437
s\\i\ ‘l\\‘\\ \x\‘\\\‘ WA @

Lead Detection and Mapping with Reference to Relationships
Between Scale, Sensor Characteristics, Surface Conditions

and Atmospheric Properties
DTIC
‘yi-,’» ?

, “LECTE P
MAY 819324 H

ANNUAL REPORT

15 April 1991 - 14 April 1992 c

ONR Grant No: N00014-90-J-1840

J. Key, R.S. Stone, J.A. Maslanik, and E. Ellefsen

Cooperative Institute for Research in Environmental Sciences
Division of Cryospheric and Polar Processes
University of Colorado

Boulder, CO 80309-0449 0
e
e
-
Q
20 April 1992
;\l

" —12006
TSI p i




Lead Detection and Mapping with Reference to Relationships
Between Scale, Sensor Characteristics, Surface Conditions
and Atmospheric Properties

ANNUAL REPORT

15 April 1991 - 14 April 1992

ONR Grant No: N00014-90-J-1840

J. Key, R.S. Stone, J.A. Maslanik, and E. Ellefsen

Cooperative Institute for Research in Environmental Sciences
Division of Cryospheric and Polar Processes
University of Colorado
Boulder, CO 80309-0449

L AR YN l't.'r

e

ArQwaiga For '
T Gmiaa ¥

N 27 |

T i et Vor,

l?ﬁ( N \
20 April 1992 s ”IEQE‘(’{‘DXX .....

A Q! At iliey ‘.-”étti

i 'Q‘ 1 '»‘"‘\f‘x,”’(‘[‘;'

ooty




TABLE OF CONTENTS

Summary
Project Objectives
Part I: Image-related Studies

I.1 Image Preprocessing and its Effect on Lead Statistics

1.2 Theoretical Analysis of the Effect of Sensor Resolution
on Observed Fractional Area Coverage

1.3 Empirical Analysis of the Effect of Sensor Resolution on
Observed Lead Width Distributions

1.4 Estimating Width Distribution Moments from Partial
Data

1.5 Lineal Methods of Estimating Lead Parameters
1.5.1 Leads Widths Measured Along a Transect

1.5.2 Lead Fractional Area Coverage Measured Along a
Transect

Part II: Radiative Transfer Modeling Studies
II.1 Radiative Transfer Studies in Lead Detectability
II1.1.1 Radiative Transfer Model and Model Validation
I.1.2 Ice Island Data
I.1.3 Contrast Studies
1.2 Ice Surface Temperature Retrieval
Part III: Accomplishments and Plans
1.1 Summary of Year 1 Accomplishments

III.2 Papers Supported in Whole or in Part by
N00014-90-J-1840

18

30

35

35

35

45

46

46

48

51

67

70

71

72




.3 Planned Activities for Year 3
References

Attachments

ii

73

74

76

- - - !
.




SUMMARY

This project was originally proposed and funded for a two-year period. A third year of
research has recently been proposed and, while its subject matter is a logical extension to that
of the first two years, it is also a change in direction (section II.3). Therefore we present here
results from the first two years collectively, rather than the second year alone. Those topics that
are exclusive to either year 1 or year 2 are identified. In some cases, however, the topics
described in this report were initially investigated in year 1 and continued in year 2.

During the first two years of the project, empirical studies of scale relationships in the
retrieval of sea ice lead statistics have been undertaken, as have modeling investigations of
atmospheric influences on the satellite signal. Additionally, we have developed statistical models
that describe the scaling properties of leads. The empirical studies have been based primarily
on comparisons within and between Landsat and AVHRR imagery, while the atmospheric models
have been specific to the AVHRR. Submarine sonar data have been used in the statistical model
development. Specific accomplishments to date include:

(1) The parameterizations of clouds, haze, and atmospheric chemical constituents in the
LOWTRAN 7 radiative transfer model have been reviewed. Atmospheric temperature and
humidity profiles for the arctic have been constructed from Soviet ice island data and are

being used in the model. (Year 1)

(2)  Resampling methods have been tested on simulated, AVHRR, and Landsat images, as
have the effects of digital enhancements. (Year 1)

(3)  Procedures for the retrieval of lead statistics have been developed and applied to Landsat
imagery successively degraded to more coarse resolutions.

4) The relationship between "apparent” lead widths measured along a transect (e.g., from
submarine sonar or as a sampling method for satellite imagery) and the "true” lead width
distribution has been formalized in a statistical sense, so that one distribution may be
obtained from the other. Submarine sonar data have been analyzed in this context.

(Year 1)

(5 A statistical model has been developed for the retrieval of lead area fraction from
measurements along a line; e.g., a submarine sonar transect or a lineal sampling method

for satellite images.

(6)  The effect of atmosphere/surface conditions on the AVHRR-measured radiance in the
thermal channels has been examined in terms of thermal contrast. Surfaces include open
water, 5 cm, 15 cm, and 2 m thick ice. Atmospheric conditions include clear sky with
haze, cirrus, and low-level ice crystal plumes.

(7 Additional KRMS data has been acquired for a time period in which DMSP OLS data is




currently being used in the analysis of lead pattems.

(8)  Information on Arctic aerosol optical depths during LEADEX have been collected by two
of the investigators on the NOAA P-3 with sun photometers. This information will be

used in future radiative transfer applications.

(99  Two workshops for the satellite remote sensing investigators of the Leads ARI have been
hosted by this group in Boulder. Recommendations for instrumentation during

LEADEX’92 were made.

One workshop report and two referreed papers have been published, and one paper has
been submitted for publication. Three additional papers are in preparation for submission to
referreed journals. Two graduate students have been supported part-time over the course of the

project.




PROJECT OBJECTIVES

The goal of this project is to understand how sensor characteristics, atmospheric
properties, and surface conditions influence the detection and interpretation of sea ice leads using
Advanced Very High Resolution Radiometer (AVHRR) and other satellite data. We seek to
determine the sources and magnitudes of errors inherent in the measurements, how data from
different sensors can be combined, and how lead statistics change with the different spatial
resolutions of existing and future sensors.

In partial fulfillment of these objectives, we have defined which atmospheric and surface
parameters are most critical for lead detection. Based on model simulations, we have been able
to better evaluate the importance of Arctic-specific model parameters; e.g., temperature and
humidity profiles and aerosols, for the purpose of accurately simulating sensor responses. Sensor
characteristics such as spectral response, field-of-view, spatial resolution, scan geometry and data
processing methods coupled with scene variability (solar zenith angle, atmospheric opacity,
surface temperature, snow cover, ice thickness, size with respect to sensor resolution) determine
feature signatures. The effects of these parameters had to be examined before lead signatures
could be evaluated in terms of lead width and orientation, particularly for features that occur near
spatial and radiometric limits of sensor resolution.

The NOAA AVHRR satellite sensor provides daily, Arctic-wide coverage of ice
conditions at moderate resolution and low cost. These image sets contain information that is of
primary concern to research and operational interests in the Arctic. Although a variety of studies
Yave examined various aspects of remote sensing of sea ice, essentially no work had previously
been done to relate lead signatures observed in AVHRR data to lead characteristics. This lack
of substantive verification work left key questions unanswered and posed significant research
problems relevant to current lead investigations. Specifically, the following questions motivated
our research during the first two years of the project:

Lead and Surface Characteristics: How does lead detection depend on ice thickness for
given sets of sensor properties, surface temperatures, and atmospheric conditions? Since
the temperature contrast between open water and ice provides a means to map leads using
thermal imagery, to what degree does this contrast affect the apparent width of a lead as
observed in an image and our ability to detect it? Does lead orientation affect lead
detection when a wide-angle scanning instrument such as AVHRR is used instead of a
nadir-viewing sensor such as Landsat? How accurately must surface temperatures be
measured to yield accurate lead calculations?

Atmospheric, Boundary Layer, and Solar Zenith Angle Effects: How do these factors
combine with surface conditions and path length to the sensor to determine the thresholds
of lead detection? What feedbacks to the atmosphere do leads create, and how will these
affect detection; e.g., ice crystal plumes from open leads that extend up to - and in some
cases through - the top of the inversion layer? What are the characteristics of "typical”
polar atmospheres (i.e., water vapor content, temperature profiles, cloud microphysical
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characteristics), how are they treated in radiative transfer models, and how do these
factors affect remote sensing?

General Sensor Considerations: In what ways might sensor scan-angle, sensor
calibration, data gridding, and image enhancements influence the ability to detect leads?
Are lead statistics derived from image centers where spatial resolution is greatest
comparable to those derived from image limbs where resolution is poorest?

While we do not claim to be able to answer all of these questions completely, the results
of the past two years’ research have given us at least partial answers to each. The data collected
during LEADEX will be used in the validation of those results.

To accomplish our objectives, our approach includes both modeling and empirical studies
(Figure 1). The radiative transfer modeling is done for the purpose of simulating the satellite
sensor response under a variety of atmospheric and surface conditions. The empirical studies
include: a comparison of lead statistics determined in imagery of varying scales; e.g., AVHRR,
Landsat, KRMS and OLS data; effects of different resampling methods and digital image
enhancements on lead detection in AVHRR and Landsat data; use of distributions derived from
the low resolution imagery to estimate characteristics of the distributions obtained in the high
resvlution images; and the relationship between lead width and spacing statistics measured along
a transect to the true distributions.

Results from this work will be important to the development and application of lead
detection and mapping algorithms proposed elsewhere within the Leads ARI. For example, the
ability to more accurately access lead width and spacing distributions from medium resolution
imagery is crucial to the evaluation of large-scale heat flux estimates. The modeling and
empirical approaches to quantifying the relationships of scale discussed here are a necessary first
step to operational lead analysis from satellite data.

Satellite data used in this study includes Landsat visible, AVHRR visible and thermal,
KRMS passive microwave, and OLS visible and thermal. Additionally, lead statistics have been
derived from submarine sonar data. Radiosonde temperature and humidity profiles from arctic
ice islands are employed for radiative transfer studies. Each data type is described in more detail
in the appropriate sections.

This report is divided into three parts. The first details those studies that relate directly
to retrieving lead statistics from satellite imagery: image preprocessing, sensor field-of-view, and
sampling methods. The second part describes radiative transfer studies of how the atmosphere
affects the satellite signal and how this in turn might affect lead statistics derived from the
imagery. The third part of the report summarizes the accomplishments to date and future plans.
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Figure 1. Overview of the modeling and empirical approaches to the study of lead
mapping and relationships of scale in satellite data. The radiative transfer model on the
left is used for sensitivity studies and to generate synthetic imagery. This imagery as well
as Landsat data are degraded to coarser resolutions. The simulated multi-resolution data
sets, along with actual data from different satellite sensors, are used to study the effects
of measurement scales on derived lead statistics.
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Part I. IMAGE-RELATED STUDIES
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The empirical portion of this study involves the comparison of AVHRR, Landsat, and -
to a limited extent - KRMS data. These sensors provide a broad range of spectral and spatial
resolutions. In this section, the potential effect of image preprocessing methods on lead statistics

is examined.
I.1 IMAGE PREPROCESSING AND ITS EFFECT ON LEAD STATISTICS

Figures 2 and 3 show the effect on lead detection in AVHRR imagery of different
resampling methods and different digital number thresholds for "lead / no lead” mapping. The
plots in Figure 2 of digital numbers along transects in AVHRR data processed using different
resampling schemes show some relatively small shifts in digital number (DN) within leads and
adjacent to leads, which would yield a change in estimated lead-covered area (such as at transect
location 292-293 in Figure 2a). For small leads, the potential exists to perhaps mask the lead
completely (as at transect location 279 in Figure 2a). Figure 3a shows results using a threshold
that detects small and large leads. The threshold used for Figure 3b detects only the larger leads.
The effect of the "smoothing” interpolations (bilinear and cubic convolution) is to eliminate about
40% of the smallest leads using this threshold detection scheme. Figure 4 summarizes the effect
of threshold and resampling scheme on total lead-covered area (in this case, the percent of an
AVHRR image covered by leads). The effect of using different resampling schemes is small
compared to the effect of choosing different thresholds. Thus, while Figure 3 suggests a
substantial reduction in small leads when interpolations are used vs. nearest neighbor, the effect
of the loss of these small leads on total lead area is relatively small. However, it is also worth
noting that, since the turbulent fluxes from a given lead-covered area increase as the proportion
of lead-covered area in narrow leads (as opposed to wide leads) increases, any systematic shift
by the processing scheme toward a reduction in small leads may need to be considered when
calculating regional estimates of surface fluxes.

To further examine the effects of different interpolation schemes, "synthetic” images
containing a simulated lead or lead complex with different shapes and dimensions (e.g., the
patterns shown in Figure 5) are used. Four lead types were created (e.g., "Type 1", etc. in Figure
5): Type 1 represents narrow open-water leads; Type 2 wider open-water leads; Type 3 leads with
new and young ice growing from the edges of the leads; and Type 4 representing leads with new
ice building up along one side of the leads. These images were then resampled using bilinear
interpolation and nearest-neighbor methods. Resampling was applied to a 45° rotation of the
original images. Table 1 lists the changs in lead-covered area resulting from the resampling and
determined using two different thresholds. A DN of 10 (a typical reflectance for open water) was
chosen to represent open water and a DN of 85 was used for ice-covered pixels. The effects are
clearly dependent on the threshold chosen to define the cut-off between whether to consider a
pixel as part of a lead or not. Both the bilinear and nearest neighbor interpolations cause large
reductions in the area assumed to be open water. When a threshold is chosen at a higher
reflectance, such as would be appropriate to detect all pixels with some open water or thin ice
in them, then the percentage of pixels with some lead-covered area increases substantially when

bilinear interpolation is used.
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In addition to affecting the calculation of lead-covered area, the different resampling
schemes affect the appearance of leads in an image, and thus the ability of an interpreter or
automated pattemn-recognition scheme to detect the leads. In particular, nearest neighbor
resampling tends to break up the linearity of leads. Figure 6 shows a lead complex in Landsat
imagery resampled using nearest neighbor (Figure 6a), with an attempt at reconstituting the
lineasity using a median filter (Figure 6b). As with most enhancements, the improvement is
subjective, but the lead patterns appear more well defined in the median-filtered image.

Additional insight into the effects of spatial resolution and sensor properties can be gained
by comparing colocated imagery from different sensors. Figure 7 shows registered Landsat MSS
imagery (top) and AVHRR data (bottom) for a portion of the Beaufort Sea. While the same
general lead structure is apparent in both images, the ability to detect the smaller leads is
considerably reduced in the AVHRR image (maximum spatial resolution of 1.1 km) vs. the 80 m
Landsat image. This effect of spatial resclution on lead detection, as well as the effect of
different spectral information on lead mapping, is also illustrated in Figure 8, which shows a
subsection of the Landsat and AVHRR images, as well as a KRMS strip superimposed on the
Landsat data. This comparison of how leads are represented in visible-band wavelengths (the
Landsat), therrnal (AVHRR), and passive microwave (KRMS), points out the problems of
intercomparing lead statistics derived from different sensors. In this examrle, threshold detection
of lead-covered area in the three data types yields 1.1% lead-covered area in the Landsat, 12.8%
in the AVHRR (which includes apparent low cloud with substantially warmer temperatures than
the ice surface), and 5.4% lead-covered area in the KRMS image.

These different representations are perhaps better represented by comparing transects
through the imagery. Figure 9 shows such a transect. The lead located at transect location 32
is marked with an arrow on the Landsat image in Figure 8. The transect runs vertically through
the imagery. In this example, a contrast stretch was applied to the AVHRR data to enhance the
subtle DN differences in the image. From these comparisons and a similar comparison of
transects in AVHRR (unenhanced) and Landsat (Figure 7), it is fairly clear that the AVHRR and
Landsat reveal similar lead pattems, but that the number of leads detected, and the image area
that is considered to be partially lead-covered, is quite sensitive to the DN threshold chosen to
define lead area. In Figure 9, for example, the large lead at location 32 could be defined as
having a lead width from 800 m to about 1500 m in the Landsat data depending on the DN
threshold used, and from 300 m to 1800 m in the AVHRR, again depending on which DN is
selected. The lead information contained in the KRMS data clearly is quite different from that
shown in the other image types.
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Table 1. Effect of resampling method (bilinear interpolation = BL, nearest neighbor = NN) and

digital number (DN) threshold on estimation of percent lead-covered area.

u Fractional Area Lead Coverage (%)

(by Resampling Method)

Lead Type Threshold None Bilinear NN
1 <84 0.65 1.23 0.82
2 <84 1.83 2.61 1.77
3 <84 1.83 2.59 1.77
4 <84 1.83 2.60 1.77
1 <10 0.65 0.01 0.00
2 <10 1.83 1.19 0.00
3 <10 1.83 0.00 0.00
4 <10 1.83 0.64 0.00
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Figure 2. Change in AVHRR digital number (DN) using different resampling schemes. Plotted
data are two transects (graphs A and B) through three colocated images processed using nearest
neighbor (NN) (solid line), cubic convolution (CC) (dashed line), and bilinear interpolation (BI)

(dot-dash line).
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Figure 5. Synthetic images used to assess effects of resampling on different lead types.




Figure 6. Effect of NN resampling on lead appearance in Landsat imagery (Fig. A), and
reconstruction of lead appearance through the application of a spatial filter (Fig. B).




Figure 7. Colocated Landsat and AVHRR imagery for the Beaufort Sea, showing the
representation of the same lead complex in the different image types.
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Figure 8. Colocated Landsat, AVHRR, and KRMS + Landsat imagery for the Beaufort Sea. The
black arrowhead in the Landsat image marks the location of the lead and transect presented in
Figure 9.
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Figure 9. Transect through the imagery in Figure 8: Landsat (solid line), AVHRR (dashed line),
KRMS (dot-dash line).
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1.2 THEORETICAL ANALYSIS OF THE EFFECT OF SENSOR RESOLUTION
ON OBSERVED FRACTIONAL AREA COVERAGE

While there have been studies of the effect of sensor resolution on parameter retrieval,
the approaches have been empirical and have dealt only with cloud fraction (and a single cloud
type such as cumulus; e.g., Shenk and Salomonson [1972), Wielicki and Welch [1986)) or land
cover classes (e.g., Woodcock and Strahler [1987), Townshend and Justice [1988]). In the case
of cloud fraction, real and simulated data containing cloud fields were degraded in resolution, and
the fractional coverage was observed as a function of scale. In the case of land cover classes,
the variance of the image was plotted as a function of measurement scale for the purpose of
determining the optimal resolution for monitoring. While all of these studies are useful, no
concise statement of the relationship between fractional coverage and sensor resolution was given,
so that the results are difficult to generalize to other parameters such as leads. Figure 10
provides an example of visual changes in leads with increasing pixel size (and is described in
more detail in section 1.3). Here we present an analytical approach to this problem currently
being investigated.

1.2.1 Analytical Approach

Our goal is to determine the probability distribution for the proportion of pixels in an
image that have the characteristic of interest; e.g., the fraction that are cloudy or are sea ice leads,
etc. This depends on the distribution of the subpixel area fraction of the parameter, specified by
its shape, mean and variance. The variance depends on the pixel size and the spatial structure
of the parameter, represented by its autocovariance function. The formalization that follows can
be applied to virtually any geophysical parameter whose spatial distribution can be described in
this manner.

