
combined into one physical relationship (set type). The CS-IS
mapping for a multi-member set type involves:

* That the owner and member record types each have a
primary mapping to a different entity class. Any of them
can have secondary mappings also.

* That the set type maps to several relation classes, one
per member.

* That the entity class that the owner maps to is
independent in all of these relation classes.

That the entity class that a member maps to is dependent
in one of these relation classes.

An optional membership set type is one in which an instance
of the member record type is allowed to exist without being
associated with an instance of the owner record type. This is in
contrast with any other set type in which every member instance
must be associated with an owner instance. An optional
membership set type is equivalent to a non-specific relation
class whose cardinality is zero or one-to-zero, one or many.
Such a relation class is refined, as shown on the following page,
before it is incorporated into the conceptual schema.

6-33

UM 620341001
30 September 1990

ECi EC2 ECi j EC2

RC1 RC2

----------- > < >

REFINEMENT

EC31

Consequently, the CS-IS mapping for an optional membership
set type involves the following:

* The owner record type has a primary mapping to one entity
class, and the member record type has a primary mapping
to another, and a secondary mapping to a third. Either
one can have additional secondary mappings also.

* The set type maps to a one-to-many relation class.

* The entity class that the owner maps to is independent in
that relation class.

* The primary and secondary entity classes for the member
are independent and dependent, respectively, in a
one-to-zero or one, relation class, that is, a join
linkage for the member.

6-34

UM 620341001
30 September 1990

CONCEPTUAL SCHEMA INTERNAL SCHEMA

RTI

E~i 1EC2 12

RC1 RC2 MAPS TO ST1
< -------------- > (OPT. MEMBER)

RT2

OPTIONAL MEMBER SET

All the modeling forms are pertinent when mapping VAX-lI
databases to the conceptual schema. Refer to Figures 6-4, 6-6,
6-8 and 6-10. First the CDM Administrator determines the
primary mapping for each record type. Usually, it is easier to
map the record types that are not members in any set types
first. Those that are set type members should not be mapped
until all of their owner record types have been mapped. The CDM
Administrator determines what sort of "real-world" thing the
record type represents. Each instance of a record type contains
data about a specific person, place, object, etc., that is
significant to the enterprise. Usually, all of the instances of
the same type are about the same sort of thing. This is not
always the case, however. Referring to the figure in Subsection
6.1.1.4, an instance of the RE-SUPPLY-ORDER record type could
represent either an order to the production department to make a
certain quantity of parts, that is, a manufacturing order, or
an order to a vendor to furnish a certain quantity of parts, a
purchase order, for example. This is similar to defining an
entity class. The datafields in a record type, especially those
that uniquely identify its instances and the set types that it
participates in, especially as a member, can all be useful in
determining what the record type represents.

The CDM Administrator determines which entity class in the
conceptual schema represents the same sort of thing as the
record type by finding the entity class whose definition
corresponds to the intent of the record type. Comparing the key
classes, attribute use classes, and relation classes of the
entity classes to the keys, datafields and set types of the
record types can be helpful also. If the record type represents
several sorts of things, it will map to several entity classes,
one for each sort of thing. (See Subsection 6.1.1.4, "Unions").
If none of the entity classes represent what the record type
does, either the record type exists only to improve database
performance or the conceptual schema must be expanded (see
Subsection 4.3). Once the entity class to which the record type

6-35

UM 620341001
30 September 1990

maps is determined, the information is recorde," the Record
Type/Entity Class Mapping Form. Using Figure as an
example:

RTl maps to ECI
RT2 maps to EC2
RT3 maps to EC3
RT4 maps to EC4
ST1 maps to RCI, RC2 and RC3

A few record types do not represent "real-world" things;
they exist to improve database performance. Examples include
SYSTEM-OWNER and entry points. Such record types do not map to
entity classes and can be ignored.

Next, the CDM Administrator uses the Data Field/Attribute
Use Class Mapping Form to assist in determining the primary
mappings for each datafield. The content of the datafield is
analyzed to result in what sort of data about "real-world"
things it represents. If the record type that contains the
datafield represents more than one sort of thing, i.e., it has
more than one mapping, the datafield may contain several data
types, all of these must be identified.

A few datafields may not contain data about "real-world"
things and exist for technical reasons only. Examples include
record codes and record activity dates. Such datafields do not
map to any attribute use classes and can be ignored.

The way the CDM Administrator determines which attribute
use class in the conceptual schema represents the same sort of
data as the datafield is by finding the attribute use class
whose definition or migration path corresponds to the intent of
the datafield. The first place to look is the entity class to
which the record type maps. If the record type maps to more
than one entity class, the datafield may map to an attribute use
class in each. The value in the datafield in each instance of
the record type must be the same as the one in the attribute use
class in the corresponding instance of the entity class. If two
or more inherited attribute use classes that come from the same
owned attribute use class have identical values in every entity
instance, the datafield may map to some or all of them.

If none of the attribute use classes in the
mapped-to-entity classes correspond to the datafield, the next
places to look are the entity classes that are related to those
entity classes. Again, the value in each record instance must
be the same as the value in tht corresponding entity instance.
If the attribute use class is not in any of these entity
classes, the search must be widened to include the entity
classes that are related to them. This continues until the
proper attribute use class is found or until it is determined
that a new attribute class must be added to the conceptual
schema. (See Subsection 4.3). This mapping information is
recorded on the Datafield/Attribute Use Class Mapping Form.

The CDM Administrator's next step is to determine if any
secondary mappings are needed or each datafield by finding the
datafields in the record type that map to attribute use classes

6-36

UM 620341001
30 September 1990

that are not in the entity class to which the record type maps.
This can be done by comparing the entity class names entered on
the Data Field/Attribute Use Class Mapping Forms for the record
types to those that are entered on the record type's record
type/entity class mapping form. If an entity class name is on
the first form but not on the second then that entity class must
be joined with the one to which the record type maps.

Other entity classes might need to be identified to
complete the join structure. The entity classes that must be
joined to form the record type must form one or more join
structures as described in Subsection 6.1.1.3. If the join
structures are not contiguous, one or more additional joins may
be needed. For example, if the record type, RTI, in Figure 6-14
maps to EC4 and involves joins with ECl and EC3, it also must
have a join with EC2. Without it, ECl cannot be joined to the
EC3-EC4 join result. The join must involve EC2 even though none
of its attribute use classes map to datafields in the record
type. Draw diagrams of these record types that involve joins on
the Record Type Join Structure Diagram Form.

The final step for the CDM Administrator, when following
this methodology, is to determine the mapping for each record
set in which the record type is a member. What sort of
relationship between "real-world" things the set type represents
must be established. If the set type has more than one member
record type, each must be considered separately. If either the
owner or the member record type has no mapping to an entity
class, the set type will have no mapping to a relation class, so
it can be ignored.

The CDM Administrator determines which relation class in
the conceptual schema represents the same sort of relationship
as the set type. Usually, this is the relation class whose
independent entity class maps to the owner record type and whose
dependent entity class maps to the member record type. Fill out
a line on a Set Type/Relation Class Mappinq Form once the
relation class to which the set type maps is determined. Use
the optional member set type diagram above. As an example, the
resulting primary, secondary and set mappings are:

RTl has a primary mapping to ECl
RT2 has a primary mapping to EC2
RT2 has a secondary mapping to EC3
ST1 has a mapping to RCl

6-37

UM 620341001
30 September 1990

CONCEPTUAL SCHEMA INTERNAL SCHEMA

RT1

ECi

MAPS TO STi

RC1 RC2 RC3II

<> <><>RT2 RT3 RT4

EC2 EC3 EC4j ___

Figure 6-13. Multi-Member Set

6-38

UM 620341001
30 September 1990

CONCEPTUAL SCHEMA INTERNAL SCHEMA

A
B

ECi 1

RT1

C B, E, F, H
D
A__ _ _ _ _

EC21 2

E
F
C

EC3

G
F
E

EC4 1 4

Figure 6-14. Incomplete Join Structure Example

6-39

UM 620341001
30 September 1990

6.2 Loading the Initial Internal Schema

The Internal Schema's objects are defined to the CDM in the
following order:

User Defined data types (if different from the standard
data type)

Database
Record Type
Datafield
Set/Path (for CODASYL and hierarchical databases)

The NDDL commands that define these common objects to the
CDM are:

a. ALTER DOMAIN
b. DEFINE DATABASE
c. DEFINE RECORD
d. DEFINE SET

Before the internal schema is loaded to the CDM, the
distributed database environment must be defined to the CDM.
This means that the actual computer mainframes and the DBMSs that
reside on those mainframes must be specified to the CDM. The
NDDL commands that define this distributed environment to the CDM
are:

a. DEFINE DBMS
b. DEFINE HOST

The Tables that are populated by these NDDL commands are in
Figure 6-15.

6.2.1 Loading the Distributed Database Environment

A database management system is a set of computer programs
that must be used to create and maintain a database. The DBMSs
used to create and access the databases in the IISS must be
defined to the CDM. This is accomplished with the DEFINE DBMS
NDDL command. This command:

* Gives the DBMS a name by which it is commonly known

* Indicates which physical model the database is based
(i.e., relational, hierarchical, network)

This NDDL command populates the IISSDBMS CDM Table.

The optional ON HOST clause specifies which host computer
the DBMS operates on. In order to use this clause, the host
computer must have been defined to the CDM with the DEFINE HOST
NDDL command. If this clause is specified, the DBMS ON HOST CDM
Table is populated creating a cross reference between tHe DBMS
and a host computer.

6-40

UM 620341001
30 September 1990

In an enterprise, data can reside on several computer
mainframes. The IISS in conjunction with the DBMSs can access
this data from a variety of computer sources. The CDM
Administrator's task is to define the computer mainframes where
the DBMSs operate and the data resides. This is accomplished
with the DEFINE HOST NDDL command. A unique identification code
is assigned to each host computer by the CDM Administrator.
Using the DEFINE HOST NDDL command, the CDM assigns a unique
HOST NO to this identification code and populates the IISSHOST
CDM Table.

The optional WITH DBMS clause specifies which DBMSs operate
on the computer just defined to the CDM. In order to use this
clause, the DBMSs must have already been defined to the CDM with
the DEFINE DBMS NDDL command. If this clause is specified, the
DBMS ON HOST CDM Table is populated creating a cross reference
between the host computer and the DBMSs.

The CDM Administrator can load descriptive text into the CDM
describing the host(s) just defined, using the NDDL DESCRIBE
command with an object identifier of "HOST".

6.2.2 Loading User-Defined data types

A domain can have several different styles for representing
its values. These styles are defined with data types. A domain
always has one standard data type that represents conceptual
schema attributes (see Subsection 5.2.1, "Loading Domains"). As
mentioned in this section, the format of the standard data type
is limited to character, sigi.ed and unsigned formats. Many times
it is necessary to describe the physical data storage
representation of datafields differently than the standard data
type's representation. Other data formats are float, integer,
and packed. If a datafield differs in format from the standard
data type's definition, another user-defined data type can be
added to the domain with the NDDL ALTER DOMAIN command. Figure
6-16 illustrates the CDM tables that are populated by the NDDL
ALTER DOMAIN command and the relationship between
USERDEFDATATYPE and DATAFIELD.

The ADD TYPE clause of the ALTER DOMAIN command adds an
entry to the USER DEF DATA TYPE CDM Table with the same DOMAIN NO
the CDM assigned when-the Domain was originally created. The -
user-defined data type's name, type, size, and number of decimals
are populated and the DATA TYPEIND is set to "USER". The
relationship between this data type and the datafield is
established when the actual database record is created.

The CDM Administrator can load descriptive text into the
CDM describing the data type just defined, using the NDDL
DESCRIBE command with an object identifier of "USERdata type".

6.2.3 Loading Databases

A database is a structurally interrelated collection of
data. The interrelationships of this data are identified to
database management systems for efficient and effective user
access. The CDM Administrator has already defined the DBMSs and
the host(s) they reside on when describing the distributed

6-41

UM 620341001
30 September 1990

environment to the CDM (see Subsection 6.2.1, "Loading the
Distributed Database Environment"). Now the actual physical
database models must be described to the CDM using the NDDL
DEFINE DATABASE command. Besides providing the definition for
the database, this command establishes the database named as
current for the NDDL session. When the CDM Administrator wishes
to define additional record types to an existing database, the
database must be established as current for the NDDL session with
an ALTER DATABASE NDDL command. Subsequent NDDL commands
affecting internal schema objects will be performed against this
current database.

The CDM Administrator can load descriptive text into the CDM
describing these databases using the NDDL DESCRIBE command with
the object identifier of "DATABASE".

6.2.3.1 Loading Relational Databases

The CDM Administrator loads ORACLE and DB2 database
definitions into the CDM using the DEFINE ORACLE/DB2 DATABASE
NDDL command. The DATA BASE CDM Table populated by this command
is shown in Figure 6-177. The ORACLE or DB2 DBMS must be defined
to the CDM prior to this command (see Subsection 6.2.1, "Loading
the Distributed Database Environment"). When this command is
issued, the CDM assigns a unique number to the database (DB ID)
to identify the database named in the command. The optional
clauses, STORES CHARACTER and STORES INTEGER allow the CDM
Administrator to specify how null characters and integers should
be stored in the database. If these optional clauses aren't
used, null characters and integers are stored as the DBMS "null".

Another optional clause of the DEFINE DATABASE command is
NTM DIRECTORY. This option allows the CDM Administrator to
specify a two character code which is the prefix of a disk file
directory. This directory is where the Network Transaction
Manager of IISS will find the executable image for request
processors generated by the precompiler. If this clause isn't
used, the NTM Directory defaults to "GR".

A required clause when defining an ORACLE database is the
WITH PASSWORD clause. The ORACLE DBMS restricts access to its
databases unless a valid password is supplied. This clause
stores the code that is a database password in the DB PASSWORD
CDM Table. This clause is not necessary for a DB2 database.

6.2.3.2 Loading CODASYL Databases

The CDM Administrator loads VAX-11 or other database
definitions operated by CODASYL DBMSs into the CDM using the
DEFINE VAX-11 DATABASE NDDL command. The DATABASE CDM Table
populated by this command is shown in Figure 6-18. The VAX-11
DBMS must be defined to the CDM prior to this command (see
Subsection 6.2.1, "Loading the Distributed Database
Environment"). When this command is issued, the CDM assigns a
unique number to the database (DB ID) to identify the database
named in the command. The optional clauses, STORES CHARACTER and
STORES INTEGER allow the CDM Administrator to specify how null

6-42

UM 620341001
30 September 1990

characters and integers should be stored in the database. If
these optional clauses are not used, null characters and integers
are stored as zeros.

Another optional clause of the DEFINE DATABASE command is
NTM DIRECTORY. This option allows the CDM Administrator to
specify a two character code which is the prefix of a disk file
directory. This directory is where the Network Transaction
Manager of IISS will find the executable image for request
processors generated by the precompiler. If this clause is not
used, the NTM Directory defaults to "GR".

A required clause when defining a VAX-il database is the
SCHEMA clause. The schema, subschema and area names are given
for the database with this clause and the SCHEMA NAMES and
DATA BASE AREA CDM Tables are populated with these names. The
LOCATED AT clause is also required when defining a VAX-li
database to the CDM. It specifies the fully qualified VAX
directory name where the VAX-lI database is stored. The
DB LOCATION column of the SCHEMA NAMES CDM Table is populated
with this clause. This location-is used by the precompiler for
generating the DB statement in VAX-lI CODASYL COBOL programs.

