D-A250 415
e

Technical Report @

DTIC

ESD-TR-91-30
ELECTE
WAy 7 WD :

Requirements Engineering
and Analysis
Workshop Proceedings

Requirements Engineering Project

December 1991

2-12008
\\“\\IMHM TN

Technical Report
CMU/SEI-91-TR-30
ESD-TR-91-30
December 1991

Requirements Engineering and Analysis
Workshop Proceedings

il

Requirements Engineering Project

Acewerl,a Vor
LN eltsald N
i '

| ol TOIR J L4
. Uawn ne 2 gud i
Chaaviiieatton L

—— — e

B
CPlssrivwiien/ |

B S

—m——

Aveilabt! vy Qcees
’ Tava:1 LSRN
Dist | Spocind

M

/
R Approved for public release.
g Distribution unlimited.

Software Engineering Institute

Carnegie Melion University
Pittsburgh, Pennsylvania 15213

.

This technical report was prepared for the

SEl Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Revlew and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

X o

John S. Herman, Capt, USAF
SEl Joint Program Office

x

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This repont was funded by the U.S. Depariment of Defense.
Copyright © 1992 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy. please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springtield, VA 22161,

Copies of this document are also available from Research Access, Inc., 3400 Forbes Avenus, Suite 302, Pittsburgh, PA 15213

Use of any rademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1 Executive Summary
1.1 Requirements Engineering Processes and Products

1.2 Regquirements Volatility

1.3 Requirements Elicitation

1.4 Requirements Engineering Techniques and Tools
1.5 OQverall Recommendations and Conclusions

2 Purpose and Structure of the Workshop

3 Requirements Engineering Processes and Products
3.1 Paricipants
3.2 Introduction
3.3 Discussions
3.3.1 Coping with Uncertainty and Change
3.3.2 Improving Requirements
3.3.3 Resolving Multiple Stakeholder Conflicts
3.3.4 Tracking Requirements Progress
3.4 Summary of Recommendations

3.5 A Summary of the Results from the CECOM Workshop

3.5.1 Problems
3.5.2 Recommendations

4 Requirements Volatility

4.1 Participants

4.2 Purpose of the Group

4.3 Discussion
4.3.1 Planning for Changes
4.3.2 Specifying Requirements for the User Interface
4.3.3 Prototyping
43.4 Testing
4.3.5 Improving the Quality of the Requirements
4.3.6 Reporting Development Changes
4.3.7 Using Incremental Development
4.3.8 Tracing Changes
4.3.9 Using Hierarchical Requirements
4.3.10 Applying Technologies
4.3.11 Changing the Development Process

4.4 Group Recommendations

5 Requirements Elicitation
5.1 Participants

H WO N - -

(3)}

CMU/SEI-91-TR-30

5.2 Introduction

5.3 Current Elicitation Practices
5.3.1 Commor Practice

5.4 Problems with Elicitation
5.4.1 Communication Issues
5.4.2 Traceability Issues

5.5 General Process Issues

5.6 Suggestions for Improving the Elicitation Process
5.6.1 Communication Issues
5.6.2 Traceability Issues
5.6.3 General Process Issues

6 Requirements Engineering Techniques and Tools
6.1 Participants
6.2 Introduction
6.3 Discussion
6.4 Meaning of Context Analysis
6.5 Summary of Current or Potential Approaches
6.6 Gaps in Existing Technology
6.7 ldentified Research Topics
6.8 Summary

References

Appendix A Position Papers

25
26
29
30
30
32
34
35
35
36
37

39
39
39
39
40
41
41
42
49

51

53

CMU/SEI-91-TR-30

T Ol Ul W I T W O TEE T

List of Figures

Figure 4-1 General Model of Communication for Requirements Engineering
Figure 5-1 AYK-14 SAC Example of Requirements Elicitation

25
28

CMU/SEI-91-TR-30

v

List of Tables

Table 1 Current and Potential Approaches
Table 2 Research Topics

44
47

CMU/SEI-91-TR-30

CMU/SEI-91-TR-30

vi

y

TR TN T T T T W

Requirements Engineering and Analysis Workshop
Proceedings

1 Executive Summary

Inadequate, incomplete, erroneous, and ambiguous system and software requirements are a
major and ongoing source of problems in systems development. These problems manifest
themselves in missed schedules, budget excesses, and systems that are to varying degrees
unresponsive to the true needs of the sponsor. These difficulties are often attributed to the
poorly defined and ill-understood processes used to elicit, specify, analyze, and validate re-
quirements.

The Software Engineering Institute (SEI) hosted the Requirements Engineering and Analysis
Workshop in Pittsburgh, Pennsylvania, on March 12-14, 1991. The intention of the workshop
was to focus discussion on issues and activities that could help the Department of Defense
(DoD) to deal more effectively with the requirements of mission-critical systems. The SEl work-
shop built upon work performed previously at the Requirements Engineering and Rapid Pro-
totyping Workshop held by the U.S. Army Communications-Electronics Command (CECOM)
Center for Software Engineering in Eatontown, New Jersey, on November 14-16, 1989.

The workshop participants were divided into four working groups: Requirements Engineering
Process and Products, Requirements Volatility, Requirements Elicitation, and Requirements
Engineering Techniques and Tools. A summary of the findings of each working group foliows.

1.1 Requirements Engineering Processes and Products

The Requirements Engineering Processes and Products group investigated process-related
problems in requirements engineering. The group looked at the recommendations made by
the CECOM workshop participants and zonsidered the reasons why those recommendations
have not yet been implemented.

The group adopted the major issues of concern identified by the CECOM workshop: coping
with uncertainty and change, reducing the difficulty in validation, resolving multiple stakeholder
conflicts, and tracking requirements progress. The following strategies were proposed to facil-
itate adoption of the CECOM recommz.dations:

* Encourage innovation in the acquisition process including adaptation of
DOD-STD-2167A (Military Standard, Defense System Software
Development) anc associated data item descriptions (DIDs) to support an
evolutionary process model.

* Emphasize up-front requirements engineering, including the early
introduction of specification and analysis methods and the encouragement of
prototyping techniques for early validation of operational concepts and user
intertaces.

CMU'SEI-91-TR-30 1

* Develop a multi-disciplinary team approach, to include users, domain
experts, analysts, developers, testers, and maintainers in the analysis and
decision-making process.

¢ Capture lessons learned in the acquisition process, including both successful
and unsuccessful acquisitions, then make those lessons learned available to
other projects.

1.2 Requirements Volatility

The Requirements Volatility group investigated the causes of volatility in requirements and
possible steps toward reduction or management of such volatility. The most important point to
be made is that requirements will change throughout the life of a system, no matter how good
the requirements are initially. Recognizing that requirements will change permits requirements
engineers to plan for changes and reduces the unwanted side effects of the changes.

Although there were no specific recommendations from the group, the following issues were
noted as needing further investigation. Requirements should be structured in a number of
ways. Modular structuring is desirable because it reduces the effects of change. Hierarchical
structuring is desirable because it provides appropriate levels of abstraction of requirements.
View-oriented structuring is desirable because the different parties (e.g., tactical, strategic,
etc.) have different understandings of the system. We need to understand how the different
structuring approaches can be combined to produce requirements that are appropriate for the
readers.

Volatility can be reduced by the use of prototyping in parts of the system that are not well un-
derstood at the outset of requirements engineering. More investigation of prototyping tech-
niques is needad, however, particularly for the user interface.

The current process for system development does not easily accept the notion that require-
ments will change during system development. Therefore, other development processes that
will allow for changes in requirements should be considered.

1.3 Requirements Elicitation

The Requirements Elicitation group determined that the primary issues in elicitation are com-
munication, traceability, and process understanding. Communication is a major source of dit-
ficulty because elicitation is primarily a process of communication by its nature. Traceability is
problematic because cost, schedule, and personnel factors force frequent updates of existing
systems or systems under development. Process understanding can cause elicitation prob-
lems when the process is not defined adequately and the interrelationships among processes
are loose, informal, and not well understood.

To address the identified problems, the group developed a number of recommendations, in-
cluding:

2 CMU/SEI-91-TR-30

e Improve communication by fostering contact between all stakeholders and
removing management constraints. This can be achieved by educating
managers and removing contractual, legal, and financial barriers between
communicating groups, including modifications to the acquisition process.

e Improve traceability oy tracking the rationale associated with the
requirements and by capturing domain knowledge, ideally via reusable
domain models.

¢ Address general process understanding by streamlining and integrating
elicitation processes. This can be achieved by creating or improving tools
that support “best practices.” In addition, techniques can be provided that
improve the capture and organization of information in meetings, assist in the
negotiating process, and support the linking, traceability, and evolution of
requirements.

1.4 Requirements Engineering Techniques and Tools

The Requirements Engineering Techniques and Tools group examined the major functions of
requirements engineering, identified techniques and tools appropriate to selected functions,
shared experiences in the use of identified techniques and tools, and identified a research
agenda for techniques and tools investigation.

The group fccused on context analysis, the first and least well-understood requirements
engineering subprocess. Several strategies for addressing context analysis were discussed,
and the experiences of group members in the implementation of those strategies were com-
pared. As a result, several gaps in existing technology were identified, including the need to:
examine group skills and group decision-making in the context of elicitation; examine incre-
mental formalization of requirements; and develop prototyping techniques, particularly those
supportive of multiple abstraction levels, functional requirements (apart from user interface re-
quirements), and qualitative simulation to eliminate infeasible requirements.

Major recommendations for a possible research agenda included:

e Develop a support lunguage for requirements engineering that supports
generic and domain-specific information captured across the requirements
engineering process.

¢ Enhance participative requirements development to encourage involvement
of all stakeholders in the process.

¢ Develop techniques for prioritizing requirements in accordance with end
users’' needs.

e Support evolutionary requirements by investigating the use of the domain
structure as a basis for stabilizing functional requirements.

CMU/SEI-91-TR-30 3

1.5 Overall Recommendations and Conclusions

Although the recommendations of each working group are documented within the workshop
proceedings, a number of recommendations were common among working groups or stood
out as particularly important. These recommendations include:

¢ adopting an evolutionary, incremental approach to requirements engineering
¢ adopting a cross-disciplinary team approach for requirements engineering
e focusing on up-front requirements definiticn and validation using prototyping

e separating of user interface requirements from functional requirements

e capturing of major decisions and rationales

In the development of its strategy and goals, the SEI Requirements Engineering Project will
focus on the recommendations of the workshop participants in the definition and execution of
its project plan.

4 CMU/SEI-91-TR-30

2 Purpose and Structure of the Workshop

On March 12-14, 1991, the SE! hosted a workshop covering the broad topic of requirements
engineering and analysis. The intention was to focus discussion on issues and activities that
could help the DoD to deal with the requirements of mission critical systems more eftectively.
The fact that improvements in requirements engineering may result in a high payoft to the DoD
in terms of the cost, schedule, and quality of resulting systems has been documented previ-
ously in the writings of Brooks [BROOKS87], in the committee report “Bugs in the Program”
[S1089], and in the findings of an earlier workshop hosted by CECOM under the auspices of
The Technology Cooperative Program (TTCP) [CECOMS89]. Research supporting such im-
provement has been underway at a number of the DoD laboratories and is currently beginning
at the SE! and the Software Productivity Consortium. The workshop provided a forum in which
to review previous results with practitioners, to help establish productive future directions for
the various research projects, and to provide a basis for potential collaboration among
projects.

To emphasize the focus on practical concerns and to complement previous investigations, our
call for participation was biased towards practitioners in the requirements specification,
engineering, and analysis community. Further, we purposefully minimized participation from
industry and vendors to avoid overly partisan viewpoints. This allowed for more free and open
discussion of policy and funding issues. We do believe that industry and vendors have signif-
icant insight to offer, and we plan to encourage such participation in the future. Our invitation
process targeted military and government personne! representing operational commands, de-
velopment organizations, and the research laboratories. The initiation of Operation Desert
Storm preempted participation by a number of invitees who had planned to attend. Total at-
tendance for the workshop was 38.

A gquestionnaire was provided to invitees asking them to assign priority to various requirements
engineering issues. Based on the responses, four major themes for the workshop were estab-
lished, and participants were assigned to working groups to investigate those themes. The
themes were:

¢ Requirements Engineering Process and Products (e.g., tangible outputs)
* Requirements Volatility

* Requirements Elicitation

* Requirements Engineering Techniques and Tools

Upon arrival at the SE|, participants were provided with a notebook containing various position
papers, reference materials, and the proceedings from the earlier CECOM/TTCP workshop.
The first day of the workshop was a plenary session. After workshop logistics were reviewed,
overviews of current activities at the SEI and in the research laboratories were presented to
the entire group. An opportunity also was provided for presenting summaries of additional po-
sition papers (see Appendix A). The participants were divided into working groups in the after-

CMU/SEI-91-TR-30 5

noon to begin addressing the issues. The next morning, each working group gave a brief pre-
sentation of its direction and its work plan, which was discussed by the entire group. Most of
the second day was devoted to the working group sessions. The results of these sessions are
presented in the executive summary and are covered in detail later in this document. On the
morning of the third day, the groups reconvened in a plenary session where each working
group presented its findings and fielded questions or comments from the other participants.
After the workshop, drafts of the findings of each working group were prepared and circulated
to that group’s participants for comment. The final versions of each group’s findings are con-
tained in this document.

Conclusions drawn in this document will be available to interested parties. The results are be-
ing used at the SEI to guide the work of a new Requirements Engineering project.

6 CMU/SEI-91-TR-30

3 Requirements Engineering Processes and
Products
3.1 Participants

Deane Bergstrom
Harlan Black

Britt E. Bray

Charles W. Cratsley, Ili
William S. Gilmore
Alec Grindlay

Kyo Kang (Chair)
Nancy Mead

Paul Morris

Sandra Peay

Jay Stanley (Scribe)

Software Engineering Branch (COEE) Rome Labs
U.S. Army CECOM

U.S. Army

Naval Sea Combat Systems

Software Engineering Institute

Navy Software Technology for Adaptable, Reliable Sys-
tems Project (STARS) Project Manager, Space and Naval
Warfare Systems

Software Engineering Institute

Software Engineering Institute

Software Engineering Institute

U.S. Army Operational Test & Evaluation Command
DoD Resident Affiliate, Software Engineering Institute

3.2 Introduction

Application of the waterfall process in the development of complex, large-scale, multi-function
systems has created problems. It forces acquisition managers and developers to write highly
detailed requirements for systems whose boundaries are extremely fluid, therefore removing
some flexibility in adjusting to evolving circumstances [SI0O89]. This “process misfit” has result-
edin:

* Long requirements development time

¢ Validation difficulty

* Considerable requirements volatility and traceability problems

¢ High development and maintenance costs

¢ Brittle software resulting from continuous modifications

* Unmanageable documentation

Realizing the importance of the process model, the Requirements Engineering Processes and
Products Process Group investigated process-reiated problems they had experienced and
made recommendations to address those problems.

At the beginning, the group reviewed the process models of the three service organizations
and discussed problems and possible solutions. As the discussion proceeded, the group felt
that they were making recommendations similar to those made earlier at the CECOM work-

CMU/SEI-91-TR-30 7

shop [CECOM89]. Therefore, the group decided to review the recommendations from the CE-
COM workshop and investigate why they had not been implemented yet. For each recommen-
dation, the group identified barriers to an effective implementation and made further recom-
mendations to cope with the barriers.

3.3 Discussions

3.3.1 Coping with Uncertainty and Change

3.3.1.1 Context of the Problem

In the development of complex systems, the real user's needs are rarely understood. This re-
sults in modifications to original requirements during the development, causing schedule slip-
pages and increased costs.

3.3.1.2 CECOM Recommendations

To address the problems caused by changes to original requirements, the CECOM workshop
recommended to:

e Make changes to acquisition policies, acquisition regulations, and DoD
standards to facilitate evolutionary acquisition.

¢ Educate contracting officers in this evolutionary acquisition approach.

¢ Emphasize that system requirements cannot be fully defined a priori, and that
requirements engineering is continuous throughout the life cycles of the
system.

¢ Look into the barriers preventing an effective implementation.

3.3.1.3 Barriers

One of the barriers the process group faces is a general misconception that the DOD-STD-
2167A mandates the waterfall process model. Although DOD-STD-2167A allows developers
the flexibility of tailoring to their development, they rarely take advantage of this allowance and
generally follow the waterfall process model. One of the causes for this misunderstanding
might be that most of the examples illustrating the use of DOD-STD-2167A are centered
around the waterfall process model. This raises two issues. First, developers may be willing to
use a different developmental approach, but it may be unclear to them how to fit the approach
into DOD-STD-2167A. Second, developers are led to the assumption that the waterfall model!
is the preferred method of development for DoD projects, and tailoring is often interpreted to
mean omitting steps from the “normal” developmental process.

A second barrier is the problem of fixation, a habitual behavior where developers tend to use
approaches with which they are familiar. There are a number of reasons for this tendency:

* Costs, such as training and purchasing new software tools, are associated
with switching to a new development approach.

8 CMU/SEI-91-TR-30

I N e

T S O N B o a am aam am

¢ Developers tend to be afraid of deviating from “normal” developmental
methods. Project managers tend to be highly motivated by potential career
advancements, which leaves them anxious and skeptical when asked to
deviate from the standard ways of development. The fear of possible
negative repercussions from project failures wusing an unfamiliar
developmental approach forces developers to stay within the standard
operating parameters.

e Software is often developed using the mentality used for hardware
development. Hardware development tends to concentrate on buying one
final product, whereas software is often intended to change. In addition,
funding cycles for software have been set up similar to hardware
development. However, hardware-oriented funding cycles do not adequately
support the development of software intensive systems.

A third barrier is the lack of an effective mechanism for clearly communicating the user’'s needs
to the developer. Under the traditional Army acquisition process (the process is similar in the
other Armed Services), the combat developer specifies user requirements, and the material
developer builds systems to satisfy those requirements. Under this system, when major mis-
understandings occur that require expensive software changes, the combat developer tends
to claim that the material developer did not build the system that the combat developer spec-
ified. The material developer tends to claim that the combat developer did not clearly specify
the system it wanted originally. All are convinced that they have done their jobs to the best of
their abilities under the circumstances, and no one accepts the responsibility for the failure. As
a result, no attempt is made to correct the problem for future developments.

3.3.1.4 Group Recommendations

The group agreed with the CECOM report that an evolutionary process will solve many acqui-
sition problems and made the following recommendations to overcome the barriers discussed
in the previous section:

* Teach developers how to tailor DOD-STD-2167A and provide specific
examples of tailoring for an evolutionary development. Aiso, teach
developers techniques for tailoring other proven developmental processes.

* Provide incentives for using innovative developmental processes. Make the
benefits associated with an innovative developmental process worth the risk
of failure.

¢ Define, if possible, a developmental process that works for a particular type
of systems and establish policies that mandate the use of the process for the
same type of systems.

* Set up funding cycles that support an evoluticnary approach, and appropriate
funds as the system evoives.

* Place one person on a project throughout the entire acquisition process. This
person would then be ultimately responsible for the success or failure of the
project. The Army has started a program where colonels and captains are
placed on projects from mission analysis and remain on the projects

CMU/SEI-91-TR-30 9

throughout the entire acquisition process. Although this is a new program and
there is no data to support its success, the group strongly felt that this
approach would solve many problems associated with the current acquisition
process.

3.3.2 Improving Requirements

3.3.2.1 Context of the Problem

The combat developer analyzes new enemy threats and specifies requirements of systems
that will counter the threats. The material developer then builds systems to satisfy these re-
quirements. The bridge that has traditionally linked these two activities together is the require-
ments document. Although contractually binding, this requirements document does not truly
represent the real user’'s needs.

3.3.2.2 CECOM Recommendation

The following recommendations were made at the CECOM workshop for the problems dis-
cussed in the previous section:

¢ Remove the excessive DoD barriers to communication between contractors
and users.

* Update acquisition policies to support evolutionary life cycles.

* Increase awareness of prototyping methodologies.

3.3.2.3 Barriers

One of the barriers to communication between contractors and users is the reluctances of the
program office to release the control they currently have over this interaction. They feel that
their control eliminates excessive changes to the system while it develops. While there may
be some rationale to support this argument, drastically limiting the user's involvement with the
development is apt to be counterproductive. Developing systems that stay within schedules
and meet deadlines is of little or no use if the final system does not help users accomplish their
mission.

As of now, there is no mechanism for capturing and disseminating information on require-
ments validation techniques. This means there is no concrete evidence to support the selec-
tion of a requirements validation technique for a typical project. Although prototyping seems
to be the agreed upon approach for resolving many validation problems, mechanisms for se-
lecting the best prototyping techniques and tools, and disseminating lessons learned from the
use of these techniques, are not available. Therefore, program offices cannot find evidence of
the benefits of prototyping and do not realize how much effort could be saved if prototyping
were an integral part of most developments. Program managers could save time and effort in-
vestigating such issues if this mechanism were in place.

Another point is that even if prototyping were aliowed and mechanisms to disseminate infor-
mation were in place, many projects might not use this technique without a policy requiring
them to do so. The general consensus is that if prototyping is not a mandatory step in the pro-

10 CMU/SEI-81-TR-30

cess and if developers are not contractually bound to use it, they will leave this step out of the
development.

Often, the realization of a developer’s ability to interpret specified requirements happens after
the contract is awarded. The developer’s ability to perform this task should be exposed a priori.

With the way the current project funding cycles are set up, the majority of funds are allocated
for the full-scale development phase, with little emphasis placed on the concept exploration
phase. The main reason for this is because of the way DoD funds are appropriated; that is, the
quicker a project can get up to full-scale development, the more likely the project will be allo-
cated funds.

The problems of fixation and reluctance to explore new technologies exist in validation, as they
did with coping with changes and uncertainties, for many of the same reasons: extra costs,
career advancement concerns, lack of policies, etc.

Lastly, there are concerns that when customers are shown prototypes, they are left with the
impression that the system is complete and fail to appreciate the amount of time and effort
needed to build the actual product. This is a serious concern among the developers and could
discourage them from using prototyping techniques.

3.3.2.4 Group Recommendation

The group made the following recommendations to overcome the barriers discussed in the
previous section:

* Allow users to be more involved in the development of systems and place the
users directly on the development cycles. Track and record the results of this
involvement to provide guidelines for future developments.

* Develop a mechanism for capturing lessons learned from the use of
requirements validation techniques. One suggestion is to organize “red
teams” that periodically evaluate and document requirements engineering
approaches during system development (this information would be
confidentiai). This information can then be used to develop, revise, and
modify requirements validation strategies.

® Change policies and mandate the use of prototyping. Make prototyping the
norm rather than the exception. If developers decide not to use prototyping,
they must provide a convincing argument to support their decision. Educate
the people who are responsible for policy changes on the benefits of
prototyping. Mandating prototyping would have an effect on many of the
problems mentioned earlier and would offer the following benefits:

- With mandated prototypes, users can always expect to receive and sign-
off on a prototypical model of the final product whether or not the users
are directly involved with the development. This will help to clear up a
majority of requirements misunderstandings.

CMU’SEI-91-TR-30 ‘ 11

- The problem of capturing and disseminating the information on
requirement validation techniques will become less significant. Even if
there is no formal mechanism to do this, users and developers will gain
an intuitive understanding of best approaches and tools to use through
their experience.

- Prototyping should significantly decrease the amount of money
squandered on systems that do not salisfy the customer’'s mission. Before
major portions of systems are allowed to evoive into full-scale
development, there will be a rough example of the final product. This will
provide the users with something more tangible than volume after volume
of documents that are difficult to understand.

¢ Award contracts to the contractors most capable of understanding the users’
needs. If prototypical examples demonstrating the contractors’ ability to
extract pertinent user requirements and illustrating their approaches to
achieving the system objectives are used as a criteria for awarding contracts,
more effort will shift to the front end of the acquisition process and more
incentive will be generated to understand the users’ needs early in the
development. With contracts awarded based on prototypes, the key to
winning the contract for full-scale development is being the most capable of
understanding users’ needs and quickly and effectively demonstrating their
understanding to the user. It is certain that as contractors begin to lose
contracts due to poor validation techniques, corporate databases will quickly
fill with lessons learned on understanding customer requirements.

3.3.3 Resolving Multiple Stakehoider Conflicts

3.3.3.1 Context of the Problem

DoD software systems are usually developed to service many users in various situations.
Each user has certain requirements and reasons for these requirements. More often than not,
many of these requirements are omitted or conflicts between requirements are unresolved be-
fore full-scale development.

3.3.3.2 CECOM Recommendation

The CECOM workshop recommended to develop and document a procedure that can be used
to capture the complete set of requirements.

Identify and define all significant viewpoints and stakeholders.
Determine and define requirements from each viewpoint.
Communicate viewpoints and requirements to all stakeholders.
Jointly evaluate requirements.

Continually negotiate a reasonable envelope.

© 0 k0N

Iterate through all activities until system retirement.

12 CMU/SEI-91-TR-30

3.3.3.3 Barriers

Users often have different requirements for different reasons, and these requirements can
range over the entire spectrum of criticality. Some of the participants felt that the requirements
which they had voiced in the past failed to be implemented in the products and, as a result,
the products were difficult or impossible to use when completed.

The group felt that while the CECOM recommendations were viable solutions to the problems
within requirements engineering, there are no fixed policies or incentives to assure that these
recommendations are actually incorporated into the current military acquisition model.

It was also pointed out that the current life-cycle model contributes to the multiple stakeholder
problem by not having an explicit phase for resolving requirements conflicts prior to develop-
ment.

3.3.3.4 Group Recommendation
The following recommendations were made by the group to alleviate the problem of muitiple
stakeholders:

* Enhance the life-cycle modei to accommodate more up-front planning.

* Acknowledge importance of multiple viewpoints.

* Provide incentives or policies to impliement the CECOM recommendations.

3.3.4 Tracking Requirements Progress

3.3.4.1 Context of the Problem

As was mentioned earlier, users’ needs are not fully understood prior to the system develop-
ment and, as aresult, requirements tend to change frequently during the development. If every
new requirement arising during development were to be incorporated into the system, itis con-
ceivable that the system might never be fielded.

3.3.4.2 CECOM Recommendation
The following recommendations were made at the CECOM workshop:

Management

* Modify award fee structures to encourage the creation and timeliness of
requirements specification. Current contracts often encourage the freezing of
requirements and discourage subsequent changes of those requirements.

* Develop a team approach to help reduce unrealistic expectations on the part
of the user/customer.

* Educate program managers and team members that “changing your mind”
as a result of new information is acceptable.

* Train government program managers in the use of acquisition models that
use prototyping.

CMU/SEI-91-TR-30 13

Development

¢ Apply the new metrics developed above on actual projects.
¢ Develop an explicit requirements validation plan for every project.

Research

e Develop and use effective metrics to measure requirements progress and
completion.

¢ Develop more rigorous risk assessment and risk management techniques.

3.3.4.3 Barriers

Policies are not in place to ensure that the recommendations from the CECOM workshop will
be used at a global level. The participants from CECOM mentioned that they had begun using
these techniques but that the approach was not widespread.

3.3.4.4 Group Recommendation

The group recommended a team approach to systems development, which includes people
from every phase of the acquisition process. It was emphasized that system engineers and
testers should become more involved in the requirements engineering process because they
have a better understanding of the whole system and will be more capable of determining the
impacts of each requirement. Also, software testers should play an active role in requirements
engineering because they are ultimately responsible for testing the requirements. Before soft-
ware testers can confidently begin their work, requirements ambiguities have to be resolved.
Allowing testers to become more active in the requirements engineering phases would provide
more incentives to resolve requirements conflicts.

Another recommendation was to consider three systems during the development: the actual
system being implemented, a “wish system,” and a system in between. The idea was to freeze
the requirements for the system being developed and place all new requirements in the “wish
system.” As we gain a better understanding of the system, we can then distill the “wish require-
ments” and place them into the “intermediate system.” The intermediate system serves as a
compass in the development of the actual system and exposes things that need to be consid-
ered in the current system for a smooth transition to the next version. The distillation process
could be similar to the process mentioned earlier in the CECOM recommendations. This tech-
nique would allow end users to participate in specifying requirements without significantly af-
fecting the development schedule of the current version.

14 CMU/SEI-91-TR-30

3.4 Summary of Recommendations

The recommendations made by the Requirements Engineering Process and Products Group
are summarized below.

* Encourage Innovation in Acquisition Process

Although an evolutionary acquisition strategy has been proposed to address
many problems with the waterfall model, this strategy has generally not been
practiced. The group attributed slow acceptance to the problem of fixation,
i.e., people tend to be resistant to changes, especially when the effects of the
changes are unclear to them. The group recommended that there should be
both a policy to mandate the strategy and an active education program to
raise the awareness of the benefits of the new strategy. The group also
recommended an adaptation of DOD-STD-2167A and DIDs to support the
evolutionary acquisition. It was the opinion of the group that specific
guidelines on how to use DOD-STD-2167A and DIDs with the evolutionary
model should be provided with the standards, and all necessary changes be
made to the standards.

* Emphasize Up-Front Requirements Engineering

The operational concept of a target system is documented as the statement
of operational needs at the beginning of the acquisition process. The
specification and development activities of subsequent system requirements
depend largely on this document. However, in most cases, the operational
concept development is done without following any method or using any
tools, and the concept documents tend to be ambiguous and subject to
various interpretations. The group recommended that specification and
analysis methods be introduced early in the acquisition process to address
this problem. The group agreed that prototyping techniques that allow
validation of operational concepts and user interface should be introduced
early in the development.

* Develop a Multi-Disciplinary Team Approach

Many decisions made early in the life cycle constrain design and
implementation choices. Some seemingly simple decisions can constrain
design freedom or can have a substantial cost during the maintenance
phase. The group recommended that a multi-disciplinary team approach,
which includes users, domain experts, analysts, developers, testers, and
maintainers, be introduced from the beginning of the acquisition process. The
group agreed that this approach should be adopted when an incremental
acquisition is followed, as the system must be tested and maintained for each
increment. The tester's and maintainer's view must be reflected when
architectural decisions are made.

CMU/SEI-91-TR-30 15

¢ Capture Lessons Learned in the Acquisition Process

The group recommended that the lessans learned from both successful and
unsuccessful acquisitions be captured and made available to other projects.
The group agreed that there should be a central location where this
information is maintained and disseminated. However, the group could not
make any specific recommendation on how the information could be
gathered, especially from unsuccessful projects.

3.5 A Summary of the Results from the CECOM Workshop

The key process-related problems identified by the Requirements Engineering Process Work-
ing Group (at CECOMSs workshop) and their recommendations for those problems are sum-
marized below.

3.5.1 Problems
. Uncertainty and change are difficult to cope with.

-—r

Validation of requirements is critical to project success.
Multiple stakeholders make it difficult to reach closure.
We do not know how to track progress in requirements development.

Different processes are needed for different problems.

> 0 s WD

Differentiations are unclear between the system/software requirements
analysis phase and design phase.

7. The existing inventory of systems needs to be retrofitted to new requirements
engineering technology.

3.5.2 Recommendations
¢ Freeze requirements in small incremental builds.

e Develop more testbeds like AIN to validate interoperability earlier in the
development process.

¢ Develop and transition techniques to isolate requirements partitions.

e Develop and transition new techniques to accommodate change in
requirements and designs.

* Develop and refine practical formal requirements techniques.
¢ Define a multi-stakeholder requirements process.

e Develop thorough understanding of requirements “normalization.”
(Somewhat analogous to database normalization, this envisioned technigue
would enable two sets of requirements to be shown to be equivalent.)

* Define and understand requirements process models.

¢ Define and understand models of requirements progress.

16 CMU/SEI-81-TR-30

* Perform experiments to determine what conditions make evolutionary
acquisition and prototyping practical.

¢ Deveiop tools and techniques to capture merits and trade-offs among
requirements.

CMU/SEI-91-TR-30

17

CMU/SEI-91-TR-30

18

4 Requirements Volatility

4.1 Participants

Don Harris USAADASCH

Connie Heitmeyer Naval Research Laboratory

Leslie E. McKenzie Air Force Computer Acquisition Center
Jimmy Parker USAFAS

Patrick Place (Chair) Software Engineering Institute

Bill Reid Defense Systems Management

Kim Stepien (Scribe) DoD Resident Affiliate

George Sumrall CECOM Center for Software Engineering
Bill Wood Software Engineering Institute

4.2 Purpose of the Group

This group was given the charter of investigating the causes of volatility in requirements and
making suggestions on reducing or managing such volatility. Members of the group had varied
backgrounds, with the majority representing acquisition organizations and the minority repre-
senting users.

Volatility in requirements causes a number of problems for software developers. The main
problems are if the changes are ignored, the delivered system will fail to satisty the customer's
current needs and if the changes are accepted, there may be delays as the system is altered
to meet the changed requirements. Accepting the changes generaliy means cost overruns and
delays in delivery schedules. Understanding the causes for volatility is important for uncer-
standing ways to reduce volatility in requirements or, failing that, to reduce the effects of vol-
atility on requirements.

4.3 Discussion

4.3.1 Planning for Changes

We identified that requirements wiil change, so it does not make sense to attempt to freeze
requirements at the start of system development. If requirements are frozen in such a manner,
as the system develops and the environment changes, the system will become obsolete be-
fore development is complete. Freezing requirements prior to the development is iiie ap-
proach that has been traditionally adopted within the DoD. The group agreed that this process
does not work.

There are a number of causes of change in requirements that should be taken into account.
As the system develops, the users become more knowledgeable about the system and better
understand their needs and the way in which a system can fulfill those needs. This inevitably

CMU/SEI-91-TR-30 19

leads to changes in the requirements. So even when the requirements are perfect in terms of
understandability, consistency, and completeness at the start of development, there will be a
need to change the requirements as the development progresses.

The volatile nature of requirements is not well understood and is generally not planned for in
system development. We did not discuss the political or contractua!l implications of planning
for change, only the technical considerations that make changing the requirements a possibil-

ity.

The group’s recommendation for managing changes to requirements include assembling a re-
quirements development team that will work on making changes to the requirements based
on new information. The new information will include the changes in the environment for the
system, the increased understanding of the user’'s needs, and the feedback from system de-
velopment. This team should be made up of representatives from all interested groups, the
users, the developers, and the program offices. The representatives must have the ability to
commit their organizations to the changes they make, or at least receive a speedy response
to requested changes. As the system development continues, proportionally less work will be
needed for changing the requirements.

It is important to plan for the requirements changes in the requirements document and struc-
ture that document so that one part may be changed without altering other parts. The style of
document used on the A7E project was discussed and suggested as a mode! of a document
designed for change. A good system is designed in a modular tashion and the group believed
that it is important to construct the requirements document in a similar modular fashion.

4.3.2 Specifying Requirements for the User Interface

There was a great deal of discussion about issues of user interface because in the early stag-
es of development, requirements for the interface are likely to be very volatile as the human
factors staff, the real users, and the developers discuss the optimal user interface to a system.
The interface to a system is often the user's primary area of concern. A poorly designed user
interface will make a system difficult or impossible to use. If developers change the interface
without good reason, it is likely that the users who have become accustomed to an existing
interface will be unhappy. Prototyping the user interface as early as possible may be a way to
reduce iater volatility in the interface requirements.

The requirements document may need to describe the user interface to the system. In order
to describe the user interface in the requirements document in an alterable way, the interface
requirements should be localized within the requirements so that any changes may be made
without affecting the entire document. The group agreed that although the interface require-
ments irit.ally will be highly volatile, at some point, when the users have accepted the inter-
face, they will become highly stable and will change only in extreme circumstances.

There was some debate as to whether or not the user interface should appear in the require-
ments document. Some time was spent discussing a hierarchy of requirements documents,

20 CMU/SEI-91-TR-30

essentially a very high-level design of the system, and the group felt that at some level within
the hierarchy of requirements documents, the user interface would appear.

4.3.3 Prototyping

Prototyping was discussed as a way to reduce volatility in requirements. We have already dis-
cussed that as users deploy a system, they become more knowledgeable about the way the
system can satisfy their needs. If a prototype of the system is released to users (as quickly as
possible) and if the prototype shows the concepts of the system, then the users will learn about
their needs earlier in system development than if they waited for the first release of the system.
Knowledge gained by the users about their needs and changes resulting from this increase in
knowledge may be fed into the requirements engineering group and subsequently into devel-
opment.

There was concern about prototyping user interfaces on equipment other than the final hard-
ware, since doing so may build false expectations about the user interface. For example, if the
user interface is prototyped on a Macintosh, then users would naturally expect an interface like
Macintosh on the delivered system and may be disappointed if the delivered system has some
other interface.

4.3.4 Testing

One disadvantage of volatile requirements is that it makes the job of the testers significantly
more difficult. Test development generally proceeds with system development, and the tests
are developed from the requirements documents. As the requirements change, so will the
tests. Therefore, the tests need to be designed in a modular fashion.

4.3.5 Improving the Quality of the Requirements

The group agreed that there are three goals of system development: 1) To develop a quality
system; 2) To deliver the system according to schedule; 3) To deliver the system at the agreed
cost. The group accepted that any two of these goals can be achieved, but only at the expense
of the third goal. If a system starts to overrun its plan, the development team has a number of
options. They can either delay delivery, use more developers, or decrease the function avail-
able in the delivered system. The decrease in function implies that either the system will not
perform as required in all cases, or it may be less robust. In either of these cases, there will be
a decrease in system quality. Since quality is the hardest attribute to measure, it is the goal
that normally suffers in development.

In order to induce quality in development, we should strive for quality in requirements. One of
the causes of volatility in requirements is that the requirements are incomplete, inconsistent,
or ambiguous. If we use tools to remove ambiguities and inconsistencies in the requirements
document, then the developers will be better able to meet cost and schedule requirements
while maintaining the quality of the system. Such tools are available but are not widely used.

CMU/SEI-91-TR-30 21

Therefore, it was suggested that these tools should become part of the requirements develop-
ment process.

4.3.6 Reporting Development Changes

There are times when, for practical reasons, a developer will make changes that affect require-
ments during the development process and fail to alter the written requirements documents.
The group felt that the developers should conform to the requirements, but that this sometimes
leads to a situation where a system cannot be implemented. In cases where the requirements
are not applicable or harmful to the operation of the system, the requirements document
should be changed to alter the “broken” requirements. Since such changes inevitably will oc-
cur, the developers must be prevented from sweeping the changes under the carpet and
should be encouraged to report the changes. Further, the rationale behind the changes should
be captured. At present, this is not required.

4.3.7 Using Incremental Development

The group felt that the introduction of a process of incremental development and delivery
would be advantageous. Such an approach to system development and delivery affects the
requirements in a number of ways.

First, the requirements must be structured so that they indicate useful subsets of the system
that can be delivered incrementally. If no useful subsets can be identified, then the incremental
approach evolves into existing practices of completing development of the entire system be-
fore delivery of any part of the system. A minimal approach to subsetting the requirements
might be to assign a need level to each requirement. The users then should be encouraged to
assign factors other than their requirements.

Users will get to experiment with early parts of the system, thus providing feedback to the de-
velopers in order to achieve higher levels of user satisfaction. As the users deploy the partial
system, they will discover more about their needs and any problems with the partial system.
Second, incremental development and delivery allows the developer to incorporate user feed-
back.

4.3.8 Tracing Changes

Given that the system is developed to the requirements, changes in the requirements neces-
sitate changes in the system. Although current practice does not trace the requirements into
the system development, doing this would be valuable. Tracing the requirements makes the
task of tracking changes to the requirements into the system development simpler. It was gen-
erally agreed that advances in the devclopment environment need to take place for require-
ments tracing to be feasible.

22 CMU/SEI-91-TR-30

4.3.9 Using Hierarchical Requirements

The group felt that a hierarchical approach to requirements may make it simpler to adapt the
requirements to necessary change. The number of levels of requirements was not precisely
determined, but it was generally agreed that there should be three to five levels of require-
ments. The most abstract view of the requirements would be at the top of the hierarchy and
the most detailed at the bottom. Changes then could be made at the appropriate level of the
requirements without affecting upper levels of the requirements.

Further, the differing viewpoints of the system need to be clearly separated in the requirements
document. We identified the following viewpoints: executive (strategic), commander (tactical),
operator, maintainer, and hardware (or other software products).

4.3.10 Applying Technologies
Some technologies applicable to requirements engineering were discussed. David Parnas
and other computer scientists at the Naval Research Laboratory developed an approach for
the development and description of requirements. The approach leads to a modular descrip-
tion of the requirements that is easier to change than the more traditional style of requirements
description. Each major aspect of the functional requirements is given a section in which all of
the functions of the system that pertain to that aspect are described. The section headings of
the document are:

1. Introduction
Constraints
Input and Output Data Items
Modes
Functions (closely linked with timing)
Timing (performance)

Required Subsets

® N> oA N

Likely Areas of Change
9. Terms

The above technology presents the requirements in a way that makes them easy to change.

Another approach is to attempt to reduce how often the requirements need to be changed. Al-
though this approach will not eliminate the need to change requirements (e.g., environmental
changes cannot be predicted a priori), improving the quality of the initial requirements will re-
duce the need to change the requirements due to their internal flaws. For example, if the re-
quirements are inconsistent, they must be altered to achieve consistency. Formal methods
were suggested as a way to improve the quality of the initial requirements, offering the require-
ments developers analysis techniques that improve the consistency and completeness of the
requirements. Formal methods still need some work, though, before they can be applied to ev-

CMU/SEI-91-TR-30 23

ery system. However, wider use should be encouraged as a means to improve the quality of
the requirements.

4.3.11 Changing the Development Prucess

A typical, current process for development of systems is to develop the requirements and then
attempt to freeze them while development takes place. We already identified that require-
ments do not remain stable. Therefore, the existing process is deficient. By the time the sys-
tem has been developed and delivered, the requirements will have changed.

Thus, the requirements and system development process must be changed to accommodate
the volatile nature of the requirements. This means that the process of developing require-
ments must be re-examined with particular attention paid to the process for changing, adding,
or deleting requirements. The group agreed that the development of a hierarchical require-
ments document would lead to valuable changes in the process of requirements engineering.

4.4 Group Recommendations

Since it is not possible to eliminate volatility in requirements, and since some level of volatility
is desirable, it is important to understand the fact that requirements will change and to plan for
these changes at the beginning of development.

Requirements need to be encapsulated in order to localize the effects of a change. A particular
example is the separation of the requirements for the user interface from the requirements for
the application. At the start of user interface testing, the user interface may need to be
changed very rapidly while the application remains constant.

Itis important to prototype any piece of the system where there is doubt about its operation or
interface with the user. As users employ a system, they become more knowledgeable about
that system, and will understand better what the piece of the system should do. The sooner
users are given this opportunity, the less development time is wasted.

24 CMU/SE!I-91-TR-30

5 Requirements Elicitation

5.1 Participants

Robert Austin Software Engineering Institute
K.C. Burgess-Yakemovic NCR Human Interface Technology
Luke Campbell Naval Air Test Center

Mike Christel (Scribe) Software Engineering Institute
Peter Hanke Naval Air Systems Command
Robert Helm University of Oregon

Howard Reubenstein The MITRE Corporation

Scott Stevens (Chair) Software Engineering Institute

5.2 Introduction

Past research in the domain of requirements elicitation has often oversimplified the process,
restricting it to a model in which a user or set of users gives information to a requirements an-
alyst. In reality there are many more communities involved in the elicitation process, and the
information flow is bidirectional between most of the involved communities. While the terminol-
ogy for these communities varies across the different military services, they can be catego-
rized as follows: operators (including end users, maintenance people, testers), developers (in-
cluding contractors), requirements documenters, and customers (the sponsors/funders).

Requirements
Documenter

Developer

Operator

The dashed lines indicate a
controlling influence rather
than direct communication,

Figure 4-1 General Model of Communication for Requirements Engineering

CMU/SEI-91-TR-30 25

Elicitation can be defined as the process of identifying needs and bridging the disparities
among the involved communities for the purpose of defining and distilling requirements to
meet the constraints of these communities. Requirements can be viewed as the clearly de-
fined results of a negotiation between the parties involved. Elicitation is seen as a negotiation
process. This elicitation process will be described further in the next section, along with exam-
ples of how requirements elicitation are currently conducted in the Navy. Some general prob-
lems with this process will be discussed, including communication issues and traceability is-
sues. The final section will address some of these problems and offer suggestions on how to
improve the process.

5.3 Current Elicitation Practices

An example of requirements elicitation from the Navy will be used as a starting point for a dis-
cussion of current elicitation practices. The method for creating software requirements within
the Navy will be presented in general terms, followed by a description of this method as it is
applied to the development of the AYK-14 standard airborne computer.

Elicitation procedures described in this Naval example will be discussed in greater detail. This
discussion will be supplemented by the working group'’s experience with other elicitation prac-
tices.

5.3.0.1 An Example from the Navy

The evolution of software requirements within the Navy can be broken down into the following
steps:

1. Users perceive a “threat.”

2. A top-level Navy organization figures out the high-level requirements to
address that threat. These high-level requirements are typically a few pages
long and are referred to as the “operational requirements (OR).”

3. A system command (SYSCOM) turns the OR into a detailed requirements
statement. This is typically accomplished through the following activities:

a. In-house domain experts (the people at SYSCOM) create
requirements based on their knowledge of technological innovations
in the domain area and past systems in use in that domain. These
experts are expected to remain informed about their domain, and
have experience in extrapolating new requirements based on what
has existed in the past.

b. Compliance with constraints from the customer community, e.g.,
Congress, dictates that a particular standard supporting reuse must
be followed by the hardware/software.

c. Higher-level managers within SYSCOM influence the requirements
statement by stressing certain points.

26 CMU/SEI-91-TR-30

il E BB B W

d. If funds are available, end users are brought into the process. These
users may be first educated in the new technologies for a given
domain by bringing them to the appropriate government laboratories.
The users are typically interviewed in an ad hoc manner to derive their
requirements.

4. The detailed specification is passed to contractor(s). This Navy specification
typically contains exclusions on what the contractor cannot do, but leaves
open some implementation choices for the contractor to decide.

The general process can be illustrated with an example. This example concerns the develop-
ment of requirements for the AYK-14 standard airborne computer (SAC). The steps are num-
bered to correspond to the general description of the process above. In addition, the figure is
used to reference the parties involved in the development of these requirements according to
the communities named in the general model of elicitation proposed by the working group.

1. The “threat” in 1976 that initiated this project was the existence of logistical
difficulties in supporting a wide class of different computers.

2. In 19786, the Office of the Chief of Naval Operations (OPNAV) developed ORs
that addressed the threat and called for the development of a standard set of
similar computers for the Navy to support in the future. OPNAV may have had
some high-level communication with NAVAIR during the development of the
OR (also referred t» as the technical operations requirements, or TOR). The
group within _-".AV working on the TOR is referred to as the program
sponsor. T'.& .. oup within OPNAV where the purchasing power originates is
referred tc as the resource sponsor. It is possible to have an intersection
betwe-.n the program sponsor and resource sponsor.

3. NAVAIR developed a detailed specification from this OR in 1977. NAVAIR
thus represented the requirements documenter community. The OR was
approximately 3 pages long, and the detailed specification for the AYK-14
SAC, labeled the 85518, was about 100 pages.

