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ABSTRACT

As a first step to understand the compressibility effects, interaction of isotropic

quasi-incompressible turbulence with a weak shock wave was studied by three-

dimensional time-dependent direct numerical simulations. In addition, linear anal-

ysis was used to study interaction of isotropic turbulence with shock waves of a

wide range of strengths. The effects of the fluctuation Mach number M and the

average Mach number M17 of the upstream turbulence on turbulence statistics were

investigated.

Both numerical simulations and linear analyses of the interaction show that tur-

bulence is enhanced during the interaction with a shock wave. Turbulent kinetic

energy (TKE) and transverse vorticity components are amplified, and turbulent

length scales are decreased. The predictions of the linear analyses compare favor-

ably with simulation results for flows with M < M~r - 1, which suggests that the

amplification mechanism is mainly linear.

Rapid evolution of TKE just downstream of the shock was not, however, repro-

duced by the linear analysi- Investigation of the budget of the TKE transport

equation shows that this beiiavior of TKE is manifested in the pressure transport

term (pf"' 1 ),i , which is nonlinear. The budgets of enstrophy components W'2 show

that their amplifications through the shock are mainly caused by the distortion due
to the mean flow compression, and that effect of baroclinic torque is not significant.

Shock waves were found to be distorted by the upstream turbulence, but still

have a well-defined shock front for Mt < M17 - 1. In this regime, the statistics of the

displacement and inclination of the shock front compare favorably with the linear

analysis predictions. For flows with M1 > M(T - 1, shock waves no longer have
well-defined fronts. shock wave thickness and strength vary widely in the transverse

directions. Multiple peaks in pressure are found along the mean streamline where

the local thickness of the shock wave has increased significantly.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

A fundamental understanding of compressible turbulence is necessary for the

development of supersonic transport aircraft. Compressibility effects on turbulence

were found significant when the energy associated with the dilatational fluctuations

is large or when the mean flow is significantly distorted- expanded or compressed.

The presence of shock waves is an important feature that distinguishes high-speed

flows from low-speed ones. Understanding the mechanisms of isotropic turbulence

interacting with a shock wave is not only of generic interest, but also of fundamental

importance in understanding the interactions of turbulent boundary layers with

shock waves which occur in many practical engineering applications: the flow inside

a high speed compressor or a gas turbine, the flow over wings in supersonic aircrafts,

and the intake flow to a supersonic ramjet (scramjet).

The numerical simulation using turbulence models is becoming a standard tool

in aerospace technology. Most current models of compressible turbulence are, how-

ever, based on incompressible turbulence models. A better understanding of the

underlying physics could lead to improvements to turbulence models, leading to

more efficient designs. There is, therefore, a need to assess our understanding of

compressible turbulence.

The present work is a fundamental study of the interactions of a shock wave with

turbulence. We investigate the interaction of isotropic turbulence with a shock wave

using direct numerical simulation and linear analyses.

1.2 Survey of Previous Work

Studies of the interaction of turbulence with a shock wave were initiated using

linear theories in the early 1950's. Twenty years later, there was a resurgence of

research interest in this area through experiments on the interaction of isotropic

I
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turbulence and turbulent boundary layer with a shock wave. However, direct nu-

merical simulation of the interaction of "true" turbulence with a shock wave has

never been attempted. U
1.2.1 Linear Analysis 3

Using his general theory of aerodynamic sound generation, Lighthill [1953] esti-

mated the acoustic energy scattered from the interaction of turbulence with sound

and shock waves. Most of the analytical studies of shock-turbulence interaction

[Ribner 1953, Moore 1953, Kerrebrock 1956, Chang 1957, McKenzie, and Westphal I
1968] are based on the linear theories of three-dimensional disturbances interacting

with a shock wave. These disturbances were waves of vorticity, entropy, or sound.

Kovasznay]1953] pointed out that they are linearly independent in weak turbulence.

Any one such wave interacting with the shock wave generates all three kinds of fluc- 3
tuations downstream of the shock wave. The linear theories developed by various

researchers followed procedures that are mathematically different but physically

equivalent and are, therefore, mutually consistent: inviscid linear equations for the I
disturbances are solved downstream of the shock, and the boundary conditions at

the downstream side of the shock front are expressed in terms of the upstream

disturbances by the use of Rankine-flugoniot relations. Ribner [1953] investigated

the passage of a single vorticity wave through a plane shock and the modification 3
of the vorti, ity wave with simultaneous generation of an acoustically intense sound

wave in a reference frame fixed on the shock wave. le later extended this analysis

to study turbulence amplification due to a shock wave [1954] and the flux of acous-

tic energy emanating on the downstream side of the shock [1969]. Ile also used it

to predict the one-dimensional power spectra of various fluctuations downstream

of the shock 11987]. Moore 1953] analyzed the flow field produced by the obhque

impingement of weak plane disturbances on a normal shock wave in a reference 3
framt fixcd on the mean ups trcarn flow. Chang [1955] investigated the interaction

of a plane shock and oblique plane disturbances with special reference to entropy

waves. McKenzie and Westphad [1968] investigated the effect of a stationary plane

shock on the travelling waves of vorticity, entropy, and sound. Anyiwo and Bushnell

IF;82! revisited the analysis of McKenzie, and Westpl),l [19681 to identify primary

2 U
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mechanisms of turbulence enhancement- amplification of vorticity mode, genera-

tion of vorticity mode from the interaction of acoustic and entropy modes with a

shock wave, and turbulence "pumping" by shock oscillations.

Debieve, Gouin, and Gaviglio [1982a, 1982b] analyzed turbulence evolution through

the shock using the Reynolds stress transport equation. They were able to separate

the effects of the specific turbulent sources from the effects of the mean motion-

convection and roduction. Their prediction of the longitudinal velocity fluctuation

showed good comparison with the experimental result.

1.2.2 Experiments

There has been a significant accumulation of experimental data on the shock tur-

bulence interaction during the last decade. Debieve, Gouin, and Gaviglio [1982a,

1982b] performed an experiment on the turbulent boundary layer interacting with a

shock wave. They measured the mean and turbulent fields in an adiabatic compres-

sion ramp, where the mean upstream Mach number was MU = 2.32, with a corner

angle of 60. They found amplifications of turbulence intensity U 2 the structure

parameter -uul 2 /u 1 , and the temperature fluctuation inside the boundary layer.

Dolling and Or [1985] measured wall pressure fluctuations upstream of the corner

in flows with M U = 3.0 over compression ramps with corner angles of 80 , 120 , 160,

and 200. They found that the shock wave structure is unsteady in both separated

and attached downstream flows, resulting in a region in which the wall pressure

signal is intermittent.

Andreopoulos and Muck [1987] investigated the wall pressure fluctuations in the

shock-wave/boundary-layer interactions over two-dimensional ramps, and found

that the frequency of the shock-wave unsteadiness is of the same order as the burst-

ing frequency of the upstream boundary layer and independent of the downstream

separated flow.

Sinit- aaJ Muck [1987] performed experiments to study the effects of different

compression corners with angles of 80, 16', and 200 on a compressible turbulent

boundary layer with All = 2.9. They found that the interaction significantly am-

plifies the turbulent stresses, and that the amplification increases with increasing

3
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the effective normal Mach number. The structure parameter -ulu2/u 1
2 also in-

creased significantly, which was attributed mainly to the unsteady oscillation of the

shock system.

Kuntz, Amatucci, and Addy [1987] conducted an experimental investigation of

the interaction between a shock wave and a turbulent boundary layer. Compression

corners were used to generate an oblique shock wave in the flow field with MU =

2.94. Ramp angles of 8,120,160,200, and 240 were used to produce a range i
of possible flow fields, including flows with no separation, incipient separation,

and significant separation. They found that that the boundary layer after the

interactions showed an acceleration of the mean flow near the wall as the boundary

layers began to return to equilibrium, and that the mean streamwise velocity profiles

downstream of the separated compression corner were wavy due to the redeveloping

boundary layer which had a velocity profile with inflection at reattachment.

There are a number of additional experimental studies of the interaction of tur-

bulent boundary layers with an oblique shock [Settles, Fitzpatrick, and Bogdonoff

1979, Dussauge, Muck, and Andreopoulos 1986, Jayaram, Taylor, and Smits 1987,

Selig, Andreopoulos, Muck, Dussauge, and Smits 1989]. A general finding from

these experiments is that Reynolds shear stress and turbulence intensities are am- i

plified across the shock wave. The studies of oblique shock wave/turbulent bound-

ary layer interaction included several additional phenomena which complicated the 3
flow behavior. These phenomena are: (a) oscillation of the shock wave in the lon-

gitudinal direction, (b) flow separation downstream of the shock, (c) streamline 3
curvature, and (d) wall effects which result in high turbulence intensity and high

flow anisotropy. Because of these complications, it was impossible to identify the

sole effect of a shock wave on turbulence.

In order to isolate the effects of a shock wave on turbulence, several experiments 3
on the interaction between the shock wave and grid-generated turbulence have

been performed. Debieve and Lacharme [1986] experimentally investigated a shock-

wave/free turbulence interaction at MAT = 2.3 over a ramp with a corner angle of

6'. They measured velocity and temperature spectra upstream and downstream

of the shock wave and concluded that turbulent fluctuations are amplified and the 3
Taylor microscales increase during the interaction. An intermittency effect due to

unsteady shock wave distortion on turbulence statistics was also clearly described. 3
4 I
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Keller and Merzkirch [19901 performed an experiment on the interaction of grid

generated turbulence with a shock inside a shock tube. They verified amplification

of the turbulence intensity quantitatively, showing that amplification was restricted

to the lower wave numbers in the spectrum. This was consistent with the conclusion

of length scale increase made by Debieve and Lacherme [1986], but it contradicts the

intuitive reasoning that mean flow compression decreases the relevant turbulence

length scales. Our results (Sec. 2.1 and Subsection 4.1.4) show that the Taylor

microscale actually decreases in passing through the shock.

Honkan and Andreopoulos [1990] examined the interaction of a normal shock

wave with homogeneous grid-generated turbulence. They found that turbulence

is considerably amplified during the interaction, and that the amplification ratio

of turbulence is not the same for different length scales and different turbulence

intensities.

Jacquin, Blin and Geffroy [1991] investigated the interactions of a normal shock

wave with grid-generated turbulence and a turbulent jet, Pnd compared turbulence

amplifications with the predictions by a linear analysis. They observed that turbu-

lence amplification was not significant during the interaction, and that the decay

of turbulent kinetic energy was accelerated downstream of the shock wave.

The aforementioned experiments treated the interaction of a shock with quasi-

incompressible turbulence where fluctuations in pressure and density are not sig-

nificant. A comprehensive experiment on the interaction of weak shocks (MU =

1.007,1.03, and 1.1) with a random medium of density inhomogeneity was per-

formed by Hesselink and Sturtevant [1988]. They observed that the pressure his-

tories of the distorted shock waves were both peaked and rounded. In the rounded

case, they found the perturbed shock was made up of a succession of weak, slightly

curved fronts, and the total effective shock thickness was significantly greater than

the classical Taylor thickness. They concluded that the observed distortions of the

shock can best be explained in terms of the focusing/defocusing of its front due to

inhomogeneity of the medium.

1.2.3 Numerical Simulation

Zang et al. [1984] simulated the interaction of a shock wave with a single wave

using two-dimensional Euler equations. The interaction of a shock wave with an



I

isolated flow inhomogeneity was computed by Hussaini et al. [1986] and Meadows I
et al. [1991], and with two-dimensional turbulence by Rotnan [1991] and Lee, Lele,

and Moin [1991a].

Rotman [1991] numerically calculated the change in a turbulent flow caused by

the passage of a travelling shock wave. He found that the shock causes an increase in

the turbulent kinetic energy and that the length scale of the turbulent field behind

the shock is smaller than that in front. Ile also found that increasing the initial i
turbulent kinetic energy caused a straight shock wave to evolve into a distorted

front.

Lee, Lele, and Moin [1991a] found that vorticity amplification in the numerical

simulation compared well with the predictions of the linear analyses, but that

turbulent kinetic energy evolution behind the shock showed significant nonlinear

effects. The energy spectrum was found to be enhanced more at small scales,

leading to an overall length scale decrease.

Zang et al. [1984] examined various effects pertinent to the amplification and

generation of turbulence in shock/turbulent boundary layer interaction and placed
limits on the range of validity of linear theory. Hussaini et al. [1986] numerically

investigated the effects of upstream eddy motion and temperature inhomogeneity on 3
the enhancement and production of turbulence. Meadows et al. [1991] computed

two-dimensional shock-vortex interaction using a shock capturing scheme. They 3
qualitatively evaluated the effects of upstream vortex strength on both the flow

field and acoustic field generated by the interaction. 3
1.3 Objectives and Overview

The primary objective of this work is to investigate the physics of the interaction

of isotropic turbulence with shock waves using direct numerical simulations and

linear analyses. The simulations and linear analyses provide statistical information

for testing of turbulence models. Instantaneous flow fields from the simulations U
contribute to our understanding of the physical nature of the interaction.

'Fhe principal contributions and findings of this work are as follows:

6
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" A numerical scheme to generate turbulence at the inflow boundary was devel-

oped and the simulation of spatiallyv evolving grid-generated turbulence was con-

ducted.

" The linear mechanisms involved in the shock/turbulence interaction enhance the

amplitude of turbulent fluctuations and decrease the relevant turbulence length

scales.

" Linear analysis predicts the corrugation of the shock front caused by upstream

turbulence fluctuations. The distortion of the shock front is scaled with the

upstream turbulence intensity and length scales.