Database definition statements used by TOTAL DBMSs are
loaded into the CDM using the DEFINE TOTAL DATABASE NDDL command.
The clauses of this command that are pertinent to CODASYL
databases are also applicable to TOTAL databases with the
exception of the SCHEMA and LOCATED AT clause.

6.2.4 Loading Record Types and Data Fields

A record is a group of data values that are stored together
as a unit in a database. A record type is the collection of all
the records that represent the same kind of information (i.e.,
all the records that contain similar data values). A datafield
is the portion of the record type where the actual data values
can be stored. Because a datafield is a subset of a record type,
both are defined to the CDM at the same time, with the DEFINE
RECORD NDDL command. With this command the word RECORD, TABLE
and SEGMENT can be used interchangeably depending on which name
most appropriate for the DBMS' record being defined.

The CDM Administrator loads descriptive text into the CDM
describing these new records and datafields using the NDDL
DESCRIBE command and either the object identifier "RECORD" or
"DATAFIELD".

6.2.4.1 Loading the Relational DBMS' Record Types

The CDM Administrator loads record type definitions for
ORACLE and DB2 databases using the DEFINE TABLE NDDL command. If
the current database has not been established for the NDDL
session with a prior DEFINE or ALTER DATABASE NDDL command, it
can be established with the optional OF DATABASE clause in this
command. The RECORD TYPE CDM Table in Figure 6-17 is populated
by this command so far.

6-43

UM 620341001
30 September 1990

The datafields of an ORACLE and DB2 Table are called columns
and the WITH COLUMNS clause provides the names of tne datafields
in the records. The optional LEVEL NO clause if not specified
defaults to "1". This clause need not be specified since ORACLE
and DB2 DBMSs only support elementary datafields. An elementary
datafield must have a data type name associated with it. The
DATA TYPE clause specifies the data type name whose definition
describes the physical internal data storage representation for
the datafield. This clause establishes the relationship between
the datafield being defined and the data type already created
(see Subsection 6.2.2, "Loading User-Defined data types"). The
ORACLE DBMS stores numeric data without decimals in INTEGER NDDL
data type format and numeric data with decimals in PACKED NDDL
data type format. Since the standard data type of a domain can
only have CHARACTER, SIGNED and UNSIGNED NDDL data type formats,
a new data type will have to be added for any datafields with
numeric representations. The ORACLE DBMS stores character data
in CHARACTER NDDL data type format.

The optional clause KNOWN can be omitted because its default
is KNOWN. This clause specifies if the DBMS can address this
datafield by name. If not, it is specified as UNKNOWN. ORACLE
and DB2 DBMSs address datafields by name, therefore, each column
must be KNOWN and the order of the columns specified in the
record type is not important. The DATA FIELD CDM Table in Figure
6-17 has been populated with the information specified thus far.

ORACLE and DB2 DBMSs do not support repeating fields, COBOL
type indexes or redefinition of datafields. The CDM does not
need knowledge of the record type's indexes in an ORACLE
database. Therefore, all other optional clauses on the DEFINE
TABLE NDDL command are not applicable.

6.2.4.2. Loading CODASYL DBMS' Record Types

The CDM Administrator loads record type definitions for
VAX-11 databases using the DEFINE RECORD NDDL command. If the
current database has not been established for the NDDL session
with a prior DEFINE or ALTER DATABASE NDDL command, it can be
established with the optional OF DATABASE clause in this command.
The RECORD TYPE CDM Table in Figure 6-18 is populated by this
command so far.

The optional IN AREAS clause assigns the record type to a
database area, if the database has been subdivided into areas
(see Subsection 6.2.3.2, "Loading CODASYL Databases"). This
subdivision is a technique for improving the efficiency of
accessing record type instances. When a database is subdivided
into database areas and this record type is assigned to a
particular area with this clause, then these record type
instances can be accessed by searching only the appropriate areas
rather than the entire database. This clause populates the
DBAREAASSIGNMENT CDM Table in Figure 6-18.

The datafields of a VAX-11 record are called fields and the
WITH FIELDS clause provides the names of the datafields in the
records. using the actual physical record layouts of the VAX-11
records, the DEFINE RECORD NDDL command can be composed using all
its optional clauses. The NDDL User's Manual gives an example of

6-44

UM 620341001
30 September 1990

using this physical record layout and translating it into the
appropriate DEFINE RECORD NDDL command. All the NDDL clauses
(i.e., LEVEL_NO, OCCURS, INDEXED BY, REDEFINES, UNIQUE and
DUPLICATE KEY) are pertinent to VAX-11 records because access is
done on a record at a time basis.

The DEFINE RECORD NDDL command is also used to load record
type definitions for TOTAL record types. All clauses pertain to
TOTAL records since the application program may redefine the
entire record in any way it sees fit. The exception is the IN
AREAS clause. This clause does not apply to TOTAL record types
because the AREAID is derived from the first four positions of
the record name.

CODASYL DBMSs utilize the concept of record sets. A record
set indicates that an instance of one record type "owns" some
number of instances of another record type. Instances of the
first are called "owners" and those of the second "members".
This relationship between CODASYL record types is defined to the
CDM with the DEFINE SET NDDL command. The RECORD SET and
SETTYPEMEMBER CDM Tables in Figure 6-18 are populated with this
command.

TOTAL DBMSs also utilize the concept of record sets. The
DEFINE SET command's optional clause, LINKED BY, is required when
defining a TOTAL record set to the CDM. The datafield specified
to link the records of the set must reside in the member record
of the set. The DFSETLINKAGE CDM Table is populated with this
clause.

The CDM Administrator can load descriptive text into the CDM
describinq the record sets just defined, using the NDDL DESCRIBE
command with an object identifier of "SET".

6-45

UM 620341001
30 September 1990

23 APPEARS ON HAS 21
*DBMS NAME CHAR(30) --------- (*HOSTID) CHAR(30)

DB_MODEL CHAR(I) (*HOSTNO) NUMBER(6)

IISS_DBMS IISSHOST

v v

20
*HOST ID CHAR(30)
*DBMS-NAME CHAR(30)

DBMS ON HOST

I CONTROLS
V

24
*DB ID NUMBER(6)
DB-NAME CHAR (30)
HOST ID CHAR(30)
DBMS-NAME CHAR(30)
INTEGER NULL CHAR(30)
CHARACTER NULL CHAR(30)
NTMDIRECTORY CHAR(2)

DATABASE

Figure 6-15. CDM Tables Distributed Data Bases

6-46

UM 620341001
30 September 1990

94
________________(*DCMIN NAME) CHAR (30)

93 (*DOMAIN-NO) NUMBER(6)
*TYPEID CHAR(1)_______
TYPEDESC CHAR(60) DOMAINCLASS

DATATYPE MAYBEREPRESENTEDWITH

SUPPLIES
V

95
(*DATA 'TYPE_NAME) CHAR(30)

DOMAIN '5NC NUMBER (6)
> TYPE I ~ CHAR~i)

MAX SIZE NUMBER(3)
NO - F DECIMALS NUMBER (2)
DATA TYPE IND CHAR(4)

*USDF-DT_NO0) NUMBER(6)

USERDEFDATATYPE

IIMPLEMENTS
V

119
*DF NC NUMBER(6)
DATATYPENAME CHAR(30)

ELEMENTARYDATAFIELD I

Figure 6-16. CDM Tables Domains and Data Types for Internal
Schema

6-47

UM 620341001
30 September 1990

_____________________MAYHAVEACCESSCONTROLLEDBY

24--
*DB_-ID NUMBER(6)I
DB NAME CHAR(30)____ _______

HOST ID CHAR(30) ->25

DBMS-NAME CHAR(30) *DB ID NUMBER(6)
INTEGER-NULL CHAR(30) DB-PASSWORD CHAR(30)
CHARACTER NULL CHAR(30)______
NTMDIRECTORY CHAR(2) DBPASSWORD

DATA-BASE

ISCONTROLLEDBY_____________
-7 67

V (*DB-ID NUMBER(6)
_______________*RT ID CHAR(30)

66 CONTAINS *DF ID CHAR(30)
(*DB-ID NUMBER(6)----------- > *REC_SEQ_NO NUMBER(6)
*RT_--ID) CHAR(30) (*DFNO) NUMBER(6)
(*RT NO) NUMBER(6) REC KEY CODE CHAR(1)

_________NOOFOC!CURS NUMBER(6)
RECORDTYPE IDBMSACCESS CHAR(1)

_________ I_______INDEX_-INDICATOR CHAR(l)
DATAFIELD

Figure 6-17. CDM Tables Relational Database Internal Schema

6-48

UM 620341001
30 September 1990

24 MAYBEACCESSEDVIA
*DBID NUMBER(6)-<-
DB NAME CHAR(30)I
HOST ID CHAR(30) -- 14
DBMS - AME CHAR(30) *DB ID NUMBER(6)
INTEGER NULL CHAR(30) SUESCHEMA NAME CHAR(30)
CHARACTER-NULL CHAR(30) DBLOCATIO5N CHAR(30)
NTMDIRECTORY CHAR(2) ______

DATABASE ISCHEMANAMES

u-FS -COMPOSED-OF JIS INSTRUCTEDBY
V_ _ _ _ V__ _ _ _

I102f 66
*DBID NUMBER(6) (*DBID NUMBER(6) APPEARSAS
*AfID CHAR(30) *RTID CHAR(30) ---- =----

DATABASEAREA (*TN ___________ IS_-OWNERIN

IS-USED-IN. RECORD_-TYPEIz---=

HATSF -CONTAINS

103 72
*DB ID NUMBER(6) *DB ID NUMBER(6)
*ARA IID CHAR(30) *SET ID CHAR(30)
RT 15 CHAR(30) RT IfD OF OWNER CHAR(30)
DBIDOFRTID CHAR(30) TOTALNUMMEM NUI4BER(2)

______________(*SETNO) NUMBER(6)
DBAREAASSIGNMENT I __RECORDSET

67 134
(*DBID NUMBER(6) *DB ID NUMBER(6)
*RT ID CHAR(6) *SET ID CHAR(30)
*RECf SEQ_NC NUMBER(6) *RT ID OF MEMBER CHAR(30)
(*DF NO NUMBER(6) REQ _MEMND CHAR(i)
RE KEY CODE CRAR(1) ________

NO OF OC CURS NUMBER(6) SETTYPEMEMBER
DBMS A CCESS CHAR(1) ____ ____I____

INDERINDICATOR CHAR(1)

DATAFIELD

Figure 6-18 CODASYL Internal Schema

6-49

UM 620341001
30 Septerber 1990

6.3 Loading the Initial CS-IS Mapping Definition

Once the CDM Administrator defines the internal schema to
the CDM, the next task at hand is to load the mapping
definitions of these internal schema objects to the appropriate
conceptual schema objects. CS-IS Mapping definitions are loaded
into the CDM in the following order:

I. Entity Class to Record Type
2. Attribute Use Class to Datafield or Set Values
3. Relation Class to Record Set Relationship

(for CODASYL databases)

Each of these mapping levels has a modeling form which was
completed by the CDM Administrator, following the methodology
detailed in Subsection 6.1.2, "CS-IS Mapping Modeling Forms".
These modeling forms serve as source documents when defining the
CS-IS mappings to the CDM. Different variations of the NDDL
CREATE MAP command is used to load all levels of CS-IS mapping
definitions into the CDM.

6.3.1 Loading CS to IS Mappings

The source document for entity class to record type
mappings is the Record Type/Entity Class Mapping Form. Besides
defining the CS-IS mapping to the CDM, the Create Map
establishes the distributed update and retrieval rules for the
entit[A[Ay. The distributed retrieval rule is set to "allow" if.
the CDM Administrator wants the precompiler to generate
retrieval subtransactions for secondary mappings of this entity
in the event that:

(1) the primary copy is on a different host than the one
the NDML application program is to execute on

(2) an active mapping exists to a secondary copy on the
target host of the NDML application program

The distributed update rule is set to "allow" if the CDM
Administrator wants the precompiler to generate update
subtransactions for all distributed mappings (i.e., secondary or
non-primary) of this entity. If the CDM Administrator chooses
to allow distributed retrieval and disallows distributed update
for the entity class being mapped in Figure 6-20, the resulting
NDDL CREATE MAP command would be:

create map STOCKAREALOCATION
to record PARTSDB.LOCATN
allow retrieval disallow update;

This command updates the EC RT MAPPING and
DISTRIBUTEDRULES CDM Tables in Figure 6-19.

The source document for attribute use class to datafield
mappings is the Datafield/Attribute Use Class Mapping Form. The
CDM Administrator chooses what this CS-IS mappings'
classification should be as well as its mapping category. The
mapping classification is for documentation purposes only and

6-50

UM 620341001
30 September 1990

specifies which of the various types of replicated or duplicated
data the particular mapping represents. The map category is
used to indicate whether or not the CS-IS mapping for an
attribute use class is to be used by the NDML precompiler when
looking for valid versions or storaqe locations for the
attribute us class. If the CDM Administrator chooses a mapping
category of "active" and a mapping category of "original source"
for the attribute use class in Figure 6-22, the resulting NDDL
CREATE MAP command would be:

create map STOCK AREA LOCATION.STOCK AREA LOCATIONID
active original source for preference 1
to field PARTSDB.LOCATN.LOCID;

The AUC IS MAPPING CDM Table in Figure 6-21 is populated by
this command-an3 the cross reference between the attribute use
class and the datafield is established by the population of the
PROJECTDATAFIELD CDM Table.

The Set Type/Relation Class Mapping Form is relevant to
CODASYL VAX-11 databases and the source document for relation
class to record relationship (i.e., set types) mappings. First
the set must be defined to the CDM using the DEFINE SET NDDL
command (see Subsection 6.2.4.2, "Loading CODASYL DBMS' Record
Types). Once the set is defined to the CDM, its mapping to a
relation class can be defined. Using the set type in the Set
Type/Relation Class Mapping Form in Fiqure 6-23 as an example,
the resulting CREATE MAP NDDL command is

create map STOCK AREA IS COMPOSED OF STOCK AREA LOCATION.
to set PARTSDB.PHYSICALLYCONTROLS.LOCATN;

The RCBASEDRECSET CDM Table in Figure 6-21 is populated
by this command.

Attribute use classes may also map to set types. This
happens when certain attribute use classes an be represented in
a database by a group of record sets rather than by a datafield.
For example, Project Task Status might be represented by four
PROJECT to TASK record sets called PENDING, IN-PROCESS, ON-HOLD
and COMPLETED. An attribute use class record set mapping
indicates that a particular record set corresponds to a
particular attribute use class depending on its value. The
attribute use class to set type variation of the CREATE MAP
command populates the AUCISMAPPING and AUCSTMAPPING CDM
Tables in Figure 6-21.

6.3.2 Loading Record Unions

It has been mentioned when explaining the CS-IS mapping
methodology that a record type may correspond to more than one
entity class, therefore the record type will have more than one
entity to record mapping. This is a relational union of those
entity classes (see Subsection 6.1.1.4, "Unions"). Some
instances of such a record type correspond to instances of one
of the entity classes, others to those of another. The way to
determine which record instances correspond to instances of each
entity class is by a union discriminator.

