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Abstract

In this note a simple algorithm, which uses the phase information from the

geometrical optics limit, to construct the shape of an object is presented.

Essentially, the phase in the back scattered direction determines the equation

of the tangent plane at the unique, but unknown, specular point. This plane

depends upon the two spherical angles 9 and ., which describe the incident

wave direction. The observation that the tangent plane envelopes the obstacle

as 0 and $ are varied, allows the derivation of an explicit formula for the

equation of the surface in terms of the measured scattered phase. An

analogous two-dimensional formula is also presented.
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I. Introduction

The field of inverse scattering is concerned with the determination of an

object's shape from scatterinb data. In a fundamental paper [1] Keller used

the theory of geometrical optics to formulate and to partially solve this

problem for convex objects. Specifically, he showed that the amplitude of the

scattered field in the backscattered direction was related to the curvature of

the obstacle at a unique specular point in two dimensions, and to the Gaussian

curvature in three dimensions. In the former case he was able to determine the

obstacle's shape to within a rigid translation. He obtained similar results

for the later case when the object was a surface of revolution and the

incident wave propagated along the axis of rotation. In general, he observed

that the problem became equivalent to Minkowski's problem whose solution

required solving a nonlinear partial differential equation. Weiss used

Keller's results on several specific examples and studied the effects of

noisy data and of relaxing the convexity restrictions [2]. Neither author

used the phase information from the geometrical optics approximation.

Majda and Ralston [3] studied the direct scattering problem and found

that the argument of the determinant of the scattering matrix s(A) gave

information about the target shape in the high frequency limit. Specifically

they derived the formula

s(A)- V - S H da + O(l),
321r 1 84

where A is the wavelength of the incident radiation, V is the volume of the

target, S is its surface area, H is its mean curvature, and a denotes -le

surface of the target. Using a result of Melrose [4] they showed that s(A)

was related to the differential cross section of the scattered field in the

forward scattered direction.
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In this note we give a simple algorithm which uses the phase information

from the geometrical optics limit to construct the shape of a convex object.

Essentially, the phase in the back scattered direction determines the equation

of the tangent plane at the unique, but unknown, specular point. This plane

depends upon the two spherical angles 6 and 0, which describe the incident

wave direction. By observing that the tangent plane envelopes the obstacle as

O and 0 are varied, we obtain an explicit formula for the equation of the

surface in terms of the measured scattered phase.

I. The Inverse AlRorithm

A plane acoustic wave insonifies a convex target 0 which can either be

soft, hard, or have a surface impedance. The incident wave vector is given by

VI = (coso sinO,sino sinO, -cosO) T where 0 and 0 are the spherical angles

measured from a fixed origin 0 which is either inside or outside of 0; see

Figure 1. In the high frequency limit the scattered field in the

backscattered direction is given by [1,5]

U - A exp(-2ikXO. VR ) _eik r , as r - I x2 + y 2 
+ z2 - . (1)

In this expression A is a constant which depends upon the particular boundary

condition, 0 is the position vector of the specular point on the surface aQ,

G is the Gaussian curvature at this point, and VR is the unit tangent vector

along the specularly reflected ray. The location of the specular point is

unknown.

We focus our attention on the phase term exp(-2ikXO. VR) which we assume

can be measured as a function of 4 and 0. The equation of the tangent plane

at the specular point is given by
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X*VR - d(0,0) (2)

where d(0,0) - X0 . VR is the distance, from the fixed origin 0 to the tangent

plane (see Figure 1), which is known from the phase measurements. Now

equation (2) is a two parameter family of planes which envelope the surface

M0. To find the envelope, i.e. 80, we partially differentiate (2) first with

respect to 0 and then with respect to V. These two additional equations are

then appended to (2) to give three equations in three unknowns. They are

x(coso sing) + y(sino sing) + z(cosO) - d(0,0) (3a)

-x(sino sing) + y(coso sine) - d4  (3b)

x(coso cosO) + y(sino cosO) - z(sinO) - d6  (3c)

where the subscripts denote partial differentiation. The solution of this

system of equations is

x - d(cos sine) - d(sino cscO) + d (coso cose) (4a)

y - d(sin4 sing) + d (coso escO) + d (sino cose) (4b)

z - d(cosO) - d (sing) (4c)

which is just a parameterization of the surface 8a. The apparent singularity

in (4) at 9 - 0 is removable, because d (0,0) - 0 as can be deduced from (3b).