" Isotropic upstream turbulence becomes axisymmetric after the interaction. All

the components of turbulent kinetic energy are amplified across the shock wave.

The streamwise intensity is amplified more than the transverse components.

Fluctuations in pressure, density, and temperature are significantly enhanced.

" Power spectra of turbulent fluctuations are more amplified at small scales than

at large scales. The integral turbulence length scale and Taylor microscales

decrease during the interaction.

" Transverse components of vorticity are enhanced because of the mean flow com-

pression, but the component normal to the shock remains unchanged. Baro-

clinic torque has a negligible contribution to the production of vorticity in the

shock/quasi-incompressible turbulence interaction.

* Rapid evolution of turbulent kinetic energy found downstream of the shock wave

is caused by the nonlinear pressure work. Decomposition of the pressure work

term shows that the inhomogeneous pressure transport is the main cause of the

rapid evolution.

" Isentropic relations hold between normalized fluctuations in pressure, density,

and temperature throughout the flow field.

" Shock waves are found to be distorted by the upstream turbulence. Instanta-

neous shock wave structure depends on the upstream fluctuation Mach number

and the mean shock strength. For flows with small fluctuation Mach numbers,
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shock waves have a well-defined front. In this regime, the statistics of the dis- U
torted shock front compare favorably with the linear analysis predictions. For

flows with large fluctuation Mach numbers, multiple peaks in pressure are found I
along the mean streamline where the local thickness of a shock wave has increased

significantly.

This report is organized as follows. In Chapter 2 linear analyses of shock-isotropic I
turbulence interaction are conducted. The governing equations and the numerical

method chosen are discussed in Chapter 3. Chapter 4 describes the numerical

simulations of shock-turbulence interaction and their results. Conclusions and rec-

ommendations for future work are given in Chapter 5. The appendices include brief

descriptions of the linear analyses (Appendix A and B), a proposal for an alias-free

compressible turbulence simulation (Appendix C), development and validation of

a numerical method for the simulations of spatially evolving turbulence (Appendix

D), the limitations on the physical parameters for direct numerical simulation of

shock-turbulence interaction (Appendix E), the effect of the shock oscillation on

turbulence statistics (Appendix F), the effect of outflow boundary conditions (Ap-

pendix G), and the drift in the mean shock position and the outflow condition

(Appendix H).

II

I
I
I
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CHAPTER 2

LINEAR ANALYSIS

Two different linear approaches are used to investigate the interaction of isotropic

turbulence with a normal shock wave. The first approach is the rapid distortion

theory (RDT). T,., second is the compressible linear interaction analysis (LIA).

Both analyses are for inviscid flows. The assumptions and main features of these

analyses are discussed in Appendices A and B. The main effect of a shock wave on

turbulence is the mean flow compression in the direction normal to the shock wave.

The secondary effects are the vorticity generation due to shock front curvature

and turbulent kinetic energy generation caused by the unsteady movement of the

shock front. RDT accounts for the effect of the mean flow compression, while LIA

includes all three effects.

For proper applications of the linear analyses, upstream Mach number variation

may be considered as a small perturbation from the mean Mach number. Fur-

thermore, time required for turbulence to pass throu ;h the shock wave may be

considered small compared to a turbulence time scale, so that turbulence has no

time to redistribute energy into different scales through nonlinear processes.

In thf following, interaction of isotropic turbulence with a normal shock wave is

discussed. Because LIA is more comprehensive, its results are mentioned in detail,

and those from RDT are introduced for comparison when needed. Turbulence be-

fore the interaction is considered to be purely vortical, that is, upstream turbulence

has no fluctuations in density and entropy. The fluid is assumed to be ideal gas

with the specific heat ratio -y = 1.40.

The coordinate system used in the analysis is Cartesian, as shown in Figure

2.1. The streamwise direction z is aligned with th direction normal to the mean

shock plane. The reference frame is fixed on the mean shock plane. In this system,

upstream flow approaches the shock with a supersonic speed, and downstream flow

leaves with a subsonic speed.

I9
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2.1 Turbulence Statistics U
Figure 2.2 presents amplifications of the transverse vorticity components pre- I

dicted by LIA and RDT. The streamwise vorticity component is unchanged through

the linear interaction. As the strength of the shock wave increases (higher mean 3
Mach number), the ratio of downstream to upstream vorticity also increases. We

find that the asymptotic value of the amplification factor for mean square vorticity

for a shock wave with very large Mach number is about 20 in LIA and 36 in RDT.

The ratio of the vorticity amplification by RDT is simply the ratio of downstream

to upstream density, which is explained as an enhancement of vorticity due to the

shrinking of the cross section of a transversely-oriented vortex tube by the mean

flow compression. The predictions by LIA and RDT agree very well for weak shock

waves but do not compare as well for stronger shock waves. This implies that ef-

fects of shock front curvature and shock front unsteadiness are negligible for weak

shock waves, while these secondary effects become more significant for stronger

shock waves. Prediction of lower amplification by LIA suggests that secondary 3
mechanisms have adverse effects on enhancement of vorticity fluctuations.

Figure 2.3 shows the amplification of solenoidal turbulent kinetic energy by LIA 3
and RDT. Both approaches predict more enhanced streamwise fluctuations than

spanwise fluctuations for shock waves with the mean upstream Mach number MU < 3
2.0. However, this trend is reversed for stronger shock waves in LIA predictions. In

fact, the predictions by LIA and RDT are close only for very weak shocks, differing

significantly for A11 =- 1.5.

Through interaction of vortical waves with a shock wave, acoustic waves are gen- 3
-rated downstream of the shock wave. These acoustic waves accompany the purely

dilatational velocity fluctuations, which also contribute to the total turbulent ki-

netic energy. LIA can also predict the acoustic energy generated downstream of

the shock. Figure 2.4 presents the amplification of turbulent kinetic energy, in-

cluding both solenoidal (or vortical, incompressible) and dilatational (or acoustic,

compressible) velocity fluctuations. Since part of the acoustic energy undergoes

an inviscid decay (ref. Appendix B), turbulence behind the shock is not homoge- 3
neous in the streamwise direction. Figure 2.4 presents velocity fluctuation levels

at both immediate downstream (near-field) and far downstream (far-field) of the 3
10 I
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shock. Streamwise velocity fluctuation is always larger than that of the spanwise

velocity fluctuations in the near-field. The far-field velocity fluctuations are com-

posed mostly of the solenoidal velocity fluctuations: the acoustic waves contribute

less than 2% of the far-field turbulent kinetic energy for M U = 1.2.

According to LIA, the vorticity waves incident at angles beyond a critical angle

0c = cr(Mfb) generate acoustic waves which decay exponentially as they prop-

agate downstream. This leads to an inviscid decay of the compressible part of

velocity fluctuations. The decays of velocity fluctuations are shown in Figure 2.5

for upstream turbulence with a spectrum of

E(k) -,k )4 exp[-2( k )21, (2.1)

where k, is the characteristic wave number corresponding to the energy peak. This

is the form of the inflow turbulence spectrum used in the direct numerical simulation

of shock turbulence interaction in Chapter 3. Significant but monotonic decay

occurs just downstream of a shock wave which is caused by the inviscid decay of

acoustic waves.

Decays of velocity fluctuations for different shock strengths are shown in Figure

2.6. The decay in the downstream velocity fluctuation is monotonic for all shock

strengths.

We also investigated the effect of upstream spectrum shape on the decay, as

shown in Figure 2.7. In addition to the spectrum described in (2.1), we used the

von Krinin spectrum

(k/ko)
4

E(k) -1 (2.2)[ [I + (kko)211/"

This is a good approximation for the high Reynolds number turbulence, where the

slope is k4 at small k and k- 5 / 3 for the inertial subrange at large k. Monotonic

decay of turbulent kinetic energy is reproduced. However, the decay rate is faster

compared to that of (2.1) (see Figure 2.5), since the von K~rmin spectrum has

more small scale content, thus causing faster decay.

11
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Experimental studies [Debieve et al. 1986, Keller et al. 1990] have reported I
that large scale turbulent motions are enhanced more than small scale motions as

turbulence passes through a shock wave, leading to the overall increase of turbulence I
length scales. In order to check whether turbulence length scales do indeed increase,

we investigate the amplification of the one-dimensional velocity spectrum El(kl),

which is defined as I
El(kl) = J J E 1 (k)dk2 dk 3 , (2.3)

where k = (k 1 ,k 2 ,k 3 ) is the wave number vector. The velocity spectrum tensor

Eij(k) is defined as

Eij(k) iu -i, (2.4a) U
where (.) denotes the Fourier transform, the superscript * denotes complex conju-

gate, and () indicates the ensemble average. For incompressible isotropic turbu-

lence 3
Eijk)-E(k),, kikj

E4- (k) - 2(ij k ) (2.4b)

where k = Jkl, and E(k) is the energy spectrum function.

In the following analysis, we consider only contributions from the vorticity waves 3
to the upstream and downstream velocity fluctuations. A velocity fluctuation u

associated with a vorticity wave in the homogeneous field can be represented as 3
u = ii(w, k2 , k3 ; U1) exp[i(k . x - wt)], (2.5)

where k . ii = 0 for a solenoidal wave. Assuming that vorticity fluctuations are

simply advected by the mean flow, we obtain the following dispersion relation

L - U Ik 1  0. (2.6)

In this approximation, the turbulence fields upstream and downstream of the shock

are considered homogeneous and frozen with respect to the corresponding mean 3
12 I
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flow. From Appendices A and B, the Fourier coefficient of the streamwise veloc-

ity fluctuation after the interaction can be expressed in terms of that before the

interaction. The transfer function Z(w, k2 , k 3 ) is defined as

Z(w, k2 , k3 ; ) = I(W, k2 ,k3 ; 1) (2.7)

where the superscripts U and D refer to upstream and downstream states.

If there is no generation or destruction of waves inside the shock wave, the

frequency w of a vorticity wave remains unchanged by the interaction, while the

associated wave number kl changes to satisfy the dispersion relation (2.6). The

one-dimensional frequency spectrum El(w) is defined as

El(w) = f f Fl1(w,k 2 ,k 3 ;U1)dk2 dk3 , (2.8a)

where the limits of the integrations are (-cc, +oo) for both k2 and k3 . In the above

expression, Fll is

FllI(L, , k2, k3; U1) = iZl(w, k2, k3; U1)ii*(Lo, k2, k3; U1). (2.8b)

Amplification of the one-dimensional frequency spectrum is described by the

ratio of the frequency spectra before and after the interaction SW(w; AIU ), which is

Sw(W; AIU) f f FD(w,k 2 , k3 ; U1D)dk2 dk 3

f f F" (w,k 2 ,k3; U" )dk 2 dk 3

f fIlZ(w, k2 ,k 3 ; ) 2 F(wk 2 ,k 3 ; r )dk2 dk3

f f F (w,k 2 , k 3 ; Ul)dk2 dk 3

Spectral amplification ratio is dependent on the special form of the upstream spec-

trum shapes. We choose a von Kirmin spectrum (2.2) for the energy spectrum in

the following analyses.

13
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The amplification ratios of the one-dimensional frequency spectra for different H
shock strengths are shown in Figures 2.8: the results from RDT and LIA are pre-

sented in Figures 2.8(a) and 2.8(b), respectively. The results from RDT and LIA

are qualitatively the same: the spectrum amplification ratio is larger for a wave

with small w, which is consistent with the results of Ribner [1987]. Some researchers I
interpret this fact as evidence of turbulence length scale increase through the inter-

action, but this conclusion does not necessarily follow, for the change in frequency

spectra reflects a change in time scale, not in length scale. More amplification at the

small frequency part of the spectrum implies that turbulence time scale increases

through the interaction.

To investigate the length scale change, one should evaluate the amplification of

wave number spectrum rather than that of frequency spectrum. Amplifications of

these two spectra are not the same: as a wave passes through the shock, the relation

between wave number and frequency changes due to the mean flow deceleration (see U
(2.6)). The one-dimensional wave number spectrum is obtained by replacing O with

Ujkj in (2.8b). Streamwise velocity fluctuations upstream and downstream of the

shock can be represented as

U1 [fI-uT(U kI k, k3; U1 dJl dk1.U (2.10a)

UlJ2= [Yf FDr(ll1Pk,k2,k3;uD )dk2dk3] dk D . (2.10b)

Downstream velocity fluctuation can also be expressed in terms of the upstream

spectrum I'l and its amplification ratio at the same wave number across the shock

wave SkI(k ;MU) as

J sk,(kl; MI) VJJFllI(UUkl,k 2 ,k 3;,Ul)dk2 dk3  dkU

-~ ~ Jk(;MJ[JF('J 1 k2, k3; LUf)dkd1 (Jdkf',

(2.11a)
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where

f f FD(UDklk 2,k 3 ;U)dk 2 dk 3SkYk; (Vl k1, ik2 k3 ; UU)dk dk3 "

Here J is the Jacobian of the transformation from the upstream to the downstream

wave number definea as J = pU/pD < 1. (The upstream wave number interval

dkU corresponds to the downstream wave number interval dk D = J-'dkU.) Com-

paring the terms in (2.10b) and (2.11a), we have the amplification ratio of the

one-dimensional wave number spectrum JSk1 (kl; MU) as

f f F (UDkl,k 2 , k 3 ;U )dk2 dk3  f f F (JUk, Ik2 , k3 ; U)dk2dk 3
jSkI(kl;M U ) = J x ×

f f FU(JuUk1 k 2 , k 3 ; U )dk2 dk 3  f f FUll(UUk1 k2 , k 3 ;1 U{)dk2 dk 3

= J × S(w;Ml) × E(w) (2.12)

E U , (2.12)

where w = UDkl = JUUkl. The wave number spectrum amplification factor is,

therefore, the product of the Jacobian, the frequency spectrum amplification and

the ratio of the upstream frequency spectra at two different frequencies. The resul-

tant wave number spectrum amplifications for different shock strengths Fredicted

by RDT and LIA are presented in Figures 2.9(a) and (b), respectively. These pre-

dictions are qualitatively consistent: the spectral density increases more at large

wave numbers, even though it increases more at small frequencies (see Figure 2.8).