6-51

UM 620341001
30 September 1990

A union discriminator is a specific value that, when found
in a datafield, indicates which entity to record mapping should
be used. Once the CDM Administrator determines that a record
union exists, it can be defired to the CDM with the CREATE MAP
command to map each entity to the record and to state the
distributed rules, followed by the CREATE UNION NDDL command
which names the record type and the entity classes that are
unioned, along with the union discriminators for each entity.
Using the depiction of the record union of entities DRAWING and
SPEC in Figure 6-24 the resulting NDDL Command is:

create union of record PIOS.DWG SPEC REC
to entity DRAWING when DS REC TYPE = "1"

SPEC when DSRECTYPE = "2";

This command updates the ECRTUD Table in Figure 6-19.

6.3.3 Loading Horizontal Partitions

Some record types do not store all instances of an entity
class. One is used to store some instances while another is
used to store others. Each record type represents a fragment of
the entity class. These fragments do not overlap (i.e., no
entity class instance appears in more than one fragment. An
entity class can be partitioned into any number of fragments,
usually with each being in a different database or file. An
example of this type of horizontal partition is in Figure 6-25
where the record type fragments reside in two different
databases. However, this is not a requirement of horizontal
partitions. Some or all fragments may be stored as.different
record types in the same database or file. A constraint
statement defines each fragment (i.e., describes the conditions
that must be met by each entity instance that is stored as a
given record type).

The same entity may be partitioned more than once. For
example, the entity books may be partitioned based on the
attribute values of bookshop locations and based on attribute
values in the publishing company names. These different
partitions are specified by a partition number in the CREATE
PARTITION NDDL command. This NDDL command updates the
HORIZONTAL PART CDM Table in Figure 6-19. Using the
illustration of the horizontal partition of entity PART in
Figure 6-25 the resulting NDDL Command is

create partition 1 of entity PART
to record MCMM.PART RECORD

PIOS. PARTINFOREC;

6.3.4 Loading Transformational Algorithms

When a complex mapping exists between a datafield and an
attribute use class, a software module can be invoked to provide
the mapping. Examples of a complex mapping are: data
transformations, unit of measure conversions, calculated fields,
etc. A search or update software module has any number of
attribute use classes or constants as its input parameters and
any number of datafields or a record as output parameters. A

6-52

UM 620341001
30 September 1990

retrieval algorithm can be written to take as its input any
number of datafields, constants or a record and any number of
attribute use classes as its output parameters.

The NDDL DEFINE MODULE command defines a software module
which, when invoked, performs the CS-IS or IS-CS mapping. Its
input and output parameters, as well as their data types, are
listed in this command. This command populated the CDM Tables
SOFTWARE_MODULE and MODULEPARAMETER in Figure 6-27.

The NDDL DEFINE ALGORITHM command defines to the CDM that
the software module just defined is to be used as a complex
mapping algorithm between:

a. datafield(s) and attribute use class(es) or
b. record and attribute use class(es)

The attribute use classes listed must exist in related
entities. Any number of constant variables may be listed as
input parameters to the algorithm. The same generic software
module may be used to specify many complex mapping algorithms.
The algorithm must specify in which direction the algorithm is
transforming; e.g., conceptual to internal, specified as update
or internal to conceptual, specified as retrieval.

The following NDDL commands are used in Figure 6-26:

DEFINE MODULE ADDRTRN IN COBOL
PARAMETERS
ADDRESS TYPE ADDRESS
COUNTRY-PART TYPE COUNTRY
ZIP-PART TYPE ZIP
DIRECTION TYPE ALG DIRECTION
RET-STATUS TYPE RET-STATUS ;

DEFINE ALGORITHM ADDRTRN 1 FOR UPDATE
FOR PREFERENCE 1 USING PARAMETERS
COUNTRY-PART FROM ATTRIBUTE CUSTOMER.BILLTOCOUNTRY
ZIP-PART FROM ATTRIBUTE CUSTOMER.BILLTOZIP
DIRECTION CONSTANT 'U'
ADDRESS TO DATAFIELD PIOS.CUST.BILLTOCOUNTRYZIP
STATUS

The CDM Tables populated by this NDDL command are AUCPARM,
RTPARM or DF_PARM, and CONSTPARM.

6-53

UM 620341001
30 September 1990

1SPECIFIES 24
*EC NO NUMBER(6)---------------- *DB_-ID NUMBER(6)
MODELNO NUMBER(6) DB NAME CHAR(30)

_________HOST ID CHAR (30)
ENTITY-CLASS DBMS-NAME CHAR(30)

_______ ____INTEGER-NULL CHAR(30)
MAPS TO MAPS TO CHARACTER NULL CHAR (30)
INTERNAL _ INTERNAL_'- NTMDIRECTORY CHAR(30)
SCHEMA_ SCHEMAVIA _____

VIA DATABASE

____________________ is
*EC NO NUMBER(6) STRUCTUREDBY
DIS TR UPDTRULE CHAR(8)
DISTR7RETRRULE CHAR(8)

DISTRIBUTEDRULES

_ _ V__ _ __ V__ _ _
163 MAPS TO 6
*EC NO NUMBER(6) CONCEPTUAL (*DB ID NUMBER(6)
*RT-NO NUMBER(6) SCEMAVIA - RT-ID) CHAR(30)
*HP-NO NUMBER(6) < ---------------- (*RT-NO) NUMBER(6)

HORIZONTALPART KRECORDTYPE
__________________ ISUSEJINTAINS

60 AS __ __V_ ______
(*RT NO NUMBER(6) <--- 67
*DF NO NUMBER(6) (*DBID NUMBER(6)
*EC NO NUMBER(6) *RTID CHAR(30)
*INIONVALUE CHAR(30) *DF ID) CHAR(30)
COMPARISONOP CHAR(2) *REC SEQ_ NO NUMBER(6)

______(*DF NO) -NUMBER(6)

ECRTUD REC! KEY CODE CHAR(l)
____ ___________NO OF OCCURS NUMBER(6)

ISDISTINQUISHEDBY DBMS-ACCESS CHAR~l)
INDEXINDICATOR CHAR(1)

MAPS TO CONCEPTUAL_ _____

SCHEMAVIA DATAFIELD

*EC NO NUMBER(6)
---------------> *RT-JrO) NUMBER(6)

ECRTMAPPING

Figure 6-19. CS to IS Entity Mapping

6-54

UM 620341001
30 September 1990

USED AT: AUTHOR: DATE: WORKING READER DATE CONTEXT:
PROJECT: REV: ___________

COMM(END

NOTES: 1 2 3 4 5 6 7 - BLI-
*8 9 10 CATION

DATABASE RECORD TYPE ID ENTITY CLASS NAME

PARTS DB LOCATN STOCK AREA LOCATION

NODE: TITLE: NUMBER:
RECORD TYPE/ENTITY CLASS MAPPING---

Figure 6-20. Record Type/Entity Class Mapping

6-55

UM 620341001
30 September 1990

5 MAPS TOCONCEPTUAL-
(*TAGNO NUMBER(6) *ECNO NUMBER(6) SCHEMA
(*TAG-NAME CHAR(30) *RTNO NUMBER(6) <--------------
*ECNO) NUMBER(6) ____________I_ - t

ATTRIBUTEUSECL 166
_____________MAPS TO (*DBID NUMBER(6)

MAPS TO INTERNL_ CONCEPTUAL_ *RT ID) CHAR (30)
SCHEMAVIA ISCHEMA------------- (*RT_NO) N1JMBER(6)

147 RECORDTYPE

---- --> *TAGNO NUMBER(6) CONTAINS
*EC NO NUMBER(6)

---- PREF NO NUMBER(2)
MAP TYPE CHAR(10) --
MAP -CLASS CHAR (30)
MAP_-CATEGORY CHAR(8)

AUCISMAPPINGI

__________________ HASMANY
108 - -
(*DB ID NUMBER(6)
*RT-ID CHAR(30) __________V__
*DF ID CHAR(30) 67
PREFNO NUMBER(2) (*DB ID NUMBER(6)

.*TAG NO) NUMBER(6) *RT-ID CHAR(3O)
EC NO NUMBER(6) *DF-ID CHAR(30)
RT-NO NUMBER(6) *RECSEQ_NO NUMBER(6)

______________ (*DF NO NUMBER(6)
PROJECTDATAFIELD1 REC -KEY CODE CHAR(1)

HA NO OF OCCURS NUMBER(6)
MANY DBMS ACCESS CHAR(l)

_____V_______ INDEXINDICATOR CHAR(l)

(*DBID NUMBER(6) DATAFIELDI
*SET ID CHAR(30)

_________ TO CONCEPTUAL__
*TAGNO) NUMBER(6) jAST OCPUL
*RT NO CHAR(30) ------------- SCHEMAVIA
ECHNO CHAR(30)
AUZCVALUE NUMBER(6)

AUCSTMAPPING T

Figure 6-21. CS to IS Attribute and Relation Mapping

6-56

UM 620341001
30 September 1990

66
(*DB -ID NUMBER(6)
*RT -ID) CHAR(30)
(*RTNO) NUMBER(6)

RECORDTYPE

ISOWNERIN

135
(*DB ID NUMBER(6) _______V_____
*SET -ID CHA2R(30) 72
*TAGNO) NUMBER(6) (*DB ID NUMBER(6)
*RT -NO CHAR(30) *SET -ID CHAR(30)
EC NO CHAR(30) MAPS TO RT fD OF OWNER CHAR(30)
AU?!_VALUE NUMBER(6) CONCEPTUAL_ TOTAL_-NUMHEM NUMBER(2)

__________SCHEMAVIA (*SET-NO) NUMBER(6)
A U C _ S T _ M A P P I N G

jE

O R - E
4 IA
(*IND ECNO NUMBER(6) _______V_____
*DEP ECNO NUMBER(6) 134
*RC_-NAME CHAR(30) *DB ID NUMBER(6)
(*RC -NO) NUMBER(6) *SET_-ID CHAR(30)
NO IND ENT NUMBER(6) *RT ID OF MEMBER Ci.JAR(30)
MINI NUO DEP ENT NUMBER(6) REQ _MEMIND CHAR(l)
MAXNOD5EPENT NUMBER(6) _______

RELATION-CLASS_
SETTYPEMEMBER

109 MAPS TO
MAPSTOINTERNAL_ *RC NO NUMBER (6) CONCEPTUAL_
SCHEMAVIA *DB ID NUMBER(6) SCHEMAVIA

*SET -ID CHAR(30) <------------------
--- ------------- > *RTID CHAR(30)

RCBASEDRECSET:

Figure 6-21. CS to IS Attribute and Relation Mapping
(Continued)

6-57

UM 620341001
30 September 1990

USED AT: AUTHOR: DATE: WORKING READER DATE CONTEXT:
PROJECT: REV: ___ ___

SDRAFT

RE-
COMMEND

NOTES: 1 2 3 4 5 6 7 PUBLI-
8 9 10 CATION

DATABASE
NAME: PARTS ID. RECORD TYPE ID: LOCATN

DATA FIELD ID. ENTITY ATTRIBUTE USE CLASS TAG
CLASS NAME

NODE: TITLE: NUMBER:
DATA FIELD/ATTRIBUTE USE CLASS MAPPING

Figure 6-22. Datafield/Attribute Use Class Mapping

6-58

UM 620341001
30 September 1990

USED AT: AUTHOR: DATE: WORKING READER DATE CONTEXT:
PROJECT: REV: ____________

COMMEND

NOTES: 1 2 3 4 5 6 7 - BLI-
8 9 10 CATION

DB SET TYPE MEMBER RECORD IND. RELATION DEP.
NAME ID. TYPE ID. E.C. NAME CLASS LABEL E.C. NAME

PARTS PHYSICALLY LOCATN STOCK IS COMPOSED STOCK
DB CONTROLS AREA AREA

LOCATION

NODE: TITLE: NUMBER:

I SET TYPE/RELATION CLASS MAPPING II__

Figure 6-23. Set Type/Relation Class Mapping

6-59

UJM 620341001
30 September 1990

CONCEPTUAL SCHEMA INTERNAL SCHEMA

PART # - iICM DATABASE----- -- -- --

MAY PART-DESC MAY ______________

HAV ___ HAV:E M-PART$ -PART-DESC
---- PART~

DWG_ SPEC-ID
PART #PART # 'isDX~~
D-DATE S-DATE- ISDTBE
D-DETAILS S-DETAILS PART-INFO-REC

DRAWING S§PEC P-PART# P-PART-DESC

---------- -------- > DWG-SPEC-REC

DS-REC-IDS- IDS-DWG-jDS
TYPE DATE SPEC-NODEAL

Figure 6-24. Record Union

6-60

UM 620341001
30 September 1990

CONCEPTUAL SCHEMA INTERNAL SCHEMA

PART > 1000
--------------------------- >MCMM DATABASE

PART < 1000

PART T

PART-RECORD
* MAY PART-DESC MAY ______________

HAVE _ __HAVE M-PART# -PART-DESC
---- PART _ _

DWG_# SPEC-ID
PART # PART # -V SDA BE-------
D-DATE S-DATE PSDTBS
D-DETAILS S-DETAILS PART-INFO-REC

DRAWING S__§PEC IIP-PAR T# jP-PART-DESC_

------------------------------ > DWG-SPEC-REC

DS-REC- DS- IDS-DWG- DS
TYPE DATE SPEC-NODEAL

Figure 6-25. Horizontal Partition

6-61

UM 620341001
30 September 1990

CONCEPTUAL SCHEMA INTERNAL SCHEMA

CUST NAME CUST NAME
BILL TO COUNTRY BILLTOCOUNTRYZIP
BILLTOZIP

CUSTOMER I

Figure 6-26. CS to IS Complex Mapping Algorithms

6-62

UM 620341001
30 September 1990

F4, FiQA

95 *MOD ID
(*DATA ITYPE_-NAME CHAR(30) DESCRIBES LANZ;_NAME
DOMAIN NO NUMBER(6)----------- -- MODTITLE
TYPE ID1 NUMBER(3) MOD-ABSTRACT
MAX SIZE NUMBER(3) LATEST REV DATE

NOFDECIMALS NUMBER(2) STTSIND-
* DATA_-TYPEIND CHAR(4) _______

(*USDFDT-NC) NUMBER(6) SOFTWAREMODU LE

USERDEFDATA TYPE- 1

59
F1,F2,F8,F17 *MCD ID CHAR(10)

______________ISA *PARRID NUMBER(2)
5 --- PARMNAME CHAR(30)
(*TAG NO NUMBER(6) PARMPURPOSE CHAR(60)
(TAG -RAME CHAR(30) DATATYPENAME CHAR(30)
*EC -NO NUMBER(6) ________

AC-NO NUMBER (6) MODULEPARAMETER

ATTRIBUTEUSECLI MAPS_ IS..A I ISA
_________I VIA V_ _______

1 11171
F2,F7,F1O,F11,F12,F13 CONSTANT VALUE CHAR(30)

_______________*CONST ALG_-USECODE CHAR(1)
66 *MOD ID CHAR(10)
(*DB_-ID NUMBER(6) *PAJR4_ID NUMBER(2)
*RT -ID) CHAR(30) ______

(*RT NO) NUMBER(6) CONSTPARM

RECORD-TYPE_ I 1___ _ 1 MAPSVIAI

___ ___ __ V V _ _ _V__ _ _
105 63

*TAG NO NUMBER(6) *MOD ID CHAR(10)
*MOD-ID CHAR(10) *PART4_ID NUMBER(2) <----

*PARRJ ID NUMBER(12) RT NO NUMBER(6)
AUG ALG USE CODE CHAR(1) RT-ALG USE CODE CHAR(l)
*AUGMODINSTANCE NUM(1) *RTMODINSTANCE NUMBER(2)