1.2.1.1 Indicator Function

Let g(x) be a measurable property (e.g., temperature) at the point whose position is
represented by the two-element location vector x, and define { to be any condition on q. For
example, { might be the condition g(x) < ¢,-8, where t, is the surface temperature and § is some
threshold value. The indicator function /(x) in region R is equal to 1 if g(x) satisfies { and 0
otherwise. The fractional coverage for which g satifies { is given by

P = A; fR Ix) dx (1)
where A, is the area of R and is a normalizing factor. For the rest of the discussion R is a
satellite image. The probability density of I is f(1) = P and f(0) =1 - P.

Now let g,(y) be a measurable property of a pixel Z within R centered at location y (again,
a vector). As measured by the sensor, ¢, would be an average over a pixel: :
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o) = A7 [} qt) ax

where A; is the area of the pixel. In reality the sensor point spread (transfer) function would play
a role here, but this is beyond the scope of this study. The fractional area of R for which ¢,
satisfies { is an estimate of the "true" fractional coverage and is

P=N"Y L (2)

R

where N is the number of pixels in R and /, is the indicator function for the pixel based on g,
defined in the same way as is / for a point based on q. Our goal is to relate P’ to P over a range

of A,

To determine P’ analytically the probability density of 7, must be known. It is not trivial,
and depends on P, {, pixel size, and the way in which objects satisfying { are distributed in
space. Since I, is a function of g, which in turn depends on the fractional coverage within a
pixel, p,, then I, can be expressed in terms of p,. For example, consider a cloud pattern where
the cloud top temperature is everywhere the same. Let { be a thresholding operation such that

_J1v ifgq,< t-d
492 - {0 otherwise

where ¢, is the surface temperature and § is some threshold amount. (It is assumed that 1, > ¢_,
the cloud top temperature.) This is equivalent to

_JY ifp,2p (3)
4Py = {0 otherwise

The expression p, 2 p states that the fractional coverage within the pixel is greater than some
quantity p, which has a value such that

(1-p)T, + pT, < T,-t
Of course, there is a distribution of ¢,, although we do not address this issue here. It should also

be noted that /, need not have only values of 0 and 1. It could, for example, take on values of
0, 0.5, and 1 if { is multi-conditional. So, based on (3), the probability density of I, is

£,(1) = Prob(P, 2 p)
f,(0) = 1 - Prob(P, 2 p) = Prob(P, < p)

where P, represents the random variable subpixel fractional coverage (with specific realization
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D2), Prob(P, 2 p) represents the probability that the fractional coverage within the pixel is greater
than some quantity p. Now, how is Prob(P; 2 p) determined?

1.2.1.2 Distribution of Subpixel Area Coverage

For a single pixel the fractional coverage of the geophysical parameter is

pAY) = A [, 1) ox

which can be considered as an estimate of P. After Stoyan et al. {1989, p. 184], the expected
value and variance of P, are
E(P,) =
var(P,) = E[P E(P )2
E{[A %) dx - PIA; [, 10 ax - P]}

= A2 f sz k{lIx-X1) dx dx’

where k; is the autocovariance function for the indicator function.

If a specific model distribution for P, is assumed, with expected value and variance as
defined above, then the density of the pixel indicator function is also known. Here we use the
Beta distribution, a two-parameter density function defined over the closed interval 0 <y < 1

often used as a model for proportions:

a-174 _AB-1 r(a+ﬁ) '
foealy) = y= -y W' o,f>0;0<y<

14

elsewhere

The two parameters can be determined from maximum likelihood estimation based on the mean
and variance of the subpixel fractional coverage:

1-E(P
B = Lo (EUPII1-E (P -varte))
and
_ PP
(&)

The shape of the distribution is related to the size of the pixel relative to the spatial
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structure (e.g., wavelength) of the geophysical parameter. In the limiting case with very large
pixels relative to the wavelength of cloud elements, for example, most pixels would have a
similar subpixel fraction of cloud and the variance would be very small. The distribution would
therefore have a single peak. On the other hand, if the pixel size is very small then the
likelihood of pixels being either completely overcast or completely clear increases, the variance
increases, and two peaks are expected. This is illustrated in Figure 11 where the beta distribution
is shown for a mean fraction of 0.2 and variances of 0.1, 0.05, and 0.01.

Exponential covariance is a reasonable model for many geophysical parameters and is
used here:

k{p = p(1-p)e~ (r,a20) (4)

where o describes the dependence of the covariance on the vector distance r=[x-v|. Implicit
in this expression is that g(x) is isotropic. The parameter o can be determined from observed
autocovariances. Equation 4 can be written in linear form as

In[k(N] = Inlp(1-p)] - ar

and o determined through the method of least squares regression. Examples of observed and
model autocovariances are given in Figure 12.

1.2.1.3 Distribution of P’ and its Error

As shown in (2), the random variable P’ is the proportion of the N pixels in R for which
I; = 1, and its sampling distribution may be approximately normally distributed (this has not yet
been tested) with mean and standard error, respectively,

ko= £(1)

, f,(1) £,0)
c= |2 _*
N

if N is large. The distribution function of the fractional coverage at a particular sensor resolution,
Fp, can be determined from

1

6/2n

However, it is not likely that the I, at one location is independent of I, at nearby locations, so
that the degrees of freedom must be adjusted to account for spatial autocorrelation. This has the
effect of increasing the variance of P’.

e 2 gy (4)

Folp) = [
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If the true fractional coverage P is a kno'wn, single value, then one way of expressing the
error is A = |P - P’|, (0 < A < P), with distribution function

F(a) = ProbA<a) = f AP, dpf

where the density function f, is determined numerically from F..

We note here that the preceeding formalization of the problem may not be necessary if
the "object” of interest follows certain scaling laws, such as those used in the definition of
fractals. It may be that the relationship between changes in some geometrical descriptor of a
geophysical phenomenon and the scale of measurement is adequately descrit ~d by the fractal
dimension. This has been shown to be true of clouds [Lovejoy, 1582] and land cover classes
[DeCola, 1989] for the relationship between area and perimeter. The stream length-drainage area
relationship has also been described in terms of fractals [e.g., Robert and Roy, 1990]. A
preliminary investigation of lead length, L, at different pixel sizes, U, in the degraded Landsat
data shown in Figure 10 has also indicated a fractal characteristic. This relationship is expressed
as

L U™

where D is the fractal dimension (1 £¢ < 2). The data in Table 2 yield a fractal dimension of
1.18, from which we infer that lead lengths constitute a fractal set.

Table 2. Changes in open water fraction with pixel size.

Pixel Size (m) Fraction Area (km?)
80 0.030 270.0
160 0.027 235.8
320 0.023 196.7
640 0.016 : 124.9

The above formalization is currently being tested with a Poisson line process as a
simulated satellite image. The density of the process (i.e., mean spacing) is 1250 m and the
orientations of the lines (leads) are random. The lines are assigned thicknesses (widths)
following the negative exponential density function:
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1w
fw) = .Xe

where w is lead width and A is the mean width. For the simulations A=200m. One realization
of the Poisson line process is shown in Figure 13, where the pixel size is S0 m. Figure 14
illustrates how the scan angle effect can be included in the simulated leads images.




Figure 10. Landsat MSS band 4 scene of the ice pack north of Alaska in March 1988. Area
covered in the upper left image is approximately (80 km)’. The remaining are degraded images
with pixel sizes of 160, 320, and 640 m.
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Figure 11. Three realizations of the Beta probability density function. In all cases the mean
subpixel fractional coverage is 0.2. The variance is (a) 0.1, (b) 0.05, and (¢) 0.01.
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Figure 12. Autocovariance of the indicator function for two transects across the Landsat image
in Figure 10. Shown are the observed (solid) and modeled (dot-dash) autocovariances on the left
and the regression line fit to the observations on the right.




Figure 13. One realization of a Poisson line process in image form. Pixel size is 50 m.




| o /, . ’; /,a;/ F; “; f' .\_‘“{/« m ‘
Figure 14. Another realization of a Poisson line process with the AVHRR scan angle effect
included. Both images are from approximately 600 km off-nadir on the left side of the image
and 1350 km off-nadir (the swath edge) on the right. In (a) all pixels are 1.1 km on a side. In
(b) the scan angle effect is included.




Figure 14, continued.
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1.3 EMPIRICAL ANALYSIS OF THE EFFECT OF SENSOR RESOLUTION
ON LEAD WIDTH DISTRIBUTIONS

While there are advantages to comparing lead statistics derived from different types of
imagery as shown in Figure 8, such a study would be difficult given different acquisition times,
wavelength ranges of the various sensors, and geolocation problems. To alleviate these problems,
comparisons are made across image scales based on the same initial image, where the change in
resolution is obtained by modeling the transfer function between the initial data and the desired
resolution and then subsampling. A spatial filter that estimates the point spread function of the
Landsat sensor is applied following the methodology presented in Justice et al. [1989]. At each
degradation cycle, Gaussian random noise is added back into the image to reduce the smoothing
effects of the filtering operation. Images with FOVs of 160, 320, 640, and 1280 m were created
in this manner (Figure 10). Data are Landsat Multispectral Scanner (MSS) band 4 (0.5-0.6 pm)
scenes of the Beaufort Sea, March 1988, with an initial field-of-view (FOV) of 80 m.

Lead statistics are retrieved from a lead/not-lead binary image. To obtain the binary
image the fourth order trend surface is removed from original grey scale image [Eppler and Full,
1992] and a thresholding procedure is applied at each degradation cycle. One example is shown
in Figure 15. Valid lead fragments are identified, where "valid" refers to a linear feature for
which a meaningful width and orientation can be determined. Linearity is determined through
correlation/regression analysis. Lead widths are measured perpendicular to the regression line,
at 1 km intervals, and the slope of the regression line is the measure of the lead orientation.

The distribution of lead widths corresponding to the images in Figure 10 is shown in
Figure 16. The disappearance of small leads due to a lack of contrast and the increase in the
relative frequency of large leads as pixel size increases can readily be seen. In this particuiar
image, a width threshold of approximately 250 m divides those leads which would disappear in
the 320 and 640 m degradations. This change in lead widths as a function of pixel size affects
the total lead area was previously illustrated (Table 2) for the images in Figure 10, where lead
area fraction decreases with increasing pixel size. Orientations of leads can also be expected to
change, if anisotropy (i.e., a preferred orientation) exists. An illustration of this is shown in
Figure 17 for the Landsat image in Figure 10. Results from other Landsat scenes show similar
patterns as do those for the simulated images.

Given the changes in the entire width distribution and in the widths of individual leads
with increasing pixel size as illustrated in Figure 18, is it possible to estimate the true widths of
the leads? The criteria for how a given lead will "grow” or disappear during image degradation
must include a measure of its thermal contrast to the surrounding ice. For example, a narrow,
open lead might grow during the first degradation, accompanied by a drop in contrast due to
smoothing, and then disappear in the subsequent scene. A narrow refrozen lead, in comparison,
might disappear during the first degradation. An empirical transfer function that describes this
change is currently being investigated.
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Figure 15. Trend surface

image corresponding to the Landsat scene in Figure

10a.
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Figure 18. Change in lead widths of individual leads from Figure 10 as a function of pix;l size
for those that "survived" the degradation to 640 m (top), and those that did not survive (middle).
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1.4 ESTIMATING WIDTH DISTRIBUTION MOMENTS FROM PARTIAL DATA

Given that very small features will generally not be resolved, the issue then becomes one
conceming the possibility of using the partial distribution of a particular statistic (e.g., lead
widths) measured at low resolution to estimate the complete or "true” distribution of that
parameter. For example, assume that lead widths, x, follow a negative exponential distribution
with an unknown mean, A. From a sampling point of view it is useful to treat the distribution
of widths as discrete and address the number n; of leads in bin i that have widths between x; and
x;+w where w is the width of the bin:

- Nw -x, I\ (5)

n = ——

A

where N is the unknown total number of leads in the spatial area. The idea is that n; is measured
for a few bins, and that A and N are estimated. To accomplish this, (5) is rewritten in linear form

as -

In(n) = In(%‘f) - %x,

Letting @ = In(Nw/A) and b = X! and solving for a and b by the method of least squares with the
observed data, the mean of the distribution and the total number of leads can then be estimated.

Experiments with this model show it to be very sensitive to the bin width and the number
of bins in which leads actually occurred in the low resolution imagery. This is not unexpected
considering that the entire range of x is being estimated in the least squares model by
observations in only one part of its entire range (such extrapolation is not recommended). The
problem can be alleviated somewhat by including a few observations of small lead widths; for
example, measurements from a few SAR images within the same area.

1.5 LINEAL METHODS OF ESTIMATING LEAD PARAMETERS

1.5.1 Lead Widths Measured Along a Transect

Perhaps the largest source of high-resolution data that is potentially useful for lead
statistics is that collected by submarine sonar over the last three decades. For ice draft
information these data are invaluable. But can they also be used for statistics of lead geometries;
i.e., lead widths and spacings? Lead width and spacing statistics have been examined in two
sonar data sets. Both are in the Canada Basin (Figure 19); one in August of 1970 and one in
October of 1978. Tables 3 and 4 show the results. How realistic are these data? If leads are
conceptualized as linear features of some width, then crossing the lead at any angle other than
perpendicular to its local orientation will result in an overestimate of the actual width.
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Table 3. Lead widths (m) and standard deviations (below) in the QUEENFISH data by region,
maximum draft (cm), minimum width (m). Also given are the maximum lead widths
encountered. No statistics are given if fewer than 20 leads were found in a region.

MAX DRAFT/ REGION
MIN WIDTH A B o] D E F G H
30 / 3 26.5 33.1 21.3 26.5 47.7 ——— 18.5 23.8
2.1 2.9 2.4 2.6 7.1 2.6 3.7
20 60.5 66.1 54.8 53.5 68.3
3.8 5.8 5.6 5.2 2.6
50 88.2 109.7 ———— 100.4
5.3 10.8 10.4
200
Maximum: 228 502 130 283 327 70 90
70 / 3 32.6 54.8 27.5 32.1 49.4 36.4 34.7 40.0
3.3 3.8 2.0 2.8 7.0 8.3 3.8 3.7
20 €3.7 78.1 55.6 54.2 73.7 55.9 59.0 60.4
6.8 5.2 3.9 4.2 9.9 13.9 6.4 5.4
50 106.1 129.2 106.5 104.2 129.5 ————— 98.1 105.5
14.3 8.5 7.9 9.5 19.0 10.3 9.1
200
Maximum: 885 526 255 294 374 537 257 227
100 / 3 28.9 40.8 32.9 30.9 50.5 32.4 36.4 40.0
2.4 2.5 2.5 2.2 6.5 6.6 3.7 3.6
20 59.3 70.4 70.2 53.6 74.1 ———— 57.9 62.8
5.4 4.1 5.5 3.8 9.1 5.9 5.6
50 102.4 126.6 124.5 98.6 123.0  —————-~ 98.6 109.6
11.9 7.8 11.2 8.1 15.9 10.0 9.8
200
Maximum: 886 533 763 299 374 539 263 269
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Table 3, cont. Lead widths (m) and standard deviations (below) in the
northeastern Canada Basin data by region, maximum draft (cm), minimum width
(m). Also given are the maximum lead widths encountered. No statistics are
given if fewer than 20 leads were found in a region.

MAX DRAFT/ REGION
MIN WIDTH 1 J R L M
30/ 3 116.9 9.6 10.2 ———— 5.4
100.8 4.9 2.4 1.7
20
50
200
Maximum: 2181 153 83 42
70 / 3 30.8 14.4 17.6 8.7 15.9
16.1 2.0 3.3 1.3 4.2
20 132.8 62.5 65.8
81.4 9.3 13.7
50
200
Maximum: 2274 234 342 72 510
100 / 3 28.7 17.9 18.8 9.4 16.5
12.1 2.1 2.7 1.1 4.5
20 104.6 61.6 68.8  mm——me——e 84.7
52.9 7.4 10.8 29.9
50
200
Maximum: 2280 239 348 81 792
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Table 4. Lead spacings in the QUEENFISH data, by region, maximum draft (cm), minimum width (m).
S=mean spacing (m) with standard deviation below, N=number of leads per kilometer. Also given are
the maximum spacings encountered. No statistics are given if fewer than 20 leads were found in a region.

MAX DRAFT/ REGION
MIN WIDTH A B c D E F G H
30 / 3 S: 462.9 428.5 929.9 739.4 €85.9 ——— 2190.9 2551.0
39.9 1.7 118.9 82.2 155.1 402.5 759.2
N: 2.01 2.16 1.06 1.31 1.38 0.45 0.33

20 §: 1240.1 1014.0 2821.6 1897.2 1061.8
150.1 125.6 601.9 307.5 240.6

N: 0.73 0.92 0.31 0.51 0.90
50 S: 2552.6 2351.2 —-————- 5493.8
318.7 503.1 1436.6
N: 0.36 0.41 0.17
200
Maximum: 4893 5842 9321 8594 7062 13523 24321
70 / 3 S: 339.7 3€9.8 364.1 513.0 504.7 553.1 859.6 737.7
24.9 30.2 34.6 41.2 102.8 108.2 100.1 61.9
N: 2.67 2.35 2.56 1.83 1.82 1.70 1.10 1.14
20 S: 783.2 568.2 926.6 1050.0 816.9 983.4 1775.5 1230.3
70.6 50.3 97.9 102.5 173.1 221.0 264.0 131.4
N: 1.16 1.53 1.02 0.91 1.14 0.98 0.54 0.67
50 S: 1818.8 1238.0 2935.7 3226.0 1868.1 = ——=——- 3757.9 3029.1
190.6 150.4 621.9 577.5 515.6 1200.8 653.3
N: 0.50 0.73 0.33 0.29 0.48 0.22 0.27
200
Maximum: 3807 4792 4777 4488 6782 4996 6221 3304
100 / 3 S: 238.1 213.4 225.5 416.3 443.2 421.6 837.0 722.0
14.8 13.1 17.9 31.5 88.4 84.4 97.6 72.3
N: 3.73 3.93 3.86 2.24 2.04 2.20 1.13 1.31
20 S: 597.7 416.5 581.6 866.6 705.2 ————— 1587.7 1321.9
46.4 33.7 59.9 78.7 147.0 227.5 213.0
N: 1.51 2.05 1.54 1.09 1.30 0.60 0.72
50 S: 1468.9 1064.2 1449.1 2465.7 1591.7 —— 3603.1 3251.1
157.0 126.1 261.8 348.7 397.6 1158.5 723.5
N: 0.61 0.83 0.63 0.37 0.60 0.23 0.29
200
Maximum: 2897 2808 3628 4478 6779 4993 6218 8918

--------‘
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Table 4, cont. Lead spacings in the northeastern Canada Basin data, by
region, maximum draft (cm), minimum width (m). S=mean spacing (m)
with standard deviation below, N=number of leads per kilometer. Also
given are the maximum spacings encountered. No statistics are given if
fewer than 20 leads were found in a region.