The determination of the phase d(0,6) is carried out in the time domain

because it is related to the time lag r between the initiation of the

transmitted pulse and the reception of the reflected pulse. If r is the

distance from the transmitter to the origin 0, then an application of an

inverse Fourier transform shows the time between the leading edges of the

incident and reflected pulses to be

r - fr + 2d(4,0)]/c (5)

where c is the acoustic wave speed in the material surrounding 0. For smooth

incident pulses without a sharp leading edges this time is difficult to
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measure and is a source of error. We shall not pursue this point further at

this time.

III. Examples

In the first example, let il be a sphere of radius R centered at the point

XC (xc,Yc,Zc) which is measured from the fixed origin 0. The geometrical

optics phase in the backscattered direction is -2kd where d is given by

d(0,0) - R +VR - XC = R + xc(sinO coso) + yC(sin sin4) + zC cosO. (6)

We observe here that the phase d is not a constant, because the origin 0 is

different from the center of the sphere. Inserting (6) into (4) we obtain

x = xC + R(coso sinO) (7a)

Y - YC + R(sino sinO) (7b)

z - ZC + R cosO. (7c)

which is just the equation of our sphere.

In the second example, let 0 be the triaxial ellipsoid

TA x- 1 (8)

centered at the fixed origin 0. Here, A is a symmetric matrix whose

coefficients are to be determined and x T  (x,y,z). Let P be the rotation

matrix that diagonalizes A, i.e., PAPT _ D, where D is the diagonal matrix

with entries Dij - A iSij. The Ai are the eigenvalues of A and are the

recipricals of the axis lengths, and the columns of P, Pi, are the

corresponding eigenvectors which geometrically point along the principal axis

of the ellipsoid. In Appendix A we shown that the backscattered geometric~i

optics phase is given by
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d - VR R VR  (9a)

T
R - (eP) (eP) (9b)

e = (6. /,/A) (9c)
ij-i

where the matrix e is the square root of D 1. According to the theory

presented in Section II, equation (4) gives an equivalent representation of

(8) using (9). We do not demonstrate their equivalence here.

Rather, we pose the more restricted question: Given the a priori

knowledge that 0 is a triaxial ellipsoid, how many measurements must we make

to determine the orientation of the object and its principal axis lengths?

In the low frequency limit Dassios [6] has shown that six measurements are re-

quired and we shall show that the same is true in the high frequency limit.

Choosing the six incident wave vectors (1 ,0,0 )T, (0 ,1 0 )T, (0 0 ,I)T, (1 1,0 )T

(1,0,) T , and (0,1,1) T , we explicitly determine the six coefficients of the

symmetric matrix R from (9a). However, from the definition of R, (9b), it is

evident that PRPT = D " , so that the orthogonal transformation P simultaneous-

ly diagonalizes A and R. Therefore, since R is known, we can numerically

compute its eigenvalues and explicitly obtain the lengths of the principal

axis. Moreover, since the columns vectors Pi are the corresponding normalized

eigenvectors, we can explicitly determine the Eulerian angles, which define

the orientation of 0, [7) from their components.
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IV. Two-Dimensional Result

The analogous two dimensional result is derived in the same fashion and

we simply state here the result

x - (cos,)d - sino d' (Sa)

y - (sino)d + coso d' (8b)

where d(O) - X0 VR , X0 is the two-dimensional position vector of the specular

point, V R (coso,sine) is the negative of the incident wave vector, and the

prime denotes differentiation with respect to 4,
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A )pvndix A

!,', ob r",c (8) lr the rorAL,! to the ellipsoid at x is Ax and

,;oneqi .tl'.' that, L..! pccil" point is the the solution of the equation

VX( ." 11 (AI)

C i5; a fixed co 7.'int. Since he specular point, X0 , lies on the

it foI!ows trim (2) :tI 8 ) that d(0,9) - 1/c. Using the fact that

?% \' D, v.c doiuce Fro:n (AT) that

1 17 -I
X- - (1 ID PV (A2)

D I - i is !lie in', e n f ). T,:ii1  the scalar product of (A2) with V and
R

r: iP.ling the d Jnt - o n ,d, (2j, 'e obtain the desired result, (9a).

Fly-re Caption

1 ,uu- I. (eo:netry of prohi ;:: show;vg the specular point P , the incident and

!tci,1;irly r.,ftiected ;:ave iumbers, and the fixed origin 0.