AUGPARM J T PARMI ________

Figure 6-27. Complex Mapping Algorithm

6-63

UM 620341001
30 September 1990

59 F17
*MOD ID CHAR(l0)
*PAR(_-ID NUMBER(2)
PARM_-NAME CHAR(30)
PARP_-PURPOSE CHAR(60)

ISA DATATYPENAME CHAR(30) ISA

MODULEPARAMETER

1 -18 17
*MOD ID CHAR(l0) *MOD ID CHAR(10)
*PARR ID NUMBER(2) *PARR4 ID NUMBER(2)
DF -NO NUMBER(6) DIN;5 NUMBER(6)
DF -ALF -USE CODE CHAR(1) DI ALG USE CODE CHAR(1)
*DFMODINSTANCE NUMBER (2) *DIMODINSTANCE NUMBER (2)

DFPARM DIPARM

67 Fl, F4, __ __ __ __ _ __ __ __ _

(*DB -ID NUMBER(6) F7,F10, 16
*RT -ID CHAR(30) F1QA, (*VIEW NO NUMBER(6)
*DF 'ID) CHAR(30) Fll,F12, *DIID) CHAR(30)
*REESEQ_NO NUMBER(6) F13 DATATYPENAME CHAR(30)
(*DF NO) NUMBER((,) (*DI_NO5) NUMBER(6)
REC KEY CODE CHAR(1)_____
NO OF OC CURS NUMBER(6) DATAITEM
DBMS A CCESS CHAR(1)I_______
INDEXINDICATOR CHAR(1) -7-MAPSVIA

____________ _________V_______
DATAFIELD 17

I-______ *MOD ID CHAR(10)
MAPS _______________ *pj ID NUMBER(2)
VIA - 118 DI NO NUMBER(6)

*MOD ID CHAR(l0) DI-AL4G USE CODE CHAR(1)
> *PARR ID NUMBER(2) *DIMODINSTANCE NUMBER(2)

DF NO NUMBER(6) ____

DF ALF -USE CODE CHAR(1) DI_PARM
*DFMODINSTANCE NUMBER (1) ______________

DFPARM

Figure 6-27. Complex Mapping Algorithm (Continued)

6-64

UM 620341001
30 September 1990

6.4 Modifying/Deleting IS Objects

Prior to modifying or deleting elements of the internal
schema, the CDM Administrator must assess the impact of the
proposed change on the other schema objects of the CDM. As
stated before, whenever changes are to be made to the CDM, a CDM
Impact Analysis should be run to generate reports giving
information necessary to determine what other CDM objects are
affected. Refer to the CDM Impact Analysis User's Manual for
detailed instructions on how to use the Impact Analysis Tool.

The objective of this section is to provide the CDM
Administrator with the information necessary to make these
changes, determine the prerequisites before changing or dropping
IS objects and to detail the options available or each IS object
modification. As a general rule, the NDDL processor does not
allow IS objects to be dropped if mappings exist to the
conceptual schema.

The NDDL command to modify and delete the internal schema
objects (i.e., data types, databases, record types, datafields
and sets) are:

ALTER DOMAIN
ALTER DATABASE
DROP DATABASE
ALTER RECORD
DROP RECORD
ALTER FIELD
DROP FIELD
DROP SET

With the procurement of new hardware and DBMS software or
the obsolescence of the same, the CDM Administrator might find
the need to change or delete the DBMS and host definitions in
the IISS environment to the CDM. The NDDL commands to
accomplish this are:

ALTER DBMS
DROP DBMS
ALTER HOST
DROP HOST

The NDDL commands that change or delete CS-IS mapping
definitions are:

ALTER MAP
DROP MAP
ALTER PARTITION
DROP PARTITION
ALTER UNION
DROP UNION
DROP ALGORITHM
DROP MODULE

6.4.1 Distributed Database Environment Changes

The CDM Administrator can modify a DBMS in the distributed
database environment with the NDDL ALTER DBMS command. The

6-65

UM 620341001
30 September 1990

changes that can be made with this command are:

* Add hosts associated with a particular DBMS

Use the ADD HOST clause. The DBMSONHOST CDM Table will
be updated.

Drop hosts associated with a particular DBMS

Use the DROP HOST clause. The entry for that DBMS and
host will be deleted in the CDM DBMS ON HOST command.
Any databases that reside on the host being dropped and
utilizinq the DBMS named must be dropped before this host
association can be dropped. Use the NDDL DROP DATABASE
command. Refer to Subsection 6.4.3 for DROP DATABASE
Pre-Requisites.

* Change the DBMS' model type

Use the MODEL clause. The DB MODEL column in the
IISSDBMS CDM Table is updated.

DBMSs are dropped from the distributed database environment
definition with the NDDL DROP DBMS command. Before the DBMS can
be dropped:

Drop any databases operated by the DBMS. Use the NDDL
DROP DATABASE command. Refer to Subsection 6.4.3 for
DROP DATABASE Pre-Requisites.

Drop any associations with hosts.

Use the NDDL ALTER HOST command and the DROP DBMS clause.
The entry for the DBMS and host is deleted from the
DBMSONHOST CDM Table.

The DROP DBMS command will delete the entry in the IISSDBMS
CDM Table.

The CDM Administrator can modify a host in the distributed
database environment with the NDDL ALTVR HOST command. The
changes that can be made with this command are:

* Add DBMSs associated with a particular HOST.

Use the ADD DBMS clause. The DBMSONHOST CDM Table will
be updated.

* Drop DBMSs associated with a particular HOST.

Use the DROP DBMS clause. The entry for that host and
DBMS will be deleted in the CDM DBMS ON HOST command.
Any databases that utilize the DBMS being dropped and
reside on the host named must be dropped before this host
association can be dropped. Use the NDDL DROP DATABASE
command. Refer to Section 6.'*.3 for DROP DATABASE
Pre-Requisites.

6-66

UM 620341001
30 September 1990

Hosts are dropped from the distributed database environment
definition with the NDDL DROP HOST command. Before the host can
be dropped:

* Drop any databases that reside on the host.

Use the NDDL DROP DATABASE command. Refer to Subsection
6.4.3 for DROP DATABASE Pre-Requisites.

Drop any associations with DBMSs.

Use the NDDL ALTER DBMS command and the DROP HOST clause.
The entry for the DBMS and host is deleted from the
DBMSONHOST CDM Table.

The DROP HOST command will delete the entry in the IISSHOST
CDM Table.

6.4.2 Modifying User-Defined data types

The user-defined data type allows the CDM Administrator to
define to the CDM the data storage representation of a datafield.
This alleviates the restriction of using only the formats allowed
for the standard data type. If the format representation of the
datafield changes, the data type originally specified for the
datafield can be changed to another data type. This is
accomplished by dropping the datafield and re-creating it.
Another option available to the CDM Administrator is to change
the actual format for the original data type that was specified
for the datafield. This is accomplished with the ALTER DOMAIN
NDDL command. The ALTER TYPE clause allows the data type to be
changed to another legal type with a new size and decimal
specification. The USER DEF DATA TYPE CDM Table is modified with
the new information provided-on tHe ALTER TYPE clause.

Any application programs that search or update the
datafields and generate application programs must be
re-precompiled. These software modules will be specified on the
CDM Impact Analysis reports.

6.4.3 Database Changes/Deletes

The CDM Administrator can modify the internal schema
defining a database with the NDDL ALTER DATABASE command. The
changes that can be made with this command are:

* Change the database password.

Use the WITH PASSWORD clause. This clause is applicable
only to ORACLE databases. The CDM Table DBPASSWORD is
updated with the new DBPASSWORD.

* Change the host where the database resides.

Use the TO HOST clause. rhe CDM Table DATABASE is
updated with the new HOSTID.

6-67

UM 620341001
30 September 1990

* Change the schema and subschema names for CODASYL
databases.

Use the SCHEMA clause. The CDM Table SCHEMANAMES is
updated with the new names.

* Change the VAX directory where the VAX-11 CODASYL
database is stored.

Use the LOCATED AT clause. The CDM Table SCHEMANAMES is
updated with the new DBLOCATION.

* Change how null characters are stored.
Use the STORES CHARACTER clause. The CDM DATA BASE

Table is updated with the new null character information.

* Change how null integers are stored.

Use the STORES INTEGER clause. The CDM DATA BASE Table
is updated with the new null integer information.

Change the NTM directory specified for the database.

Use the NTM DIRECTORY clause. The CDM DATABASE Table is
updated with the new directory prefix.

* Add and/or drop areas associated with a CODASYL database.

Use the ADD AREAS and/or DROP AREAS clause. The CDM
DATA BASE AREA Table is updated or deleted with the
specified-area names.

Databases can also be modified by adding and/or dropping
record types and datafields to an existing database. Before a
database can be modified in this fashion:

The database must be established as current for the NDDL
session.

Use the NDDL ALTER DATABASE commFnd. All subsequent NDDL
internal schema commands will be applied to the current
database.

Databases are deleted from the CDM by the NDDL DROP DATABASE
command. Before the database can be dropped:

- Drop all software modules that either update or retrieve
data from this database. Use the NDDL DROP MODULE
command.

- Drop all complex mapping algorithms that use either
records or datafields from this database as input or
output parameters. Use the NDDL DROP ALGORITHM command.

- Drop all the CS-IS mappings, including partition and
unions that map to records and datafields in the
database. Use the NDDL DROP MAP, DROP PARTITION and DROP
UNION commands.

6-68

UM 620341001
30 September 1990

The DROP DATABASE command will drop all entries for the
database from the DATA BASE, RECORD TYPE, DATA FIELD CDM Tables.
It will also drop entries from the DATA BASEAREA,
DB AREA ASSIGNMENT, SCHEMA NAMES, RECORD SET, SET TYPE MEMBER and
DB PASSWORD CDM Tables if any were found-for the database being
dropped.

6.4.4 Record Type Changes/Deletes

The CDM Administrator can modify record types already
defined for a database with the NDDL ALTER RECORD command. The
record type cannot be changed to another database. In order to
accomplish this, the record type must be dropped and re-added.
The changes that can be made to a record type with the ALTER
RECORD command area:

* Add and/or drop areas in which the CODASYL record is
stored.

Use the ADD AREAS and/or DROP AREAS clause. Entries for
the record are either added or deleted in the
DBAREAASSIGNMENT CDM Table.

* Add fields to the record type.

Use the ADD FIELDS clause. The CDM DATA FIELD Table is
updated with the new field and its definition.

* Drop fields from the record type.

Use the DROP FIELDS clause. All subcomponent fields as
well as entries for the field specified are dropped from
the CDM DATA FIELD Table. Refer to Subsection 6.4.5 for
DROP FIELD Pre-Requisites.

Record Types are deleted from the CDM by the NDDL DROP
RECORD command. Before the record type can be dropped:

- Drop all software modules that either update or
retrieve data from this record type. Use the NDDL
DROP MODULE command.

- Drop all complex mapping algorithms that use either
the record type or its datafields as input or output
parameters. Use the NDDL DROP ALGORITHM
command.

- Drop all the CS-IS mappings, including partition and
unions that map to the record type or its datafields.
use the NDDL DROP MAP, DROP PARTITION and DROP UNION
commands.

The DROP RECORD command will drop all entries for the record
type from the CDM RECORDTYPE Table. It also will delete any
associated entries in the DB AREA ASSIGNMENT, RECORD-SET,
SETTYPEMEMBER and DATAFIELD CDM Tables.

6-69

UM 620341001
30 September 1990

The DROP SET command will drop all entries for the set type
from the RECORDSET and SET TYPEMEMBER CDM Tables. Set types
and their mappings are applicable to CODASYL databases. The set
type will not be dropped; however, if the set maps to a tag or a
relation class (see Subsection 6.3.1, "Loading CS to IS
Mappings"). If a mapping exists, it must be dropped using the
NDDL DROP MAP command.

6.4.5 Datafield Changes/Deletes

The CDM Administrator has two options when changing a
datafield. It can be dropped and re-added from a record type by
using the ADD FIELD and DROP FIELD clause of the ALTER RECORD
command, explained in Subsection 6.4.4. Or some of the fields
characteristics can be modified with the ALTER FIELD NDDL
command. The datafield cannot be changed to another record type
or database. The changes that can be made with this command are:

* Change the data type associated with the datafield or
eliminate the data type association on a CODASYL group
field.

Use the DATA TYPE clause. The CDM DATAFIELD Table is

updated.

* Change, add or remove the depending on field.

Use the DEPENDING ON clause. The CDM DATAFIELD Tble is
updated.

* Change, add or remove the redefines datafield name.
Use the REDEFINES clause. The CDM DATAFIELD Table is

updated.

* Change the datafield's "known" status by the DBMS.

Use either the word KNOWN or UNKNOWN. The CDM DATAFIELD
Table is updated.

Change the datafield's status as key or non-key.

Use the UNIQUE KEY, DUPLICATE KEY or NOT KEY clause,
whichever is desired. The CDM DATAFIELD Table is
updated.

Datafields are deleted from the CDM by the NDDL DROP FIELD
command. Before a datafield can be dropped:

- Drop all software modules that either update or
retrieve data from this datafield. Use the NDDL DROP
MODULE command.

- Drop all complex mapping algorithms that use this
datafield as an input or output parameter. Use the
NDDL DROP ALGORITHM command.

6-70

UM 620341001
30 September 1990

- Drop all the CS-IS mappings, including partition and
unions that map to the datafield. Use the NDDL DROP
MAP, DROP PARTITION and DROP UNION commands.

6.4.6 Modifying/Deleting CS-IS Mappings

The CDM Administrator can change the mapping definitions of
the internal schema objects to their appropriate conceptual
schema objects at three different levels. All these changes are
accomplished by different variations of the NDDL ALTER MAP
command. The changes that can be made to entity class to record
type mappings are:

* Change the distributed update rule. (i.e., update all
copies or only preferred copy.)

Use either ALLOW UPDATE or DISALLOW UPDATE clause. The
DISTRIBUTEDRULES CDM Table is updated accordingly.

* Change the distributed retrieval rule. (i.e., select
primary copy or preferred copy on host.)

Use either ALLOW RETRIEVAL or DISALLOW RETRIEVAL clause.
The DISTRIBUTEDRULES CDM Table is updated accordingly.

* Add records that map to the entity to allow for
horizontal partition mappings and/or duplicated copies.

Use the ADD RECORD clause. The EC RT MAPPING CDM Table
is updated with the new entity to Fecord mapping
definition.

* Drop record that map to the entity.

Use the DROP RECORD clause. The entry for the entity and
record is deleted from the EC RT MAPPING CDM Table.
Before the entity to record mapping can be dropped:

- Drop all software modules that either update or
retrieve data from this record type. Use the NDDL
DROP MODULE command.

- Drop all complex mapping algorithms that use either
the record type or its datafields as input or output
parameters. Use the NDDL DROP ALGORITHM command.

- Drop all the CS-IS mappings, including partition and
unions that map to the record type's datafields. Use
the NDDL DROP MAP, DROP PARTITION and DROP UNION
commands.

Changes to the mapping definitions at the Attribute Use
Class to Datafield level are also accomplished with the ALTER MAP
command. The changes available at this level are:

* Change the preference number of the mapping.