MAX DRAFT/ REGION
MIN WIDTH I J K L M
30 / 3 S: 3381.9 4567.3 2477.4 ———- 2996.1
1500.2 2495.0 913.9 1948.1
N: 0.15 0.22 0.36 0.17
20
50
200
Maximum: 23429 71342 42161 37059

70 / 3 S: 994.4 700.1 928.5 1763.9 911.1
229.6 129.7 159.7 449.3 169.6
N: 0.96 1.37 1.01 0.53 1.07

20 S: 4476.4 4587.8 4479.7
1396.3 1513.8 1513.3

N: 0.19 0.21 0.20
50
200
Maximum: 24918 13508 10022 25355 14562
100 / 3 S: 739.6 585.6 635.4 858.2 709.5
130.6 73.9 89.7 197.8 110.9
N: 1.28 1.65 1.53 1.09 1.36
20 S: 2896.8 2765.0 2860.5 ————== 4493.1
795.8 623.6 608.4 1214.4
N: 0.29 0.35 0.31 0.19
50
200

Maximum: 12353 7298 10022 25212 11154




Figure 19. Sonar transect locations through the central Canada Basin (August 1970) and
northeastern Canada Basin (October 1978).




Part 1: Image-related Studies 41

A methodology has been developed for estimating width distributions of linear features
from measurements along a transect through a network of such features. Both isotropic and
anisotropic orientations of the linear features have been considered. In the anisotropic case, the
distribution of orientations of the lines must be known. In both cases if the distribution of true
widths and the orientations are viewed as independent random variables then the true width
distribution can be determined from the apparent widths and vice versa. Furthermore, if the true
widths and the orientations vary jointly then the apparent width can be determined from the joint
distribution. The geometry used in the development of the statistical model is shown in
Figure 20. Also shown is an example of the error distribution function (the difference between
the true and apparent lead widths) for transects taken nearly parallel to the preferred orientation
mean and another perpendicular to the mean orientation of leads in the Landsat image of

Figure 10.

"True" lead width distributions in both submarine sonar and Landsat imagery have been
determined and apparent widths measured along transects were obtained. In the imagery it was
found that lead orientations were not uniform, and width distributions generally followed the
negative exponential model although considerable variation was observed. The width
distributions measured from submarine sonar illustrated that the general shape is similar to those
derived from overhead imagery, but that the errors in widths can be significant. Of course, this
potential error is not an issue if adequate two-dimensional data are available. For example, side-
scan sonar will permit a more accurate retrieval of lead and keel statistics, although processing
such data introduces a new set of problems. Sonar data with concurrent overhead imagery from
aircraft or satellite is also a potentially valuable source of information. However, lead width
distributions derived from satellite data may not be accurate since very small leads are not
resolved. This is particularly true for medium resolution data such as that from the DMSP or
the AVHRR. One solution might be to retrieve the orientation information from satellite data
where small lead widths cannot be resolved, and the width information from submarine sonar
transects. Aircraft using a laser profilometer would be analogous to the sonar transects.
Unfortunately, it is not possible to determine the actual error in lead widths derived from much
of the archived sonar data. However, if lead "climatologies” can be compiled for various
locations and seasons, or if significant relationships between lead orientation and geostrophic
winds can be developed, then at least we can determine the probable error.

Other applications of this procedure are possible. For example, the formalization would
be the same for lead and keel spacing distributions and their associated errors. An application
similar to that of the sonar transect concems sampling strategies. Lead widths can be sampled
along a transect in satellite imagery or aerial photos, and this sample can then be used to infer
the characteristics of the true distribution. A similar application involves large-scale estimates
of heat flux. Heat flux through leads is in part a function of fetch, and fetch is a function of the
true lead width and the crossing angle of the wind. If the wind direction is constant as it travels
across the network of leads, then the wstribution of fetches can be determined from the
distribution of true lead widths as presented in the previous sections.

The entire procedure is detailed in the Attachment.
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Figure 20. TOP: Lead and transect geometry used to estimate the distribution of errors in lead
width measurements when made along a transect; i.e., with suvmarine sonar. BOTTOM: The
error distributions are shown for two different transects across a lead network that exhibited a
preferred orientation: one oriented almost parallel to the mean lead orientation and the other
almost perpendicular.
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1.5.2 Lead Fractional Area Coverage Measured Along a Transect

In the previous section sea ice leads were modeled as a Poisson line process and a method
was was presented for estimating the "actual” lead width distribution from a width distribution
measured along a transect (the "apparent” lead width distribution). The purpose of this section
is to extend that work to the estimation of the fractional area coverage of leads from
measurements along a line. This line could be a submarine transect under the ice or on a satellite
image. Two methods from stochastic geometry are presented although applications have not yet
been performed. While the problem is illustrated with respect to sea ice leads it should be noted
that the general lineal method described here is applicable to any geophysical parameter with
known (or determinable) spatial structure.

1.5.2.1 Method for a Poisson Line Process

It in fact leads can be accurately modeled as a Poisson line process then one approach
to estimating the area fraction is to use the lead width distribution [Miles, 1964]:

P’ = Prob{O is covered] = 1-6™ (1)

where O is an arbitrary origin and 7 is the density of the process. The overall mean line (lead)
thickness (width), w’, is defined as

W = n-‘fo"u/(e)ae

where w'(0) is the mean thickness of lines with orientation 6 (0 < @ < x). This applies to lines
oriented isotropically; i.e., with a uniform distribution: f5(8)=rt' where f, is the probability
density function for lead (line) orientations. For anisotropic thick lines then

W = fo " w/(6) dF.,(6)

where dFg(0) = fo(0) d6, and Fg is the cummulative distribution function for orientations. The
lead width distribution can be determined as in Key and Peckham [1991].

1.5.2.2 General Lineal Method

The general expression for the estimate of the fractional area coverage, p’, of a
geophysical parameter whose actual fractional coverage is p, regardless of the the spatial structure
of that parameter is

P = w10 ax
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The factor py is needed for normalization and depends on the shape of the structuring element
U, for example it may be the length of a line or the area of a square. The indicator function /(x)
for the underlying function g(x) at coordinate vector location x is 1 if g(x) satisfies some

condition and 0 otherwise.
The expected value of p’ is p and its variance is

P = E@-pF = ui [, [ kiix-yi) dxay

where &, is the autocovariance function of the indicator function I [Stoyan et al., 1989].

For measurements along an array of n parallel lines the corresponding expressions are

L
4 (2)

nl

var() = (n? | { k{ix-yl) axdy

where L is the total length of lines each of length /.

Exponential covariance, as described in the previous section, is used here:
k{r) = p(1-p)e™ (r,a20) (3)
where o describes the dependence of the covariance on the vector distance r=[x-y[. Implicit
in this expression is that g(x) is isotropic.

For a Poisson line process a=21/rt [Stoyan et al., 1989, pg. 178, Miles, 1964] and the
estimation variance is approximately

2p(1-p)(1 --;-,)
var(p) = —

These models are currently being applied to real and simulated satellite data. Results will
be presented in the next report.
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II.1 RADIATIVE TRANSFER STUDIES IN LEAD DETECTABILITY

II.1.1 Radiative Transfer Modeling and Model Validation

In order to utilize radiative transfer models most effectively, we have reviewed how they
treat factors such as ice cloud morphology, cloud optical thickness, low level inversions,
boundary layer effects, and other aspects relevant to the polar regions. A particular concemn is
that existing models, cloud properties, standard atmospheres, etc. have typically been developed
for low and mid-latitude applications, and may thus contain biases or shortcomings when applied
to polar regions. Part of this effort involves incorporating polar atmospheres and cloud properties
into the models. Arctic-specific temperature and humidity profiles have been obtained and are
discussed in the next section. Unfortunately, little information on the microphysical
characteristics of arctic clouds is available. Data that are available, however, are being
incorporated into the models where appropriate. This is limited primarily to arctic stratus
experiments during the early 1980’s, and some measurements of aerosols. Additional data is
expected to be obtained during LEADEX by instruments on the NOAA P-3.

Work described in this part of the report relies heavily on simulating radiances measured
by the AVHRR sensor. To simulate radiances in the AVHRR thermal channels, daily
temperature and humidity profiles in each season are used with the LOWTRAN 7 radiative
transfer model [Kneizys et al., 1988]. Radiances are modeled for sensor scan angles from (" to
60° in 10° increments. The appropriate sensor response function is applied to the calculated
radiances, and radiances are then converted to brightness temperatures. Atmosperic chemical
composition, background tropospheric and stratospheric aerosols for the subarctic winter and
summer models are used, since no such information is available from the ice islands. The optical
properties of Arctic haze have not been extensively measured; model calculations [Blancher and
List, 1983] show that the volume extinction coefficient of Arctic haze is generally of the same
order of magnitude as that of the tropospheric aerosols. Therefore, the use of tropospheric
~ background aerosols is appropriate.

In order to test some sense of the validity of the radiative transfer model, downwelling
longwave irradiances (fluxes) computed with LOWTRAN were compared to measurements at
South Pole, Greenland and Denver. Radiosonde data from the three locations were used for the
calculations. To obtain irradiance, E, from LOWTRAN (which outputs radiances, L) the
calculation was done for four angles (8 streams) and employed the weighting function:

E = n(0.3626838L, + 0.3137066L, + 0.2223810L, + 0.1012285L )

where the subscripts of L refer to the sensor zenith angles 79.430°, 58.296°, 37.187", and 16.201°,
respectively. Additionally, a single-angle method (52.5°) was tested and found to give fairly
accurate results. The bandwidth of 3.5 - 50 pm used in the calculations corresponds with the
bandwidth in which a pyrgeometer measures.
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The LOWTRAN irradiances differed from the measurements by -4.7% to +5.6% .
Assuming 5% accuracy for the pyrgeometer data these results are acceptable. Results for clear

sky are listed in Table 5.

Table 5. Comparison between modeled and observed longwave fluxes under clear sky conditions.

Station and Date Measured 4 Angles Error (%) 52.5° Error (%)
(W m?) (W m?) (W m?)
Denver, 9-30-89 334 336 +0.60 320 -4.19
South Pole, 12-28-86 128 124 -3.13 117 -8.60
South Pole, 7-31-86 71 75 +5.63 71 0.0
South Pole, 11-6-86 107 102 -4.67 96 -10.28

Calculations were also done for cloudy sky conditions. In comparisons of model results
and observations, the observed cloud fraction, A,, must be considered. Here the model is used
to estimate clear and overcast fluxes, and these are weighted by the observed cloud fraction.

A remaining problem concems the differences between the microphysical properties of
LOWTRAN'’s cloud models and those of the observed clouds, which are unknown. Table 6

gives the results of the cloudy sky comparisons.

Table 6. Comparison between modeled and observed longwave fluxes under cloudy conditions.

Station and Date Measured | 4 Angles | Error (%) 52.5° Error (%)
Cloud Fraction, Type (W m?) (W m?) (W m?)

Greenland, 7-23-90; 309 301 -2.59 301 -2.59
8/8, stratocumulus
Greenland, 7-26-90 283 282 -0.35 275 -2.48
3/8, stratocumulus
Greenland, 7-1-90 225 227 +0.89 217 -3.56
1/8, cirrus
South Pole, 7-16-86 157 156 -0.64 156 -0.64
8/8, cirrus
South Pole, 11-26-86 126 129 +2.38 122 -3.17
8/8, cirrus
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To examine the effect of vertical temperature structure on upwelling longwave radiation,
radiances in the three channels were estimated using arctic mean and subarctic standard winter
and summer profiles (described below) with identical seasonal surface temperatures. The
maximum difference in radiances was 0.05 W m? sr' indicating that the vertical temperature
distribution of the relatively dry arctic atmosphere plays a very small role in the attenuation of
upwelling longwave radiation.

.1.2 Ice Island Data

Analyses are based on atmospheric temperature and humidity profiles collected bty
rawinsonde from a Soviet ice island (NP-26), located at approximately 85° N 170° W during
1983-1987 (Figure 21). Generally two observations per day were collected covering a vertical
range of 0-25 km. Profiles that have at least 10 levels are retained in the analysis. Observations
include temperature, dew point depression, wind speed, and wind direction. For the years
1986-87 surface-based cloud observations are also available. These observations include low,
middle, and high cloud types, height of the cloud base, and cloud fraction.

Only clear sky profiles are of interest in one of the studies below, and since the satellite
thermal radiances under cloudy conditions will reflect cloud top temperature and a significant
amount of cloud cover will affect the lower tropospheric temperature structure, clear sky
“seasons” that differ in their vertical temperature and humidity structures are then defined. The
seasons are determined objectively with a squared Euclidean distance clustering algorithm: the
variables are temperature and humidity at each level. To reduce the degree of statistical
dependence between levels, only one measurement per kilometer was used. The resulting seasons
are winter: October through March, summer: June through August, and transition: April, May.
and September. The resulting mean seasonal temperature profiles for clear, cloudy (greater than
75% cloud cover), and mixed conditions are shown in Figure 22.




Figure 21. Average minimum (solid) and maximum (dashed) sea ice extent
in the Arctic Ocean. Also shown is the area covered by the NP-26
drifting ice island.




Winter

10~ .
sk .
L ]
ot X 3
200 220 240 260 280 300
Temperature (K)
Transition
30r T Y T -
25+ —— dear 3
3 — - cloudy :
E 20:_ mixed _
g 154 -
10 E— 3
s5- :
[ O
0 £ e 4 ]
200 220 240 260 280 300
Temperature (K)
Summei
30 —T T T T
25 cloar 3

MRS o s

cloudy
- mixed

A REane

Altitude (km
*
2

Pl OO

200 220 240 260 280 300
Temperature (K)

Figure 22. Arctic winter, transition, and summer temperature profiles under clear, cloudy, and
mixed conditions from a Soviet ice island located in the Canada Basin.
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I.1.3 Contrast Studies

Atmospheric and view angle effects are modeled under a variety of conditions to simulate
sensor response in order to gain a better understanding of how leads might appear in the satellite
data under varying surface and atmospheric conditions. With this knowledge, it may be possible
to estimate the smallest resolvable lead under a given set of surface/atmosp!  c/sensor resolution
and view angle conditions. Emphasis is on the AVHRR thermal channels (3: centered at

approximately 3.7 pm, 4: 11 pm, 5: 12 pm).

LOWTRAN calculations using the data and methodology described above were made over
a range of 0.55 micron optical depths for three prescribed surface temperatures used to
characterize different lead types (open or refrozen) and a fourth to represent the "background”
scene consisting of 2 m thick multiyear ice. These temperatures were estimated using a surface
energy balance approach (Maykut, 1982] to characterize the open leads at 271 K, leads covered
by S cm thick ice (257 K) and 15 cm thick ice (248 K). The multiyear ice has a skin
temperature of 235 K in all model calculations. The model was run for satellite viewing angles
of 0° (nadir), 20° and 50° and accounted for differences in directional emissivity at each central
wavelength of the AVHRR channels. Temperature and humidity profiles were based on the mean
January ice island soundings. All simulated radiances were converted to brightness temperatures
for ease of analysis and intercomparisons.

Examples of the results are shown in Figure 23 for three commonly observed conditions
in the Arctic, ice crystal precipitation and haze in the boundary layer and high-level cirrus.
Figures 23a, 23c, and 23e are composites of results at 0° viewing angle showing the behavior of
channel brightness temperatures (numbered 3, 4 and 5 on the plots) for simulations assuming
each of the surface temperatures defined above. Figures 23b, 23d, and 23f show results for a
satellite angle of 50°. A hypothetical cirrus cloud of varying optical depth was inserted in the
lowest 1 km of the atmosphere to simulate the effects of “ice crystal precipitation” which is a
common feature affecting the radiative balance of the lower troposphere in the Arctic.
Regardless of the underlying surface type the simulated brightness temperatures rapidly converge
to the 248 K blackbody radiating temperature of the “cloud top” level as optical depth increases.
Note that because all three channels are centered in window regions of the spectrum, surface
temperatures are well simulated at zero optical depths. Maximum brightness temperature
differences exist between the channels at around optical depth 0.5 to 0.8. If satellite radiances
can be measured accurately, these differences may be used to delineate leads when optically thin
ice crystal precipitation is present in the boundary layer, but brightness temperature differences
and contrast between surface types is rapidly diminished as the optical depth increases beyond
about 1.0, making it impossible to detect the underlying leads. This value is not at all
unexpected as ice crystal precipitation optical depths of up to 20 have been reported [Curry et

al., 1990}.

Figures 23c,d show the results assuming that a haze layer exists from the surface to a
altitude of 2 km (the boundary layer aerosol model defined in LOWTRAN) over the same range
of optical depths. Also shown in Figures 23g.,h are the brightness temperatures for aerosols
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(haze) during the day when channel 3 exhibits a significant contribution from reflected solar
radiation. Multiple scattered solar radiation adds significantly to the upwelling radiances as
optical depths of the haze layer increase while the infrared channels do not show any multiple
scattering effects. All other input parameters to LOWTRAN are the same as for Figure 23a. In
the haze simulations it is obvious that the brightness temperature differences between channel
pairs are small when only thermal radiances are considered (nighttime) over the entire range of
optical depths while large differences exist between channel 3, and channels 4 or 5 when solar
radiation is accounted for during the day. Also, the contrast between surface types for each
channel remain significant over the range of visible optical depths shown, particularly when only
thermal radiances are considered. Gross differences between Figures 23a,b and 23c,d are due to
markedly different properties of the haze and cirrus models defined for LOWTRAN.

The contrast between varying lead types and the multiyear ice pack can be expressed by the
difference in simulated channel brightness temperature for a hypothetical lead temperature, say
open water, 5 cm thick ice or 15 cm thick ice and the surrounding ice pack at any optical depth,
normalized by the brightness temperature of the ice pack (here taken to be 2 m thick).
Figures 24a-f show the normalized contrast for channel 4 assuming the conditions illustrated in
Figures 23a-f. This relative measure of contrast may provide a means to detect leads using
AVHRR data even at night, though it is apparent that if optically thick ice crystal precipitation
exists that the contrast is essentially zero making it impossible to detect leads using such a
method.

For cirrus clouds brightness temperatures again converged at the blackbody radiating
temperature at cloud top for large optical depths, but the convergence was less dramatic than in
the case of low level ice crystal precipitation. Channel 3 minus channel 4 brightness temperature
differences at 50° viewing angle (not shown) were significant in this case reaching nearly 12 K
over open leads at a 0.55 micron optical depth of about 2.6 with the difference being less than
5 K over the pack ice. Differences in these signatures when incorporated into image analysis
algorithms in conjunction with ancillary information should be very useful in the detection of
leads. Though the normalized contrast between surface types degrades with increasing cirrus
optical depth, our simulations indicate that reasonable signatures should be detectable for a range
up to about optical depth 4.0, that is, for most cirrus conditions expected to be observed in the
Arctic region.