Approximately 10-12 people from NAVAIR added volume constraints, weight
constraints, power constraints, and other details in developing the OR into a
detailed specification based on prior knowledge of the available technology.
Since this effort was an integration of existing capabilities into a standard
system, boilerplating was done to reuse pieces of past specifications.

No constraints were derived from past systems because this was a new
system.

Experts from other Navy Labs (NATC, Naval Avionics Center (NAC)
Indianapolis) were sought for consultation when needed.

CMU/SEI-91-TR-30 27

Users received the system from CDC in 1980. Requirements for an updated system were then
begun, and the above steps were repeated. This trend occurs repeatedly in the military. A sys-
tem is created and by the time it is released a new OR is developed to create an update to the
current system. Therefore the four steps detailed above are really part of an iterative process.
The next phase of the AYK-14 SAC took place from 1980-1983, and the phase after that from

A computer resource working group (CRWG) was created and headed by the
program manager from NAVAIR. The CRWG gathered information from end
users, i.e., the operator community. It then passed that information to
NAVAIR during the development of the detailed specification via regular
(quarterly) meetings. The Operation Advisory Group (OAG) also brought
together the operator community and the requirements documenter.

4. Multiple companies competed for contracts from 1978-1980, with Control
Data Corporation (CDC) eventually winning the competition.

1983-1987.

Requirements
Documenter
NAVAIR

Detailed spec.
85518

CRWG
OAG

Customer
OPNAYV

Developer

$ Influence
Contractors

SRR AR N AR S A RS ARNANN NS

Perceived
Threat

$ Influence
Operator

Pilots, Trainers,
Logisticians, etc.
for F18, ALWT...

Figure 5-1 AYK-14 SAC Example of Requirements Elicitation

28

CMU/SEI-91-TR-30

5.3.1 Common Practice

Requirements elicitation is primarily a communications process involving different communi-
ties. In the example from the previous section, communication between the operator commu-
nity and requirements documenter community occurred through the guidance of the OAG and
CRWG. There was initial discussion between the customer community {OPNAV) and the re-
quirements documenter community (NAVAIR) during the creation of the OR. Much communi-
cation took place within the requirements documenter community, e.g., between Navy labora-
tories, as this community often represented the operator community rather than consulting
them. In the example, there seemed to be very little communication with the developer com-
munity. This point will be returned to in the next section.

Most of the communication for elicitation takes place through meetings. In the AYK-14 SAC
example, meetings were the primary means of communication between the operator and re-
quirements documenter communities. Since meetings are used so frequently in elicitation,
many of the elicitation techniques focus on improving the quality of meetings. These tech-
niques include JAD, I1BIS, Odyssey, and Delphi. The problems addressed by these different
techniques range from getting the right stakeholders with authority together for the meetings
so that decisions can be reached relatively quickly (JAD), to capturing and organizing the ra-
tionale behind requirements gathered during meetings (IBIS).

Logistical problems often miake meetings difficult or impossible, so there are other ways the
communities involved in elicitation communicate. These include phone conversations, elec-
tronic mail, and increasingly, video teleconferencing.

Because a large number of proposed systems are evolutionary, not revolutionary, communi-
cation is enhanced through the boilerplating of past documents and standards to meet current
needs.

Communication is often especially difficult between the developer and the other communities.
The developer has clear ideas of what can be done with given technologies, but these ideas
cannot be adequately described back to the customer, requirements documenter, or end user.
A means of communication that is sometimes used is the development of software prototypes
and mockups to explain capabilities and constraints. However, prototypes have not been used
frequently with military contracts because the acquisition process does not provide an ade-
quate framework of prototyping.

Sometimes a given project will recognize at inception that there are certain unknowns that
need to be explored betore a detailed specification can be completed. With such foresight, the
communication between the requirements documenter and developer communities is explic-
itly supported, and trade-off analyses are funded to solve these unknowns. Without such ex-
plicit support, the communication between the developers and the requirements documenters,
via prototyping or other means, is often omitted.

Most elicitation processes, especially those used within the government, mandate that a set
of tormal documents be produced. The purpose of the different means of communication pre-

CMU/SEI-91-TR-30 29

sented above is to produce this set of documents, which ideally will represent a complete, con-
sistent, clear, usable set of requirements for a system. Without addressing whether the docu-
ments can achieve this goal, there are still known problems with the process. These problems
can be grouped into two classes. First, communication deficiencies can result in certain re-
quirements being missed, others being interpreted differently by different individuals and elic-
itation communities, and others being overspecified or underspecified. Second, the elicitation
process has not been viewed as being part of a larger iterative process in which the require-
ments evolve with time.

Elicitation should not be viewed as occurring only at the beginning of a development project.
During design and implementation, new requirements may be proposed and old ones moditied
and deleted. These changes are put into effect in the design and code, but the requirements
documents are not updated and the elicitation process is not invoked to check whether such
changes are really desired by the customer and operator communities.

As the system evolves, the requirements for the existing system are not modified but are only
added to, increasing the likelihood of having the new conglomerate of requirements contain
inconsistencies. The next section addresses these two classes of proolems in more detail.

5.4 Problems with Elicitation

5.4.1 Communication Issues

Requirements elicitation is primarily a communication process. This communication is not a
single direction information flow from the requirements source to the requirements analyst, but
involves many different communities and bi-directional transfer of information. The information
may serve one of many different functions, may be structured or informal, and may invoive
multiple types of media. These communication issues will be explored further in this section.

Requirements elicitation involves many different parties, and any interaction between these
parties is a potential source of requirements. Requirements do not only originate with the op-
erator community and are not derived exclusively from solicited input. For example, a sponsor
such as the U.S. Congress may impose a restriction that the software for a specific project will
have to work on a hardware platform for a different project. The model with the user as the
sole source of all requirements is invalid for most problems, and hence any elicitation tool
which assumes this model will have only limited utility.

There are often impediments to communication between one or more communities. One such
constraint is a managerial goal to control costs early in a project’s life cycle. A poor way to
achieve this goal is to speed up the requirements process as much as possible. Suci: a direc-
tive is ill-founded and will result in increased project costs because of the forced restrictions
on communication during requirements elicitation. The short-term effect is that initial costs are
cut and less paper is produced, i.e., the requirements document is smaller.

30 CMU/SEI-91-TR-30

Another impediment is the managerial concern with early usability testing. Such testing costs
money in terms of developing the tests, using computer and human resources to administer
the tests, making the tests available to the users, and allocating users’ time to take the tests.
Information gained from testing can be critical in communicating requirements for a new sys-
tem, but unfortunately management often wants to forego early communication with the users
in order to continue “building a real system.” This argument applies to more costly forms of
communication with the users as well, including early prototyping.

Cost is another factor that restricts the communication between the requirements document-
ers and the operator community during elicitation. Cost also restricts communication between
the other communities. For example, it may be useful for the operator community to know what
can be implemented with current technology via the developer community. Without explicit
funding to create prototypes or send the end users to developer sites to see examples of cur-
rent technologies, this communication is not promoted and frequently does not take place.

Communication between a requirements documenter and a contractor is often very limited be-
cause of fears of cost overruns. If the documenters find a problem with the requirements which
they judge to be trivial, e.g., an inconsistency without any known safety or reliability implica-
tions, they will not modify the requirements to fix the problem. A modification would involve a
contract change, which would increase the project’s costs. If the contractors find the require-
ments too general in some section, they will not rewrite the requirements because they do not
receive financial incentives to update the requirements—this is the task of the requirements
documenter community, not the developer community, and with military contracts the two
communities are typically disjointed. Even if the contractor communicates to the requirements
documenter that some of the requirements are too general, the documenter is prone to not
update the requirements because of the subsequent increase in project costs due to “contract
change.” The working group’s experience with Navy developments was that littie or no com-
munication occurred between the requirements documenters and developers. This point will
be relurned to when traceability issues are discussed.

There are also legal ramifications restricting communication between the developer commu-
nity and the requirements documenter community. After a contract is posted but before it is
awarded, the requirements cocumenter does not engage in discussion with developers. Such
discussion could prove use!ul, e.g., it may be that sections of the requirements document are
too restrictive and overspecify the system. The contractor could inform the requirements doc-
umenter that such a section inhi*'te ine use of the best technology available.

Learning takes place among all of the communities involved in elicitation. For example, in the
communication between the requirements documenters and the end users, the requirements
documenters learn about desired features for the new system. In addition, these documenters
learn about the domain, and the end users learn about the capabilities of delivery technolo-
gies. With this experience, the requirements documenters are better able to elicit information
from other end users for future systems, e.g., they will be able to conclude more quickly which
views expressed by different users refer to the same issue. The documenters have a better

CMU/SEI-91-TR-30 31

understanding of the requirements process and a more in-depth understanding and appreci-
ation of the domain.

The human resources problem is that the investment made in educating these requirements
documenters is often lost. Given that the more experienced a requirements documenter is, the
better he or she will be at eliciting requirements, it is prudent to keep documenters. However,
many of the military sources experience a high turnover of personnel. instead of capitalizing
on past experience, new people continually have to be trained in the requirements process
and problem domain.

A problem associated with human resources is that the requirements elicitation process is con-
tinually evolving. Documents explaining the process quickly become out of date. An “organi-
zational memory” is necessary to ensure that both new and longstanding employees share the
same referential background and are comfortable with the elicitation process.

The high turnover rate of parties involved with requirements elicitation enhances the impor-
tance of requirements traceability. Given a system that is continually evolving over the years,
the knowledge about the domain and requirements elicitation work for earlier versions of the
system would ideally be part of the requirements documenter's skill set. However, the person-
nel who elicited requirements for an early version of a system may not be available when elic-
itation is to be done for a new version. Therefore, this knowledge should be embedded in the
requirements, rather than left with personnel who may not be accessible when a new version
is being specified.

Likewise, because of the competitive bidding process in the military, it may be that the con-
tractors for a given version of a system are a different set of contractors than those who have
worked on a past version of that system. This update work would be greatly enhanced if the
rationale behind the requirements were stored in the requirements document, rather than as-
sumed to be part of the later contractor's background.

5.4.2 Traceability Issues

Due to a number of factors, including cost, schedules, and personnel resources, new systems
frequently are updates of past systems. This is especially true in the military. For example, one
of the working group members is involved with a project which traces back to 1962. Require-
ments generated for these earlier systems have a life span far beyond that of the initial delivery
cycle.

These original requirements are used in whole or in part to specify an updated system. Unfor-
tunately, these original requirements do not evolve cleanly as the system evolves. To cut
costs, new needs for an updated system are added to the conglomerate of old requirements
for that system, and wiien taken to the extreme, the old requirements are not changed at all.
As a result, consistency problems often arise because the newly added requirements clash
with points in the old requirements. This may not be noticed because the old requirements are
not scrutinized. With each successive development of a system, the gap between the require-

32 CMU/SEI-91-TR-30

T T T T ™Y

ments and the implementation widens because each new version introduces an error term.
Eventually the conglomerate of requirements for a system that has been through a number of
versions becomes so unstructured that the requirements document retains little value.

Much of the current software development involves extending and evolving 10- to 15-year-old
systems. Cost, schedule, and personnel constraints prohibit the building of new architectures
or new requirements from scratch. An observation was made in the working group that it could
take a year to create the paperwork for such a “ground up” proposal, without even considering
the effort involved to do all this work from scratch.

As a result, old requirements documents will get reused in future development efforts. Old ar-
chitectures are not thrown out; “we remodel the rooms, but not the building.” Since change is
inevitable, e.g., the hardware capabilities will advance over time and change, to motivate the
new system development, the requirements document should also be able to evolve over time
across different iterations of system development.

Requirements should also evolve over time within the same version, but linkages between the
design, code, and the requirements are not maintained. Changes in the design are not main-
tained in the requirements. Changes in the code are not reflected with appropriate changes in
the baseline requirements. Thus, the requirements are out of date even before project com-
pletion. Since the requirements do not even adequately mirror the system at the completion of
the initial build, they are inadequate to use as a baseline when adding new requirements to
specify an upgraded system. In future updates, the code is often consulted for the require-
ments, or at the very least to get at the rationale behind the requirements, because such infor-
mation is not maintained over time in a requirements document.

There are no financial incentives to evolve the requirements, so this activity is not performed,
even when there are known consistency and generality problems with the requirements doc-
ument. One working group participant recalled a recent system which consisted of hardware
and software components. The software components had more constrained safety require-
ments than the hardware. This inconsistency was discovered during the design phase. Rather
than change the requirements to make them consistent, the more stringent software safety re-
quirements were left in because the conflicting requirements were not hazardous. A change
in requirements would have involved a contract change which costs money.

Likewise, there may be a requirement that is too broad, e.g., “Thou shalt be able to navigate
globally.” This requirement may get broken down into testable components in later phases, but
the original requirem.ents document will not be updated because of the costs involved.

Requirements are often prioritized implicitly. Explicit prioritization is avoided on some projects
because the customer community would then be able to draw the line and indicate that fea-
tures with higher priority should be implemented and those at lower priority should not. Such
partitioning is deceptively simple when a list of requirements is ordered by priority. In actuality,
the satistaction of a higher priority requirement may satisfy very low priority items as well. If
rationale were associated with the requirements, it could be a means for deciding which re-

CMU/SEI-91-TR-30 33

quirements to implement if a system needs to be constrained due to cost, time, or other fac-
tors. Rationale could also help decide issues such as whether 47 medium priority items are
more important as a whole than as a single high priority item.

Traceability is a very important issue with requirements elicitation because of the extended life
span of the requirements documents. There are more general process issues concerning elic-
itation, which are discussed in the next section.

5.5 General Process Issues

There are many processes involved with requirements elicitation, but they are not well defined
and not well linked. As a result, the quality of requirements produced through elicitation varies
from project to project. There needs to be a well-defined, repeatable process for requirements
elicitation. A single specific way to perform elicitation may not exist, and even if it does it may
be too difficult to derive. Therefore, the process should consist of a set of conditions to strive
toward, analogous to the Software Engineering Institute’s software engineering process work
and the definition of software maturity levels.

One effect of having an ill-defined elicitation prozess is that the level of requirements detail var-
ies greatly from project to project. The A12 Project had a fair amount of documentation. Other
Navy projects had very little specification in order to complete the requirements at low cost.
Other projects suffered from overspecification. One system contained forty thousand require-
ments, built up over a series of years. There is a tradeoff involved. Do you give the developer
community flexibility to find the optimal solution, or do you specify the system in more detail so
you know precisely what to expect? An observation by one of the workshop members was that
the Navy tends to underspecify and indicate what cannot be done, while the Air Force tends
to overspecify and indicate what has to be done.

There have been project approaches that have created a good requirements document, but
at the expense of lengthy review cycles and an excess of paper generated. In many cases
these projects were terminated in favor of a process that would get the requirements done
more cheaply and quickly. A successful elicitation process has to address the concerns of up-
per management and be able to justify resource and cost expenditures involved with gathering
requirements. The existence of such a process will stabilize the influencing effects of individ-
uals in the different elicitation communities, especially the customer community.

Before tool support can have an effect on requirements elicitation, there is a need to identify
what constitutes good practice in this area. The working group cautioned that tools can anchor
you to the past if the installed base of tools becomes large and the cost of upgrading the tools
becomes prohibitive. Since the area of requirements elicitation is relatively new, any tools sup-
porting elicitation should be evolutionary and extensible.

This section has concentrated on identifying some of the problems which plague requirements
elicitation. The next section suggests solutions to some of these problems.

34 CMU/SEI-91-TR-30

HE s

5.6 Suggestions for Improving the Elicitation Process

Elicitation is primarily a communicative process involving customers, requirements document-
ers, developers, and operators. Strategies for improving communications between these com-
munities are suggested, which in turn will improve the elicitation process. The suggestions out-
lined in this section are presented in the same order as the problems were presented in the
previous section, with communication issues first, followed by traceability issues, and then
more general issues. It is important to recognize, however, that some suggestions are global
in nature and may apply to more than one category.

5.6.1 Communication Issues

Many different communities, including customers, requirements documenters, developers,
and operators contribute to requirements elicitation. Any process proposed for elicitation must
consider these different groups, and elicitation tools have to support this general model. In the
past, too much focus has been placed on the communication between the requirements doc-
umenter and the end user (operator), to the exclusion of the communication between the other
groups.

In order to foster communication between these groups, managerial constraints have to be re-
moved. This primarily involves educating management on the model and the usefulness of
communication between groups early in a project life cycle. For example, management should
be made aware of the long-term cost and quality improvements offered through the use of ear-
ly prototypes to communicate between the developer, requirements documenter, and operator
communities.

As another example, management should be made aware of the long-term cost and quality
improvements of usability testing in communicating information between the operator commu-
nity and requirements documenter community. When Florida Light and Power went to a TQM
philosophy, they asked the users what they wanted in terms of service; they found out that re-
ceiving continuous power was of a much higher priority than decreasing service costs. This
result was not anticipated by the company, but it led to improved requirements for future sys-
tems and greater consumer satisfaction. This example illustrates that the users do indeed
know what they want, and that improved communication with the operator community can lead
to better system requirements.

Communication between the different communities can also be improved by removing the
contractual, legal, and financial barriers between these groups, especially between the re-
quirements documenter and the developer communities. If a developer notices a problem with
arequirement after the contract has been posted but before it has been awarded, then the de-
veloper should be free to tell the requirements documenter. If necessary, the acquisition pro-
cedures should be changed to provide such a “requirements review” period after the contract
has been posted to promote communication between the developer and the requirements
documenter.

CMU/SEI-91-TR-30 35

If a problem is noticed by the requirements documenter after the contract has been awarded,
the documenter should be free to communicate this problem to the developer community with-
out having to suffer unwarranted cost increases. The developer community should not unjustly
take advantage of this communication and increase costs.

The developer community should be receiving some financial incentive or contractual obliga-
tion to maintain the requirements document as well as create the design and implementation.
Such maintenance would premote the traceability of the code back to the requirements and
allow for requirements reuse. (This will be returned to when traceability is discussed.) When
updates to the requirements document are necessary, such changes shculd be communicat-
ed back to the requirements documenter community (and the other communities if applicable),
so that the updates can be verified to be in the best interests of all the communities involved.

A model which shows that the requirements can be frozen in a fixed document is unrealistic.
The requirements documenter may find that a requirement is missing or inconsistent. The de-
veloper may find that a requirement is too general. The operator or customer communities may
fill in a requirement that was missed because of a lack of communication earlier in the process.
Whenever such an update occurs, however, it should be propagated through all the commu-
nities, i.e., elicitation is an iterative process.

5.6.2 Traceability Issues

Another key component to improving elicitation is to improve the organization of the informa-
tion passing between the different communities. This point becomes more important because
the amount of information to organize will increase as a result of improved communication. Be-
cause the personnel involved with requirements elicitation will likely change over the life of a
single system development and over the tenure of the upgrade developments for that system,
the information organization should not rest with individuals but should be integrated with the
requirements document. Therefore it is important that the requirements document contain the
rationale behind the requirements and, ideally, the domain knowledge used in gathering these
requirements.

A system rarely undergoes just a single iteration, so it becomes vitally important to store the
rationale associated with the requirements in the requirements document. The developer com-
munity working on an upgrade may not have worked on prior versions, and the personnel that
documented the original requirements may no longer be available. if the rationale is not main-
tained with the requirements, two problems frequently occur: (1) The code is used to figure out
the rationale behind the requirements, a time-intensive and error-prone process; and (2) new
requirements are added for an upgrade which are in conflict with the rationale for some re-
quirements in the existing system. Since this rationale is not maintained, this conflict is not no-
ticed.

One technique for keeping track of this rationale is the Issue-Based Information System (IBIS)
approach, described in detail in the CSCW October 1990 Proceedings. The IBIS method is
used to capture dialogue information by keeping track of the issues being discussed, the po-

36 CMU/SEI-91-TR-30

|
|

sitions taken on these issues, and the arguments supporting or objecting to positions. Such a
technique is easy to learn and use, and organizes the information well. However, it does not
support automated checking of attributes like consistency because there are not enough for-
malisms used in the method, and more comprehensive techniques may not get used because
of their increased complexity.

In addition to tracking rationale, it would be advantageous to create domain models from the
information gathered during elicitation so that ail the involved communities understand what
the inherently imperfect natural language description of the requirements actually mean. Such
domain models could then be reused in future iterations of the system, promoting traceability
and a quicker specification time.

5.6.3 General Process Issues

Although a wealth of information has to be stored during elicitation, it is often difficult to access
information and to present the appropriate information to different communities. Therefore, im-
proving the storage, organization, and retrieval of the information used in deriving system re-
quirements is an important way to improve requirements elicitation. The previous sections
highlighted the importance of improving communication between the communities involved in
elicitation and tne importance of keeping track of rationale and domain knowledge to enhance
the traceability and modifiability of the requirements. This section concludes with some sug-
gestions on what should be done to improve the elicitation process in general.

Rather than give the software development community a single specific elicitation method to
follow, they should be encouraged to decide for themselves which approach is best for a given
system in a given domain. They should be supported with a set of guidelines indicating the
best practices possible for elicitation. This document should include the more specific points
mentioned earlier concerning communications between different communities, keeping track
of requirements rationale, and promoting requirements evolution. It also should include points
which the working group did not detail, but which they recognized as being useful and impor-
tant for requirements elicitation.

Given the existence of this document, tools which support the cited practices should be creat-
ed and/or improved, and supplied to the elicitation communities. These tools should provide
support for the model presented in this report, as opposed to just supporting communication
between the requirements documenter and a user. Included in this tool set would be tech-
nigues to improve the capture and organization of information in meetings, help with the ne-
gotiation process, and support for the linking and tracing of requirements.

CMU/SEI-91-TR-30 37

CMU/SEI-91-TR-30

38

6 Requirements Engineering Techniques and Tools

6.1 Participants

John Gay U.S. Army Computer Science School
William Gilmore Software Engineering Institute
Fernando Naveda University of Scranton

James Palmer George Mason University

Colin Potts MCC

James Sidoran Rome Lat oratory

Dennis Smith (Chair) Software £ngineering Institute

David Wood (Scribe) Software Enginee. ng Institute

6.2 Introduction

This report summarizes the activities of the Requirements Techniques and Tools working
group (RTTWG) session of the Requirements Engineering and Analysis Workshop. The goal
of the RTTWG was to examine the major functions of requirements engineering, identify tech-
niques and tools appropriate for each function, and ground the techniques and tools in specific
experiences of the participants with project development.

Although there is general agreement about the crucial importance of requirements
engineering, there are a wide variety of techniques and tools available. The intent of the RT-
TWG was to make generalizations about requirements techniques and tools as appropriate,
and to identify major gaps or untested areas in current techniques and tools. The goal of the
discussions was not to validate or invalidate specific methods and tools, but rather to provide
a context for the type of domain, organization, or project for which specific techniques and
tools are appropriate or inappropriate. The hope was that the participants would bring a rich
set of experiences to this activity.

A planned result of the RTTWG session was a matrix of requirements engineering sub-pro-
cesses, techniques, tools, and project-specific experience summaries with the intent to pro-
vide a meaningful starting point for future research activities.

6.3 Discussion

As a point of departure, the session moderator introduced the findings of the 1989 workshop,
“Requirements Engineering and Rapid Prototyping Workshop," sponsored by CECOM. The
contention of the CECOM workshop was that the requirements engineering process consists
of six generic subprocesses:

CMU/SEI-91-TR-30 39

1. Context Analysis. The analysis of problem space and application domain.

2. Objectives Analysis. The analysis of the solution space and system
objectives for lifetime use.

3. Requirements Determination. The specification of characteristics the
system must meet to satisfy user needs.

4. Requirements Analysis. The analysis of expressed requirements, including
related refinement, elaboration, and correction.

5. Synthesis. The formation of a cohesive specification from the detailed
analysis, involving the integration of partitioned analyses occurring due to
problem complexity and breadth.

6. Validation. The assurance that the expressed requirements match real user
needs and constraints.

It was the original goal of the RTTWG to examine each of the subprocesses and their related
techniques and tools as identified by CECOM. However, logistical constraints did not permit
sufficient time to consider the full breadth of discussion topics. Early in the session it was noted
that subprocesses 3 through 6 are more mature, while comparatively less is known about sub-
processes 1 and 2. The group decided to fo-us on the early subprocesses in order to add more
richness to those areas. In the end, most of the discussion centered on subprocess 1, context
analysis, which deals with the analysis of the problem space and application domain and is
concerned only with the description of problems, not the description of solutions.

The RTTWG decided to examine the meaning of context analysis, summarize examples of
current approaches (or potential approaches) for carrying out context analysis, and attempt to
identify gaps in existing technology. Time was allotted for a final brainstorming session in an
attempt to capture as much knowledge and opinion as possible regarding each of the subpro-
cesses.

6.4 Meaning of Context Analysis

To facilitate understanding among the RTTWG participants and to lend continuity to the dis-
cussions, the group considered the definition of the term context analysis before proceeding
with other activities. The CECOM workshop identified context analysis as involving “analysis
of the problem space and application domain of a potential system to be developed. It deals
with description of problems only, not solutions.” Four specific activities were identified as
comprising context analysis: identification of problem space boundaries; needs identification;
application modeling; and postulating solutions.

It should be emphasized that context analysis refers to setting the context of problems at an
abstract level. The word “analysis” is meant in the sense of everyday examination of conditions
and problems within the operational environment. It does not refer to a specific, formal analyt-
ical process. However, the working group suggested that context analysis be performed inten-
tionally on an ongoing basis for its own purposes, independent of analyses carried out for par-
ticular systems. If an ongoing context analysis “mode of thinking” becomes institutionalized,

40 CMU/SEI-91-TR-30

the recognition and identification of existing problem areas and shortfalls will occur more nat-
urally.

6.5 Summary of Current or Potential Approaches

Many approaches to context analysis were discussed by the group, including:

® Causal Trees

* SWOT (Strength, Weakness, Opportunity, Threat) Analysis

* IBIS (Issue-Based Information Systems)

¢ CSCW (Computer Supported Cooperative Work)

* IRS (Information Requirements Study)

¢ Information Engineering

* Conceptual Modeling Using Expert System / Knowledge Base
* CAPS (Computer Aided Prototyping System)/ PSDL

It is notable that few of these approaches are intrinsically software-oriented. The group con-
cluded that context analysis for software requirements can benefit greatly by borrowing tech-
niques used in other fields. Several of these approaches were discussed in greater detail to
capture the experiences of the working group participants. These detailed discussions are
summarized in Table 1.

6.6 Gaps in Existing Technology

Following the discussion of existing and potential approaches to the problems of context anal-
ysis, the RTTWG considered gaps and weaknesses in existing technology that should be ex-
amined as a part of future research endeavors. Bill Gilmore, co-editor of the Requirements
Engineering Methodology, Tools, and Languages working group proceedings of the CECOM
workshop, joined the RTTWG briefly to discuss items that he considered to be unfinished busi-
ness from the CECOM workshop. In particular, he pointed out the need to identify temporal
and informational connections between the requirements engineering subprocesses to pro-
vide continuity and interconnection. A related issue is that language should provide the conti-
nuity. The ensuing discussion among the RTTWG participants confirmed a general consensus
in this direction.

The unifying language need not, and probably should not be formal in its user interface. Al-
though the closer one gets to the ultimate problem space, the more structured and formal the
language becomes, the language should serve the process and not drive it. This is particularly
important in the earlier phases of requirements engineering: while it is desirable to achieve a
formalism, it is critical that the actual users define the requirements. It is not realistic to expect
the users to learn complex formalisms.

CMU/SEL-91-TR-30 41

The languages of the first two subprocesses must allow for communication among all stake-
holders, but also must be sufficient to comprehensively express real needs. This language
should be an underlying core grammar that captures the essence of the requirements. Multi-
ple, less primitive languages can be built upon the core for use by different stakeholders. All
of the languages would utilize the same information base. A suggested area for research is
the applicability of an object-orientation to this underlying core language and/or its information
base. In any case, a rich domain-oriented language is needed in order to capture real needs.

Several other gaps were identified in current technology. Detailed information for each of these
gaps were captured in template formats, which are summarized in the following section.

6.7 Identified Research Topics

As nart of a final brainstorming session, the RTTWG captured knowledge and opinions regard-
ing potential topics for future research in requirements engineering. These topics cover tie fuil
breadth of requirements engineering and are not restricted to context analysis.

Identified research areas are listed below. Time constraints precluded detailed elaboration of
these topic areas; however, they should provide fertile ground for future refinement and inves-
tigation.

¢ Examine group skills and their implications on requirements elicitation;
perhaps develop a recommended composition of group skills needed for
each phase of requirements engineering.

* Examine incremental formalization of requirements and develop a supportive
conceptual model; do for the 1990s what the A7 approach did for the 1970s
and 1980s.

* Examine meaning of validation via prototyping; consider how one actually
validates a requirement using a prototype; develop an appropriate
environment model/test case generation method.

* Develop better predictor for cost and risk than “lines of code”, e.g., something
along the lines of function points or complexity metrics, with a specific aim of
estimating cost and risk.

e Examine qualitative or approximate simulation for validation to eliminate
infeasible requirements.

¢ Develop prototyping techniques that are supportive of functional validation
rather than just user-interface validation.

* Examine prototyping with muiltiple abstraction levels.

* Examine decision-making strategies such as JAD; involves getting decision
makers together with a structured agenda, in an environment where they are
able to define requirements and get buy-in through using prototypes and
other mechanisms.

42 CMU/SEI-91-TR-30

r

In addition, several topic areas were discussed in more depth as time allowed. Table 2 outlines
information captured from detailed discussions of specific research concerns.

CMU'SEI-91-TR-30 43

Table 1 Current and Potential Approaches

CAPS Statement. Developer-oriented system with sophisticated graphic interface. Allows developer to con-
(Computer struct a prototype based on libraiies of reusable objects. Can browse, retrieve, and tailor objects. User
Aided interface includes syntax-driven input facility to create bridges between levels of abstraction from nat-
Prototyping ural language to abstract language descriptions. Can show objects associated with a requirement or
System) requirements associated with an object. Built around PSDL (prototype system description language), a

prccedural high-level description language designed for hard real-time sy=s*ziis. 1" .5 expert sys-

tem that generates natural language (structured English) from PSDL statemenis.

Actual Use. Used in specifications of hypothermia treatment system for tumors. It is an ongaing de-
velopment (CAPS), due for delivery in September1991.

Rationale. Addresses feasibility of construction of a solution once a problem has been identified.
Positives. Given a rich software base, it allows very quick creation of prototypes. it automatically gen-
erates Ada code from the prototype, and allows the developer to keep a highly structured nistory of the
prototyping process.

Negatives. Not objact-oriented at all; entirely functionally-oriented viewpoint.

Next Steps. n/a

|
} Reference. Luqi (Naval Post-Graduate School, Montsrey, CA).
|

Conceptual Statement. A method and tool that aids in the analysis of complex systems for the purpose ¢ identi-
Modeling fying, representing, documenting, and validating (understanding) system behaviors, during prerequire-
(using expert sys- | ments phases (C.E., D.V.) of the system development life cycle. Expert system shaell capabilities (rule
tem/knowledge definition, object-oriented representation, functions, procedures, simulation) are utilized to capture and

base technology) | execute system behaviors. lcon definition capability.

Actual Use. Partial air defense model, in early prototype stage. Similar approach used for health care
executive decision making.

Rational. Address conrepts feasibility issues, high-level requirements early in the development lite
cycle. Statement of need level.

Positives. Supports animation, visualization of needs.
Negatlves. Difficult, ambitious problem. Mature technologies may not exist just yet.
Next Steps. Further research

Reference. James Sidoran, Rome Laboratory

cscw Statement. Support environment for group decision meetings; can be used to facilitate requirements
(Computer engineering. Uses trained facilitator, several possible group paradigms possible.

Supported

Couperative Actual Use. Decision support, urban mass transporiation administration, examination of existing re-
Work) quirements sets, e.9., Howitzer Improvement Program, couple others.

(Continued on next page)

44) CMU/SEI-91-TR-30

Table 1 Continued

csCcw Rationale. Group decision suppont system. Need for capture of multi media information. Ability
(Computer to make non-sequential linkages (hyper-technology). Concept prototyping. Presentation.
Supported
Cooperative Positives. Supports context and objectives analysis as defined by CECOM. May use a facilita-
Work) tor.
Negatives. Expensive
Next Steps. n/a
Reference. James Paimer
IBIS Statement. Problem formulation method based on issues, positions, and arguments.
(Issue Based
Information Actual Use. Used extensively manually for architectural, urban planning, health care planning.
Systems) Used for organizational decision-making within MCC. Used for product development at NCR
(software/systems).
Rational. Rhetorical model. Multi-stakeholder problem formulation/dialog supported.
Positives. Simple model, easy to use and apply.
Negatives. Not as simple as it looks to use properly. Doesn't help with decision making directly,
other than clarifying issues. Networks are fixed and difficult to reconfigure.
Next Steps. This type of approach can serve as example for future approaches. We need some-
thing like this that is specifically for requirements. Further “"group technology” is important.
Reference. K. C. Burgess-Yakemovic, NCR Human Interface Technology
Information Statement. A process that identifies information requirements, crganizational goals, and orga-
Engineering nization processes. Provides basis for logical architectures from these building blocks.

Actual Use. Primarily used in business, but applicable to DoD organizations (has had some
use, e.g., Gunter AFB).

Rationale. Requires top management support; cannot be done from grassroots level. Requires
involvement of primary proponents. A disciplined approach for identifying information system
needs followed by systematic development discipline.

Positives. Must be driven by proponent organization (not driven by computer/MIS people). Has
the potential to provide an enterprise or organizational view which is problem independent. Has
potential to eliminate redundancy in databases and applications.

Drives planning from organizationa! goals, so focus is on "can be,” not “what is.”

Integrates entire life cycle.

(Continued on next page)

CMU/SEI-91-TR-30

45

Table 1 Continued

Information
Engineering

Negatives. Requires substantial amount of top management time; must be so.d as being worth their
time, not something that can be delegated to computer organization.

Requires different mindset from traditional application development; difficult time focusing on abstract
issues rather than becoming bogged down in minute detail.

Tends to require proponents to think in terms of data rather than information.

Time-consuming: there is a need to manage user expactations in that it can take a year or more for
tangible results.

People can be absorbed in the techniques rather than the substance of what is going on.
Next Step. /a

Reference. James Martin books. Book by Clive Finklestein.

IRS
(Information
Requirements
Study)

Statement. U.S. Army standard, derived from IBM's BSP (Business Systems Planning). A process that
maps information requirements against the organization processes that make use of that information.

Actual Use. Business systems development. In the Army, used at Ft. Sill for Standard Installation Sup-
port Modules (ISMs). Modeled information requirements of that installation with the goal of discovering

opportunities for information sharing and consistency of information storage.

Rationale. Requires top management support; cannot be done from grassroots level. Requires involve-
ment of primary proponents.

Posltives. Must be driven by proponent organization {not driven by computer/MIS people). Has the po-
tential to provide an enterprise or organizational view which is problem independent. Has potential to

eliminate redundancy in databases and applications.

Negatives. Requires substantial amount of top management time; must be sold as being worth their
time, not something that can be delegated to computer organization.

Reguires different mindset from traditional application development; difficult time focusing on abstract
issues rather than becoming bogged down in minute detail.

Tends to require proponents to think in terms of data rather information.

Treats the data as separate and distinct from the processes, rather than as unified objects. Result is
“stovepipe” process-oriented systems. This isn’t required by the approach, but tends to be the resutt if
not used carefully.

Focus is on "what is” rather than "what can be.”

Next Steps. n/a

Reference. Army regulation 25 series (starting with AR 25-1). IBM's BSP manual.

46

CMU/SEI-91-TR-30

Table 2 Research Topics

PROBLEM

CONTEXT

REQUIREMENTS / SUGGESTIONS

Supportlanguage
for requirements
engineering

There is a need to develop
a language for supporting
the requirements engineer-
ing process. The language
should provide for both ge-
neric information capture
and seamless integration
with domain-specific infor-
mation capture.

Requirements. The language must be subservient to the requirements
process, and not drive it (“requirements by stealth”).

Multiple view capability from a common information base.
Must be targeted toward (usable by) both user and proponent.

Suggestions. Consider object-oriented approach, as domain structure
may be more stable than functional requirements.

Address issues of transition between subprocesses.
Examine domain-specific syntax requirements.
A good candidate domain is C3I.

Take a close look at work being done at George Mason University in this
area.

Participative re-
quirements devel-
opment

There is a need to consider
the sophistication and
computer literacy of class-
es of users and the ramifi-
cations upon the ability and
desire to use existing tech-

nology.

Requirements. Define mechanisms for getting stakeholders involved
across phases.

Particularly in defense systems, users are at “arm’s length,” and are not
sufficiently involved in downstream process.

Suggestions. Examine work by Clegg, et al, People and Computers, Ei-
lis Horwood publishers; and Rouse, William, Human Design, Wiley and
Sons Systems Engineering Series, 1991.

Examine inter-
viewing tech-
niques

There is a need to develop
an organized approach to
conducting elicitation inter-
Views.

Requirements. Although a disciplined approach is desired, many or
most users do not operate in a disciplined mode (in the engineering
sense).

Suggestions. Examine work by Gause and Wenberg, Exploring Re-
quirements: Quality Before Design, Dorset House Publishers, 1989.

Prioritization of
requirer ents

Determine the order of de-
sirability of requirements in
accordance with the needs
of end-users.

Requirements. Although this problem needs to be recognized, it is
probably not technologically addressable.

There must be a viewpoint authority in place to make it work.

Prioritization cannot occur in isolation (i.e., each requiremant cannot be
treated in isolation from other requirements).

Suggestions. Examine work by Gilb, Tom, Software Engineering Man-
agement.

CMU/SEI 91-TR-30

Table 2 Continued

PROBLEM [CONTEXT REQUIREMENTS / SUGGESTIONS

Investigate There is some consensus | Requirements. Develop a real object-oriented requirements analysis ap-
object among the RTTWG proach. Existing approaches are not adequate.

orientation for members that an object-

requirements crientated approach has Domain structure is much more stable than functional requirements; al-
engineering promise of building a lows people to think in real-world terms; support evolutionary require-

common information base | ments; favors reuse.
that can be used
throughout the entire Suggestions. Examine work by Wirbrock, et al, Object-oriented Soft-
requirements engineering | ware Construction, Prentice Hall.

and analysis process.

48 CMU/SEI-91-TR-30

6.8 Summary

The CECOM Workshop identified six subprocesses of the Requirements Engineering Pro-
cess. Due to time constraints, our working group focused on the least mature of the six sub-
processes, Context Analysis, in an effort to add richness to that area. The group discussed the
meaning of Context Analysis, summarized examples of current or possible approaches for
Context Analysis, and identified gaps and research topics in this area.

Many approaches to Context Analysis were discussed, several of which were captured in tem-
plate format, including rationale, strengths, weaknesses, and references for further informa-
tion. It is notable that few of the identified approaches are intrinsically software-oriented. The
group concluded that Context Analysis for software requirements can benefit greatly by bor-
rowing from techniques used in other fields.

A number of research topics were identified by the working group to address gaps in the re-
quirements engineering process. The identified topics included: examination of requirements
engineering group skills, development of interviewing techniques, prioritization of require-
ments, incremental requirements formalization, development of prototyping techniques, and
examination of object-orientation. Several of the identified research topics were captured in
greater detail in template format, identifying needs, context, requirements, and suggested so-
lutions.

A continuing theme which seemed to form the underlying essence of the problems addressed
by the working group was a unification and interconnection between the requirements engi-
neering subprocesses. This unification will provide a mechanism for requirements tracing and
validation. It was generally agreed that some language should form the basis of continuity
among the subprocesses, but that continuity should be established in the form of a common
underlying grammar rather than a forced explicit representation. The grammar should support
natural language expression at the Context Analysis stage, yet support increasing levels of for-
mality as the requirements engineering process progresses. It is this mechanism of unification
that will allow users and developers of diverse backgrounds to reconcile their concepts of the
system under development in a disciplined and progressive specific fashion.

CMU/SEI-91-TR-30 49

CMU’/SEI-91-TR-30

50

References

[BROOKSS87)

[CECOMS9)

[DSMC87]

[S1089]

Brooks, F. “No Silver Bullet: Essence and Accidents of Software Engi-
neering.” IEEE Computer 20 (4), April 1987.

Proceedings of the Requirements Engineering and Rapid Prototyping
Workshop. Center for Software Engineering, U.S. Army Communications-
Electronics Command, November 14-16, 1989.

“Evolutionary Acquisition: An Alternative Strategy for Acquiring Command
and Control (C2) Systems,” The Defense Systems Management College,
Fort Belvoir, VA, March 1987.

“Bugs in the Program: Problems in Federal Government Computer Soft-
ware Development and Regulation,” Staff Study by the Subcommittee on
Investigation and Oversight transmitted to the Committee on Science,
Space, and Technology, U.S. House of Representatives, September
1989.

CMU/SEI-91-TR-30

51

CMU/SEI-91-TR-30

52

Appendix A Position Papers

The attached position papers were submitted by workshop participants:

e CAPS as a Requirements Engineering Tool

* Requirements Specification of Hard Real-Time Systems: Experience with a
Language and a Verifier

e Acquisition Model for the Capture and Management of Requirements for
Battlefield Software Systems

® Requirements Process Analysis

* Unstable Requirements

® Requirements Engineering Processes and Products

* The Integrated Requirements Process

e Seven (Plus or Minus Two) Challenges for Requirements Analysis Research
* Requirements Techniques and Tools

® Requirements Elicitation Working Group

e A Computer Supported Cooperative Work Environment for Requirements
Engineering and Analysis

® An Informal Approach to Developing an Environment for Requirements
Capture and Refinement

CMU/SEI-91-TR-30

Nl AE N N BN D EE D r Gn By En G W B e G o e

CMU/SEI-81-TR-30

54

" " T W W W U Ul Wl VT W e W W e R J " L A ___J

CAPS as a Requirements Engineering Tool

Lugi, R. Steigerwald, G. Hughes, F. Naveda, V. Berzins

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

ABSTRACT

The process of determining user requirements for software systems is often
plagued with uncertainty, ambiguity, and inconsistency. Rapid prototyping offers
an iterative approach to requirements engineering to alleviate the problems inher-
ent in the process. CAPS (the Computer Aided Prototyping System) has been built
to help software engineers rapidly construct software prototypes of proposed soft-
ware systems. We describe how CAPS as a prototyping tool helps firm up software
requirements through iterative negotiations between customers and designers via
examination of executable prototypes.

1. Introduction

A major problem with the traditional waterfall lifecycle approach is the lack of any
guarantee the resulting product will meet the customer’s needs. In most cases the blame falls on
the requirements phase of the lifecycle. Yourdon [Yourdon] cites studies that indicate 50% of
errors or changes required in a delivered software product and 75% of the total cost of error
removal are the results of inadequate, incorrect, or unstated requirements specifications. Often
users will be able to indicate the true requirements only by observing the operation of the system.
Unfortunately, the traditional life cycle yields executable programs too late in the software
engineering process, at a point where major change is prohibitively expensive [Boar].

To alleviate the problems inherent in requirements determination for large, parallel,
distributed, real-time, or knowledge-based systems, current research suggests a revised software
development life cycle based on rapid prototyping [Berzins88, Berztiss, Tanik]. As a software
methodology, rapid prototyping provides the user with increasingly refined systems to test and the
designer with ever better user feedback between each refinement. The result is more user
involvemnent and ownership throughout the development/specification process, and consequently
better engineered software [Ng].

2. The Computer Aided Prototyping System (CAPS)

The problem with requirements engineering is amplified in the case of hard real-time
systems, where the potential for inconsistencies is greater [Beam, Boyes, NGCR, Stankovic]. One
of the major differences between a real-time system and a conventional system is required
precision and accuracy of the application software. The response time of each individual
operation may be a significant aspect of the associated requirements, especially for operations
whose purpose is to maintain the state of some external system within a specified region. These
response times, or deadlines, must be met or the systern will fail to function, possibly with
catastrophic consequences. These requirements are difficult for the user to provide and for the
analysts to determine. Toward this end, an integrated set of software engineering tools, the

Computer Aided Prototyping System [Luqi88a], has been designed to suppornt quick prototyping
of such complex systems by using easy to understand visual graphics [PDW] mapped to a tight
specification language, which in turn automatically generates executable Ada [Booch, Gonzalez]
code. The main components of CAPS are the prototype system description language (PSDL), user
interface, software database system, and execution support system (see Fig. 1).

CAPS
l |
Software Database Execution Support
System System User Interface

Fig. 1 High Level Structure of CAPS

2.1 Prototype System Description Language (PSDL)

The prototype system description language (PSDL) [Luqi88b] is the key component of
CAPS. It serves as an executable prototyping language at a specification or design level and has
special features for real-time system design. The PSDL model is based on data flow under real-
time constraints and uses an enhanced data flow diagram that includes non-procedural control and
timing constraints.

2.2 User Interface

The graphic editor, in the User Interface, is a tool which permits the user/software
engineer to construct a prototype for the intended system using graphical objects to represent the
system [Linton, TAE]. These objects include operators, inputs, outputs, data flows, and operator
loops. The syntax directed editor is used by the user/software engineer to enter additional
annotations to the graphics. A browser allows the analyst to view reusable components in the
software base. An expert system provides the capability to generate English text descriptions of
PSDL specifications. Together, these tools facilitate common understanding of PSDL components
by users and software engineers alike, thereby reducing design errors.

2.3 Software Database System

The software database system provides reusable software components for realizing given
functional (PSDL) specifications, and consists of a design database, software base, and software
design management system.

The design database [Nestor] contains PSDL prototype descriptions for all software
projects developed using CAPS. The software base contains PSDL descriptions and
unple’-ientations for all reusable software components developed using CAPS. Prototyping with
the software base speeds up evolution by providing many different versions of commonly used
components [Steigerwald], making it easier to try out altemative designs. The software design
management system manages and retrieves the versions, refinements and alternatives of the

prototypes in the design database and the reusable components in the software base.

2.4 Execution Support Systemn

The execution support system [Borison] contains a translator, a static scheduler, a dynamic
scheduler, and a debugger. The translator generates code that binds together the reusable
components extracted from the software base. Its main functions are to implement data streams,
control constraints, and timers. The static scheduler allocates time slots for operators with real
time constraints before execution begins. If the allocator succeeds, all operators are guaranteed to
meet their deadlines even with the worst case execution times. If the static scheduler faiis to find a
valid schedule, it provides diagnostic information useful for determining the cause of the
difficulty and whether or not the difficulty can be solved by adding more processors. As execution
proceeds, the dynamic scheduler invokes operators without real-time constraints in the time slots
not used by operators with real-time constraints [Mok]. The debugger allows the designer to
interact with the execution support system. The debugger has facilities for initiating the execution
of a prototype, displaying execution results or tracing information of the execution, and gathering
statistics about a prototype’s behavior and performance.

3. CAPS as a Requirements Engineering Tool
3.1 Prototyping

The Computer Aided Prototyping System (CAPS) is used to create software prototypes,
which are mechanically processable and executable descriptions of simplified models of proposed
software systems. It is also used to modify these models frequently in an iterative prototype
evolution process for the purpose of firming up the requirements. Fig. 2 illustrates the prototyping
process which consists of two stages: prototype construction and code generation [Luqi89].