LIA predicts a suppression of the spectrum at small wave numbers for large up-

stream Mach numbers, while RDT predicts an amplification at all wave numbers

irrespective of the shock strength. Larger amplification at large wave numbers is

more pronounced for stronger shock waves.

It is, therefore, erroneous to infer an increase in the length scale in shock turbu-

lence interaction by appealing to Ribner's analysis (akin to Figures 2.8) as Keller

et al. [19901 have done. Investigation of the spectrum amplification leads to the

conclusion that turbulence time scale increases through the interaction, while tur-

bulence length scale decreases.
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The experimental results by Debieve et al. [1986] are consistent with the present

predictions. However, they compared the upstream frequency spectrum to that

on the shock arid concluded an increase in the length scale. The spectrum on

the shock is contaminated by the interinittency effect due to the unsteady shock

front distortion. The characteristic length scale of the distortion is scaled with the I
upstream turbulence length scale (see Section 2.2 for LIA and Section 4.2 for DNS)

to yield an apparent amplification of the spectrum on the shock at an energetic

(or large) scale. This enhancement does not necessarily imply the amplification

of the turbulent motion of that scale. In order to investigate length scale change,

one has to transform frequency spectra into wave number spectra and compare

the upstream spectrum with the downstream spectrum. Proper comparison of

wave number spectra shows more amplification at small scales rather than at large

scales, leading to an overall scale decrease. Direct numerical simulations confirm

that turbulence length scales do decrease through the shock-turbulence interaction 3
(see Section 4.2).

Since linear analyses predict the change of the Fourier coefficients of the velocity

components across the shock wave (see (2.7)), the changes in turbulence length

scales can also be calculated. The change in the Taylor microscale Aa defined as 3

Ac i 2 (2.13)I- ia-I

across the shock wave is independent of the shape of the three-dimensional energy

spectrum for isotropic upstream turbulence, since the contributions to the integral

involving the wave number magnitude k (see (A.25)) are cancelled out in the eval-

uation of the ratios of u L and I, across the shock wave. The denominator in

(2.13), u2, o , can be evaluated using

JJ -L2k Ecdkdk,dk3  (2.14)

Figiures 2. 10(a) and (b) show the change in the Taylor microscales across the shock I
wave predicted by LIA and RI)T. (In LIA prediction, only the solenoidal velocity

component is included because the cortribution from the dilatational component I
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becomes negligible after a short distance from the shock wave. See Figures 2.4,

2.5 and 2.6.) All the length scales are found to decrease through the interaction:

the streamwise scale decreases more than the transverse scale. LIA predicts more

reduction in the streamwise scale and less reduction in the transverse scale than

RDT does. For weak shock waves, however, the predictions by LIA and RDT are

in good agreement.

Shock/turbulence interaction leads to noise generation behind the shock wave in

the form of fluctuating pressure, p'. Using (B.55) and (B.56) and from the isotropy

relations (2.4) for upstream velocity fluctuations (see also (B.61) - (B.64)),

lU 2 J(+) -(-) cos2Ocos2OIl'  dP 2 12-y~n 2 Ildk

12-1m )2 f0°°~kd f 21 f2 cos 6do

t+ 1) -- 1) Ekd cos 2

3 2 2-y m 2 f 2 I2os do, (2.15)8 I 2  (-y+ 1I)m - - 1) 0 COS 01 ' '( .5

where pD is the downstream mean pressure and

30' = tan-Ir(m tan 0). (B.5c)

Figures 2.11(a) and (b) show the pressure fluctuation for various shock strengths
both at the immediate downstream and far downstream of the shock wave normal-

ized by the downstream mean pressure and upstream mean pressure, respectively.

Note that for normalization we have also used the upstream turbulence intensity,

because pressure fluctuations scale with the upstream turbulence ;ntensity inde-

pendent of the shape of the spectrum. Near field noise scaled with the downstream

mean pressure peaks around AIl = 1.3, and far field no;se reaches its asymptoti-

cally maximum strength for very large Mach numbers. Note that acoustic energy

decays by an order of magnitude from the near field to the far field. Even though

17
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the near- and far-field pressure intensities scaled with the downstream mean pres-

sure tend to asymptotic values for an infinite strength shock wave, their absolute

amplitudes increase indefinitely as the shock strength increases (see Figure 2.11 (b)).

2.2 Statistics of the Shock Front

Using LIA, we can estimate the level of fluctuations of the shock front caused

by the action of turbulence. The details for calculating the variances of a local

shock front displacement , its inclination angle a 2 , and its curvature K2 are shown

in Appendix B. The nondimensionalized variances of those quantities are "o,2

and ko 2K2 , where ko is the wave number corresponding to the energy peak in the

spectrum.

The dimensionless variance of the shock front displacement (see (B.68)) can be

expressed as 3
I

= ( k 22 E(k)dkj (a2 + b2s)cosOdO

3 (uj foE(k*)/k dk* jr(a2 + b2 ) cos~dO, (2.16)1

where k* = k/ko, and u) is the rms fluctuation velocity in one direction. (Defini- I
tions of as and bs are given in (B.18) and (B.21).) Likewise, the dimensionless

variance of the shock front curvature (see (B.69)) can be written as

-- 9u 2 frk* 2 E(k*)dk*f,/2(as + bs) cos5 Od0. (2.17)
f032 ( tT 0E(k*)k*] I

As seen in (2.16) and (2.17), the statistics of shock front displacement and its

curvature are dependent on the shape of the upstream spectrum, E(k*). The

shock wave displaceinent has significant contributions from large scale turbulence,

18



while its curvature is scaled with the inverse of upstream turbulence microscale

(-.' , f k 2 E(k)dk/ f E(k)dk - 1/A 2 ).

Statistics of shock front distortion are obtained by numerically integrating (B.65),

(2.16) and (2.17) using the energy spectrum in (2.1). Figure 2.12 presents the rms

values of ko , and ( ) K

Note that the statistics of the shock front distortions are scaled with the upstream

turbulence intensity. As the mean upstream Mach number increases, the scaled

rms values are found to decrease.

Considering the time dependence of the upstream velocity fluctuations at a fixed

point, LIA can predict the local fluctuating shock front speed, ,j. Expression

(B.27) can be rewritten as

du i = dii exp [i (kl(xr - Ult) + k 2x 2 + k 3 x 3 )]• (2.18)

Since the velocity fluctuations at the shock front (x 1 = 0) vary not only in the

transverse direction but also in time, the argument of the exponential function

in (2.18) becomes i(-klUlt + k2 x 2 + k3 x 3 ) with x i = 0. Therefore, expression

(B.66) for the local shock displacement can be rewritten as

1
Ih aexp[i(kh.Xh - klUlJ ish)], (2.19)
ik h

where kh is the magnitude of kh = (k 2 ,k 3 ), and xh = (x 2 ,x 3 ). From (2.19),

one obtains the relation between the local fluctuating shock front speed, ,J, and

the local shock front inclination angle in the transverse direction (x2 direction),

01.) as

kl U1t-- k "(2.20)

Using (B.57) and (B.58), (2.20) can be expressed as

k I\ 1 a ba 2- cxpz[(kh Xh k1Uf
t 4 ,O' (2.21)
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Figure 2.13 compares the local upstream velocity fluctuation and the local shock U
front speed for upstream waves incident on a shock wave of MU = 1.2 at different

angles. The magnitude of the shock speed is comparable to the upstream fluctuation

velocity. For waves whose incident angles are smaller than the critical angle of

incidence, 0,r = 36.40, the local shock front speed lags by a phase angle between 0

to 900 with respect to the upstream velocity fluctuation; for waves whose incident

angles are larger than the critical angle, the shock front speed is in phase with

the velocity fluctuation. The local shock front speed which is in phase with the

upstream fluctuation velocity attenuates the fluctuations in the effective upstream

Mach number, M 1 = (U1 + u1 - ,t/c.

Figures 2.14(a) and (b) show the dependence of the rms fluctuating shock front

speed on the mean upstream Mach number. The shock front speed exceeds the

upstream fluctuation velocity for AiU < 1.25. For weak shock waves, the shock

front speed is close to the upstream fluctuation velocity resulting in approximately

uniform effective upstream Mach number.

I
I
I
I
I
I
I
I
I
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CHAPTER 3

NUMERICAL METHOD

The time-dependent Navier-Stokes equations for a compressible fluid were solved

directly. All the relevant turbulence scales are resolved without a turbulence model,

and the shock wave structure is resolved as a solution of the Navier-Stokes equa-

tions without introducing the techniques of shock-fitting or shock-capturing. The

shock structure is adequately represented by the Navier-Stokes equations for Mach

numbers M U less than 2.0 [Sherman 1955]. Except for monatomic gases, how-

ever, the thickness of the shock wave as a solution of the Navier-Stokes equations

is underpredicted even for M1U < 2.0, because the rotational energy mode is not
in equilibrium inside the shock wave [Lumpkin 1990]. This chapter describes the

governing equations and the numerical method used to simulate shock/turbulence

interaction, where the flow is assumed to be periodic in transverse directions (x 2

and x 3 ). This chapter also includes validations of our numerical schemes. The code

is written in the VECTORAL language [Wray 1988] and implemented on a Cray

Y-MP/832 at NASA-Ames Resea-ch Center.

3.1 Governing Equations

The conservation laws for mass, momentum, and energy are [Anderson, Tannehill

and Pletcher 1984]:

ap* C0(p*uj*)+ O(.* = 0 (3.1)

at* a*

u O(p*uu* ± p*bj) (3.2))p j+at--9Xja (3.2)

OE a[(E. + p*)u*] _ Q* a(U*;3.)Ot- + ix - t +  O* ) ') (3.3)
at ax* a- ax~r

where superscript * indicates a dimensional quantity, p* is the density, u* the

velocity components, p* the pressure, 7.* the shear stress tensor, and Q* is the heatS)

flux vector. E. is the total energy, defined by:
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ET = P*(e* + U(3.4)

where e* is the internal energy per unit mass.

We assume the fluid to be a perfect gas satisfying 1
p* = R*T*, (3.5)

where R* is the gas constant and T* the temperature. We assume a Newtonian

fluid and use Stokes hypothesis and Fourier law of heat conduction, so that the 3
constitutive equations for r*. and Q are:

*(&l + ou;* 2au*ij

. _ Pu_ a-* a* 3 ) (3.6)rijj = k* 4-3

0 I
O, = -k*°aT*&  (3.7)

where y* is the molecular viscosity and k* the thermal conductivity. 3
The flow variables are non-dimensionalized as follows

ui (- P * -  T T (3.8a)C Po K * ')To*

t t*c* (3.8b)
*2 0L*

where subscript 0 represents the mean upstream value, c* is the speed of sound,

and L is an arbitrary reference length scale. The value of the specific heat ratio Y I
defined as

* =/C- (3.9)

is taken as 1.40 in this work.

The non-dimensional equations for continuity, momentum, and energy are 3
Op O(pui) (3.10)at - 9 Oi
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O(u)O x3iu -bj + 0(3.11)

aET _ [(ET + P)ui1 9Qi tOui-rij(.2
a9t Ox3  -9 ix + xj (.2

with constitutive relations

-r~j Oui Uj_ 2 uk bj),(3.13)
Re axj ax 3 axk

Qi tii 01'314
- PrReaxi 3.4

where Re and Pr are defined as

Re= (3.1 5a)

C*P*

Pr - . (3.15b)

We assume the Prandtl number to be constant equal to 0.70 and assume the vis-

cosity to follow the power law:

(~) (T* )n or p = [(y -1)T]n, (3.16)

where n =0.76.

If we assume constant specific heats and set e* =0 at T* z,0, we can write

C evT*. The non-dimensional form of the perfect gas law is

A -_ 1 1 pT. (3.17)
-t
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3.2 Numerical Schemes

This section describes the numerical schemes used: time advancement scheme, U
approximation of spatial derivatives, special treatment of convective terms for nu-

merical stability, method of generating inflow turbulence, and initial and boundary I
conditions.

3.2.1 Time Advancement I

An explicit time-advancement method is used. The variables (p, pui, ET) are ad- I
vanced using a three-step compact-storage third-order Runge-Kutta scheme [Wray

1986j. This scheme, when applied to dy/di = f(y,t), has the following three sub- 3
steps: I

Yi + (3.18a)

15

~"~" 4 12

Yn~ Y' + 4!f (y Atn> +j 4 f byIt")At, (3.18c)

where P t' + 8At and tii= , n + 2At.

The time step is computed from the following formula:

(CFL) (3.19) 1
Aim'a)

where CFL is the Courant-Friedrichs-Lewy number. The subscript nax refers to the I
maximum over all grid points. The maximum CFL number for stability is fixed by

the time-advance method. For linear equations the limit is v"3 for the third-order

Runge-Kutta method described above. For the three-dimensional Navier-Stokes

equations, we have used:

JI'x= a + c + u2+ +3 ) , (3.20)
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where Iuil is the absolute velocity in the ith direction and Axi is the grid spacing.