6-71

UM 620341001
30 September 1990

Use the TO PREFERENCE clause. The AUC IS MAPPING CDM
Table is updated. The preference will-be-switched if
both preferences specified exist.

* Change the map category.

Use either the word ACTIVE or PASSIVE. The
AUC IS MAPPING CDM Table's MAP CATEGORY is changed. Map
categories are associated with-preference numbers.
Preferences 1 through 49 are ACTIVE, while 50-99 are
PASSIVE.

Change the mapping classification.

Select the desired mapping classification. The
AUC IS MAPPING CDM Table's MAP CLASS is changed. This
clause is mainly for descriptive purposes.

Additional datafields may be mapped to the attribute use
class to support additional horizontal partition
fragments for a stated preference.

Use the ADD FIELD clause. New entries are added to the
AUC IS MAPPING CDM Table for the mapping definition. A
mapping must exist from the attribute's entity to the
datafield's record type before this mapping can be added.

Attribute use class to datafield mapping definitions for
a stated preference can be dropped when a horizontal
partition fragment is no longer needed.

Use the DROP FIELD clause. The AUC IS MAPPING CDM Table
entry is deleted. If this is the last mapping for the
attribute's entity, the entity to record mapping
definition is deleted from the EC RT MAPPING CDM Table.
Before this mapping definition can be dropped:

- Drop all software modules that either update or
retrieve data from this datafield. use the NDDL DROP
MODULE command.

- Drop all complex mapping algorithms that use the
datafield as input or output parameters. Use the NDDL
DROP ALGORITHM command.

* Set value mappings can be added or dropped.

Use the ADD SET or DROP SET clause. Mapping definitions
are either added or deleted from the AUCISMAPPING and
AUCSTMAPPING CDM Tables.

Chanqe the values for existing attribute use class to set
mappings.

Use the ALTER SET clause. The AUC VALUE in the
AUC ST MAPPING CDM Table is updated with the specified
value.-

6-72

UM 620341001
30 September 1990

CODASYL databases make use of relation class to record
relationship (i.e., set type) mappings. These mapping
definitions are also chanqed with the NDDL ALTER MAP command.
The changes to these mappings are:

Add a new set type of a multi-member set to be mapped to
the relation class.

Use the ADD SET clause after specifying the relation
class name. The RC BASED REC SET CDM Table is updated
with the new mapping definition provided no other set
maps to the relation.

* Drop a set type mapped to the relation class.

Use the DROP SET clause. The entry in the
RC BASED REC SET CDM Table is deleted for the relation
class to-the-specified set type mapping.

CS to IS mapping definitions at all levels are deleted from
the CDM with the NDDL DROP MAP command. A mapping can be dropped
for all attribute use classes of an entity or for a specified
attribute use for a stated preference mapping. When more than
one preferred mapping exists for an attribute use, dropping the
first preference is not permitted. The secondary preference must
be dropped first. The CDM Tables that are populated at the
different mapping levels are deleted from when the DROP MAP
command is issued. Individual Relation class to record set
mappings are dropped with the ALTER MAP command, as described
above. No mapping definition for an attribute use class will be
dropped if its used as an input or output parameter in a complex
mapping algorithm. Use the NDDL DROP ALGORITHM command first.

6.4.7 Record Union Changes/Deletes

The CDM Administrator can modify existing record union
definitions in tne CDM with the NDDL ALTER UNION command. The
changes that can be made to the record union are:

* Add entities to be unioned in the record type.

Use the ADD ENTITY clause. Another entry is added to the
ECRTUD CDM Table.

* Drop entities that were included in the record union.

Use the DROP ENTITY clause. An entry is deleted in the
ECRTUD CDM Table for the record union specified.

* Chan~e the union discriminator or add and delete
conditions to the union discriminator.

First, use the DROP ENTITY clause to drop the entity and
its union discriminator from the record union. Then
re-add the entity to the record union with the ADD ENTITY
clause specifying the changed union discriminator and its
new condition(s).

6-73

UM 620341001
30 September 1990

Record unions are deleted from the CDM by the NDDL DROP
UNION command. This command will drop all entries from the
ECRTUD CDM Table for the specified record type. The DROP UNION
command will not effect the CDM definition of the record type,
entity or any of its mappings.

6.4.8 Horizontal Partition Changes/Deletes

The CDM Administrator can modify existing horizontal
partition definitions in the CDM with the NDDL ALTER PARTITION
command. The changes that can be made to the horizontal
partition are:

* Add record type partitions for the entity.

Use the ADD RECORD clause. Another entry is added to the
HORIZONTALPART CDM Table.

* Drop record types that were partitions of the entity.
Use the DROP RECORD clause. An entry is deleted in the
HORIZONTAL PART CDM Table for the record partition
specified.-

A horizontal partition, by its definition, must consist of
at least two record types. After the adding and dropping of
record types (i.e., altering the horizontal partition definition)
the entity's horizontal partition must consist of at least two
record types.

Horizontal partitions are deleted from the CDM with the NDDL
DROP PARTITION command. This command drops record partition
entries in the HORIZONTAL PART CDM Table for the entity names.
Before a horizontal partiEion is dropped, the CDM Administrator
must drop any partition mappings of the specified entity.

6.5 Specific Considerations

The CDM supports the definition of a number of database
models and file structures that are not fully implemented by the
precompiler. These database models and file structures are
described in the following subsections. An explanation is
provided on the clausez of the NDDL commands that are pertinent
only to these database models and their specific CS-IS mapping
methodologies.

6.5.1 IMS Specific Considerations

Whereas the basic construct of the CODASYL model is a set
and complicated structures can be built from sets, the IMS model
represents data in the form of a tree structure. A tree consists
of different levels of entities referred to as nodes. A node can
have many occurrences, that is, sets o data values for its data
items. Each higher level implies dominance over the levels below
it, thus creating a hierarchy. The highest level contains only
one node called a root node. All nodes, with the exception of
the root, must be connected at a level above it. The node at the
higher level is called a parent node and "owns" all of the lower
level nodes in the limb. The node at the lower level is called a
child node. A child node must have one and only one parent node.

6-74

UM 620341001
30 September 1990

A parent node can have none, one, or many nodes connected to them
as children. There can be many occurrences of a specific child
node under a single parent. A parent and its children at each
level are considered a physical tree. A database may consist of
many of these physical trees. Even though the set construct is
not supported by the IMS model, a parent and all of its children
are to be considered analogous to a set. The following example
depicts the IMS hierarchical model.

LEVEL 1 ROOT NODE

(PARENT)
V

LEVEL 2 CHILD NODE
(PARENT)

i

THE NEXT
NODE
(CHILD)

LEVEL 3 _ _ _ _ _

6-75

UM 620341001
30 September 1990

A node is called an IMS segment. A logical record in the
database consists of a root and all of its children. A database
record can consist of a tree with up to 15 levels. In essence,
many logical relations (relation classes) could be combined
into one physical hierarchy. This is called a regular hierarchy
and is defined via an IMS Database Definition (DBD).

CONCEPTUAL SCHEMA INTERNAL SCHEMA

RTI

RCI RC3

ECI

EC2 EC3 EC41

RT2 RT3 RT4

The CS-IS mapping for a regular hierarchy involves the
following:

o Each parent-child relationship within the hierarchy
maps to a relation classes.

o The parent in each relationship maps to the entity
class that is independent in that relation class.

o The child in each relationship maps to the entity
class is dependent in that relation class.

In the preceding example:
RTI maps to ECI
RT2 maps to EC2
RT3 maps to EC3
RT4 maps to EC4
RT 2 maps to RC
RTI:RT3 maps to RC2
RT1:RT4 maps to RC3

The previous diagram illustrates that each dependent segment
has a parent segment and exists as one element in a child-parent
relationship. These relationships can have both a physical and a
logical form. The physical form of the parent-child relationship
is a consequence of (1) the definition of a given data base and

6-76

UM 620341001
30 September 1990

(2) the method by which the data elements are stored. The
logical relationship is established solely by express definition
and exists externally to any physical organization constraints.

IMS has an additional relationship called a "twin". As with
the parent-child relationship, two forms of twins exist: physical
and logical twins. Physical twin segments are multiple
occurrences of a common segment format. At the root segment
level, the set of physical twins is the set of all root segment
occurrences of a given database. At the dependent segment
level, a set of physical twins is the set of physical child
occurrences for a given segment format within a hierarchy. At
the logical level, twins are multiple occurrences of a common
segment format having a common logical parent. The physical and
logical concepts give IMS the capability of storing network type
relationships (sets) between entities. These network physical
structures are viewed by users and programmers as one or more
hierarchical views.

Every logical relationship involves the use of three
segments; no more, no less. Two of these segment types (the
physical parent and the logical parent) can exist in separate
databases or they may exist in the same physical database. The
third segment type (the logical child) is used to construct the
logical linkage. The three segments involved in a logical
relationship are an instance of a non-specific many-to-many
membership set type.

A nonspecific membership set type whose cardinality is many-
to-many, is one in which (1) each member of entity class "I" is
related to zero, one, or many members of entity class "2" and (2)
each member of entity class "2" is related to zero, one, or many
members of entity class "1." Such a relation class is refined,
as shown in Figure 4-7, before it is incorporated into the
conceptual schema.

CONCEPTUAL SCHEMA INTERNAL SCHEMA

RCl RC2 I--- --

< >< > RT3 RT4

EC3

The CS-IS mapping for a many-to-many membership set type
involves the following.

6-77

UM 620341001
30 September 1990

o Each parent segment has a primary mapping to one
entity class.

o The child segments have a primary mapping to a
single entity class (RT4 may or may not exist
physically on the database depending on the IMS
options that were chosen).

o Two IMS DBDs are required and map to one-to-many
relation classes.

o The entity classes to which the parents map are
independent in their respective relation classes.

o The entity class to which the children map is
dependent in that relation class.

In the preceding example:

RTI maps to ECl
RT2 maps to EC2
RT3 maps to EC3
RT4 maps to EC3
RTI:RT3 maps to RCI
RT2:RT4 maps to RC2

6.5.1.1 IMS NDDL Specifics

This section deals with the differences in the CDM, specific
to IMS databases, and the NDDL commands that populate these
tables or columns. The CDM Tables pertinent to an IMS database
definition are in Figure 6-28. Two tables are specific to IMS
databases, IISS PSB and PSB PCB. These tables hold program
status block information for the database. A program status
block is used in IMS to group application views of databases into
a single runtime unit. Actually, it is an area of memory used by
the IMS DPMS in communicating with application processes.

The IISS PSB CDM Table is populated and modified by the
DEFINE PSB, ALTER PSB and DROP PSB NDDL commands. These commands
specify which host computer in the distributed database
environment the program status block resides.

The PSB PCB CDM Table is populated by the DEFINE PCB NDDL
command. The PSB PCB Table maintains the cross reference of the
Program Communication Blocks (i.e., PCBs) and the Program Status
Block (i.e., PSB). A PCB defines the hierarchial structure or
sub-structure of a logical or physical database that can be
viewed by an application. The PSB, as mentioned before,
maintains the runtime link to the DBMS for an application. This
command is identical to the DEFINE DATABASE command, but the
keyword PCB must be used for an IMS database.

The WITH POSITION clause on this command is pertinent only
to an IMS database. This clause updates the feedback length in
the PSB PCB CDM Table. The key feedback length is used in the
Program Communication Block to define the maximum size of the
concatenated keys from each segment in the hierarchy, starting at

6-78

UM 620341001
30 September 1990

the root and ending at the bottom child segment. Since there may
be many terminating child segments, key feedback length must be
set to its maximum.

Other NDDL commands vary only in terminology. Instead of
using the word "set", IMS calls the relationships between parent
and child records "paths". The IMS DBMS also calls record types
segment types and datafields data elements.

6-79

UIM 620341001
30 September 1990

24 _ _ _ _ _ _ _ _ _ _ _ _ _ _

*DB -ID NUMBER(6) 72
DB NAME CHALR(30) *DB ID NUMBER(6)
HOST -ID CHAR(30) *SET ID CHAR(30)
DBMS-NAME CHAR(30) RT TfD OF OWNER CHAR(30)
INTEGER-NULL CHAR(30) TOTAL NO MEM NUMBER(2)
CHARACTERNULL CHAR(30) (*SET-NO NUMBER(6)
NTMDIRECTORY CHAR(2) _____

DATABASE IRECORD-SET - H
_________I ___ ISOWNER IN HS

ISSTRUCTUREDBY!

66 fi____________
(*DB-ID NUMBER(6) --- 134
*RTID) CHAR(30) *DB ID NUMBER(6)
(*RTNO) NUMBER(6) *SET ID CHAR(30)

_________APPEARS_ *RT ID OF MEMBER CHAR(30)
RECORD-TYPE jAS REQ_MENIND CHAR(i)

CONTAINSI MAY IBE SETTYPEMEMBER
DEFINED_- ________ ____

IN _ _ _ _ _ _ _ _ _ _

----- ---- 21

_____________ (*HOSTID CHAR(30)

67B- DNMBR6 (*HOST_NO) NUMBER(6)

*RTID CHAR(30) IISSHOST
*DFID) CdAR(30) ___________

*REC_SEQ_NO NUMBER(6) PROVIDESACCESS TOl
(*DFNO) NUMBER(6) _________V_
RECKEY CODE CHAR(1) 77
NO OF OC CURS NUMBER(6) *PSB NAME CHAR(S)
DBMSACCESS CHAR(1) HOSTID CHAR(30)
INDEXINDICATOR CHAR(1) ____

DATAFIELD 1155_PSB

____ ____ _ I ____ ____ __ C NSISTS-OF -

-V V__

*DB ID NUMBER(6)
PSB9 NAME CHAR(8)
PCB_-SEQNO NUI4BER(6)
KEYFEEDBACKLEN NUMBER(6)

PSB-PCBjI1

Figure 6-28. IMS Internal Schema

6-80

UM 620341001
30 September 1990

6.5.1.2 IMS CS to IS Mapping Methodology

All the modeling forms are pertinent when mapping IMS
databases to the conceptual schema. First, the CDM
Administrator determines the primary mapping for each segment
type. Usually, it is easier to map an IMS database by starting
with the root segment and working down each limb of the tree. A
child member should not be mapped until its parent segment type
has been mapped. The CDM Administrator determines what sort of
"real-world" thing the segment type represents. Each instance
of a segment type contains data about a specific person, place,
object, etc., that is significant to the enterprise. With IMS,
all of the instances of the same segment type are about the same
sort of thing.

Next, the CDM Administrator determines which entity class
in the conceptual schema represents the same sort of thing as
this segment type identified prior. This primarily involves
finding the entity class whose definition corresponds to the
intent of the segment type. Comparing the key classes,
attribute use classes, and relation classes of the entity
classes to the keys, data elements and parent-child
relationships of segment types an be helpful also. If the
segment type represents several sorts of things, it will map to
several entity classes, one for each sort of thing (see
Subsection 6.1.1.4, "Unions"). If none of the entity classes
represent what the segment type does, either the segment type
exists only to provide a logical relationship or the conceptual
schema must be expanded (see Subsection 4.3). Once the entity
class to which the segment type maps is determined, the
information is recorded in the Record Type/Entity Class Mapping
Form.

A few segment types do not represent real-world things;
they exist to provide database pointers between logically
related segments. Such segment types do not map to any entity
classes and can be ignored.