..

Rapid Prototyping
———-} + Stage :

Coni)truct/Modify »| [Execute

rototype Prototype
g g Code Generation’
: Stage :
Translate/Transform
Prototype

Fig. 2 Rapid Prototyping Process

Prototype construction is an iterative process that starts out with the user defining the
requirements for the critical aspects of the envisioned system. Based on these requirements, the

designer then constructs a model or prototype of the system in a high-level, prototype descripticn
language and examines the execution of this prototype with the user. If the prototype fails to
execute properly, the user then redefines the requirements and the prototype is modified
accordingly. This process continues until the user determines that the prototype successfully
meets the critical aspects of the envisioned system. Following this validation, the designer uses
the validated requirements as a basis for the design of the production software.

The code generation stage focuses on transforming and augmenting the prototype to
generate the production code. Prototypes are built to gain information to guide analysis and
design, and support automatic generation of the production code.

To create production code from a prototype, it may be necessary to clean up the
decomposition, add missing functions, and optimize performance. Prototypes go through many
changes in the prototype construction stage, so that the structure of the final version may partially
reflect past versions of the requirements that were proposed and rejected. Once the requirements
and the desired behavior for the prototype have stabilized, it is useful to transform the structure of
the prototype to simplify the decomposition and to remove features that are no longer suppornted
by the final version of the requirements.

A prototype may not implement all of the functions of the proposed system, since the
prototyping effort is focused in the aspects of the requirements that are unknown or uncenain.
After the requirements have stabilized, the design and the structure of the prototype must be
augmented to account for these additional functions. These augmentations can be expressed in the
prototyping language to provide an early check on the adequacy of the final version of the system
structure.

A prototype may not meet all of the performance requirements, or may operate in the same
hardware and software environments as the proposed system. The structure of the prototype may
have to be transfonmed to optimize its performance and to account for differences between the
host environment for the prototype and the operating environment for the proposed system. It is
desirable to record the desired transfonmations as annotations on the prototype, and to generate
the transformed decomposition automatically based on the annotations. Such an approach
preserves the structure of the prototype prior to optimization, so that a version of the prototype
with this structure can help to evaluate system changes that are proposed after the system is
placed in production use. The unoptimized version of the prototype is better suited for
modification because the optimization transformations generally complicate the structure of the
design and destroy the independence of its parts, thus making future modifications more difficult.
This approach may provide the benefits of rapid prototyping in both the requirements analysis and
system maintenance activities.

3.2 Domain Specificity and Requirements Traceability

Using CAPS to engineer requirements offers clear advantages over determining
requirements manually. The prototype system description language is focussed on the domain of
hard real-time systems and as such offers a common baseline from which users and software
engineers describe requirements. Defining requirements in a domain specific language results in
more efficiency and fewer errors because it constrains the way users and engineers can desciibe a
particular requirement. In addition, the interpretations of requirements stated in a domain specific
language such as PSDL are unambiguous, whereas requirements stated in English are often
misunderstood.

In most software engineering efforts requirements are volatile, changing often over the
course of the software development. Requirements traceability is essential to accurately map
changed requirements into the implementation. CAPS offers basic requirements traceability
through the “by requirements” statement in the PSDL grammar. This statement allows software
engineers to associate actual requirements with the definitions of module interfaces and
constraints by annotating the interface or constraint definition with an identifier. This method
allows engineers using the design database to readily locate the portions of code that implement a
particular requiremer.. and make the appropriate changes. This feature offers substantial savings
over manual methods of requirements tracing.

3.3 Requirements Engineering

The requirements for a software system are expressed at different levels of abstraction and
with different degrees of formality. The highest level requirements are usually informal and
imprecise, but they are understood best by the customers. The lower levels are more technical and
more precise, are better suited for the needs of the system analysts and designers, but they are
further removed from the users’ experiences and less well understood by the customers. Because
of the differences in the kinds of descriptions needed by custoimers and developers, it is not likely
that any single representation for requirements can be the "best” one for supporting the entire
prototyping process.

During the process of stabilizing the requirements via prototyping, it is necessary to
repeatedly move from high-level requirements to details of system behavior, and from system
behavior back to high-level requirements. The prototype designers must guess the intentions of
the customers based on their informal statements, and embody their vision 1n a prototype design
that can be demonstrated to the users. This process is imperfect, and the demonstrated behavior
will help the customers identify differences between what they need and how the analysts
interpreted their requests. When a bug in the system behavior is discovered, it must be traced back
to the requirements to identify the specific guesses proposed by the analysts that are inaccurate.
After the faulty decisions have been identified and new versions have been proposed, it is
necessary to trace the effects of the change back down the refinement structure to find the pars of
the prototype design that are affected, so that they can be adjusted and the next approximation to
the requirements can be demonstrated.

In the context of prototyping, the requirements are used as a means for bridging between
the informal tenns in which users and customers communicate and the formal structures
comprising a prototype. We believe that a useful representation for this information is a
hierarchical goal structure, where informal customer goals are refined and defined by several
levels of increasingly formal and precise subgoals, with different notations used at different
levels. We expect natural language to be used at the highest ievels, and the prototyping language
to be used at the most detailed levels, with mixtures and possibly several additional notations
appearing in the mtennediate levels.

The subgoais of a goal in the hierarchy ar: proposed interpretations for the informal parent
goals. We adopt the convention that a parent goal is met whenever all of its subgoals are met. The
layers of the subgoal structure correspond to decisions about proposed system behavior and how
it can be packaged and presented to users. The most specific subgoals at the leaf nodes of the
hierarchy are tied directly to elements of the prototype design.

We are currently exploring guidelines for organizing such a subgoal hierarchy and design

database structures to provide automated support for maintaining and traversing this hierarchy, for
recording past configurations of the requirements and prototype, for keeping track of the change
history and the rationale for the requirements evolution that occurs during the prototyping
process, and for finding the parts of this structure that are relevant for each of the tasks performed
by the designers and analysts.

4. Conclusion

Rapid prototyping offers an iterative approach to requirements engineering to alleviate the
problems of uncertainty, ambiguity, and inconsistency inherent in the process. CAPS (the
Computer Aided Prototyping System) has been built to help software engineers rapidly construct
software prototypes of proposed softwarc systems. CAPS helps firm up software requirements
through iterative negotiations between customers and designers via examination of executable
prototypes. Using a prototype system description language enables engineers and users to quickly
focus on the pertinent requirements of their system resulting i~ increased efficiency and fewer
requirements errors.

REFERENCES

|{Beam] Beam, W. R., Command, Control, and Communications Engineering, McGraw-
Hill, 1989.

[Berzins88] Berzins, V., and Luqi, “Rapidly Prototyping Real-Time Systems”, IEEE
Software, September 1988.

[Berzins91] Berzins, V., and Luqi, Software Engineering with Abstractions, Addison-Wesley,
1991.

[Berztiss] Berztiss, A., “The Specification and Prototyping Language SF”, Report 78,
Systems Development and Artificial Intelligence Laboratory, Department of
Computer and Systems Science, Stockholm University, 1990.

[Boar] Boar, B. H., Application Prototyping: A Requirements Definition Strategy for the
80’s, John Wiley and Sons, Inc., 1984.

[(Booch] Booch, G., Software Engineering With Ada, Benjamin/Cumumings Publishing
Company, Inc., 1987.

{Borison] Borison, E., “Program Changes and Cost of Selective Recompilation™, Technical
Report CMU-CS-89-205, Computer Science Department, Camegie-Mellon
University, July 1989.

[Boyes] Boyes, J. and Andriole, S., Principles of Command & Control, AFCEA
International Press, 1987.

[Gonzalez]

[Linton]

[Luqi88a]

[Lugi88b]

[Luqi89]

[Mok]

[Nestor]

[Ne]

[NGCR]

[PDW]

[Stankovic)

{Steigerwald]

[TAE]

[Tanik]

Gonzalez, D. W., Ada Programmer’s Handbook and Language Reference
Manual, Benjamin-Cummings, 1991.

Linton, M. A,| Vlissides, J. M, and Calder P. R, “Composing User Interfaces
with InterViews”, IEEE Computer, February 1989.

Lugi, and Ketabchi, M., “A Computer-Aided Prototyping System”, IEEE
Transactions on Software Engineering, October 1988.

Luqi, Berzins, V., and Yeh, R, “A Prototyping Language for Real-Time
Software”, IEEE Transactions on Software Engineering, October 1988.

Luqi, “Software Evolution Through Rapid Prototyping”, IEEE Computer, May
1989.

Mok, A., “A Graph Based Computational Model for Real-Time Systems”,
Proceedings of the 1EEE Intemational Conference on Parallel Processing,
Pennsylvania State University, 1985.

Nestor, J., “Toward a Persistent Object Base”, in Advanced Programming
Environments, vol. 244, Lecture Notes in Computer Science, Springer-Verlag,
1986, p.372-394.

Ng. P. and Yeh, R., Modem Software Engineering Foundations and Current
Perspectives, Van Nostrand Reinhold, 1990.

Naval Research Advisory Committee, Next Generation Computer Resources,
Committee Report, February 1989.

PDW 120-S-00533(Rev.B, Change 4), Over-the-Horizon Targeting (OTH-T)
Gold Reporting Fonmat, Naval Tactical Interoperability Support Activity, 30 June
1989.

Stankovic, J. and Ramamritham, K., Hard Real-Time Systems Tutorial,
Computer Society Press, 1988.

Steigerwald, R., Luqi, and McDowell, J., “Rapid Prototyping with Reusable
Software Components: Methodologies for Compoenent Storage and Retricval™,
submitted to Journal of Software Engineering and Knowledge Engineering for
publication.

Transportable Applications Environment (TAE) Plus, National Aeronautics and
Space Administration, Goddard Space Flight Center, January 1990.

Tanik, M. and Yeh, R, “The Role of Rapid Prototyping in Software

Development™, IEEE Computer, v. 22, n. 5,pp. 9-10, May 1989.

[Vlissides] Vlissides, J. M., and Linton, M. A., “Applying Object-Oriented Design to
Structured Graphics”, Proceedings of the 1988 USENIX C++ Conference,
October 1988.

[Tyszberowicz] Tyszberowicz, s, and Yehudai, A., “OBSERV Object-Oriented Specification,
Execution, and Rapid Verification System”, 3rd Israeli Conference on Computer

Systems and Software Engineering, Tel-Aviv, Israel, June 1988.

{Yourdon] Yourdon, E., Modem Structured Analysis, YOURDON Press, 1989.

— ——pm— 7

L eI e . = o
A

/E/'cw"';e' diass)

REQUIREMENTS SPECIFICATION OF HARD REAL-TIME SYSTEMS:
EXPERT"NCE WITH A LANGUAGE AND A VERIFIER

Constance L. Heitmeyer
Bruce Labaw

Introduction

Hard regl-time (HRT) computer systems must deliver results within specified time intervals or face catas-
trophe. To detect timing problems in HRT systems, current development practice depends on exhaustive
testing of the software code and extensive simulation. Unfortunately, this expensive and time-consuming
process often fails to uncover subtle timing and other software errors. To improve this situation, important
new research in real-time computing is now in progress, largely in scheduling theory (e.g., [Ramamritham89,
Lehoczky89, Leung90]) and real-time programming languages and operating systems (e.g., [Donner89, Ger-
ber89, Tokuda89]).

Although such research should significantly improve the quality of HRT software code, further research
is needed in methods for specifying and verifying the requirements of HRT systems. Correct specifications
of the requirements are critical: studies have shown that errors introduced during the requirements phase
can cost as much as two hundred times more to correct than errors made later in the software life-cycle
[Boehm81]. Unfortunately, most current software requirements documents for HRT systems are of poot
quality, containing little precise guidance on the required timing behavior. Developers are usually forced to
glean essential details from informal, natural language descriptions that are ambiguous, imprecise, and in-
complete. Timing requirements are often missing. When they exist, they are usually embedded in premature
design decisions.

To remedy this situation, we advocate a three-phased approach to developing HRT systems that em-
phasizes the requirements phase of the software life-cycle. With this approach,

¢ mathematically precise specifications of the timing and other system requirements are developed,

¢ machine-based verification tools are applied to the requirements specifications to improve self-consistency
and to insure compliance with critical timing and other properties, and

¢ a semiautomated procedure is used to develop an implementation from the specifications. This imple-
mentation must meet the timing and functional constraints imposed by the requirements specifications.

Such an approach should dramatically decrease the number of timing and other errors in the system im-
plementation. Formal requirements specifications should reduze errors by including rigorous definitions of
the timing requirements and by removing ambiguous and unnecessary information. Computer-based verifi-
cation should decrease errors by uncovering inconsistencies in the specifications and by demonstrating that
the specifications satisfy critical timing properties. Finally, semiautomatic generation of an impiementation
should reduce the number of new errors introduced during the transition from requirements to software
design and implementation

Present work at the Naval Research Laboratory (NRL) is focused on the first two phases of this approach.
Our interest is in methods and tools that help software developers specify, analyze, and verify the functional
and timing requirements of HRT systems. A major goal is to assemble a software requirements toolset
containing tools developed at NRL (to be described in a future report) as well as promising tools developed
elsewhere. Because most existing methods and tools for software specification focus on functional behavior,
we especially seek tools for specifying and analyzing timing behavior. Also of special interest are methods
and tools that scale up, ie.. tools that are useful in specifying and verifying requirements of real-world,
practical HRT software.

The NRL toolset includes four classes of tools, namely, requirements generation tools, consistency
checkers, verifiers of functional and timing properties, and tools that help build an executabie version of
the specification [Heitmeyer90]. The language supported by requirements generation tools should lead to
formal, yet intuitive, specifications. The purpose of a consistency checker is to insure that the requirements

1

specification does not contradict itself. without executing the specification, such a tool detects those parts
of the specification that are inconsistent. Verifier tools provide formal proof that given assertions about
functional behavior and timing can be derived from the specification; of special interest in the development
of real-time software are proofs that certain critical events occur within specified time intervals. A tool that
helps tra slate a requirements specification into an executable form has two important benefits. First, by
running the executable version, the specifier can determine whether the requirements specification accurately
describes the intended external behavior. Second, running an executable version can provide modeling
information useful in defining the timing constraints on certain crucial functions; such constraints are needed
in reasoning about a system’s timing behavior.

Recently, NRL studied existing commercial tools for requirements specification to determine whether
any provide the four classes of support described above. Given our focus on HRT software, our study
included only those tools whose vendors claim are designed for real-time soft ware specification. Because the
commercial CASE tools market is changing rapidly, installing a collection of tools and executing benchmark
tests to compare them was not expected to be cost-effective: new tools and updated versions of existing
tools were likely to be introduced before such tests could be completed. Consequently, the NRL study
relied on reviews of vendor literature and discussions with tool vendors. Based on these. we concluded that
no commercial tool provides all four classes of support. Although a few provide some simple checks of a
specification’s consistency and limited support for building executable specifications, no current commercial
tool supports verification of critical functional and timing properties.

Although current commercial tools supporting HRT requirements specification are few and limited in
capability, the SARTOR project at the University of Texas (UT) has developed two promising experimental
tools. The first, a requirements generation tool, supports a graphical language, called Modechart [Jaha-
nian88a, Jahanian91) that is designed to specify a system’s timing requirements. The second, a verification
tool, provides mechanical proof that a specification satisfies critical timing properties [Jahanian&8b, Stu-
art30]. These prototype SARTOR tools are based on methods for specifying and analyzing timing properties

that comph:menr methods for specifying functional requirements [Heninger78, Heninger80] developed in
NRL's Software Cost Reduction (SCR) project.

This paper describes NRL's experience with the Modechart language and a prototype version of the
verification tool [Stuart90]. Recently, we developed Modechart specifications for several example systems
and then uscd SARTOR's verifier to prov. the consistency of a set of Modechart specifications with se-
lected timing asscrtions. This paper introduces SARTOR and the Modechart language, presents two sets
of Modechart specifications and associated timing assertions, and evaluates Modechart and the SARTOR
verifier, identifying their contributions to real-time software technology and recommending improvements

and enhancements. The paper concludes with a summary of significant issues in real-time specification and
verification that are topics for future research.

1. Overview of SARTOR an1 Modechart

After describing how a specifier uses the SARTOR tools to build and prove properties about a requirements

specification, this section provides a brief, informal summary of the Modechart language. For a more complete
description of Modechart, see [Jahanian91].

SARTOR Overview. Figure ! shows the relationship between three tools in the SARTOR toolset. These
are chart, which supports the generation of Modechart specifications; trans, which translates Modechart
specifications into a form of first-order predicate logic called Real-Time Logic (RTL) (Jahanian86); and
veritfy. which provides automated support for verifying timing assertions expressed in RTL. Each timing
assertion is a safety asserfion, i.e., a logical statement of the properties that must hold for the specifications
to be considered correct. Such an assertion describes either the required temporal ordering of events (e.g.,
“No weapon can be released unless the Master Arm switch is on™) or the required temporal distance Letween

events (e.g., “The fire warning light is 1lluminated no more than 250 milliseconds after the software detects
an engine temperature above the upper limit”™).

|

To develop, analyze, and verify a real-time requirements specification, the specifier first uses chart to
express the requirements in the Modechart language and then applies trans to translate the Modechart spec-
ifications into RTL. Next. the specifier expresses the required timing properties in terms of RTL assertions.
Finally, he applies verity to the specifications and each assertion to determine whether the assertion can be
derived from the specifications. In particular, verify deterrmines whether the assertion is valid, satisfiable,
ot not satisfiable If the assertion is valid, then any legal implementation of the specifications is guaran-
teed to satisfy the assertion. I the assertion is satisfiable. then it is possible to find some implementations
that satisfy the assertion, but certain implementations may not. If the assertion is not satisfiable, then the
specifications are intrinsically incompatible with the assertion.

The specification and verification process outlined above is that ultimately envisioned by the SARTOR
researchers. The current process, illustrated by the dashed line in Figure 1, is simpler. At present. the verifier
operates directly on the Modechart specifications: no translation of the Modechart specifications to RTL

is required. Further, the classes of timing properties that the current verifier can prove about Modechart
specifications is limited.

MODECHART
| USER @ spec bt
e——

|
|
RTL —_’_——__';'/u—jr"u
[asiien

Assartion Is valld (of invalld)

FIGJRE 1. SPECIFICATION AND VERIFICATION WITH THE SARTOR TOOLSET

Modechart Specification Language. The historical roots of Modechart are Statechart [Harel90], a
graphr al language based on concurrent finite state diagrams, and the concept of modes invented by NRL
in the »CR project (Heninger78]. The formal semantics of Modechart are defined by an action/event model
contaiuing five constructs. One of these, the mode construct, describes control information that imposes
structure on a system’s operation. Each mode is either primitive, parallel. or serial. A primtfire mode
conta: s no other modes, i e, has no children. A parallel mode contains one or more children that are said to
be in ~1rallel, if the system is in parallel mode Af, then the system is simultaneously in all of M’s children.
A serici mode contains one or more child modes that are said to be in series; if the system is in a serial

mode .M, then the system is in exactly one of M's children. Given a serial mode M, exactly one of M's
childre v is the 1nifial mode, the mode entered when mode Af is entered.

Tte other four constructs of the model are actions, events, state variables, and timing constraints. An
action s an operation that is executed when a mode becomes active; each mode has at most one associated
action. A siate variable describes the current state of a property or physical aspect of the system. An event
15 a pc 2t in time at which some state change occurs that is significant to the system’s behavior. Several
classes »f events exist, including external events, e g, the system operator sends an input to the system; start
or sto; events, which mark the starting and completion times of actions; state varmable transition events,
which » -ark a ciange in a stote vari2ble's value, and mode entry and mode erit events, which capture mode
changes In Modechart, a mode transition occurs when either a triggering condition or a timing constraint
is satisfird. A triggering condition 1s an event occurrence and/or the truth of a predicate on modes or state
variables (e g. DAVAIL = false). Modechart uses deadlines and delays to specify timing constraints on
mode transitions A deadfine s an upper bound on the time interval from mode entry to mode exit, a delay

1s a lower bound Both Modechart and RTL assume a discrete model of time (i.e., represent time by the
natural numbers)

In Modechart, state variables and modes have important semantic differences. Changing the value of a
state variable requires the explicit invocation of an action. Because actions take nonzero time to complete,
changing a state variable’s value takes nonzero time. In contrast. a mode transition takes effect in zero time,
Le., the exit from the old mode and the entry into the new mode occur at the same time. Moreover, changing
the value of a state variable requires the explicit invocation of an action. In contrast, a mode transition.

e.g., mode entry, is implicit, occurring when a given triggering condition or upper/lower bound condition is
satisfied.

Timing assertions about a set of Modechart specifications are expressed in RTL using a special occurrence
function denoted by @ [Jahanian86]. This function, which has the form @(E, 1) = j, maps the ith occurrence
of an event E to the time j that E occurred. Occurrence functions for mode entry and mode exit events are
represented by the expression @((M = b), i), where M 1s s mode and b is true (T) or false (F); @((M = T),i)
represents the time of the ith entry into mode M, @((M = F),i) the time of the sth exit from mode AM.
Figure 2, which is based on [Stuart90b], describes some timing properties that the SARTOR verifier can
deduce from a set of Modechart specifications. In Figure 2, M, represents the kth mode; ¢, ¢’. and ¢” are
non-negative integer constants; and t; ; and 1, represent the times G((M; = T),i) and QM = F),i).
An asterisk (*) next to the name of a timing property indicates that any < in the corresponding formula
may be replaced by a <. Note that the verifier either determines whether a formula is consistent with
the specifications (e.g., Inner Universal, Reachability) or deduces timing information from the specifications
(Separation. Elapsed Time).

NAME TIMING PROPERTY

Inner Universil®
Outer Uriversal®
All Universa!l Civen modes My, My M3, My, Vi), +e<ta; At +¢" <3, A t3,+c" <lty,

Given modes A{lv 1"2‘ Af3‘ My, Vlaj : tl,j +ce<ty, Aty + ¢ < 3, A t3,+ ¢ < t4J
Given modes My, My, M3 M. V)3i: i, +c<th, Aty 4+ <t3, Aty +¢" <ty

Separation Given modes M;, Af,, find ¢ such that
Viitii+c<ty,41(t1,+cisalower bound of t2,41)
Viityi+c>ty,41 (i, +cisan upper bound of t5,4,)

Alternatively, given modes M;, My, find ¢, j such that
Vit +c<ty, ({1, +cisalower bound of t5,)

Vit i+¢>ta; (4, + ¢ is an upper bound of ta,)

Reachability Given modes M, Mz, ..., Mg and modes M|, M,, ..., M}, determine if
{M{. .. My} is reachable from {M,, ..., Mg}, ie, if
oaig, ik L€ {12, Ly t€ (0K [tei fin])) A LE [ty i)

find dmax € D : Vd € D,dpmax > d (maximum time in M) or
find dyyn € D2 Y4 € D, dmyn < d (minimum time in M)

Elapsed Time Given mode Af; and the set of times D = {t, , — t3 ,]i € I*} that the system is in M,,

FIGURE 2. SOME TIMING PROPERTIES SUPPORTED BY THE VERIFIER

2. Modechart Examples

To evaluate Modechart and the verifier, we generated several sets of Modechart specifications. two of which
are presented in this section. Example | describes the required system behavior at a railway crossing Its
purpose is tosuggest an alternative, designed for ease of change. to the specification presented in {Jahanian88].
To evaluate Modechart and the current verifier on a more realistic example, we extracted the second example
from the software requirements document of an existing avionics system. the Operational Flight Program
(OFP) for the A-TE aircraft [Heninger78]. Example 2 has several features that make the specification
nontrivial, i e, a shared resource (the display) and several different environmental inputs and outputs. Prior
to presenting the examples. we describe the top-level structure that we used to construct the Modechart
specifications The structure is designed to make the specifications easy to change.

4

Organizing Modechart Specifications for Ease of Change. A critical aspect of a requirements doc-
ument and one whose importance 18 often overlooked, is the document structure. Because the document
specifying a system's requirements is likely to change. both during development and when subsequent versions
of the system are built, the document should be organized for ease of change. Influenced by the structure
of the A-7 requirements document (7] and Parnas’ theory of software documentation {15], we have designed
a methodology for organizing Modechart specifications based on ease of change. With this methodology, a
HRT system is described as a top-level parallel mode with three children: an input recognizer. an output
generator, and a processor. The input recognizer describes the required behavior of the input devies, i.e.,
translates the environmental variables of interest (such as characters typed by a human, continuous data
from a sensor) into discrete input data items. The output generator describes the required behavior of
the output devices, i.e., translates discrete output data items into the appropnate user-visible output {the
display of sensor data, the firing of a missile. etc.). The processor component uses history (captured by the
current set of modes) and input data items to initiate the appropriate output. In Modechart, external events
represent environmental input variables, state variables represent input and output data items, and actions
are used to produce user-visible output and to assign values to input and output data items.

Given this structure, we impose restrictions on how information is communicated among the three top-
level modes. As in [Heninger78], the input recognizer in the sample Modechart specifications below uses
only input data items to communicate with the processor component, while the processor component uses
only output data items to communicate with the output generator. Future Modechart specifications could
relax these restrictions somewhat. For example, a driver in the input recognizer might communicate directly
with a driver in the output generator Further. for ease of change, we limit the cases in which mode names
can cross mode boundaries: only names of modes used in the restricted SCR manner (see [Heninger78]) can
cross mode boundaries and only within the processor component.

Organizing the requirements in this manner is based on separation of concerns. Each of the three top-
level modes captures some weii-defined aspect of the requirements and isolates it from the other requirements.
In particular. the input recognizer encapsulates information about the relevant environmental input variables
(1., their values. data types, etc.) and their relation to the input data items; it makes no assumptions
about how the variables will be used Similarly, the output generator only contains information about the
envitonmental output variables and their relation 1o the output data items; it makes no assumptions about
the input. Only the processor mode describes the required relation between the inputs and the outputs.

Example 1: Railroad Crossing. In this example, the system’s purpose is to lower a gate at a railroad
crossing whep a train approaches and to keep the gate down as long as the train s in the crossing. We
assume that trair.s only move in one direction and that two trains are always some minimum distance apart.
The origina; Mt ~rhart specification of this example (see [Jahanian88a]) consists of two parallel modes In
contrast. the specification shown in Figure 3, calleld RAILROAD CROSSING, uses the three top-level
modes described above. The input recognizer, called TRAIN MCNITOR, uses modes to represent the
system state relative to four external events, the detection of an incoming train and the train’s position at
three points relative to the railroad crossing. namely, 1/2 mile from the crossing, at the entrance to the
crossing, and at the crossing exit. An input data item TRAIN with value NEAR signals that the train is 1/2
nule from the crossing The output generator, called GATE CONTROLLER, describes the behavior of
the output device that raises and lowers the crossing gate. Finally, the processor, called COMPUTER.
uses the train’s position relative to the crossing and the current mode to signal via an output data item.
GATE. that the gate is to be lowered or raised.

Figure 3 presents the Modechart specifications for this example. In the figure, parallel modes are
represented by thick lines. serial modes by thin lines, initial modes by oblongs, and all modes but initial modes
by rectangles State variable transition events are represented by the notation (state-variable=1alue). In
Figure 3 are several delays and deadlines that are a part of the Modechart specifications. The local timing
constraint. ‘delay 300", on the transition in the Train Monitor from mode NEAR to mode CROSSING
indicates that a train will enter the crossing at least 300 time units after it is 1/2 mile in front of the crossing.
Iu the Gate Controller. the local constraint, ‘deadline 50°, on the transition from mode START DOWN
to mode DOWN indicates that the action lowering the gate takes at most 50 time units to complete.

RAILROAD CROSSING

paralel .
TRAIN MONITOR COMPUTER GATE CONTROLLER
serial sorial
START sora!
un BEGIN
daexied
\APPROACH wvyn 12m: NEAR TRAIN=NEAR) up STARY DOWN
GATE «DOWN) Acbon
move pale down
g (GATE «DOWN) «
Acvon | (TRAINSNEAR) _ | Acton up oeadine 501 B
A GATE ayp* - GATE ~DOWN® Acton.
pgss-go SIGNALUP (TRAIN=~INERAR) SCRALSSWR move gate up {GATE «UP)
CROSSING B START Up DOWN

‘time to change state varlable values is 50

FIGURE 3. MODECHART SPECIFICATIONS OF RAILROAD CROSSING EXAMPLE

A uming assertion we would like to prove about the specifications is that the gate is down while a train
15 1n the crossing. To express this assertion in RTL, we write

vi3;8((DOWN = T),j) € G((CROSSING := T),i) A G((CROSSING = F),i) < @((DOWN := F),j).

This means that every time interval during which the system is in CROSSING mode is contained in a time
interval during which the system 1s in DOWN mode. Because mode transitions take zero time, the exit time
for mode DOWN is equal to the entry time for mode START UP and the exit time for mode CROSSING is
equal to the entry time for mode PASSED. In addition to proving the above assertion, we also proved a weaker
assertion. namely, if the train 1s in the crossing, thep the gate is down (in RTL, CROSSING — DOWN).
Because the verifier cannot prove formulas in the latter form, we proved that the negation of this assertion,
CROSSING A ~DOWN, defines an unreachable state. To generate the proof, we augmented the Modechart
specifications with an unsafe state, a state that violated the assertion, and executed the verifier on the

augmented specifications to determine whether the unsafe state was reachable. Because it was not, the
assertion is considered proven.

Example 2: Pilot Data Entry and Display. Figure 4a uses a set of Modechart specifications for
a function performed by the OFP; Figure 4b shows two timing assertions we wished to prove about the
specifications. The OFP function reads a character sequence (e g., latitude or longitude) typed by the pilot
and writes the sequence to a display panel. To initiate data entry, the pilot first presses the DATA ENTRY
button The software responds by turning on a keyboard light and clearing the display panel. Next, the
pilot types a sequence of characters, which the software writes one character at a time to the display panel.

Finally, the pilot presses the ACCEPT button to indicate that be has completed data entry. In response, the
software turns off the keyboard light and clears the display panel.

Te specify this example 1n Modechart, Figure 4a shows three top-level modes, called Pilot Input Rec-
ognizer. Data Entry and Display Fuaction, and Output Generator, that correspond to the input recognizer,
the processor, and the output generator described above. The Pilot Input Recognizer consists of three input
drivers, one for each of the three hardware devices that the pilot uses to communicate with the software,
namely. the DATA ENTRY button. the ACCEPT button, and the alphanumeric keyboard. The Data Entry and
Display Function specifies how the system responds (i.e., what outputs it produces) to a sequence of inputs.
The software response depends on both the mode that the software is in as well as the input. Like the
processor component of the Train Crossing example, the Data Entry and Display Function receives input via
changes to input data items and produces output by changing output data items. The Output Generator
translates output data items into specific outputs (e.g., turn the keyboard light on) 1t consists of two drivers
one controlling the keyboard Light. the other writing output to the display panel. In Figure 4a. conditions
on state variables {1 e, predicates that remain true for some nonzero time interval) are represented by the
nutation state-variable=talue. and all unlabeled mode transitions occur at the time of action completion

6

PILOT DATA ENTRY AND DISPLAY
paraliel
PILOT INPUT RECOGNIZER DATA ENTRY AND DISPLAY FUNCTION
parehe: ool IV IV
DATA ENTRY BUTTON MOMITOR v iTE » o
oo:;l a OSPLAY » blank
ART
WAIT2 Geading=20
plot presses ACCEPT WAITY
ATA ENTRY bution ¢ s PT=D
PESEQ BEGUN BEGIN DESEQ = deadine-20) DAVAL.T
Action: pb;pnn: Acton: Action:
DENTAYr [= E ! nenTaY .Y D’%‘,’,‘L’E o Acton:
- > blenk | TrAVAILT L_OSPLAY = val
ACCEPTOATA WRITE DISPLAY
OUTPUT GENERATOR
DATA MONITOR _—
START ‘ KBD LIOHT mw:ﬂ
piot enters sorial
datum val
AWAIT DATUM MAVE DATUM
Adhon: pilot enters ACton NBOLITE = ON)
DAVALf |dttumal D‘V‘:"""' UGHT OFF UGHT ON
LRATM -y) Acton, bem [(XBOLITE = 080 ™ acton toom
KBO bght off KBD i
‘ (KBOLITE = OFF) ot on
ACCEPT BUTTON MONITOR DISPLAY DRIVER
soriad seriad
START I START (DSPLAY < vel) o
Nﬂhﬁ; DISPLAY = biank)
SO preeses DISPLAYED START DISPLAY
Acton ACCEPT tutn g A7 OSPLAY - vah) o | Acto:
; ACCEPT =T { LAY = blenk)| deplay val or
T dapiay blank
Ztohy completed

FIGURE 4a. MODECHART SPECIFICATIONS OF PILOT ENTRY AND DISPLAY EXAMPIE

ENGLISH DESCRIPTION |DESCRIPTION IN RTL
(1) | Datum displayed within 200 t.u. [Vi@((HAVEDATUM := T),i) < @((DISPLAYED = T).i) A
after pilot entered datum @((DISPLAYED := T),i) < @(HAVEDATUM := T).i) + 200
(2) [Last datum displayed at least |Vi3j@((HAVEDATUM := T), j) < @ (HAVEACCEPT := T),1) A
225 t.u. before pilot can @((HAVEACCEPT := T),i) < @ (HAVEDATUM := T),j + 1) A
enter ACCEPT @((STARTDISPLAY := F),2i + j — 1) + 225 < @ (HAVEACCEPT := T).i

FIGURE 4b. TIMING ASSERTIONS FOR PILOT ENTRY AND DISPLAY EXAMPLE

Using the current verifier, we proved two timing assertions about this set of Modechart specifications. One assertion
is that a data character is displayed within some fixed time interval after it is entered. Specifically, if t is the time
that the pilot entered the ith character, then the ti e at which the ith character appears on the display panel is less
than or equal to t + 200. To express this assertion . RTL, we write

Vi@((HAVEDATUM = T),i) < @(DISPLAYED := T),i) A
@((DISPLAYED := T),i) < @(HAVEDATUM := T), i) + 200. (1)

Unlike the proof in the railroad crossing example, where the timing assertion could be derived from the original Mod-
echart specifications, proving this assertion required the addition of two constraints to the Modechart specifications.
First, we needed to bound the pilot's input rate. Based on human performance limitations (humans can only type so
fast). we defined a lower bound on the time interval between any two successive pilot key presses. Second, we needed
to impose an order on the sequence of pilot inputs, since this assertion is only valid for some pilot input sequences.
The specification of the Input Recognizer in Figure 4a permits all possible pilot input sequences, even illegal ones.

The assertion in (1) is true only when the pilot enters a legal sequence: a DATA ENTRY followed by one or more data
characters followed by an ACCEPT !

' In a complete specification of Example 2, the Data Display Function would also recognize illegal input sequences and

7

Although we used the verifier to prove (1), the proof only shows that the display is updated within some time period
after the sth character is entered; both entry of a data character and entry of an ACCEPT could cause the display to be
updated. One solution is to replace the START DISPLAY mode in the display driver specification with two modes:
START DISPLAY VAL (displays a data value) and START DISPLAY BLANK (displays one or more blanks). Then.
the timing assertion to be proven is

(HAVEDATUM := T),i) < @((STARTDISPLAYVAL := F), i) A

ViG(
8((STARTDISPLAYVAL := F),i) < @ (HAVEDATUM := T), i) + 200.

q

Because the verifier cannot prove formulas of this form, the assertion was rewritten in Modechart and proved using
a reachability argument. (We note that a solution that replaces the START DISPLAY mode with two new modes is
undesirable for ease of change reasons. The output driver specifications should not be influenced by the requirements
of the verification process.)

The second timing assertion states that a minimum delay exists between the time that the last character of the
character string is displayed and the time that a pilot press of the ACCEPT key is allowed. The rationale is that,
before the pilot presses ACCEPT, he needs a mlmmum time to read and validate the string of characters that appear
on the display. This assertion is expressed in RTL as?

Vi3j8((HAVEDATUM := T}, j) < @((HAVEACCEPT := T),i) A
@((HAVEACCEPT := T),i) < @((HAVEDATUM := T),j + 1) A
@((STARTDISPLAY := F),2i + j — 1) + 225 < @((HAVEACCEPT := T). i) (2)

If. in (2), complete pilot input sequences are required (i.e., every DATA ENTRY is paired with a unique ACCEPT) and
if i is the number of character strings and j the total number of characters entered by the pilot. then 2i + j - 1 is
the total number of pilot key presses. To prove (2), we needed to augment the two constraints above with a third
constraint that defines an upper bound on the length of each character string and requires that an ACCEPT key press

terminate each character string. '

To prove the timing assertions in (1) and (2), we needed to extend the original set of Modechart specifications shown
in Figure 4a. Because the current verifier can only prove consistency between a set of Modechart specifications - nd
a single RTL assertion, we generated Modechart specifications for all three constraints, adding them to the original
Modechart specifications. (A technical issue about this approach is how to show consistency between the original
and the extended Modechart specifications.) In developing the proofs of the assertions, an important consideration
was whether the three ccnsiraints were requirements missing from the original specifications or whether they were
simply logical statements needed to complete the verification process. We decided that two of the constraints should
be added to the original specifications, in particular, the constraint describing human performance limitations and
the constraint limiting the character string length and requiring termination of a character string by an ACCEPT. In
contrast, the remaining constraint, which defines the legal pilot input sequences, was simply needed to complete the
verification process: the statement that we wanted to prove concerns the system’s response given legal pilot input.

Hence, the assertion in (2) is incomplete. A complete statement of the assertion includes (2) as a consequent and a
description of legal pilot input as an antecedent.

3. Contributions of Modechart and the SARTOR Verifier

Modechart. The SARTOR research effort has contributed to real-time software technologyv by providing an in-
tegrated approach to the specification and verification of critical timing properties. A crucial aspect of SARTOR
15 the Modechart language. While specifications in logic-based languages, such as RTL, other first-order languages

. [Heitmeyer83, Auernheimer86]), and temporal logics (e.g., CTL [Clarke87] and RTTL [Ostrofi89)), facilitate
machme based analysis and verification. humans find such specifications hard to produce and hard to understand
(e g.. see {Jaffe89]). In contrast, we found the graphical Modechart specifications highly readable and relatively easy
to generate. Although complete graphical specifications of the requirements may be impractical for large systems. the

generate appropriate responses (e.g., érror messages).

The second clause of the formula is only checked if @((HAVEDATUM:=T),j + 1) is defined. that is. if the pilot has
entered a character following the ACCEPT.

— Sy TEEy U TN W T e S - e . || — —_— —-— — — — ——

readability of the Modechart specifications make them very useful during the process of constructing the requirements
specifications.

A fundamental contribution of Modechart is the ease with which specifiers can use the language to understand
and reason about a system's timing behavior. Specifiers can first use modes, actions, events. and state variables
to define the parallelism and sequential behavior inherent in the application domain. We found that Modechart’s
hierarchical structure facilitated the construction of our specifications by allowing us to combine tcp-down and
bottom-up approache.. Once the system’s functional behavioris defined, then timing bchavior can be added in terms
of deadlines and delays.

Unlike temporal logics, such as CTL and RTTL, which are designed to specify the temporal ordering of events,
Modechart and RTL are designed to specify both the temporal ordering of events and the temporal distance between
events. In real-time systems. constraints on the temporal ordering of events are insufficient. In such systems, certain
critical events (e g., the firing of a weapon, an alert signaling the spill of a hazardous substance) need to occur within
specified time intervals. Unlike languages based on temporal logic, Modechart and RTL provide a compact notation
for defining the timing constraints imposed on critical events. These constraints are described in Modechart by delays
and deadlines, in RTL by the occurrence function.

In addition to producing highly readable specifications that compactly express both temporal ordering and temporal
distance. Modechart has additional benefits lacking in other specification languages. Unlike [Heninger78), which
describes only the software requirements (represented in our specifications by the processor component), Modechart
can describe the complete system requirements. The inclusion in Modechart of external events as well as action com-
pletions makes the specification of the complete system requirements possible. An additional benefit is Modechart’s
support for concurrency. In a HRT system, input devices, output devices, and computers need to operate concut-
reatly, and their behavior needs to be synchronized. The parallel modes included in Modechart make the description
of concurr~ncy possible, while Modechart's state varizbles enable synchronization and communication among par-
ael modes A third benefit is Modechart's support of nondeterminism. As Gabrielian has noted [Gabrielian90),
1 some parts of a specification. an event or condition may trigger a transition to more than one mode transition.
.7 the actual requirements permit any one of the possible transitions, forcing a transition to exactly one mode is a
premature design decision. Modechart’s semantics allow the specifications to express such nondeterminism.

Verifier. We found the prototype verifier useful in improving the correctness ard the completeness of our sample
specifications. While human proofs of timing assertions are feasible, such proofs often contain errors, first, because
proofs involving inequalities and substitutions are tedious, and, second, because humans may fail to provide complete
proofs. especially for buundary cases. The verifier not only allowed us to detect such errors but also increased our
overall understanding of the specifications, especially the interactions of individual components. However, while
helpful, verification tools do not free the human from thinking about the logic of the specifications. They provide
mechanical assistance for checking the logic. Our experience suggests that humans working with a mechanical verifier
are more likely to find errors in the specifications’ logic than humans doing manual verification alone.

Although it was designed to prove timing requirements, we discovered that the SARTOR verifier can also prove a
class of functional properties. For example, to prove the assertion, “If the navigation mode is AFLYUPDATE, then the
weapon mode is BOC,” we can augment the Modechart specifications with an unsafe state, AFLYUPDATE A ~ BOC,
and prove that this state is unreachable. However, the functional properties that the current verifier can prove are
limited It cannot. for example. prove functional properties that rely on data type definitions, since the tool does no
type checking (Moreover. Modechart lacks constructs for defining data types.)

4. Further Development of Modechart and the Verifier

As noted above, the Modechart language and the SARTOR verifier are prototypes. In this section, we recommend
some ways in which the SARTOR toolset could be more fully developed. One general comment about both Mode-hart
and RTL concerns expressiveness. In some cases, a constraint was more easily expressed in one language than the
other. For example. a Modechart specification of the legal pilot input sequences is straightforward, whereas a
specification of the sequences in first-order predicate logic (such as RTL) i> tedious and less intuitive. requiring
considerable notatinn for bookkeeping purposes. In contrast, sometimes an assertion i1s more easily expressed in
RTL. For example, given a set of Modechart specifications, defining timing constraints involving nonadjacent modes
15 easter and more natural in RTL than in Modechart. Further analysis is needed to identify other classes of constraints
that are more easily expressed in one language than in the otnher.

9

Modechart.

Passing Values. In Modechart, we found no formal way to capture a value which accompanies an external event. In
the Pilot Data Entry and Display specifications, for example, suppose the pilot types the letter ‘N'. The information
to be communicated consists of two parts: the event E, where E reprosents the event ‘new data available’, and
the value *N'. Although Modechart provides notation for describing the event E, namely, QFE, no notation exists
for describing the value ‘N'. One existing formal notation that can describe both an external event and the value
accompanying the event is proposed in [Jacob86).

Shared Resources. e found the statement of certain timing assertions impossible if a given resource (e.g.. a
display device) was shared rather than dedicated. This problem arises from a lack of expressiveness in Modechart.
To illustrate this, we consider Example 2. If the display driver is dedicated to the display of the character data.
then the ith entry into the HAVEDATUM mode of the DATA MONITOR represents receipt of the ith datum
and the ith entry into the DISPLAYED mode of the DISPLAY DRIVER corresponds to the user-visible display of
the ith datum. However, if the display driver is shared, this correspondence no longer exists: the current version of
Modechart provides no way to associate the ith entry into a mode with the jth time an associated action is completed
by a shared resource.

Continuous Environmental State Variables. Currently, Modechart cannot describe continuous variables. While
software can only handle discrete-valued variables, environmental variables that represent system inputs and outputs
may be either continuous or discrete. An example of a continuous environmental variable is air pressure. Describing
such a variable over time as a sequence of discrete samples, rather than as a continuous function of time. is a
premature design decision. One possible solution that merits investigation is Parnas’ concept of monitored and
controlled variables [Parnas30].

Functionality. In generating sample Modechart specifications, we identified some cases in which Modechart's
functionality was overly restricted. For example, Modechart prohibits the specifier from assigning timing constraints
and triggering conditions to the same mode transition. In the Gate Controller specification in Figure 3. for example.
both a deadline of 50 and a triggering condition (‘gate down’') are assigned to a single mode transition. The current
Modechart semantics force the specifier to decompose this mode transition into two separate transitions. one governed
by the deadline (or delay), the other by the triggering condition. In our view, assigning both timing constraints and
triggering conditions to a single mode transition is more convenient (and less confusing). A second example of
linited functionality m Modechart's treatment of self-looping. i.e., a transition from a mode back to itself Even
though specifiers find it very useful, Modechart prohibits self-looping for theoretical reasons: self-looping in modes

with no associated action results in an infinite loop. In our view, self-looping should be allowed in Modechart as long
as time in mode is nonzero.

Given such limitations on Modechart functionality, an issue is how to obtain the needed functions: should the
Modechart semantics be changed or should ‘syntactic sugar’ be added? The solution is not always obvious. A change
in the Modechart semantics needs to be carefully considered since the semantic model loses elegance as more and

more features are added. At the same time. frequent use of syntactic sugar is also ill-advised . since syntactic sugar
hides the semantic mode) from the user

Timing Constraints Involving Non-Adjacent Modes. Another problem that we experienced in Modechart
was an inability to define timing constraints on non-adjacent modes, modes between which no mode transition
exists. To express such timung constraints in Modechart, we needed to create dummy modes. (We regard dummy
modes as undesirable artifacts that add to the specifications’ complexity) To illustrate this problem, we consider the
timing constraints imposed on a HRT system by two sources, the system’s physical environment and the performance
limitations of the system's users. (Both sets of constraints should be included in the rejuirements specifications.)
In the railroad crossing system. for example, suppose t represents the minimum time that a train requires to travel
from a point 1/2 mule before the crossing to the crossing exit. Unless a dummy mode is created, Modechart provides
no means of specifying the delay t. A similar problem arises in the Pilot Input and Display system. Because the
pilot can only type so fast. we defined a lower bound on the time interval t between two consecutive key presses. say,
the press of the DATA ENTRY button and entry of the first character. Because, in the Modechart specifications, two
consecutive key presses may involve nonadjacent modes, expressing tae delay t in Modechart is impossible without
the use of dummy modes (As stated above. RTL expresses such timing constraints easily.)

Resource Contention. In any real-time system, there will be conteution for shared resources. such as 1/0 devices
aud processors. A problem is how to use the known timing information to determine that a schedule for assigning

10

L _

— W W T W T W T W T O S e S - e e

the resources is feasible Because Modechart s not equipped to handle resource contention. another tool 16 needed
to analyze the specifications for schedubing feasmibihty

Verifier.