3.2.2 Evaluation of Spatial Derivatives

A family of high-order modified Pad6 schemes has been derived by Lele [1990]

with spectral-like resolution characteristics as well as high-order formal accuracy.

In this work, we used such a scheme for both the first and second derivatives.

The first derivative is given by:

Yj+1 - Yj-1 Yj+2 - Yj-2 (3.21a)
Yj- 1  Y + a Yj + yj+l = a2 2Az + a 3  4Ax

We can obtain '4 by solving a tridiagonal system of equations. A family of fourth

order schemes is obtained if we choose

2 + 4al 4 - a1a. - a3 = 3 (3.21b)

For a1 = 4, the conventional Pad6 scheme is recovered, while with a, = 3 and

(3.21b) we have a sixth-order scheme. Similarly, we can write for the second deriva-

tive:

Yj+1 - 2yj + Yj-1 Y.+2 - 2 yj + Yj-2
Yj- + ay + yj+ = a2 - AX2 +a3 4Az 2  (3.22a)

4a 1 -4 10 -a 1
a 2 - -- a3 = - (3.22b)

3 3

The choice of a, = 10 recovers the usual Pad6 scheme, and for al = 11/2 with

(3,22b) it is sixth-order accurate.

In this work, we used the sixth-order schemes both for the first and second

derivatives. The resolution characteristics of the conventional Pad scheme are

improved with negligible increase of operations.

The diffusion terms in the governing equations require evaluation of successive

derivatives, for example
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When a spectral method is used, there is no loss of accuracy when these are com-

puted by two applications of a first-derivative operator. With finite difference

methods, however, two applications of a first derivative results in a less accurate

representation of the derivative at high wave numbers as compared to one applica-

tion of a second-derivative operator, for the modified wave number goes to zero for

the first derivative at high wave numbers [Lele 1990]. To eliminate this inaccuracy,

we expanded all diffusion terms into two terms (non-conservative formulation):

92uL 0__1 (3.24) I
OX-2 (9X XOI'

II
and use the formulae (3.21) and (3.22) to approximate the first and the second

derivatives, respectively. 3
To simulate shock/turbulence interaction, a shock wave is placed near the center

of the computational domain (Figure 3.1) and numerical simulations are performed 3
in a frame moving with the shock wave. Since the resolution requirements for a

shock wave are far more restrictive than those for turbulence, a non-uniform grid

is used in the streamwise (or xj) direction to resolve the shock wave structure.

The following mapping from the uniform computational grid to the non-uniform

physical grid is used to concentrate points near the region occupied by the shock i
wave: I

- Y'rerf(cls) (3.25)
Zl = 11 _v/irlerf(cj/2)'

where L1 is the length of the computational box in the streamwise direction, s is the I
coordinate in the computational grid ranging between (-1, 1), and b1 and c1 are

the stretching parameters controlling grid stretching ratio and the grid stretching 3
rate respectively. The grid stretching ratio, (Axl)max/(Axl)min - 1/(1 - bi), was

chosen to be between 5 and 20. Higher grid stretching is required for a larger 3
separation between the shock wave thickness and turbulence length scales. With

larger cl, the rate of grid stretching is faster. In this work c1 is chosen to be 5. If

we define the metric quantities:
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d x  - 1 - blexp(-c2s 2 ) (3.26)
h' =d LI _1(.6

ds 1 - -1.~v'erf(cl/2)'

=2__ 2 blc2sexp(-c2s2)
h" d 2 - LI (3.27)ds2 1 V/-rerf (cl/ 2) '

the first and second derivatives of a function y can be computed in the computa-

tional space as follows:

=9Y _ l8!/ (3.28)

a2y _ 1 a 2 y h" Oy&x2 - h' 2 s 2  h (3.29)

3.2.3 Nonlinear Numerical Stability

Compressible flow simulations with conservative formulation are especially prone

to aliasing errors because evaluations of velocity and temperature from the conser-

vative variables involve the division operation which has no clear interpretation in

the Fourier space. A possible way of conducting alias-free simulation of compress-

ible turbulence is to solve for the specific volume in a mass conservation equation.

We discuss this alternative in Appendix C.

Feiereisen et al. [1981] have noted that the use of a special form of the convection

term with a symmetric differencing in space ensures conservation of total energy

in the inviscid limit. Blaisdell et al. [1990] have explicitly shown that this special

form helps to control aliasing errors. For the numerical stability, we evaluate the

convection term in the momentum equations in the following special form:

Opuiujj 1 O p u iu 'l j Ou i  puj]
p= + pluj + 71i (3.30)
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In a spatially evolving simulation, spurious numerical waves are generated at the

inflow as soon as disturbances encounter the outflow boundary [Buell and Huerre,

1988]. These numerical waves have a wave length of twice the grid size and continue

to grow in time. To remove these spurious waves, localized filtering near the inflow

plane is performed using the following scheme:

IY- + aly[ + Y a2 (Yi-1 + 2 yi + Yi+,) + a3 (Yi-2 - 2 yz + Yi+2), (3.31)

where y and yf are the unfiltered and the filtered quantities respectively. We choose I
al + 2 2 - al

4 16

The unfiltered quantity is recovered for a1 = 2. This filtering operation exactly re-

moves waves of twice the grid size. The filter transfer function in the Fourier space, I
defined as the ratio of the Fourier transforms of yf and y, is shown in Figure 3.2.

For a1 close to 2, filtering operation is more localized at high wave numbers. Since

the spurious numerical waves travel mainly in the streamwise direction, appearing

first at the inflow boundary with wave length of twice the grid size, the filtering 3
operation is performed only in the streamwise direction near the inflow boundary

over less than a tenth of the computational domain with a1 = 2.01.

3.2.4 Inflow/Outflow Boundary Conditions I
Many of the existing boundary conditions for the compressible Navier-Stokes

equations are based on the concept of the characteristics along which information

travels. The number of boundary conditions required at a point on a boundary

varies with the flow conditions at that point: in general, the number of boundary

conditions which must be specified at a point on a boundary is equal to the number

of incoming waves (from outside of the domain) at that point (Thompson 19871.

In this work, the inflow is kept supersonic so that we can specify all the flow I
variables. This is because supersonic inflow guarantees all the information to be

incoming. Mean values of velocity, pressure, and density are set to be constant over 3
the inflow plane. The turbulence velocity signal generated at the inflow boundary

is designed to be isotropic with a prescribed spectrum with no fluctuations in 3
42 I
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pressure and density. Appendix D gives a detailed description and validations of

the procedure for generation of inflow turbulen -e.

To generate inflow turbulence, we use the following three-dimensional energy

* spectrum function:

E(k) = 16 V;_ k)4exp[-( ], (3.32)

where u,, is the rms turbulence intensity and ko is the most energetic wave number.

This spectrum has the following properties:I
q 2 f 32
q= f E(k) dk 3u2 (3.33)2 0 2

2p k2 E(k) dk = 1Lu5 k (3.34)

Xo) Uo
ReI u (3.34)

v - vko' (3.35)

where v is the kinematic viscosity, and A is the longitudinal Taylor microscale.

Outflow is subsonic in the mean sense, which requires special attention in ap-

plying boundary conditions, since one of the characteristics is incoming (from out-

side). We can determine what information the outgoing characteristics carry from

the solution inside the computational domain. But difficulty arises in determin-

ing contributions from the incoming characteristics. Since we are limited to the

information inside the computational domain, the information that can be used to

determine the effect of incoming characteristics is incomplete, and we need to make

some assumptions.

'rhompson's boundary condition [1987] is derived from the assumption that the

unknown incoming data have no effect on the flow variables at the boundaries.

Poinsot et al. [1990] extended Thompson's boundary condition to include viscous

effects at the boundaries. Giles' [1990] boundary condition is designed in the Fourier
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space so that small amplitude waves may leave the computational domain without

reflection.

In this work, we tested the boundary conditions by Thompson [1987], Poinsot

et al. [1990], and Giles [1990]. We found that they were comparable in suppressing

numerical reflections at the boundary, with Giles' boundary condition being supe- U
rior to the other two. However, this improvement had virtually no effect on the

turbulence statistics downstream of the shock wave (for details, see Appendix G).

For simplicity of implementation, we used Thompson's method in most of this work.

In the remaining part of this subsection, we show the derivation and application of

Thompson's boundary condition.

The basic idea is to consider the characteristic form of the Euler equations at

the outflow boundary. Outgoing characteristics use information from within the

computational domain, and can be computed with no difficulty. Incoming char-

acteristics are handled by setting the time derivative of their amplitude equal to I
zero, thus ensuring that no waves enter the domain during the simulation, giving

the boundary conditions a non-reflecting character. 3
We begin by writing the Euler equations in terms of the conservative variables

Q = (PpUul,P 2 pu 3,ET)T: 3
+ OF (RHS), (3.36) 3

where

F PU1,PuI + P, PulU2,Pulu3 ,(ET + P)ul . (3.37)

We are concerned here mnly with the derivatives in the xl direction. Derivatives

in x2 and x3, and viscous terms, are evaluated at the boundary using information 3
from the previous substep, and are included in the right hand side (RHS). The

flux Jacobian of F is more easily derived if we work with the non-conservative flow

variables U - (p,ul,u2,u3 ,p)T. Setting A = OF/OQ (i.e. Aj = OF/OQj) and

R - OQ/04; , we have

+.4- R - 1( R S ) (3.38)
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and

_F = RA ou (3.39)

49X I  oz1

Now A can be diagonalized, A = T- 1AT, where the elements of the diagonal

matrix A are (ul - c,ul + c,uj,uj,uj). Equation (3.39) can now be written as

OF = RT_'(AT U). (3.40)

This is the relation that is imposed at the boundary to calculate OF/z 1 in (3.36).

The quantity in the parenthesis in (3.40) is a vector. The sign of each eigenvalue

in A is used to determine the course of action for each element in the vector. If

the characteristic velocity is directed out of the computational domain (positive

eigenvalue at the outflow boundary), then the quantity is calculated as it stands

using a one-sided difference. On the other hand, if the characteristic is directed

inwards then the element is set to zero. This gives the non-reflecting character of
the boundary condition for waves at close to normal incidence. The final step is to

premultiply the vector by the matrices T - 1 and R. The various matrices required

in the computation are:

0 -Pc 0 0 1

T= C2 0 0 0 -1), (3.41)
0 0 1 0 0
0 0 0 1 0

1 1 1
1- y 0 0 0 1-

: 0 0 1 0 0 3.2

1 0 0 0 .
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and

1 0 0 00
1 P 0 0 01

R U2 0PU P 0 0 . (3.43)

"Ap PlP 2 PU J
3.2.5 Initial Conditions

To simulate shock turbulence interaction, we initialize the field by superposing I
isotropic homogeneous turbulence on the corresponding stationary laminar shock

wave profile. This presumably reduces the time required for the shock wave and

turbulence to reach statistically stationary state. The turbulence field used in

the initial condition has the same energy spectrum as turbulence generated at 3
the inflow boundary during the computation. Rogallo's scheme [1981] is used for

turbulence initialization, and attention is given to ensure smoothness of turbulence

signal at inflow boundary. We solved the Navier-Stokes equations to get a laminar

shock wave, and used this solution to initialize a planar laminar shock wave in the

computational domain. 3
3.2.6 Statistical Averages 3

Two different statistical averages are used: the conventional ensemble average

and the Favre (or density-weighted) ensemble average. The ensemble average of I
a quantity y(z1, x 2 , x 3 , t), y(x I), is defined as the average over time and over the

(homogeneous) transverse directions. The ensemble-averaged equations in com- 3
pressible turbulence are usually too complex. The averaged equations are simpler

using density-weighted averages suggested by Favre [1965a, 1965b]. The density-

weighted average y(xI) is definied as

Y __ (3.44)

The fluctuations from the eiisenible average an(d from the Favre average are defined I
as

) Y I Y y- 5(j )
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The ensemble average of y" is not zero; instead,

YY-P

I p

p Y (3.45)

I
!P

3.3 Validations3
In this section, we provide a validation of the computer code by separate com-

* putations of some of the components of the shock/turbulence interaction problem.

For a direct numerical simulation of spatially evolving turbulence interacting with a

shock wave, the shock wave needs to be well resolved, spatially evolving turbulence

must be properly simulated, and the interaction of turbulence with a shock wave

must be accurately predicted. For this purpose there are at least three independent

categories to be validated: (1) simulation of spatially evolving turbulence (without

a shock wave), (2) resolution of shock wave structure, and (3) interaction of flow

3 inhomogeneity with a shock wave.

The validation of the first category is given in Appendix D by comparing the3 simulation results of spatially evolving turbulence with the experimental data.

Validations of the other two categories are performed in the present section.

* The capability of resolving the shock wave structure is validated by solving the

one-dimensional Navier-Stokes equations, investigating the shock wave profile qual-

itatively and comparing the shock wave thickness with a theoretical prediction.

Subsequently, interaction of a flow inhomogeneity with a shock wave is checked by

investigating vorticity production through the baroclinic torque and comparing the

resulting circulation with a theoretical prediction.

I
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3.3.1 Laminar Shock Wave K
The shock wave structure was resolved by solving the Navier-Stokes equations. I

Prediction of profiles across the shock wave was found reliable up to an upstream

Mach number of 2.0 [Sherman 1955]. Beyond this Mach number, the thermal equi- 3
librium assumption is no longer valid, preventing use of the Navier-Stokes equations

to resolve the shock wave structure. Except for monatomic gases, however, the

thickness of the shock wave as a solution of the Navier-Stokes equations is found

to be underpredicted even for M1U < 2.0 [Lumpkin 1990].