Combining brightness temperature differences with contrast will improve our ability to
detect leads significantly. Developing an algorithm to do so presents a challenge for the future.
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1.2 ICE SURFACE TEMPERATURE RETRIEVAL

The ability to retrieve surface parameters from satellite data in the polar regions is
constrained by our limited knowledge of atmospheric temperature, humidity, and aerosol profiles,
the microphysical properties of polar clouds, and the spectral characteristics of the wide variety
of surface types found there. In this section we present results in the retrieval of ice surface
temperature (IST) from the thermal channels of the Advanced Very High Resolution Radiometer
(AVHRR) sensors on-board the NOAA series satellites.

Sea and land surface temperature (SST and LST) retrieval algorithms have been developed
using the thermal infrared window portion of the spectrum, with the degree of success dependent
primarily upon the variability of the surface and atmospheric characteristics. The general
approach to estimating surface temperature is to relate satellite observations to surface
temperature observations with a regression model. Lacking sufficient observations, however,
satellite radiances or brightness temperatures can be modeled by application of the radiative
transfer equation. This approach is commonly used for SST retrieval.

To our knowledge, little effort has been directed to the retrieval of the sea ice surface
temperature (IST) in the arctic, an area where the first effects of a changing climate are expected
to be seen. The reason is not one of methodology, but rather our limited knowledge of
atmospheric temperature, humidity, and aerosol profiles, the microphysical properties of polar
clouds, and the spectral characteristics of the wide variety of surface types found there. We have
developed a means to correct for the atmospheric attenuation of satellite-measured clear sky
brightness temperatures used in the retrieval of ice surface temperature from the split-window
thermal channels of the AVHRR sensors on-board three of the NOAA series satellites. These
corrections are specified for three different "seasons" and as a function of satellite viewing angle,
and are expected to be applicable to the perennial ice pack in the central Arctic Basin
(Figure 21). We do not develop a completely new methodology; instead we modify a standard
procedure for use with arctic-specific data. It is assumed that a valid cloud-clearing algorithm
exists and that only clear sky radiances are being examined. The cloud clearing problem in polar
satellite data is not trivial, however. For a review of polar cloud detection algorithmns, see Key

and Barry [1989] and Sakellariou et al. [1991].

For the retrieval of IST a multi-channel algorithm that uses empirical relationships to
correct for water vapor absorption is employed:

Tee =@+ bT,  + cT, + d[(T,-T,)sec 6]

where T, and T, are the satellite-measured brightness temperatures (K) in the AVHRR thermal
channels and 0 is the sensor scan angle. The coefficients are determined through a least squares
regression procedure, where surface temperatures are regressed against modeled brightness

temperatures.

AVHRR thermal channel radiances are simulated with LOWTRAN as described
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previously. Directional surface emissivities for snow are modeled [Dozier and Warren, 1982]:
the single scattering albedo and asymmetry factor in the scattering phase function are calculated
from the Mie equations and the directional, wavelength-dependent emissivities are derived from
the delta-Eddington approximation to the equation of radiative transfer. The directional
emissivities are then integrated with the response function for channel i:

o [ en0r000) o
€ =
L[ om

where €(A,0) is the emissivity in direction' © at wavelength A and ¢ is the sensor response
function which is 0 outside of [A,,A,].

The use of the rawinsonde profiles in modeling the surface temperature requires an
additional step since the first measurement in each profile is the shelter temperature, not the
surface temperature. Therefore, the (unknown) surface temperature for each profile is assigned
a series of values representing the range of possible surface temperatures for the observed
conditions during the month to which the profile belongs. An energy balance model [Mavkur,
1982] is used to determine these surface temperatures, based on the observed range of shelter
temperatures and wind speeds (the mean x1 standard deviation) in the ice island data for each

month.

The seasonal dependence of the coefficients is illustrated in Table 7, where coefficients
from each season were applied to data from every other season. Results are shown for NOAA 9
and indicate errors between 0.1 K for transition coefficients with winter data and 0.6 K when
summer coefficients are used with winter data. Similarly, the satellite dependence of the
coefficients is shown in Table 8 for summer conditions. On the average, errors ranging from 0.1
to 1.0 K, depending on season, can be expected when applying coefficients derived for one
satellite to data from another, the smallest errors occurring between NOAA 7 and 9 coefficients
and data. Using SST coefficients developed for the North Atlantic and the Greenland Sea area
to estimate IST would result in an underestimate of up to 0.7 K, largest in winter and at scan
angles of 40° and greater. While the sensor scan angle is included explicitly in the correction
equation, its effect in the dry arctic atmosphere is small, generally less than 0.1 K.

Surface temperature measurements taken by a PRT-5 thermal radiometer during CEAREX
in March 1989 were compared to estimated ISTs from NOAA 11 AVHRR data. The mean IST
for a sample of four AVHRR pixels was 258.9 K while the mean PRT-5 temperature (adjusted
for an emissivity of 0.998) of four consecutive measurements one kilometer apart was 259.04 K.
Given the difficulties in comparing the two data sets these results are encouraging.

In summary, using the split window channels and scan angle, the rms error in the
estimated ice surface temperature is less than 0.1 K in all seasons. Inclusion of channel 3 (3.7
pm) during the winter decreases the rms error by less than 0.003 K. Overall, employing the IST
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coefficients results in increased accuracy of up to 0.6 K over SST coefficients developed for the
North Atlantic and the Greenland Sea areas.

Additional details are provided in the Attachment.

TABLE 7. RMS error in applying coefficients (NOAA 9) developed for one season (left) to data
from another (top).

Data from:
Winter Summer Transition
Coefficients:
Winter 0 0.403 0.128
Summer 0.587 0 0.342
Transition 0.117 0.219 0

TABLE 8. RMS error applying coefficients (summer) developed for one satellite (left)
to data from another (top).

Data from:
NOAA 7 NOAA 9 NOAA 11
Coefficients:
NOAA 7 0 0.272 0.655
NOAA 9 0.296 0 1.017

NOAA 11 0.682 0.961 0
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PART III: ACCOMPLISHMENTS AND PLANS
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m.1 SUMMARY OF ACCOMPLISHMENTS TO DATE

During the first two years of the project, empirical studies conceming scale relationships

in the retrieval of sea ice lead statistics have been undertaken, as have modeling investigations
of atmospheric influences on the satellite signal. Additionally, we have begun the development
of statistical models that describe the scaling properties of leads. The empirical studies have
been based on Landsat imagery, while the atmospheric models have been specific to the AVHRR.
Submarine sonar data have been used in the statistical model development. Specific

accomplishments to date include:

1)

¥3)

A3)

4)

&)

(6)

7

The parameterizations of clouds, haze, and atmospheric chemical constituents in the
LOWTRAN 7 radiative transfer model have been reviewed. Atmospheric temperature and
humidity profiles for the arctic have been constructed from Soviet ice island data and are

being used in the model.

Resampling methods have been tested on simulated, AVHRR, and Landsat images, as
have the effects of digital enhancements.

Procedures for the retrieval of lead statistics have been developed and applied to Landsat
imagery successively degraded to more coarse resolutions.

The relationship between "apparent” lead widths measured along a transect (e.g., from
submarine sonar or as a sampling method for satellite imagery) and the "true" lead width
distribution has been formalized in a statistical sense, so that one distribution may be
obtained from the other. Submarine sonar data from the Canada Basin during summer

and fall has been analyzed in this context.

A statistical model has been developed for the retrieval of lead area fraction from
measurements along a line; e.g., a submarine sonar transect or a lineal sampling method

for satellite images.

The effect of atmosphere/surface conditions on the AVHRR-measured radiance in the
thermal channels has been examined. Surfaces include open water, 5 cm, 15 ¢cm, and 2
m thick ice. Atmospheric conditions included clear sky with haze, cirrus, and low-level

ice crystal plumes.

Additional KRMS data has been acquired from D. Eppler (NOARL) for a time period in
which DMSP OLS data is currently being used in the analysis of lead patterns.

Two graduate students (E. Ellefsen and S. Peckham) were supported in part by this

project. As a consequence of their involvement, one paper has been published and another will
soon be submitted for publication.

Additionally, J. Key and R. Stone have just completed sun photometer measurements on
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the NOAA P-3 during LEADEX. These data will be used to determine typical (during
LEADEX) aerosol properties, in particular optical depths. This information is critical in the
radiative transfer modeling discussed earlier.

Lastly, two workshops for the satellite remote sensing investigators of the Leads ART have
been hosted by this group in Boulder. Report on the highlights of those meeting were sent to
C. Luther and T. Curtin late in 1990. Recommendations for aircraft instrumentation during

LEADEX’92 were made.

.2 PAPERS SUPPORTED IN WHOLE OR IN PART BY N00014-90-J-1840
(See Attachments)

Key, J. and S. Peckham, 1991. Probable errors in width distributions of sea ice leads measured
along a transect. J. Geophys. Res., 96(C10), 18417-18423.

Key, J. and M. Haefliger, 1991. Retrieval of ice surface temperature, outgoing longwave
radiation, and cloud cover from AVHRR data. WMO Report on Polar Radiation Fluxes
and Sea Ice Modeling, WCRP-62, WMO/TD-No. 442, C22-C28.

Key, J. and M. Haefliger. Arctic ice surface temperature retrieval from AVHRR thermal
channels. J. Geophys. Res., in press (expected April 1992).

Key, J., R. Stone, J. Maslanik, and E. Ellefsen, 1992, The Detectability of Sea Ice Leads in
Satellite Data as a Function of Atmospheric Conditions and Measurement Scale. Annals

Glaciol., submitted (March 1992).

Papers in Preparation Acknowledging N00014-90-J1840 (tentative {itles; short versions are
given in the previous sections):

. The Effect of Sensor Resolution on the Observed Fractional Area Coverage of
Geophysical Variables

. Estimation of the Area Fraction of Sea Ice Leads from Measurements Along a Transect

. The Detectability of Winter Sea Ice Leads in Thermal Satellite Data Under Varying
Atmospheric Conditions
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.3 PLANNED ACTIVITIES FOR YEAR 3

During LEADEX a comprehensive suite of measurements will be taken, many of which
can be used for the validation of geophysical retrieval algorithms developed for use with satellite
data. The measurements will be taken by a variety of investigators and include atmospheric and
surface physical and radiative properties, collected using ground-based and airbome sensors.
Additionally, a variety of satellite data will be collected throughout the experiment. During
year 3 we will obtain from the various investigators all data pertinent to the retrieval of lead
information from satellite data, primarily the AVHRR, and use these data in the validation of the
retrieval algorithms developed in the first two years of this project based on radiative transfer
modeling to simulate AVHRR radiances as well as empirical models of the dependence of lead

statistics (geometrical) on measurement scale.

In May 1992, J. Key, J. Maslanik, and two others at CIRES will participate in the
Canadian SIMMS field program in the Baffin Strait/Lancaster Sound area. The purpose of the
program is to collect data that can be used for the validation of satellite retrieval algorithms, in
particular those related to ERS-1 SAR. Our ubjectives are to collect data that can be used with
visible and thermal satellite data, in particular the AVHRR. The data will be an important
complement to the measurements taken during LEADEX.

The objective of year 3 is to validate algorithms and empirical models developed
previously for the retrieval of lead-related parameters from satellite data. This validation requires
a comprehensive set of surface, aircraft, and satellite data that includes a complete (or as
complete as possible) characterization of the surface radiative and geometrical properties and the

atmospheric physical and radiative properties. Specifically, our objectives are to:

(1) Compile a complete satellite validation data set of surface, aircraft, and satellite
observations.

(2) Use this data set to validate algo:..ams previously developed (in the first two years of this
project) for the retrieval of

a. ice surface temperature (IST),

b. thermal contrast between leads and the surrounding ice,

c. lead width distributions as a function of measurement scale, and

d. the "true" lead width distribution from low-resolution measurements alone.

Additionally, we will examine spectral reflectance measurements of the surface and relate
them to the AVHRR shorntwave channels for selected case studies.
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RETRIEVAL OF ICE SURFACE TEMPERATURE, OUTGOING LONGWAVE
RADIATION, AND CLOUD COVER FROM AVHRR DATA

J. Key and M. Haefliger

Cooperative Institute for Research in Environmental Sciences
University of Colorado
Boulder, Colorado 80309-0449

INTRODUCTION

Satellite data for the estimation of radiativz and turbulent heat fluxes is becoming an
increasingly important tool in large-scale studies of climate. The ability to measure
parameters needed for flux estimation in the polar regions is constrained by our limited
knowledge of atmospheric temperature, humidity, and aerosol profiles, the microphysical
properties of polar clouds, and the spectral characteristics of the wide variety of surface types
found there. In this paper we present preliminary results of experiments in the retrieval of ice
surface temperature (IST) and outgoing longwave radiation (OLR) from the thermal channels
of the Advanced Very High Resolution Radiometer (AVHRR) sensors on-board the NOAA
series satellites. The status of polar cloud retrieval from AVHRR data is also discussed.
Inadequacies in our ability to measure essential parameters are identified and future directions
are suggested.

DATA AND METHODS

Analyses are based on atmospheric temperature and humidity profiles collected by
radiosonde from the Soviet ice islands RVAB (approximately 80°N 160°W during 1979-83
and EMIO (approximately 87°N 175°E) during 1983-1987. Generally two observations per
day were collected covering a vertical range of 0 to 25 km. Profiles that had more than 10
levels were retained in the analyses. Observations include temperature, dew point depression,
wind speed, and wind direction. For the years 1986-87 cloud observations are also available
for EMIO. These observations include low, middle, and high cloud types, height of the cloud
base, and cloud fraction.

Mean summer and winter temperature profiles for clear, cloudy, and mixed conditions
are shown in Figures 1, 2, and 3, respectively. Cloud radiative forcing is evident in the
summer and winter clear and cloudy profiles where tropospheric temperatures are higher under
cloud cover in the winter and lower under summer cloud cover. In addition, the summer
surface inversion disappears under cloud cover. The standard subarctic winter temperature
profile is shown in Figure 4. Standard deviation at all levels was computed for each
parameter. The maximum winter standard deviations in temperature and dew point depression
were 6.8 K and 3.3 K, respectively between 0 and 10 km. In summer the corresponding
values are 6.0 K and 5.8 K. Interpretation of dew point depression variability requires care
since the mean water vapor content is very low, generally less than 0.6 gm m”.

For IST and OLR retrieval, the individual profiles are used with the LOWTRAN-7
radiative transfer model to estimate radiances in the three AVHRR thermal bands (channels
3,4, and S at 3.7pm, llpm, and 12pm, respectively). To avoid contamination of solar
radiation in channel 3, summer analyses are limited to nighttime. To examine the effect of
vertical temperature structure on upwelling longwave radiation, radiances in the three channels
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were estimated using the arctic mean and subarctic standard winter and summer profiles with
identical seasonal surface temperatures. The maximum difference in radiances was 0.05 W
m? sr' indicating that the vertical temperature distribution of the relatively dry arctic

atmosphere plays a very small role in the attenuatiun of upwelling longwave radiation.
ICE SURFACE TEMPERATURE RETRIEVAL

For the retrieval of IST we employ a multi-channel SST algorithm that uses empirical
relationships to correct for water vapor absorption (Barton et al., 1989):

n

T, = ay® + ¥ a,@0T, + a, @)W (1)

ice
kel

where a,(0) are satellite zenith angle-dependent coefficients, T, are the satellite-measured
brightness temperatures in the thermal channels, and W is the vertical water vapor column.
Atmospheric profiles under clear sky conditions for 1986-87 are used in the analysis.

Coefficients are detennined separately for sumumer and winter, and for various
combinations of the three thermal channels. Additionally, the scan angle dependence was
investigated for the winter months. Results are given in Table | for selected channel and
viewing angle combinations.

Table 1. Regression coefficients for the estimation of IST based on AVHRR thermal
channels.

Coefficients

R? Intercept a,, a, Aps
Summer, T,, T,; 6=0" 0.99 -2.06 --- 301 -1.99
Summer, T,, T,, T,; 6=0° 1.00 -4.08 0.39 2.65 -2.02
Winter, T,, Ty, 6=0° 1.00 -3.08 - 3.06 -2.05
Winter, T,, T, Ty; 0=0° 1.00 221 0.14 2.69 -1.54
Winter, T,, T,, T,; 6=20° 1.00 -2.01 -0.16 2.63 -1.45
Winter, T,, T,, Ty; 6=40° 1.00 2.11 -0.15 2.71 -1.54

e —————————————————————————————————————————————————————————

The large coefficients of variation (R?) in Table 1 indicate that the attenuation of
upwelling radiation in the polar atmosphere is minimal, especially in summer. Either of
channels 4 or § alone could be used in the estimation of IST. Not correcting for atmospheric
effects would result in an IST underestimate of 1.5-2.1 K in channel 4 and 1.9-3.2 K 1n
channel S, summer or winter. The relationship between surface temperature and channel 4
brightness temperature is shown in Figure §.

REMAINING PROBLEMS

The primary problem in using the ice island atmospheric data set concems the
difference between "surface” temperature as reported, and the skin temperature. The actual

'
|
'
'
'
'
'
'
'
'
|
'
|
'
'
|
ll
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height of the first measurement is unknown, but may be a few meters above the surface. The
difference between this value and the skin temperature can be positive or negative. We would
expect the difference to be smallest over multiyear ice in winter and largest in the summer
when the surface is meiting. Until more complete data are available this will remain a
problem. In the discussions that follow, the "surface” temperature refers to the temperature
at the level of the first measurement. A second problem concemns the unknown emissivity
of the surface, as well as its bidirectional emittance characteristics.

Future work will include an investigation of methods for estimating the skin
temperature based on the radiosonde data. Such a method may be simply an extrapolation of
the lapse rate back to the surface, or may take an energy balance approach. A new data set
acquired over Greenland is currently being analyzed, and should prove useful in this regard.
The CEAREX '89 and MIZEX '84 data sets will also be useful for validation. Multi-angle
methods of IST retrieval, which are based on the differential absorption due to different
atmospheric path lengths when the same object is seen from two different view angles, will
be investigated when data from the Along Track Scanning Radiometer (ATSR) on-board the
ERS-1 becon:s available.

STATUS OF CLOUD PARAMETER RETRIEVAL

Polar cloud detection algorithms based on satellite data have used spectral, spatial, and
temporal information, yet no single method has become generally accepted One visible and
one thermal channel do not generally provide an unambiguous solution to the problem,
especially for low clouds over snow or ice surfaces. Therefore, snow and ice cover data have
been used as have passive microwave products. Some of the basic ideas of the cloud
detection portion of the International Satellite Cloud Climatology Project (ISCCP) algorithm
(Rossow et al., 1988) have been adapted for use with polar AVHRR and SMMR (Scanning
Multichannel Microwave Radiometer) data as shown in Figure 6 (Key and Barry, 1989). In
test cases with synthetic and actual data, this algorithm has demonstrated the importance of
additional spectral information (AVHRR channel 3 and the differences between 3 and 4) in
polar cloud identification. Winter data requires a separate algorithm, in part due to the lack
of visible data and in part due to the differences in the vertical temperature structure.

While this algorithm can provide rough estimates of cloud fraction, a more accurate
determination of this parameter as well as the retrieval of cloud top height and cloud optical
thickness requires knowledge of the temperature profile. Such information could be derived
from TOVS. although further validation over polar regions is necessary. Instead, given
sufficiently small variability in the vertical temperature structure for a homogeneous region,
mean monthly temperature and humidity profiles may provide enough information for cloud
detection.