Next, the CDM Administrator uses the Data Field/Attribute
Use Class Mapping Form to assist in determining the primary
mappings for each data element. The content of the data element
is analyzed to result in what sort of data about "real-world"
things it represents. If the segment type that contains the
data element represents more than one sort of thing ,i.e., it
has more than one mapping, the data element may contain several
sorts of data. All of these must be identified.

A few data elements may not contain data about "real-world"
things and exist for technical reasons only. Examples include
segment codes and segment activity dates. Such data elements do
not map to any attribute use classes and can be ignored.

The way the CDM Administrator determines which attribute
use class in the conceptual schema represents the same sort of
data as the data element is by finding the attribute use class
whose definition or migration path corresponds to the intent of
the data element. The first place to look is the entity class
to which the segment type maps. If the segment type maps to

6-81

UM 620341001
30 September 1990

more than one entity class, the data element may map to an
attribute use class in each. The value in the data element in
each instance of the segment type must be the same as the one in
the attribute use class in the corresponding instance o the
entity class. If two or more inherited attribute use classes
that come from the same owned attribute use class have identical
values in every entity instance, the data element may map to
some or all o them.

If none of the attribute use classes in the mapped-to
entity classes correspond to the data element, the next places
to look are the entity classes that are related to those entity
classes. Again, the value in each segment instance must be the
same as the value in the corresponding entity instance. If the
attribute use class is not in any of these entity classes, the
search must be widened to include the entity classes that are
related to them. This continues until the proper attribute use
class is found or until it is determined that a new attribute
class must be added to the conceptual schema (see Subsection
4.3). This mapping information is recorded on the Data
Field/Attribute Use Class Mapping Form.

The CDM Administrator's next step is to determine if any
secondary mappings are needed for each data element by finding
the data elements in the segment type that map to attribute use
classes that are not in the entity class to which the segment
type maps. This can be done by comparing the entity class names
entered on the Data Field/Attribute Use Class Mapping Forms for
the segment type to those that are entered on the segment type's
Record Type/Entity Class Mapping Form. If an entity class name
is on the first form but not on the second, then that entity
class must be joined with the one to which the segment type
maps.

Other entity classes might need to be identified to
complete the join structure. The entity classes that must be
joined to form the segment type must form one or more join
structures as described in Subsection 6.1.1.3. If the join
structures are not contiguous, one or more additional joins may
be needed. For example, if the segment type in Figure 6-14 maps
to EC4 and involves joins with ECl and EC3, it also must have a
join with EC2. Without it, ECi cannot be joined to the EC3-EC4
join result. The join must involve EC2 even though none of its
attribute use classes map to data elements in the segment type.
Draw diagrams of these segment types that involve joins on the
Record Type Join Structure Diagram Form.

The final step for the CDM Administrator when following
this methodology is to determine the mapping for each
parent-child relationship. What sort of relationship between
"real-world" things the set type represents must be established.
If the set type has more than one child segment type, each must
be considered separately. If either the parent or the child
segment type has no mapping to an entity class, the set type
will have no mapping to a relation class so it can be ignored.

The CDM Administrator determines which relation class in
the conceptual schema represents the same sort of relationship
as the set type. Usually, this is the relation class whose

6-82

UM 620341001
30 September 1990

independent entity class maps to the parent segment type and
whose dependent entity class maps to the child segment type.
Fill out a line on a Set Type/Relation Class Mapping Form once
the relation class to which the set type maps is determined.

Once this CS-IS mapping methodology has been followed and
completed, the CDM Administrator loads these mappings as
described in Subsection 6.3.1, "Loading CS to IS Mappings".

6.5.2 VSAM Specific Considerations

The Virtual Storage Access Method (VSAM) is a component of
the IBM operating system's data management services. VSAM
supports both direct and sequential processing. VSAM data sets
cannot be accessed by any other access method.

VSAM support consists of the following:

o Three data sets organizations: Entry-Sequenced Data Sets
(ESDS). Key-Sequenced Data Sets (KSDS), and
Relative-Record Data Set (RRDS). They are supported on
DASD (Direct Access Storage Devices) only.

- A VSAM ESDS is a sequential data set (similar to a SAM
data set).

- A VSAM KSDS is a sequential data set with an index
(similar to an ISAM data set).

- A VSAM RRDS is a data set with preformatted slots for
fixed length records to be accessed by a record number
(similar to a DAM data set).

NOTE: As VSAM RRDSs are rarely used, they are
excluded from this document.

The mappings for an ESDS and KSDS are identical to those
discussed in Subsection 6.5.3.

6.5.3 Sequential Files Specific Considerations

The mapping from the Conceptual Schema to a sequential file
is very straightforward where:

o Nonspecific relationships have been resolved.

o Keys have been migrated.

o No role names are used.

In mapping to a sequential file:

o Each entity class becomes a record.

o Each attribute of an entity becomes a data field in the
corresponding record.

o The key of each entity becomes the primary key in the
corresponding record.

6-83

UM 620341001
30 September 1990

If relationships between sequential files are implied
(foreign keys have been migrated), please refer to Subsection
6.1.2.1., "Relational Database Modeling Forms" for the CS to IS
mapping methodology to follow.

6.5.3.1 Sequential File NDDL Specifics

Very few differences exist between defining sequential file
internal schema objects to the CDM and defining the same for
relational datakases. For each sequential file, use the NDDL
DEFINE DATABASE command (see Subsection 6.2.3.1, "Loading
Relational Databases"). For each sequential file's record type,
use the NDDL DEFINE RECORD command. The difference between
sequential file records and relational database records is that
sequential file records can group its datafields, i.e.,
relational databases only support elementary datafields. Follow
the instructions outlined in Subsection 6.2.4.2, "Loading CODASYL
DBMS' Record Types".

6.5.3.2 Sequential File CS to IS Mapping Methodology

Sequential files utilize the Entity Class/Record Type
Mapping Form and the Data Field/Attribute Use Class Mapping Form.
The CDM Administrator first determines the mapping for each
record type. What sort of "real-world" thing the record type
represents is established. Each instance of a record type
contains data about a specific person, place, object, etc. that
is significant to the enterprise. The CDM Administrator
determines which entity class in the conceptual schema represents
the same sort of thing as the sequential file's record by finding
the entity whose definition corresponds to the intent of the
record. The entity class to which the record maps is recorded on
the Record Type/Entity Class Mapping Form.

Next, the CDM Administrator determines the mapping for each
datafield by establishing what sort of data about "real-world"
things that the datafield contains. A one-for-one mapping
between attributes of an entity and datafields of its
corresponding record should always exist. Finding which
attribute use class in the conceptual schema represent the same
sort of data as the datafield involves finding the attribute use
class whose definition or migration path corresponds to the
intent of the datafield. This attribute use class and datafield
to which it maps is recorded on the Data Field/Attribute Use
Class Mapping Form.

A few datafields might not contain data about "real-world"
things; they exist for technical reasons only. Examples include
record codes and record activity dates. Such datafields do not
map to any attribute use classes and can be ignored.

Once this CS-IS mapping methodology has been followed and
completed, the CDM Administrator loads these mappings as
described in Subsection 6.3.1, "Loading CS to IS Mappings".

6-84

UM 620341001
30 September 1990

SECTION 7

MAINTAINING EXTERNAL SCHEMAS AND MAPPINGS

7.1 Methodolog; Overview

This section provides the CDM Administrator with the
methodology for building and maintaining external schemas and or
mapping them to the conceptual schema. The tables of the CDM
database that are populated to describe external schemas and
CS-ES mappings are shown in Figure 7-6. As mentioned in Section
5, the external schema objects are views and data items. A user
view is equivalent to a table in a relational database; a data
item to a column of that table. The format representation of
data items can be defined with user defined data types. The
mapping between the conceptual schema and external schema only
has one level, attribute use class to data item.

This section will explain the basic concepts of user views
and how to determine their mappings to the conceptual schema.
Forms are used to assist in the CS-ES mappings and instructions
on their use are provided. The NDDL commands necessary to
initially load user views and CS-ES mappings are described a.-ng
with the NDDL commands to change the external schema objects.

7.1.1 External Schemas AND CS-ES MAPPING STRUCTURE

A CS-ES mapping is intended to show which components of an,
external schema correspond to those of the conceptual schema. A
data item maps to an attribute use class if they both are the
same kind of data about real-world thirgs. A data item is not
to map to more than one attribute use class. In Figure 7-1, the
EMP-NAME, DEPT-NAME, and SPOUSE-NAME data items each have only
one attribute use class to which to map. If there is more than
one attribute use class to which a data item could map, the
choice depends on which entity class each attribute use class is
in. There must be one entity class that has one entity instance
for each row in the user view. If one of the attribute use
classes is in that entity class, the data item maps to it. In
Figure 7-1, the Employee entity class has one instance for each
row in the EMP-MAST user view, so that EMP-NO and DEPT-NO data
items map to the equivalent attribute use classes are that
entity class. If none of the attribute use classes are in that
entity class, the data item maps to the one in the entity class
that is most closely related to that entity class. Thus, DIV-NO
maps to Div No in the Dept entity class because that entity
class is closer to Employee than the Division entity class.

The following subsections (7.1.1.1 - 7.1.1.2) present two
subjects to consider when dealing with CS-ES mappings. They are
not mutually exclusive; a user view can involve neither, either,
or both.

7-1

UM 620341001
30 September 1990

CONCEPT UAL
SCHEMA

DIV NAME

DIVISION1

HAS

DEPT NAME -

DIV NO..

DEPT 2 J

HAS

i EMP-MASTN

EMP AME- - - - - DIV-NOM

DEPT NO -DEPTNO
DEPT-.NAME

EMPLOYEE 31 SPOUSE-NAME

Is

SPOUSE NAME 0

MARRIED
4EMPLOYEE

Figure 7-1. Data Item/Attribute Use Class Mappings

7-2

UM 620341001
30 September 1990

7.1.1.1 Vertical Partitions

An entity class is vertically partitioned when some of its
attribute use classes map to data items in one user view and
others map to those in another. An entity class can have
several vertical partitions.

UVi

A B

wA
<------------- >B

.. . .> AB C

------ > ECi--

UV2 > T

A C

Figure 7.2. Vertical Partition

7-3

UM 620341001
30 September 1990

7.1.1.2 Joins

If the data items in a user view map to attribute use
classes in two entity classes, those entity classes must be
combined to form that user view. This is done with a relational
"join" operation, which concatenates the entity instances of one
entity class with those of the other. These two entity classes
must be directly related by a relation class so that their
entity instances can be matched using the key class of the
independent and the corresponding inherited attribute use
class(es) of the dependent.

A

B

ECI 2

UVv

C A B D

V

CA D

EC2 3

Figure 7.3. Entity Joins

If the relation class cardinality is one-to-many, each
independent entity instance is concatenated with each entity
instance that is dependent on it. In the first example in
Figure 7-4, each PO-HEADER instance is formed by concatenating a
Vendor instance with a PO instance based on identical values in
Vendor No. If a Vendor instance has no dependent PO instances,
it is not represented by a PO-HEADER instance. This produces
one row in the use view for each instance in the dependent
entity class. Since a relational join cannot form user view
rows with repeating data items, this concentration cannot be
done from dependent to independent.

If the relation classes cardinality is one-to-zero-or-one,
the concentration can be done in either direction, independent
to depenaent or dependent to independent, because neither can
cause a repeating data field. The second and third examples in
Figure 7-4 show these two situations. In the second, there is
one BUYER user view row for each Buyer entity instance, and
there is no row for an employee who is not a buyer. In the
third example, there is one EMP-MAST instance for each Employee

7-4

UM 620341001
30 September 1990

instance. If an employee is not married, the SPOUSE-NAME data
item in the user view row for that employee contains a null
value.

VENDOR NO.

VENDOR NAME

VENDOR PO-HEADER

RECEIVES PO-NO.

< > VEND-NO
P.O.NO. -------.> VEND-NAME

VENDOR NO. < ------

P.O. 2

Example 1: ONE-TO-MANY RELATION CLASSES

Figure 7-4. ES-CS Join Examples

7-5

UM 620341001
30 September 1990

EMP NO.

EMP NAME

EMPLOYEE 1 BUYER

BUYER-NO.
IS

. .------- > BUYER-NAME

BUYER NO.

EMP NO. < ------

BUYER 2

Example 2: ONE-TO-ZERO-OR-ONE RELATION CLASS

EMP NO.
EMP NAME < ------

EMP-MAST

EMPLOYEE j 3 EMP-NO

------ > EMP-NAME
SPOUSE-NAMEIS _ _ _ _ _ _ _ _ _ _

EMP NO.

SPOUSE NAME

MARRIED EMPLOYEEI 4

Example 3: ONE TO ZERO-OR-ONE RELATION CLASS

Figure 7-4. ES-CS Join Examples (Continued)

7-6

UM 620341001
30 September 1990

If the data items in a user view map to attribute use
classes in several entity classes, they must all be combined to
form the user view. This is done with a series of the join
operations described above, each of which combines two of the
entity classes. All of the entity classes must be interrelated
such that they form one of the following (See Figure 7-5):

1. A regular hierarchy, that is, a structure in which:

o One entity class, called the apex, is not dependent on
any of the others (e.g., ECI).

o Every other entity class is dependent on exactly one
entity class (not necessarily the same one for all).

o Every relation class cardinality is
one-to-zero-or-one.

2. A confluent hierarchy (an upside-down hierarchy), that is,
a structure in which:

o One entity class, called the apex, has none of the
others dependent on it (e.g., ECl4).

o Every other entity class has exactly one entity class
dependent on it (not necessarily the same one for all).

o Any specific relation class cardinality is permitted.

3. A combination of

o One confluent hierarchy

o One or more regular hierarchies, each of whose apex
entity classes is also in the confluent hierarchy (e.g., ECl5,
EC20, and EC25).

Each hierarchy is called a join structure. As shown in the
examples in Figure 7-5, the user view must have one row for each
instance of the apex entity class of the regular or confluent
hierarchy. If a combination of hierarchies exists, the user
view must have this correspondence to the apex of the confluent
hierarchy.

7-7

UM 620341001
30 September 1990

REGULAR HIERARCHY:

APEX N 'oI

CONFLUENT HIEARCHY:

ECS a

M3u 13

APEX - 0

Figure 7-5. ES-CS Join Structures

7-8

UM 620341001

30 September 1990

COMBINATION:

uvJ.

Figure 7-5. ES-CS Join Structures (Continued)

7-9

UM 620341001
30 September 1990

ATTENDANCE STUDENT-ATTENDANCE

SOC-SEC-NO SSN DATE STATUS
SECTION-NO < ------ >

SEMESTER-NO
COURSE-CODE
CLASS-DATE

ATTENDANCE-STATUS

Figure 7-6. Single Entity Views

7.1.2 Modeling Forms

The following forms were developed to assist the CDM
Administrator in determining the mappings between external and
conceptual schema objects. If the view to be defined to the CDM
is a single entity view, no modeling forms are needed to assist
in the CS-ES mapping. Only one attribute use class exists which
represents the data item of the user view. In Figure 7-6, the
attribute use class SOCSECNO is the only attribute in the
entity ATTENDANCE that represents the data item SSN in the view
STUDENT-ATTENDANCE.