In the following, we test the ability of our numerical scheme to resolve a normal

shock wave in steady flow and estimate the number of grid points required across

a shock wave to properly resolve its structure. We computed the normal shock I
wave for the upstream Mach number, MU = 1.2, where superscript U denotes an

upstream value. Calculations are performed in a frame fixed on the shock wave 3
where the inflow is supersonic and the outflow subsonic with uniformly distributed

201 grid points.

The initial conditions of density, pressure, and velocity are given by the following

expression, which satisfies the Rankine-Hugoniot relations across the shock wave: 3
y(x) = y +(y D-yU)tanh(Ils ), (3.36)

where superscript D represents a downstream value, y is one of the flow variables,

and x- and b represent the shock center position and the initial shock thickness

parameter, respectively. The flow variables are fixed at the supersonic inflow and

Thompson's non-reflecting boundary conditions are applied at the subsonic outflow

boundary. As the Navier-Stokes equations are advanced, initial profiles relax or

steepen into equilibrium profiles.

The profiles of velocity, pressure, temperature, dilatation, and entropy across the

shock wave are shown in Figures 3.3(a-e). All the Rankine-Ilugoniot contitions are 3
satisfied without any spurious oscillations across the shock wave. The dilatation

profile shows that the shock wave is well resolved without any nuinerical problems.

The entropy profile shows a local peak inside the compression zone as well as a net

increase across the zone. As flow passes through a shock wave, flow kinetic energy

48 I
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is converted into internal energy by viscous dissipation, which leads to entropy

production; the resulting temperature gradient leads to further irreversible entropy

production and reversible entropy flux. Irreversibility from viscous dissipation and
temperature gradient are responsible for the overall increase of entropy, while the

reversible entropy flux leads to the peak inside the shock [Lagerstrom 1964]. Figure

3.3(f) shows the budget of terms in the entropy transport equation,I
ds _d (k dT) 411 (dui'\+ k ( dT\)2

Pu dl - Td2 J ± j y

N [Thompson 1984], where the convection (1) is balanced by the sum of the reversibleI
entropy flux (II) and the entropy production by viscous dissipation (III) and irre-

versible heat transfer (IV). The figure verifies that the entropy decrease inside the

shock wave is due to the reversible entropy flux (II). The primary source of the net

entropy increase across the shock wave is found to be the viscous dissipation of the

flow kinetic energy (III).

The shock wave thickness, 6 s, defined as

/ IU U - U D I  
(3.37)

is estimated to be

I 4 (4 +- 1) 1 (3.38)7+1 3+ Pr Re(A1*- 1)

for very weak shocks [Shapiro 1953], where Re is defined as (3.15a) and

1 + 2
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The shock wave thickness in the simulation is within 7 percent of the estimate in

(3.38) when the grid spacing in the shock zone is less than a third of the shock

wave thickness, that is, Axj < lbs.

3.3.2 Thermal Inhomogeneity Interacting with a Shock Wave 3
A second validation study was performed to check the accuracy of the scheme

in the prediction of the interaction of time-dependent disturbances with a shock

wave. This study also provided an evaluation of Thompson's boundary conditions

at the unsteady subsonic outflow boundary.

The interaction of a thermal inhomogeneity with a shock wave with MU = 1.20

was simulated. Inhomogeneity at the inflow boundary had a circular shape in the

(t-x2) plane as I

T(x2 ,) 0 + a~-exp [- U~ - J) ,2+x2 ~ (3.39)I I
where aT is the relative amplitude of the disturbance, tT the time at which the cen-

ter of the disturbance passes through the inflow plane, bT the length scale of the

disturbance, and nT the parameter controlling the sharpness of the disturbance's

edge. The simulation used 201 x 101 uniform meshes. The values used in the simu-

lation are a T = 1/10, bT = L 2/4, and nT = 10. (L 2 is the size of the computational

box in the x2 direction.) Pressure at the inflow plane is kept uniform and constant.

Thompson's non-reflecting boundary condition is used at the outflow boundary and

periodic boundary conditions are used in the transverse direction.

Figures 3.4(a-c) show a time sequence of the temperature field. Upstream of the

shock wave the shape of the inhomogeneity is circular, and after the interaction

the shape is changed into an ellipse. The predicted aspect ratio of this ellipse 3
is within one perccnt of the exact value, equal to the density ratio across the

shock wave, pD/pU. In Figures 3.5(a-c), a t;me sequence of the vorticity field is

shown. Through the interaction of the thermal inhomogeneity with the shock wave, I
vorticity is produced by the baroclinic torque. Figure 3.5 clearly shows counter-

rotating vortices generated during the interaction. 3
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Picone et al. [19851 have derived an expression for the circulation of the vor-

tices generated by the baroclinic torque, assuming the shock wave to be a planar

discontinuity and the thermal inhomogeneity to be a circular discontinuity. Their

expression for the circulation in the upper half plane is

r fi (u - U D ) bT In(1 + aT). (3.40)

I In Figure 3.6, the history of circulation in the upper half plane is shown. We see

that circulation peaks near the end of the interaction and decays through viscous

diffusion as vortices flow downstream. This peak strength compares favorably with

the estimation of (3.40) to within 5%, thus confirming the ability of the scheme

to predict the shock/disturbance interaction correctly. More rapid decrease in

circulation after t = 20 is due to the primary vortices leaving the domain. There are

trailing vortices with circulations of opposite signs to the main vortices generated

through the interaction (see Figure 3.7). The trailing vortices are prodr:, d by the

relaxation of the curvature in the shock wave, and their strengths are an order of3 magnitude weaker than the main vortices.

To check the accuracy of Thompson's non-reflecting boundary condition in un-3 steady flows, we examined the pressure field at times of entrance, interaction, and

exit of thermal inhomogeneity in Figures 3.8(a-c). The disturbance pressure at the

outflow boundary is not noticed in these plots. The level of disturbance pressure af-

ter the exit of the inhomogeneity from the computational domain is about O(10 - 3 )

* compared to the mean pressure.
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CHAPTER 4

DIRECT NUMERICAL SIMULATION

In this chapter we discuss the results from direct numerical simulations of the

interaction between isotropic turbulence and a normal shock wave.

The simulations are conducted in a reference frame fixed with respect to the

mean shock position so that long-time statistical averages of turbulence quantities

could be obtained. In this frame of reference, the mean flow approaches the shock

wave with a supersonic speed and leaves with a subsonic speed. Inflow turbulence is

generated using the method described in Appendix D, and the pressure and density

are kept constant and uniform in the inflow plane. Fluctuations in pressure and

density naturally evolve as the flow approaches the shock wave. The parameters of

the simulations are the mean Mach number M U , fluctuation Mach number Mt =

q/c, and turbulent Reynolds number ReA. As described in Appendix h, resolution

requirements limit the range of the parameters in the simulation.

Resolution of the shock wave structure limits the range of shock wave strengths;

mean upstream Mach number in this work was in the range 1.05 < MU < 1.20.

Upstream of the shock wave, turbulence is weakly compressible and isotropic

with Mt < 0.2, where compressibility effects are negligible [Lee et al. 1991b]. The

range of Mt studied in this work is 0.057 < Mj < 0.110.

The resolution requirement of turbulence length scales limits the range of tur-

bulent Reynolds numbers. Here we define two turbulent Reynolds numbers,

,4u )2 Pu'Al

ReT -puiu) and ReA =u_ ,(4.1)
1/2

where u' = (uiu/3) and the rate of dissipation of turbulent kinetic energy per

unit volume, c, and the longitudinal Taylor microscale A,, are defined as

To a d 2--(4.2)anoa

63



I

respect ively. IIi illc(uhipressi|1le isotropic turbulence, the two Reynolds numbers

are related as ReT __ 3Rf'A. The range of the turbulent Reynolds number in the 3
simulation was 12 1- RcA. 25. corresponding to 80 "1 RcT < 300.

'Hlls, we have investigated interactions between weak shock waves and weakly

compressible isotropic turbulence at low Reynolds numbers. Table 4.1 lists the

simulation parameters. (The values of 11t. ReTT, and RCA are taken at tie location

just before the shock.) In this chapter, we discuss modification of turbulence by the

shock wave (Section 4.1) and modificat ion of the shock wave by turbulence (Section

.4.2).

Table 1.1 Parameters for the simulations of shock-turbulence interaction I

T as,,r,, D | E F....e...\ W -- V--V 77,7 -F w4

i(1rid 1129.- 6. 129 - 64- 193 - 64 1129 . 64- 129 64" 1129 64'
!,jY r 1.20 1.20 1.20 1.20 1.10 C 1.0

.0953 .0.567 .0762 -0-00W'R - vT_ 28 33 84.7 170 
_281 179mA 

-
I_ -0i~ 

0.( -v -S 0.10 0.10 0.10 .00 0.10
S,74 1 46

i- 0.8.5 0.8.5 1 0.8 -_ 0.925 . 0.90 0.85

dehned in equation i3.32)

t defined in equation (3.25) 1

4.1 Modification of Turbulence

4.1.1 Preliminary Considerations 3

'igures 4.1(a-c) show the evolutious of mean flow quantities across tie shock

wave. "[he mean flow quantities ii(lergo rapid jumps through the shock wave.

[he average downstream values of pressure and temperature are slightly higher

han tile valies for tle corresponding laminiar shock wave. Tles( higher meani

vales are caiiseI bY the irreversible energ transfer fromli turbulent kinetic ellerglv

to tile internal energy by viscous dissipatinmn. Mean pressure an d temperature 1
641
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unlergo) slight oversh(t)s just elhi d tie shock wave followed by relaxatiiis diue

to nonequipartition of energy between fluctuations in pressure and velocity, as flow

passes through the shock wave [Sarkar ct al. 1991]. Suppose the total enthalpy of

tlie flow h T cPt ' u u 2 is constant behind the shock wave, theii its fiucti uat.io

vanishes, so that

b*'---**'+ IT*u, 0.

The effeci of temperature overshoot T' on the velocity fluctuation u can be rep-

resented as

1
U 1 -- ....

T*t  C•

(?- 1)T o U U*

:--T'11 D  (4..3)

Even though the magnitde of the overshoot is small (about 5%, compared to lhe

jump across the shock wave with I1' = 1.20, it. contributes substantially to t he

level of the velocity fluctuations (about 20% for a flow with Mt - 0.15).

Velocity derivative skewness factor .5,, is defined as

,,,t (4.1)
( , )3/2

which has a value of about 0.4 to -- 0.6 in isotropic turbulence. This value varies

with c(ompi'essibility as well as with the turbulent Reynolds number 'Tavoularis e I

(,. 197,. Erlebachr ,! al. 1990'. Figure 4.2 shows tbe evoluit oil of the velocitv

derivative skewtiesses for case C. Turbulence at k,, . 12 may be regarded as

realistic. Since the meati positim1 of the shock wave is at k-,] I,8.8. turbnulence
i eracing with tlie shock wave is colisidered I t be realistic.

(),e -diiieusiaonil power spect rum l ' f( 9  ) 1f a fliic at ion f' ( r .2.* * r* t) ii

tie average f( xl is defitied by

k.'f /,.2 . I) ( r ,/'2 .r: 1 )5*(. ."2 ." .t) .5



where ) (i'lot es averaginig ( ver t he r3j (1i1til as well its III t ilii, f Is the Fourier

transformz of f' In thei x., direct ion, and f. is sits complex conijutgat e. Figu re 41.3 shows3

lie on~e-diumenisional power spect ra of voCcomnponenits and~ (Icllsi t' u ipst ream

of thle shock wave for case U, . vliere k,/kk. is the largest ( k( is the cutoff, or thle

largest wave num ber representedl in thle simulation). The holinogorov wave niumber
kK-(tP 3) of the simuilat ion was kA- /k 0 - 4.63, or kK /k = 0.869. So, the

Khliiogorov scale is actually cap~tured. The spectra (IecaY at least three orders of3

mi agniit ude, wh ichI shows t hat thle flow field is well resol vedl. Th le spectra of El and

1'13 are III gZod agreemrenit as expected of isotropic t urbulenice. The relation between

t let spect ra T,'1 ( A-) ) antliKA) for Isot rop~ic turbullenice,

K OE2(A9 ) 1V<(k) 2 .K( A-) k, Ok') j*(4.6)1

liize 19 75' Is also satisfied.

'Igrurcs la-)show thle evoliut ion of thle oiue-dimuenslorual power spectra ofI

11 11~ and density, respect ively, throughout the coiiipuutat ioiual domain. Across the

shon ck wvave, en han cem enlt ()f thle spectra call be not iced withI more amplification

at I arge wave ni umbuiers. A., tHie fb )W evolIves fri er (Iovlist reami of tilie shock, thleI

spectra drp o)ver the entire range of the wave numbers . More ampiIlification at

large wavvo ii hers across thle shock wave leadls to the (decrease of thle turbulence3

lttlu scales,' es pecially thle Taylor ouc roscale.