REMAINING PROBLEMS

Unfortunately, the multispectral thresholds used in the cloud detection algorithm were
chosen through experimentation, and lack a sound theoretical basis. Additionally, co-locating
SMMR (or SSM/1) data with the AVHRR image is computationally intensive.

Future work includes the use of TOVS data for the retrieval of temperature profiles in
the polar regions, although this will require a significant validation effort (which is currently
in progress at the Laboratoire de Meteorologie Dynamique, the University of Washington, and
the University of Colorado). With .he possible exception of arctic stratus, the microphysical
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characteristics of polar clouds and haze have not been studied adequately, in spite of their
importance in polar climates. The retrieval of sub-pixel cloud fraction using a multi-channel

approach needs further exploration.
OUTGOING LONGWAVE RADIATION FROM NARROW BAND MEASUREMENTS

Estimates of total longwave radiation flux are obtained by application of a regression
equation to the thermal window radiances (Ohring et al., 1984). This relationship takes the

form

T, -a,+Y aT, +bT; (2)

Aol

where T, is the flux equivalent brightness temperature (K), and n is the number of thermal
channels. It may also be useful to include the difference between brightness temperatures in
channels 4 and 5, which accounts for the effects of water vapor loading. This form applies
only to nudir views, which may be estimated by means of a limb-darkening function.
Equation (2) shows a quadratic form of the relationship, although the linear form may be
sufficient and is used here. An example of this relationship 1s shown in Figure 7, which
relates T, to T,.

As with IST retrieval, coefficients are determined separately for summer and winter.
Results are given in Table 2 for channels 4 and 5, and for all three thermal channels. Scan

angle dependencies have not yet been investigated for cloudy conditions.

Table 2. Regression coefficients for the estimation of OLR based on AVHRR thermal

channels.
m

Coefficients

R’ Intercept a, A, A
Winter, T,, T, 0.87 7433 | --- .42 076

Winter. T,. T,, T, )88 67.71 0.32 0.66 -0.29

REMAINING PROBLEMS

While the resuits presented above for the three thermal channels are encouraging, the
estimation procedure could, in theory, be improved by sampling the longwave portion of the
spectrum at additional wavelengths. Using other thermal channels from sensors such as the
HIRS sounder has been investigated elsewhere (cf., Ellingson et al., 1990) and has
demonstrated increased accuracy.

Future work includes an investigation of scan angle dependence and limb darkening
functions, and a comparison of the modeled broadband irradiances to those measured by the
Earth Radiation Budget (ERB) satellite.

Acknowledgements. J. Key was supported under University of Washington subcontract
#721557 (NASA) and ONR grant N00014-90-J-1840. M. Haefliger was supported under
NASA grant NAGW-2158. Thanks are due to M. Serreze and J. Kahl for providing the ice

1rland atmospheric data.
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Probable Errors in Width Distributions of Sea Ice Leads
Measured Along a Transect

J. KEY
Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder

S. PECKHAM

Cooperative Institute for Research in Environmental Sciences, and Department of Geology,
University of Colorado, Boulder

The degree of error expected in the measurement of widths of sea ice leads along a single
transect are examined in a probabilistic sense under assumed orientation and width distributions,
where both isotropic and anisotropic lead orientations are examined. Methods are developed for
estimating the distribution of "actual” widths (measured perpendicular to the local lead
orientation) knowing the "spparent” width distribution (measured along the transect), and vice
versa. The distribution of errors, defined as the difference between the actual and apparent lead
width, can be estimated from the two width distributions, and all moments of this distribution can
be determined. The problem is illustrated with Landsat imagery and the procedure is applied to
a submarine sonar transect. Results are determined for a range of geometries, and indicate the
importance of orientation information if data sampled along a transect are to be used for the
descripti~n of lead geometries. While the application here is to sea ice leads, the methodology can

be applied to measurements of any linear feature.

1. INTRODUCTION

Polar sea ice is an important factor in the complex
interaction of ocean and atmosphere. Reduction in the
extent and thickness of sea ice due to global warming, and
the consequent increase in the number of cracks in the ice
(hereafter "leads”), is expected to further increase global
temperatures. This positive feedback is a result of
reduced albedo and the increase in heat transfer from the
ocean to the atmosphere. Model estimates indicate that
an increase of 4% in the area covered by leads during
winter could produce a hemisphere-wide warming of 1
degree Kelvin [Ledley, 1988]. Understanding lead forma-
tion processes as well as the geographical and temporal
distribution of lead networks is therefore important to
studies of global climate.

Measurements of ice thickness and lead coverage are
commonly made along transects using upward-looking
submarine sonar. The footprint of the sonar beam used by
submarines to observe ice conditions is of sufficiently high
resolution, often 3 m or less as opposed to 25 m or more
for satellite sensors, to make it a potentially useful
instrument for gathering lead statistics. In fact, sonar
data have shown that the largest number of lead widths
are in the 10-20 m range. Lead width statistics derived
from submarine sonar data have been reported in the
literature [e.g., McLaren, 1989; Wadhams, 1981; Wadhams
and Horne, 1980), but when lead orientation and width
statistics are not available, the error in these analyses
cannot be accessed. This error may be relatively small if
leads are narrow or randomly oriented, but may be large
in the case of wide leads or leads with a preferred orienta-
tion. While it may not be possible to determire the actual

Copyright 1991 by the American Geophysical Union.
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error for much of the archived sonar data, an important
question concerns whether or not the data can be used for
lead geometry statistics, and if so, what is the magnitude
of the maximum error. In this paper a probabilistic
determination of this error is described, providing a
starting point for the application of stochastic geometry
theorems in the ansalysis of lead geometries. Errors in
statistics derived for other lead and kee] features are
discussed briefly. While the application is to sea ice leads
and sonar data, the methods also apply to the general
problem of sampling linear features along a transect.

2. DEFINITIONS, NOTATION, AND AN
ILLUSTRATION

In the following discussions, notation follows that used
in probability theory, where F;(z) denotes the distribution
function (df) for the population random variable Z with
specific instance z (i.e., Fy(z) ® PIZ < z]) and f;(2) is the
probability density function (pdf). Additionally, E[Z] and
Var{Z] are the expected value and variance of Z.

The problem is to relate a distribution of lead widths
taken along a line perpendicular to the local orientation of
a lead (the “"actual” width) to the lead widths measured
along a transect (the "apparent” lead width), taking into
account lead orientations, and lead crossing angles. As
illustrated in Figure 1, the following continuous random
variables are defined: X is actual lead width, X" is appar-
ent lead width measured along a transect, 8 is lead
orientation (0 S © < 1), and A is lead intersection angle (0
S A < x), with specific realizations x, x’, 6, and a. Addi-
tionally, let ¢ be the transect orientation (0 < ¢ < x). The
position and orientation of a lead within the plane are
uniquely specified by the length of the perpendicular that
connects the lead to the origin, and the angle that it
makes with a fixed reference line. The intersection angle
A is measured between the transect and the lead, anti-
clockwise, and is the difference between their orientations.
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Transect

Fig. 1. The geometrical relationships between a lead and &
transect. See text for definition of angles and length variables.

Finally, define A’ = |n/2 - A| to be the crossing angle (o’
in Figure 1) measured between the transect and a perpen-
dicular to the lead orientation (0 S A’ € n/2). The relation-
ship between apparent and actual lead widths is

x-_X_ o)
cos(A’)
where X € X. Rearranging terms, a lead crossing angle
can be determined from the lead widths by

A’ = cos’! (%)

2 PO

Fig. 2. Landeat MSS band 4 scene of the ice pack north of Alaska
in March 1988. Ares covered is approximately (80 km)?. Field-of-
view is 80 m.
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Lead Widths in Landsat Image
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Fig. 3. Lead width distribution for the scene in Figure 2. Widths
are measured along a perpendicular to the local orientation of the
lesd, and are grouped in 100 m bins. The mean width is 348 m,
the standard deviation 201 m, and maximum width 1376 m.

The potential inaccuracies of measuring lead widths along
a transect can be illustrated by randomly choosing a
transect orientation and location on a satellite image.
Here we provide an example with a Landsat Multispectral
Scanner (MSS) band 4 (0.5-0.6 pnm) scene of the Beaufort
Sea, March 1988 (Figure 2). The pixel size i8 80 m; image
size is 80 x 80 km, a subset of a Landsat scene. To
increase the sample size of lead widths measured along
the transect, multiple transects of the same orientation
are placed randomly on the image. It is assumed that the
pattern of leads is similar beyond the image boundaries.
Processing of the Landsat data for the retrieval of lead
statistics is as follows. A dynamic threshold procedure is
applied that estimates the probability density function of
a mixture population (lead/ice) for small regions within the
image, and a binary image results. Valid lead fragments
are identified, where "valid" refers to a linear feature for
which a meaningful width and orientation can be deter-
mined. Linearity is determined through correlation/regres-
sion analysis. Lead widths are measured perpendicular to
the regression line, every kilometer along the lead length,
and the slope of the regression line is a measure of the

Lead Orientations in Landsat Image
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Fig. 4. Lead orientations for the scene in Figure 2. The mesn
orientation is 0.67" (38.4°) with standard devistion 0.87" (49.8°).
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Lead Widths Along a Transect
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Fig. 5. Lead widths from a randomly choeen transect acroes
Figure 2. ‘ransect orientation is 3.0 (172°) or approximately
south-s0".chwest to north-northeast where the top of the image is
north The mean width is 368 m, the standard deviation 474 m,
and maximum width 2818 m.

lead orientation. Further details of this procedure are
given in Key et al. [1990].

The distribution of these actual lead widths x is shown
in Figure 3 and orientations 6 in Figure 4. The mean lead
orientation is 0.67 radians (38°, approximately southeast
to northwest where the top of the image is north). For a
transect orientation ¢=3.0 radians (172°, south-scuthwest
to north-northeast), the distribution of apparent lead
widths " is illustrated in Figure 5, with crossing angles o
shown in Figure 6. The mean actual width is 348 m with
a standard deviation of 201 m, while the mean apparent
width is 368 m with a standard deviation of 474 m.
Additionally, the maximum actual lead width in the image
is 1376 m, while the maximum width measured along the
transect is 2818 m. With a transect orientation of 0.13
radians (7.4°) the difference between the actual and
apparent mean widths is 139 m and the maximum width
is 2670 m. From this example it is clear that significant
errors can result from sampling along a transect. The
following section presents a method to assess this error.

0 Lead Crossing Angles
- 20~
R
]
g :
£ :
w10~
0 I
0.0 0.4 038 12 16

Angle (radians)

Fig. 8 Lead crossing angles for & transect scroes Figure 2.
Trensect orientation is the same a8 in Figure 5. The mesn
crossing angle is 1.09" (82°} with standard deviation 0.23" (13°).

3. PROBABILITY MODELS

Theorems of stochastic geometry that are applicable
here have been developed through the study of fibers as a
stationary random process in the plane. If we use this
analogy with lead networks, then after Stoyan et al. (1987,
p- 240] the df of intersection angles is

L”“ sin (&' - ¢) dFg(6")
@)

FA(Q) =
To" lsin (& - ¢)| dFg(®")

where F,(a) is the probability of intersection angles
between 0 and a, Fe(e) is distribution function for lead
orientations, dFg(0) = fe(e) dO, a increases in an anti-
clockwise sense, and in the integral Fe(n +a)=1+ Fe(a).
The pdf f&,(8) may be an assumed mathematical distribu-
tion or may be based on an observed rose of direction.

If the leads are isotropic then the corresponding
orientations have a simple uniform probability distribution
in the interval 0 S 8 < &; i.e,, fe(9)=1/1t for all 8. In this
case the distribution of intersection angles is independent
of the transect orientation. The probability of crossing a
lead that is oriented across the transect (a — n/2) is
greater than for one running more parallel (o« = 0 or n).
The associated intersection angles have density

fala) = ¥ 8in a , O<o<n
which is not uniform but is symmetrical about a = w2.
The corresponding distribution function is

Fp(a) = ﬂ' faly) dy = % (1 - cos a) , Ososgn

which is a special case of (2) for fg(8) = Vr. In the
anisotropic (preferred orientation) case we use (2) for the
distribution of intersection angles, and the corresponding
densities are determined numerically.

* Two different intersection angles correspond to each
crossing angle so that the distribution and density func-
tions for the crossing angle are

Fpda) = PIA" £ ]
= p(|.g—.4| < o
= Pl-a’ € (A—%) < ~1]
= R _o "o
P[(.f d)S A S(I o))
= FA(%*Q') - FA(%-G')

and
"o dFA' _ n ’ "__.
fata’) = ra —fA(E ') fA(7 o)

which in the isotropic case yields F (o) = sin o’ and
fato') = cos .

3.1. Width Distributions

An expression for the joint density function of the
apparent and actual lead widthe can be derived. Suppose
that the joint pdf of X and A’ are known, which will be
[y adx,a” =lf?‘;'x)f'A(a') if the two variables are indepen-
Jxe':t. Then if Y and Z are two new random variables that
are functions of X and A’ such that Y = X and Z = X" =
X/cos A’, then the joint pdf of Y and Z can be computed
using a standard theorem (Ross, 1984, p. 217}
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frz02) = fx x(xx)

= fXMx,cos“(;,)l = (@R - x3™%
= fx) fateos™ () 2 (@ - 224 @)
x x

The first of these expressions is valid whether or not X
and A’ are independent. If, however, future research
indicates that large leads are oriented differently than
small leads, for example, then the joint density function
must be determined in another manner (possibly from
observations). Using (3), the pdf of apparent lead widths
can be obtained:

x(x) = L‘” fxx(xx) dx
= [Frx faleos M ZN Z
X x
x () - x2]7%) dx

The df of apparent lead widths can be obtained by inte-
grating (4) or by conditioning on the value of X, again
assuming that X and A’ are independent. The latter
method yields

)

Fxtx) = [¥ Fpleos ()] fxtx) d= (6)
x
which is based on the df rather than the pdf of A".
Determining the distribution of actual lead widths given
the apparent lead width distribution must be approached
differently. Letting Y = l/cos A’, then (1) can be rewritten
as
X =Xy

log X’ =log X +logY
X and A’ are assumed to be independent, hence so are
log X and log A’, so that log X' is a sum of two
independent random variables. This allows us to write

fiog X = ﬁog X" flog Y (6)
or

Flogx = Fiogx *fig Y )
where the asterisk represents convolution [Ross, 1984,
p- 202). The Laplace transform may be used with either
(6) or (7). The Fourier transform may be used with (6) but
not with (7) because the pdfs are absolutely integrable but
the df is not. Using ¢lf] to denote the Fourier transform of
[/, then with (6)

'P[flog xl-= ‘P[ﬁog X*fiog Yl = ¢[flog X]Q[flog Y]

-1 ‘P[flog x)
og Y
from which the actual lead width distribution is

flogX"P

-1 ¢{ﬁog x] (8)

og Y-

The derivation of (8) is given in the appendix. This
expression shows that when the appropriate transforms
exist, then the pdf of X is uniquely determined in terms of
the pdfs of X’ and A’. However, it is only useful for
computations if the Fourier transforms and inverse
transforms shown can be performed analytically. This is
because in practice the inverse transform is an array of

fx(x) = .l ] (log x)
x
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numbers that must be evaluated at log x, which becomes
a sampling problem with discrete data; i.e., a very large
number of observations sampled at small intervals would
be necessary for any reasonable degree of success with this
approach.

Fortunately, there is another way to approach the
problem. Referring back to (4) and (5), fx and Fy- can be
viewed as the result of applying an integral operator to fx
The functions can be discretized as arrays and the integral
in (6) approximated as a sum:

J
Fx() = A Y Fuar(i) fxti), 9)
i=1

i, je[1,N], x=iA, y=jA
where F 4 {j,i) = FA,[cos'l(i/j)],Nis the number of discrete
observations and A is the increment between observations.
If these functions are expressed as matrices, (9) becomes

Fx =AFpfx
1 -1
f X~ X F A’ F. X
whose derivation is given in the appendix.

3.2. Error Distribution

In this study the error in measured lead width is
defined as X’-X (which is always positive), although other
definitions such as X/X" would also be useful. Equation (3)
allows us to compute the distribution of the error as
follows:

Fy _x(a) = P[X'-X < a]
- L“f:“fxx(x,x') dfdx, a20

For the isotropic case

Fx x(@) = [ fxt0) Va [_‘M}dx

x +a

All moments of X'-X can be computed from fy- .

4. APPLICATION

These models are now applied. First, a lead width
distribution measured from sonar data is used to estimate
the actual lead width distribution, for both isotropic and
anisotropic orientations. Lead orientation and actual
width distributions are then assumed known, and
expected error in lead width is determined for a variety of
situations.

Lead width distributions have been deacribed by power
laws [Wadhams, 1981; Steffen, 1987] as have floe sizes
(Rothrock and Thorndike, 1984). The negative exponential
distribution has also been used [Dickins et al., 1986]:

fx(x) = ey

with mean lead width A and variance A2. The exponential
model implies that there are a finite number of small
leads, and that the field is characterized by a length scale
A. In fact, the lead width distribution may be scale-::ee,
in which case a power law would be appropriate. There is,
of course, a lower limit imposed by the resolution of the
measuring instrument, and for this reason as well as for
clarity of illus*rating expected values, we use the negative
exponential model.

Lead orientations may be random or may have a
preferred orientation. A Gaussian model is used here for

"
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TABLE 1. Expected Error in Lead Widths (in Meters) Under a Variety of Assumed Distributions
snd Mean Values

Cose fx i fe ¢ EX-X)  VarlX-X)
1 ? Sonar  Uniform - 65.7 1466.1
2 A=20m ? Gauseian' 2.36 (135°) 3.7 3.1
3 A=20m 7 Gaussian' 0.52 (30°) 325 165.9
4 AzdOm 7 Gaussian' 2.36 (135°) 4.8 6.4
5 A=40m ? Gaussian' 0.52 (30°) 36.0 345.3
6 A=20m ? Uniform - 43.2 653.1
7 A=40m ? Uniform - 64.2 1391.2

Quection marks refer to the unknown distribution.
Width distribution model is negative exponential.
¥ Parameters of the Gaussian model are p=r/4" (45°) and 0=0.37 (17°).

preferred orientations. It is recognized, however, that the
actual shape of the distribution may be bimodal, where
large leads with one orientation are intersected by smaller
leads at another. Intersection angles of approximately 28°
have been observed elsewhere [Marko and Thomson,
1977]. This situation is not obvious in Figure 4, although
the distribution is not strictly Gaussian either.