User-Friendly Feedback. As [Rushbysi) has stated. determiming whether an assertion s valid 1s only one of
the useful functions that a verifier performs In addition. a verifier should support an interastive human-computer
dialogue that enhances human understanding of the specifications and that facilitates reasoning about them. The
computer’s side of the dialogue should provide feedback that 1s easy for the human to understand; the human’s
side should facilitate comimunication to the computer of the human’s intentions. Because the goal of the SARTOR
verification effort was to find an efficient decision procedure for venifying tinung assertions, little attention has vet been
paid to the verifier’s user wnterface Although the human’s input to the verifier 1s a set of Modechart specifications,
the verifier’s feedback takes the form of the computation graphs used in the verifier’'s implementation. The result 1s
an unfriendly user interface. To understand the verifier's feedback, the human 1s forced to translate his Modechart
specification into the appropriate computational graph. An improved user interface 1s needed Lefore the tool can be
used in a production environment

Bounds on Timing Variables. During the requirements phase of software development. complete knowledge about
the svstern timing wiil be unavailable However, i most cases, specifiers will have some Lhimited information ahout
tnung (e g . the time required by a given cutput device to complete an action. the interval between successive inputs,
human performance times, etc) In such cases, specifiers should be able to represent as a variable the time that the
processor needs to perform an action (such as a computation) Then, using the known tinnng infermation and global
tinunyg assertions, the verifier should be able to denive bounds on such variables These upper and lower bounds on
processor times would have high utility for system designers. since they could supply vale = for the parameters of
pre-runtime schedulers

Points in Tiune Versus Nonzero Time Intervals. In most cases, we wished to prove that an assertion was true
for a nonzero time interval rather than simply a pont in tume. As an example. consider the tinung condition n
Figure 2 called Reachability Given modes M, and Af,, suppose that the system 1s in mode A} for some nonzero
time interval d = [t;,ty] and that it enters another mode M, at time t; Currently, the verifier concludes that
Mz 1s reachable from My, even though the system spends zero time w Af,. We recammend that the current timing
properties supported by the verifier be reviewed to determune which, 1f any. should hold for zero length time intervals

Overspecification of the Constraints. To prove the RTL assertion 1n (2) using the venfier. we needed to
averspecify the t2amrement on legal pilot input and on the maximum length of the mput character string The
actual requirement for legal pilot input sequences is that. if the final character string in the sequence is terminated
by a key press that key press must be an ACCEPT In other words. the specificauon allows incomplete sequences
However to preae (2) for legal input sequences, the venfier requires the final key press (ie, the ACCEPT) to be
present Also. the verifier requires the hnit on the character string lepyth to be a constant. Such constraints force
overspecification of the requirements and are thus artifacts required by the current verification process. \We note
that overspecification of the constraint was the result of spr-ifying the constra'nt in Modechart Specifying the

constraint in RTL would have avoided the problem but was not an alternative Aue to limitations that the present
verifier imposes on mput formats (see below)

Liumited Formula Repertoire. As noted above. the present verifier only supports a small number of RTL formulas
To prove the assettions presented in Section 2. we needed severzl additional formulas. such as (1) 4 — B, where A
and b are logiral statements, and (2) Vid < BA B < A4 n, where n is a positt.e integer and A = @((M, = T).1)
and B = G{(Mz = T').1) are occurrence functions with M # M, The current verifier also restricts the form f the
occurrence function, accepting only functions of the form a((M = true), N'), where N s a simpic variable. not an
expression (e g 2t 45 - 1) To harn ile the preceding formulas. we replaced each with an e vv-Tent formula that the
verifier supports A future version of the venfier would be useful that proves such formulas in their original form.

Limitations on Input Format. In some cases. we wanted to prove an assertion about a combination of Medechart
specifications and one or more RTL assertions For example, 1t is casier to describe certain timing constraints, for
example. those that refer to nonadjacent modes, in RTL than in Modeshart (Note that such tinng constraints,
while defined in RTL, are part of the speaifications rather than assertions to be proven about the specifications)
Currently. the verifier can only prove an assertion about a set of Modechart specifications Enhancing the verifier to
prove properties ahout a comtanation of Modechart specific~ Lons and RTL assertions would be useful

11

5. Future Research Topics in Real-Time Specification and Verification

In our view, the Modechart language and the SARTOR verifier represent a significant advance in the state-of-the-art
of specification and verification of HRT systems. A major advantage of Modechart specifications is their readability
and the ease with which specifiers can use the language to reason about timing. Moreover, unlike temporal logcs,
Modechart specifications can compactly express both temporal distance and temporal ordering. The SARTOR
verifier demonstrates the feasibility of machine-based proofs that Modechart specifications have certain specified
tirung properties.

Based on our experiments with the SARTOR tools, we have identified a number of high-level technical i.sues that
are beyond the scope of the current SARTOR project. Below, we summarize four major topics for future research.

Uniform Approach to Specification and Verification of Functional and Timing Properties. The SARTOR
toolset 18 designed to specify and verify only one aspect of the system requirements, namely, the timing requirements.
Still needed is an approach to specification and verification thiat handles both functional AND timing requirements.
As noted above, the SARRTOR verifier can already prove a class of functional properties. e.g.. that certain ‘unsafe’
states are unreachable [Stuart90]. However, a general-purpose verification tool is needed that can prove claims about
both timing pro;erties and a rich set of functional properties. Such a general-purpose tool could use, for example,
data type definitions to determine whether certain assertions about functional behavior are valid.

A More General Timing Model. The current discrete-time model used in defining Modechart and RTL is
appropriate for describing the processor component (i.e., the software model) of the system requirements, since the
software runs on a digital computer. However, to describe the environmental inputs and outputs, a continuous time
model is more appropriate. Further. the timing model that underlies Modechart and RTL is an idealization. A single
master clock 18 assumed that makes no errors. In real software systems, more than one clock may be used, and each
clock 1s imperfect. Defining a more general timing model for SARTOR would be useful.

SARTOR Methodology for Requirements Specification and Verification. At each phase of the software
life-cycle, specifications have different purposes and different properties. Because of its generality, Modechart can
be used to construct specifications at many different levels of abstraction. Due to our focus on requirements. we
seek a methodology for building and verifying requirements specifications in Modechart. Such specifications must
have properties needed in a requirements document, e.g., design for ease of change, avoidance of premature design
decisions, etc. This requirements methodology should also cover verification, providing guidance on the handling of
various aspects of verification (e.g., should timing constraints be specified in Modechart or RTL, should given timing
constraints augment the original specificati. ns or are they part of the formulas to be verified, etc.). The top-leve]
structure sketched in Section 2 is one step in the direction of a complete, comprehfnsive methodology for building
and verifying Modechart requirements specifications. The principles and guidelines initiated in the SCR project (see
[Parnas86], [Parnas90]) are a good foundation for the methodology.

Methodology for Deriving an Implementation from a Modechart Requirements Specification. Although
the current SARTOR methods allow us to specify, and prove properties about, required timing behavior, no guidance
exists on how to derive an implementation from the specifications and how to prove that the implementation and
critical timing and functional properties are consistent. Without such a methodology, the current methods and tools
are incomplete. Such a methodology would extend the requirements methodology described above to later phases of
software development.

An Effective, User-Friendly Toolset Interface. As noted above, tools, such as mechanical verifiers, can provide
significant help in generating and improving the correctness of HRT specifications. Yet, tools that provide a powerful
<et of capabilities have significantly less utility if they have poor quality user interfaces Unfortunately, the user
interfaces of many existing CASE tools are ill thought-out and inadequately tested. Needed is research in interface
design principles for tools supporting software specification and verification.

A final comment concerns the scaleability of Modechart. Little is known about the utility of Modechart, RTL,
and the SARTOR verifier for building real-world systems. Our experiments suggest that Modechart’s scaleability is
limited: spe<ifying large quantities of requirements data in graphical form is probably impractical. But this doesn't
mean that Modechart isn't useful. In our view, more than a single approach te .cal-time requirements specification
is needed. Because it produces highly readable, intuitive specifications of the required behavior. Modechart may be
most appropriate during the process of building the requirements specification. In contrast, the tabular formats for
requirements specification introduced in SCR (see [Heninger78. vanSchouwen90] for examples) are more appropnate
in a ceference document These formats provide the reader with less intuition about the requirements than the

12

graphical notation but do concisely and formally describe the large volume of requirements data associated with
real-world, practical software. For these reasons, the toolset we are constructing supports both the Modechart and
the SCR 'views’ of the requirements data. Our future goal is to develcp a single conceptual model that supports
these two "views'.

Acknowledgments. The authors are especially grateful to Paul Clements of UT and NRL for many valuable discus-
sions and. in perticular, for clarifying the Modechart semantics and helping us organize the Modechart specifications
for ease of change. We also thank John Gannon of the Uuiversity of Maryland for valuable discussions and for
helping articulate the different roles that Modechart and the SCR tables might play in the requirements specification
process and both Al Mok and Doug Stuart of UT for allowing us to experiment with the SARTOR tools and for
their openness to our suggestions concerning further development. We also acknewledge Pzul Clements and John
Gannon for comments on an eatlier draft. Finally. we thank the other members of our project. Carolyn Brophy and
Anne Rose. and our sponsor. CDR J. Van Fossen.

REFERENCES

[Auern} -“mergf)

. Auernheimer and R. Kemmerer., “RT-ASLAN: A Specification Language for Real-Time

Systems.” [EEE Trans. Softw. Fng. SE-12,9, Sep. 1986.

[Boehm3l] B Boehm, Software Engineering Economucs, Englewood Cliffs. NJ, Prentice-Hall. 1981.

[Clarke87] E M. Clarke and O Grumberg, “Research on Automatic Verification of Finite-State Con-
current Systems,” Ann. Rev. Comput. Sci. 2, 269-50, 1987

[Donner89) M Donner et al., “A Structuring Mechanism for a Real- Time Runtime System,” Proceedings,

Real-Time Systems Symposium. Santa Monica. CA, Dec. 5-7, 1989, 22-30.

13

[Gabrielian90]

[Gerbers9]

[Harel90)
[Heitmeyer83)

'Heitmeyer90]

[Heninger80]
[Heninger78)
[Jacob&6)
[JafTe89]
[Jahanian&6]
[Jahanian88a]
(Jahanian88b]
[Jahanian9l]

[Lehoczky89]

[Leung90]
(Ostroff89)
[Parnas86]

(Parnasf0]

[Ramamritham89)

[Rushby89]

(Stuart90]

[Tokudak9)

[vanSchouwen90]

A. Gabrielian et al,, "Specifying Real-Time Systems with Ertended Hierarchical Multi-State
{HMS) Machines,” Thomson-CSF, Inc., report 90-21, Jan. 1990.

R. Gerber and 1. Lee. “Communicating Shared Resources.” A Model for Distributed Real-
Time Systems,” Proceedings, Real-Time Systems Symposium, Santa Monica, CA, Dec. 5-7,
1989, 68-78.

D. Harel et al ,“STATEMATE: A Working Environment for the Development of Complex
Reactive Systems,” [EEE Trans. Softw. Eng. SE-16, 4, Apr. 1990.

C. Heitmeyer and J. McLean, “Abstract Requirements Specifications: A New Approach and
Its Application, I[EEE Trans Softw. Eng. SE-9, 5, Sep. 1983, 580-589.

C. Heitmeyer and B. Labaw, “Software Development for Hard Real-Time Systems,” Pro-
ceedings. Seventh [EEE Workshop on Real-Time Operating Systems and Software, Char-
lottesville, VA, 10-11 May 1990.

K.L. Heninger, “Specifving software requirements for complex systems: New techniques and
their application,” JEEE Trans. Softw. Eng. SE-6, 1, Jan. 1980.

K.L. Heninger et al., “Software requirements for the A-7E aircraft,” NRL Rep. 3876, Nov.,
1978.

R. Jacob, "A Specification Language for Direct Manipulation User Interfaces,” ACM Trans.
on Grophics 5, 4, 283-317. 1986.

M S Jafle and N.G. Leveson, “Completeness, Robustness, and Safety in Real-Time Software
Requirements.” Univ. of Calif., Irvine, TR 89-01.

F. Jahanian and A. K Mok, “Safety Analysis of Timing Properties in Real-Time Systems,”
IEEE Trans. Softw. Eng. SE-12, 9, Sep. 1986, 890-904.

F. Jahanian et al., “Semantics of MODECHART in Real Time Logic,” Proceedings, 21st
Hawais Intern. Conf. on Sysiem Sciences, Jan. 5-8, 1988.

F. Jahanian and D.A. Stuart, “A Method for Verifying Properties of MODECHART Speci-
fications,” Proceedings. Real-Time Systems Symposium, Huntsville, AL, Dec., 1988.

F. Jahanian and A. K. Mok, “Modechart: A Specification Language for Real-Time Systems,”
IEEE Trans. Softw. Eng. (to appear).

J Lehoczky et al., “The Rate Monotonic Scheduling Algorithm: Exact Characterization and
Average Case Behavior.” Proceedings, Real-Time Systems Symposium, Santa Monica, CA,
Dec. 5-7. 1989, 166-171.

J.Y.-T. Leung and C.S. Wong, “Limiting the Number of Late Tasks with Error Constraint,”
Proceedings, Real-Time Systems Symposium, Orlando, FL. Dec. 5-7, 1990, 32-40.

J.S. Ostroff, “Real-Time Temporal Logic Decision Procedures,” Proceedings. Real-Time Sys-
tems Symposium, Santa Monica, CA, Dec. 5-7, 1989, 92-101.

D L. Parnas and P.C. Clements, “A Rational Design Process: How and Why to Fake It,”
IEEE Trans. on Softuare Eng. SE-12,, Feb. 1986, 251-257.

D.L. Parnas and J. Madey, “Functional Documentation for Computer Systems Engineering,”
TR 90-287, Queens Univ., Kingston, Ontario, Sept. 1990.

K. Ramamritham et al. “Distributed Scheduling of Tasks with Deadlines and Resource
Requirements.” JEEE Trans. on Parallel and Distributed Systems 1, 2, April 1990.

J. Rushby and F. von Henke, “Formal Verification of the Interactive Convergence Clock
Synchronization Algorithm using EHDM,” SRI-CSL 89-3. SRI International, Menlo Park.
CA, Feb. 1989.

D.A. Stuart, “Implementing a Verifier for Real-Time Systems,” Proceedings, Real-Time Sys-
tems Symposium, Orlando, FL, Dec. 5-7, 1990. 62-71.

H. Tokuda and N. Kimura, “ARTS: A Discributed Real-Time Kernel,” ACM Operating
Systems Retview, 23, 3, July. 1989.

A.J. van Schouwen “The A-7 Requirements Model: Re-examination for Real-Time Systems

and an Application for Monitoring Systems,” Queen’s Univ., Kingston, Ontario, TR 90-276,
May 1990

14

RESEARCH AND DEVELOPMENT TECHNICAL REPORT

CECOM-TR-90-2 (CECOM)
C-05043-NY -000100 (CECOM-CSE)

ACQUISITION MODEL FOR
THE CAPTURE AND
MANAGEMENT OF

REQUIREMENTS FOR

BATTLEFIELD SOFTWARE

SYSTEMS

January 1991

DISTRIBUTION STATEMENT
Approved for public release; distribution is unlimited.

CECOM CENTER FOR SOFTWARE ENGINEERING
LS ARMY COMMUNICATIONS-ELECTRONICS COMMAND
FORT MONMOUTH, NEW JERSEY 07703-5000

UNCLASSIFIED
CURITY CLASSIFICATION OF THIS PAGE
Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188
a REPORT SECURITY CLASSIFICATION 10 RESTRICTIVE MARKINGS
Unclassified
Pa. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTEON AVARABILITY OF REPORT
Approved for public release;
DECLASSIFICATIONDOWNG RADING SCHEDULE distribution is unlimited
o PE RFORMING ORGANLZATION RE PORT NUMBER(S} S MONITORING ORGANIZATION REPORT NUMBER(S)
CECOM-TR-90-2 (CECOM); C-05043-NY-000100 (CECOM CSE)
NAME OF PERFORMING ORGANIZATION | 60 OFFICE SYMBOL |78 NAME OF MONITORING ORGANIZATION
US Army Communicat:ions/Electronics) (/1 Appixcabiey
Command Center for Software Engineering ‘ See 6¢
6c. ADORESS (Cury. Stare and Zip Code; 76. ADDRESS (City, Srare, and ZiP Code)
Cdr, US Army Communications/Electronics Command,
ATTN: AMSEL-RD-SE-AST-SE
Fort Monmouth NJ 07703-5000
8a NAME OF FUNDING SPONSORING 85 OFFICE SYMBOL . 9. PROCUREMENT INSTRUMENT INDENTIFICATION NUMBER
ORGANIZATION (i1 Appicabie) ’
SAME
8c. ADORESS (Ciry. State anc Zip Code; 10 SOURCE OF FUNDING NUMBERS
PROGRAM PRCECT TASK WORK UNIT
ELEMENT NO. | NO NO ACCESSION NC
€37E3A/
A0S 4
1. TIMLE {inchwde Secunty Classcapon,
Acguisition Mooe! Fer the Cap-ure and Management Cf Regulirements For Bat:lefieid Software Systerms (U)
12. PERSONAL AUTHOR,S)
Harlan Black, Edito>r, with David LlLeciston, Rinetta McGhee, and John Zimmerlich.
13a TYPE OF REPORT 130. TIME COVERED 14 DATE OF REPORT (Year, Monm, Day)} 15 PAGE COUNT
Technical Report FROM Sept. 88 70 January 91 $1-01-15 64
16 SUPPLEMENTARY NOTATION
v COSATI CODES 18. SUBJECT TERMS (Contnue on reverse if necessary anc xoentty by biock numben
FIELD - GROUP | _SUB-GROUP Software Requirements:; System Reguirements; Software
e . cs : Methodclogy: Requirements Engineering:; Rapid Prototyping
'S ABSTRACT (Contnue on revese rf necassary and 0entty by block number,
This repcrt presents an acguisition model that meets the needs of new and unprecedented systems that
are scitware .nterns.ve, large, complex, and have extensive man-machine interface regqu:rements. When
properly appliec, it should reduce the ccst, schedule, and qual.ty risks that have beer assoc.a.ed
w.th these types cf{ procurements. This model 1s proposed within the ccntext of DOD-STD-2167A and can
be ta.liored tc app.y toc a w.de range of acquisitions.
Tnis model acknowl.edges that reguirements have not and perhaps car nct be fully and adeguately
spec:lied up front, Ticr Lo acquisition, especially for large and comglex systems. Rather, they
evclive throughout the syster .:fe cycle. It stresses thal requirements must be engineered and
managed, not merely wr.tter.
The model prcposes six risk reduction strateg:ies, which have been previously recommended by numerous
Lol studies. Tris repcrt provices guidance for the Prcject Manager on their implementation.
26 DSTRIBUTION AVAILABIITY OF ABSTRACT 20 ABSTRACT SECURTIY CLASSIFICATION
7} unciassrieounimmed [same aseet] otic useRs UNCLASSIFIED
223 NAME OF RESPONSIBLE INJIVIDUAL 220 TELE PHONE (Incxsoe Area Cooe) 22¢ OFFICE SYM8Ot
Har.ar R Elack (508) 532-223¢ AMSEL~RD-SE-AST-SE
DO Form 1473, JUN 86 Previous ediions are obsokete SECURITY CLASSIFICATION OF TH'S PAGE

UNWCLRSSIFIED

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY

2.0 INTRODUCTION AND BACKGROUND -
‘lW}{Y"
2.1 Introduction
2.2 Background

3.0 DESCRIPTION OF THE ACQUISITION MODEL
- “WHAT”

3.1 Designate a Requirements Engineering Effort Which
Applies Requirements Engineering Techniques from the
Early Project Phases and On.

3.2 Conrtractually Decouple Requirements Definition from the
Full-Scale Development Effort.

3.3 Establish a Functional Baseline with an Approved
System/Segment Specificanon Prior to Solicitation
and Make the Specification a Part of the Solicitation
Package. _

3.4 Document the User Interface and Interaction in the Systern/
Segment Specification, together with system testing
informanon.

3.5 Provide stucture for the relationship and
interaction between the user and the full-scale
development contractor for all requirements
related matters.

3.6 Plan to Develop Systems in an Incremental, Evolutionary
Manner.

40 MODEL APPLICABILITY -"WHEN”
4.1 Medium to Large Size.
4.2 Complex Functionality.
4.3 Intensive Man-Machine Interface.
4.4 Unprecedented Systems.

5.0 PROJECT LEVEL MODEL IMPLEMENTATION
- “HOW™

5.1 Milestone 0 to Requirements Engineering
Task Initnaton

5.2 Requirements Engineering Task Initiation to Full -Scale
Development Request for Proposal Release

5.3 Full-Scale Development Request for Proposal to Contract
Award

5.4 Contract Award to Final Block Der . - ient

6.0 EFFORTS TO PROMOTE THE MODEL AND
GAINITS ACCEPTANCE

u

w

cmmo N

APPENDICES

TECHNICAL GUIDANCE FOR REQUIREMENTS ENGINEERING CONTRACT RFP
PREPARATION AND EVALUATION

TECHNICAL CONTENT FOR A STATEMENT OF WORK FOR REQUIREMENTS
ENGINEERING SUPPORT

REQUIREMENTS ENGINEERING PLAN FORMAT AND CONTENT
USER INTERFACE SPECIFICATION

GLOSSARY OF TERMS AND ACRONYMS

BI" LIOGRAPHY

. GRAPHICAL OVERVIEW OF THE ACQUISITION MODEL

Iv

1.0 EXECUTIVE SUMMARY

This report presents an acquisition model that meets the needs of new and unprecedented
svstemns that are software intensive, large, complex, and have extensive man-machine interface
requirements. When applied properly, it should reduce the cost, schedule, and quality nisks that
havs been associated with these types of procurements. This model is proposed within the context
of DOD-STD-21§7A and can be tailored to apply to a wide range of acquisitions.

Although the immediate audience of this report is the Project Manager, all defense
acquisiuon personnel can benefit from its contents. The intent of this report is to characterize a
process model for Requirements Engineenng and not to fully specify every detail for its
implementation.

The following problems have adversely affected acquisinons: Solicitation and award of a
full-scale development contract with incomplete and/or ambiguous requirements; delayved
requirements definition and documentation; the appearance of contractual relationships that
encourage requirements to increase; and dynamuc operauonal environments where requirements
conunue to change.

Itis acknowledged that requirements have not and perhaps can not be fully and adequately
specified up front, prior to acquisition, especially for large and complex systems. Rather, they
evolve throughout the system life cycle.

This model stresses that requirements must be engineered and managed, not merely
written. It proposes the following six nsk reduction strategies: Designate a Requirements
Engineering effort which applies Requirements Engineering techniques from the early project
phases and on; contractually decouple requirements definition from the full-scale development
effort; establish a functional baseline with an approved System/Segment Specification prior to the
solicitation and make the System/Segment Specification a part of the solicitation package;
document the user interface and interaction in the System/Segment Specification, together with
systemn testing informauon: provide structure for the relationship and interaction between the user
and the full-scale development contractor for all requirements related matters; and plan to develop
systerns in an evolutionary manner.

These strategies have been previously recommended by numerous DoD studies. This repon
corsolidates many of their recommendatons. It also provides general guidance for the Project
Manager on their implementation, from ‘Milestone Zero' through the fielding of the lact
incremental release, presenting the responsibilities and relationships of the primary participants.
Appendices provide addinonal detail, providing information for the acquisition of a Requirements
Engineenng effort. a proposed format and content of a Requirements Engineering Plan for a rypical
project, guidelines for the specification of the user interface, a glossary, a bibliography, and a
graphical overview of this model, suitable for presentation.

2.0 INTRODUCTION AND BACKGROUND - “WHY?”

2.1 Introduction

This document presents a model for the acquisition of software intensive battlefield
systems. The model is intended to reduce software life cycle cost, schedule and risks by
concentrating on improving the capturing and managing of requirements.

This section contains background information on the need for a new acquisition model.
Section 3 describes the model and provides general guidelines.

Section 4 provides criteria for determining if and when to apply this model.

Section 5 presents specific guidelines for the Project Manager to implement the model.
Section 6 delineates our efforts to insert the model.

The appendices provide additional information for acquisition personnel to implement this
model.

2.2 Background

Modem weapon systems are software intensive. That 1s, they rely heavily on software 10
provide functionality. These systems are characterized by having extensive user interfaces and
interdependence with other systems. They are typically large and complex and they operate in a
dynamic environment.

The delineation of requirements for such systems is often incomplete, inconsistent, and
specified at varying degrees of detail, all of which significantly conmbute 10 the risk of the
development. Some full-Scale Development [FSD) contracts for such systems are awarded with
incomplete and ambiguous requirements, as the time and effort needed to improve upon
requirements definition is frequently underestimated. Requirement errors are frequently not being
discovered unul much later in the developmert and acquisition process, resulting in cost and
schedule growth. In addition, there have been systems for which the specification of user interface
and interaction detail was delayed until the critical design review, making changes and
improvements very costly in dollars and schedule.

Currently, FSD contractors, in their role of requirements capture, keep the government
apprised of new capabilites that can enhance the system being developed. The identification of
these capabiliues may arise either from new technology or from knowledge of the limitations and
potential of the system as it matures. Users and their representatives are typically receptive and
supporuve of additional requirements which they perceive as providing them with more opdons
and funcuonality. There have been cases where the FSD contractor was in the awkward position of
appearing to drive up the system requirements as a result of this relationship.

Finally, some acquisitions plan to develop and field the system in a single siep, not allowing
new and unforeseen requirements that materialize as the system matures to be easily incorporated,
or uncertainties of nsks in implementation to be timely dealt with.

3.0 DESCRIPTION OF THE ACQUISITION MODEL - “WHAT”

This acquisiton model stresses Requirements Engineering, emphasizing techniques for
requirements definition and change management.

The model recommends the following six strategies for risk reducton:

« Designate a Requirements Engineering effort which applies Requirements
Engineering techniques from the early project phases and on.

+ Conrractually decouple requirements definition from the FSD effort.

« Establish a Functional Baseline (FBL) with an approved System/Segment
Specification (SSS) prior to the solicitation and make the SSS a part of the
solicitation package.

» Document the user interface and interaction in the SSS, together with system
testing information.

« Provide structure for the relatonship and interaction between the user and the
full-scale development contractor for all requirements related matters.

« Plan to develop systems in an incremental, evolutionary manner.

These strategies have been recommended by numerous studies and workshops (refer to
(1]through [4]). Thus model consolidates those recommendations that are most applicable to our
sofrware intensive battlefield systems.

While this model should reduce the quantity and severity of requirements related problems,
it is not envisioned that they will or can be eliminated. We will always have valid needs to change
requirements, from such reasons as advances in technology, changes in enemy tactics and
capabilities, changes to external systems which must be interfaced with, and insight gained during
the system implementation.

The following subsections present these strategies.

3.1 Designate a Requirements Engineering Fffort Which Applies Requirements Engineering
Techniques from the Earlv Project Phases and On.

Requirements Engineering is the process of applying engineering disciplines to
requirements definiton and management.

It1s not sufficient to write requirements. Requirements must be engineered and managed.
This model strongly suggests the early designation of a team or efion that is responsible for
engineenng the system's requirements, the Requirements Engineer (RE).

RE must wear many hats. To the user, the RE is a developer, exploring the feasibility and
impact of their requirements and then validating them. To the Project Manager (PM), the RE is a

consultant on requirements and their impact. To the FSD contractor, the RE 1s the user, who seeks
clarification for requirements related questions. The latter is bound to occur, as a significant amount
0! requ.rements refinement and clarification occurs during the software design phase

As this function is highly technical and system onented, it may be appropriate for the
project’s system engineer to be assigned the lead responsibility.

Staffing the RE team will be a non-trivial and critical task. It is most advaniageous for the
Government to have its own personnel perform this function directly, and not through a contractor.
The Government, itself, must be the one who is the most aware of what it needs, the system
requirements. However, this may not always be feasible, due to personnel constraints and it may
therefore require contractual support.

One can view the RE as having a role that is similar to an architect of a building project
(5).When constructing a building, we prefer to consult with the expert and independent architect
regarding our needs and desires, not construction contractors, who may have expertise, but who
also benefit from the new work that requirements generate.

The RE should be under the control and direction of the PM and the effort should be
initiated prior to the FSD solicitation with the immediate goal of enhancing the FSD procurement
package.

From the earliest acquisition planning phases, adequate time must be allocated for the RE
effort. The effort, itself, must begin no later than the initial drafts of the Operational and
Organizational Plan and Required Operational Concept documents, early on in the project and
before commitments by Government and contractors are made.

Although this report is not a tutorial on Requirements Engineening, it should be noted that
the RE has a host of tools and techniques at his disposal to symbolically construct aspects of a
svstem and effectively derive and validate the requirements. Technology provides the capability to
quickly generate sample screens, interactions, and representative usage of a proposed system. We
refer to this technique as protonyping. We also include simulation and modelling in our definition
of prototyping.

Prototyping can be effecavely used to test the feasibility of both user requirements and
possible implementations. Prototypes can be generated to capture and examine user interface and
other external interface requirements, communication protocols, functional operauons, conditions,
constraints, and performance. Prototyping can be used to perform trade-off studies. Prototyping
may also shed light on total system acquisition costs. Finally, symbolic construction typically
involves designing the symbolic system, where invaluable insight on the requirements and their
allocation for the real system is derived.

There 1s however, a major pitfall with rapid prototypes. Although quick, they are also
‘dirty.” That 1s, they are not always engineered 1n a way that is efficient or easily maintainable
(fixable and changeable). The FSD effort is engineered properly, but the user has to wait for it. A
common occurrence when a prototype provides or appears to provide needed capabilities is that
the user wants to ficid it immediately. The PM must make it clear to all who have a stake in the

system, the stakeholders, that the use of a poorly engineered prototype in actual fielded applications
‘s rot recommended, nor can such a system be supported.

Reference is provided [6] for addinonal information on prototyping and other
Requirements Engineering *=chniques.

This inodel recommends that the RE be involved with requirements related issues
throughout the lifetime of the project, not just during its early stages. During system development,
the RE should interact with the Combat D=veloper (CD) regarding proposed changes to the
baseline. Th= RE should interact with end users after initial system fielding to gain their feedback.
Relevant activities include prototyping to define or refine requirements for future blocks, risk and
feasibility analysis, rade-off studies, requiremer:s change impact analysis, tracing requirements
between documents. maintaining the consistency of requirements documents, verification that
requitements are being met by the developer, and supporting the PM during reviews and audits.

The PM must carefully assess the requirements for the Requirements Engineering effon
and then monitor it carefully. Just as with the FSD effort, the nsk of requirements proliferation
exists. Unlike the FSD effort though, this effort is on a much smaller scale, reducing risk impact.

3.2 Contractually Decouple Requirements Definition from the Full-Scale Development
Effort.

Requirements are a m=jor driving force in acquisition cost and schedule. They should,
therefore, be engineered by aii independent agent, the RE, and not by the FSD contracte- - -o
stands to gain addinonal work from additional requirements.

A RE contractor should therefore be precluded from the FSD competition and
subcontracung.

The FSD contractor should only be responsible for activities beginning with software
reguirements analvsis. This strategy would insure that the design effort commences with a well
stated set of requirements.

To minimize the learning curve for the FSD contractor to become familiar with the system’s
requirements, industry should be kept informed of the acquisition potentials of the system at the
earliest possible ume. They should also be provided with drafts of all releasable requirements
documents, as they become available, as well as prototypes, if appropriate. In the past, comments
received from industry during this stage have proven to be invaluable for many projects.

3.3 Establish a Functional Baseline with an Approved Svstem/Segment Specification Prior
to Solicitation and Make the Specification a Part of the Solicitation Packagpe.

Solicitaton and award of the FSD contract without a firm understanding and agreement
with the CD and all stakeholders on the requirements will lead to a contract that lacks firm (or any)
cost and schedule commuitments.

The recommended strategy is to have the RE write the SSS and conduct the System
Requirements Review prior to the solicitation. The approved and validated SSS would then come
under Government configuraticn control and become part of the FBL. The SS3 should also become

a part of the solicitation package. In doing so, we will know what we are buying and bidders will
know what we really want.

This approach does not eliminate the possibility of changing the requirements dunng the
solicitation period and during the development, with controlled revisions of the SSS. However, it
does reduce some of the opportunities tor changes with serious impact to occur.

3.4 Document the User Interface and Interaction in the System/Segment Specification,
together with svstem testing informaticn.

As mentioned previously, user interface and interaction details are rarely agreed upon in a
timely manner, which greatly impacts cost and schedule. Section 3.2.3 of the SSS format describes
the interfaces with external systems. This is an ideal place to provide detail on the man-machine
interface and interaction from the user-perspective of the system. A detailed breakdown of the
information that is needed for this section is provided in Appendix D.

It should be noted that section 4.0 of the SSS deals with provisions for quality assurance.
Test case requirement coverage and general system test philosophy should be specified by the RE
in this section. Additionally, the RE may be asked to specify the system requirements test plan and
cases in separate documents. For some developments, it may be appropriate for the RE to suppori
or actually perform the testng.

3.5 Provide structure for the relationship and interaction between the user and the full-scale

development contractor for all requirements related matters.

As mentioned previously, the relationship between the FSD contractor and the user can
unknowingly contribute to requirements growth. This model recommends that the user/ FSD
interaction be restricted to the point where there is no appearance of a conflict of interest. For
example, the contractor should be restricted from picking up the phone and suggesting new
requirements directly with the user. Rather, the user and the contractor should interact with the PM
and RE.

As the expert on the system requirements, the RE is a competent representative and
advocate for user needs to the developer. As an expert on system development, the RE is able to
evaluate feasibility and discuss technical concemns with the user.

The CD should be an active participant in the system's formal reviews. These reviews
provide a formal and controlled environment for user-developer interaction. Understandably,
interactions such as end user evaluaton at the contractor site should not be precluded.

3.6 Plan to Develop Svstems in an Incremental, Evolutionary Manner,

Our battlefield systems are often too dynamic and/or complex to field successfully in a
single release. It 1s, therefore very difficult to plan for a system's development in one release, or
block.

Plans for the development should call for incremental releases of the system. It is
recommended that users prionze their requirements, listing and rating them by need and by
certainty. Requirements that are certain, well understood and that are critical to user/system

functionality should be met in the initial release. These requirements should be specified in detail
in the body of the SSS. This initial system must be useful to the user, providing essential
capabilites, albeit it is not everything that is needed.

Requirements for subsequent releases must also be documented in the SSS. They can be
stated in separate appendices and at this point, do not need the great detail of the initial release’s
requirements.

Requirements for subsequent releases can become separate options on the FSD contract or
they can be separate procurements, depending on the system.

As the RE completes work on a block, the RE should continue to interact with the CD and
all system stakeholders to refine and document requirements for subsequent blocks. The end user
must provide the RE with feedback from his experience with blocks already in the field.

Just as with the initial release, subsequent releases inust be completely defined, validated
by all stakeholders, and baselined before commitments are made to implement them.

4.0 MODEL APPLICABILITY -"WHEN”

This section presents the characteristics of systems that would most benefit from applying
the strategies of this model. Any one of these characteristics can be sufficient to warrant the use of

this model. The model can also be tailored, applying some of its six strategies to broaden its
relevance.

As an example, a new and complex Command and Control system would benefit
significantly from the application of this model to its acquisition.

4.1 Medium to Large Size.

Systems that are expected to exceed 50,000 source lines of code usually require lengthy
development schedules, significant investment in resources (funding, management attention, and
manpower), extensive design efforts, and prolonged test and evaluation programs. The potential
for overruns due to faulty or deficient system requirements in these programs warrants the use of
this model to reduce the technical risk and shorten the development schedule through advanced
requirements definition techniques prior to FSD.

4.2 Complex Functionalitv. -

When a system has complex functions, there is a very high risk of cost and schedule growth
unless the requirements are defined prior to FSD to the fullest possible degree. Complexity can
come from having a large number of user options or having a large number of external interfaces.
It can also come from the internal complexity of the software needed to satisfy the functional
requirements. This model recommends the application of Requirements Engineering technologies
to better understand and specify system requirements.

4.3 Intensive Man-Machine Interface.

Without hands-on user involvement, it is difficult to specify and validate the requirements
for systems that have complex, user-dependent, man-machine interfaces. This model recommends
rapid prototyping and the early documentation of the user interface and interaction.

4.4 Unprecedented Svstems.

Systerns which are being developed to provide capabilities that have not been previously
available would benefit greatly from this model. As the delivery of the system will probably chan ge
the operatonal environment, users need to work with prototypes early on, to understand potental
applications and impacts.

———

s T

5.0 PROJECT LEVEL MODEL IMPLEMENTATION - “HOW”

This section provides the PM with additional guidance on applying the acquisition model.
This is divided into four time frames:

« Milestone O to Requirements Engineering Task Initaton.

+ Requirements Engineering Task Initation to Release of the FSD Request For
Proposal (RFP).

+ FSD RFP Release to Contract Award.
+ FSD Contract Award to Final Block Deployment.
This model proposes no changes to procurement strategies before Milestone 0.

Each of the following sections identifies the model activities during these phases and
presents responsibilities and relationships of the primary participants.

5.1 Milestone 0 to Requirements Engineering Task Initiation

After Milestone 0, the "M prepares an Acquisition Plan, based on nisk analysis, which
addresses the degree that the ..odel will be utilized and the needs for Requirements Engineering.
The plan should include:

+ The block release approach.
+ A scope and strategy for Requirements Engineering.

+ A proposed source for the Requirements Engineering experuse, either in-house
or contract.

If a Requirements Engineering contractor is needed, a cost reimbursable type contract is
recommended because the tasks for this effort are difficult to predict. Appendix A contains
guidance for acquiring a Requirements Engineering contractor. Appendix B contains technical
content for a Requirements Engineering Statement of Work. The latter can also be used when the
Requirements Engineering is being done by Government personnel.

Prospective bidders should be requested to document their approach in a Requirements
Engineering Plan. Afier contract award, the Requirements Engineering Plan should become part of
the contract. A proposed format and content of this plan is provided in Appendix C.

Responses to a Requirements Engineering RFP should be evaluated based on the bidder’s
understanding of the technical and operational characteristics of the objective system, the
candidate’s expertise in Requirements Engineering, and his relevant experience in system
development.

5.2 Requirements Engineering Task Initiation to Full -Scale Development Request for
Proposal Release

The goal of this phase is to produce a high quality FSD procurement package, with clearly
specified requirements and a FBL, documented by a SSS.

Under the direction and control of the PM, the RE develops the FBL. The PM, together with
the RE, must identify the areas of requirements related risk. From this analysis, the Requirements
Engineering Plan may need to be revised in order to identify the portions of the system that need
to be studied, the techniques that should be used, and who should review the products. The PM

must insure a disciplined flow of information berween the program participants and that all
requirements related information is well documented and transferrable. The PM must evaluate the

evolving requirements, providing guidance to the RE through frequent interaction and in-progress
reviews.

It is recommended that the PM keep industry apprised of the developing RFP, providing
them drafts of requirements related documents and products, as appropriate, as well as a draft RFP.
Care must be taken to give equal access and opportunities to all prospective bidders.

The RE must engineer the requirements, refining and transforming the requirements from
a broad Mission Needs Statement to a validated FBL. In addition, the RE must insure that the
requirements are feasible, consistent and testable. Using the best available Requirements
Engineering technology, the RE interacts with the CD and/or end user in an iterative {ashion, until
the requirements are clarified, validated, and refined for a quality SSS.

In all likelihood, the first release will have some, but not all, of the functionality that the
end users requested. The PM must work carefully with the RE and all stakeholders as they
prioritize requirements for the inital release. The following factors relating to a requirement should
be considered:

* Crnuncality.
+ Desirability to the user.
 Implementation risk.

The block release strategy must be reflected in the SSS. The body of the SSS should focus
on the initial release. All subsequent block releases must be planned, specified in as detailed a
manner as is possible, and incorporated into appendices of the SSS. All requirements in the SSS,
as well as proposed incremental versions, must be documented and clearly traceable to source
documents.

The SSS is formally validated through the Sysiems Requirements Review, per DOD-STD-
2167A. This review should be hosted by the RE, who authored the SSS. Once accepted, the SSS is
placed under configuration control.

The validated SSS becomes part of the FSD RFP, enhancing the procurement package and
providing confidence for the commitment of resources needed to build the system.

10

The CD supports both the PM and the RE by providing expertise or actual end users to
meet the Requirements Engineering needs. The CD must review the FSD RFP.

5.3 Full-Scale Development Request for Proposal to Contract Award

To maintain procurement integrity, the SSS must be frozen before the FSD RFP is issued.
In a dynamically changing world, this is not always possible and user needs may dictate a pre-
award revision. Also, the Government may receive valuable insight from comments from the
bidders. If possible, changes should be relegated for inclusion in later incremental blocks. If
changes are mandated, all bidders must be given sufficient time after receipt of the updated
specification to submit their ‘Best and Final Offer.’

Once Block One requirements have been baselined, the RE can begin defining and refining
requirements for subsequent incremental blocks, repeating the process used in the identificaton of
the Block One requirements.

5.4 Contract Award to Final Block Deplovment

During this phase, the RE tasks during this period include interacting with system
stakeholders and the FSD contractor, supporting the initial block’s development, and supporting
the development of future blocks.

When discussing requirements with a stakeholder, the RE must play the role of the FSD
contractor and evaluate requirements feasibility and impact, consulting and/or involving the FSD
contractor as necessary. The RE should then provide the PM with a recommendation and an
implementation approach. If this new or changed requirement is approved, the RE should
document it as an Engineering Change Proposal.

To the developing contractor, the RE is the surrogate user, answering requirements related
questions and seeking clarification from the CD when necessary.

If the FSD contractor differs with the RE, then the PM will make the final decision.

The RE can support the PM in the same areas that were suggested for Block One. Because
the RE has an in-depth understanding of the system specifications and the development rationale.
the PM can use this knowledge 10 aid in overseeing the FSD effort. The PM can use the RE to assist
in ensuring that the system’s requirements are being met. The RE may provide support durir ¢
reviews and may review draft contract data requirements list items. The RE can also be ta.ked to
trace the evolving requirements to source documents. The RE may provide technical support to the
project’s Configuration Control Board to review proposed changes. The RE may prepare the plans
and test cases for acceptance testing and perform the tests.

Future releases incorporate specific requirements which have been id-nufied in the inital
SSS and deferred to a later release. They also include requirements that are changes to the initial
baseline, resulting from lessons learned from fielded releases. The RE should, therefore, solicit and
record user feedback on their experience with the fielded releases.

Engineenng, specification, and validation of the requirements for later block releases

11

proceeds in the same fashion as the first release. However, later blocks have the added constraint
th~1 th2 change must be compatible with fielded blocks.

When a proposed block FBL has been sufficiently defined, the RE should host a new SRR
for it. This review should address new requirements, changes to old requirements, and
compatibility issues between blocks.

The RE should be responsible for reflecting the evolution of the system by revising the SSS,
using Engineering Change Proposals, providing additions and modifications to the sectons that

refer to the future blocks.

The PM must decide how new incremental blocks should be acquired. The existing FSD
contract may make provisions for a block approach. Or, the contract may be modified, based upon
new costs and/or schedules. Alternatively, a new contract could be awarded competitively. The
existence of a RE gives the PM a resource to help him proceed with any of these strategies. Further,
the RE can assist in the development of the necessary procurement documents.

12

6.0 EFFORTS TO PROMOTE THE MODEL AND GAIN ITS ACCEPTANCE

The acquisition model presented in this report proposes a small change to the current
acquisition process. Current policies, regulations, and standards do not preclude the
implementation of this model, but they do not encourage it, either.

A step-by-step approach is planned to gain recognition and acceptance of the strategies in
this model. Our near term goal is for the model to be implemented and validated on a pilot project
at the US Army Communications/Electronics Command (CECOM), monitoring and reporting the
technical and financial benefits provided by it on the program.

In additon, we have prepared a Requirements Engineering tutonial to brief CECOM and
PEO/PM organizations on the advantages and features of this model.

We also plan to use existing Defense Industry associations and trade journals to disseminate
the model and its effect on the system development process. These associations provide an
effective medium for educating industry and also provide a forum to obtain industry review and
comment on this model.

Finally, CECOM Center for Software Engineering (CSE) is serving as CECOM’s focal
point for Requirements Engineering related research, development, and implementation. As such,
the CECOM CSE would provide the necessary support in implementing this model.

13

Appendix A

TECHNICAL GUIDANCE FOR REQUIREMENTS ENGINEERING
CONTRACT RFP PREPARATION AND EVALUATION

This appendix provides information for a Project Manager for the preparation and
evaluation of 1 Requirements Engineering contract's Request For Proposal. This appendix was not
written to be a sample RFP, as contractual guidance, content, formats, and legal interpretation vary
between acquisition agencies.

A.1 RFP Preparation

A.1.1 Instructions to Offerors

In their technical proposal, bidders must demonstrate competence and a detailed
understanding of the mission environment of the objective system, software engineering, and
Requirements Engineering.

The contractors must identify their experience in working with other systems in the same
general mission area as the objective system. This experience need not specifically involve
requirements denvation. The purpose of the mission area experience is to guarantee a familiarity
with the environmeny, iemunology, and philosophy of the intended system.

Prospective contractors should cite specific experience in using Requirements Engineering
tools, techniques, and methodologies for the development of the requirements of tactical software
systems. They must identify specific projects in which this experience was used. They must
idenufy those tools with which they have specific experience and that are available to support the
Requirements Engineering process.

They should demonstrate their understanding of Requirements Engineering techniques by
discussing perceived advantages and trade-offs associated with different Requirements
Engineering approaches and techniques, as related to the objective system.

The contractors should outline, categorize, and discuss potential aspects of risk of the
objectve system development and present their approach to deal with them.

Contractors should cite specific experience relating to the development of tactical software
for systems that are as complex as the objective system.

A.1.2 Draft Deliverables
Each respondent should submit draft CDRL items with their proposal. These sample

deliverables provide insight into the contractor’s understanding of the requirements of this effort.
They also provide an insight regarding the contractor’s capabilites as a RE.

A-1

A.1.2.1 Requirements Engineering Plan.

The Requirements Engineering Plan documents the approach that the contractor will take
to identify, document, and validate the requirements of the objective system, idenufying all
activities, schedules, tools, and resources that will be used in the requirements engineering process.

The format and content of a Requirements Engineering Plan is provided in Appendix C of
this report. This document should become a part of the Requirements Engineenng contract upon
its award.

A.1.2.2 Requirements Engineering Notebook Format.

Requirements Engineering Notebooks document the underlying source and rationale of the
system requirements, providing the PM with an audit trail from the requirements sources to the
Requirements Engineering products and activities. The contractors must propose a structure and

format for these notebooks.
A.1.2.3 Configuranon Management Plan.

The Configuration Management Plan specifies how the contractor will maintain his
developmental baseline control.of requirements and prototypes until such time as the specifications
are turned over to the Army for formal configuration control. The contractors must provide a draft
of this plan.

A.1.3 Corporate Experience

The bidders should provide project profiles which demonstrate their experience in the
mission area of the objective system, in software engineering, and in Requirements Engineering.