1 wo-p1)1 it c rirel at on QJJ), and( thle correspondlinrg itegral scale, A ff,( areI

le1fi ned as

f'xf'(x 4 rc)

J k f Qf f,,,(r)d1r, (1.7)I

resot!v~l whrethe liettor f sep;irautioii is Ind~icated by (1 2,3.. lit order toI

check the- olt'yuacv of 4 thriipiitatiorial bo(x size Ill the riivredirections where

~ rioh i hi t~aiv o di t i0are Uise~d, we eX aiuiiili the t woI Pm1iii cm-relal ions of



three velocity components, density and pressure in the x2 direction upstream of

the shock for case A, where ko/k, is the smallest (Figure 4.5). The longitudinal

velocity correlation Q22,2 decays monotonically to zero as expected. Even with some

problems in the sample size, the lateral velocity correlations, Q11,2 and Q33,2, show

approximate isotropy especially for small separations. (Correlations are calculated

by averaging over 65 saved fields which are separated in time by Atu'/Al = 0.064.)

The correlations of pressure and density fluctuations are found to be identical. The

size of the computational box in the transverse directions appears to be adequate.

4.1.2 Evolution of Turbulent Kinetic Energy

Figure 4.6 shows the evolution of the normal components of the Reynolds stress

tensor Rij defined by [Favre 1965a, 1965b]

putfUlR ij -p-- - ( 4 .8 )

The off-diagonal components of Rij stay close to zero over the entire flow field

due to symmetry (isotropy upstream and axisymmetry downstream) in the velocity

fluctuations. The statistics of the streamwise component in the shock zone contains

the intermittency effects due to the oscillations of the shock. (The boundaries of

the shock oscillations are defined as the locations where U1,1 = 0.) The effect of

kinematic oscillation of the plane shock wave on the statistics is investigated in

Appendix F. All the ',elocity fluctuations are enhanced during the interaction as

predicted by the linear analyses (RDT and LIA). Turbulent velocity fluctuations are

anisotropic behind the shock wave. The return to isotropy is found to be negligible

compared to the decay rate. The amplification in the variance of transverse velocity

fluctuations, which is defined as the ratio of the downstream maxinmnm value to

the upstream minimum value, lies between the near-field and far-field predictions

of LIA due to the osc:':atory movement of the distorted shock front: for 1117 - 1.2

(case C), the simulated amplification is 1.19, while the near-field LIA prediction

is 1.45 and the far-field LIA pre(iction is 1.15. The streamwise component Rll

undergoes rapid increase behind the shock wave: the linear analysis (LIA) predicts

monotonic decay for all the velocity fluctuations (Figures 2.5-2.7). (Discussions
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on the anolnalous behavior of the statistics inear the outflow boundary in Figures

4.6-4.9, 4.11, and 4.23 are given at the end of this section.) 3
In order to identify the mechanisns of amplification and rapid evolution of tur-

bulent kinetic energy, the terms in the transport equation of the Reynolds stress

tensor RU were computed. The transport equation for Rij [Dussauge et al. 1987]

isI

ORI ( II) _I I) •
(-p' +-P," Ri "'"

axk Ork (UX "X + Ui

(U , lf OpP P ," ° k ,, 49k--t- U z x + U. - + U - z )  (4.9)I

(IV') (V) (VI)

The convection (I) of the Reynolds stress tensor balances with the production by

the mean , 'rain field (II) and the production by the mass fluctuation (III), the

pressure work (IV), the turbulent transport (V), and the viscous dissipation and I
transport (VI).

Figure 4.7 shows the TKE budget. The statistics of the flow variables inside the 3
shock wave are contaminated by the intermittency effect caused by the unsteady

distortion of the shock wave (Appendix F). Turbulence amplification mechanisms 3
in shock-turbulence interaction cannot, therefore, be unambiguously identified by

investigating the statistics of the numerical simulations inside the shock zone. Out- -
side the shock wave, the viscous dissipation is the dominant term and the pressure

work term just downstream of the shock is the only other term which has a compa-

rable magnitude. The rapidt evolution of TKE just downstream of the shock wave I
is due to pressure work.

The pressure work term which causes the rapid evolution of TKE downstream I
of the shock can be decomposed into two terms, the pressure dilatation p'uY! and

the pressure transport term (pU') 1 as

-p I I p U u" (4.10) I-P~~zl . plu,i - (p,
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Positive pressure dilatation leads to reversible energy transfer from the mean inter-

nal energy to the turbulent kinetic energy, while the pressure transport is respon-

sible for redistribution of TKE in the inhomogeneous direct;on. These decomposed

terms are shown in Figures 4.8(a) and (b). The decomposition inside the shock

wave is very similar to that in the kinematic oscillation of a plane shock wave (Ap-

pendix F), which suggests that the behavior of the profiles inside the shock wave

are mainly due to its unsteady motion. The decomposition downstream of the

shock wave, Figure 4.8(b), shows that the rapid evolution of TKE is caused by the

pressure transport term and that the pressure dilatation acts mainly to convert the

mean internal energy into turbulent kinetic energy.

Figures 4.9(a) and (b) show the budgets of R 11 and R 22 outside the shock wave.

The effect of the pressure work term is quite pronounced in the R 1 1 equation. The

R 22 equation has no pressure transport, since the flow is homogeneous (periodic

numerically) in the x 2 direction. Therefore, the rapid evolution of TKE is mainly

from the streamwise fluctuations.

In numerical simulations of two-dimensional inviscid turbulence interacting with

a shock, Rotman [1991] found that turbulence is less amplified for the higher up-

stream turbulence level for the same mean shock strength. Here, comparison is

made for the amplification ratios of transverse velocity fluctuations of cases B and

D, both with the same shock strength, M U = 1.20. Turbulent kinetic energy in

case B is three times higher than that in case D, while turbulent Reynolds numbers

are comparable. The amplification ratio is higher for the weaker upstream turbu-

lence by about 8%: the amplification ratio is 1.19 for case B and 1.28 for case D.

Even though Rotman's simulation had a stronger shock wave with MIU = 2.07, the

reduction in amplification was about the same for the same change in the upstream

turbulence intensity.

Application of Thompson's [1987] boundary condition at the outflow generated

anomalous statistics of the streamwise velocity fluctuations in a region near the

outflow (Figure 4.6), pressure work (Figures 4.7-4.9) and dilatation (Figure 4.11).

These anomalies are due to an incomplete suppression of the acoust; wave reflec-

tions. In order to investigate whether these anomalous behaviors affect the overall

evlution of the flow downstream of the shock wave, the more refined boundary

conditions of Gies [1990] was implemented in the code. These numerical experi-

ments rerified that these undesirable behaviors were confined t(, only a slnall region
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near the boundary. (The Giles boundary condition implemented is a first-order ap-

proximation for the free propagation of a wave through the boundary, whereas the

Thompson boundary condition is a zeroth-order approximation.) A brief descrip-

tion of the Giles' boundary condition and a comparison of statistics are found in I

Appendix G.

4.1.3 Dilatation and Vorticity

Up to the turbulence Mach number Aft of about 0.5, the dissipation rate of

turbulent kinetic energy f can be approximated by neglecting the effect of viscosity

variations, as [Lee, Lele, and Moin 1991b] 3

I
1 ±- 4 (4.11)1

where, 0 = ui, i is the dilatation and X0 is tile ratio of the dilatation and vorticity

variances defined by

(4.12)

Therefore, the ratio ke is a relative magnitude of the compressible dissipation rate

to the incompressible dissipation rate. 3
The viscous term in tile TKE transport equation, u, rik,k, reduces to the ex-

pression (4.11) in homogeneous turbulence if property variations are neglected.

This approximation is tested in Figure 4.10. The contributions of turbulence inho-

mogeneity and property variations to the viscous dissipation are found negligible

outside the shock zone. i

As noted in (4.11), variances of dilatation and vorticity coitriblute to the dissi-

pation rate of turbulent kinetic energy. In the following, we investigate the effect of I
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a shock wave on the variances of dilatation and vorticity. The evolutions of dilata-

tion variance and enstrophy are shown in Figure 4.11. The variance of fluctuating

dilatation is enhanced by three orders of magnitude across the shock wave, and

decays very rapidly behind the shock wave. Enstrohphy is also amplified is passage

through the shock.

Figure 4.12 shows the evolution of the components of vorticity across the shock3 wave for case C. Linear analyses predict that transverse components of vorticity are

amplified whereas the streamwise component is unchanged. The simulation results

shown in Figure 4.12 (and all other simulations) are consistent with the linear

analysis prediction. Turbulence behind the shock wave becomes axisymmetric in

vorticity fluctuations as well as in velocity fluctuations.

Figure 4.13 compares the amplifications of the transverse vorticity for different

shock wave strengths. The amplification is smaller for the weaker shock. The am-

plifications of the transverse vorticity across the shock wave computed from the
simulations compare favorably with the predictions of linear analyses: the max-

imum difference is 5% for case F with M l = 1.05 and Mt = 0.10, where the

local shock wave structure is significantly modified (see Sec. 4.2.2). The effect of

turbulent Reynolds number on the vorticity amplification is found to be negligible.

Figures 4.14 (a) and (b) show the evolutions of vorticity for flows with different

turbulent Reynolds numbers interacting with a shock wave of the same strength.

Vorticity stays fairly constant upstream of the shock, and after the interaction

transverse components decay whereas the streamwise component increases near the

shock wave. In order to check if the increase of the streaniwise vorticity component

behind the shock (Figure 4.14 (a)) is caused by poor resolution of the simulation,3 a coarse grid simulation with 97 x 48 x 48 points was tperformed. Figure 4.14

(c) compares the statistics of vorticity fluctuations with those from the original5 simulation with 129 x 6-1 6-1 grid points. The variance of the strearnwise vorticity

fluctuation predicted by the coarse grid siinulation is slightly less than that of

the original simulation, thus, confirming that the increase f the variance of the

streainwise vorticity behind the shock wave is iot fr,,n a niijierial artifact.

In order to identify the dominant rechranisis foir tle vorticitv aniplification and

the Reynolds number effects on the evolution of vorticity, tHie transp)rt equations
for vorticity variances were exallined. Ile ttictuating v% )rticitv eql ati(), which is3 obtained by takiig tHie curl f p I ) is:
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at + U3 -xj =JSk Wajj + [jk (p'kq,q ± PJ (4.13)

'( I
where sij = 2 ui,j + uj,j) is the strain rate. Multiplying (4.13) by 2w' and taking

the average over the homogeneous transverse directions and over time gives:

__ I
i o"W"a =-2w~lW1 i,j+ 2w W'.S' -2w'w'. Sj -0W S

Ox a 3 a a aa) a jj

)(11) (IV) (

+ 2cajkW1pjP,k/p 2 -(woauk),k + -1, (4.14)

(VI) (VII) (VIII)

I'Blaisdell et al. 1990], where the repeated Greek indices are not summed. Here I

is the viscous dissipation and transport, given by

(P" 2cajkW (PT kq'q (4.15)

Trhe term on the left hand side of (4.14) represents the advection by the mean flow.

The first and second terms on the right hand side represent vortex stretching by

the mean and turbulent strain fields, respectively. The next two terms represent

pr-)duction (removal) by dilatation. The fifth is the vorticity production by the 3
baroclinic torque, the sixth is the transport by the turbulent velocity field, and the

last term is the viscous dissipation and transport. 5
The balance of the terms in (4.14) for the transverse vorticity, W' 2 is shown

in Figure 4.15. The averages are taken over the honmogeneous directions, x2 and I
x3, and over the 65 saved spatial fields for case A which are separated in time by

%t i'/A 1  0.064. All the terms in (1.14) were evaluated independently, and the

nlaxilninl}) 11alance, the difference between the LI11S and the RHIS, occurs outside
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I the shock zone and is about 10% of the largest terms, the viscous dissipation and

turbulent vortex stretching. Inside the shock wave, the vorticity-dilatation (IV+V)Iis the dominant source for vorticity amplification. The viscous term (VIII) is bal-

anced with the vortex stretching (11+111) beyond the shocked region. Baroclinic

torque (VI) is less than 1% of the leading terms throughout the domain in all the

simulations, including case F where the shock wave is strongly distorted. The effect

of turbulent transport (VII) is also found to be negligible.

Figure 4.16 shows the vortex stretching and vorticity-compression by the mean

and turbulent velocity fields, as they appear in (4.14). Even with the overestima-

tion of turbulent strain rate in the shock wave due to intermittency, the vorticity-

mean compression (IV) is much larger than the other terms inside the shock. The

dominance of the vorticity-mean compression explains the good comparison of the

simulation results with the predictions of the linear analyses.

Even though amplifications of the transverse components of vorticity obtained

in the simulations are very close to the predictions of linear analyses, they are

systematically lower than the linear predictions. The difference becomes larger

for the higher upstream turbulence levels, or for the larger values of the ratio,

~A1/(A1 - 1). Figures 4.17 (a) and (b) show the balance between the nonlinear
122

terms in the w2 equation and their net effect on the w.) amplification. The netIeffect of the nonlinear terms inside the shock wave acts against the amplification

of vorticity. However, this nonlinear effects are negligible compared to the linear

effects (Figure 4.15).

Figure 4.18 shows the balance of the terms in (4.14) for the streamwise vorticity

Inside the shock wave, effects of vortex stretching (II III) and vorticity-

dilatation (IV+V) tend to cancel each other, resulting in no appreciable change in

the streamwise vorticity.

As shown in Figures 4.12, .14(a) and (1b), there are differences in the evolution of

the streamwise vorticity for flows with different Reynolds numbers. To identify the

effect of the turbulent Reynolds number on the evo( hi i of vorticity, the vorticity

budgets for flows with different leynolds number are shown in Figures 4.19 (a-d).