Table 1 lists the expected error for a variety of condi-
tions, where error is defined by the difference between the
actual and measured lead widths. Case 1 considers the
situation where the apparent lead width distribution is
known. The apparent lead widths are based on submarine
sonar data recorded by the USS QUEENFISH in August
of 1970 in the central Canada Basin [McLaren, 1989). Ice
draft data were measured by an upward-beamed fatho-
meter with = footprint diameter of approximately 2.7 m
and a vertical accuracy of 210 cm. Sequences of continu-
ous points with drafts <30 cm constitute leads, an example
of which is given in Figure 7. The apparent width distri-
bution was determined for a 100 km section and is shown
in Table 2. Given a mean apparent lead width of 60.6 m,

Ice Draft from Sonar

Dratt (m)

00 0.5 1.0 1.5 20 25
Relative Distance (km)

Fig. 7. Submarine sonar ice draft data for & 2.5 km section
within the Canada Basin north of Alaska. Leads are defined as
continuous sequences of points with drafts no greater than 0.3 m
(dashed line); six leads occur in this section.

the expected value of the error is 65.7 m with a variance
of 1466.1 m2. For cases 2-7 in Table 1 the actual width
density function is assumed known, and the apparent lead
width distribution is estimated. For cases 2 and 3, the
croseing angle distributions are shown in Figure 8 and
the error distributions in Figure 9. In the preferred
orientation cases (2.5) the error means and variances are
clearly dependent upon transect orientation.

8. CONCLUSIONS

A methodology has been presented for determining
width distributions of linear features from measurements
along a transect through a network of such features. Both
isotropic and anisotropic orientations of the linear features
have been considered. In the anisotropic case, the orienta-
tion distribution of the lines must be known. In both
cases if the distribution of actual widths and the orienta-
tions are viewed as independent random variables then
the actual width distribution can be determined from the

TABLE 2. Lead Widths (Bin Midpoint) and Number of
Leads per Bin, Measured by Submarine Sonar

Relative
Width N Frequency
20.00 134 0.441
40.00 63 0.207
60.00 18 0.059
80.00 25 0.082
100.00 22 0.072
120.00 12 0.039
140.00 4 0.013
160.00 4 0.013
180.00 5 ©0.016
200.00 5 0.016
220.00 3 0.010
240.00 2 0.007
260.00 0 0.000
280.00 0 0.000
300.00 3 0.010
320.00 0 0.000
340.00 1 0.003
360.00 3 0.010
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Crossing Angle Distributions
Transec! Orientations 2 36 (sohd). 0 52 (dashed)

Probability

7 1 ¥ {

0.00.20.40.60.81.01.21.41.6
Crossing Angle (radians)

Fig. 8. The dietribution functions of croseing angles F, . for cases
2 (solid) and 3 (dashed) in Table 1.

apparent widthe and vice versa. Furthermore, if the
actual widths and the orientations vary jointly then the
apparent width can be determined from the joint distribu-
tion. The application presented was to measurements of
sea ice leads made by submarine sonar. The width
distributions measured from sonar illustrated that the
general shape is similar to those derived from satellite
imagery, but that the errors in widths can be significant.
Unfortunately, it is not possible to determine the actual
error in lead widths derived from much of the archived
sonar data. However, if lead "climatologies” can be
compiled for various locations and seasons, or if gignificant
relationships between lead orientation and geostrophic
winds can be developed, then at least we can determine
the probable error.

Of course, the potential error is not an issue if adequate
two-dimensional data are avaijlable. For example, side-
scan sonar may permit a more accurate retrieval of lead
and keel statistics [Wadhams, 1988]. Sonar data with

Error Distributions
Transect Orientations 2 26 (solhd). 0 52 (dashed)

1.0
0.8
2>
= 0.6
F-1
0.2
0.04
T T T T 1 i 1 1 A
0 10 20 30 40 SO 60 70 80
Error (m)

Fig. 9. The distribution functions of the lead width errors, Fy y,
for cases 2 (sclid) and 3 (dashed) in Table 1.
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concurrent overhead imagery from aircraft or satellite is
also a potentially valuable source of information. How-
ever, lead width dietributions derived from satellite data
may not be accurate since very small leads are not
resolved. This is particularly true for medium resolution
data such as that from the Defense Meteorological Satel-
lite Program (DMSP) or the Advanced Very High Resolu-
tion Radiometer (AVHRR) on-board the TIROS-N satel-
lites. One solution might be to retrieve the orientation
information from satellite data where small lead widths
cannot be resolved, and the width information from
submarine sonar transects.

Other applications of this procedure are possible. For
example, laser profilometer transects are analogous to
sonar transects, and the methods outlined above could be
used for lead and ridge spacing distributions and their
associated errors. As in the illustration with Landsat
data, transect sampling of satellite imagery is a natural
application. Similarly, heat flux through leads is in part
a function of fetch, and fetch is a function of the actual
lead width and the crossing angle of the wind. If the wind
direction is constant as it travels across the network of
leads, then the distribution of fetches can be determined
from the distribution of actual lead widths. Finally, it
may be possible to estimate oper water fraction over a
large area from the apparent lead width and spacing
distributions measured along a transect. This research is
currently in progress, with results to be presented subse-
quently.

APPENDIX

Derivation of fy From flog x
Equation (6) gives an expression for flog x- However,
we are interested in f:Y rather than flog X 80 we use the
identity
fiog ylog y) = y fy(y) (AD
which is proven by
Fiog y(log y) = Pllog Y < log y)
= Plelo8 Y ¢ log )
=PlY <y]
= Fy(y)
The derivative of both sides with respect to y produces
(Al).
Using (A1) and (6), an expression for the actual lead
width distribution can be obtained:

fiog x(log x) = lp’l *log x) (log x)

og Y- (A2)

-1 ‘P[flogX']
og Y

fx{z) = 1 0 (log x)
x

Matrix Formulation of fy

Expreseing equation (5) in terms of matrices provides a
way to solve for fy. The functions can be discretized as
arrays and the integral approximated as a sum as shown
in (9}, which is repeated here:
9) l

J

Fx() = 8 Y. FatUd)fx(,

i=l
iJe[1,N], x=iA, y=jA
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where F,{j,i) = FA,[cos'l(i /7)), N is the number of discrete
observations and A is the increment between observations.
Suppose we now form an N x N matrix, M, as follows:

M) = A Fadii), 1sigjsN

MG =0, 1gj<isN
where the first expression refers to elements on or below
the diagonal. It follows that

J N
AY Fold fxd) = ¥ MG fx) (A3
i=] i=1

or

N
Fx() = Y. MG fx® (A
i=1

This is equivalent to the matrix equation
Fy -Mf, (AB)

From this it can be seen that the problem is solved if M is
invertible. However, since M(jj) = F () = 0 for all j
(from the definition of F,.), the matrix M has zeros on as
well as above the diagonal, therefore the first row and last
column contain all zeros, so that det(M) = 0, or M is not
invertible.

Thia difficulty is overcome by defining a new N-1 x N-1
matrix M, to be the submatrix formed by deleting the first
row and last column from M. This gives

f Fa
F
f2 |_ a1 (A6)
N1 Fn

where fy = (f;, /5., fy) and Fyo = (F, F,,..., Fp). Since
Fy =0, it is not needed to find f;,...fpy. Furthermore, if N
and A are chosen properly, then f); = 0 because fis a pdf.
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Arctic Ice Surface Temperature Retrieval
from AVHRR Thermal Channels

J. KEY and M. HAEFLIGER
Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder

The relationship between AVHRR thermal radiances and the surface (skin) temperature of
Arctic snow-covered sea ice is examined through forward calculations of the radiative transfer
equation, providing an ice/snow surface tamperature retrieval algorithm for the central Arctic
Basin. Temperature and humidity profiles with cloud observations collected on sn ice island
during 1986-1987 sre used. Coefficients that correct for atmospheric attenuation are given for
three Arctic clear aky "seasons”, as defined through statistical analysis of the daily profiles, for the
NOAA 7, 9, and 11 satellites. Modeled directional snow emissivities, different in the two split-
window (11 and 1% 1) channels, are used. While the sensor scan angle is included explicitly in
the correction equation, its effect in the dry Arctic atmosphere is small, generally less than 0.1 K.
Using the split-window channels and scan angle, the rms error in the estimated ice surface
temperature (IST) is less than 0.1 K in all seasons. Inclusion of channel 3 (3.7 nm) during the
winter decreases the rms error by less than 0.003 K. The seasonal dependence of the coefficients
is important, with errors in the range of 0.1 - 0.6 K when coefficients from one season are used
with data from snother. Similarly, mixing coefficients and data from different sstellites results
in average errors from 0.1 to 1.0 K. Overall, employing the IST coefficients results in increased
accuracy of up to 0.8 K over SST coefficients developed for the North Atlantic and the Greenland

Ses areas.

1. INTRODUCTION

Satellite data for the estimation of radiative and
turbulent hoat fluxes is becoming an increasingly impor-
tant tool in large scale studies of climate. One parameter
needed in the estimation of these fluxes is surface temper-
ature. Sea and land surface temperature (SST and LST)
retrieval algorithms have been developed by using the
thermal infrared window portion of the spectrum, with the
degree of success dependent primarily upon the variability
of the surface and atmospheric characteristics. The
general approach to estimating surface temperature is to
relate satellite observations to surface temperature
observations with a regression model. Lacking sufficient
observations, however, satellite radiances or brightness
temperatures can be modeled by application of the radia-
tive transfer equation. This approach is commonly used
for SST retrieval [cf. Minnett, 1990; Llewellyn-Jones et al.,
1984; Barton, 1985]. A more cormplete review of SST
algorithms is given by Mc’ “iin et al. [1985). For SST
estimated using two "split-w:ndow"” infrared channels (e.g.,
approximately 1 pm wide centered at 10.8 and 12.0 ym)
an absolute accuracy of 0.5-1 K (rms error) has been
obtained [Llewellyn-Jones et al., 1984; McClain et al.,
1985). Land surface temperature estimation is generally
less accurate due to the larger variability of surface
conditions, where errors of £2-3 K are common (Price,
1983].

To our knowledge, little effort has been directed to the
retrieval of the sea ice surface temperature (IST) in the
Arctic, an area where the first effects of a changing
climate are expected to be seen. The reason is not one of
methodology, but rather our limited knowledge of atmo-
spheric temperature, humidity, and aerosol profiles, the
microphysical properties of polar clouds, and the spectral




characteristics of the surface types found there. In this
paper we present a means to correct for the atmospheric
attenuation of satellite-measured clear eity brightness
temperatures used in the retrieval of snow-covered ice
surface temperature from the split-window thermal
channels of the advanced very high resolution radiometer
(AVHRR) sensors on board three of the NOAA series
satellites. These corrections are specified for three
different “seasons” .nd as a function of satellite viewing
angle and are expected to be applicable to the perennial
ice pack in the central Arctic Basin (Figure 1). We d~ not
develop a completely new methodology; instead we m dify
a standard procedure “or use with Arctic data. In this
paper it is assumed that a valid cloud-clearing algorithm
exists and that only clear sky radiances are being exam-
ined. The cloud clearing problem in polar satellite data is
not trivial, however. For a review of polar cloud detection
algorithms, see Key and Barry [1989] and Sakellariou et
al. [1992].

2. DATA

Analyses are based on atmospheric temperature and
humidity profiles collected by rawinsonde from a Soviet ice
island (NP-26), located at approximately 85°N 170°W
during 1983-1987 (Figure 1). Generally, two observations
per day were collected covering a vertical range of 0 - 25
km. Profiles that have at least 10 leveis are retained in
the analysis. Observations include temperature, dew
point depression, wind speed, and wind direction. Ice
crysta) precipitation is not reported. For the years 1986-
1987, surface-based cloud observations are also available.
These observations include low, middle, and high cloud
types, height of the cloud base, and cloud fraction.

Only clear sky profiles are used in this study (1986-
1987), since the satellite thermal radiances under cloudy
conditions will measure cloud top temperature and a
significan! amount of cloud cover will affect the lower
tropospheric temperature structure. Clear sky is defined
to be no more than 25% cloud cover by the surface obser-
vations. Clear sky "seasons” that differ in their vertical
temperature and humidity structures are then defined.
The seasons are determined objectively with a squared
Euclidean distance clustering algorithm; the variables are
temperature and humidity at each level. To reduce the
degree of statistical dependence between levels, only one
measurement per kilometer was used. The resulting
seasons are winter (October through March), summer
(June through August), and transition (April, May, and
September). This analysis was also performed with three
other methods: subjectively, clustering principal compo-
nent scores, and using a simple correlation method. The
oniy difference between them was in the placement of
October. By temperature alone it is grouped vith the
transition months. When humidity profiles are also
included in the analysis, however, it is more similar to the
other winter months.

The resulting mean seasonal temperature profiles for
clear, cloudy (greater than 75% cloud cover), and mixed
conditions are shown in Figure 2. Differences reflect not
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only the near-surface temperatures but also the vertical
temperature structure, which can also be seen in the
monthly inversion frequencies reported by Serreze et al.
[1991]). The effect of cloud on the surface radiation
balance is evident in the clear and cloudy profiles where
temperatures in the lower troposphere are higher under
cloud cover in the winter and transition but lower under
summer cloud cover. In addition, the summer surface
inversion disappears under cloud cover. For comparison,
the lowest 30 km of the standard subarctic summer and
winter temperature profiles from the LOWTRAN 7
radiative transfer model data base [Kneizys et al., 1988]
are shown in Figure 3. The most obvious differences
between the subarctic and Arctic profiles are the surface
temperature and low-level inversion structure. In the
Arctic profiles, standard deviation at all levels was
computed for each parameter. The winter standard
deviations of tropospheric clear sky temperaturs and dew
point depression were computed for each layer, between 0
and 10 km. The maximum values occurred near the
surface and were 6.8 K and 2.7 K, respectively. In
summer the corresponding values are 4.5 K and 6.7 K,
and in transition they are 7.9 K and 4.2 K. Interpretation
of dew point depression variability requires care since the
mean water vapor content is very low, generally less than
0.6 gm m3.

The AVHRRSs on board the NOAA 7, 9, and 11 satellites
are of interest in this study. Of the five AVHRR channels
the three thermal channels (channel numbers 3, 4, and §
centered at approximately 3.7, 11, and 12 um) are simulat-
ed, and actual] data are used for validation. NOAAs 8 and
10 are not used because they lack channel 5. First-order
calibration was performed following the methods described
by NOAA [1991] and Lauritsen et al. {1979]. Additional
corrections were applied to the data to account for the
nonlinear response of the thermal channels [Weinreb et al.,
1990). Only NOAA 7 and 11 data were used in the
validation. The AVHRR scan angle ranges from 0° to
app. oa mately 556°. Both local area coverage (LAC; 1.1-km
field of view at nadir) and global area coverage (GAC;
approximately 4 km) data are used in validation.

3. RETRIEVAL METHODOLOGY

For the retrieval of SST a muitichannel algorithm that
corrects for atmospheric attenuation of upwelling radiation
primarily due to water vapor absorption is commeonly
employed [e.g., Barton et al., 1989]:

3

T, = a®) + Z b(OT, ¢y

=
where a(6) and b,(8) are satellite zenith angle-dependent
coefficients and T; are the satellite-measured brightness
temperatures in the three AVHRR thermal channels. The
coefficients are determined through a least squares
regression procedure, where surface temperatures are
regressed against modeled brightness temperatures. It is
also possible to use differences between or ratios of two
channels. Such an approach was taken by Schluessel and




Graasl [1990] for SST retrieval at high latitudes.

Alternatives to computing a different set of coefficients
for each scan angle increment, as shown in (1), were
sought. Equations that include explicitly the scan angle
have been presented [cf. McClain et al., 1986]. Here we
use the equation

Tice =a + 8Ty + cTy + d[(T4-T5)sec9] (2)

for IST retrieval, where brightness temperatures are in
Kelvin. The coefficients are given in the next section. The
overall equation (2) produced the smallest standard error
of all combinations of channels, channel differences, and
scan angle functions tested, e.g., sec 6, [(1-sec 0)(T4-T5)],
and similar variations. Although channel 3 could be
included in (2), its use would be limivesi to winter analy-
ses, since it measures reflected solar radiation as well as
thermal emissions. The usefulness of this channel in IST
retrieval is discussed in the next section.

To simulate radiances in the AVHRR thermal channels,
the daily temperature and humidity profiles in each
season are used with the LOWTRAN 7 (hereafter
LOWTRAN) radiative transfer model [Kneizys et al., 1988].
Earlier versions of LOWTRAN have been used in the
retrieval of SST (e.g., Barton et al., 1989]. LOWTRAN
calculates atmospheric transmittance/radiance for wave
numbers ranging from 0 to 50,000 an'l (0.2 nm to infinity)
at a resolution of 20 em™! (for gaseous absorption) and
includes calculations for multiple scattered radiation. The
code may be initialized for standard or user-defined
atmospheres, several cloud models, aerosol models, and
specified solar and view geometry. Radiances are calculat-
ed at 5 cm’! intervale (interpolated by LOWTRAN),
equivalent to 0.06 pm at 11 pm. In this study, radiances
are modeled for sensor scan angles from 0° to 60° in 10°
increments. Atmoepheric chemical composition and back-
ground tropospheric and stratospheric aerosols for the
subarctic winter and summer models are used, since no
such information is available from the ice islands. The
optical properties of Arctic haze have not been extensively
measured; model calculations {Blanchet and List, 1983]
show that the volume extinction coefficient of Arctic haze
is generally of the same order of magnitude as that of the
tropospheric aerosols [Tsay et al., 1989]. Therefore the use
of tropospheric background aerosols is appropriate. The
appropriate sensor response function (Figure 4) is applied
to the calculated radiances, and radiances are then
converted to brightness temperatures by inverting the
Planck function at the central wavelength of the channel
appropriate for the temperature range 230 - 270 K[NOAA,
1991). The appendix provides additional detail on simu-
lating satellite radiances.

The ice surface is assumed to be snow-covered year
round. Directional surface emissivities for snow are
modeled following the procedure of Dozier and Warren
[1982]). Briefly, the single scattering albedo and asymme-
try factor in the scattering phase function are calculated
from the Mie equations, and the directional, wavelength-
dependent emissivities are derived from the delta-
Eddington approximation to the equation of radiative




transfer. The directional emissivities are then integrated
with the response function for channel i:

2 (A0 dA
t,‘(e) =

N
£1 (M) dh

where £(1,0) is the emissivity in direction 0 at wavelength
A and ¢ is the sensor response function which is O outside
of (A;,Ao]. These emissivities are given in Table 1 for
NOAA 7. The difference between the integrated emissivit-
ies for the three satellites examined here is approximately
0.0001, so we only use those modeled for NOAA 7. At the
wavelengths of AVHRR channels 4 and 6 the emissivity is
essentially insensitive to snow grai.. size as well as the
amount of liquid water, up to 20% of the total particle
volume. Additionally, these emissivities do not change
significantly over the range of temperatures encountered
and therefore are applicable to the snow types encoun-
tered year round. It is possible, however, that melt ponds
will contaminate the field of view during the summer. We
do not adjust emissivities to account for this phenomenon.
The use of the rawinsonde profiles in modeling the
surface temperature requires an additional step, since the
first measurement in each profile is the shelter tempera-
ture, not the surface temperature. (In the discussions that
follow, the terms "skin” and "surface” temperature are
used interchangeably.) The shelter-surface temperature
difference can be significant: more than 10~ depending on
the region and time of year [cf. Stowe et ai., 1988; Rossow
et al., 1989). Therefore the (unknown) surface tempera-
ture for each profile is assigned a series of values repre-
senting the range of possible surface temperatures for the
observed conditions during the month to which the profile
belongs. An energy balance model is used to determine
these surface temperatures, based on the observed range
of shelter temperatures and wind speeds (the mean =1
standard deviation) in the ice island data for each month.
After Maykut [1982], the energy balance equation is

(1-00F pLjce*F+eoT} +Fy+Fo+F, = 0

where a is the albedo, ¢ is the longwave emissivity, o is
the Stefan-Boltzmann constant (in W m2 K“), L., is the
amount of shortwave energy that penetrates the ice and
does not directly heat the surface, F, and F; are the
downwelling shortwave and longwave radiation respective-
ly, F, and F, are the sensible and iatent heat fluxes,
respectively, and F, is the conductive heat flux. A flux
toward the surface is positive. The sensible and latent
heat fluxes are dependent in part upon the wind speed, air
temperature, T, _, and bulk transfer coefficients. Radia-
tive fluxes are modeled based on the mean monthly
temperature and humidity ice island profiles. Ice thick-
nesses are taken from Maykut [1982]. Three new profiles
are created for each original clear sky profile, where the
surface temperatures are the minimum, mean, and
maximum equilibrium temperatures estimated by the
model. This results in seasonal sample sizes of 750, 123,




and 225 profiles for the winter, summer, and transition
seasons, respectively.