When more than one entity is involved in the use view
composition (see Subsection 7.1.1.2, Joins), the CDM
Administrator needs to make choices as to which entity class the
attribute use class is in, that corresponds to the data item
instance. The forms listed below are used to assist the CDM
Administrator to model mappings between these conceptual schema
entities and the external schema view. They are:

User View Join Structure Diagram
Data Item/Attribute Use Class Mapping Form

In order for the CDM Administrator to define the mapping
for each data item, he must first analyze what sort of data
about the real-world things that the data item represents. Then
determine which attribute use class in the conceptual schema
represents the same sort of data as the data item. This
involves finding the attribute use class whose definition or
migration path corresponds to the intent of the data item. The
first place to look is in the entity class that has one entity
instance or each row in the user view. The value in the data
item in each row of the view must be the same as the value in
the attribute in the corresponding instance of the entity class.

If none of the attribute use classes in that entity class
correspond to the data item, the next places to look are the
entity classes that are related to that entity class. Again,
the value in each view row must be the same as the value in the
corresponding entity instance. If the attribute use class is

7-10

UM 620341001
30 September 1990

not in any of these entity classes, the search must be widened
to include the entity classes that are related to them. This
continues until the proper attribute use class is found or until
it is determined that a new attribute class must be added to the
conceptual schema (See Section 4.3). Once tie proper attribute
is found, fill out a line on the Data Item/Atcribute Use Class
Mapping Form for the attribute use class to which the data item
maps.

The CDM Administrator determines if any joins are needed
for the user view by investigating the possibility that data
items in the user view map to attribute use classes in more than
one entity class. This can be done by comparing the entity
class names that are entered on the Data Item/Attribute Use
Class Mapping Forms for the user view. If all the names are the
same, the data items all map to attribute use classes in one
entity class.

If the data items map to attribute use classes in more than
one entity class, prepare a User View Join Structure Diagram.
The entity classes must form one or more join structures as
described in Section 7.1.1.2. If the join structures are not
contiguous, one or more additional entity classes will be
needed.

Instructions on how to fill out the user view forms follow.

User View Join Structure Diagram

Purpose: To provide a single source of information about the
join structures for a user view.

Instructions:

Diaqram the join structure for a user view which
consists of two or more entity classes.

7-11

UM 62034100130 September 1990

Form Area Explanation

1. User View Name Unique identification name assigned to
the use view by the CDMA.

2. (Diagram Area) Depiction of the entity classes and
relation classes that make up the join
structure.

Data Item/Attribute Use Class Mapping Form

Purpose: To provide a single source of information about the
mappings between external schema data items and
conceptual schema attribute use classes.

Instructions:

Fill in for each user view the attribute use class
that each data item maps to.

7-12

UM 620341001
30 September 1990

Form Area Explanation

1. User View Name Unique identification name assigned to
the use view by the CDMA.

2. Data Item Name Name by which the user identifies the
data item.

3. Data Type Name The data format of the data item.
Specify one of the six data formats
supported by NDDL.

4. Entity Class Name Name of the entity class that contains
the attribute use class being mapped
to.

5. Attribute Use Class Name of the attribute use class to
which the data item maps.

7.2 Loading the Initial ES & CS-ES Mapping Definition

The external schema's objects are defined to the CDM in the
following order:

User Defined data types (if different from the standard
data type)
User Views
Data Items

The NDDL commands that define these objects and CS-ES
mappings to the CDM are:

a) ALTER DOMAIN
b) CREATE VIEW
c) DEFINE MODULE
d) DEFINE ALGORITHM

7.2.1 Loading User-Defined data types

A domain can have several different styles for representing
its values. These styles are defined with data types. A domain
always has one standard data type that represents conceptual
schema attributes. The format of the standard data type is
limited to character, signed and unsigned formats. Many times
it is necessary to describe the data storage representation of
data items differently than the standard data type
representation, either for presentation purposes or to support
the NDML host language. Other data formats are float, integer,
and packed. If a data item differs in format from the standard
data type's definition, another user-defined data type can be
added to the domain with the NDDL ALTER DOMAIN command. Figure
7-7 illustrates the CDM tables that are populated by the NDDL
ALTER DOMAIN command and the relationship between
USERDEFDATATYPE and DATAITEM.

The ADD TYPE clause of the ALTER DOMAIN command adds an
entry to the USER DEF DATA TYPE CDM Table with the same
DOMAIN NO the CDM-assned -when the Domain was originally
created. The user-defined data -ype's name, type, size, and

7-13

UM 620341001
30 September 1990

number of decimals are populated and the DATATYPE IND is set to
"user". The relationship between this data type and the data
item is established when the actual user view is created.

7.2.2 Loading User Views and Data Items

A user view is a group of data items that a user wants to
deal with as a group. The data items are associated with
entity's attributes in the conceptual schema. The most simple
form of a user view is when the attributes that map to data
items of the view are all contained in one entity. The CDM
Administrator loads this view into the CDM Tables by using the
NDDL CREATE VIEW command. Figure 7-8 contains the CDM Tables
populated by the CREATE VIEW command. An entry is added to the
USER VIEW CDM Table with an assigned VIEW NO and the VIEWID is
popu~ated with the given identifying name. The CDM
administrator referred o the Data Item/Attribute Use Class
Mapping Form for the Data Type Name. If the data items in the
view are to be given names and data type formats other than that
of the attribute use class, then the DATA ITEM and data type
clauses are used. The DATAITEM CDM Table is populated with the
data item and data type name stated in this clause. If the
clause is omitted, the attribute use classes and standard data
type names associated with the attributes specified in the AS
SELECT clause are used to populate the DATAITEM Table.

The AS SELECT clause of the CREATE VIEW command allows
specific attributes to be selected from the entity. If all
attribute use classes of an entity are desired, the CDM
Administrator uses the AS SELECT * clause. This clause along
with the FROM clause populates the PROJECT DATA ITEM CDM Table
which actually defines the CS-ES mapping to the-CDM. An entity
is added to the VIEW EC XREF CDM Table for every entity
specified on the FROM clause.

If the user view being loaded is a join, other optional
clauses of the CREATE VIEW command are used. The CDM
Administrator refers to the Data Item/Attribute Use Class
Mapping Form for the data item names and the attribute use class
names they map to. The data item names are supplied to the DATA
ITEM clause and the attribute use class names of the attributes
the data items map to are listed in the AS SELECT clause of the
CREATE VIEW command. The multiple entities that comprise the
join are listed on the FROM clause. In order to join the
entities, the WHERE clause is used so that their entity
instances can be matched by equating the key class of the
independent entity and the corresponding inherited attribute use
class of the dependent entity. The User View Join Structure
Diagram is referenced when equatinq the key classes. Besides
allowing equi-join and/or outer-join conditions to be specified
between one, some or all key class member of related entities,
the WHERE clause can specify qualification criteria. The
qualification criteria restricts the rows of entity instances
that a user is allowed to access when utilizing the view in a
program. An entry is created in the VIEWQUALIFYCRITERIA CDM
Table for each item stated in the WHERE clause. If an attribute
is named in the WHERE clause, an entry is added in the
VIEW_QUALXREF CDM Table for eaci. attribute.

7-14

UM 620341001
30 September 1990

The CDM Administrator can load descriptions for the user
views with the NDDL DESCRIBE command with an object identifier
of "VIEW". Descriptions for data items can be loaded with the
same NDDL command and an object identifier of "DATA ITEM".

7.2.3 Loading Transformation Algorithms

When a complex mapping exists between a dataitem and an
attribute use class, a software module can be invoked to provide
the mapping. Examples of a complex mapping are: date
transformations, unit of measure conversions, calculated fields,
etc.

The software module takes as its input a dataitem, any
number of constants and outputs an attribute use class. A
reverse algorithm can also be written to take as its input the
attribute use class, any number of constants and output a
dataitem.

The NDDL DEFINE MODULE defines a software module listing
the input and output parameters along with the data types. The
CDM Tables populated are SOFTWAREMODULE and MODULEPARAMETER.

The NDDL DEFINE ALGORITHM command defines the use of a
software module as a complex mapping algorithm between a
dataitem and attribute use class. The CDM Tables populated are
AUCPARM and DIPARM.

Figure 7-7 contains the CDM tables populated by the DEFINE
MODULE and DEFINE ALGORITHM commands.

7-15

UM 620341001
30 September 1990

94

____________(*DOMAIN_-NAME) CHAR(30)
93 (*DOMAIN-NO) NUMBER(6)

*TYP ID CHAR(1) DOMAINCLASS1
TYP E_DESC CHAR(60)____ ________

DATA-TYPE 1 _____95

(*DATA TYPE NAME) CHAR(30)
---- > DOMAIN NO- NUMBER(6)

________________TYPE ID1 CHAR(1)
16 MAX SIZE NUMBER(3)
(*VIEWNO NUMBER(6) NO OF DECIMALS NUMBER(2)
*DI TID) CHAR(30) <---------- DATA -TYPE -IND CHAR(4)
DATATYPENAME CHAR(30) (*USDFTTNO) NUMBER(6)

(*DI NO) NUMBER(6) ___________________

DATAITEM_________I

Figure 7-7. Domains and Data Types External Schema

7-16

UM 620341001
30 September 1990

15
(*VIEW_-NO) NUMBER(6)--------> *VIEWI*JNO NUMBER(6) <--

f(*VIEWID) CHAR(30) *ECNO NUMBER(6)

--USERVIEW -- VIEWECXREF

(*VIEWNO) NUMBER(6) (*VIEWNO NUMBER(6)
*QC -TEXT-NO NUMBER(6) *TAGNO) NUMBER(6)
QC -CONDITIONNO NUMBER(6) EC-NO NUMBER(6) <-
QC -COND -TYPE- NUMBER(1) _______

QC -TEXT -TYPE CHAR (1) VIEWQUALXREF
QC-TEXT CHAR(30)__________

VIEWQUALIFY CRITERIA ___

(*TAG No NUMBER(6) --
V___________ (*TAGNAME CHAR(30)

16 *EC NO) NUMBER(6)
(*VIEW-NO NUMBER(6) ACNO NUMBER(6) <-
*DI ID) CHAR(30) _________

DATATYPENAME CHAR(30) ATTRIBUTEUSE CL
(*DINO) NUMBER(6) ________1

DATAITEM ______V_____

->*VIEW NO NUMBER(6)
*DI ID5 CHAR(30)----------------- SEC ONDARY CHAR (1)

1_________ TAGNO NUMBER(6)

*EC NO NUMBER(6) PROJECTDATAITEM
MODELNO NUMBER(6)_________

ENTITYCLASS

Figure 7-8. External Schema and CS/ES Mapping

7-17

UM 620341001
30 September 1990

7.3 Modifying/Deleting ES Elements and CS-ES Mappings

Prior to modifying or deleting objects of the external
schema (i.e., user views) or the CS-ES mappings, the CDM
Administrator must assess the impact of the proposed change on
the other components o the CDM. The CDM Impact Analysis Utility
identifies and reports which software modules are affected by a
change to the CDM and also identifies and reports affected user
views used by these software modules. Whenever changes are to
be made to the external schema, a CDM Impact Analysis should be
run to generate reports giving necessary information as to what
add-itional action must be taken. The objective of this section
is to provide the CDM Administrator with the information
necessary to change a user view and determine the prerequisites
before changing ES objects.

The NDDL commands to change and delete the external schema
objects and its mappings are:

ALTER DOMAIN
DROP VIEW
DROP ALGORITHM
DROP MODULE

From this command list, it is evident that no ALTER VIEW
NDDL command exists. In order to change a user view, the
algorithms, if any are dropped, the view is then deleted and
then re-created.

7.3.1 Modifying User-Defined data types

The user-defined data type allows the CDM Administrator to
define to the CDM the data storage representation of a data
item. This alleviates the restriction of using only the formats
allowed for the standard data type. If the format
representation of the data item changes, the data type
originally specified for the data item can be changed to another
data type. This is accomplished by dropping the user view and
re-creating it. Another option available to the CDM
Administrator is to change the actual format for the original
data type that was specified or the data item. This is
accomplished with the ALTER DOMAIN NDDL command. The ALTER TYPE
clause allows the data type to be changed to another legal type
with a new size and decimal specification. The
USER DEF DATA TYPE CDM Table is modified with the new
infoimatlon provided on the ALTER TYPE clause.

Any application programs that use this user view and
generate application programs must be re-precompiled. These
software modules will be specified on the CDM Impact Analysis
reports.

7.3.2 User View Changes/Deletes

As was mentioned before, the CREATE VIEW NDDL command not
only created the user view and data items but mapped the data
items to attribute use classes. Likewise the DROP VIEW NDDL
command deletes the user view and its CS-ES mappings. This is

7-18

UM 620341001
30 September 1990

the only way to change a user view's characteristics, by
dropping the view and re-creating it. Before the user view can
be deleted:

* Drop the complex mapping algorithm that use data items of
the user view being dropped, if any. Use the NDDL DROP
ALGORITHM command.

* Drop all software modules that use the external views
reported on the CDM Impact Analysis Report.

Use the NDDL DROP MODULE command.

When a user view is deleted with the NDDL DROP VIEW
command, all entries for the user view and its data items will
be dropped in the USERVIEW, DATA-ITEM, PROJECT DATA ITEM,
VIEW QUALIFY CRITERIA, VIEWEC XREF, and VIEW QUAL XREF CDM
Tables. All-descriptive text -or the view and its-data items
will be deleted from the CDM.

To re-create the view, refer to Subsection 7.2.2, "Loading
User Views and Data Items."

7-19

UM 620341001

30 September 1990

APPENDIX A

GLOSSARY

Alpha-Numeric Data Format

A data format for values that can contain characters other
than numerals (0-9). Numerals may be permitted also.

Attribute Class

A collection of all the same kind of attributes, i.e.,
those that have the same meaning. An attribute is a
characteristic or fact about an entity. An attribute consists
of a name (e.g., employee hire date) and a value (e.g., 15
August 1980). An attribute value may be:

A. Nondivisible (e.g., state name)

B. Divisible, i.e., a concatenation of two or more other
attribute values (e.g., part number formed by
concatenating drawing number and material code).

C. Computed from one or more other attribute values
(e.g., age computed as current date minus birth
date).

Attribute Class Data Description

A generic data description that applied to a particular
attribute class.

Attribute Use Class

A model attribute class that appears in a model entity
class. Each attribute use class represents either an owned
attribute class or an inherited attribute class.

Attribute Use Class/Data Field Mapping

Indicates that an attribute use class corresponds to a data
item, i.e., that they have the same meaning and that the data
item can be used to access the values for the attribute use
class.

Attribute Use Class/Data Item Mapping

Indicates that an attribute use class corresponds to a data
item; i.e., that they have the same meaning and that the data

b item can be used to access values for the attribute use class.

Attribute Use Class/Internal Schema Mapping

Indicates that an attribute use class corresponds to some
portion of an internal schema.

A-1

UM 620341001
30 September 1990

Attribute Use Class/Record Set Mapping

Certain attribute use classes can be represented in a
database by a group of record sets rather than be a data field
For example, Project: Task record sets called Pending,
In-Process, On-Hold, and Completed. An attribute use
class/record set mapping indicates that a particular record set
corresponds to a particular attribute use class value.

Component Data Field

A data field that is part of another data field; e.g., if
data field A is made up of data fields B, C, and D, each of
these latter data fields is a component of A. A data field
cannot be a component of more than one other data field.

Component Domain

An elementary domain that is part of another domain; e.g.,
a Date domain might be made up of a Month domain, a Day of Month
domain, and a Year domain. Each of these latter domains would
be a component of the Date domain. An elementary domain can be
a component of several other domains.