Outside the interaction zone, the dominating ternis in (4.14) are the viscous dissi-

pation (VIII) am the vortex stretching (II+Ill) iainly iby the turbulent straxin

rate. Both the st retching and dissipation increase by ab)wt the same amount with

7:I
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the increase of the Reyniolds nlumbler in the budget of the transverse vorticity com-

ponenit. resulting in no sigi!icant lReynolds-numnber dependence in the evolution

of the transverse componeiit. However, somie Reynolds-number dependence was

found in the budget of the t.-(,,m-wise vorticity evolution: the turbulent stretching

overtakes the viscous dissipation beh-ind the shock wave for the higher Reynolds
number flow, resulting in -. higher Increase in the streamnwise vorticity component

behind the -shock wave (Fligure .4a)

For lionogeneous turlbu fence witli uiliforin density, the viscous dissipation and

ransport term 4>,, reduces to tHe lioniogeiieous viscous dissipation P 1C

xx L!..)ck 1 (4.16)I

[ilie evol ut ions of (D and (I, t are - 1vde in Figure 4.20. The effects of turbulence

nli()Iniogeuieit v anid (IeiP t v variat ion onl the viscous term are found to be negligible

except for 4). In tile sh1ock 7(,Ii.

4.1.4 r'hirbul ce Length Scales

Figure 4.21 shiowvs thle evodlit ion of t lie Integral scales definled in (4.7) -A 1 1,2,App I
and Ap2 .Ac ross the shocik wave, the (decrease in the transverse velocity integral

scale A").. is quite prouiouiiiced. Thle length scales of density and pressure fluctua-I

tions st av very close to eachi othier thiroughiout the domain. They grow upstream of

the shiock wave. (lecrease Si griitic ;tntlY across the shock, and recover to the upstream3

levels 111 at shiort (dlitauicc 4ontra O e tiesock wave.

Fliure 4.22 sh 1w s hw ev, Iut i( ()f t eu rlilen cc lengtli scale I dlefined as3

pq3 (4.17)I

As the flow approaclice t le Ir witv, Is lengthi scale decreases, prob~ably b~ecause

th e enlergy s peer iii c l e lie lr at igh wav~e numbers. (The In flow spect rumi
pgivenl 111 [3.32) hasi virtuidlv1. 10o l'unr C eOTId k/k 0 > 2.) Thie length scale decreases

further aci-r o tl~i, jc k lii-. an ri, -e> at ie r rapidly over a short (list ance hehi uid

tile shiock %w'cv ' ! lcl" ei~ ;,I . 2ittiiati j 1 Inside thle shiock wave is significantly

eouitaeiuia' l til ,vr wo uuwf. ' f ii' (lie to Itile (Thci Ia" loll oft Ile sihock Wave.



Another length scale of interest is the longitudinal Taylor microscale A, defined

in (4.2). Figure 4.23 shows the evolution of the Taylor microscales thrmughout the

computational domain. The evaluation of the streamwise microscale A1 inside the

shock wave is also significantly contaminated due to the shock wave oscillation.

Noticeable reductions of all the microscales are found across the shock wave.

Figure 4.24 compares the Taylor microscale reductions in a transverse direction

from different cases with predictions by LIA and RDT. For the range of upstream

Mach numbers simulated (M U = 1.05,1.10,1.20), the predictions by LIA and RDT

are virtually the same. Except for cases with strong upstream turbulence intensity,

the simulation results compare favorably with the predictions by the linear theories.

As the upstream turbulence intensity increases, the transverse Taylor microscales

decrease more across the shock wave with the same M1U (compare cases A, B, and

C). The streamwise Taylor microscale evolves rapidly downstream of the shock and

it is difficult to identify its "downstream value."

4.1.5 Thermodynamic Properties

In Figure 4.25(a), we present evolutions of rms pressure, density, and tempera-

ture fluctuations (pr,pr, and T,). As the flow passes through the shock wave, all

the fluctuations are amplified, followed by a rapid decay. These fluctuations aregvirtually isentropic. The polytropic exponent nl(xl) is defined as

nl(Xl) - Pr(Xl)/(Xl) (4.18)

which is equal to -y (1.40 here) for isentropic fluctuations. Figure 4.25(b) shows

evolutions of the polytropic exponent. The polytropic exponent stays close to the

isentropic value throughout the domain, varying between 1.35 and 1.40.

In order to identify the mechanisms of amplification and decay of the density

fluctuation variance p 2, the budget for the density fluctuation variance [Taulbee Ct
al. 1991] is investigated:

__o_ ® o..'

U 1  p -i 2p, .... 2ip' P (4.19)
axl ax a, x OXI Oxj

(1) 011) (111) (1IV) (V) (vI1)
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The convection (I) is balanced by the productions by the mean compression (II)
and the mean density gradient (1I1), density-dilatation correlations (IV+V), and

turbulence transport (VI). Figures 4.26 (a) and (b) show the balance of the terms

in (4.19) for the density fluctuation variance, P 2 . The averages are taken over the

homogeneous directions, x., and r3, and over the 65 saved spatial fields which are

separated in time by A111/,\I - 0.064 for case A. Across the shock wave, density

fluctuatio,, are enhanced mainly by the production due to the mean compression I
(11) and the mean density gradient (III). Density-fluctuating dilatation correlations

(IV 4-V) are significantly overestimated inside the shock wave due to the shock front

oscillation, but their net effect is the suppression of the density fluctuation during

the interaction. Behind the shock wave, however, the evolution of p' 2 is dominated

by the density-fluctuating dilatation correlation (IV).

Figure 4.27 shows the joint probability density function of the instantaneous 1
pressure versus instantaneous density scaled with their local mean values, P(xl)
and p(" 1 ) . It is clear that the isentropic relations is satisfied for the instantaneous

flow, even inside the shock wave. The local polytropic exponent n 2 (x) is defined as I

p'(x)/P(xl) I
pI(x)/P(x)

The average polytropic exoneut T,) is obtained by averaging nu2 (x) over the flow

field. (The states With !p (x)/'P(x )1 < 10 3 were excluded in the averaging process

to avoid large scatter.) The average polytropic exponent was found to be very close

to the isentropic value ( n2 1 .01).

Exaniiing a limited experiniental data sets. Morkovin I1962] (see also Bradshaw

1977') pointed otit. that in non -i;:,pers,,m ic boundary layers the acoustic mode is

neglig1ihl and tll- en1troy)v iw,,e is vcrv n',i;ni fofr normal rates of heat transfer. Ie
the ,t' luced tlat

so that

I- (-( 1  , (4.20)

,P ' "' I
I

I



where the total temperature is T = T + uiui/ 2 cp. This is known as Morkovin's

Strong Reynolds Analogy (the assumption of negligible total temperature fluctu-

ations) and is widely used to correlate thermodynamic property fluctuations with

velocity fluctuations in compressible turbulence closures. A more general correla-

tion through the polytropic coefficient n is suggested by Rubesin [1976] as

p p I n T"
- n- (4.21)

Morkovin's relation is a special case of (4.21) with n 0.

Figure 4.28 shows the correlation between density and temperature fluctuations,

CpT, defined by

CpT = -
p 2  r'

which would be n - 1 if (4.21) were correct. Since the polytropic coefficient n

was found to be close to the isentropic exponent (I-- 1.40), the validity of the

Morkovin's analogy appears to be questionable (with wrong signs). The same

conclusion was reached by Blaisdell et al. [1990] in their numerical simulation of

homogeneous shear flow. Using Gibbs' equation and the equation of state of an

ideal gas, the pressure fluctuations can be represented in terms of the fluctuations

in density and entropy as

P' -a+ s s, (4.22)

where s is the dimensionless entropy defined as s = s*/c*. When the temperature

(or entropy) inhomogeneity in the flow is not significant, or
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then (4.22) reduces to the polytropic relations (4.21) with n = Y. This inequality

can be translated into terms which can be estimated [Thompson 1984, p.144] as

lii>>(Y- 1 ) [c: + rV2T]. (4.23)

The RIIS of (4.23) was found to be less than 5% of the dilatation in the present

simulations, which verifies that the relations between thermodynamic property fluc-

tuations are nearly isentropic.

Expression (4.21) reduces to the Strong Reynolds Analogy (4.20) if there exists

an appreciable mean temperature gradient in the flow and the pressure fluctuations

are negligible. The Strong Reynolds Analogy is, therefore, a good approximation I
in turbulent boundary layers where mean gradients of temperature and density

normal to the wall are large. 3
4.1.6 Modeling Issues

In the k-E formulation for compressible turbulence, the transport equation for

turbulent kinetic energy (equation (4.9) with i j) has more modeled terms than 3
its incompressible counterpart. The additional terms are the compressible dissipa-

tion cc (included in u" rik,k), the pressure-dilatation correlation puii (included in

i dand the average turbulent mass flux u. Zeman [19901 and Sarkar et al.

[1991] proposed models which parametrize compressible dissipation in terms of in- I
compressible dissipation fI, and the fluctuation Mach number Mt as cC = Jf(M).

Both models were successful in predicting the suppression of the spreading rate of 3
compressible mixing layers at high convective Mach numbers. Coleman and Man-

sour [1991] proposed a modified turbulence model for the incompressible dissipation

when turbulence is subject to mean compression.

Zeman [1991al has identified the pressure-dilatation correlation with the rate

of change of compressible potential energy, represented by the pressure fluctuation I
variance p' , as I

p U',ip 2  (4.24a)
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Zeman assumed that the rate of change of p' 2 is governed by a nonlinear relaxation

mechanism which drives p' 2 to an equipartition value [Sarkar et al. 19911:

__i 2 1
2  2

-_ p- Pe (4.24b)Ul jX 1  a '

where the acoustic time scale ra is

Ta Mt-r (4.25a)

= 54(1 + Mr2/3)

(" = q2 /,E denotes the turbulence time scale), and the equilibrium value p2 is

Pe at (4.25b)
p2 q2i 2  1 + aM 2t +3M(b

a = 1 and i3 2 were chosen to best match the DNS results for highly com-

pressible turbulence [Blaisdell et al. 1990]. The expression (4.25b) combines two

assumptions: (1) the equilibrium ratio of compressible to solenoidal turbulent ki-

netic energy is

qc/qi at +

and (2) in equilibrium, the compressible potential and kinetic energies are in

equipartition,

2 -2 2
= 2 qc•

Zeman [1991b] and Durbin and Zernan [1991] proposed niodifications for (4.24a)

and (4.24b) to account for the effect of the mean strain rate as

I_ j- I U , O P 2  P t 2 a -T
P (1 (9P ' JJ.26a)
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and I
J_ p2 22(- + cd)I pt 2 o i (4.26b)

where cd = (5 - 37)/12. 1
As shown in Figures 4.29(a) and (b), the model in (4.26a) appears to be very

accurate.

Figure 4.30 shows an evaluation of (4.26b) using DNS data. The closure equa-

tion for p' 2 was found to be inadequate throughout the domain. The equilibrium

pressure variance pe which best matches the upstream and downstream evolution
of p'2 , was found to be 0.3 times the expression given in (4.24b), and the result

is also shown in the filire. Zeman assumed that the pressure variance p 2 is the

compressible potential energy, and relaxes to the equilibrium compressible pres-

sure variance p2. Investigation of the simulation database of decaying compressible

turbulence [Lee et al. 1991b] showed that the contribution of the incompressible

pressure is appreciable even in fairly compressible turbulence with Mt 2- 0.5. For a

flow with lower Mt, the incompressible pressure comprises the major portion of the

pressure fluctuations. Therefore, the assumption behind the expression for p. given

in (4.25b) is invalid except for highly compressible turbulence. For the range of pa- I
rameters studied in this work, compressibility effects are not significant anywhere

except in the shock zone.

Sarkar [1991] has also proposed a model for the pressure-dilatation correlation

using the DNS database of isotropic turbulence and sheared homogeneous turbu-

lence. He developed his model using the statistics in the fully developed stage

where turbulent kinetic energy decays (isotropic turbulence) or grows (sheared tur-

bulence) in time. Taulbee and Van Osdol [19911 proposed a single expression for the

sum of the pressure-dilatation correlation and compressible dissipation, p'u + c,

and tuned model parameters to match the experimental data in a boundary layer

and a mixing layer. Both models were unable to predict the present observation of

reversible energy transfer from mean thermal energy into turbulent kinetic energy I
in the absence of mean strain rate behind a shock.

I
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The pressure transport term, -p1),I, was identified to be the driving mecha-

nism for the rapid evolution of the velocity fluctuations downstream of the shock

wave. Assuming the isentropic relation between thermodynamic fluctuations, the

pressure velocity correlation can be expressed as

-pu 1 = =PU -C2pu 1 . (4.27a)

The accuracy of this assumption is checked in Figure 4.31(a), which shows that he

use of isentropic thermodynamic relations in (4.27a) is satisfactory throughout the

domain. Therefore, modeling of the pressure transport can be reduced to that of

the turbulent mass flux, p'u7. Taulbee et al. [1991] developed a model transport

equation for plu" using Morkovin's hypothesis. However, as was shown in section

4.1.4 applicability of the Morkovin's hypothesis in the absence of mean temperature

gradient is questionable. Zeman [1991b] proposed a model rate equation for p'u"

as

Ul ___ 1p _ l __ 1

_ - Up(4.27b)
9Xl Ta -JR1i W

which drives the mass flux fluctuation to zero except near the shock, on the fast

acoustic time scale ra. The accuracy of the model in (4.27b) is checked in Figure

4.31(b) which shows that it qualitatively represents the behavior downstream of the

shock wave. However, there are differences in the peak position and its magnitude.