4. DiscUSSION

Coefficients for the estimation of IST are given in
Tables 2-4 for NOAA 7, 9, and 11 satellites and are used
with (2). Coefficients are given to five significant digits.
(The rms error for using three significant digits rather
than six in winter, for example, is 0.07 K, 0.003 K for four
digits, and 0.0007 for five digits.) In all cases the coeffi-
cient of determination (R2) is at least 0.98. Also shown is
the root mean square (rms) error for the difference
between the actual (energy balance model) surface temper-
ature and the satellite-derived surface temperature.
These errors are small—always less .inan 0.1 K and some-
times half that value—as a result of (1) the low water
vapor content of the atmosphere and therefore little
atmospheric attenuation, (2) the radiative transfer model-
ing approach, which does not incorporate satellite or
ground-based instrument noise, and (3) natural variability
in the polar atmosphere that was not captured in the ice
island profiles. While the Arctic atmosphere is very dry,
however, an atmospheric correction as in equation (2) is
important. The uncorrected channel 4 and 5 brightness
temperatures can be significantly different from the
surface temperature; e.g., the mean T, -T, difference and
its standard deviation (summer) are 0.66 and 0.43 K, 0.96
and 0.61 K for T} ,-Tg, -0.21 and 0.32 K for the winter
channel 4 difference, and -0.23 and 0.43 K for channel 5
in winter, based on NOAA 7 simulated radiances at a
surface emissivity of unity. Maximum differences are in
the range of 1.7 to 2.3 K in summer and -2.5 to -3.6 in
winter, for channels 4 and 5, respectively.

Due to a lack of Arctic surface and atmospheric data
over the ice, it is difficult to define the area for which
these coefficients apply. At present there is no evidence
that temperature and humidity characteristics differ
significantly over different portions of the perennial ice
pack, but this cannot be confirmed. It has been found,
however, that synoptic activity is quite different in the
eastern Arctic (e.g., Kara Sea), affecting the strength and
frequency of low-level inversions as well as humidity
profiles [Serreze et cl., 1992]. We thersfore consider these
coefficients to apply to pack ice in the central Arctic Basin.
The applicability of these coefficients to Antarctica is
uncertain. The Arctic and Antarctic are both character-
ized by low temperatures, surface inversions, snow-covered
surfaces, and low water vapor amounts. However, the
temperatures and water vapor amounts are lower over
Antarctica, although it is unknown how much lower the
water vapor amounts are, by virtue of its higher elevation
and lower incidence of cyclonic systems. Given this, one
would expect there to be some difference between
Antarctic surface temperatures estimated using the
coefficients presented here and coefficients based on
Antarctic temperature and humidity profiles, probably on
the order of 0.1 - 0.3 K (see the discussion of SST coeffi-
cients below).

The utility of including channel 3 in surface tempera-
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ture retrieval has been shown to be useful under certain
conditions. For example, Llewellyn-Jones et al. [1984]
found that triple-window simulations for the tropics were
significantly better than split window, but not for temper-
ate latitudes. Barton [1985) found channel 3 useful in
both tropical and mid-latitude (Australia) locations. For
IST retrieval, the use of channel 3 would be limited to
winter analyses, since it has a reflected solar component
as well as the thermal emissions. However, this channel
is often noisy, especially during winter, when the amount
of energy emitted at those wavelengths is small. To test
its usefulness, winter is redefined as November -
February, thereby avoiding a significant solar component
in the upwelling radiance. Including channel 3 in (2) -
reduces the rms error by no more than 0.003 K or all
satellites, which we do not consider a significant improve-
ment in accuracy.

4.1. Validation

Validating the coefficients is difficult due to the lack of
clear sky skin temperature measurements with corre-
sponding satellite data. Therefore we use both measured
and inferred surface tamperatures. For example, AVHRR
GAC data over the Barents Sea during July 1984
(NOAA 7) were used, with the surface temperature
assumed to be near 273.15 K This is a reasonable
assumption for melting snow but may be an overestimate
for ice due to its higher salinity. Over pack ice near the
North Pole the mean estimated IST was 273.04 K For a
sample of pixels near the marginal ice zone with some
melt ponds the mean IST was 273.27 K  Similarly,
estimated ISTs in NOAA 11 AVHRR data over Greenland
and Baffin Bay for July 1990 averaged 272.82 K over the
ice sheet and 272.9 K over sea ice. The ice sheet location
examined was the site of a Swiss Federal Institute of
Technology (ETH) camp, which reported melt conditions
(K. Steffen, personal communication, 1991).

GAC data during January 1984 north of Greenland
were also used, where the estimated ISTs were compared
to temperatures measured by drifting buoys [Colony and
Musioz, 1986). There has been some discussion, although
no formal study, concerning the accuracy of these buoy
temperatures. During summer the buoy housing may
experience radiational heating, and during winter they
may be insulated by drifting snow. Comparison of esti-
mated ISTs for 10 pixels around the location of two
different buoys on January 7 yields mean temperature
differences of 6 K for one buoy and 11 K for the other.
The estimated ice surface temperatures were within 1 K
of each other for each set of pixels. Differences of this
magnitude were also reported by Comiso [1983, his Figure
3] for surface temperstures estimated from temperature
humidity infrared radiometer (THIR) data, so that the use
of the drifting buoys for validation does not appear to be
useful.

Last, surface temperature measurements taken by a
PRT 5 thermal radiometer during CEAREX in March 1989
sre compared to NOAA 11 AVHRR data. The PRT § was
flown on the NOAA P3 aircraft near Svalbard as part of




the Arctic Gas and Aerosol Sampling Program (AGASP).
The altitude of the instrument varied between 50 m and
4 ki for the "clear” sky area of coincident aircraft/satellite
data. While in concept this data should be useful for
validation of the ISTs, it is problematic due to (1) time
differences between the aircraft flight and the satellite
overpass (a few hours), (2) an assumed unit emissivity in
the calculation of PRT 5§ temperatures, (3) geolocation
errors for both the aircraft and the satellite data, and (4)
the presence of aerosols and/or ice crystals above the
aircraft. The last of these conditions greatly reduced the
number of areas usable for validation. The geolocation
problem dictates that the comparison between the PRT 5
and AVHRR data be done over a number of pixels rather
than a single pixel. Given these problems, the best
situation occurred when the aircraft was at an altitude of
160 m. The mean IST for a sample of four AVHRR pixels
was 258.9 K, while the mean PRT 5 temperature (adjusted
for an emissivity of 0.998) of four consecutive measure-
ments 1 km apart was 259.04 K. Given the difficulties in
comparing the two data sets, these results are encourag-
ing.

4.2. Dependencies and Atmospheric Considerations

A potential problem in the retrieval of IST is the
presence of ice crystal haze, or "diamond dust.” It is
particularly difficult to detect in AVHRR data because it
is usually close to the surface and exhibits similar spectral
properties. Values of the visible optical depth for ice
crystal haze have been reported to range from 5 to 21 for
wintertime and from 0.03 to 3 for springtime {Curry et al.,
1990]. The effect of varying optical depth of ice crystal
haze on the estimated IST is illustrated indirectly in
Figure 5, which shows brightness temperature differences
between AVHRR channels 4 and 5 as a function of the
optical depth of ice crystal haze over two ice surfaces: 5-
cm-thick ice with a surface temperature of 256.62 K and
2 m ice with a surface temperature of 235.38 K Mean
January atmospheric conditions for the central Arctic are
used at a satellite scan angle of 30°. The top of the ice
crystal haze layer is near the top of the inversion, which
has a temperature of 248 K Using the coefficients
developed here, estimated ISTs over the 2-m ice surface
for the points indicated (in order of increasing optical
depth) are 236.36, 237.51, 239.57, and 246.15 K. Depend-
ing on the cloud detection algorithm used, a temperature
change of more than 2°-3° would probably signify cloud, so
that in this example, diamond dust with optical depths
greater than 0.34 do not present a problem in IST retriev-
al. At smaller optical depths, however, estimated ISTs
could be in error. Given the uncertainty in the frequency
of occurrence and spatial extent of this phenomenon, we
do not attempt to adjust for it in the coefficients present-
ed. Admittedly, this can be an important problem at
certain times of the year.

The dependence of the coefficients on sensor scan angle
has been found to be important by other investigators [cf.
Barton, 1985; Minnett, 1990). This is also the case for IST
retrieval, although incorporating both channels 4 and 5 in




T NP |

[

(2) reduces the effect that increased path length at large
scan angles has on the surface temperature estimation
when scan angle is not taken into account explicitly. With

" the coefficients presented here the estimated surface

temperature from (2) is very close to the surface tempera-
ture at all scan angles, while the estimated surface
temperature using only channels 4 and 5§ varies as a
function of scan angle. Even though the differences are
small, not including the scan angle explicitly results in an
increased rms error of less than 0.1 K over using (2).

Coefficients in (2) were also computed assuming
emissivities independent of wavelength and scan angle. In
this case a different set of coefficients was produced at
emissivities of 0.96 to 1.0 in increments of 0.01. Using the
acan angle and wavelength dependent coefficients (Tables
2-4) with data based on fixed emissivity coefficients results
in underestimates of 0.2 K for an emissivity of 1.0 and 0.6
K for an emissivity of 0.99 during summer with NOAA 7
simulated data. Since pure water has a slightly lower
emissivity than pure snow (e.g., 0.992 at 11.9 pm and
nadir), the estimated IST of an AVHRR pixel contaminat-
ed by summer meltponds would be incorrect by an amount
somewhere between these two extremes depending on the
proportion of water within the field of view.

The seasonal dependence of the coefficients is illustrat-
ed in Table 5, where coefficients from each season were
applied to data from every other season. Results are
shown for NOAA 9 and indicate errors between 0.1 K for
transition coefficients with winter data and 0.6 K when
summer coefficients are used with winter data. Similarly,
the satellite dependence of the coefficients is shown in
Table 6 for summer conditions. On the average, errors
ranging from 0.1 to 1.0 K, depending on season, can be
expected in applying coefficients derived for one satellite
to data from another, the smallest errors occurring
between NOAA 7 and 9 coefficients and data.

Using SST coefficients developed for the North Atlantic
[Liewellyn-Jones et al., 1984] and the Greenland Sea area
(Minnett, 1990] to estimate IST would result in an under-
estimate of up to 0.7 K, largest in winter and at scan
angles of 40° and greater. Not surprisingly, the difference
is much larger (up to a 5.0 K overestimate) when tropical
coefficients [Llewellyn-Jones et al., 1984] are used. This
comparison was made by using simulated radiances based
on the directional emissivities, whereas the emissivity of
the sea surface in the aforementioned studies was comput-
ed by using the Fresnel equations with the refractive
index of water (actual values not given). These errors are
similar to those reported by Minnett [1986], where SST
was retrieved from North Atlantic data using coefficients
from other regions.

Sensor characteristics and calibration also influence the
retrieved IST. AVHRR GAC data are less noisy than LAC
data and would resuit in a smoother IST field. Incorrect
sensor calibration can produce large errors in estimated
IST; errors in IST near Greenland of up to 3 K resulted
from not including the nonlinear response correction in
the calibration. Quantization of the signal (i.e., how much
of a degree is represented by one digital count) introduces




additional error. Some of these factors affect whether or
not there is a systematic difference between the estimated
ISTs and the true (measured) IST—the system bias—but
due to the small quantity of coincident surface/satellite
measurements, the degree of influence is impossible to
assess. Therefore no empirical corrections to the forward
model are suggested, which would otherwise account for
sensor and other factors such as radiosonde accuracy and
the treatment of the stratosphere above the known profile.

§. SUMMARY AND CONCLUSIONS

The relationship between AVHRR clear sky thermal
radiances and the surface (skin) temperature of central
Arctic snow-covered sea ice is examined through forward
calculations of the radiative transfer equation. Tempera-
ture and humidity profiles and cloud data from ice islands
during 1986-1987 are used. Coefficients that correct for
atmospheric attenuation are given for three Arctic clear
sky "seasons,” as defined through statistical analysis of the
daily profiles, for the NOAA 7, 9, and 11 satellites.
Modeled directional emissivities, different in the two split-
window channels, are used. While the sensor scan angle
is included explicitly in the correction equation, its effect
in the dry Arctic atmosphere is small, generally less than
0.1 K The coefficients presented are for use with AVHRR
channels 4 and 5 (11 and 12 pm) and the sensor scan
angle. With this method the rms error in the estimated
ice surface temperature is less than 0.1 K in all seasons.
Inclusion of channel 3 (3.7 pym) during the winter decreas-
es the rms error by less than 0.003 K

The seasonal dependence of the coefficients is impor-
tant, with rms errors in the range of 0.1 - 0.6 K when
coefficients are applied across seasons. Similarly, using
coefficients from one satellite with data from another
results in average errors from 0.1 to 1.0 K Overall,
employing the IST coefficients results in increased accura-
cy of up to 0.6 K over SST coefficients developed for the
North Atlantic and the Greenland Sea areas. While this
difference is small in terms of outgoing longwave radia-
tion, it is important for long-term climate monitoring.
Modeled 1ce crystal haze during January indicates that at
small optical depths the haze may not be detected as cloud
and could result in IST errors of up to 2°.

Two important problems remain in the retrieval of ice
surface temperature. First, until a reliable method of
cloud clearing becomes accepted by the science community,
IST retrieval results will have an additional level of
uncertainty. Second, coincident satellite, surface, and
atmosphere measurements over sea ice must be taken
across the Arctic and in all seasons before the bias of these
IST coefficients can be accurately determined.

APPENDIX
Assuming that clouds do not contaminate the satellite
scene, that the remaining atmosphere is nonscattering,
and that the surface is nonblack, then the radiative
transfer equation for the upward monochromatic radiance
L(7,0) at wavelength A and satellite view angle 6 can be
expressed as
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where ¢, is the emissivity of the surface (which is as-
sumed equal at all > within a channel in this study), T, is
the surface temperature in Kelvin, o, is the optical depth
of the slant path, and B,(T) is the Planck function at
temperature T. The first term on the right is the contri-
bution from the surface, the second is from atmospheric
emission, and the third represents downward atmospheric
emission that has been reflected upward. The surface
contribution is assumed to be the dominant one for the
IST retrieval outlined in (2), which can be illustrated by
estimating radiances in the two split-window channels
using the clear sky Arctic mean and subarctic standard
winter and summer profiles with identical surface temper-
atures. The maximum difference in radiances is 0.06 W
m2.r, indicating that the vertical temperature distribu-
tion of the relatively dry Arctic atmosphere plays a
relatively small role in the attenuation of upwelling
longwave radiation.

To simulate the satellite radiance, the radiances at
wavelengths across each channel must be integrated with
the sensor response function:

22 Lo 0w dn
L; = 1
.QQ 0,(0) dA

where L, is the channel i radiance, ®,(1) is the channel’s
response function, and A, and A, are the lower and upper
limits of the channel, i.e., where the response is 0. Using
a rectangular response function defined by the half-
amplitude full-width portion of the actual channel re-
sponse (but with 100% response at all wavelengths)
instead of the full response function results in brightness
temperature differences of the order of 0.05 K in channel
4 and 0.5 K in channel 5 (January conditions). These
figures are valid for two central wavelengths used in the
conversion of radiance to brightness temperature: that
from the full response function or one based on Planck
radiances specifically for the half-amplitude function.
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TABLE 1. Angular Emissivities of Snow in NOAA 7

AVHRR Channels 4 and 5
Channel 4 Channel 5
Scan Angle Emissivity Emissivity
0 0.9988 0.9961
10 0.9987 0.9968
20 0.9984 0.9949
30 0.9977 0.9933
40 0.9968 0.9908
50 0.99566 0.9872




TABLE 2. Winter, Transition, and Summer Season Coefficients and rms Error Based on
AVHRR Channels 4 and 5 for NOAA 7

Season a b c d rms
Winter -3.38568 6.28508 -5.27306 -2.45291 0.102
Transition -3.77780 4.73209 -3.71850 -1.40116 0.074
Summer -0.47429 3.77483 -2.77389 -0.56024 0.057

Sesson coefficients based on equation (2).




TABLE 3. Winter, Transition, and Summer Season Coefficients and rms Error Based on
AVHRR Channels 4 and 5 for NOAA 9

Season a b ¢ d rms
Winter -6.82059 7.81491 -6.79284 -3.34169 0.127
Transition -6.06238 5.64562 -4.62267 -1.91927 0.089
Summer 0.49995 4.12165 -3.12356 -0.68087 0.067

Season coefficients based on equation (2).




TABLE 4. Winter, Transition, and Summer Season Coefficients and rms Error Based on
AVHRR Channels 4 and § for NOAA 11

Season a b ¢ d rms
Winter -5.39436 5.46800 -4.45233 -1.45853 0.071
Transition -5.35487 4.47913 -3.46285 -0.97128 0.063
Summer -1.76899 3.66554 -2.66249 -0.39676 0.063

Season coefficients based on equation (2).




TABLE 5. The rms Error in Applying Coeflicients
(NOAA 9) Developed for One Season
to Data From Another

Data from
Coefficients Winter Summer Transition
Winter 0 0.403 0.128
Summer 0.587 (1] 0.342
Transition 0.117 0.219 0




TABLE 6. The rms Error in Applying Coefficients
(Summer) Developed for One Satellite
to Data From Another

Data from

Coefficients NOAA 7 NOAA 9 NOAA 11

NOAA 7 0 0.272 0.656
NOAA 9 0.296 0 1.017
NOAA 11 0.682 0.961 0




Figures

Fig. 1. Average minimum (solid) and maximum (dashed) sea ice
extent in the Arctic Ocean. Also shown is the area covered by the
NP-26 drifting ice island.

Fig. 2. Clear, cloudy, and mized temperature profiles for the ice
island dats during winter (October - March), transition (April,
May, September) and summer (June - August).