A.1.4 Personnel/MANPRINT

Bidders should provide a plan for staffing the Requirements Engineering effort. This plan
should identfy key technical and management personnel. Key individuals should be committed to
participation in the effort more than 50 percent of their time and should not be replaced before 90
days after award. Resumes should be included for all key personnel. These resumes should fully
document the individual's educauon and specific expenience which is relevant to the effort.

The bidders should provide a staffing plan for obtaining and assigning non-key personnel.

A.1.5 Management

The bidder’s management proposal should cover the corporate and project management
structure that will be in effect during the effort, including responsibilities, access to resources,
quality assurance procedures and subcontract management.

A-2

A.2 RFP Evaluation

A.2.1 Govermment RFP Evaluation Team

The Government must ensure that a qualified team is available to support the evaluation of
the Requirements Engineering contractor. Individuals on this team should have experience in the
mission area of the objective system, Requirements Engineering, and software engineering. If such
individuals are not available within the PM's organization, then the PM must draw support from
other organizations for the procurement process.

A.2.2 Evaluation Factors
The following evaluation factors should be considered when planning for the evaluation:
Technical:

. Demonstration of the contractor’s understanding and experience in the mission area of
the objective system.

« Demonstration of the contractor’s understanding of the nisk areas associated with the
objective system and an appropriate plan for mitigating those risks.

» Demonstration of the contractor’s understanding and experience in Requirements
Engineering.

« Adequacy and appropriateness of the proposed Requirements Engineering methodology
for the objective system.

+ Adequacy of the proposed Requirements Engineening Plan.
« Demonstration of the contractor’s understanding and experience in software engineenng.
+ Hardware and software resources availability to perform the work.

+ Demonstration of the contractor’s capability to write clearly, unambiguously, and
concisely.

Personnel/ MANPRINT:

 Key and supporting personnel availability who are qualified in the objective system
mission area, Requirements Engineering, and software engineenng.

» Realism and adequacy of staffing plan for non-key personnel.
Management:

- Effectiveness of project organizational structure and management approach in controlling
cost and schedule, and insuring quality.

A-3

« Adequacy and feasibility of plan for acquiring supplementary resources, such as
subcontractors, if subcontractors are proposed

+ Adequacy of the quality assurance approach.

A4

Appendix B

TECHNICAL CONTENT FOR A STATEMENT OF WORK FOR
REQUIREMENTS ENGINEERING SUPPORT

This appendix provides technical content for a Statement of Work for a Requirements
Engineering contractual effort. This appendix was not written to be a sample RFP, as contractual
guidance, content, formats, and legal interpretation vary between acquisition agencies.

The developing agency is referred to as [Agency]. The name of the objecuve system is
referred to as {System].

This appendix was written as broadly as possible, including as many Requirements
Engineering functions as possible. It may be tailored to apply to a wide range of acquisitions.

B.1 General Requirements

The RE shall be responsible for the development, refinement, validation, documentation,
traceability, and management suppor of the [System] system requirements and their evolution. He
shall interact with the Program Manager (PM), the Combat Developer (CD), the Full-Scale
Development Contractor (FSDC), and all system stakeholders. The RE shall be responsible for the
preparation of the Systems/Segment Specification (SSS) and the System Requirements Review.
The SSS shall fully describe the user interface and interaction needs of [System]. This effont shall
continue through the fielding of the final version of the last block release.

The above shall be accomplished in three distinct phases:

 Phase 1 -- Requirements Engineenng task initation through FSD RFP release
 Phase 2 -- FSD RFP release through contract award
« Phase 3 -- Contract award through final fielding

B.11 Phase 1 -- Requirements Engineening Task Iniuation Through FSD RFP Release

During this phase, the RE shall establish a Requirements Engineering facility and
environment. The RE shall structure/revise a cohesive plan for the Requirements Engineering
needs for the acquisiton and ulumate fielding of [System], performing whatever nisk assessments
that are necessary. The RE shall implement this plan. The RE shall verify that all requirements are
feasible, consistent, testable, and complete. The RE shall interact with the PM, CD and system
stakeholders to establish a feasible and acceptable system Functional Baseline (FBL) of [System)],
documenting it in the SSS. The RE shall host the [System] System Requirements Review (SRR).
The RE shall prepare and submit technical reports and construct prototypes as required. A
Requirements Engineering Notebook shall be developed and maintained, documenting the
development and evolution of the system requirements. The RE shall support the incremental block
release strategy for [System] that is approved by the PM and CD.

B-1

B.1.2 Phase 2 -- FSD RFP Release Through Contract Award

Throughout this phase, the RE shall maintain the SSS, effecting necessary minor revisions,
prior to the receipt of best-and-final offers for contract award for the 1ninal block of [System]. The
RE shall also begin refining and documenting system requirements for subsequent blocks, utilizing
the procedures employed and interfaces defined for Block 1 requirements.

B.1.3 Phase 3 -- FSD Contract Award Through Final Fielding

Throughout this phase, the RE shall assist the PM in monitoring the FSD of the [System]
for requirements compliance. The RE shall identfy discrepancies and anomalies between the
system requirements and the system in development, recommending appropriate resolution when
possible. The RE shall trace the evolving requirements to source documents. The RE shall create
the requirements testing plan, cases and he shall perform the actual testing. The RE shall provide
the PM with insight on the cost, schedule, and quality impacts of requirements changes and
evolution. The RE shall be responsible for the documentation of new or changed requirements
through Engineering Change Proposals (ECPs) to the FBL.

The RE shall maintain close liaison with the CD and available end users to identify any new
or potential changes to the system requirements. He shall provide them with insight on the
feasibility and impact of new requirements or requirements changes.

The RE shall provide technical support to the project’s Configuration Control Board to
review proposed changes. He shall support the CD in preparation of plans for field testing.

The RE shall answer the requirements related questions of the FSDC.
B.2 Detailed Requirements

The RE shall devise and implement processes for managing and performing all
Requirements Engineering activites. Required engineering processes shall include, but may not be
limited to the following:

» Develop/ purchase and maintain a Requirements Engineering environment.

+ Assess and manage risk.

+ Perform system requirements analysis and studies.

+ Develop System/Segment Specification.

» Perform System Requirement Review.

 Trace requirements.

+ Assess requirement changes and evolution.

« Create the requirements test plan, cases, and perform the testing.

* Monitor FSDC compliance with requirements.

+ Interact with the FSDC.

B-2

+ Perform system requirements analyses for block releases.

(Note: These processes may overlap and/or be applied iteratively/recursively.)

B.2.1 Develop and/or Purchase and Maintain an Automated Requirements Engineering
Environment

With [Agency] approval, the RE shall develop or purchase Requirements Engineening
software and hardware as required to idendfy and elicit requirements; evaluate requirements
feasibility and alternauves; document requirements; trace requirements to source documents, and
communicate with the CD and PM in requirements refinement and validation. The RE shall
maintain the software and hardware associated with the Requirements Engineering environment
throughout the life of the contract and they shall be delivered to the [Agency] at contract
completion.

B.2.1.1 Configuration Management

The RE shall perform configuration management of the Requirements Engineering
environment in compliance with the guidance found in MIL-STD-483 and supplements thereto.

B.2.2 Assess and Manage Risk

The RE shall establish and implement procedures for risk assessment that effectively
identify, analyvze, monitor. and mitgate areas of the [System] procurement that involve potential
requirements related cost, schedule, or quality risks. They shall be documented in technical reports.

The RE shall establish and implement procedures for controlling nisk to include:
a. Identfying the risk areas of the procurement risk factors in each area.

b. Assessing the risk factors idertified, including the probability of occurrence and the
potential impact to cost, schedule, and quality.

c. ldentfying and analyzing the alternatves available for reducing the risk factors.
d. Proposing the most promising alternative for each nsk factor.

e. Obtaining feedback to determine the success of the nisk reducing action for each nisk
factor.

B.2.3 Perform Systems Requirements Analysis and Studies
B 2.3.1 Reguirements Engineening Planning

The RE shall develop/revise and maintain plans for the conduct of all activities required by
this SOW in a document entitled the Requirements Engineering Plan (REP). The format and
content of this plan is provided. (See Appendix C.)

B-3

B.2.3.2 Apply Requirements Engineering Techniques to the Development of System
Peciirements

The RE shall perform and document trade-off analyses of alternatives for optional
requirements.

The RE shall apply Requirements Engineering techniques and technology to develop the
FBL, from mission needs statements and other high level requirements documents to its validation.
The RE shall elicit and confirm the system requirements with all system stakeholders. The RE shall
insure that all requirements are feasible, consistent, and testable.

The RE shall propose and develop a block release strategy for the system. The block
release strategy shall ensure that the initial block release provides a set of capabilities that is

approved by the PM and CD.
B.2.3.3 Requirements Engineering Notebooks

The RE shall document all Requirements Engineering efforts, participants, information,
and sources of information in the Requirements Engineering Notebook which shall be in a format
proposed by the RE and subject to [Agency] approval. The RE shall utilize this notebook to provide
an audit trail of his activites. -

B.2.4 Develop System/Segment Specification
B.2.4.1 System/Segment Specification

The RE shall prepare and maintain the SSS for the [System] which shall document all
planned block releases. The initial SSS shall completely specify the requirements for the block 1
release and it shall be adequate for the solicitation and subsequent development of the first block
of [System]. This SSS shall identify, in separate appendices, each subsequent block release to the
level of detail possible at this time. The RE shall subsequently maintain the SSS to reflect the
evolving requirements of this system.

B.2.4.2 User Interface and Interaction Specification

The RE shall identify and document the user system interface and interaction requirements
at the same level as inte-faces to external systems. Proposed content for this section is provided.
(See Appendix D.)

B.2.4.3 Test Architecture

Section 4 of the SSS shall propose a test architecture for the system quality assurance
provisions. The architecture shall be developed in concent with the designated test organization and
shall address the system test philosophy. The architecture shall identfyv the resources that shall be
required for systemn tesning, including operational and test hardware and software. The architecture
shall include the test evaluation criteria below:

+ Traceabulity

B4

+ Consistency with requirements.
« Adequacy of test cases/test procedures.

B.2.5 Perform System Requirements Review (SRR)

The RE shall conduct the SRR in accordance with MIL-STD-1521. The RE shall present
the SSS at the SRR for validation. The RE shall ensure that all changes approved at the SRR are
incorporated in the revised SSS.

When incremental block FBL's are sufficiently defined and ready for implementation, the
RE should host the SRR for it. This review shall address new requirements, changes to old
requirements, and compatibility issues between blocks.

The RE shall provide the PM with minutes for all SRR’s.

B.2.6 Trace Requirements

The RE shall trace all requirements from the high level source documents initally provided
to the SSS. This tracing shall be implemented in an automated database and shall be expandable 1o
include design related detail. (The RE shall trace the requirements to the following FSD
deliverables: ...)

The RE shall provide traceability of requirements changes.
B.2.7 Assess Requirements Changes and Evolution

The RE shall evaluate all proposed changes identified by the PM/CD as to their
completeness, accuracy, consistency, and testability and shall apply Requirements Engineenng
technology as necessary to refine the requirements. The RE shall assess the cost, schedule, and
quality impact of the changes and make recommendations on whether the changes should be
included in the current block release or a subsequent block release.

B.2.8 Create the requirements test plan, cases and perform the testing.

The RE shall create the requirements test plan and test cases for all releases that are
delivered by the FSDC. They shall be documented in test plan and description documents per DI-
MCCR-80014A and DI-MCCR-80015A. The RE shall perform all requirements related tests. The
RE shall document the results of the tests in a test report, per DI-MCCR-80017A.

B.2.9 Monitor FSDC Compliance With Requirements

The RE shall support the [Agency] in the review of the FSD effort to verify that the design
and implementation is consistent with approved requirements. The RE shall review all FSDC
deliverables for requirements compliance; and attend progress review and formal design review
meetings. The RE shall identify discrepancies and anomalies between the system requirements and
the system in development, recommending appropriate resolution when possible.

B-5

B.29.1 Corrective Action Process (CAP)

The RE shall establish and maintain a CAP for all requirements related problems detected
in items under development or configuration control. This process shall be closed-loop, ensunng
that all detected problems are promptly reported and entered into the ECP process, actions are
initiated on them, resolutions are achieved, status is tracked and reported, and records of the
problems are maintained in the Requirements Engineering Notebook for the life of the contract.
The RE shall prepare reports, as required. The RE shall classify each problem identified by
category (i.e., requirements, code, design, etc.) and by priority (i.e., high, medium, and low); and
perform analyses to detect adverse trends in the problems reported. The RE shall closely monitor
the FSD effort to verify that problems have been resolved, adverse trends have been reversed,
changes have been correctly implemented in the appropriate FSDC processes and products, and no
additional problems have been introduced.

B.2.10 Interact with the FSDC

The RE shall support the FSDC by answering requirements related questions, seeking
clarification from the CD when necessary. The RE shall report all queries and his responses to the

PM.
B.2.11 Perform System Requirements Analysis for Block Releases

The RE shall apply Requirements Engineering techniques, tools, and methodologies to
define, refine, and document the evolving requirements of block releases in concert with the PM
and CD. The RE shall solicit and record user feedback on their experience with fielded releases to
clarify and define the evolving requirements. The RE shall revise the SSS, using ECPs 1o refiect
the evolving requirements. Later blocks have the added constraint that they must be compatible
with fielded blocks. The RE shall repeat the relevant activities in this SOW for each block release.

B.3 Reporting
B.3.1 Monthly Status Reports

The RE shall submit monthly status reports identif ying the status of the development of the
requirements; the areas addressed,; the stakeholders that have been contacted; the requirements that
have been identfied; issues that have been clarified; and any problems that have been encountered.
This status report shall also contain information on personnel assigned during the reporting period;
personnel expected to be assigned next reporting period; travel completed this penod: travel
anticipated next period; costs during this period, cumulative through this period, and projected for
next period; and antcipated acuvities for the next period.

B.3.2 Quarterly Progress Reviews

The RE shall conduct quarterly progress reviews describing all the efforts of the previous
quarter. All areas addressed in the Monthly Status Reports shall be discussed, but on a quarter-wide
basis.

N Tl T T T D T T T T T T S O O T e aaw wa

B.4 Deliverables
B.4.1 Prototypes, Models, Simulations, and Tools

By the end of this contract, the RE shall deliver all prototypes, models, simulatons, and/or
tools generated in the process of developing the [system] requirements. They shall be delivered,
with documentation, as proposed by the contractor and approved by [Agency], and with unlimited
rights to the Government. The RE shall ensure that the systems and documentation, as delivered,
are sufficient to allow each item to be installed and executable on a commercially available
Government owned host computer. The RE shall insure that sufficient documentation and special
purpose hardware/software are provided to enable the Government to run and modify all
prototypes. [Note: Serious consideration shouid be given as to whether the need for acquiring the
above justifies the potential costs.]

All hardware and software that was purchased by the RE with contract funds shall be
delivered to the [Agency] at the end of this contract.

B.4.2 System/Segment Specification

The RE shall finalize and deliver the SSS for the [System]. The initial SSS shall be
presented at a System Requirements Review for validation. The revised SSS shall be delivered for
use in the [System) acquisition. The RE shall maintain this document throughout the life of this
contract, providing the PM with the latest version upon request.

B.4.3 Requirements Test Plan

The RE shall develop a requirements test plan for all releases of the objective system. It
shall be in the format of DI-MCCR-80014A. These plans shall be provided (# months) prior to the
Governments’s acceptance testing of the FSDC system releases.

B.4.4 Requirements Test Description

The RE shall specify the requirements related test cases. They shall be documented in the
format of DI-MCCR-80015A. They shall be provided (# months) prior to acceptance testing of the
FSDC system releases.

B.4.5 Requirements Test Repont

The RE shall document the results of all requirements related tests that he performs. They
shall be in the format of DI-MCCR-80017A. They shall be provided within (#) days of the tests.

B.4.6 Requirements Engineering Notebook

The RE shall develop and maintain the Requirements Engineering Notebook, providing an
audit trail on the development of the [System] requirements. This notebook shall be available to
the PM at any time for inspection, reference, and reproduction. This notebook shall be delivered 10
the [Agency] at the end of the contact.

B-7

B.4.7 Technical Reports

The RE shall provide RE technical reports as required in a mutually agreed upon format.
B.4.2 Minutes of the SSR

The RE shall provide the PM with minutes of all SRR'’s that are hosted.
B.4.9 Monthly Status Reports

The RE shall submit Monthly Status Reports.

B.5 Constraints

By selection as the RE for the {System], the RE shall be precluded from bidding on future
FSD efforts for the [System]. In addition, the RE shall be precluded from subcontracting to perform

work for the FSD effort.

B-8

Appendix C
REQUIREMENTS ENGINEERING PLAN FORMAT AND CONTENT

This appendix provides the format and content of a Requirements Engineering Plan. This
plan provides the Requirements Engineering approach and identifies all activities, schedules, tools,
and resources that will be used in the Requirements Engineering effort.

Since the Acquisition Model can be tailored, not all sections of this document may be
applicable to a specific project.

C.1 Requirements Engineering Activities

C.1.1 Systems Requirements Analysis.

This specifies the approach for performing the objective system'’s requirements
analysis. This should discuss the plans and schedule for interaction with the stakeholders
throughout the life cycle of the effort.

C.1.2 Risk Assessment.

This section addresses the specific procurement nisk assessments that will be performed for
the objective system.

This should provide a plan for mitigation of risk for each nisk area, specifving specific
methods, techniques, and tools.

C.1.3 Alternative Concepts and Trade-off studies.

This secton addresses the specific studies that are needed. This will include the aspects of
the system that will be analyzed and the criteria that will be used in making trade-off decisions
berween conflicting requirements.

C.1.4 Sysiems Requirements Review.

This portion of the plan discusses the approach for the Systems Requirements Review. This
should include critena for passing the review and a plan for the validation of the functional baseline
which will be formed as a result of this review.

C.1.5 Objective System RFP Enhancements.
This section identifies the products that will be developed to eiliance the RFP for the

objecuve system. This should minimally include the SSS and a recommended tailoring of the SOW
and CDRLs of the objective system.

C1

C.1.6 Cost, Schedule, and Impact Estimation

This specifies the approach for preparing cost, schedule, and quality impact analyses for
proposed changes to requirements during the development of the objective system. This should
discuss the measurement of the uncertainty of the estimates, based upon the uncentainty of the
requirements. This section should also describe the approach for coordinating the development and
data management efforts to ensure interface compatibility and maintainability.

C.1.7 Requirements Tracing.

This section identifies the method and techniques that will be used to trace the
requirements.

C.1.8 FSD Contractor Monitoring Support.

This section identifies the approach and extent of support for FSD contract monitoring to
insure that the objective system is in compliance with system requirements.

C.1.9 Change Management.

This section identifies the approach for supporting the management of changes to
requirements. It should include change request procedures, tracking change requests and their
implementation, and oend analysis.

C.1.10 Systems Analysis for Block Releases.

This section presents the approach for performing system analysis for requirements during
incremental development.

C.1.11 System Requirements Testing

This section presents the approach for planning the system requirements tests, specifving
the test cases, and partcipation in the actual testing.

C.2 Requirements Engineering Techniques

C.2.1 Requirements Engineering Tools

This section identifies the methodologies and tools that will be used for the development,
validation, documentation, and management of requirements. This secton should discuss how and
when they will be used. This section should also provide the rationales for their selection. Tools
should be described in terms of vendor, function, operating procedures, operational requirements,
and products. When applicable, the interaction and integration of divergent tools should be
discussed.

C.2.2 Prototyping.

This section should present the prototyping approach. It should address the approach for
identifving those aspects of the system that need to be prototyped. This section discusses the
standards for the development, documentation, and delivery of any prototypes developed during
this effort.

C.2.3 Requirements Engineering Notebook.

This section proposes the format and content for the Requirements Engineering Notebook.
The notebook should be constructed in such a way as to provide a traceable audit trail for the
development and evolution of the system requirements for all Requirements Engineering activities
and products.

C.3 Requirements Engineering Management

C.3.1 Configuration Management Plan.

This section identifies the plan for configuration management of requirements and
Requirements Engineering products, such as documents and prototypes. This should address
version control and cross referencing between versions of Requirements Engineering products;
identification procedures; problem and change reports and review bcards; configuration status
accounting; audits; authentication procedures; and major milestones.

C.3.2 Resources, Organization and Staffing.

This section identifies the resources, organization, and staffing plan of the Requirements
Engineering effort, describing the RE’s facilines; Government-fumnished equipment and services
required; and organization, personnel, and resources for Requirements Engineering.

C.3.3 Total Quality Management (TQM).

This section discusses the process for establishing and performing Total Quality
Management of the Requirements Engineering tasks. TQM requirements, procedures, evaluations,
metrics, internal controls, and reponts utlized should be specified. This should also address the
software development file; associated access and control procedure; and procedures and reports
used to prepare for formal reviews.

C.3.4 Technical Status Reviews and Reporting.

This section specifies the approach for providing detailed status reviews and reports for this
effort. This must include, at a minimum, problems encountered, technical approaches, technical
status, plans for future work, requirements, cumulative and projected costs, and schedule.

C.2.5 Evaluanon, Testing, and Standards

This section discusses the approach for evaluation of Requirements Engineering products,
implementation of a quality evaluation reporting system, format of all test documentation,
corrective actions plan, and design and coding standards.

C3

Appendix D

USER INTERFACE SPECIFICATION

This appendix provides user interface and interaction requirements for a typical C2 system
which should be addressed in the SSS. This includes all visual, audio, and tactical interfaces and
interactions.

D.1 User Interface Hardware

A description of specified capabilities of the target user interface hardware for the system
shall be specified, including quantitative parameters such as bandwidth, response and access time,
and storage capacity. The interface hardware shall include but not be limited to the following:

- Number of independent monitors supported

- Description of monitor, such as size, number of pixels, colors bit planes etc.
- Description of keyboard, such as number of function keys, keypad, etc.

- Description of mouse or trackball, such as number of buttons

- Audible signal capability

- Description of other man-machine interface related hardware, such as scanners, touch-
panels, special displays, etc.

D.2 Screens
D.2.1 Formats

This shall define every class of screen presentations, including menus. The formats shall
clearly identfy screen zones and their purpose. The screen definitions shall include but not be
limited to the following:

- Use of multiple windows. If used, how many, window moving and sizing, when 1s a new
window created, etc.

- Screen format, including reserved zones, placement and format of classification
markings, placement of tiles, icons, menus, buttons, error messages etc.

- Window format, including reserved zones, placement and format of classificaton
markings, placement of tides, icons, menus, buttons, error messages, etc.

- Use of color and their meaning, including standard colors for all screen components

- Use and type of fonts for every class of presentation.

D-1

- Vocabulary form and standard words to use for each occasion. For example, using DONE
to indicate job is completed vs. OK or EXIT

- Help facilities, indicating the standard method for invoking help, and the format and
contents of the help displays

- Format and usage of menus, buttons, scroll bars, icons, etc.

- Standard interaction sequences, such as a requirement to confirm every data base change,
or the ability to undo or cancel some operations after they have been initiated or
completed

D.2.2 Presentations and Flows

Pictures of all screen presentations and all logic flow between them shall be specified,
including back-out and selection sequences. Interaction between the state of the system and screen
flow shall be specified.

Screen refresh requirements shall be specified, indicating whether data appearing on screen
represents information accurate only at the time the screen was generated or whether there exists a

requirement to continually update presented screen data. Refresh rates shall be specified, if needed.

Density of screen content shall be specified, defining what constitutes operator overload
thresholds that mandate screen declutter. Declutter techniques shall be specified.

D.2.3 Data Elements

The individual data elements which appear on the screen shall be specified, providing the
meaning, significance, units, and/or data type of each data element, and the source of each data
element whether calculated or retrieved from internal or external sources.

D-2

r_u- WVA-_“-T-—-———-_.-__—__-__-_-___-__- Y .

Appendix E
GLOSSARY OF TERMS AND ACRONYMS

CAP - CORRECTIVE ACTION PROCESS

CD_- COMBAT DEVELOPER.

Command or agency that formulates doctrine, concepts, organization, material
requirements, and objectives. For the US Army, this is the Training and Doctrine Command
(TRADOC). May be used generically to represent the user community role in the material
acquisition process.

END USER

The command or agency which will ultimately be the recipient and/or operator of a system
under development.

FSD - FULL-SCALE DEVELOPMENT

Norm...... .. : phase in the material acquisition process during which a system, including
all items necessary for its support, is fully developed.

FSDC - FULL-SCALE DEVELOPMENT CONTRACTOR

FBL - FUNCTIONAL BASELINE

See DoD-STD-480.

INCREMENTAL DEVELOPMENT

A software system development process where the user requirements are not fully known
before acquisition. The system is developed in a series of partial implementations. Each
implementation is used to clarify and refine the requirements for the next implementation.

MILESTONE O

Program Initiation/Mission-need Decision, approved by the Defense Acquisition Board
(DAB) or designated authority, which determines mission-need and approves program initiation
and authonity to budget for a new program. Normally, a concept exploration/definition phase
follows this approval.

E-1

OBJECTIVE SYSTEM

The system under consideration for development for which Requirements Engineering is
needed.

PEO - PROGRAM EXECUTIVE OFFICER

Individual responsible for administering a defined number of major and/or non-major

acquisition programs who reports 0 and receives direction from the Army Acquisition Executve.

PM - PROJECT MANAGER

Individual chartered to conduct business on behalf of the Army who reports to and receives
direction from either a PEO or the Army Acquisition Executive and 1s responsible for the
centralized management of a specified acquisiuon program.

REQUIREMENTS

Requirements are the quantfiable and venfiable behaviors that a syster must possess and
constraints that a system must work within to satisfy an organization’s objectives and solve a set
of problems.

RE - REQUIREMENTS ENGINEER

A functional entity comprised of Government and/or contractual personnel that performs
the Requirements Engineenng tasks required by the PM.

REP - REQUIREMENTS ENGINEERING PLAN

REQUIREMENTS ENGINEERING

Requirements Engineering is the disciplined application of scientific principles and
techniques for developing, communicating, and managing requirements. See Appendix B.

RFP - REQUEST FOR PROPOSAL

STAKEHOLDERS

All commands, agencies, or personnel who are directly concerned or affected with the
outcome of a system acquisiton. Stakeholders may include the end user, the developing agency,
post deployment software support centers, the test and evaluation agencies, operational
commanders, logistics support agencies, and many others, depending on the system.

B e e

SSS - SYSTEM/SEGMENT SPECIFICATION

A system level requirements specification whose format is specified in DoD Data ltem
Description DI-CMAN-80008A.

SRR - SYSTEM REQUIREMENTS REVIEW

UNPRECEDENTED SYSTEM ;

A system which does not parallel a system which has been previously developed. This may
be due to the planned use of new technologies, a new mission-need, a need that has never been met,
or a significant increase over previous system capabilities and performance.

Appendix F
BIBLIOGRAPHY
[1] Beam, Walter R. et al, “Adapting Software Development Policies to Modemn

Technology,” Washington, DC:National Academy Press, 1989.

[2] Black, Harlan H. et al, “The Technical Cooperation Panel (TTCP) Requirements
Engineering and Rapid Prototyping Workshop Proceedings,” US Army CECOM Center for
Software Engineering Technical Report C-0103400000100, May 1990.

[3] Beam, Walter R. et al, “‘Adapting Software Development Policies to Modemn
Technology,” Air Force Studies Board, 1985.

[4] Hess, James A. et al, “Report of the AMC Software Task Force,”, US Army Materiel
Command, February 1989.

[S] Sumrall, George E., “Requirements Engineering and Ada,” Proceedings of the 6th
National Conference or Ada Technology, March 1988§.

[6] Davis, Alan M., “Software Requirements: Analysis and Specification,” Englewood
Cliffs, NJ:Prentice Hall, March 1990.

F-1

1-O
INODTD AW MV S/ e ADOTONHIAL ONNFHUNIONT §SHDO0Ud JaVMLIOS

TAAON NOLLISINODV HHL 40 MHIAYAAO 1VIIHIVED

0 xipudddy

ONIYIIANIONT FHV M LA0S 404 ¥3INTD

(429

WOI3ID AWYY SN ADOTONHIAL ONIYTUNIONY SS1O0Ud FUVMILOS

‘'suonisinboy jO o8uey
IPIM V 0], A1ddy 0], palojie], of ueD YoIAL ‘S91301en3S UOHINPIY YSIY XIS SPUIWUWOIIY 1]

Juswddeur]y o3uey) puy uoniuyd sivwanbayy 1o,] sonbruyoa],
Suiziseyduwsy ‘Furrdowduy siudwannboy sassong opopy uonisinboy 4SO INODAD Y.L

ONIYHANIONT FAVM L1108 HOA H1LINAD

-0
WOO3D AWV SN lllmll ADOTONHOAL ONIYIINIONT $5300dUd FAvMILI0S

uoneyuowojdwy Jo sueld o
uonisiboy woysAg Auuy SN OL 19PON UL JO uoneoiddy -
uonisinboy wasAg Aury SN O [9POA YL JO DueAdPy -
so13o1e1)G UOHONPAY JSY XIS -

[opojN uonisinboy uy - yoeoiddy pasodolgy .

oouedIugIg)| puy wRjqQoId YL e

NOILLVLNASddd 40 d4dd0

SINALSAS AAVM.LIOS
ATAMATLLYE 404 SINANAHINOAY A0 INAWIDVNVIA
ANV JdNLdVI HHL 3404 TddON NOILLISINODV

ONIFINIONT FHIVMLIOS YO d4INTO

- M G N O A BN G G N O Gy o N In O a " .
-0
INODTD ANV §) eee————— O IONHDZL ONINFINIONE SSTO0UJ FUVMLIOS

uoneiwowd[dwy 10, sueld o
uonisinboy wayskg Auuy §n o [9pPON Y, JO uoneonjddy -
uonisinboy woaisAg Awy SN OL [OPOJA UL JO 90UBAI[dYy -

$91391e1S UONINPIY YSIY XIS -

[9pOJN uonisinboy uy - yoeoiddy pasodorgy

douedyIugdiQ S)] puy waIqoIJ YL, e

2dUBIYIUSIS S) Puy WR[qoJ Y],

ONIYIINIONT FYVMLAOS HO4 YFINID

$-0)
INODT) AWNHVY S/ e e S S —— ADOTONHIAL ONIYFINIONT §S300dd FYVMIL40S

L8 3dag 1indwo) 7| |, A1anonpold 1emijog Suiaoiduiy,, ‘wiyaog “A Aueg] 921008

000¢ G661 0661 G861 0861
il _ T T T
qa019$
qa0¢$
w
q05$ S
aod z
s ao0ls 5
&
d00Z$ 2
SN qd0069$
PLIOM 008 < g0001$

Ajenusuodxs] Suimoi0 o1y AN, puy 131D 1Y SPIIN IEMIJOS

ONRIFINIONT TUVMLAOS YO ¥HLNLD

I U S &Su W S W WE Wy e o Sn @S GE NP BE NN SR =R Sn

9-1)
WOOH) AWYYV S| ee—————————twemmesssmessmes |, 0 TONHITL ONIYIINIONT SSID0OU FJAVMLI0S

"OU] [[BH 0NU3L (AISIIf MIN *, $21U0u0I Juliadu1dug 2100fog, ‘Wy0g "\ ALieg] :901n0G

SPUII], 1S00) JICMPICE] SNSIIA IICM}JOS

S861 0L61 sS61

$1S07) DUBUIIUIBA] 1EM}JOS

07

oy

$350)) Judwdo)aAd(] dIemijos

S)S00) dIempaty|

156D WS4 [8310] JO JUdIg

001

$1S0D) WIISAS [BI0], SARUIWIO(] 2IBM]JOS]G 1S07) L,

ONIIFANIONT TYVMLAOS 3O Y1INT) et ve e ~

e

L4)
INODL) AN HY S| e st sy st st it ADO TONHDEL ONIEEINIDNG $5H008d HAVMIL40S

*J1EM)JOS
40 Sundeauod uy swapqoad sofews paynudIp! WY 94 durjejo) suonsinboe autu Jo £341ng OV 6L61

(% L) (NT'ES) pasn
A1{n)ssadans 1342u Jnq

P3JIAIIP SEM IIEM)JOS

. (%61) (WET$)
(%67) (NS6'1$) [\\y10mas aatsuapxa 13ye

PAIAIPRP Jou INg 10} J]QesSn SEM 21EMJOY
pied sem aaemjjog

(%¢) (000'8619%)

(%8°1) (000°611$) P12AYIp (/ sodueyd awos 1))

SE 3|qesn Sem 31em)jog J{qESN SEAM IIEM]JOS

uonenday vy puy A101SI[] Y dAC]] SWO[QOI] dIeMIJOS

ONIYFANIONT FAVMLAOS 04 ¥LINTD

AR e S SRR

e

8-0
WODID ANYYV SN veses———————cssemt | OO TONHDIL ONIYIHANIONY $SHO0dd FAVMLAO0S

JONP “LNMOIO} '] ‘SWidISAy
210myfus 38407 8u1dojana(q 10f $31831041§ |DINODA Y UL 'SIUIEINDRL] PUE SWIGOL] (IIEM]JOS JO UONINASUO)),, *ZLeMYDS] [¢

IONPI ‘ZUMOIOY] 7 ‘SWIsLS 210m1fo§ 28407 Surdo)aaaq 40f sa18a10415 [VINID14 Ul SiSA[euy SIUWANNDIY I1eM1jOS,, “3040Y ‘M M z

(891-6L-UL-DAVY AVSN) ‘(1uawdojaaaq) L8ojopoyiapy duriaauiduy siawaiinbay 24omifog ‘uosme] 'L [pue pIojiy ‘M "W |

¢ « 191010 AuE ueLp SIN[IR) dlOW 01 SPEI] LPIYM $s2001d APy JO
ued oy st £jqeqoid 11 Inq ‘fe1au) swods sased Auew ul,, uonedy1oads suswaninba ayt jo wawdoaaa(g

7« 1011U0D ut Jou s
wswddeuew (p) pue ‘1no uvzolj st 1asn AP (9) *srqissoduut st 3unsal (q) *sqissoduut st udisap umop-do
(e) :s1sAeue sjuowdnnbos dlenbape op 01 sjiej auo udayMm ISR LI SWojqoid Jo spury Inoj dse Y|

|« 21niey 330f01d ut o0 dA1suddxa pue sofew e Lejd saoenbapeu
siuawdIinbas *s{eod 1500 pue dueunopad 133wl 01 sjtej yoym 103fosd aremijos K199 Kpaedu uy,,

"poAjOAU] A[Iuanbol,] d1op) swdqOI] pAle[oY S1uswdNNbIYy

*SWID[QOIJ UONISINboY 21EM]JOS JO $ISNEY) O |, SUIPUL] O] PIIOAJ(] DI\ S1IOJJF] DAISUDIU]

ONINIINIONT FYVMLA0S Y04 ¥AINID

69
IO ANV S e e, S e ADOTONHIAL ONTHHANIONT S§SAD0Ud VM IL-AO0S

"2Uj *JJ_H 211Ul :K3813[MON ‘SIONUONOIY FU14001181°] 2ADMIJUS WIYI0Y A Atitg] 22N0G

P21331100) PUB PJIINI(] SEAA 1040%] UE YIIYAL dupan(] dsey]

1S3 1591,
uonesddp souridadsdy wawdojanaQ 3po) ud1so(g spuawAnnbay

T T _ I I - 19
/1/////1/////1/// N N%

~

9% &

01§ 3

»)

0 g

S

ry

0S$ 3

5

001$ =

S

N -

002$ 3
1« 009%

uondNA(] JO
SUILL, UL PIA AJ[EONISBI(J SOSBDIOU] SUID[GOI] PR sjuawannbay SuIA[0S JO 150D YL

ONIAFIANIONT TIVMLJOS HO4 ¥AINID

T - G Aar O A S SN TS AR BE B R S B B BE S ..
01-9O

ADOTONHOAL ONIYFINIONT $SAD0Ud FdVMIA0S

WOOID AWYY SN

$8/01 Jandwo)) 75| e 19 ‘Ayuoowewiey ¢, ‘Juuasutduy a1em1jog,, 122408

uoneisxd(1S9 sisjeuy
» dunsay, Ad(WRJSAS B Jeuondunyg %
adueydasrdy uoIINIISUO)) udisaq sjuawdainbay

4 %01
—
@
o
oo
padnponuj —
ioug 4 %oz o
>
=
SRS o
% 1 o ®
pompom] 0L 2
louy —
O
E
B -4 O
PoAIZA0 : w0y 3
Joug R =
) A 17
PoAIqQ £
J0107 m..l
- %0S =
PanpOunuy
1011}
%09

-asey udisa(q [euonoun, 2 syuowannboy oy, uf poonponuj a1y S)ne,] d1em1jos 1ISOAl

ONIFANIONT FYVMIAOS 404 4AINTD

[1-9

ANOTONHIAL HNIEFANIONI $S3D08d VM LAOS

violz-dlLs-ded

WOIID AWAIY SN

- FE [_ _ SJUANUNIO(] QLIIALI(]
Pt -AILar)jos

« \V4 VvV V \ VvV V SHPNY B SMIIAIY
|

POICIIY-ILALJOS
_

dunsa Junsay ¥
1249711080 uoties3ag Sunsa] 1)
089 ¥ Suipo) udisaq)

paLeng udisaqy sisAjeuy ANandy
Arutwipid | quawannbay Judurdo)aad(g
Amyos IEM)JOs
Junsay w woniuyacl Anamdy
wawkodaqy mag 3 Bunsag uvyeda] wawdeaas(] siawannboy siwowannbay | Juawdo)dad(g
P uononpal | muousiadg washg anmijos saindwo) Aremijus/WIISAS wsAguotstiy —:o_mhw
; asey]

juawdiopdaqg UOLIEPIBA % uoneiojdxy «
7 uonanpold iaudor2aad 242 lind UOHRBIISUOIBI(] sidawe) -u.u_.:._.—
1l 11 | 0 SUOISIN

$2|QRIOAT[O(] JO ISIT PUY $S3001J MIIADY [NUINDIG DAISUIIXT] UV Bunepuey

quowidoaAd(] 21em1JOS J0,] SIUDWDINDIY $ASTqRIST 1w do[doAd(] AILMIJOS WDISAS ISUDJO(]
ONIYIIANIONT FAVMIIOS ¥0d ¥4INID

1-9)
WODHD AWYYV SN IIIlI‘LI'I' ADOTONHDTAL ONREFINIONT SSTD0Ud FAVMIIOS

uojies ughe spekyev
i_h:__o“».-v. -.:E&c_“»v_: “ _-—!_-“:-_-h “ nWUW“F_ﬂ—
a»undary WPINIPVLY uwiisg nuawasnbay
aseq g yudwrdopad(q yaey jo puy oy} Aq
LMO1ADY PUE SIIGTIALIR(VLIIT 2ahigjnwung
— — V=
— — 11!
‘Kien) puy ‘9Inpayos 1s0) Funoeduy = ¢ =
%:mCCmeD:m .v—uoaom o>_mwm2 asne) L = —_
KRN $199J9(] S1uawaIinbay woaIsA§ judle] — —
— Vi
i maady = vV
== JqenAIp(g = ==
(4
[T ¥EY Su sd{oy wones TSy wu
l_-:_.uh .c!:&e.!”ﬂ“ _-:e.“.x:_.... “ dﬂ:.“ﬂ .:.E.—:“,“. % .-:_._H.v-“‘..u “ nwumﬁ—_n—
wusidarsy uopannn) uliz(} nuawasnbey sueidassy oAU ulsod nuswsinbed
T T — T LB 1$ 0
/////1///// } (4
1 %01
wajsig jjews 01$) =
e - L
4 0% % 0T m..
N o
_ - 0s$ 1%0e 3
/z///////.v/—:.uumhm adae] 4 001 3
1 {wor 3
0 . €
10135 Uy X1 0], 1S0)) Ay +cccw o PIAIISO=0) ¥ . =
paonposjul=] | %08
QWAL ShnE Isey]
! %09

ONIYFANIONT JAVMLHA0S 404 YLINTD

-0
L ADO TONHDTL ONIHLUNIONT §S100dd FJHVMLAOS

WOIY) AWYY SN

pIjuep
NTLER BRI EL AR LAY PaIsaY, 105)] MO} ng SEAL JEYAA

A=A

pa1dAIR(104
paudisa(3¢] PINOM PIES paxsy At
u:_._ou:_ur_wm JeYAA penuo) Iyl JeYAA ddd Y L ICYAA

WSy INO wIng, sAem]y 1, uo(] s3uly], ‘9snIadxF] puy suohuduj
POON) s, 0U0K1DA5] 1A jqef Y3nQy, y S| SWINSAS o[eag-odae] 3urdojdad(

ONIEEINIONT THVMLAOS HO:4 HHINDD

MR mEn

pi-O
WODH) AWHY S et A, () TONHIILL ONITHIINIONY SSADOU TYVML:AOS

uonejuowd[dwy 10, suely o
uonisinboy woysAg Auuy S oL 19PON YL, JO uonedtddy -
uonisiboy wosAG Auly S O [9POJAl QYL JO DUBA[DY -
SOI13I1BAIG UOTIONPIY SIY XIS -

[opojN uonisinboy uy - yoeoiddy posodosq

2ouedyiuglg Si| puy woaqoIJ oy .