Component Unit of Measure

An elementary unit of measure that is part of another unit
of measure; e.g., the "inch" unit of measure is a component of
the "foot-inch" unit of measure. An elementary unit of measure
can be a component of several other units of measure.

Conceptual Schema

The description of all the shared data items within an
enterprise's databases and of the allowable operations on and
integrity constraints for those shared data items. Represented
by a fully normalized information model in which integrity
constraints have been completely specified. Not influenced by
any usage or storage considerations. A software module that
must be used to access or transform data that is stored in a
manner that the CDMP is not designed to handle.

Constraint Statement

One complete NDDL description of either an assertion, a
trigger, or a horizontal partition fragment. An assertion is a
rule about values for attribute use classes. If an NDML command
attempts to violate an assertion, the CDMP rejects the command
with an error message. A trigger is a set of conditions and a
set of actions, both involving entity classes and attribute use
classes. If the conditions are satisfied all the actions are
taken. If the conditions are not satisfied, none of the actions
are taken. See the definitions of Horizontal Partition and
Horizontal Partition Fragment for details about this use of
constraint statements.

A-2

UM 620341001
30 September 1990

Database Area

A subdivision of a CODASYL database. This subdivision is
a technique for improving the efficiency accessing database
record type instances. When a database is subdivided into

C database areas, some or all of its records types are assigned to
particular areas. Instances of these record types are stored
only within the assigned areas. Then, these record type
instances can be accessed by searching only the appropriate
areas rather than the entire database. This access method is
only used when the record type instances cannot be located by
other means (e.g., by calc keys or record sets).

Database Area Assignment

Indicates that a record type is assigned to a database
area.

Database Directory

A software library that must be used when accessing a
database.

Database Password

A code that must be supplied when logging on to a DBMS to
use a database. The DBMS verifies the password before accepting
any other messages.

Data Field

A portion of a record type in which data values can be
stored.

Data Field/Record Set Linkage

A data field in a variable data set in a TOTAL database
that is used as the variable control key for a linkpath from a
master data set.

Data Field Redefinition

A data field that occupies the same space in a record type
as another data field. A record instance cannot contain values
in both data fields. One instance can contain a value in one
field while another contains a value in the other.

Data Format

The portion of a generic data description that includes the
structural characteristics such as data type, length, storage
method, etc. If a generic data description is for elementary
values (e.g., customer names), it will have only one data format
(e.g., Data Type - alphanumeric, Length = 30). If it is for
compound values (e.g., part numbers consisting of six numerals
followed by three letters followed by four more numerals), it

A-3

UM 620341001
30 September 1990

will have more than one data format, one for each elementary
portion of the values. For the part number example the data
formats would be:

1. Data Type = numeric Length = 6
2. Data Type = alphabetic Length = 3
3. Data Type = numeric Length = 4

A generic data description with a compound unit of measure,
i.e., one that is a group of component unit of measures, must
have a data format for each component unit of measure.

Data Item

An attribute class as seen by a user in a user view, i.e.,
a kind of data (e.g., employee hire date), not a particular data
value (e.g., 15 August 1980).

Data Management System

Either a database management system or a file management
system, i.e., a set of computer programs that must be used to
establish and maintain a database or a computer file.

Data Type

The combination of a type of values (e.g., alphanumeric,
signed numeric, etc.) and a type of storage (e.g., binary,
packed, etc.)

Dependent Entity

The entity class that is dependent in a specific relation
class. A dependent entity, i.e., an entity is a dependent
entity class, can exist only if it is related to an independent
entity. Contrast with independent.

Description Type

A generic object may have several different kinds or styles
of description (short, long, technical, nontechnical, etc.).
Each is a description type.

DMS on Host

A data management system that is available on a particular
host.

Domain

A set of rules about the values that are allowed for a data
item, attribute class, or data field. A domain is either an
elementary domain or a group of two or more elementary domains,
called component domains.

Domain Range

A series of consecutive values that represent all or part
of an elementary domain.

A-4

UM 620341001
30 September 1990

Domain Value

A single value within an elementary domain.

Elementary Data Field

A data field that does not have any component data fields.

Elementary Domain

A domain that does not have any component domains. An
elementary domain can be expressed as a series of values or
value ranges.

Elementary Unit of Measure

A unit of measure that does not have any component units of
measure.

Entity Class

A collection of similar entities, i.e., those that have the
same kinds of attributes. An entity is a person, place, event,
thing, concept, etc.

Entity Class/Record Type Join

A relational join operation that combines two related
entity classes as part of the design of a record type.

Entity Class/Record Type Mapping

Indicates that an entity class corresponds to a record
type, i.e., that they both have the same meaning and that the
record type can be used to store instances of the entity class.

If a record type has more than one EC-RT mapping, some of
its instances correspond to instances of one entity class while
others correspond to instances of another, i.e., the record type
is the relational union of the entity classes. An example is a
Replenishment Order record type that maps to both the Purchase
Order and Manufacturing Order entity classes. Each record
instance represents either a purchase order or a manufacturing
order.

Entity Class/Record Type Union Discriminator

If a record type corresponds to more than one entity class,
i.e., if it has more than one EC-RT mapping, it is the
relational union of those entity classes. Some instances of
such a record type correspond to instances of one of the entity
classes, others to those of another. For such a record type
there must be a way to determine which record instances
correspond to instances of each entity class. An entity
class/record type union discriminator provides this by
specifying that a given value in a given data field indicates
that a given EC-RT mapping should be used.

A-5

UM 620341001

30 September 1990

Entity Class/User View Join

A relational join operation that combines two related
entity classes as part of the design of a user view.

External Schema

See User View.

File

A set of stored data that is managed by a file management
system (e.g., VSAM).

File/Database

A set of stored data, i.e., either a computer file (e.g., a
VSAM or flat file) or a database (e.g., an ORACLE or IMS
database).

Generated Request Processor

A software module that was created by the CDMP Precompiler.

Generic Data Description

A detailed description of the values for one or more data
items, attribute classes, data fields, and/or module parameter.It includes format, measurement, and domain characteristics of
the values.

Generic Data Description Component Unit of Measure

A component unit of measure that is specified as part of a
data format. These are only specified for a generic data
description that includes a compound unit of measure, i.e., one
that is a group of component units of measure.

Generic Data Description Domain

A domain that is specified as part of a generic data
description.

Generic Data Description Unit of Measure

A unit of measure that is specified as part of a generic
data description.

Generic Object

Anything with a name that distinguishes it from other
things of the same type and with a description that explains
what it is; e.g., any entity class or attribute class.

Generic Object Description

An explanation of what a particular object is.

A-6

UM 620341001
30 September 1990

Generic Object Description Line

One fixed-length portion of a generic object description.

Generic Object Keyword

A keyword for a particular generic object.

Generic Object Name

An noun or noun phrase by which a generic object is known.
Two objects can have the same name.

Horizontal Partition

Indicates that the same record type is not used to store
all instances of an entity class, i.e., that one is used to
store some instances while another is used to store others. Each
record type represents a "fragment" of the entity class. These
fragments do not overlap, i.e., no entity instance appears in
more than one fragment. An entity class can be partitioned into
any number of fragments, usually with each beinq in a different
[Bdatabase or file, although that is not a requirement; some or
all may be stored as different record types in the same database
or file. A constraint statement defines each fragment, i.e.,
describes the conditions that must be met by each entity
instance that is stored as a given record type. If an entity
class is replicated, i.e., if each of its instances is stored in
more than one database instances is stored in more than one
database or file, each replication can be horizontally
partitioned. For example, for the first replication the
instances could be partitioned based on the values in one
attribute use class, and for the second replication they could
be partitioned based on the values in another.

Horizontal Partition Fraqment

A record type that is used to store some, but not all, of
the instances of an entity class. A constraint statement
describes the conditions that must be met by each entity
instance that is stored as the record type. If the conditions
are satisfied by the attribute values of an entity instance, it
can be stored as an instance of the record type; otherwise, it
cannot be.

Host

A computer in the IISS.

IMS Seqment

A record type in a database that is controlled by IBM's IMS
DBMS.

A-7

UM 620341001
30 September 1990

Independent Entity

The entity class that is not dependent in a specific
relation class. An independent entity, i.e., an entity in an
independent entity class, can exist without being related to a
dependent entity. Contrast with dependent entity class.

Inherited Attribute Class

An attribute class that appears in a dependent entity class
because it has migrated from an independent entity class. Must
be part of a key class in the independent entity class.

Inherited Attribute Classes Form

Provides a single source of information about inherited
attribute use classes that are to be described in Lhe conceptual
schema.

Inherited Key Class

A key class in the independent entity class of a relation
class that has migrated to appear in the dependent entity class
of that relation class.

Internal Schema

A description of the data items in a database. Described
from DBMS User's perspe,.tive. Usually not fully normalized.

Join

A relational operator that creates a new relation by
combining two or more source relations according to specified
criteria. A natural join combines the relations by matching
tuples with equal values for a common attribute class (column).

Key

An assortment of attributes in an entity that can be used
to uniquely identify that entity within its entity class. An
enB[Btity can have more than one key; e.g., an employee can be
uniquely identified by either an employee number or a Social
Security Number.

Key Class

A group of one or more of an entity's attributes that can
be used to uniquely identify the entity within its entity class.
An entity can have more than one key. A key class is a
collection of the attribute classes whose member attributes
comprise the keys for the entities in an entity class. An
entity class has the same number of key classes as each of its
member entities has keys. For example, if each entity has three
keys, the entity class has three key classes.

A-8

UM 620341001
30 September 1990

Key Class Member

An attribute use class that is part of a key class.

Key Class Migration

The process of moving key classes from independent to
dependent entity classes.

Library Module

A software module that is stored in a software library.

Model

A representation of the information requirements of all or
part of an enterprise in terms of entity classes, relation
classes, and attribute classes.

Model Glossary Name

A name of a model entity class or a model attribute class,
either an official name or an alias.

Module Parameter

A means of supplying valur. -j a software module and of
receiving results from a module.

Numeric Data Format

A data format for -alues that can only contain numerals
(0-9) and associated punctuation (decimal point, comma, etc.).

Owned Attribute Class

An attribute class that is not an inherited attribute
class.

Owned Attribute Classes Form

Provides a single source of information about owned
attribute use classes that are to be described in the conceptual
schema.

Program Control Block

A portion of a PSB that describes and controls how an IMS
database can be accessed.

Program Specification Block

A qroup of logical views of IMS databases that is used for
interacting with the IMS DBMS.

A-9

UM 620341001
30 September 1990

Record Set

An association between one record type, called the owner,
and o[Bne or more other record types, called the members.

Record Set Member

A record type that is a member of a record set.

Record Type

A group of data values that are stored together as a unit
in a computer file or database. A record type is the collection
of all the records of the same kind, i.e., all the records that
contain the same kind of data values.

Relation Class

An association between an entity in one entity class and
one in another. A relationship has a label that describes the
association. For example, a customer named ABC Corp. is
associated with an order numbered 123 in a manner labeled
"placed". A relation class is a collection of the identically
labeled relationships between the members of the same two entity
classes. Each relation class is either specific or nonspecific.

In a specific relation class, one entity class is
"independent" while the other is "dependent"; i.e., entities in
the first can exist without being associated with any in the
second, but those in the second cannot exist without being
associated with one in the first. One key class from the
independent entity class "migrates" through each specific
relation class to appear in the dependent entity class as
inherited attribute classes.

In an nonspecific relation class, neither entity class is
dependent on the other; i.e., entities in either entity class
can exist without being associated with any in the other. For
convenience, one entity class is arbitrarily called
"independent" and the other is called "dependent".

Relation Class Form

Provides a single source of information about relation
classes that are to be described in the conceptual schema. r
Relation Class/Record Set Mapping

Indicates that a record set represents the same association
as a relation class. If a record set has more than one member A
record type, it may represent several relation classes, a
different one for each member. Hence, this entity class is only
indirectly dependent on record set (via record set member).

Repeating Data Field Occurrence Counter

A data field whose data values indicate how many
occurrences of a repeating data field actually contain values.

A-10

UM 620341001
30 September 1990

Segment Data Element

A data field is an IMS segment.

Software Library

A computer file in which software modules can be stored.

Software Module

A set of computer instructions that are treated as a whole,
i.e., stored, compiled, and executed together.

Subschema

The description, in the DDL of a CODASYL DBMS, of all or
part of a database. For IISS, only one subschema is needed for
a CODASYL database, and it must describe all the common data
within the database that is to be accessible with NDML.

Unit of Measure

A standard scale for determining the magnitude of
something. Examples include inch, foot, foot-inch, meter,
ounce, pound, hour, minute, second, etc.

Unit of Measure Conversion

A means of transforming a value expressed in one unit of
measure into an equivalent value expressed in another; e.g.,
transforming inches to feet or feet to meters.

Unit of Measure Conversion Constant

A number in a unit of measure conversion step that is the
same every time the conversion is performed. A software module
that can be used to perform a unit of measure conversion. A
module parameter that is used to supply values to or receive
values from a unit of measure conversion module.

Unit of Measure Conversion Step

One of a series of arithmetic steps that can be used to
perform a unit of measure conversion. Each step takes the value
resultiBng from the prior step (the first step uses the value to
be converted) and adds, subtracts, multiplies, or divides by
another value, either a constant or a variable. The result of
the last step is the converted value. The processing sequence
is always first steps to last; parentheses, branching, and

& conditional tests are not allowed. Consequently, some unit of
measure conversions cannot be performed in this manner; e.g.,
converting meters to feet-and-inches.

A-11

UM 620341001
30 September 1990

Unit of Measure Conversion Variable

A number in a unit of measure conversion step that can be
different every time the conversion is performed. This is only
used when the unit of measure being converted from has two or
more component units of measure. Each component is a variable
and each is involved in a separate step.

User Application Process

A software module that supports business activities rather
than data processing activities and that can be executed
directly, i.e., a main routine, not a subroutine. A user AP may
contain NDML commands for accessing stored data via the CDM,or
it may access them directly via DMSs, or it may call subroutines
that contain NDML commands or that access stored data directly.

User View

A group of data items that a user wants to deal with as a
group. It is similar to an entity class but does not
necessarily meet all the conditions for being one, it can be
thought of as an unnormalized entity class. A user view is
often the result of combining several entity classes via
relational join operations and selecting particular attribute
use classes as data items via relational project operations.

Vertical Partitions

An entity class is vertically partitioned when some of its
attribute use classes map to data items in one user view and
others map to those in another. An entity class can have
several vertical partitions.

A1

A

A-12

UM 620341001
30 September 1990

APPENDIX B

REFERENCES

ICAM Life Cycle Documents

FTR11021000U Volume V, Information Modeling Manual
~(IDEFI)

PRM620341200 Embedded NDML Programmers Reference Manual

UM620341100 Neutral Data Definition Language (NDDL)
User's Guide

UM620341002 Information Modeling Manual - IDEFI-
Extended (IDEFIX)

TBM62034100 CDM1 - An IDEFI Model of the Common Data

Other References

"The ANSI/X3/SPARC DBMS Framework: Report of the Study
Group on Data Base Management System"' American National Stin-
dards Institute, AFIPS Press, Montrole New Jersey, 1977.

Atre, S., "Data Base, Structure Techniques for Design,
Performance, and Management", John Wiley and Sons, Inc., New
York, 1980.

Martin, James, "Managing the Data Base Environment",
Volumes I and II, Savant Institute, 1981.

B-1