Fig. 3. Standard subarctic winter and summer temperature
profiles,

Fig. 4. Response functions for AVHRR channels 4 and 5 on
NOAA 7, NOAA 9, and NOAA 11.

Fig. 5. Brightness temperature difference between AVHRR
channels 4 and 5 as a function of the optical depth of ice crystal
haze over two ice surfaces: 5-cm-thick ice with a surface tempera-
ture of 256.6 K and 2-m ice with a surface temperature of 235.4
K. Mean January atmospheric conditions for the central Arctic
are used. The top of the ice crystal haze layer is near the top of
the inversion, which has a temperature of 248.0 K. Satellite scan
angle is 30°. Estimated ISTs over the 2-m ice surface for the
points indicsted (in order of increasing optical depth) are 235.36,
237.51, 239.57, and 246.15 K.
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ABSTRACT

The release of heat from sea ice leads is an important component of the heat budget in the Arctic,
but their impact on regional scale climate is difficult to assess without more information on their
distribution in both space and time. Remote sensing of leads using satellite data, specifically AVHRR
thermal and Landsat visible imagery, is examined with respect to one lead parameter: lead width.
Atmospheric effects are illustrated through the concept of thermal contrast transmittance, where the
brightness temperature contrast between leads‘ of various ice thicknesses and the surrounding multiyear
ice are simulated using a radiative transfer model. Calculations are made as a function of aerosol, ice
crystal precipitation, and cirrus cloud optical depths. For example, at ice crystal optical depths of more
than 0.3 under mean January conditions in the central Arctic, the split-window brightness temperature
differences between 2 m and 5 cm thick ice are similar to the ice temperature variability so that there
would be insufficient contrast to distinguish a lead from the surrounding ice. The geometrical aspects of
the sensor are also simulated so that the effect of sensor field-of-view on retrieved lead width statistics

can be assessed. This is done using Landsat data degraded to AVHRR pixel sizes.

INTRODUCTION

Sea ice leads (linear openings in the ice pack) are an important component in local scale heat
exchange in the Arctic, providing a significant source of heat and moisture to the atmosphere.
Unfortunately, their impact on regional scale climate is difficult to assess without more information on
their frequency of occurrence in both space and time. The use of satellite data, and in particular the
thermal channels of the Advanced Very High Resolution Radiometer (AVHRR), for the detection and
mapping of leads has been suggested but its utility is questionable because of its relatively low resolution
(1.1 km at nadir) and the influence of the intervening atmosphere on upwelling radiation. It is necessary,
therefore, to understand bow sensor characteristics, atmospheric properties, and surface conditions

influence the detection and interpretation of sea ice leads in AVHRR and other satellite data. We seek
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to determine the sources and magnitudes of errors inherent in the measurements and how lead statistics
change with the different spatial resolutions of existing and future sensors. Specifically, we address the
following issues: What is actually being measured by these sensors? To what extent do surface,
atmosphere, and sensor factors affect lead observations and image interpretations? How does lead
detection depend on ice thickness as a function of sensor response, surface temperatures, and atmospheric
conditions? Since the temperature contrast between open water and ice provides a means to map leads
using thermal imagery, to what degree does this contrast affect the apparent width of a lead and our ability
to detect it? How do atmospheric, boundary layer, and solar zenith angle effects combine with surface
conditions and viewing geometry to determine the thresholds of lead detection?

To address these questions our approach includes both modeling and empirical studies. The
radiative transfer modeling is done for the purpose of simulating the satellite sensor response under a
variety of atmospheric and surface conditions. The empirical studies include a comparison of lead
statistics determined in imagery of varying scales (e.g., AVHRF , Landsat, and OLS data) and the use of
lead statistics derived from low resolution imagery to estimate characteristics of the distributions obtained
in the high resolution images. In this paper we discuss both the empirical and modeling studies with
respect to lead width, which is defined as the distance across a lead along a line perpendicular to the local
orientation of the lead.

2. THERMAL CONTRAST BETWEEN LEADS AND THE SURROUNDING ICE

Atmospheri: and view angle effects are modeled under a variety of conditions to simulate sensor
response in order to gain a better understanding of how leads might appear in the satellite data under
varying surface and atmospheric conditions. With this kno~'ledge, it may be possible to estimate the
smallest resolvable lead under a given set of surface/atmospheric/sensor resolution and view angle

conditions. Emphasis is on the AVHRR thermal channels (3: centered at approximately 3.7 pm, 4: 11 pm,

5: 12 pm).
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To simulate radiances measured by the sensor, the LOWTRAN 7 (hereafter LOWTRAN)
atmospheric transmittance/radiance model (Kneizys et al., 1988) is used. LOWTRAN calculates
atmospheric transmittance/radiance for wave numbers ranging from 0 to 50,000 cm™ (0.2pum to infinity)
at a resolution of 20 cm™, and includes calculations for multiple scattered radiation. The code may be
initialized for standard or user-defined atmospheres, several cloud models, aerosol models, and specified
solar and view geometry. Analyses are based on atmospheric temperature and humidity profiles collected
by radiosonde from the Soviet ice islands RVAB (approximately 80°N 160°W) during 1979-83 and EMIO
(approximately 87°N 175°E) during 1983-1987. Generally two observations per day were collected
covering a vertical range of 0 to 25 km. Profiles that had more than 10 levels were retained in the
analyses. Pertinent observations include temperature and dew point depression. Results for mean January
conditions are presented here.

LOWTRAN calculations were made cver a range of 0.55 micron optical depths for 3 prescribed
surface temperatures used to characterize different lead types (open or refrozen) and a fourth to represent
the "background” scene consisting of 2 meter thick ice. These temperatures were estimated using a surface
energy balance approach (Maykut, 1982) to characterize the open leads at 271 K, leads covered by 5 cm
thick ice (257 K) and 15 cm thick ice (248 K). The thick ice has a skin temperature of 235 K in all
model calculations. The model was run for satellite viewing angles of 0° (nadir), 20° and 50° and
accounted for differences in directional emissivity at each central wavelength of the AVHRR channels.
Temperature and humidity profiles were based on the mean January ice island soundings discussed above.
All simulated radiances were converted to brightness temperatures for ease of analysis and
intercomparisons. Examples of the results are shown in Figure 1 for two commonly observed conditions
in the Arctic, ice crystal precipitation and haze in the boundary layer. Figure 1a is a composite of results
at 50° viewing angle showing the behavior of channel brightness temperatures (numbered 3, 4 and 5 on

the plots) for simulations assuming each of the surface temperatures defined above. A hypothetical cirrus
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cloud of varying optical depth was inserted in the lowest 1 km of the atmosphere to simulate the effects
of "ice crystal precipitation” which is a common feature affecting the radiative balance of the lower
troposphere in the Arctic. Regardless of the underlying surface type the simulated brightness temperatures
rapidly converge to the 248 K blackbody radiating temperature of the "cloud top" level as optical depth
increases. Note that because all three channels are centered in window regions of the spectrum, surface
temperatures are well simulated at zero optical depths. Maximum brightness temperature differences exist
between the channels at around optical depth 0.5 to 0.8. If satellite radiances can be measured accurately,
these differences may be used to delineate leads when optically thin ice crystal precipitation is present in
the boundary layer, but brightness temperature differences and contrast between surface types is rapidly
diminished as the optical depth increases beyond about 1.0, making it impossible to detect the underlying
leads. This value is not at all unexpected as optical depths of up to 20 have been reported for ice crystal
precipitation (Curry et al., 1990).

Figure 1b shows the results assuming that an aerosol (haze) layer exists from the surface to a
altitude of 2 km (the boundary layer aerosol model defined in LOWTRAN) over the same range of optical
depths. In this figure two sets of channel 3 curves are shown to contrast the differences between nighttime
(strictly thermal) and daytime simulations where the upper, bold set of curves relate to daytime conditions.
Multiple scattered solar radiation adds significantly to the upwelling radiances as optical depths of the haze
layer increase while the infrared channels do not show any multiple scattering effects. All other input
parameters to LOWTRAN are the same as for Figure 1a. In the haze simulations it is obvious that the
brightness temperature differences between channel pairs are small when only thermal radiances are
considered (nighttime) over the entire range of optical depths while large differences exist between channel
3, and channels 4 or 5 when solar radiation is accounted for during the day. Also, the contrast between
surface types for each channel remain significant over the range of visible optical depths shown,

particularly when only thermal radiances are considered. Gross differences between Figures 1a and 1b




are due to markedly different properties of the haze and cirrus models defined for LOWTRAN.

The contrast between varying lead types and the ice pack can be expressed by the difference in
simulated channel brightness temperature for a hypothetical lead temperature, say open water, S cm thick
ice or 15 cm thick ice and the surrounding ice pack at any optical depth, normalized by the brightness
temperature of the ice pack (here taken to be 2 m thick). Figures 2a and 2b show the normalized contrast
for channel 4 assuming the conditions illustrated in Figures 1a and 1b respectively. This relative measure
of contrast may provide a means to detect leads using AVHRR data even at night, though it is apparent
that if optically thick ice crystal precipitation exists that the contrast is essentially zero making it
impossible to detect leads using such a method.

Also modeled, though not illustrated here, were channel brightness temperatures, pair differences and
normalized contrasts in surface types for high-level cirrus clouds at each viewing angle. Again, brightness
temperatures converged at the blackbody radiating temperature at cloud top for large optical depths, but
the convergence was less dramatic than in the case of low level ice crystal precipitation. Channel 3 minus
channel 4 brightness temperature differences at 50° viewing angle were significant in this case reaching
nearly 12 K over open leads at a 0.55 micron optical depth of about 2.6 with the difference being less than
5 K over the pack ice. Differences in these signatures when incorporated into image analysis algorithms
in conjunction with ancillary information should be very useful in the detection of leads. Though the
normalized contrast between surface types degrades with increasing cirrus optical depth, our simulations
indicate that reasonable signatures should be detectable for a range up to about optical depth 4.0, that is,
for most cirrus conditions expected to be observed in the Arctic region. Combining brightness temperature
differences with contrast will improve our ability to detect leads significantly. Developing an algorithm

to do so presents a challenge for the future.




3. EMPIRICAL APPROACHES AND RESULTS

While there have been studies of the effect of sensor resolution on parameter retrieval, the
approaches have been empirical and have dealt only with cloud fraction (and a single cloud type such as
cumulus; e.g., Shenk and Salomonson (1972), Wielicki and Welch (1986)) or land cover classes (e.g.,
Woodcock and Strahler (1987), Townshend and Justice (1988)). In the case of cloud fraction, real and
synthetic data containing cloud fields were degraded in resolution, and the fractional coverage was
observed as a function of scale. In the case of land cover classes, the variance of the image was plotted
as a function of measurement scale for the purpose of determining the optimal resolution for monitoring.
While all of these studies are useful, no concise statement of the relationship between fractional coverage
and sensor resolution was given, so that the results are difficult to generalize to other parameters. An
analytical solution to this problem is currently béing investigated, but here we present results from an
empirical study.

While there are advantages to comparing lead statistics derived from different types of imagery,
such a study would be difficult given different acquisition times, wavelength ranges of the various
sensors, and geolocation problems. To alleviate these problems, comparisons are made across image
scales based on the same initial image, where the change in resolution is obtained by modeling the transfer
function between the initial data and the desired resolution and then subsampling. A spatial filter that
estimates the point spread function of the Landsat sensor is applied following the methodology presented
in Justice et al. (1989). At each degradation cycle, Gaussian random noise is added back into the image
to reduce the smoothing effects of the filtering operation. Images with FOVs of 160, 320, 640, and 1280
m were created in this manner. Data are Landsat Multispectral Scanner (MSS) band 4 (0.5-0.6 um) scenes
of the Beaufort Sea, March 1988, with an initial field-of-view (FOV) of 20 m.

Leads statistics are retrieved from a lead/not-lead binary image. To obtain the binary image the

fourth order trend surface is removed from original grey scale image (Eppler and Full, 1992) and a
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thresholding procedure is applied at each degradation cycle. Valid lead fragments are identified, where
"valid" refers to a linear feature for which a meaningful width and orientation can be determined.
Linearity is determined through correlation/regression analysis. Lead widths are measured perpendicular
to the regression line, at 1 km intervals, and the slope of the regression line is the measure of the lead
orientation.

One of the Landsat scenes analyzed is shown in Figure 3. Image size is 80 x 80 km, a subset of
the full Landsat scene. The corresponding distribution of lead widths is shown in Figure 4. The
disappearance of small leads due to a lack of contrast and the increase in the relative frequency of large
leads as pixel size increases can readily be seen. In this particular image, a width threshold of
approximately 250 m divides those leads which would disappear in the 320 and 640 m degradations.
However, the criteria for how a given lead will "grow" or disappear during image degradation must
include a measure of its thermal contrast to the surrounding ice. For example, a narrow, open lead might
grow during the first degradation, accompanied by a drop in contrast due to smoothing, and then disappear
in the subsequent scene. A narrow refrozen lead, in comparison, might disappear during the first
degradation. This change in lead widths as a function of pixel size affects the total lead area as shown
in Table 1 for the images in Figure 3, where lead area fraction decreases with increasing pixel size.
Orientations of leads can also be expected to change, if anisotropy (i.e., a preferred orientation) exists.
An illustration of this is shown in Figure 5 for the Landsat image in Figure 3. Results from other Landsat
scenes show similar patterns.

Given that very small features will generally not be resolved, the issue then becomes one
concerning the possibility of using the partial distribution of a particular statistic (e.g., lead widths)
measured at low resolution to estimate the complete or "true” distribution of that parameter. For example,
assume that lead widths, x, follow a negative exponential distribution with an unknown mean, A. From

a sampling point of view it is useful to treat the distribution of widths as discrete and address the number




n; of leads in bin / that have widths between x; and x,+w where w is the width of the bin:

n, = va!e"'“ I

where N is the unknown total number of leads in the spatial area. The idea is that n, is measured for a

few bins, and that A and N are estimated. To accomplish this, (1) is rewritten in linear form as

Nw 1
In(n) = In(——) - . 2
(n) = () - ox, )

Letting @ = In(Nw/A) and b = A" and solving for a and b by the method of least squares with the observed
data, the mean of the distribution and the total number of leads can then be estimated.

Experiments with this model show it to be very sensitive to the bin width and the number of bins
in which leads actually occurred in the low resolution imagery. This is not unexpected considering that
the entire range of x is being estimated in the least squares model by observations in only one part of its
entire range (such extrapolation is not recommended). The problem can be alleviated somewhat by
including a few observations of small lead widths; for example, measurements from a few SAR images
within the same area.

4. SUMMARY AND CONCLUSIONS

The use of the thermal channels of the AVHRR for the detection and mapping of leads has been
evaluated for varying atmospheric and surface conditions. Our approach included both modeling and
empirical studies, discussed with respect to lead width. Concerning atmospheric effects, the detectability
of leads is dependent on the degree of thermal contrast between surface types, which varies with surface
and atmospheric conditions as well as sensor response. The transfer of radiation through the atmosphere
is modeled using data from Arctic ice islands and climatological values of atmospheric chemical
constituents. The satellite radiances in the three AVHRR thermal channels are simulated for a variety of

surface and atmospheric conditions: a range of satellite view angles, four ice thicknesses (three within
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leads), varying aerosol and ice crystal optical depths, and thin cirrus clouds. The change in the contrast
between the lead and the surrounding ice is examined as a function of optical depth. For example, at ice
crystal optical depths of more than 0.3 under mean January conditions in the central Arctic, the split-
window brightness temperature differences between 2 m and § cm thick ice are similar to the ice
temperature variability. Therefore, thresholding operations will not be able to distinguish between ice and
leads. Due to the wide variety of atmospheric and surface conditions that exist in the Arctic, additional
experiments in this area must be performed before general statements about the determination of optimal
thresholds can be made.

Concerning measurement scale, Landsat MSS data is successively degraded from 80 m to 1.2 km
field-of-views, using the modulation transfer function for the sensor. It can be seen that small leads
disappear in the coarser resolution data and large leads "grow". The total lead fraction decreases with
resolution, roughly following a fractal scaling relationship. Lead orientation distributions also change with
increasing pixel size indicating that, in the imagery examined, small leads exhibit different orientations
than larger leads. The possibility of using lead width distributions from AVHRR data to estimate the
"true" lead width distribution is also assessed, where the large leads measured by satellite are first adjusted
for their artificial growth, and then their distribution is used to predict the first moments of the true
(hypothesized) negative exponential distribution. The results are shown to be very sensitive to the number
and range of lead widths measured, but the accuracy of the procedure can be improved dramatically with

a few samples of the same lead network at a higher resolution; e.g., from SAR data.
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Table 1. Changes in lead area fraction with pixel size in one Landsat scene.
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Pixel Size (m) Lead Area Fraction Lead Area (km?)
80 0.030 270.0
160 0.027 235.8
320 0.023 196.7
640 0.016 124.9
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Figure 1. The effect of a layer of (a) ice crystal precipitation and (b) boundary layer haze on the three
AVHRR thermal channels (3, 4, 5) at a satellite view angle of 50°. Optical depths (0.55 pm) are varied
from O to 10. The tops of the ice crystal and haze layers are near the top of the inversion at a temperature
of approximately 248 K. The brightness temperature change in each channel over each of the four surface
types (ice thicknesses: 0, 5, 15, 200 cm from top to bottom) can readily be seen.

Figure 2. Normalized contrast between an open water lead and ice of two thicknesses for (a) ice crystal
precipitation and (b) boundary layer haze. Conditions are mean January in the central Arctic.

Figure 3. Landsat MSS band 4 scene of the ice pack north of Alaska in March 1988. Area covered in
the upper left image is approximately (80 km)’.. The remaining are degraded images with pixel sizes of

160, 320, and 640 m.
Figure 4. Lead width distributions for the images in Figure 3. Widths are grouped in 100 m bins.

Figure 5. Lead orientations for the degraded Landsat series shown in Figure 3. Orientation is the angle
that a lead makes with the horizontal axis, measured counterclockwise.
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Figure 1. The effect of a layer of (a) ice crystal precipitation and (b) boundary layer haze on the three
AVHRR thermal channels (3, 4, 5) at a satellite view angle of 50°. Optical depths (0.55 pm) are varied
from O to 10. The tops of the ice crystal and haze layers are near the top of the inversion at a temperature
of approximately 248 K. The brightness temperature change in each channel over each of the four surface
types (ice thicknesses: 0, 5, 15, 200 cm from top to bottom) can readily be seen.
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Figure 2. Normalized contrast between an open water lead and ice of two thicknesses for (a) ice crystal
precipitation and (b) boundary layer haze. Conditions are mean January in the central Arctic.




Figure 3. Landsat MSS band 4 scene of the ice pack north of Alaska in March 1988. Area covered in
the upper left image is approximately (80 km)* The remaining are degraded images with pixel sizes of
160, 320, and 640 m.
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Figure 4. Lead width distributions for the images in Figure 3. Widths are grouped in 100 m bins.
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Figure 5. Lead orientations for the degraded Landsat series shown in Figure 3. Orientation is the angle
that a lead makes with the horizomal axis, measured counterclockwise.