[PPOJA uonisinbyy uy - yoeoaddy pasodo.u g

ONIIFANIONT TIVMILI0S HOd 43INID

Gl-{
WO0IID AWYYV SN llru ADOTONHDAL ONIYFINIONT SSID0Ud AV MLA0S

yuswidopoas wdisAg Areuoinjoay @
diysuone[oy (sS.] 10, 21MONNGS IpIAcld @
GSS U] 3unsayy, 29 doRIAUL ISy @

O} 210Jog duijoseq jeuondouny @
uontuya(swdwannboy ojdnoxdq @

sjuowainboy oy g, ouIduy @

SO1391e11S UONINPAY YSIY XIS

ONRIFINIONT FYVM L10S d0d ¥IINID

G N G n BE an S R S an N N TE D E B R Em e
91-0

W0OI3D ANWYYV SN ADOTONHDIL ONIYHANIONT SSID0Ud 3YVML40S

® - Anenp o= - NPAYOS

‘soniiqeded pue so1oe)

Awaud ut sadueyd pue £30[0Uyd3) Ul SIdUBAPE
Se SUOSBAI Yons woij ‘syudwasimbar a3ueyd

0] SPa2U pI{eA JABY SABM[R [[IM JAN PIrlRUIWID
9Qq JOAD UBD 1O [[IM A1) 1BY]] POUOISIAUD J0U

st 11 ‘swajqold paje[ar syjuowainbar Jo A1110A0s
pue Ajnuenb oY1 20npal pnoys [opow SIYl I[IYA

>8 - 180D

‘sdoysyIom pue sa1pnis (JO(snolawnu £q
POPUIWILIOII UIIQ APBII[E dARY SI1ZIRIIS IS,

WISAG [NJSSAoNG

SY SR Pate[aY-siuawInbay gONAY pInoys Aoy, ‘Ajodold panddy uoym
"suonIsIboy OAISUDIU| 21BM]JOS
10,] $91391e1S XIS SPUIWWO0IIY FULIdUIFUH 3I1BM}JOS 10, JIUD) NODHD Auny S dUL

JT# eI
ONTHIANIONT FYVMLAI0S YOd H1INTD

L1-D)

Adoonurahadg . e N1 [OPLI 2[OE

"AAOVNVI pue qAAAANIONA
A4 LSO SINANATIINOAT “HAHLVY

‘SINANAAINOAA ALIIM
OL MAOAAV YAONOTON NVD M

0 1 U G U U U U U G L 0y O O B O O

1TH# YL]

OOOOO ANIONT FUVMLA0S 804 ¥ALNID

g1-9
WOOID AWHY S e ————— A () TONH DL ONITETINION A $$1U00Ud HUVMILIOS

‘sjuowonnbol Juigeuew pue ‘Junedsunwiwod ‘Jurdodadp 10j sonbiutdd)
pue sojdiounid synuoios jo uoneardde pourdiostp oyt st JurrdWIZug SUDWANNDIY

sudjqoad jo1os e
OA0S puE $9A1122[QO s uoneZINeSI0 UB AJS1IES O UIIIM YIOM 1SN WDISAS B 11|} SjuIelIsuod
pue ssassod Jsnuw WwolsAs e el SIOIARYD(J[qRYLIdA pue djquyhiuenb ay1 d1e sjudwdinbay

ONIATANIONT I VM LAOS HO:4 dHINTD

61-D
WOHJ3AD AWV SN Illlv AOOTONHIAL ONIYFIANIONT §$300¥d AHVALAOS

Bunoduidus] 91eM110S

SurduIguy sjuduRIINDbIY

urroaui3uz [BdIUBYIIN

Buddudus] fernsnpu]
"$IOUDIDS

FurodouSuo oy Jo YdueIq B Se uoniu30d0]
$oA19s0p Sutidouiduy siuowdnboy

Buiiouidur] [ed1Nd9Y

BurdouIduy (11D

ONTYIINIONT TEIVMLAOS d04 ¥AINFD

0¢-9
ADOTONHDAL ONIYIIANIONT $S3D08d TVMIL40S

WODID AWHY SN

"IoUURW AIRUONIN[OAD ‘[RIUDWIOUT UB ul SWIISAS dOJoAdp O} ue| - [0)

SI19)1eW PoJe[dl SIUdWIINDII ([10) 1010e1U0D JUdWIdO[oAdp JJedS

-[[N} 9Y) pUE JISN) UdIM]dq uonoesdul pue diysuonefdl oy I0J 9I1n1ONIS IPIACI] (G
"uorjeurIojul
Sunso) wosAs yum 19419301 ‘SSS dY) U UOTIDBIDIUL PUR JJBJIDJUL JOSN D[} JUAWNIO(» O

-o3eyoed uoneoijos oy Jo 1ed B §SS oyl 9w pue uoneldifos ay o1 Joud (SSS)

uonedy103dg 1w dog/wdisAS pasoidde ue yiim ourjoseg [euonoun,y e ysijqeisy e €
1o
Juowdo[oAd(] 2189S [N Y} wodj uoniuydp siudwasinbar ojdnosop A|[enjoenuo) e C

“uo pue saseyd 109(o1d Aj1e3 213 wolj sonbruyoo) Juowduy
s)uowoasinbay sarpdde yorym 110j30 SurrooumFuzy sjuowonnboy e ojeudisoq . o

:SMOJ[0:] SV 91y $A1Fd1eng xi1§ oy,

‘suonismbay JO a3uey]
PIM V oL A1ddy o], pa1ojie], og UBD UDIYAA ‘SIITITeNS UOHINPIY YSIY XIS SPUIUILIOIIY 1]

udswadeuey dduey) puy uonIuYd(Y SIUdwWIINbIY 10,] sonbiuyday,
gurziseydwsy ‘Sunsouiduy SudwdINbIY $98$9NG [OPOA uonisinboy S WODTD UL

ONIEFANIONT FAVMILA0S 304 d:LINTD

120 . .
WODH) AWV S ee——————))" JON}DLL ONIEINTONGD $$H)08d JAVMALA0S

uonejuowduwy 1o, sueld .
uonisinboy wosAg Auny §n OL 19POIN 9y, JO uoneoddy -
uonisinboy woisAg Auy SN 0L [9POJA S L JO 20ueAd[Y -

$91301e11G UONONPIY YSY XIS -
[OpOoN uonisinbay uy - yoeoiddy posodorg .

douedIUZIQ SI[pUy WROIJ oYL o

uonisinbhdy wdjsAS Aurry SN O, [PPOJA 3Y.1, JO 2UBAIY

ONIIINIONT FAVMLAIOS HOd 4AINID

G BN AE S IR A N D aE N N A Y B BE an e AR G

WODI) AUV SN

¢

%E.jﬂ
DO(] 29 wEEE 1,

ADOTONHIAL ONIYHANIONT SSHAD0Ud FdVMLAOS

MIAY
sjudwasinbay
wl)shg

Bunsa) uohuya(] :c_:c_wo:

[eag p 8unsa) uons @auj wawdojaas(] wwannboy siuawannboy
reuonmixd) wAnskg apayog andwo) are f1jogauaishg wasAguoisstpy SQFAN SIH
SANLL:A
ddsn

uoLpiie uoussopdxy

neausdoranaq 2135 (104 7 c__._zmc_o_waw sidasuo)

I I 0

Jpueya10jog ‘10100

ni10)) wdwdodao
91|], 98e8us] O 3[qQV A\ 21V MO ‘Uouyd(q Juedyugdig SposN WwdsAg oy |, Jj| ‘ing

)] suydq oL SA[OH oH ‘wo1sAg 211 Sundnsuo)) $opisag

Syse,

pare[dy-siuowaninbay 10,1 91qisuodsay] Ajjeord£y, sy 1010enu0)) WAWO[IAI(d[LIS [[N.] A],
ONIIHINIONT FYVMIAO0S 3O dAUINTD

uonedIIdg

Juwdogudyshg

)

|
Anandy

yudwdoad
u)SAY

asey |
Pafoa g

SIUOISIPIN

~—

[0,
INODTD AWHY S s s S == ADO TONHDAL ONIETINIDNG SSAD0Yd HYVMILAOS

q3ang S
HAAN L
(day) ¥Aasn N
V
HOHU“HHEOU ._ZmZ,_Q—m>mD m4<0m ._,_Dm A~—
D
I
e o0 0 eee PURLLIILO)) ?EBBZ %E.E L
A
Vv
e o000 e PUBLILLOD QEBOD 9, wc::@ ,H)
ong 7 Busal —cLY wowdolaaa] suowonnboy usmosmbo Anarpy
[suonedg wansig ammyjos 1andwo) a1emijosudnshg wasAguotssipy SN SIH -:v::_c_o?u:
) A mmzr&cv w2)sAS
diasn
wawdoaaa(] 2@dS 1in g :uﬂnﬂﬁ?% .._cwﬂ__ucu_”_.“.w Um—.a.?—
! . afoay
11 1] 0 SU0ISIPN

ostpodx sy uedyiudig saanbay] ysey, siyL

‘SJuAWNd0(uonisinboy
OJu] SIUSWDIINDOY JOS() dJ[SURLL, ISTIA 19ANg 21em]JOS dY L, ‘puctitio]) [BLNTN Ay O,

ONIYHANIONT VM LA0S dOd dAINID

'lll'l'll-ll'lll-llR

vZ-D
WO AWYY S| eeeessse——es————————— \ 0 TONHDJ3.1 ONIIFINIONT SSD0Yd FdVMLI0S

adeddi|s
e

uoneNdIog

ageyoeJ uoneNndijos
ayL JO Anfeng) ay, Sutaoidwy Ag ss2001 uonisinboy du], daoidwy Apuedyiusdig ue) o

ONPITANIONT FAVMLIOS HO:A HTINTD

ST
WOII1D ANYYV SN ILII ADOTONHDAL ONIHIINIONT $SAN0Yd IYVMLIOS

uoneuIwnNdO(
sjuowanbay Liend

o3eddig
engo

QINpaYyods
‘150D

Wo1SAS

Aiend)
d3eoed
uonedt|og

‘uoneIIWNIO(SiowdNnbdy AijenQ) paoN sogeyoe uone)oaios Alend

ONIIFANIONT FIVMIAOS ¥O:d ¥4LNID

979

3
g & L P

WOI1) AWYY SN ADOTONHIAL ONIHFUNIONT SSH00Ud HUVMILI0S

(s

2INPIAYIS puy 180D uf
ANsoD) K1 21y siudworoidui] puy soduey)) ‘93eiS Jey], $aoedy wdIsAS oy, owt |, oy], Ag

(i) MOT1ADY UFISO([BONLID A,
(U] [1e19(] Uy pay1oadg sAemy JON a1y 00eJI0IU] JOS)], SV YINg ‘sjie1d(jerons) ‘A|pes

ONRIIINIONT TAVMIL30S JO4 ¥1INTD

LN

WODI) AWYY SN ADOTONHIIL ONIYMHUNIONT $S3D0dd FAVMLAOS

EDEDEDEVEITIEVEVEVCEVEVEOCED D CIEOD

CHCOCHCH CHCHCOCD CHCHCO
b
2 @@@@@@@@%@& S

siyoid

*$1S2193U[JO 191yuo)) v JO ddueaeaddy oy, oAy ‘sowg,
1V “UBD) 101081U07) ([S:] OULL Of, UDAID UdIE SB[JRIL], OO PIIL|IY S1udwdNnbdy oy |,

ONIHFANIONT FAVMLAOS YOA dAINTD

-1

WOOH) AWYY SN ADOTONHIHL ONIHHHANIONA $$300°d 4dVAMILI0S

D0dVvdL u ﬁ IV

1010 1U0D) (S

sjuawannbay

‘sjudwaanbay oy, dn 9a11q o, Suneaddy JO uonIsOg plemymy uy uj
S| pUVY 19S() 9|, O], $S200y dldury sey Jojoenuo) ay], ‘diysuone9y qs xojdwo) ayy, uj

‘Aijeuonouny puy suondQ 210N SUIpIAOL] Sy 9A12010]
AU, Yoy ‘Siuowaainbay] jeuonippy JO danioddng puy 0Andoosdy AjjeardA], o1y s1osn

"WO)SAS JY [, odueyuy ue)) jey], sontjiqede) maN jo posuddy
UOUILDAO0D) 9y [, do9Y] 1SN 1010e1U0)) (S:] dUL ‘“Anuno)) sy I, puy Jowoisn) duf |, 94198 O,

ONIYHANIONT FYVMLIOS 4O:d dAINTD

R

62-9)
WOIO3D ANWYY SN Illlllll‘.lll ADOTONHIAL ONIIIANIONT $SID0Ud HYVMILAOS

dd.LS ATONIS

-poreiodioouy Apises] ogf O, SAINIEA
WOISAS OU] SV 9ZI[BLIDICIA 1eY|], SIUdWDIINDIY uddsd10ju) puy moN Suimoly 10N ‘daig
o13uIS v up wAsAS oY, pioL] puy doaadg of, sueld weay, uoisinboy wWolsAg vy ‘sow] 1y

ONIIINIONT TYVMLA0S 3O ¥LLNTD

0t-9
WODIL) AWNY §) e n—— A %) JONL: L ONTHBINTONSH SSHDONd HHVMLII0S

uoneyuwoudwy 10,y sue| e
uotiisinboy wosAg Awy SN oL 19PON YL JO uonedrddy -
uonsinboy wdSAS Aulry S OL [PPOIA SU.L JO 90UBAD[IY -

$J132181)G UOLIONPIY ASIY XIS -
[OpOIN uonisinboy uy - yoeoiddy posodory .

0UuedIUGIS SI] pUY WOIQOIJ YL

uonisinboy wdISAS Aurry SN of, PPOIA Y 1, JO uonedddy

ONIYIIANIONT FHVMLA0S HOd YHLNID

1£-0)
WOJ3D AWYYV S =eesss————e——— \ 0 JONH L ONEITINIONT $S300dd FdVMILI0S

juowdooadq woisAS Areuonnjoay] g |

4

e
e

diysuone(ay s 104 ampnng opiaold @ |

/ N
A SSS uf 3ulisyy, 2 90eJIJWU] 1S @ &
\ v

— ~

O:13¥ 210)9¢g ourposeg jeuonoun,] @ |

uonuyd(q swowoanbay 9[dnoddq @ |

SIUdWANNDIY Ot |, 100uiduy] @

[PPOIN 9U.L

ONIYHINIONT 3UVMLA0S 404 ¥3INT)

(4%,
WODAD AWYY S ees——————esssss | () JONH DAL ONIYIINIONT $S3008d FEVMLIOS

WAy} ulepljea udyy) pue

oeduar oy sjudWIINbax 11211 Jo 1dedwn
pue SJUdWANNDII UO JURNSUOD pue Aiqisedj oy Jurrojdxo
e s1 9y ‘Jogeuep 193fo1d Yy 0], -suonsanb ‘1odojoaap e s1 a1 “1osn dY) O,

RITIO

paiejas sjudwdlinbar utromsue
‘138N 9} S1 9y “10do[dAdp Y1 O],

‘1R AUBW JEdM 1SNW Of]

*2$1110d X9 pPOpodu YY) dABY ISNW ‘WIed) S 10 ‘Of] 19Feuey 199[01] O JO U0
pue [01U0D Y} JOpUN 3q PINOYS O} JUBINSUOD ¥ ST J0dUIZUF] SIUoWdIINbaY oy],

‘uo pue saseyd 100fo1d Apred o1 wioly sonbiuyddl Sudomdusy
syudwa1Inbay sorjdde yorym 11030 urrddmduy syudwannbay e 01euiso(]

ONIETANIDONT VM L-40S 304 ¥3INTD

l

tyf)
INODTD ANUVY S st s st e ADO TONHIHEL ONTYTINIONT §S3008d HYVMLAOS

"199fo1d uonodnusSUOd
JuipInq e ul 19911YdIe Ue JO 1R NI yonut st O[0! s, 100U13uT SUAWANDIY oYL

-uo pue saseyd 100fo1d A[1ea Sy WOy SONbIUYII) Sundouldus] A
sjuowonnbay sordde yorym 110JJ0 JutduIduy sjusuronnbay e oleudisoq « O A

ONIFINIONT FYVMLI0S BO4 ¥LINTD

S SN R 0N W S WL =S Eh s GE S W AN G &8 SR = =

T

ve-O
WODED ANYY S ee———————sssss) () JONHOHL ONITYFINIONT SS300Ud HAVM.L40S

ONIdALOLOYd dIdVd

NOILLVINIS
LINIIWdOTdAdd NOLLVOI'1ddV LNIOf

*so130[0u29) pue sonbiuyoo unoowmuszy sudwIINboY
15918 o) K1dde o1 sonijiqedes pue 0s11adxd daey] 1SN 1oUIZuUs] SiudwdNNbIY oy,

-

‘ue pue saseyd 190foxd Ap1es o1y woiy sanbiuyda FuudduIduyy
syuowoainbay sorjdde yorym 110150 Jurrdouidusy syudwoninbay e o1eudisoq .

DONIFTINIONT FdVMI-I0S 04 HIALNTD

St-0)
WODED AWYHY S S e S — ADOTONHIAL ONIFIUNIONT $SID0Ud HIVMLIOS

SMAIATY ONRINA JAOIINS

NOILLVOIAIAA SINANAAINOTY

ONIDV YL SINTWTAINO:

ADVEAHTA SN

105fo01d oy} Jo owINQJI] O INOYINOIY) SINTATDE PIIL[II
SJUDWANNDII)IM POAJOAUT D 100UITUF] SIUOWDNNDIY YY) TR} SPUDLILLIOII JOPOW ST,

‘uo pue soseyd 100fo1d Aprea oy wolj sonbiuydd) FurddUIBUZ]
sjuawoninbay sarjdde yorym 110§J0 Sunroouiduz] SIUdWAINbIY © oeudisogq - O

ONIYFINIONT TAVMLAOS HOd ¥IINID

—

£-4)
WO0JID AWYY SN I!c ADOTONHDAL ONTYTINIONT SS100¥d FIVMILI0S

“ystI Jo 1oedwir uronpal ‘d[eds Iojes
yonuw & U0 SI 10JJ9 1y} ‘110J)3 judwido[oaa(g 9[eds 1Ing Y1 dYIu[) SISIx0 uonedjijord

sjuawoinbal Jo YsU oy “H0JJd 1udwdo[aAd(91838 ([N Y1 Yim se isnf “A[njoled
10)1UOW PUE 110JJ3 SIY[) 10] STudWaNINboI oY) $SIsse A[njored jsnut 103euep 199(014 YL

"JoRIJUOD RIA powiojiad oq Aeul 11 [oAnBUWID Y
‘fouuosiad JuowuIdaA09 £q Paf[y 29 pinoys uonduny Suidouiduz siudwonnbay dy g,

-uo pue saseyd 190(o1d Aj1ed o) woij sonbiuydx Furoduduy
sjuowoariboy sorjdde yorym 1ojjo Juuoowduz sudowanmboy v oeudisoq - O

ONIYIANIONY FJUVMII0S HOd YAINTD

LD

ADOTONHIHL ONIEIINIONT $531D08d UV MILH40S

WOO3D ANYY SN

20dVI.L

130uIdugg suawaInboy

1010e0Uu0)) 1w do[doAd(91edS [N

puBlIWwo)) [eLIdRA Ay

‘uo pue soseyd 100fo1d Ajaed a1 woiy sonbiuyod Judom3uyg _
syuowaanboyy sarjdde yorym 110330 Bunodouiduzg syudwannboy e aeudisoq

ONIHIINIONT JAVMLAOS 01 WAINTD

— SR SN SNR SNR ENE SN SER SN SND SEE BEE SN O SEE O SEE O SEE O Aam O Sas Sme Sam

8t-0)

WODTD AWNHY §() =eeEEssss—————m \ (O TONH DL ONIATINIONT SSUD0Yd HHVMILIOS

"sjuowdainbax jo
19S PIIRIS [[OM B IIIM SOOUDWIWOD
1100 u31SOp Y1 1Y) dINSUL P[NOM

SIY L ‘SisAjeue sjuowdainboa
J1EM)JOS 1M Suumgoq
SONIATIOE 10J 9]qisuodsas

2q AJuo pnoys 101oe1u0)
uowdoaad(9feas [N YL

-2oudpuddopul

Sy urejureut 01 ‘3unoeNUOINS
pue uonnadwos yuduidodasg
9JedS [N, oY1 woj papnjoaid

3Q pInoys ‘1010enu0d e Sl

Ay J1 ‘adowdusy siudwdnnhay oy,

HOJJ
1uowdo[oAd(g 9189S [IM:] Y1 wodj uonuydp sjudwalinbai o1dnodop Ajenioenuo)) .

ONNFIANIONT T4VMLAOS ¥0d ¥3INTD

60
INODTD AV MY S/ S st s s S S ADOTONHDAL ONIHFUNIONT SS100dd FAVMLAO0S

‘1n220 0y 1oedwi snow1as yim sagueyd 1oy santuniioddo o1y 20NPoL IOAOMOY ‘soop 1] ‘pousad
uonENIos oyl Suunp sodueyd s1udWLINDII JO Anpiqissod oy 91Ul J0U SO0P yoeoidde siy |,

Juem A[[E91 OMm JBUM MOUY [[IM SIOPPIQ pue ZulAng 218 am JeYM MOUY JoNOq (M oM ‘0s uop uj

(MI1ADY] UDWIINDIY WIdISAS +)
QS @ 110Jj5] Suudsuiduyg SIUOWIIINbOY

piemy 1oenuo)) uawdo[oad 21eds 1IN .AII d:d
ALI'TVNO

P
-a3eyoed uone)ot|os o Jo ued e SSS Y1 Njew pue UoNEIdNoS d) 01 1oud (SSS)
uoneoy10adg Juowdog/WIsAS paaoidde ue iim outposegy feuonodun,g e ysijqeisy @

ONRIFINIONT FAVMLAOS 4O H1INT)

|
ov-D

WOOI) AWAY §() wessessaset——], O() JONHDAL ONIYTINIONT §$S400dd 3d4vMI140S

rl
2
SIUWUNIO(]
ugdiso(
. uoneoy10adg
Juoudag
/ WIISAQ
L - sjuawINnbay

uoioeIdU] 29
d0e}IoU] J9S[)

ON N\ /" ~ STA

o O

"uoneuLIojul
gunso) waisAs yim 19419301 ‘SSS 3] U UOIIDRIDIUL PUE 3DTJIOJUI JISN Y] JUIWUNIOT « ©

S

ONIITINIONT FYVMLAOS ¥O:4 YAUINHD

1)
WOIT) AWV SN e r————————————m———t |, ()" JONH DAL ONTAFINION' SSHDOUL FUVMILIOS

3unsoy enode

ay1 uuoy1ad pue sjuounoop desedas ut sosed pue ue(d 1501 sjuowdInbo wWoIsAs oyl
Aj10ads prnoys gy oy ‘Afjeuonippy uondds sty Ul e oul Aq poyroads oq pnoys
Aydosoqiyd 1591 woisks [eroudd pue 03e10A02 JUdWAIINDII O5BD 1S9, "ddurInsse
Angenb 10j suorsiaold yim sjeop SSS A1 JO () UONIDDS e POIOU 9¢ pnoys 1|

> uoneay10ddg
Juowdos
/ WIsAS

UOTICULIOJU
Funsol WoIsAS I 19119801 “§SS AU} UL UOIIIRIDUL PUE DIRLIIIULIIST YT JUINI0(]

ONIRIAANIONT 2AVALAOS HO HAINLD

[I I W N I I = N N N N B BN B B B N =

m— ———

B

[4’aY
WO AWYY §(] —————————————)\ {3() TONH 2L ONTHHEINIONT SSHOOU AV MILOS

4 N -
Q 100u13uyg —
, syuowoninboy DOAVAIL
éa ™\ s N
1010e0U0))
1udwdooas(- > SV
o[ed§ [Ind
\) 9 p

"S19)1eW PIIE[dI SjuouwdInbas je 10j 1019e1u0d JUodo[daAdp J[eds W
-[[N] 9] pue I9Sn 911 UIIM]IQ uondeIdul pue diysuone[os oY) 10j dININIS OPIAOL] |

ONIEINIONT TTHVM L LIOS HO:1 H1ENHD

WODID AWYYV SN lllllll-ll.lllllllllllllll-lll ADOTONHIAL ONIYIANIONT $S1D0dd 43VMLIOS
"SMOIADI
[eunioj s, wajsAs oy ut juedionted dande ue dq pinoys 10dojoad(1equio)) aY |,

a N\ - ~
1ouIduy -
X S sjuowoanboy DOdViL
_ . _)

SMOIIADY [BWIO,]

r ~ o J
101OE1IU0D)
yuowidopad(~a - DNV

91ed3S 1IN

_ y . y

‘sIONEW PIIEAI SIUoWINDII [[B 10 101081JU0d Juddo[dAIp O[eds
-[{N] oY1 puE 2SN DY} UIIM)IQ UOTORIDUI pUt diysuoneor oY) 10J AINONAS IPIACL] « O

ONIEHANIONT FAVALLIOS 401 YALNIO

yy-O
WO AWHY S st ————esestmnesmm 4,) TONT L ONDRETINION SSHIOHG HUVML10S

"SjudWIOSURIIR [RULIO] J9pUN ‘OIS S, 10)0B1IU0D JY) Ik Buluie) pue
Junsoy wasAs ut Sunedionied woly 10sn pud WDISAS d) dpn|d3:d 10U S0P SIY],

wpr Y ()
10m3usg
AAL sjuowaIInboy O0dVL
1010e1U0D)
wdwdooadQg e} e AV
9Ieds [In]
/ .

*SIoNEUW PIIE[OI SJUdWIINDII [[e 10J 1015e11u0D JUdWdOodAIp 21LIS
-[[NJ dY) pUE JO$N JY) UIIMIIQ UONILIdJuL pue diysuone|dr oy 10J INONNS IPIAOL] e

ONEIUNIONT AVALOS HO:4 HAINTD

[X X2 J

-0
WOIHE) AWYYV SN ————————————————— |,)" JONH 3L ONIYHTINIDN $$HO0Ud FAVMILAOS

m UONBZILIOLI{ ‘UOTIEPI[BA ‘UOnEOY100dS SIuoWIIINDIY

198N,
SUOISIOA POP[9tL]
Wolj YOoeqpav;
$IUDWAINDIY SIWAIINDY SIUDWAINbIY
(H) I UOISIOA ()11 E.:m._o> ()1 :9@0\/ Joourgu
. . . syuoWoIINboY
Juowdopoad(g
I] UOISIOA
wdooad(
| UOISIOA 10do[oAd(] o1eds [IN:]

TouuRW AIRUOHINJOAD ‘[RIUDUIDIOUT UR Ul SWOISAS dO[oAdp O UE[] » ©

ONIATINIOND 34VMALIOS 304 3INHD

9p-0 ,
— ADOTONIL L ONREEINIONT $SAD0Ud SUVMILAOS

WO AWAV SO

JoUURW AJEUONN]OAD [RJUDWIDUL U Ul sWOISAs dO[oAdp Oy uRld -« [0)

‘$19)1RW POIE[I SJUBWdLNDII ([10 J010e1U00 Juddo]oAdp JJeds

-1INJ 91 pue IISn dY) UM uondeIdui pue diysuoneyal oY) 10J 2IN1ONAS OPIAOL] o (G
"UONRWLIOJUL
Funso) WSS Yim 19139301 ‘§SS O Ul UONDBIIUI PUE DILJIDIUL IOSN U UIWNI0(] » ($)

-o3exoed uoneyorjos sy jo 1ed e $SS Y1 9EW pue UOLENDIOS J) 0] 1ouid (SSS)

uonesy159dg udwdog/walsAg pasordde ue iim duljoseg] jeuondun,f e {ysyqrisy . €]
H0JJH
Juowdo[oaa(q 91e9S [IN.] O} Wo1j uoniuydp S1wdwoNnbol 9]dnodop Aj[EmoeHuo) . (C

-uo pue soseyd 199foxd A[1ed oy woij sonbruydoy FurdduIduy
sjuawaninboy soridde yorym 110j5o Jutoouidugg siuowdnnbay v ojeudisoq e 0

N) n MO s s at s s I I EHIIEHE

‘suonisinboy JO d8ury]
IPIM V OL A1ddy ol poloie], og ued oI ‘SAZANBNG UONINPIY YSIY XIS SPUILHUOIIY 1]

qudwodeuey d3uey) puy uoniuyd(siuowannboyy 10,] sonbuyd],
Bwiziseydws ‘3ur1ourduz] SIUdWAINDIY $ISSING [9PON uonisinboy 74SD INODD UL

ONIYAINIONT 8VMNLAOS YO:A dAINTO

POSITION PAPER 042591

Requirements Process Analysis [proposed]

Luke Campbell
NATC SY30
bldg 2035
Patuxent River, MD 20670
(301) 862-7601
lcampbell@paxrv-nes.navy.mil

Abstract:

Due to the complexity of today’s system developments, coupled with the
conditions for greate: desire of accuracy, accountability, and smaller
development times, proper and accurate capture of requirements for a system’s
design is becoming a necessary element to enable these conditions. Capture of
requirements, which is currently largely unmechanized, can be enhanced with a
method not unlike the Software Engineering Institute (SEI) developed Software
Process Assessment (SPA).

Discussion:

Properly defining and understanding requirements is perhaps one of the
single largest areas for lowering program development costs and timeframes in
todays world. The earlier in the development cycle the requirements can be
properly identified, the lower can be the final cost of the system, and the
shorter its development time to market. Additionally, its testing can be more
complete and efficient. Moreover, capturing the requirements with a
systematic engineering method can lead to a robust development which can
better survive the indignities of requirements change or creep later in the
life of the product. These changes are due note only to technology and
organizational capability, but also to elements completely outside these areas
i.e., political.

This document is not intended to be the final thoughts on the subject of
elicitation, and certainly, much work remains to be done. However, at the
least, it is intended to provoke thought in the concept of a requirements
process analysis.

Figure 1 outlines typical communities which are involved in the
requirements formulation, capture, and use. Tuis figure should be thought of
as tool for visualization of discussions of requirements methods, elicitation,
tools, and communications, and not an absolute process for requirements.

Allunwwon
sJojuawndo@ sjuawalinbay

\ Q $9A1}081q0 |aAa| dO)
g E._otm_a Q Butpuny
sjuawnoop /

Ehotm_a s|ie2 suoyd
sbuijasw
/ wocez_.c. Q O
m\

urjeyJew

@
& " osuods.
_

Aylunwwo) iozeladQ

Ajlunwwo) ladojana(g

"SaNIUNWWOD 9sayl} JO Sjulel}suod ayl jaaw 0}
sjuawalinbai Buijnsip pue buiuijap jJo asodind 8y} 104 PAAJOAUI SAIIUNWWOD

Buowe saijliedsip ay} sabpliq pue saljijuapt - CO_“_.NH._O__W

There are four communities shown in figure 1. To briefly explain each:

- SPONSOR COMMUNITY: In general, one has a sponsor community which supplles
funds for work to be performed. While this group is generally not responsible
for detailed requirements, they generally set overall goals, and may often
influence the design because of their hierarchy and position in industry or
government.

- REQUIREMENTS DOCUMENTORS COMMUNITY: A second group is one which actually
captures requirements. Namazd here the requirements documentors community.
These peoples have the task of translating the high level requirements from
the sponsor group (and these requirements may be more thoughts than detailed
designs) into working specifications for use by developers and users.

- DEVELOPER COMMUNITY: The developer community actually takes the
specifications and translates those into products, using the funding provided
by the sponsor community. The developers have previously met with the
requirements documentors through articles, trade shows, and past program
developments, while they use these same marketing techniques and their
industrial base to modulate and inform the sponsor community.

- OPERATOR COMMUNITY: After the developers are finished and deliver their
products, these products come under test and use by an operator community.
The operator community should affect the requirements by discussions with the
requirements documentors and developer communities (since they are the true
customers) by ratings on the products.

In general, these communities operate autonomously and in concert with
each other (with various degrees of success), while many products are being
developed. As a result, due to feedback from the past, coupled with a
considerable amount on-going work, and influence from higher sources, we have
an amply complicated scenario for any product development.

The thought is that the process by which requirements c:cur should be
analyzed, understond, and captured, with much the same principle that Watts
Humphries of the SEI has developed the Software Process Assessment (SPA). To
this end, a Requirements Process Analysis (RPA) is proposed.

One of the major contributions of the SEI SPA work is that it does not
force one to adopt a particular process (perish the thought of more than one
company or group using the SAME process), rather, it requires that one THINK
about the process which is used, and refine this process to continuously

improve through metrics. As such, the SPA can be used as a set of thought
provoking questions.

It {s from the four communities of figure 1 that the requirements process
analysis is based and developed.

Requirements Process Description:

In keeping with the methodology similar to that of the SEI SPA, and to

reuse as much accomplished work as possible, five levels of Requirements
Process Maturity (RPM) are proposed. Given below are thoughts considering the
mecanings of the five levels, and a very first cut at possible questions which
could be used to gulde organizations from one level to the next.

Level 1; Initial. The initial organization environment has ill-defined
procedures and controls. While positive response to some of the
organizational questions are likely, the organization does not consistently
identify or utilize a requirements process, nor does it use modern tools and
technology for capture of the requirements.

Level 2: Repeatable. At maturity level 2, the organization has identified
the communities which affect requirements for its products, and formally
accepts that these ldentified communities can affect the requirements.

2.1 Has a comprehensive investigation been performed to identify all
internal and external communities which affect product requirements?

2.2 Has a formally accepted document been developed that indicates each
identifiea community?

2.3 Has a formally accepted document been developed that itemizes how each
identified community can affect ths requirements?

2.4 Have timeframes for requirements development among the communities
been formally identified and documented?

2.5 Have all people involved in requirements determination been appraised
of their position and actions in the process?

2.6 Are metrics in use to characterize the quantity of program
requirements?

2.7 Are metrics in use to characterize the changes to requirements?

Level 3: Defined. At maturity level 3, the organization has identified
pathways among the communities and utilizes these pathways with formal methods
for requirements identification and change. Automated tools are being
investigated for use. Also at level 3, a requirements engineering process
group is established and staffed, which focuses on requirements process
including volatility, elicitation, and tools, and the adequacy with which
the process is implemented.

3.1 Have formal communications paths been established among all the
identified communities?

3.2 Is there a mechanism for each identified community to propose and
modify requirements?

3.3 Are automated tools used in the process of collecting requirements?

3.4 Are the communications paths among the communities sufficiently timely
to modify requirements within phases of the development to positively affect
the product?

3.5 Has a requirements engineering process group (REPG) been established
to focus on the requirements process?

3.6 Have requirements volatility causes been formally identified?

3.7 Do established metrics regarding requirements quantities help
formulate future program costs?

3.8 Do established metrics regarding requirements changes help formulate

future program costs?

Level &4: Managed. At maturity level 4, the organization assures thrat
requirements are mandated only by formally established methods. Requirements
domains have been established which can be referenced by calling elements.
Automated tools are used to capture and modify requirements.

4.1 Do all steps of the requirements process use automated tools?

4.2 Can the automated tools interact to share all the requirements data
base?

4.3 Can all parts of the end product be completely and automatically
traced to original requirements?

4.4 Can all requirements be traced to appropriate parts of the end

product?
4.5 Are deviations from program costs estimated by requirements metrics

formally identified?

4.6 Are deviations from program schedules estimated by requirements
metrics formally identified?

4.7 Have products from requirements domains been identified?

4.8 Are there attempts to utilize products from requirements domains in
various products?

level 5; Optimized. At maturity level 5, the organization has not only
achieved a high degree of control over its process, it also has a major focus
on improving and optimizing its operation. This includes more sophisticated
analyses of the error and cost data gathered during the process as well as the
introduction of comprehensive requirements volatility analysis and prevention
studies. Domain models continue to be used heavily, and are updated as a
matter of course.

5.1 1Is the sponsor community inhibited from influencing requirements
except through the use of documented methods?

5.2 1Is the requirements documentor community inhi-ited from influencing
requirements except through the use of documented methods?

5.3 1Is the developer community inhibited from influencing requirements
except through the use of documented methods?

5.4 1Is the operator community inhibited from influencing requirements
except through the use of documented methods?

5.5 Are products from the requirements domain used in future products?

Unstable Requirements
A Position Paper

Patrick R.H. Place
Software Engineering Institute
(Spounsored by the U.S. Department of Defense)
Carnegie Mellon University
Pittsburgh, PA 15213

March 8, 1991

Abstract
The problems of developing systems when the requirements for those systems arz
unstable is discussed. Some reasons for instabilitv in requirements are presented and
the impact of this instability is discussed. Some suggestions are made for handling
unstable requirements. These suggestions include the adoption of practices under a
traditional development process as well as some discussion of the advantage of alter-
native development processes.

1 Introduction

This position paper discusses development issues that arise from instability in system re-
quirements. The suggested approaches for reducing the impact of requirements instability
are primarilyv intended for software development. However. the approaches should be suffi-
ciently general to permit their use for systems as well as software development.

In order to discuss requirements instability, it is useful to assign roles to key participants
In requirements engineering.

Requirer: Th= individual or group describing a system that is to be built. Examples are
government agencies or private companies acting on behalf of some agency. For the
purpose of this document users of the system that have some input into the description.
for example users who provide feedback to the procuring agency, will also be considered
to be requirers.

Requirements: The document (or series of documents) developed by the requirer that
describe the svstem to be built.

Specifier: The individual or group who read the requirements and develop a more detailed
description (a specification) of the svstem. An example is a group within a company
that has won the contract who perform high-level analysis and design of the svstem.

1

Developer: The individual or group who take a specification of a system and develop the
design and implementation. Although such a responsibility is typically taken by more
than one group: A design group then, a potentially distinct, implementation group. for
tne nurpose of tnis paper these groups have similar problems witn respect to unstable
requirements.

The terms defined will be used throughout the rest of this document. It is recognized
that in themselves, the terms may cause some controversy, and we would not object to other
terms being used. However, we do consider that they are appropriate labels for the roles we
wish to discuss throughout the paper.

2 Why are Requirements Unstable?

Requirements are unstable for a number of reasons and in this section we will attempt to
list those reasons.

2.1 Change in the environment

Svstems often have a long life span, where long is a relative term, in some applicaticp areas.
five years may be a long life span, and in other arcas thirty years may be considered normal.
Over the cause of the life of a system, the environment in which the system has to operate
may change. In such a case, the system must be adapted to the change in environment.
Although the overall intent of system operation will be unchanged the requirements may
need to be changed to describe the environmental change. For example, a tracking system
may need to be extended with the characteristics of a new device that also needs to be
tracked.

2.2 Requirer desires new features

Throughout the hife of a system. particularly once a system is in operation, requirers will
see opportunity for the system to perform new tasks. These new opportunities mav arise
from changes in the environment as discussed above, or from a deeper understanding of the
probiem the system is addressing. It is often the case that, as a system performs its assigned
function. requirers will see extensions of the system that can make their own tasks simpler.
In either -ase. the requirer will desire that the new features be added to the system. thus
necessitating a change in the requirements.

2.3 Requirer insufficiently understands needs

There are times when the requirer will make mistakes in the descri; tion of the svstem due to
a la 'k of understanding of the needs that the system is to satisfv. This mayv lead to functions
being described that uppear reasonable. but do not satisfv the needs of the requirer. If a
developer do=s not understand the ~ontext in which the system 1s to perform. the developer
may also fail to notice that the needs are not being satisfied. Indeed. the developer is more

§%]

likelyv to construct the system required rather than the system needed since the developer
should have some confidence in the competence of the requirer. From the best case (the
specifier detects the error) to the worst case (the error is detected when the system is in
operation), the error will need to be corrected for the system to perform useful functions.
Such a correction will lead to a change in tune requirements and, of course, subsequent
redevelopment.

2.4 Removal of ambiguities and inconsistencies from require-
ments

As the systems being built become more and more complex, with increasing function. so
will the requirements describing the systems become more and more complex. The requirer
will describe the system in terms of natural language descriptions of the functions. of the
components, and of other features of the desired system. The requirer may also use mathe-
matics. diagrams. and pictures to describe tne system. Unfortunately. natural language text
1s often subject to interpretation and the specifier and developer will read a meaning in a
text other than the meaning intended to be written by the requirer. Also. as the require-
ments documents become more and more complex, the possibility of inconsistencies in the
description of the system increases. For significant systems it is highly unlikely that any one
person will have a vision of the entire system, or will write the requirements for the system.
again increasing the possibility of inconsistencies in the requirements. Ambiguities and in-
consistencies in the requirements will lead to a system that does not satisfy the needs of the
requirer. The solution is to alter the requirements for subsequent system redevelopment.

2.5 Experimentation shows a requirement is undesirable

At the early stages of the development process, the specifier will perform experiments in
order to gain more understanding of the system to be built. These experiments may be in
the form of buiiding prototvpes or mathematical models of the system. Each experiment
will provide the specifier more information about the operation of the system and it may be
the case that a specifier determines that a requirem=nt is either very costly to implement.
or is possibly in error. or is unsatisfiable. In each case. the specifier will need to discuss the
requirements with the requirer and present appropriate eviden e to support the case that
the requirement is undesirable. Some requirements will be changed based on this eviden e.

3 Why are Unstable Requirements a Problem?

As discussed in the previous section. there are many reasons why the requirements mav
change. Further, the change in the requirements may occur at any time in the litetime of
the system. from the point at which the contra -t is first given to any time until the svstem
is decommissioned. In the early life of a system. changes in the requirements may not have
much impact. For example. if no development has been performed. then there are no designs
or implementations to be altered in order to satisfy the new requirements. Converselv, if
the system has been fully implemented and deploved. then a change in the requirements

3

that is to be installed in all existing systems. for example, a new requirement in response
to a change in the environment, will require much effort. New development will have to
take place and effort involved in ensuring that the new version of the system is instalied
appropriately.

3.1 Requirements Change Before Development

As touched upon. a change in requirements before development has begun has less impact
than the same change at a later stage. However, there is still an impact on the development
of the system. Whether the change is caused by the requirer altering the requirements for
the reasons given previously or because of evidence presented by the specifier. the result 1s
the same. that the requirements will be altered.

The new description will have to be examined for any ambiguities or inconsistencies
introduced by the change (even when the change is to clear up ambiguities or inconsistencies).
Furtner experiments will need to be performed to ensure that the new requirements are
desiranle, that is, that they satisfy the needs of the requirer and are implementable. Further.
new test scenarios may need to be developed in order to determine that a system will satisfyv
the requirements.

3.2 Requirements Change During Development

If. during the development of the system. the requirements for the system change. then a
considerable amount more of effort must be expended in order to build a system to satisfy
the needs of the requirer. The work performed in the previous section must be performed
since it ensures that the new requirements more accurately describe the svstem.

Once the new requirements have been accepted an analysis of the changes must be per-
formed in order to determine the components of the system affected by the change. Then.
each of these components must be either modified or redeveloped in order to satisfy the new
requirements. In the worst case, the entire system may need a redesign and reimplementa-
tion.

3.3 Requirements Change After Development

If the requirements are changed after the svstem has been developed. than all the work of
the preceding two sections will need to be performed. The impact of the changes will be the
same or greater than that described when the change occurs during development. Since the
systemn has been completed, there is now no chance that affected components may not have
been fully developed.

Further. if the decision is made to install the updated system in place of the “urrently de-
ploved system. then effort will be spent updating existing svstems and. potentially. partially
retraining users in the operation of the new svstem.

3.4 Result of a Change in Requirements

As shown in the preceding subsections. any change in requirements causes more work to
be performed in the development or operation of the system. Such work is not performed
without cost. both in terms of delay to the system satisfving operational need und econom-
ically because of the additional effort needed to construct a system satisfying the needs of
the requirer.

4 What can be Done?

In tnis section. we will outline suggestions that should reduce the cost of a change in require-
ments or make changes unnecessary. These suggestions are made without comment and are
imtended to stimulate discussion.

4.1 Change the Existing Development Process

Current standard practice for the development of a system is based or a waterfall model
of development. with little interaction between the requirers and the developers, other than
through the requirements. The process leads to long periods between deliveries of the svstem.
If we accept that the requirer is. for good reason. continually adapting the requirements to a
changing environment. then it can be shown that the system will, as time progresses. satisfy
fewer and fewer of the requirer’s needs. An incremental development and delivery process
will get reduce the time between the requirer describing the system and having a svstem to
experiment with and determine how it meets the needs of the requirer. An early delivery
will not be expected to satisfy all of the needs. but it can be determined how well the svstem
performs with respect to the needs it is claimed to satisfy. The feedback from the requirer
to the developer based on enhancements seer by the requirer from using the incrementally
delivered system and from the performance of the system will permit the developers to
improve the satisfaction level of the system while adding new features the requirers desire.

Incremental development and delivery will also reduce the effects of contractors delivering
an undesirable system (due to misunderstanding the requirements) since the requirer will be
able to check euriy rather than laie that the system performs as desired.

4.2 Use of Formal Methods

One of the purposes of the requiremnents document is to communicate the ideas of the re-
quirer to the specifier and developers. As has been discussed. current practice leads to
requirements that are ambiguous and inzonsistent. Mathematical methods may be used to
describe the svstem and the descriptions may be analyzed. Ambiguities will be removed
by using a notation which does not permit ambiguous expression. unless done so explic-
itly. Inconsistencies may be detected using mathematical analvsis and may be removed
subsequently. Improvement of the requirements will lead to fewer misunderstandings by the
developers and therefore to a higher probability that the delivered svstem will satisfv the
needs of the requirer.

4.3 Requirements Tracing Through Development

If current practice is improved to provide a capability of tracing the development path
from requirements to implementation components then. when the requirements change. the
components affected by the change will be readily identifiable. The impact of the chanze
in requirements will be predictable as will the cost in terms of delay to development and
additional effort required to reimplement tne new requirements.

Conversely. if a component of a delivered system is determined not to satisfv the needs of
the requirer, the development path mav be traced bacx to the appropriate requirements that
the component is intended to satisfy. The developer and the specifier may then discuss the
ineaning of the requirements and predict the effort required to reimplement the component
or to change the requirement.

4.4 Prototyping Requirements

One of the hardest problems facing tne specifier is knowing whether or not the specification
reallv satisfies tne needs of the requirer. The ability to prototype syvstems and demonstrate
them to the requirer will lead to the requirer being able to validate the specification without
necessarily needing to understand the details of the specification itself. The requirer will be
aole to generate test scenarios and determine how the system performs with respect to the
expectations of the requirer.

4.5 A Process for Changing Requirements

At present. when a requirement is changed. the requirer may have little conception of the
impact on the system of the change. Some form of change management procedures should
be implemented which permit all parties to determine the impact and desirability of the
change. Further. just as we have a system development process. and a process for developing
the requirements. So the process for changing the requirements should be investigated so
that system development may proceed even when the requirements are unstable. \With the

developers having confidence that the system they are delivering will satisfy some (or all) of
the needs of the requirer.

6

POSITION PAPER

Requirements Engineering Processes and Products?

Kyo C. Kang

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
NET: kck@sei.cmu.edu

Application of the waterfall process in the development of complex, large-scale, multi-function systems
has created problems as it forces acquisition managers and developers to write highly-detailed
requirements for systems whose boundaries are extremely fluid, therefore removing some flexibility in
adjusting to evolving circumstances [CONG89]. This "process misfit™ has resulted:

¢ long requirements development time

» validation difficulty
» considerable requirements volatility and requirements traceability problems

* high development and maintenance costs, and brittle software resulting from continuous
modifications

* ynmanageable documentation

An evolutionary acquisition strategy [JNTL87] has been proposed to address these problems, by
supporting incremental evolutionary systems development. With this mode! each acquisition of a new
system involves:

* outlining of the final desired capability of the system and identification of the core capability

* development of detailed specifications for the core/baseline capability

» development of an architectural framework which supports incremental and adaptive
development
» development and aeployment of the core capability
Each increment to the core capability is treated as a separate acquisition with this approach.

This process model, however, appears 1o present new technical difficulties. For example, it may be
difficult to define an architectura! framework that will a""ow incremental additions, minimizing modifications
to the pre-developed companents. Also, it is unclear if the current software techniques can support this
approach adequately. There was an earlier attempt [CECO89] by the Army CECOM to address some of
these issues. Therefore, | propcse that this working group make an in-depth invesugation of this
approach and identity (potential) problem areas, building upon the results (Appendix) trom the CECOM's
workshop. Some of specific questions this process working group might address are:

‘Sponscred by the U.S Depantment of Defense

« Has anyone applied this model? What were your experiences?
« Would this model be applicable in your project environment? What problems do you see?

« Could this model be applied to most (all) of the current and future systems development? Wil
it solve most of the process problems? Are there any applications or project situations that
may require a different process model?

« How do we verify overall system properties (e.g., security, performance, safety, etc.) without
a compiete system?

« Will the current software engineering methods and tools be applicable? How should
DoD2167A be adapted? How about DIDs?

¢ What new software engineering methods, tools and techniques do we need? Do you see
any new problems (e.g., configuration management issues, validation ditficulty,
documentation standards) that might be resulted from this approach?

« How should this model be adapted to a specific project? What are the parameters (e.g., risk
assessment, domain maturity, resource and time constraints) that have to be considered to
develop a project-specific development strategy? How do we use these parameters to
develop a project-specific process model?

+ How does reuse fit?

« What other process models (e.g., spiral model, transformational model) have you applied?
What were your experiences? Any problems?

o Are there any unique problems you have that any of the process models discussed cannot
address?

References

[CEC089) Proceedings of the Requirements Engineering and Rapid Prototyping Workshop, Center for
Software Engineenng, U S. Army Communications-Electronics Command, November 14-16, 1989

[CONG89] "BUGS IN THE PROGRAM: Problems in Federal Government Computer Software
Development and Regulation,” Staff Study by the Subcommittee on Investigation and Oversight
transmitted to thre Committee on Science, Space, and Technology, U.S. House of Representatives,
September 1989

[JNTL87] "EVCLUTIONARY ACQUISITION: An Alternative Strategy for Acquiring Command and Control
(C2) Systems,” The De’erse Systems Management College, Fort Belvoir, VA, March 1987

The key process-related problems identified by the Requirements Engineering Process Working Group

Appendix
A Summary of the Results from the CECOM Workshop

{(at the CECOM's workshop) and their recommendations for those problems are summarized below.

Problems:

1.

N O s W

Uncertainty and change are difficult 10 cope with.

. Validation of requirements is critical to project success.

. Multiple stakeholders make it difficult to reach closure.

- We do not know how to track progress in requirements development.

. Difierent processes are needed for different problems.

. System/Software Requirements Analysis/Design phase differentiations are unciear.

. The existing inventory of systems needs to be retrofitted to new requirements engineering

technoiogy.

Recommendations for the problems 1 through 4:

1.
2.

~N OO O AW

11.

Freeze requirements in small incremental builds.

Develop more testbeds like AIN (?) to validate interoperability earlier in the development
process.

. Deveiop/Transition new techniques to isolate acceptable requirements partitions.

Develop/Transition new techniques to accommodate change in requirements and designs.

. Develop and refine practical formal requirements techniques.
- Define a multi-stakeholder requirements process.
- Develop thorough understanding ot requirements "normalization.” Somewhat analogous to

database normal.zation, this envisioned technique would enable two sets of requirements to
be shown to be equivalent.

. Define and understand requirements process models.
- Define and understand models of requirements progress.

. Perform experiments to determine what conditions make evolutionary acquisition and

prototyping practical.

Cevelop toolz/techniques to capture merits/tradeoffs among requirements.

The Integrated Requirements Process
A Position Paper

William S. Gilmore
Software Engineering Institute
(Sponsored by the U.S. Department of Defense)
Camegic Mellon University
Pittsburgh, PA 15213

March 4, 1991

1 Introduction

In the search for the more "ideal” requirements process, it can be easy to lose sight of the
real problem: to have a more ideal system life cycle process. We might define "successful”
system life cycle process to mean maximizing the benefit / cost ratio over the lifetime of the
system, with reasonable predictability and control. Having a successful requirements sub-
process is essential to system life cycle success. However, because the requirements
process is an essential ingredient does not also mean that solving the requirements process
problem is a problem that can be worked on in isolation of the other ingredients.

A motivating question {or this paper is "Can the best requirements process be conceived by
focussing on the requirements process alone, or is the best requirements process conceived
as part of a Whole System Life Cycle Process (WSLCP) model. More simply, we ask two
questions in this paper:

Q-1: Can the requirernents process problem be isolated?

Q-2: What does an integrated requirements process look like?

To the first question I claim "no”. Justification follows. As a result, the second question is
important. Some characteristics of an integrated requirements process are described to try
to motivate thinking and discussion as to what the best integrated requirements process
really is. "Requirements level decision curves” are proposed as an analytic tool to help
characterize the requirements evolution process, and in so doing can help in decision
making duning that evolution.

2 Isolating the Requirements Process Problem

Why is the requirements process not an isolated problem? Unless one can conceive al] the
requirements up front and no change or flexibility will ever be needed, then there will be a
Iwo way dependence between requirements evolution and "other” parts of the WSLCP,
including architecture, project management, and the system acquisition process. It is rare
and unlikely that all requirements, including all the lowest level details, can be completely
specified before any design, building, and planning occur. Architecture, design, and
requirements will need to interface. For example, requirements specify what to build, but
efforts to design and resolve architecture raise issues of cost, benefit, and risk for what can
be built. Furthermore, since architecture decisions cause constraints in what future designs
and design changes are possible, in essence they also constrain future requirements
evolution. Hence, architecture decisions depend on the requirements flexibility one is
willing to live with.

Furthermore, requirements and project management will need to interact. For example, the
venture of building and developing depends on what is wanted to be built; hence, one
derives what rcsources must be allocated based upon the requirements. On the other hand,

the cost to allocate such resources may become a factor in deciding upon some
requirements when weighed against the relative benefit of alternative requirements.

In addition, the acquisition and requirements processes will need to interface. Contracts are
the basis of work plans; such work plans should be matched to the state of requirements,
helping them to evolve or seeking their translation into real systems. For example, if
requirements are not worked out well enough when a full-scale development contract is
established, there may easily be cost and schedule problems associated with a long build
time. During such long builds, technology and requirements may become outdated, and
needed changes will become more difficult and expensive to accommodate. Appropriate
contract content and administration can support requirements evolution through demand for
evolution-supporting deliverables and through flexibility and good communication.

Therefore, each sub-process will have a dependency on information that arises as part of
the others; each will have need for information exchange and traceability with the others to
support decision-making, trade-off analyses, and planning.

3 Characterizing the Integrated Requirements Process

Observe that the argument against developing a requirements process model in isolation
from a WSLCP model depends upon being unable to be completely specify requirements in
advance of any designing, building, or planning. Although this is generally true, it is
paradoxical in that one wants to know as much about requirements as possible in advance
in order to proceed as efficiently and effectively as possible. Fortunately, pot all
requirements must be known in order to proceed.

In general, there is a shift over time in the main target level at which requirements decisions
occur, from understanding and defining requirements at a high level to emphasizing details
at lower levels. This shift corresponds with identifiable stages of progress in a WSLCP
evolution. The stages and their progression are: defining the system, defining the
architecture, then fielding the system. This progression is due to a fundamental
information dependency between the stages. Architecture that adequately supports
evolving requirements and design is needed before serious system building occurs.
However, defining system context and objectives and estimating the area and extent of
future changes motivate the architecture. Figure 1 qualitatively depicts this shift. For
discussion, these curves are named "requirements leve! decision curves”.

High

Level

Time

Figure 1. Requirements evolution can be characterized by requirements level
decision curves that show the shift over time in level of emphasis of
requirements definition.

Requirements level decision curves show the shift over time in level of emphasis of
requirements definidon. Such curves may be used to help analyze the requirements
process. Examples follow.

First, note that actual requirements level decision curves have thickness and oscillation, as
depicted in figure 2. What causes these effects? Thickness is due to the need to work on
high and low level details together. High level direction is needed to scope and direct
relevant low level investigaton, yet some understanding of low level capabilities and
feasibilities is needed to define the desired high level direction. Observe that most of the
thickness falls below the main target level for decision making (the solid smooth curve).
Oscillation indicates backtracking mainly due to the need to correct errors in earlier
decisions. After some trial time with a decision, one may find that something different is
wanted. Whenever development and implementation lag behind specification of
requirements, change of what is wanted is inevitable. Such changes arise during the
development, due to both seeing better ways to engineer the solution, better ways to apply
technology, and changing one's mind as to what is wanted after seeing what the real
emerging product is like.

Pt main tarqet level
High 7
/w—' backtracking
Level o associated effort
=R
Low

Time

Figure 2. In real life, requirements level decision curves show thickness and
oscillagon.

Clearly, the objective in the requirements process is to lower the main target level of
decision making as ¢xpediently as possible and minimize the oscillation due to
backtracking. Expediently in this case means as quickly as possible, but not quicker than is
reasonable based on corresponding progress in architecture and lower level design. Tigure
3 shows this emphasis.

High
try to
minimize

Level

Low

Time

Figure 3. The objective in the requirements process 1s to lower the main target
level of decision making as expediently as possible and minimize
backtracking.

Now what would be the meaning of a system evolution that displayed a huge oscillation, as
shown in figure 4?7 Such oscillation connotes multiple rebuilds. This would be extremely
expensive, indicative, for example, of much rebuilding occurring dunng PDSS (Post-
Deployment System Support). The surplus expense arises because of substantial
backtracking and excessive low level work done to support the wrong high level
objectives. If requirements definition is not well integrated and paced with the other parts
of process, e.g., architecture, project management, the acquisition process, then substantial
backtracking may result. For example, if project management fails to support adequate
staff development in application and technology domain knowledge or in leaming about
specific requirements wanted, preventable backtracking will result. Or if communication
between engineers and the customer is poor, engineers' discoveries of "wrong direction”
may go unused throughout the contract, but the product shortcomings may later be found
during use of the product. Or if a contract calls for full-scale development of a working
system when the requirements, user needs, and architecture are not yet worked out to a
sufficiently low level, delays and even rebuilding may result.

High

Leve!

Low

Time

Figure 4. Large oscillation in requirements level decision curves corresponds to
expensive backtracking and rebuilding.

This position paper asserts that the best requirements process is one that is integrated with
other parts of the WSLCP, and that the best way to model such a process is to model the
WSLCP and identify the requirements process within it. Requirements level decision
curves are suggested to help analyze these processes. One can analyze life cycle cost with
respect to requirements level decision curves. Furthermore, one can assess what are good
requirements tools, when they should be used, and how they coincidently support the
WSLCP by assessing one's position with respect to a requirements level decision curve
and asking what tool and analysis support can best help to make main target level
requirements decisions expediently and minimize future backtracking.

Tools and good process both can help a system evolution trace an optimum path for a
requirements level decision curve. One can never have zero oscillation in a requirements
level decision curve — this would correspond to "no mistakes" in requirements definition;
but one can try to proceed efficiently while minimizing backtracking. To do this, one not
only tries to catch mistakes as soon as possible, but also one tries to anticipate what is most
desirable, through modeling and analyses. Tools and good process each can help. Tools
can support "what-if" rather than "how did we fare" analyses. Requirements tools such as
rate monotonic scheduling analysis, user interface prototyping, cost / benefit modeling,
analysis for requirements analysis consistency and completeness all can be seen as helpful
in this regard. Process can support efficient and effective information flow, and exchange,
so that decisions are repeatedly made on the basis of the "best" information available.
CASE tools can support such process because they not only help engineers work through
problems, they also help teams communicate their intentions among each other.

In practice today, many managers opt not to purchase such tools. Considering
requirements level decision curves may add the perspective to help in doing the cost/
benefit analysis behind making the decision whether or not to purchase and use such tools.

4 Perspective on Tools and Process Support

In order to further analyze the integrated requirements process, one must consider what
activities are needed at various stages of system evolution — an evolution that follows some
descending requirements level decision curve. As figure 5 suggests, activities such as
prototyping, simulation, and cost modeling are used time and again, but not at all in the
same way. The purpose and nature of such activities is defined according to the stage of
evolution and major thrust of effort. The indicated changes in purpose and content suggest
how different tools may be needed.

Cross sections in time in figure S, shown as vertical "stage" rectangles, correspond to
"level” points on requirements level decision curves. The "thickness" in requirements level
decision curves is elaborated in figure 5, where explicit emphasis on "lower" level activities
1s shown. However, figure 5 also shows that activities have substantially different
emphasis and purpose depending upon the stage of evolution. For example, early in a
system's lifetime when one is epxloring what system is needed, prototyping and simulation
activities support high level requirements decisions by modeling system context and
objectves, and explonng technical details to the extent that they affect feasibility and cost.
At a later stage in the system's evolution when the emphasis may be on making major
architecture decisions, and so more specific requirements must be settled, prototyping and
simulation now focus on studying behavior and high level structure.

Stage-3
Stage-2
Stage-1 /‘§
// o
_—____/ //
/r—"
Concems: 4+ /___—/
Requirements: /
Context
/ /
Objectives
Specific Req's ——
Architecture
Design
Etal
{Operalions, —
Planning,
Evaluation, : : - bt
. -—\
oc) Explore what Settle on basic Evolve specific
system I8 needed architecture nq‘g & designs
/ ’ / v 7
Activities: L, 7, Time —>, ,
/ Activities have changing Purpose, Objective, Context: /
otyping ’ / ’ / . ’
Simulation model context & study behavior & study implementation
system objectives hgh I’owl structure apecifics — what & how
- / ; . / 4
Cost modeling relate high level benefits make iong-term analyze cost, benefit, & risk
Risk assessment to costs & risks beneft decisions of trade-off options
o v 7 s 7 ;) .
Planning identity long-term strategy Clarfy procass needs & improve process; update
Process monitoring 8 process factors condhtions, enhance plan plan t'o wrm,nl needs
PP) Lo os nee S [4

Figure 5. The changing thrust of various activities, depending upon stage of
emphasis and progress in a system evolution.

Though the stages of progress shown in figure 5 are sequential, the process exemplified by
activities markedly differs from a Waterfall Model sequence. The same activities ~
prototyping, simulation, modeling, planning, etc., — support each stage, but the role and
nature of these activities vary as the system matures. Any WSLCP model designed to
support a system's evolution will have include continuity and parallelism of activities.

An underlying assumption of this paper has been that if one can understand the progression
and the nature of the parallelism and interaction of the activities, one may have better

perspective to make decisions to support it. Requirements level decision curves may help
in this analysis.

Seven (Plus or Minus Two) Challenges for
Requirements Analysis Research

Colin Potts

MCC Software Technology Program

Fequirements are the wellspring of software development. As many authors have noted, errors made during
the requirements phase of a project tend not o be detected until the sysiem s delivered, by which time it 1s
very expensive o correct them. In spite of the cnticality of the requirements phase, it has been the target of
much less rescarch attention than the later stages of soltware design and implementation. What work has been
done in universitites and industrial rescarch laboratories has had hittle impact on pracuice. As a result,
requircments analysis is performed in much the same way ,n many organizations as it was twenty years ago.
And those organizations that arc innovalng by using structured and object-orienied methods are doing so
largely as a result of the writings of a4 small community of articulate and expericnced consultants.

I do not believe that this is an anomaly, that the soltwiare industry is so short-sighted that it cannot see
the value of research innovatons and apply them in practice. The simple truth is that the rescarch community
has offered little to pracucal people that they can use,

We will make breakthroughs in requirements analysis practice only by addressing a hard core of research
challenges. None of these are very exotic or unexpected. Indeed, their comparative mundaneness may have
contributed to our attention being directed elsewhere. Nevertheless, they have 1o be grappled with; ali seven
(plus or minus two) of them.

Requirements analysis is more than anything else a process of human communication, and the power of
computational and represcntational techniques should not blind us to this fact. Most of the challenges we face
involve bridging some communication gap or other. There are two techniques that can be used o bridge any
gap, conceptual or physical: choosc the narrowest gap possible, and build a good bridge. Research into
requirements analysis will benefit practiioners only (o the extent thatit succeeds in these simply stated tasks.

Challenge 1: Bridging the gap from concept to essential model

Exisung structurcd methods have populanized the notion of the “essential model,” a model of the
envisaged system stnpped of assumptions about imperfections in the environment or implementation.
Although the term was introduced by McMenamin and Palrmer (1984) in their book on Structured Analysis,
an essential model does not have 1o be constructed from a functional viewpoint. One could equally well talk
of an object-oncnied essential model, or an enuty-relationship essenual model. Whatever paradigm is
adopted, the first challenge 1s how to build such a model in the first place.

Building an essential model for a large system is a multi-stage process. In practice, system requirements
are usually put on paper i the form of a textual requirements document, and this 1s regarded as the origin of
the model. In reality, the ongin resides not on paper but inside a number of people’s heads, and the problem
an analyst faces, whether the intermediate medium of a requirements document is used or not, is 10 get at those
concepts and check that what is being explicily modeled is consistent with them.

Challenge 1a: Bridging the gap from concept to document

Most meihods assume some forin of requirements document. But where docs that come from? How are
requirements formulated 1n the first place? There are really two separate issues, here: elicitation strategy and
document style and organizauon.

An clicitation strategy is a set 0. guidehnes for identilying the correct sources of requirements (as well
as background information), cliciting requircments from them, and resolving conflicts among them. Of all the
aspects of requirements analysis, this is the most communicaiion-rich. As a result, most of the techniques that
prove uscful do not stem from computer scicnee research, but from organizatonal theory, group interaction
research, cthnological interviewing echmques, and most of ald from scat-of-the-pants experience. A good
example of a prescriptive but flexible sct of gwidelines that is surprisiagiy litde used 1n practcs is the
viewpoint identification phase of the CORE mcthod (Mullery, 1985). This can be used to identify key sysiem
viewpoints and representatives for cach viewpoint. CORE has some recommendations for conflict resolution
when requirements from different representauves conflict, but ulumately hitle general advice can be given.

Anothcr specialized elicitaunn technique that has been used for problem formulation in various der ‘gn
disciplines is the issue-based approach of Horst Rittel. This has been adopted for at least one medium-siz-.
development project (Yakemovic and Conklin, 1990) for keeping track of requirements interpretations and
early design decisions.

Document style and organization, however, is a potentially more fertile area of resecarch. Complex
organization and cross-referencing schemes that had been infeasible arc now achicvable with current
hypertext technotogy. Hypertext has been used for cngineering documentation (DeLisle and Schwartz, 1986),
and requirements information is an idcal application. Now that the enabling technology is available, the
research 1ssue is how to organize hypertextual information for specific software engincering applications.
What is needed is a set of organizing principlcs that are as appropriate o the cnaoling technology and the
systems of the 1990's as the SCR document organization guidelines produced as part of the A7 aircraft
software project (Heninger, 1980) wcre for the late 1970's.

Less prosaically, there arc probubly innovatons waiting 10 be made in antificial dialects of natural
language for speciahized sub-domains. For example, a *‘temporal English®* that had a precise semantics for
temporal relauons (including duration) would be very beneficial in descnibing subtle real-ume interactions in
embedded sysiems. The prospect of natural language translation from a free-form requirements document to
a formal specificauon is infeasible (although the inverse translation is not), but for highly constrained idioms,
such as those descnibing uming propeniices, it could probably be done. The real problem in practice would be
ensuring that the interpretable idioms were actually used and not somne other set.

Challenge 1b: Bridging the gap from document to essential model

Most methods provide some recommendations about the transition from a requirements document to an
cssential mode!. What guidelines there are, however, are not very strict. The analyst is supposed to give the
document a close reading so that events, actions, objects, stales and so on can be identified. However, this is
not a very systematic process.

With the promulgation of new object-oriented approaches this is starting to change (Wirf-Brock, et al.,
1990). In common with JSD (Jackson, 1983), dewiled guidelines for object identification, pruning and
elaboration can be used for going lairly directy from a textual description of the requirements to an initial
model of the system.

Like the production of a document this is also a two-stage process. The first stage involves sifting and
evaluating the raw text. It is a time-consuming and largely uncreative task. Aguilera and Berry (1990) discuss
a prowtype system for extracting and cross-refcrencing repeated phrascs in a requirements document.
Without fine-tuning for the concepts central to particular methods, this is unlikely o be of universal
applicability (for example, Wirf-Brock ct al’s. object identification heunistics require a greater emphasis on
noun phrases). Nevertheless, it is a very promising application of text processing technigucs.

Even more challenging is support for the subscquent stage: interpretation and reformulation. What, for
example, is the analyst to make of a list of repeated phrases? The principal breakthroughs in this area are more
likely to be methodological than technological. It is difficult to say what they will be or how wide-ranging. It
is no coincidence, however, that the strongest heuristics come from methods which emphasise domain
structure rather than behavior. Among the former classification are JSD, object-oriented methods and entity-
relationship modeling; whereas among the latter are the variants of Structured Analysis and state transition
models. As object-orientcd programming and design becomes more common, the need for a comparatively
scamless representational progression will drive the development and refinement of object identification
heunstics.

Challenge 2: Bridging the gap from essential model to system
architecture

An essential model is supposed to be a model of the essential characteristics of the system without regard
to implementation constraints. For this rcason, requirements arc usually described as being about ‘what’ the
system will do and not *how’. This is a naive distinction. Requirements frequently include performance or
hard real-time constraints, and their feasibility cannot be assessed independently of the system architecture.
Moreaver, system cost is a direct function of architectural complexity and component cost, an issue that
cannot be ignored until a later phase of the lifecycle. The process of requirements negotiation can only be
informed by some model of the system architecture. So: how can the gap between essential model and
architecture be bridged? and how can an analyst avoid corrupting the essential model by implementation bias,
while at the same time guiding the project planning process?

For some mcthods, therc are alrcady partial answers 1o these questions. For example, ADARTS (Gomaa,
1989) is a method {or transforming a real-time Structured Analysis essential model into a task structure for
an Ada system. Some of its heunistics are sufficiently general that they could be applied to other target
implementations. Having identified the likely subsystems, it is much easier to do preliminary system planning
and cost estimation.

Challenge 3: Bridging these gaps backwards

System development is not a onc-way process. During requirements analysis, communication from the
model back to the concept is as important as deriving the model. The main mechanism for doing this is
currently document inspecuons. This i1s onc arca, howcever, in which technological solutions are already
available with more on the horizon.

Many representational techniques cither have an operational semantics or could have their semantics
specified without major revisions to the spirit of the technique. Ward (1986) has given an informal execution
semantics for the Ward/Mellor variant of rcal-time Structured Analysis and JSD is defined in erms of
concurrent sequential processes, similar in many respects o Zave's(1982) PAISLey. Kramer et al (1988)
have developed animators for Structured Analysis variants, and Pottts ctal. (1985) developed translation rules
from JSD models to simulation programs in Ada. Finite-state machines, statecharts and Petri nets are also
operational models. Among the many tools that animate these types of models, one can single out
STATEMATE (Harel et al., 1988) which animates statecharts. VERDI (Shen et al., 1990) is a specialized 00l
for visually executing distributed systems designs.

Direct execution of an essential model has much in common with prototyping. It has the advantage that
the executable model is directly derived from the essential model and therefore can be used to validate the
requirements. A rapid prototype, on the other hand, cannot be guaranteed to portray the system accurately.
Prototyping has the advantage that it can be used even when an essential model is not available; for example,
while the requirements are being identsfied. A hybid approach, in which a prototype 1s developed manually
but using a visual/textual language based directly on Structured Analysis concepts, is also possible (Lugi and
Berzins, 1988).

To be as useable as a prototype, an exccutable essential model must be cnriched by a domain-specific
visual interface. The interface might be a mockup of the planned system’s user interface, but it might equally
provide a “*bird’s eye view"' of the system’s behavior in a domain-specific way. The challenge here is to
provide a sufficiently gencric visualization engine that protolype construclion docs not require oo much
time-consuming interface programming. This is an active area of research at MCC and elsewhere.

A system architecture also needs validating in much the same way as the essential model. Although the
user may not be directly concerned with the architectural decisions made by the development project, a user
may be very interested in the performance implications of these decisions. It is unrealistic to detach these
concems altogether from requirements validation proper, because it often turns out that performance or
uming requirements are not as hard as the customer originally claimed. In the face of evidence of infeasibility
or increased cost, these requirements may be withdrawn or renegotiated.

Of course, performance araiysis and simulation techniques have been in use for many years for computer
system modeling. However, most techniques are not fully appropriate early in the system lifecycle. They
cither depend on unrealistic assumptions in the case of analytic techniques or require numerous parameter
estmates and computationally intensive simulation (e.g. TAGS or REVS). These techniques are valuable
when the architecture has stabilized and the environment can be modeled with some confidence, but even
before that, it is desirable to assess the feasibility of the sysiem. A preferable alternative would be the
development of techniques for modcling approximate or bounded propertics; somewhere between back of the
envelope calculations and heavy-duty simulation. Smith’s (1990) Software Performance Engincering method
incorporates a number of approximatc and heuristic tcchniques. Unfortunately, it uses a flowchart-like
notation that makes it appear less suited 10 requircments phasc modcling than it is.

Challenge 4: Abandoning the tabula rasa assumption

Most requirements analysis rescarch is based on the simplifying assumption that a customer wants a
‘new’ system. But few systems arc new sysicms. Although the existing system, if there is one, is a rich source
of information about the requircments for the new onc, the assumption is that the new system will be a total
replacement. There are in fact two rclated assumptions to be retracted: that an existing sysicm may need to

be changed, not replaced; and that the system 10 be developed is a closed world, not part of an existing system.
These assumptions run contrary 10 two of the most pervasive trends in sysiems development today: the
importance of system evolution, and the increasing importance of system integration.

Challenge 4a: Requirements for evolution

Few system development efforts start from a tabula rasa. Instead of developing a new system, many
projects have the goal 1o build extensions to an existing system. In practice, in such a situation, the only
requirements statement the developer secs is often the behavior of an earlier version of the system and the
statement 1o **add X'’ where X is an ill-defined feature, Requirements documents, and design documents for
that matter, are seldom updated when changes arc made to a system, so cvolutionary development is often a
more hit-and-miss process than tabula rasa sysiem development.

Everybody pays lip-service to evolution, but there are few methodological or technological aids available
to system developers.

Challenge 4b: Requirements for integration

More companies see themselves in the business of system integration. In system integration, the emphasis
shifts away from designing and implementing a system to choosing and gluing together pre-existing parts. In
the abstract, this is just another form of system development. In practice, however, there are large differences.
For example, the availability of pre-existing components and subsystems is a major factor in choosing among
alternatives. The essential model becomes correspondingly less important, and the system architecture more
$O.

Advances in specifying and analyzing requirements for evolution and integration depend on the
"velopment and adoption of better abstraction mechanisms for system development and component reuse.
‘hese mechanisms are present in Ada and especially in object-oriented languages. Their increasing use at the

design and implementation stages will be a further force in the direction of object-oriented essential modeling
techniques.

A longer-term challenge is to develop techniques for predicting the impact of required changes. There
are two sub-problems: tracing requirements, so that the locus of an impact can be predicted, and inferring the
consequences of the change. The first sub-probleny is partly addressed by current traccahility techniques, but
would be gready aided by hypertext technology. The second requires more formal models of design
components and change than are currently used. Feather (1988) has posited a taxonomy of change types for
specificauons. However, this work is still in its early stages and has not been applicd in practice. There is also
a crucial granularity tradeof[to address: the smaller the components, the sharper the prediction, but the higher
the update overhead whenever changes are made.

Challenge 5: Bridging the gap from system to project

Requirements analysis rescarch exclusively addresses system specilication and requirements clicitation,
In practice, a requirements document also must include project planning information such as schedule (often
including incremental releases) and cost estimation. However, incremental releases can be defined only after
preliminary architectural decomposition. Cost estimation is on firmest ground when based on a reliable size
esumate for the delivered system. These needs conflict with the desire to avoid implementation bias and
premature commitment to solutions when the problem is stll being formulated.

Function point theory (Albrecht, 1979) is one approach to estimating system ‘‘scope’’ independently of
size. It has the advantage over lines of codc estimates of being based on the essential functionality of the

system. Function points are defined in such as way as to be unsuitable for some types of system, however.
The challenge is to devise an altemative with broader applicability.

To address project planning, it will be necessary 1o develop better ways of tying together sysiem data and
project data in a single information repository. Given that there is no simple way to overcome the conflict
between the need to delay implementition commitments and the need to plan the project around a delivery
schedule, all that can be done is to track carcfully the relationship between putative design objects and project
activities. As the requirements change and the design components are revised, so the project activities can be
replanned accordingly. The problem is very similar to predicting the conscquences of change: what is needed
is cnabling technology that stores the objects and links (i.e. enginccring database and hyperiext systems), and
a more formal model on which to base traceability inferences.

Not so much a challenge as a fruitless exercise: Developing a process
model for requirements analysis

There are some false challenges, challenges that 1 believe that we should avoid because they aim to
achieve unrealistic or unnecessary goals. One of these is generic process modeling for phases of the lifecycle,
like requirements analysis, that are poorly understood. Different organizational settings require different
documentation and procedural conventions. For example, an air defense system is defined very differently
from a shrink-wrapped business product. | have never found discussions about the differences between
‘verification’ and ‘validation’ or ‘requirements’ and ‘specifications’ to be very enlightening, but that is the
only type of debate that general- purpose process models and their accompanying flowcharts seem to
engender. For that reason, I have scrupulously avoided ‘cxplaining’ the challenges by diagrams. This is not
to say that process modeling cannot help a particular organization or a particular project, but I do not think
that general-purpose process modcels are precise ¢nough to help yet.

Not so much a challenge as a philosopher’s stone: Artificially intelligent
requirements analysis

A peculiar twist of rhetoric is often used to justify some applications of artificial iniclligence. It goes as
follows: **We don’t know how to do X. Therefore algorithinic techniques can’t be uscd to do X. Therefore
Al'techniques may be uscful for X.”* As far as requircments analysis is concerned, all three propositions hold:
we don’t know how to do it very well, itis intrinsically informal and thercfore non-algorithmic in nature, and
Alechniques may indeed be useful. But there is of course no sound chain of reasoning to the conclusion. The
evidence that Al techniques, such as knowledge-based domain modeling, can be applied to requirements
analysis is so far promising but far from convincing.

The evidence from over thirty years of research is that Al has had its most sustained intellectual impact
in those areas that were ill understood at the time but amenable o formalization, such as early visual
perception or natural language processing, not in those areas that require mimicking creative human problem
solving. There are such fields in software enginecring. Some of them, such as the intclligent generation of
test cases could apply at any stage of the lifecycle, including requircments analysis. However, it would be
more prudent to sec how Al techniques farc in the better understood downstrcam phases of devclopment
before venturing into the unknown.

In shont, advances in requircments analysis are most likely to come from the judicious application of
available enabling technologics 10 methodological principles. Powerful technology independent of
methadology is unlikely to help.

References

Aguilera, C. and D. M. Berry, ‘The use of a repeated phrase finder in requirements extraction’. J. Sys.
Sofrware 13:209-230, 1990.

Albrecht, AJ., ‘Measuring Application Development Productivity’, Proc. Joint SHARE/GUIDE Symp.
83-92,1979.

De Lisle, N & M. Schwartz, *Neptune: A hypertext system for CAD applications.” Proc ACM SIGMOD,
1986.

Feather, M., ‘Constructing specifications by combining parallel elaborations’, JEEE Trans. Software
Eng. SE-15:198-208, 1988.

Gomaa, H. *Structuring criteria for real-time system design®, Proc. 11th Int. Conf. Software Eng., IEEE
Comp. Soc. Press, 1989.

Haret, D., H. Lachover, A. Naamad, A. Pnucli, M. Politi, R. Sherman and A. Shuwl-Trauring,
‘STATEMATE: a working environment for the development of complex reactive systems’, Proc. 10th Int.
Conf. Softiware Eng., IEEE Comp. Soc. Press, 1988

Heninger, K.L., *Specifying sofiware requirements for complex systems: ncw techniques and their
applications’, /EEE Trans. Software Eng. SE-6: 2-11, 1980.
Jackson, M.A_, System Development, Prentice-Hall, 1983.

Kramer, J., K. Ng, C. Pous and K. Whiichcad, *“Tool support for rcquirements analysis’, Software Eng.
J.. May, 1988, 86-96.

Lugqi and V. Berzins, ‘Rapidly protolyping rcal-time systems’, IECE Software, Scpt., 1988, 25-38.

McMenamin, $.M. and J.F. Palmcr, Esxentiul Systems Analysis, Yourdon Press, 1984,

Mullery, J. *Acquisition - Environment’ in M.W. Alford, J.P.Ansart, G. Hommel, L. Lamport, B. Liskov,
G.P. Mullery and F.B. Schncider, Distributed Systems: Methods and Tools for Specification, An advanced
course, Springer-Verlag, 1985.

Pous, C., A. Bartlet, B. Cherrie and R. MacLean, ‘Discrete Event Simulation as a Means of Validating
JSD Design Specifications®, Proc. 8th Int. Conf. Software Eng., IEEE Comp. Soc. Press,1985.

Shen, V.Y, C. Richter, M.L. Graf and J.A. Brumfield, ‘"VERDI: a visual environment for designing
distributed systems' J. Parallel Distrib. Comp. 9: 128-137, 1990.

Smith, C.U., Performance Engincering of Sofiware Systems, Addison Weslcy, 1990.

Ward, P.T., ‘The transformation schema: An extension of the data Mlow diagram to represent control and
tming’, IEEE Trans. Software Eng. SE-12: 198-210, 1986.

Wirf-Brock,R., B. Wilkerson and L. Wicner Designing Obyect-Oricnted Software, Prentice-Hall, 1990.

Yakemovic, K.C. & J. Conklin, Report on a developement project use of an issuc-based information
system Proc. Conf. Computer-Supporicd Cooperative Work, ACM, 1990

Zave, P. “An operational approach to requirements specification for embedded systems’, JEEE Trans.
Software Eng. SE-8: 250-269, 1982.

Requirements Techniques and Tools:
A Position Paper

Dennis B. Smith
Software Engineering Institute
Camegie Mellon University
Pittsburgh, Pa 15213
(Sponsored by the U.S. Department of Defense)

1. 0 Introduction

Although there is general agreement about the crucial importance of requirements, there are a
wide variety of techniques and tools for doing requirements engineering. This session will exam-
ine the major functions of requirements engineering, identify techniques and tools appropriate for
each function, and ground the techniques and tools in specific experiences of participants with
project development. Generalizations will be made as appropriate, and major gaps or untested
areas in current techniques and tools will be identified.

A 1989 workshop, “Requirements Engineering and Rapid Prototyping Workshop”, sponsored by
U.S. Army Communications-Electronics Command Center for Software Engineering (CECOM)
identified the following six generic requirements engineering subprocesses:

1) Objective analysis - the analysis of problem space and application domain;
deals with description of problems only, not solutions.

2) Objective analysis - the analysis of the solution space and system objectives
for life time use.

3) Requirements determination - the specification of characteristics the system
must meet to satisfy user needs.

4) Requirements analysis - the analysis of expressed requirements, including
related refinement, elaboration, and correction.

5) Synthesis - the formation of a cohesive specification from the detailed anal-
ysis, involving the integration of partitioned analyses occurring due to
problem complexity and breadth.

6) Validation - the assurance that the expressed requirements match real user
needs and constraints.

These six sub-processes will be used as a point of departure for the session. The session will
briefly discuss the sub-processes to determine if these categories represent a reasonable starting
point, and whether any changes or amendments should be made to the categories.

For each sub-process, the techniques identified by the CECOM workshop will also be used as a

point of departure. These techniques identified by the CECOM workshop are not meant to be all-
inclusive or constraining. They were developed by a group of individuals with a strong conceptual
grounding in the field of requirements engineering. It is possible that additional techniques will be
identified by session participants, and that some of the techniques will be more relevant than oth-

€rSs.

Workshop participants will consider the techniques identified by the CECOM workshop, together
with additional techniques. Participants will also consider tools which may support each tech-
nique. Given the universe of requirements engineering techniques and tools, participants will then
be asked to provide project specific experiences tor any of the techniques and tools in which they
have experience. The intent of this activity is not to validate or invalidate a specific method, but
rather to provide a context for the type of domain, organization or project for which specific tech-
niques and tools are appropriate or not appropriate. It is hoped that the participants will bring a
rich set of experiences to this activity.

The output of the session will be a filled in matrix of requirements engineering sub-processes,
techniques, tools, and project specific experience sumnmaries. Although the experiences of the par-
ticipants may be quite random, generalizations will be made as appropriate. In many cases, more
questions will be raised than answered. In addition, gaps in current techniques and tools will be

noted.
2.0 Sub-processes, Activities, and Methods Identified by CECOM Workshop

This section summarizes the sub-process, activities and methods of the CECOM workshop. It will
be discussed briefly to obtain consensus on the overall framework of the approach. The frame-
work will be modified as appropriate from the discussion.

2.1 Context Analysis

Activities

Identify problem space boundaries
Needs identification

Application modeling

Postulating solutions

Methods

Interview

Document reviews
Conceptual modeling

Delphi
Group decision support

Analysis

Surveying current systems
Observation

Role-playing
Walk-through

Gaming

2.2 Objective Analysis

Activities

Define specific problem to be solved

Define system/environment boundary and interface
Define life cycle profile

Define user profile

Identify non-functional requirements

Identify critical success factors

Identify operational capabilities

Conduct feasibility analysis

Uncertainty and risk assessments for major objectives
Perform trade-off analysis of major objectives

Methods
Interview

Documentation review

Trade-off analysis

Build scenarios of high level system usages
Delphi techniques

Group decision support methods

2.3 Requirements Determination

Activities

Determine system requirements
Identify alternatives

Perform trade-off analysis
Identify problems, issues, risk

Do planning

Methods

Prototyping
Interviewing
Templating

Reviews with people
Study and observation
market the idea

2.4 Requirements Analysis

Activities

Consistency checking

Completeness checking

Correctness checking

Analyze feasibility

Review testability

Review traceability and linkage

Evaluate significance, certainty and interdependencies

Methods
Prototyping
Structured analysis
Object oriented analysis
Finite state machines
Other specification methods, e.g.,
E-R models, Operational, Petri-net, PSL/PSA, SREM, RLP,USE
Quantitative analysis
View analysis

Ranking, weighting, prioritizing
Scenario building

Simulations
2.5 Synthesis

Activities

Resolve conflicts

Merge models and viewpoints

Integrate concermns

Integrate non-functional and functional requirements
Collect feedback to correct objectives and specifications

Methods
Prototyping
Simulation
Sanity check
Logical modeling

2.6 Validation

Activities
Collect stakeholders critiques, evaluations, reviews, and analyses

Methods

Walkthroughs

Reviews

Inspections

Evaluations of mock-ups, prototypes and simulations
Testing

2.7 Generic requirements activities

These activities and techniques are required throughout the entire software engineering process.
They are considered as a separate category to be certain that they are not overlooked within the

specific stages.

Activities

Creating/revising documentation
Creating/revising dictionaries
Recording and checking rationales
Traceability

Impact analysis

Configuration management

Methods

Prototyping
Interviewing
Reviewing documents
Modeling

References

Proceedings of the Requirements Engineering and Rapid Prototyping Workshop, Center for Soft-
ware Engineering, U.S. Army Communications-Electronics Command, November 14-16, 1989.

Software Requirements: Analysis and Specification, Alan M. Davis, Prentice Hall, 1990.

Requirements Elicitation Working Group
Michae! Christel

SEl

Requirements elicitation is a critical phase in the development of new systems.
Mistakes made here can greatly increase the cost of development and lead to the lack
of acceptance of software systems. It is also the phase in development where the end-
users and buyers must be integrally involved, and therefore there are social problems
as well as technical problems associated with the elicitation process.

One often-cited problem associated with requirements elicitation is the lack of common
knowledge. The requirements analyst typically knows little about the problem domain,
while the customer typically does not understand how to build software systems. The
analysts, users, and buyers typically lack any common notation or language (Mittermeir,
1982). Moreover, the focus of discussion is often on particular technical solutions and
immediate design plans that may lead to inadequate requirements.

There are many approaches to improving the communication between the parties
involved in requirements elicitation. Some focus on the social issues, such as
improving the interview process and the skill set ot the requirements team (making sure
they have some domain knowledge, are good listeners, can ask questions and lead
discussions, etc.) (Zucconi, 1989, Zahniser, 1990). Others cite the need to capture the
rationale behind requirements, which clarifies issues involved in systems development
and aids in the traceability of decisions made on those issues (Yakemovic, 1990).
Others emphasize the need to recognize several views of the system, perform conflict
detection and resolution across these multiple viewpoints, and via that viewpoint
resolution validate the facts gathered during requirements elicitation (Leite, 1989,
Mullery, 1979). Of course, these approaches are not mutually exclusive and elicitation
techniques may address a number of these points.

In order to facilitate communication, some approaches to requirements elicitation
advocate the early use of prototypes. The level of involvement of prototypes, mock-ups,
and scenarios in the elicitation phase is debatable, with some approaches not
considering any of these and others being primarily concerned with the immediate
development of a prototype (Jordan, 1989). Many techniques recognize the
communicative power of limited scope mock-ups and scenarios during requirements
elicitation, and advocate this "middle ground” approach (Mittermeir, 1982).

Information management is another issue associated with requirements elicitation
(Loucopouios, 1990). Scme techniques extend the scope of the information to be
managed beyond modeling diagrams and text documents to also include the video
interviews of users. Many facts are gathered during elicitation, the facts evolve with
time and the introduction of new viewpoints, and the facts need to be easily accessible
by people with a variety of backgrounds, e.g., requirements analysts, users, and buyers.

Many of these problems have been mentioned in past workshops on requirements and
papers addressing the subject. One of the goals of this working group will be to focus
on requirements elicitation and derive a problem set based upon the experiences of the
working group members:

What are the problems which must be addressed in order to improve the process
of requirements elicitation?

This problem set will probably revisit deficiencies noted in the past, i.e., conflicts among
multiple stakeholders and traceability problems. However, along with identifying the
problems this working group will also prioritize those problems so that the follow-up
discussion can focus on the most important issues.

The working group will use the problem set it derives in discussing what software
engineering techniques can be provided to address the most important issues involved
in requirements elicitation:

What are the recommendations on how to solve the most important problems in
the process of requirements elicitation?

This brief survey of some of the existing work in the area of requirements elicitation will
hopefully stimulate discussion for the working group. Rather than endorsing particular
models and approaches to elicitation, though, the working group will focus on prioritizing
the problems which plague requirements elicitation and on recommendations for
solutions to some of these problems.

References

Jordan, Pamela W., Keller, Karl S., Tucker, Richard W., and Vogel, David. Software
Storming: Combining Rapid Prototyping and Knowledge Engineering. [EEE
Computer, May 1989, , 39-48.

Leite, Julio Cesar S.P. Viewpoint Analysis: A Case Study. ACM SIGSOFT Software
Engineering Notes, May 1989, 74(3), 111-119.

Loucopoulos, P., and Champion, R.E.M. Concept acquisition and analysis for
requirements specification. Software Engineering Journal, March 1990,
116-124.

Mittermeir, Roland T., Hsia, Pei, and Yeh, Raymond T. Alternatives to Overcome the
Communication Probiem of Formal Requirements Analysis. In Ohno, Y (Ed),
Requirements Engineering Environments, North-Holland Publishing Company,
1982.

Mullery, G.P. CORE: A Method for Controlled Requirements Specification, pages
126-135. IEEE Computer Society Press, 1979.

Yakemovic, K.C. Burgess, and Conklin, E. Jeffrey. Report on a Development Project
Use of an Isst:e-Based Information System. ACM, October, 1990.

Zahniser, Richard A. How to speed development with group sessions. [EEE Software,
May 1990, , 109-110.

Zucconi, Lin. Techniques and Experiences Capturing Requirements for Several Real-
Time Applications. ACM SIGSOFT Software Engineering Notes, October 1989,
14(6), 51-55.

A Computer Supported Cooperative
Work Environment
for
Requirements Engineering and
Analysis

James D. Palmer Peter Aiken Ann Fields
BDM International Professor of ~ Visiting Assistant Professor of Research Associate
Information Technology Information Systems

Center for Software Systems Engineering
School of Information Technology and Engineering
George Mason University
Fairfax, VA 22030

Abstract

Performance of requirements engineering and analysis for large-scale complex
systems is a group activity, involving user representatives from the necessary
domain areas. A Computer Supported Cooperative Work (CSCW) environment is
described that takes into consideration these group aspects of requirements
engineering and analysis. The ways in which a CSCW environment may be utilized
to support requirements engineering are presented. An architecture is presented
together with the hardware necessary to implement the system. Two applications
are examined to show how the CSCW environment may affect the requirements
engineering process. Initial results indicate that the use of the CSCW environment
provides assistance to user and designer groups in the development of better
requirements than would have been feasible without the use of such an
environment.

Introduction

A Computer Supported Cooperative Work (CSCW) integrated environment has
been designed to support the development and analysis of system and software level
requirements for large scale complex applications. This environment supports two
key processing needs that are essential in the elicitation of correct, complete, and
unambiguous information: 1) the ability to obtain useful and useable information
from users, individually or in groups, and 2) the ability to represent information in
appropriate media formats. The primary activities supported by this environment
include:

¢ the reduction of barriers associated with the acquisition of multimedia
information from user groups;

e the collaborative processes inherent in software development for a
large-scale complex system;

e information integration and interchange functions and use of multiple
methodologies for requirements analysis; and

e integrated toolset utilization of analysis tools to address problems
associated with imprecision, ambiguity, conflict, or other flaws in
requirements.

Preliminary results from applications show it is feasible to perform necessary
requirements engineering process tasks involving multimedia inputs. It is also
possible to provide for interactive and iterative endeavors between the user and
requirements engineering teams. Another substantive result, from the use of
embedded CASE tools that have been developed, shows that ambiguity,
imprecision, and overspecification in software requirements can be identified and
corrected prior to these factors having adverse consequences on the project. This in-
turn results in the ability to better manage project risk. Through these applications
we have shown that the automated assistance provided by the environment may be
used to support requirements engineering elicitation, analysis, classification, and
design processes. Further, this environment provides assistance to the user and
requirements engineering teams in major design activities related to classification;
analysis; indexing; validation; generation of test plans; and ensuring traceability of
system level requirements.

In the sections that follow we will examine requirements engineering in light of the
attributes of the CSCW environment. Next we will present the CSCW
environment architecture and discuss this in sufficient detail to show how the
system is constructed and the way it works. Following this we will look at the
opportunities that we have had to use the system and finally examine the
conclusions that we have drawn regarding the utilization of CSCW technology for
requirements engineering.

Requirements Engineering and Computer Supported
Cooperative Work

The development of systems and software level requirements for large scale
complex systems is inherently a group effort. Most significant large-scale complex
software systems engineering projects are not developed by individuals, but are
conducted by groups of people that include users, systems designers, and general
management. There is increasing evidence that external groups, employed at
certain stages of the requirements engineering process, can decrease the number of
errors and improve the overall quality of software requirements specifications

[Martin and Tsai, 1990]. The approach that we have taken has been to provide an
environment that supports and encourages group participation in large-scale
complex software engineering programs through the advanced workstations.

The effort may be conducted by a single group or by a group that is spatially and
temporally distributed, but nonetheless is a group effort. The environment
facilitates the process of requirements development under both of these conditions.
There are times when group efforts are repressed by spatial and temporal distance
between users. This aspect is supported by the environment, since it is on-line and
accessible via modem and the information is stored in easily accessed objects. Thus,
through use of the environment it is possible to address these issues by giving the
user and designer the ability to easily interact.

Our efforts are aimed at resolving two important aspects of the requirements
engineering process in order to support group efforts. These are:

* the environment represenis an attempt to implement necessary
support for an integrated set of basic requirements engineering
functions that are performed at some level in all methodologies; and

* it represents an attempt to provide specific CSCW support for the
software requirements engineering process.

The integration aspects of the environment are essential because they augment and
extend the capabilities of users and designers in the performance of basic functions
associated with elicitation and processing of requirements information. This
permits us to augment and extend the ability of groups to deal with the content of
requirements information from the perspective of the overall information picture
rather than deal with it on a discrete or incremental basis. The environment also
contains tools that provide assistance in the management and resolution of
imprecise, ambiguous, conflicting, or overspecified requirements information
[Palmer and Aiken, 1990].

We characterize the requirements engineering process to be similar to an
evolutionary software development life cycle that is primarily concerned with
producing software requirements specifications that are feasible, testable, validatable,
traceable, and perhaps most importantly, meet the perceived needs of the user. We
have found that it is desirable and necessary to involve the users in the process of
requirements elicitation and the subsequent validation procedures to assure that the
user view of the system is properly represented. The environment that we present
provides the support necessary for users and software requirements engineers to
take advantage of the interactive and iterative processes that should be involved in
requirements engineering. The process is evolutionary in that we encourage rapid
prototyping at any stage of completion at the choice of either users or designers.
These prototypes may be in any of several standard forms used by software
designers, including dataflow diagrams, object-oriented design diagrams,
datastructure diagrams, or other forms chosen by either users or designers. At the

completion of the process the intent is to produce a set of software requirements
current to that point in time.

The environment that we have developed is a hypermedia-based system capable of
providing support for two tasks that assist software requirements engineering.
These two tasks are minimally necessary for the development of system and
software requirements that involve and meet the needs of the user.

1) The environment supports capturing, organizing, synthesizing, and
presenting requirements information and encourages a rapid prototyping
approach to software development.

2) The environment supports development of the content, not merely the form, of
requirements information including the ability to deal with problems such as
imprecise, ambiguous, and incomplete requirements information.

It is important in the elicitation process to be able to include hypermedia
information that is developed using CSCW techniques. The correctness and
completeness of requirements information derived utilizing this approach has the
potential of being both substantively and substantially better than present
techniques that utilize only text and graphics. Through this approach we are able to
enhance requirements engineering from elicitation through prototype presentation
of partial or complete designs. The technical capabilities necessary to accomplish
this are given by four distinct properties for the system that are minimally needed to
accomplish CSCW tasks. These properties are as follows [Palmer and Aiken, 1990):

* Property 1: Reduction or removal of the artificial barriers to capture
and analyses of dynamic real-world multimedia requirements
information;

* Property 2: Implementation of an architecture capable of permitting
the application of the most appropriate requirements methodolo
including Computer-Supported Cooperative Work (CSCW) and
Group Decision Support Systems (GDSS);

* Property 3: Utilization of an architecture that encourages the
integration and interchange of information sources associated with
the specific methodologies; and

* Property 4: Implementation of an integrated set of analysis tools to
resolve problems associated with imprecise, ambiguous, conflicting,
or otherwise flawed requirements.

Properties one and two support activities aimed at increasing the acquisition of
requirements information and taking advantage of the most appropriate technology
for this purpose. Properties three and four are aimed at the development of more
comprehensive solutions to the problem. Each of these properties is described in
more detail.

Property 1: Reduction or removal of the artificial barriers to capture and analyses
of dynamic real-world multimedia requirements information.

This is accomplished by:

1) capturing pertinent information concerning the task, the users, and
relevant organizational/situational characteristics;

2) organizing this information into readily accessible forms for use in
subsequent phases;

3) synthesizing problem solutions from the information gathered; and
4) presenting these solutions to the user to obtain feedback.
Each of these four functions is described in greater detail below.

CAPTURE

The capture function facilitates the acquisition of necessary user information in the
form of objects. This information may be modified so as to generate such linkages
as desired, enabling the presentation of different views through the organize and
present functions. By this, we effectively remove restrictions on the size and/or
media format of addressable information objects. Through the use of the Object
Management System and multimedia storage devices, we are able to assure the
acquisition of significantly more requirements information for use in the
development of system and software requirements. Sounds, still pictures, and
motion-based input information may be captured and used to supplement text and
graphics requirements information. If the actions of individuals are important in
the development of a system, for example, the relative physical position or the
information flow for a control station, this information may be captured on video
tape and used in the design. In addition, all requirements information is
maintained on-line and accessible through a single interface.

ORGANIZE

The way in which information that has been captured and serves as input for
activities carried on during the remainder of the software development life cycle is
depicted conceptually in Figure 1.

REQUIREMENTS INFORMATION

Other
Team
Members

I—> Designers

\

Coders

Quality
Assurance
Personnel

l > Maintenance

Personnel

Figure 1 - Uses Of Requirements Information

As we have defined and designed the organize function, it acts to extend and
augment the ability to quickly and easily access multimedia objects. In many cases,
requirements information may be modified through actions that we have denoted
as combination, division, and link, and then be redefined as new objects that have a
separate identification Through this process, objects may be grouped into collections
based on such criteria as determined by the designer. The basic system design
employs object-oriented design (OOD) and an Object Management System for ease of
navigation through the requirements, while maintaining the ability to rapidly label,
group, and order requirements information.

A N T I G aE EE N

SYNTHESIZE

We use the term synthesize to describe prototype development. The purpose of the
synthesize function is to provide the ability to examine and modify information in a
manner that extends and augments the processes associated with the development
of problem solutions. Activities that we have associated with the synthesize
function are as follows: [Palmer and Aiken, 1990]

¢ Analysis of requirements information to identify constraints which
guide prototype development;

* Implementing each requirement in one or more prototype features;
and

 Establishing and demonstrating relationships between specific
requirements and prototype features.

Through use of the synthesize function, we are able to provide the capability to
simultaneously configure information into hierarchical and directly linked
structures by use of a hypermedia requirements matrix. This eliminates the need to
force-fit information into a form limited by artificial constraints. It also provides a
closer conformity between real situations and internal representations of
information structure.

The way in which the synthesize function is utilized is intended to assure that
visual and cognitive momentum are maintained [Woods, 1984] during prototype
development. For this purpose, requirements information is maintained in a
variety of formats that includes a mixture of media forms. If we fail to maintain
visual and cognitive momentum we may lose the current train of thought, waste
valuable time, and potentially introduce mistakes into the requirements
engineering process.

PRESENT

The fourth basic function is the presentation of information from the synthesize
function to the user. Production of a prototype early in the requirements
engineering process has the potential to yield positive results for the user group. It
provides instant feedback as to how the program is progressing, gives the user group
several views of the system, reduces the chance of misunderstandings between users
and designers, and provides the opportunity to modify the design during the early
stages of development. We have provided a number of different formats for
presentation of the problem to the users. These include the use of text, text with
graphics, graphics, audio, and video, as well as all combinations of these media
forms.

Property 2: Implementation of an architecture capable of supporting the
application of the most appropriate requirements methodology including aspects
of the computer-supported cooperative work and group decision support system;
or utilization of multiple requirements methodologies

It has been demonstrated that no single method or approach suffices for successful
requirements engineering processes [Sage and Palmer, 1990]. The system
architecture that we have implemented for the CSCW environment provides
support for many of the requirements engineering tools presently available.
Different methodologies may be implemented at different points, as appropriate.
We provide support for several aspects of CSCW including:

¢ group decision support,

e use of common communications techniques;

distributed groups (spatially and/or temporally);
e techniques for structuring decision analysis; and

e systematically directing the pattern, timing, and/or content of
interactions [Palmer and Aiken, 1990].

The environment also facilitates management of the process of creating and
tracking multiple versions of system and software requirements. This gives us
assurance that we will be able to review the solution approach used and provides a
method for post mortum analysis.

Property 3: Utilization of an architecture that encourages the integration and
interchange of information sourcesassociated with the specific methodologies.

The CSCW architecture is able to incorporate any of the current CASE tools or
provide for any of the other methods that are used for requirements analysis,
modeling, specification preparation, and presentation. Another important feature is
the ability to interchange information gathered from the application of various
methods. An additional attribute is the ability to incorporate multimedia forms.
This represents an important departure from most current techniques. Hypermedia
technology provides users with the ability to integrate video, audio, graphics, and
text formats and provide mechanisms to store and retrieve this information.
Through use of the non-sequential linking capabilities provided by the CSCW
environment, information exchange linkages are limited only by the ability of the
user to determine the forms that are needed/desired.

Property 4: Implementation of an integrated set of analysis tools resolving
problems associated with imprecise, ambiguous, conflicting, or otherwise flawed
requirements.

As we have noted, the CSCW environment design accommodates any number of
tools that are useful during the requirements engineering process. Tools such as
CASE tools that are provided by a number of different vendors may be utilized by
the system, various simulation and modeling packages may be included, and
analytic programs may be provided such as SAS or SPSS.

There are also specific tools that have been designed to address problems that are
characteristic of the requirements elicitation process that may be included. These
tools are intended to address special concerns related to imprecision, conflict, and
overspecification in requirements statements, such as use of quality factors without
explicit definition of these terms and their intent, and finally the ability to assign
metrics, test tools, and test plans to validate requirements [Myers, 1988, Samson,
1988, and Pfleegher, 1989].

Computer Supported Cooperative Work Environment Architecture

The use of a Computer Supported Cooperative Work (CSCW) environment is
primarily concerned with the support of groupwork activities for requirements
engineering and analysis functions. The CSCW environment has application in
many of the fundamental aspects necessary in the development of software
requirements. These application areas include interactive information resource
development, information analysis, information retrieval, and the use of group
decision support techniques such as conflict resolution, consensus building, and
real-time simulation.

For our purposes, requirements engineering is described to be the process of
elicitation, analysis, classification, and design of systems and software requirements.
The process incorporates a wide range of functions, methods, and approaches that
are applied by users and designers. This process is very much concerned with
system and software development activities that extend from elicitation of user
information to providing for the capture, organization, and synthesis of this
information. Finally, the process provides for the presentation of concepts and
prototypes that lead to formal software requirements specifications. For large-scale
complex systens, this process is almost always a team activity that includes many
domain experts who represent the user and team members responsible for software
design .

The conceptual architecture of the CSCW environment is shown in Figure 2.

10
| Architectural Overview I
Blackboard
Control
Architecture
Meeting Information/
Process/Tools Methods
Manager Manager
Domain Domain Probl
Facilitator|| Meeting || Meeting General Specific || Specific S;oeci?il::]
Tools |[Perspectivd| Purpose Analysis Analysis || Knowledge Data
Manager || Manager || Manager Tools Tools Bases Bases

Figure 2. CSCW Architecture

The basic structure of the system utilizes a blackboard control architecture to manage
all aspects of the system. Two major subsystems, the meeting process tools control

function and the information/methods control function contain a variety of specific
tools and activities. The meeting process/tools support the role of the facilitator and

the general conduct of the meeting. The information/methods tools contain

databases, domain specific knowledge bases, CASE tools, and general tools to assist
the designer. These specific functions are depicted in Figures 3 and 4.

| Information /Methods Manager I

11

Information/
—p| Methods |-
* * Manager i J
Domain Domain Problem
General Specific Specific Specific
Analysis Analysis Knowledge Data
Tools Tools Bases Bases
- Transpontation
b MAUT Traffic Simulations
— Simulations g:::g Systems
Linear
[Programming - Software & Systems Engineering
+ Spreadsheets Analysis & Design
Structured Analysis &Design
OOA & 00D
KBRS
Prototyping Tools
Cost Estimating Tools
COCOMO
COSTTOOL
REQSPERT
Code Generators
Testing Tools

Contiguration Management Tools
Documentation Tools

Figure 3. Information/Methods Manager Functions

As may be seen from Figure 3, there are a number of general analysis tools that may
be utilized such as, MAUT, general simulation packages and spreadsheets. Domain
specific tools are included in the system configuraton as appropriate; for example,
when the CSCW environment is used in the requirments engineering domain,
tools such as COCOMO, OOA, Code Generators, and KBRS are utilized. These are
intended to support the information methods/manager in the development of
information to assist in the understanding of the domain problem. Domain specific
analysis tools are limited to two domains in the initial environment due to the fact
that these are the only areas that have been developed to date. These two domains
are in transportation systems analysis, specifically the regional mobility domain, and
systems level software requirements domain. The domain and problem specific

12

knowledge- and databases are also limited at this time to regional mobility and the
Howitzer Improvement Program (HIP) of the U.S. Army.

I Process /Tools Manager I

Meeting
Process/Tools
I r Manager y
Facilitator Meeting Meeting Decision
Tools Perspective Purpose Meeting
Manager Manager Manager Manager

Network Configuration - Rational Actor | Deds@on Making ; .
Control of PublgigrScreen - Organizational [Decision Preparation —| Working

T

T

L Precedence of Users - Bureaucratic Information— =} Meeting

L Meeting Activity - Societal - Co-Authoring— = | Manager
- Legal

L Agenda Tools - Garbage Can

- Collective Enquiry Methods

- Voting Tools

- Alternative Evaluation Tools
Documentation Tools

v

Figure 4. Process Tools Manager Functions

The process/tools manager activities depicted in Figure 4 indicate controls on the
nature and character of the meeting. The facilitator has command of a number of
configurations that are available for the presentation mode. These include the
network configuration control, control of the public screen, agenda, and method of
evaluation. The other aspects of the meeting process/tools manager are intended to
keep records of the actual conduct of the meeting (or session) for later use in the
understanding of how decisions were reached and the process dynamics of the
meeting. For example, if the meeting was billed as a decisionmaking meeting and
was to be conducted in a rational actor mode, but moved to an information sharing
meeting with an organizational perspective, this information would be recorded
and the outcome of the meeting analyzed to determine if the will of the group was
recognized or compromised or in what way the perspective may have affected the
outcomes.

13

I Moving to an additional level of detail, Figure 5 indicates the functions of the

Decision Meeting Manager.

I Decision Meeting Manager I

>

Meeting Process/
Tools Manager

Meeting Purpose > Decision
Manager Meeting
Manager
Meeting Decision
Type Strategy
Manager Manager
Consensus Satisficing
Majority Rule Mixed Scanning
Minority Rule Optimir ..,

Inquiring
System
Manager

Figure 5. Decision Meeting Manager Functions

L

Lockean
Leibnitzian
Kantian
Hegelian

T r 1v 7

Singerian

The Dedsion Meeting Manager receives input from the Meeting Purpose Manager.
In this component we track the type of meeting, the decision strategy actually used,
and the inquiring! system employed by the users, and this information is returned
to the Meeting Process/Tools Manager.

1 The Inquiring Systems include the following [Churchill, 1971]:

Lockean: Data Driven, complementary alternatives

Leibnitzian: Theory Driven, complementary alternatives

Kantian: Data and Theory Driven, complementary alternatives

Heglian: Data and Theory Driven, conflicting alternatives

Singerian: Data and Theory Driven, complementary and conflicting alternatives

14

Within the environment, all information is converted to objects managed by an
Object Management System. The architecture for the Object Management System is
shown in Figure 6.

The Object Management System consists of two divisions, an Object Manager and
the Object Database. The Object Manager contains the facilitator's window, template
screens for ease of producing additional objects, and a menu bar for ease of
navigation. It is capabable of creating and modifying objects, creating and
maintaining version control, browsing through objects in any order or sequence,
dynamic presentation, and annotation. The Object Database contains all
multimedia objects, various application programs, the Resource Information
System, and the Systems Level Software Requirements System.

This architecture provides us with the necessary systems for deployment and
operation of the CSCW platform. The hardware for the platform is a MacIntosh fx
with a significant number of peripherals. The hardware in use presently for the
CSCW environment is shown in Figure 7. It shows the basic components to
implement the architecture. The workstation was constructed with off-the-shelf
components. Software was specifically written to support the four basic
requirements engineering functions that are necessary for the environment. The
basic approach that we have taken is to support highly interactive activities that
involve users and designers in all appropriate activities.

Capabilities include the use of video boards for analog video signals, an audio
system controlled by the computer, various standard input capabilities including a
keyboard, mouse, scanner, and digitizing tablet. Video signals are controlled
through use of an Optical Disk Recorder/Player (Write once, Read Many) system.
Monitors include a large 37 inch color monitor and a 19 inch color monitor. Other
monitors include the standard MAC monitor and a 19 inch black and white
monitor. Outputs may be sent to a color printer, standard postscript printer, tape
backup unit, floppy disks, or permanent and portable hard disks.

15
Object Management System
Object Manager Facilitator's
Window
Capabilities: Template Screens
Create/Modify Objects
Version Control Menu Bar
Object Traversal
Dynamic Object Presentation
Object Annotation
A
Y <>
Object Database HT
. — y h
Video Regional Mobility System p e
Audio References e s
Text Experts r a
Graphics Keywords t u
Multimedia Objects Resource information e r
System X U
MacDraw t s
Excel Howitzer
Word Improvement
Supercard Program
Superpaint
HyperCard Systems Level
Other Software Requirements
Application Objects System

Figure 6. Platform Object Management System

16

i

[t

\J

D

4
(

GHEHE S0RpAU] O/ 0SPIA

3
'4d

il skt

mmsasad

=P soepou] Y[EUaYg

o m

RIQWED) OIPIA

SIAUD ¥sip , C'¢ pue ,CT'S
wapow pneq 00bT
ndynQ/ndu] uonBUIqUIO)

eRwo) [endiq
uoniugodas 1a0ereyd [edondo
Jouueds odew]
e
19(qe1 Burzni3ip/uad

Jozm31p opny

omzoZ\Eaco»ox
induj “

mun dnydeq ade [eUIdIXg
DIAP WAOM

1310931 ISIPOIPIA I

<

I0MUOIN

uedsamN L —
=

———————g }1un Adodprey 10[0)

1owid 1dudsisod m

indino oarAg a\
JOIUO 1010D) .£1 N

WO¥ a0 indino

aoeds ys1p auij-uo g0

INVY 9INOC

Figure 6. Hardware Configuration for the CSCW Platform

]

n___

17

Applications

Applications of the CSCW environment have been limited to research and
demonstration efforts at this time. We have applied the system to existing
requirements to ascertain if problems in these existing requirements remained after
completion of the requirements engineering phase of the software development life
cycle and whether or not we would have been able to detect any such problems and
correct them. We will review the requirements of a very large-scale system that was
prepared by the U.S. Army. Then we will look at our present research work
concerning the development of a CSCW environment for purposes of providing a
group decision support system for assistance in the resolution of problems related to
traffic mobility and congestion.

Software Requirements Analysis of the U.S. Army Howitzer Improvement Program
(HIP)

The hypermedia workstation concept was utilized to examine, analyze, and manage
software requirements developed for the HIP program. The requirements supplied
include the ROC, A-Specifications, B-Specifications, and C-Specifications. Software
requirements for the HIP program were developed in the standard format utilizing
text and graphic presentation formats. The requirements process was conducted in
the traditional way of users getting together to prepare a set of software
requirements based on the perceived need of the ultimate user, in this instance the
U.S. Army Artillery. For purposes of analyzing the requirements statements for
presence of imprecision, ambiguity, conflict, and overspecification, we worked in
the CSCW environment to capture the requirements and then organize and
synthesize them for purposes of reduction and management of risk associated with
statements that contained problems.

We were able to demonstrate that there were many instances of imprecision,
ambiguity, overspecification, and conflict remaining in the specifications after these
had been completed [Samson, 1989]. While the analysis involved only text and
graphics information, the users could have had access to multimedia information
that would have aided in the spatial visualization of the ways in which the
improved system would have functioned. It is this added dimension, plus the
additional analytic tools available in the CSCW environment that leads us to the
conclusion that requirements could have been generated that would have had fewer
flaws than did the existing ones.

18

CSCW Environment Utilization in the Resolution of Issues in Mobility and
Congestion Problems

Mobility problems plague all major metropolitan areas of the United States (and
those of the rest of the world as well). These problems are characterized by long and
slow commuting times from residences to places of work and from residences to
locations to transact business. While the problems appear to be greatest during
commuting hours, the acceleration of the problem during the middle of the day
around shopping centers and commerdial sites continues to grow.

It has been said that at the end of nearly every trip in an automobile, an economic
transaction takes place. This could come in the form of a purchase at a shopping
mall, buying lunch, or delivering a pizza. The estimated economic loss due to
congestion has been placed at billions of dollars per year. While no hard data exists
on this particular figure, the importance of the loss of economic activity certainly
places this problem near the top of the agenda for the U.S. Department of
Transportation. Thus, there are many groups, constituents, and agencies that have a
stake in the resolution of congestion issues and better ways must be found to assist
in the resolution of these problems that includes all interested groups.

The resolution of these problems has proved to be extremely difficult, tedious, and
time consuming. Analyses of potential solutions of complex problems may take
well over six months to develop and present, and, when the analysis is complete,
particpants may find that a new cast of players is now interested and that the
information has changed. This means that there is an immediate need for a CSCW
environment that is able to provide solution information in a timely manner so
that real consensus can by built around a given dedision path.

The approach that we have taken to assist in the resolution of these problems has
been to propose a CSCW workstation that will aid in

* consensus building

* resource allocation

¢ crisis management

* policy setting, planing
* resource acquisition
¢ implementation

* design

e education

19

By definition it is our position that CSCW activities encompass group decision
support technologies. These group decision support technologies include

e inter- and intra-group communications
e information sharing

* negotiation

e conflict management and resolution

Each of these factors are present in the congestion problem formulation and each
must be addressed for successful problem resolution.

The approach that we have taken after receiving the definition of a specific problem
domain has been to build a representative scenario about the problem. For example,
we obtain maps of the area under consideration and digitize these for storage and
access in the environment, utilize video cameras to record the current congestion
situation as a function of time of day and day of the week, obtain all planning
materials that are related to the problem area and its nearby areas, obtain all
pertinent traffic data, and get any existing forecasts as to any anticipated changes that
may be expected to occur. This information is digitized and placed in the scenario
database for organization, synthesis, presentation, and retrieval. If there are existing
simulations that have been run, we get these and as much data as possible to operate
accepted simulation models. In sum, we attempt to obtain all the information that
we can possibly get within the time constraints available and enter this information
in the workstation. It is then ready for the group meeting that will be conducted to
examine alternatives and work to reach a consensus concerning possible solutions
to the problems.

Once information gathering and assessment has been accomplished, the concerned
parties are invited to attend working sessions that are conducted by a professional
facilitator who is skilled in conflict resolution techniques. The facilitator manages
the use of the CSCW environment for purposes of bringing all participants the same
level of information concerning the problem. The sessions begin with the meeting
chair introducing the problem as it is presently understood and additional
information is requested from the participants. A review of existing information is
conducted and all are asked to verify that this information is correct and
representative of the situation. Any modifications must be agreed to by group prior
to modification of the databases. Following this introductory activity, the facilitator
begins the process of moving the group toward consensus and problem resolution.

This process may involve all of the information that is stored relevant to the
current situation or may require restructuring and synthesis of information to
provide differing views. It may also require that real-time simulations be run to
clarify specific potential consequences of proposed solutions. Whatever the
requirement, the facilitator is able to bring to the group any of the information or

20

the tools to manipulate this information that is available in the system to assist the
group to reach a consensus on the problem solution.

An overview of the way the CSCW system is utilized for an information query in
the Transportation System Regional Mobility Domain is shown graphically in
Figure 8.

initiate request

>
users > o work with objects/
- Facilitator] J
provide A create/control
4 issue resentations
information

Object Management
System

search for
information/
load information

Hypertext

Object Thesaurus

interaction

Spreadsheets
(ﬁ N\ Video
'] Graphics
Presentation of objects Audio
Text
using object manager Omr.
; access object
¥L)y applications

Figure 8. Resource Information Center Query in the Transportation System
Regional Mobility Domain

The process shows that a user makes an input or forms a query to a facilitator. The
facilitator utilizes an electronic thesaurus to point to the information location.
Through an iterative process the facilitator continues to refine the query until the
information sought is determined to meet the needs of the user. Following this the

21

facilitator develops the presentation interactively and iteratively with the user until
the final form is accepted by the user. Then, depending upon the way in which the
user intends to utilize the information, a presentation is developed and given to the
audience selected by the user. This may be in the form of a bibliographic listing, a
list of available experts in a specific field, combinations of these, or as a formal
presentation to a group meeting for CSCW purposes.

A more detailed view of the functioning of the Resource Information Center
processes is shown in Figure 9.

Resource Information Center

Information Center

Object Manager/Object Database
Session Execution
Navigator Provides Manipulation, Storage, Configuration of Object
Management of following:
e
Request Video Objects
Execgtlon Sound Objects i
of Object Text Objects
Simulation Objects
Graphic Objects
Spreadsheet Objects
lSearch for Ref Expert Datab E:Z;ftsi:)n
Additional eference/Expert Database of Object
Refterences F Abstract/Reference associated
Information ‘ with Abstract

Figure 9. Overview of the Resource Information Center Functions

In this view of the operation the CSCW environment, the objects in the Object
Manager are all related to the regional mobility domain. The facilitator interacts
with the system via the sessions navigator to select objects, review these with the
user, search for additional references, keywords, or experts in the domain and then
present this collection of objects to the user. Other domains are constructed as
needed to support the CSCW environment.

Conclusions

A Computer Supported Cooperative Work environment has been developed that is
able to incorporate the important aspects of hypermedia capability. We have been
able to deal successfully with very large amounts of highly complex data from a
variety of media sources. We have been able to incorporate video, audio, text, and
graphics into a single workstation and provide for the capture, organization,
synthesis, and presentation of this material. We are able to take advantage of the
model based management system features of the environment to run simulation
models, analytic models, and group results together for presentation. We have been
able to provide assistance for a facilitator in carrying out the process of consensus
building.

Sessions with groups working on relatively well formulated problems have shown
that the CSCW environment is a powerful adjunct to the facilitator in attempts to
reach consensus. It appears that the fact that all parties are dealing with the same
information and have equal ability to have the information organized, reorganized,
synthesized, and re-synthesized on demand facilitates the task of moving a group
toward consensus. Clearly, the CSCW environment is not a substitute for the
facilitator nor will it be any better than the inherent quality and quantity of relevant
information. However, it does appear to be able to enhance and extend the basic
tools used by the facilitator in guiding the group through the consensus building
process.

The tests that have been run on the CSCW environment to date have not been
adequate to reach any definitive quantitative conclusions concerning

improvements in either software requirements engineering processes or for
providing assistance to a facilitator for purposes of consensus building. Our research
and development goals and objectives over the next several months are to develop
several more robust scenarios with regard to mobility and congestion and place the
CSCW environment to test as to its efficacy in assisting facilitators.

References

Aiken, P, 1989, A Hypermedia Workstation for Requirements Engineering (Ph.D. dissertation), George
Mason University, 1989.

Andriole, S. |, 1986, Handbook for the Design, Development, Evaluation, and Application of
Interactive Military Decision Support Systems, Marshall VA: International
Information Systems, 1986.

HyperCard User’s Guide, 1988, Apple Computer, 1988

Aseltine, |, Beam, W.R,, Palmer,].D., Sage, A.P., 1989, Introduction To Computer Systems: Analysis,
Design and Application, John Wiley & Sons, Inc., New York, 1989.

Beam, W.R, Palmer,].D., and Sage, A.P., 1987, "Systeras Engineering for Software Productivity,” JEEE
Transactions on Systems, Man, and Cybernetics, Vol. 17, No. 2, March/April 1987.

T

.

23

Boar, Bernard H. 1984, Application Prototyping: A Requirements Definition Strategy for the 80s, New
York: Wiley-Interscience, 1984.

Bolt, R. A, 1984, The Human Interface: Where people and computers meet, Belmont, California:
Lifetime Learning Publications, 1984.

Brooks, F. P., 1988, "Grasping Reality Through lllusion - Interactive Graphics Serving Science,”
Proceedings: ACM/SIGCHI Conference on Human Factors in Computing Systems May
1988, pp. 1-10.

Bush, V., 1945, "As We May Think," Atlantic Monthly July 1945, pp. 101-108.

Churchman, C., 1971, The Design of Inquiring Systems: Basic Concepts of Systems and Organization,
Basic Books, Inc.,, New York, 1971.

Conklin, J., 1987, "Hypertext: An Introduction and Survey,” IEEE Computer September 1987, 20(9):1741.

Engelbart, D., 1962, Augmenting Human Intellect: A Conceptual Framework Summary Report, Stanford
Research Institute, on Contract AF 49(638)-1024, October 1962, 134 pp.

Goodman, D., 1987, The Complete HyperCard Handbook, New York: Bantam Books, 1987.

Gookin, D., 1989, The Complete SuperCard Handbook, Compute! Publications Inc., Rador Pennsylvania,
1989

Gray, S. and Shasha, D., 198" " npirical guidance for the design of nonlinear text systems,” Behavior
Research Me*" s, Instruments, and Computer 1989 21(2):326-333.

Halasz, F. G., 1987, "Reflections on Notecards: Seven Issues for the Next Generation of Hypermedia
St »tems” Hypertext ‘87 Papers, pp. 345-366.

Hogan, T. ar.d Swaine, M., 1988, "The Great HyperCard Debate,” Bay Area Computer Currents October
18-October 31, 1988, 6(11):38-43.

Martin, J. and W.T. Tsai, 1990, "N-Fold Inspection: A Requirements Analysis Technique,”
Communications of the ACM February 1990, 33(2):225-232.

Nelson, T. H., 1987, Computer Lib, Redmond, WA: Microsoft Press, 1987

Palmer,].D.. 1987, "Expert Systems Use in Software Productivity,” Proceedings, 1987 IEEE Conference on
Systems, Man, and Cybernetics, Washington, D.C., October 1987.

Palmer,].D., 1987, "Uncertainty in Software Requirements,” Large Scale Systems, Vol. 12,1987, pp. 257-
270.

Palmer,].D., 1988, "Impact of Requirements Uncertainty on Software Productivity,” Proceedings,
Twenty-seventh Annual Technical Symposium, Washington D.C. Chapter Association
for Computing Machinery, June 1988, pp. 15-85.

Palmer,].D., and Myers, M., 1988, "Knowledge-based Systems Application to Reduce Risk in Software
Requirements,” Proceedings, Uncertainty and Intelligent Systems, 2nd International
Conference on Information Processing and Management of Uncertainty in Knowledge-
Based Systems. Urbino, Italy, July, 1988, pp. 351-358.

24

Palmer,].D., Sage, A.P., 1988, "Cognitive Models and User Interfaces for an Advanced Software
Systems Engineering Development,” Revue Intenationale de Systemique, Vol. 2, No.
2,1988, pp. 195-214.

Palmer,].D., Samson, D., Myers, M., 1988, "Resolving Risk in Software Requirements Definition,”
Proceedings, National Conference on Software Reliability and Testing, Crystal City,
Virginia, November 1988, pp. Gl - G28.

Palmer, J.D., 1990, "Information Systems and Software Productivity,” Concise Encyclopedia of
Information Processing, McGraw-Hill Publishing Co., Inc., New York, 1990.

Palmer, J.D., 1990, "Software System Requirements Engineering for Command and Control," in
Advanced Technologies for Command and Control Systems Engineering, S. Andriole,
Ed., AFCEA International Press, Fairfax, VA, 1990.

Palmer,].D., 1990, "System Level Requirements Specifications for Command & Control: An Approach to
Risk Management & Volatility Reduction,” in Advanced Technologies for Command

and Control Systems Engineering, S. Andriole, Ed., AFCEA International Press, Fairfax,
VA, 1990.

Palmer,].D. and Aiken, P. H., 1990, "A Hypermedia Environment Supporting the Development of
Software Requirements,” submitted to IEEE Software, 1990.

Pozeshy, M. T. and Mann, M. K., 1989, "The US Air Traffic Control System Architecture," Proceedings of
the IEEE, November 1989, 77(11):1605-1617.

Sage, A.P., and Palmer,].D., 1990, Software Systems Engineering, John Wiley & Sons, Inc., New York,
1990.

Samson, D., 1988,A Knowledge-based Assistant for Software Requirements Analysis, PhD Dissertation,
GMU, 1988.

Samson, D., 1989, "EXTEND: Automated Assistance for Test Plan Generation,” Sonex Enterprises, 1989.
SuperCard User Manual, 1989, Silicon Beach Software, 1989.

Webster, D. E., 1988, "Mapping the Design Information Representation Terrain,” IEEE Computer,
December 1988, 21(12):8-23.

Woods, D. A., 1984, "Visual momentum: A Concept to Improve the Cognitive Coupling of Person and
Compter,” International Journal of Man-Machine Studies 21:229-244.

WHITE PAPER
An Informal Approach to Developing
an Environment for
Requirements Capture and Refinement

Elizabeth S. Kean
Rome Laboratory
Griffiss AFB NY 13441-5700

I. Introduction

The definition of a requirement is "something that is required” or a "necessity". In the system
and software engineering world, requirements specifications are precise statements of need intended
to convey some understanding about a desired result. They describe external, user visible
charactenistics of the needs as opposed to internal construction of the solutions to those needs.
They also specify the constraints placed on what is needed. For example, performance, reliability,
safety, cost and schedule are typical constraints.

Requirements specifications of large command, control, communications and intelligence (C3I)
systems are often ambiguous, inconsistent and incomplete. The verification and validation of the
requirements for these systems is a manual process. Studies have indicated that as many as fifty
five percent (55%) of the errors reported during the life of a C31 system occur in the requirements
phase. If the errors go undetected until later phases, the cost to correct them increases significantly.
As a result, individuals involved in the development of system and software requirements have
identified the importance of careful requirements analysis activities and various disciplines for
requirements specification, verification and validation have emerged. Rome Air Development Center
(RADC) has been conducting a research and development program in requirements engineering
since 1980. Its goals are to develop methodologies and supporting tools for problem analysis,
specification and validation.

[I. The Model

One of the first efforts of the RADC program was to convene a panel of requirements engineers
and researchers with the charter to develop a long range plan for work in this area. The panel
developed a process model (see Figure 1) which goes beyond existing models in its characterization
of requirements engineering. It provides a detailed description of the fundamental activities
occurring during requirements engineering, but avoids *prescribing specific methods for
accomplishing them. It does not separate the analysis, specification and validation of requirements
into discrete operations, but instead elaborates on how analysis and specification are used together
from the very outset of requirements engineering, on how static analysis and validation cause the
entire process to be highly iterative and on how validation is related to design activities, naturally
occurring before the commitment to detailed design and implementation activities. The model
recognizes three basic activities being performed: eliciting requirements from the various individual
sources of a system's requirements, specifying them and insuring their consistency; insuring that
the needs of all users are self-consistent and feasible; and validating that the requirements so derived
are an accurate reflection of user needs.

The model begins with a description of requirements analysis activities. Requirements originate
in the minds of the people who will eventually use the system they are trying to characterize. Ininal
requirements are usually thought of as "wish lists”, because they may be totally or partially
infeasible, they typically exhibit the undesirable properties of being inconsistent, incomplete,
ambiguous, untestable, and they are undocumented. Therefore, the first activity in the requirements
engineering process is to document and refine each wish list. This tmplies that all relevant
viewpoints (i.e., users of the target system, other systems which must interface with the target
system or environmental factors) must be identified and organized by function. All of the important
activities and data of each viewpoint must be described to a satisfactory level of detail. Finally, all
of this information must be analyzed for self-consistency. For example, if the requirements are
being represented as data flows, then all process inputs must be produced somewhere, all naming
conflicts must be resolved, levels must be balanced, etc.

The results of these efforts are called “goals” and are the first documented statement of user's
needs. They typically are high-level in nature, specific to the relevant problem domain and stated in
the user's own terminology. Goals are still relative to the user viewpoint which they represent;
they may still be infeasible; and they probably conflict with the goals represented by other
viewpoints. However, within each viewpoint goals are self-consistent and unambiguous as a result
of several iterative analyses.

Once consistency of the goals within each viewpoint is established and verified, the next step is
to integrate the goals across the various user viewpoints thereby resolving the conflicts among
them. User scenarios, whcih can be thought of as dataflow threads throughout the system, are
typically relied on to identify the activities and data which are the basis for integrating goals which
involve several viewpoints. The ensuing integration analysis demands that all involved viewpoints
agree on which viewpoint will accept responsibility for an activity and which will provide the data
necessary to carry it out. Consistency checking is an important part of this process. Finally, the
non-functional requirements, such as performance and reliability issues must also be considered and
stated. The resulting requuements then, are an unambiguous, consistent, feasible subset of the
goals which describe a number of possible solutions. The question now remaining is whether or
not they are what the user actually intended.

The requirements engineering process model provides several options for verifying that the
documented requirements meet the user's needs. One is dynamic analysis of the requirements
themselves. The intent is to "animate” the requirements by providing sufficient functionality to
enable the requirements engineer to perform a "walkthrough" of requirements with the user. The
walkthrough is an exercise conducive to exposing misunderstandings, omissions and interface
problems. The dynamic analysis utilizes the activities derived during the second step of the
requirements analysis and activates them with actual data which is representative of classes of
system input. An activity is “animated” by utilizing algebraic and logical functions to represent
the activity or by actually programming the data transformation which it represents. The
walkthrough typically produces an interchange between user and requirements engineer which
results in the elicitation of valuable user commentary and the validation of requirements.

The remainder of the options prescribed by the process model involve design of critical system
components. The resulting partial system designs are then made the subject of either analytical
studies or of prototyping. The analyses focus on mathematical modeling of system performance
and reliability. Various models may also be utilized to study the cost and schedule risks associated
with a particular system development. Prototyping involves the construction of user interfaces,
actual system functions and discrete event simulation models. Behaviors exhibited by the resulting
user interface and functional prototypes are validated through actual usage by the user.

Performance modeling results are usually analyzed by individuals skilled in this discipline.

Regardless of which path through the model is followed or if all are pursued simultaneously,
the outcome is a new appreciation of user needs which invariably leads to a re-evaluaton of the
requirements as previously stated. This activity in the process model leads to a new set of
requirements which once again is the subject of analysis and validation activities. This process is
repeated until users, requirements engineers and designers are satisfied that the requirements and
partial designs have reached 4 maturity which permits development of the target system to proceed.

III. Process Model Tools and Methodologies

The process model, by itself, is a step forward in the specification, verification and validation of
requirements. However, tools and techniques that will automate this process are required. There
are two approaches that can be taken to develop methods and tools to support the process model.
The first approach would be to develop a single formal language for expressing goals,
requirements, and solution architectures, all which can reference their domain model. Within this
approach, there will be the ability to formally interpret the goals and requirements as predicates
against the solutions and their behaviors.

The other path, more informal than the first, involves gathering and integrating existing 10ols
and methods to support the requirements engineering process model. Within this approach, there
are partially formal characterizations of the problem domain, functional and non-functional
requirements, interface protocols, and solution architectures. There is support for organizing the
problem domain, developing a functional description of the system, building executable models,
interface models, and performance models.

IV. The Informal Approach - Requirements Engineering Environment

In order to provide tools and aids to support the model in the neas term, RADC is in the process
of developing an environment that follows the informal approach with the plan to evolve the formal
language approach over the next several years. The approach to developing this environment,
called the Requirements Engineering Environment (REE), is to integrate existing methodologies and
tools into a single unified methodology for requirements analysis, specification and validation. The
mzjor effort here is the design and implementation of a common data repository and user interface
for the tools. The common data base will utilize an object manager to store all information which is
not exclusively used by the tools, thereby allowing direct sharing of information among all tools.
The user interface will provide uniform, object oriented access mechanisms to the tools. The initial
tools to reside in the REE are tools in which RADC has been involved in the development and
enhancement of, and which support a subset of the activities described in the process model
including requirements analysis, specification, prototyping and validation. Figure 2 identifies the
activities supported by the initial methodologies and corresponding toolset and the following is a
brief description of the functionality of each methodology/tool to demonstrate how it supports the
process model.

Controlled Requirements Expression (CORE) is a requirements definition and analysis method
whose procedures explicitly support the notion that requirements originate from several, diverse
viewpoints of how the same needed capability will be used. CORE organizes these viewpoints as a
functional hierarchy. CORE procedures prescribe data flow techniques to elaborate the viewpoints.
Logical data relationships are described using a notation similar to that used in the Jackson System
Design. Self-cco--istency of each viewpoint is a goal of the CORE method and is supported by
specific checkir rocedures. Transaction analysis is used to resolve conflicts among the various

viewpoints. Constraints analysis (e.g., performance, reliability) is also an explicit step in the
CORE method.

The Analyst, a proprietary tool developed by Systems Designers, Inc. and enhanced by RADC,
is an expert system for requirements analysis and specification applying the CORE method. It
provides documentation and analysis tools which support and enforce the viewpoint hierarchy and
data flow rules of the CORE method. Capabilities include diagram construction, management and
consistency checking in support of CORE analysis activities and word processor support for
textually oriented aspects, e.g., describing project objectives, performance constraints, etc. Analyst
provides an intelligent "help facility” which understands project progress in terms of CORE objects
(e.g., diagrams) and strategically guides the user toward project completion in accordance with
method rules. Analyst also implements dynamic analysis of requirements providing tools which
support the requirements engineer in conducting a user "walkthrough" of typical system
transactons.

The Rapid Prototyping System (RPS), developed by Martin Marietta, is a collection of
methodologies and supporting tools which support the activities of building, executing and
analyzing prototypes of computer based systems for the purpose of improving understanding of the
requirements for those systems. The RPS consists of user interface and computer system modeling
capabilities which collectively provide an integrated environment for rapidly prototyping critical C3I
functions. These capabilities focus on prototyping the high-risk, high payoff aspects of C3I
systems such as the user interface, system communications, database management, operator/analyst
work flow and system performance.

The RPS user interface modeling tools provide the user the capability to quickly generate a
demonstration or prototype of the user interface of a C3I ;ystem. A high level graphical editor
provides the capability to draw the graphics for the user interface and menu driven templates, allow
for functionality to be tied to the graphics. The RPS tools generate the source code automatically,
provide for the compilation and linking of the source code into an executable demonstration, and a
mechanism for invoking the demonstration. The prototype developer may add any additional
capabilities to the demonstration by simply coding and linking into the automatically generated
source code. Once the demonstration is developed and presented to the user, comments and
feedback can be easily incorporated into the demonstration until the demonstration represents the
requirements for the user interface of the system. Demonstrations can be developed that provide
both dynamic and static user interface displays.

The RPS provides a template-driven interface to a performance prediction capability which
enables the prototype developer to rapidly construct discrete event simulation models to assess the
following system performance drivers: computer hardware and software configuration;
operator/analyst terminal work flows; allocation of system functions to system resources; and
computer network configuration. Lastly, the RPS provides a graphical data modeling component
to allow the prototype developer to quickly construct different logical views of a relational data base
and to assess their potential for satisfying user query/update reeds and system response
requirements.

The Very High Level System Prototyping Tool (PROTO), developed by International Software
Systems, Inc (ISSI), is a high-level specification and prototyping language with integrated tools
supporting specification manipulation and a library of reusable specification components. PROTO
includes a methodology for functional prototyping, in which the logical capabilities of a proposed
system are modeled. PROTO is an executable specification language and so complete or partial
specifications can be validated through interpretation (i.e., provided with inputs so that output

behavior may be examined). PROTO implements a data flow specification model. The specifier
creates a graphical representation of a target system or subsystem. This data flow graph defines the
system'’s processing activities, its inputs and their origins, the outputs which are produced and
which processing activities utilize those outputs. The algorithmic details occurring within any
processing activity may be specified at that level or may be postponed to some lower level of
abstraction, thereby providing the specifier with an iterative, step-wise refinement methodology.
Finally, at some level in the specification an activity's processing must be detailed. For this the
specifier has three options. A behavior language internal to PROTO may be used to specify the
algorithms which transform and pass data from input ports to output ports. If the processing
becomes complex, a programming language, such as C, may be employed. However, both of these
programming approaches are time-consuming and costly. Hence, the PROTO library of reusable
components may be browsed, using keyword searching techniques, to locate components which are
appropriate to the current process development. The located component may be better understood
through the use of documentation maintained internally by PROTO and by executing the
component. Finally the component may be integrated into the evolving specification using the same
graphical interface being used to develop the specification.

The REE common database will provide an object oriented data repository for information that
will be used throughout the process model activities. The purpose of the common database is
twofold. First, the data generated by developing the CORE, RPS, and PROTO prototypes will be
stored in a centralized location. This will allow other tools the ability to extract the information for
document preparation, requirements traceability, etc. Secondly, the three existing tools have some
overlapping capabilities. For example, the CORE Analyst has the capability to animate a set of
transactions of the system under development, while PROTO provides a more sophisticated
mechanism for executing specifications. The REE database will provide a mechanism to store the
information generated by the CORE Analyst in the database in a format acceptable to the PROTO
tool. Similarly, all data that is determined to be sharable between the three tools and potentially by
new tools will reside in the REE common database and mechanisms for sharing will be developed.

The REE database is designed to be extensible, such that new classes can be added to the data
base as new tools are integrated into the environment. For example, one of the major areas of the
process model in which the REE does not contain a methodology or set of tools is in the area of
performance, reliability. cost and risk analysis. Work is in preparation to enhance the REE to
include a set of knowledge based tools to model requirements using several different forms of
representation and store them in a knowledge base whose self-consistency is maintained by
supporting tools.

V. Conclusions

The Requirements Engineering Process Model provides a mechanism for generating validated
anc verified requirements that are unambiguous, consistent and complete. The Requirements
Engineering Environment provides us with a near term solution which provides an informal
approach to the generation of these validated requirements using the methodology of the process
model. Further research is needed in the formal language approach. An initial RADC effort, which
sought to exploit the features of an existing logic programming language, Prolog, to capture
requirement semantics in a conceptual model, began in the fall of 1987. Its objectives were to
determine the feasibility of modeling a system's operational requirements within the context of its
application domain and of analyzing the resulting knowledge bases to determine the impact of
various real world scenarios on the system model. These results are useful for making early
assessments of system design options. The Prolog language proved to be sufficiently powerful to
model important aspects of an air defense domain thereby establishing the feasibility of this

approach. However, an immature Prolog development environment made model implementation
difficult, especially the construction of a user interface. Future work will further develop these kind
of conceptual modeling techniques.

—

REFERENCES

[1] B. W. Boekm, "Software Engineering,” TRW Defense Systems Group, Redondo Beach,
CA, Tech. Rep. TRW-§5-76-08, Oct. 1976.

[2] P. Daley, et al., "Rapid Prototyping System - Users Manual”, Rome Air Development
Center, Griffiss AFB NY, Tech Rep., June 1988.

[3) A. Ege et al,, "Requirements Engineering Environment - System Specification”, Rome Air
Development Center, Griffiss AFB NY, Tech Rep., January 1990.

[4] M. Jackson, System Development. New York, NY: Prentice-Hall International Series in
Computer Science, 1983.

[5] E. Kean, et al., "Rapid Prototyping - A Methodological Approach for Prototyping User
Interface Requirements”, Rome Air Development Center, Griffiss AFB, NY, Tech. Rep.
RADC-TR-89-234, October 1989.

[6) M. Konrad et al., "RADC System/Software Requirements Engineering Testbed R&D
Program,” Rome Air Development Center, Griffiss AFB, NY, Tech. Rep. RADC-TR-88-75,
1988.

[7] M. Konrad et al., "VHLL System Prototyping Tool - Users Manual," International Software
Systems, Inc., Austin, TX, Tech. Rep., June 1987.

[8] J. Kramer et al., “TARA: Tool Assisted Requirements Analysis,” Rome Air Development
Center, Griffiss AFB, NY, Tech. Rep. RADC-TR-88-28, July 1988.

[9] G. P. Mullery, "CORE - A Method for Controlled Requirement Expression,” Systems
Designers Limited, Camberley UK, Tech. Rep., Feb. 1979.

[10] W. Rzepka, "A Requirements Engineering Testbed: Concept, Status and First Results” in
Proceedings 22th Hawaii International Conference on System Sciences , Jan. 1986, pp. 339-347.

UNLIMITED, UNCLASSIFIED

SECURITY QLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Unclassified

la. REPORT SECURITY CLASSIFICATION

1b. RESTRICTIVE MARKINGS
None

N/A

2a. SECURITY CLASSIFICATION AUTHORITY

N/A

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

3. DISTRIBUTTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

CMU/SEI-91-TR-30

4. PERFORMING ORGANIZATION REPORT NUMBER(S

5. MONTTORING ORGANIZATION REPORT NUMBER(S)
ESD-TR-91-30

6a. NAMYI OF PERFORMING ORG

Software Engineering Institute

ANIZATION

6b. OFFICE SYMBOL
(1f applicable)

SEI

7a. NAME OF MONITORING ORGANIZATION
SEl Joint Program Office

Pittsburgh PA 15213

6¢c. ADDRESS (City, State and ZIP Code)
Carnegie Mellon University

Tb. ADDRESS (Cnty, State and ZIP Code)

ESD/AVS
Hanscom Air Force Base, MA 01731

ORGANTZATION

8a. NAME OFFUNDING/SPONSORING

SEIl Joint Program Office

8b. OFFICE SYMBOL
(if applicable)

ESD/AVS

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Pittsburgh PA 15213

8c. ADDRESS (City, State and ZIP Code)
Camegie Mellon University

F1962890C0003

10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO. NO '
63756E N/A N/A N/A

I1. TITLE (Include Secunty Classification)
Requirements Engineering and Analysis

12. PERSONAL AUTHOR(S)

SE! Requirements Engineering Project

13a. TYPE OF REPORT
Final

13b. TIME COVERED
FROM TO

15. PAGE COUNT
202

14. DATE OF REPORT (Yr., Mo., Day)
December 1991

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

18. SUBJECT TERMS (Continue on reverse of necessary and identify by block number)

FIE GROUP SUB. GR Software requirements, requirements engineering, mission-critical
systems
19. ABSTRACT (Conunue on reverse if necessary and 1denufy by block number)

Inadequate, incomplete, erroneous, and ambiguous system and software requirements are a major
and ongoing source of problems in systems development. These problems manifest themselves in
missed schedules, budget excesses, and systems that are to varying degrees unresponsive to the
true needs of the sponsor. These difficulties are often attributed to the poorly defined and ill-under-
stood processes used to elicit, specify, analyze, and validate requirements.

The Software Engineering Institute (SEI) hosted the Requirements Engineering and Analysis Work-
shop in Pittsburgh, Pennsylvania, on March 12-14, 1991. The intention of the workshop was to focus

{please tum over)

UNCLASSIFIED/UNLIMITED .

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

SAME AS RPI‘D

DTIC USERS .

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified, Unlimited Distribution

John S. Herman, Capt,

L~ "

DD FORM 1473, 83 APR

22a NAME OF RESPONSIBLE INDIVIDUAL

USAF

22 TELEPHONE NUMBER (Include Area Code) 22¢. OFFICE SYMBOIL
(412) 268-7631 ESD/AVS (SEI)

EDITION of 1 JAN 73 IS OBSOLETE

UNLIMITED, UNCLASSIFIED

——

SECURITY CLASSIFICATION OF THIS

IABSTRACT —conunued from page one, biowck 19

discussion on issues and activities that could help the Department of Defense (DoD) to deal
more effectively with the requirements of mission-critical systems. The SEI workshop built upon
work performed previously at the Requirements Engineering and Rapid Prototyping Workshop
held by the U.S. Army Communications-Electronics Command (CECOM) Center for Software
Engineering in Eatontown, New Jersey, on November 14-16, 1989.

The workshop participants were divided into four working groups: Requirements Engineering
Process and Prcducts, Requirements Volatility, Requirements Elicitation, and Requirements
Engineering Techniques and Tools. A summary of the findings of each working group follows.