To gain further insight into the physics of the turbulent mass flux p'u' down-

stream of the shock, several different scalings were examined. The best scaling

is based on the assumption that the correlation between the density and velocity

fluctuations is composed mainly from acoustic waves. The streamwise distance and

the turbulent mass flux are scaled as

and 2(4.28)

respectively. Figure 4.32(a) and (b) show the unscaled and the scaled turbulent

mass flux terms for different upstream conditions and shock strengths (MU
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1.10, 1.20), respectively. The match in amplitudes and length scales of the turbulent

mass fluxes from different simulations is significantly improved by the scaling (4.28),

which suggests that the rapid evolution of TKE may have been caused by the

propagation of acoustic waves which are generated during the interaction.

4.2 Modification of a Shock Wave H
4.2.1 Statistics of a Shock Wave I

The characteristics of the shock wave- shock wave thickness and shock front

distortion- vary with time due to the effect of upstream turbulence. The peak

compression Omin(x2,x3,t) inside the shock wave along the mean streamlines is

used as a measure of the shock wave strength. (The min is taken along the x 1-

direction for each X2 and X3. 0 min is not necessarily confined to a plane, however

for clarity its "stretched" version on a plane will be presented.) Figure 4.33 shows a

typical contour plot of Omin(a2, x 3 , ). (Dashed contours denote values with larger

than the corresponding laminar value at the same upstream Mach number.) The 3
average peak compression is found to decrease from the peak compression of the

laminar shock wave by about 10%. The peak compression varies widely across the

transverse plane, which is reflected in the large value of the ratio between the rms

and the mean values of the peak compression, (0min)rms/i0minI = 0.42. 3
Figures 4.34(a) and (b) show the probability density function (PDF) of the peak

compression inside the shock wave. The flow tends to have frequent events of large

compression. This trend is clearly shown in Fig. 4.34(b), where the probability of

large compression zones is higher than the Gaussian distribution by several orders

of magnitudes. This is confirmed by the skewness and flatness values of the PDF, I
-0.81 and 11.0, respectively.

The statistics of the shock front distortion were estimated by LIA in Section 2.2. 3
The shock wave front in the simulated field, however, is not clearly defined, because

in the numerical simulations the shock wave spans over several grid points. The 3

I
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pressure half-rise point was chosen to be the shock front position, (x 2 ,x 3 ,t). In

other words,

(x2'z 3 ,) = p(, x 2 ',x 3 , t )  2 (4.29)

where PL denotes the pressure in the laminar shock wave which was shown in Figure

4.1 to be near the mean turbulent value. This designator is very well-defined and

remains relatively noise-free for the cases with weak upstream turbulence. In order

to check the sensitivity of the shock front statistics to the special choice of the

designator, the contour plot of the shock wave position based on the pressure half-

rise point was compared with that bzsed on the density half-rise point in FiguresI 4.35(a) and (b). The difference between the rms shock distortions obtained by the

two methods is always less than 1% of the predicted rms values.

Figure 4.36 shows the scaled rms displacement of the shock front from different
simulations. The scaling suggested by LIA was found to collapse the simulation data

reasonably well. The LIA prediction of the shock front displacement is dependent

on the shape of the spectrum, especially on the low wave number part. The rms

displacements of the shock front from the simulation are systematically lower than
the LIA prediction based on the energy spectrum (2.1) and higher than that based

on the von Kirmin energy spectrum (2.2). This can be attributed to the shape of

the upstream spectrum in the simulation: As the spectrum develops from the inflow
spectra (3.32) or (2.1), it loses energy at small wave numbers and gains energy at

large wave numbers. The scaled shock front displacement is smaller for the higher

upstream turbulence level.

Figure 4.37 shows the scaled rins shock front inclination angle in the x 2-direction,

02 = a'/x 2 . LIA predicts the rms shock front inclination angle to be independent

of the upstream energy spectrum shape. The statistics from the simulation are in

fair agreement with the LIA predictions. As the fluctuation Mach number of the

simulation increases, the simulation result deviates further from the linear predic-

tion (Note that an infinitesimal fluctuation Mach number is one of the assumptions

for valid application of the linear analysis).

Shock front curvature profiles obtained from the simulation was too noisy to

permit any decisive conclusion except for case C where the shock wave is resolved

best. The rms values of the scaled shock front curvature
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range from 1.86 to 2.03, while the LIA prediction with spectrum (2.1) is 1.41 for

MU = 1.20.

4.2.2 Instantaneous Fields

Instantaneous density fields at a typical x1 - X2 plane from the cases D and

F, are given in Figures 4.38(a) and (b): Figure 4.38(a) is for a weak upstream

turbulence (M U = 1.20, Mt = 0.057) and Figure 4.38(b) is for a rckatively intense

turbulence (MU 1.05, Mt 0.10). The overlaid contour lines near the center

of the figures are iso-compression (same ui,i) lines. Figure 4.38(a) shows a clear

shock front across which significant increase in density is noticed. For the more

intense upstream turbulence (Figure 4.38(b)), the shape of the shock front is more

distorted. The variation of peak compressions inside the shock wave in transverse

directions becomes stronger for the more intense upstream turbulence. The varia-

tion in the visual thickness of the shock wave is also larger for the stronger upstream 3
turbulence. Low density regions are often found behind the mean shock position

for flows with M > M U - 1.

By comparing Figures 4.33 and 4.35(a), we found a moderate correlation between

the peak compression and the shock front distortion: the peak compression is larger

for the shock wave pushed downstream relative to the mean position by upstream

turbulence and weaker for the one pulled upstream. Figures 4.39(a) and (b) show

the profiles of dilatation along the xl-direction for the cases D and F, respectively.

The strength of the shock wave (or the peak compression in the shock) varies widely

from one streamline to another. For the case of strong upstream turbulence (Figure

4.39(b)), the structure of the shock wave is significantly modified: multiple peaks

in compression along streamlines (e.g., o) are noticeable. Each compression peak

has a strength comparable to that of the laninar shock wave. Sometimes, a shock

wave is replaced by a series of compression waves (e.g., x).

Figures 4.40(a) and (b) show the pressure profiles along the xj-direction. For rel-

atively weak upstream turbulence, pressure rises monotonically from the upstream
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to the downstream value. On the other hand, for stron upstream turbulence, pat-

terns of the pressure rise are varied: rapid monotonic rise, slow monotonic rise and

multiple-staged rise.

Figure 4.41 shows the streamwise Mach number in a XIX 2 -plane near the shock

wave for case A. The streamwise Mach number is a good representative of the up-

stream shock normal Mach number in cases where a 2 < 100. The drops in the

streamwise Mach number across the shock wave along the xl-direction are more or

less uniform: the higher upstream Mach numbers correspond to the higher down-

stream Mach numbers, and vice versa. For a shock wave fixed in space, however,

higher upstream Mach number M U would correspond to lower downstream Mach

number M D , as

(MD) 2 
- 1 + 2--(MU)2

Y(MIU)2 -(4.30)

The uniform Mach number drop for different upstream Mach numbers implies that

the local fluctuating shock wave speed tends to be in phase with the upstream Mach

number- positive for higher Mach numbers and negative for lower Mach numbers,

so that the effective shock-normal Mach numbers are more or less uniform across

the transverse plane. The nonuniformity in the upstream Mach number is smoothed

out by the fact that the local shock wave speed ( ,t) tends to be in phase with that

of the fluctuating velocity (Section 2.2).
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FIGURE 4.1. Evolution of mean quantities across the shock wave for case A:
(a)streamwise velocity, (b)pressure, (c)temperature. (Dashed lines denote the lam-
inar downstream values.)
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FIGURE 4.3. One dimensional power spectra upstream of the shock wave for case
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isotropy relation, (4.6).
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FIGURE 4.4. Evolution of the energy spectra of (a) strearnwise velocity, (b) trans-
verse velocity, and (c) density fluctuation for case C: -upstrearn(koxl = 15.8),

--- downstream(koxl 21.9), -- at exit boundary(koxl 37.7).
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FIGURE 4.7. Budget of terms (scaled with pocou2oko) in the turbulent kinetic
energy transport equation for case C. (a) near the shock wave and (b) in the entire
domain: -E---- convection(I), ---- production by the mean strain(II), --- pro-
duction by mass flux fluctuation(III), ...... pressure work(IV), - turbulent
transport(V),---- viscous dissipation and transport(VI). (Vertical dashed lines I
denote the boundaries of shock intermittency.)
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Reynolds stresses, (a) RI I and (b) R2 2 , for case C: -E3- convection(I), - - -- pro-I
duction by the mean strain(II), -- - production by mass flux fluctuation(II),

..... pressure work(IV), -turbulent transport(V), -- viscous dissipation
and transport( VI).
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

This work has been concerned with a numerical study of the interaction of tur-

bulence with a shock wave. The methods used were linear analyses (R DT and LIA)

and direct numerical simulation of the compressible Nav1--r Stokes equations. Lin-

ear analyses were used to predict modifications in turbulence statistics in passage

through the shock and shock front statistics. In direct numerical simulation, the

full equations were solved by an explicit code, with the spatial derivative evaluated

by a modified Pad6 scheme. A summary of conclusions is provided below, followed

by recommendations for future work. Conclusions are divided into three main ar-

eas: spatially decaying turbulence, turbulence modification by shock turbulence

interaction, and shock wave modification by the interaction.

Spatially Decaying Turbulence

A method of generating stochastic inflow boundary conditions with prescribed

spectrum was developed. Turbulence intensity, rms vorticity, and velocity deriva-

tive skewness factor compare favorably with those from the temporal simulation.

However, the statistics of dilatation show significant departure from those obtained

in the temporal simulation. Because of this difference, caution must be exercised

in using periodic (or temporal) simulation databases to examine compressibility-

driven quantities such as dilatation dissipation and pressure dilatation correlation.

Turbulence statistics from spatially evolving simulations with low compressibility

effects are also found to be in agreement with the experimental data.

Turbulence Modification by Shock Turbulence Interaction

The simulations and linear analyses of shock turbiulence interaction show that the

normal components of the Reynolds stresses, Ra0 , are enhanced across the shock

wave. The stress amplifications are larger for the stronger shock waves within the

range of Mach numbers in the simulation, 1.05 M' 1 " 1.20. LIA, however,
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predicts less amplification of the streamwise turbulence intensity for the stronger

shock waves when ME' > 2.0, a range beyond that of the present simulations. 3
The simulations show a rapid evolution of R 0 0 inmediately behind the shock

wave, including an increase in value just downstream. LIA, on the other hand,

predicts that Raa monotonically decays from its post-shock value to the far-field

value. The budget of the TKE transport equation revealed that the pressure work

term i Is responsible for this rapid evolution. By decomposing the pressure

work term into the pressure-dilatation correlation p-ui,i and the pressure transport

(PuII), term, it was found that the pressure transport is the ucain contributor to

the pressure work term. Therefore, rapid evolution of TKE is caused mainly by the

redistribution of turbulent kinetic energy in the streamwise direction at the early

stages of relaxation from compression.

The simulations and linear analyses show that the rms of the transverse vortic-

ity components are amplified and that the streamwise vorticity is not influenced
by the interaction. The amplifications are larger for stronger shock waves. The

amplification of the transverse vorticity components predicted by the simulations I
are in excellent agreement with those of linear analyses for M < A!I " - 1. For

Mt > M U - 1, the vorticity amplification obtained from the sii iulation is signif-

icantly less than the estimates of the linear analyses. Examination of the budget

of CW revealed that the vorticity-compression, w' 2 S, is the main contributor to

the transverse vorticity amplification during the interaction. In most cases, the

baroclinic torque is at least two orders of magnitude smaller than the vorticity-

compression term in the interaction zone.

Turbulent length scales (ecrease through the interaction. Linear analyses predict

the amplification of one-dimensional energy spectra during the interaction, both in

frequency and wave number space. In the frequency spectrum, amplification is

larger for the smaller frequencies. In the wave number spectrum, however, amplifi-
cation is larger at the larger wave numbers. More enhancement at the smaller scales

leads to a decrease in turbulence length scales. Numerical simulations confirmed

that the energy spectrum is amplified more at the larger wave numbers, whereas

turbuilence length scales are d,'creasd throutgh the interaction.

1.34 I
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We investigated the relations between the fluctuations in pressure, density, and

temperature by the use of the simulation results. Morkovin's hypothesis was tested

and found inaccurate. Instead, the relations between properly scaled rns property

fluctuations are very close to isentropic at least for turbulence passing through

a weak shock wave, MU < 1.20. Isentropic relations are satisfied even for the

instantaneous fluctuations throughout the flow field including the shock wave.

Shock Wave Modification by Shock Turbulence Interaction

Due to the nonuniformity of upstream turbulence, the shock wave has a time-

dependent distorted front and nonuniform thickness in the transverse directions.

For the simulations with Mt < MU - 1, shock waves have well-defined fronts with

single compression peaks in the streamwise direction.

Through LIA, it was found that the shock front distortion scales with the up-

stream integral length scale and turbulence intensity. We also found that the local

shock front inclination angle scales only with upstream turbulence intensity, and

the shock front curvature is scaled with turbulence intensity and the inverse of the

Taylor microscale. All scaling factors depend only on the shock strength. The

statistics of the shock front obtained by the simulations are in fair agreement with

the LIA predictions.

Through LIA, local shock wave speed was found to scale with the upstream

fluctuating velocity. Instantaneous flow fields from the simulations showed that the

velocity jump across the shock wave, or the shock wave strength, is more or less

uniform in the transverse directions: The shock wave moves upstream for lower

velocity, and moves downstream for hgher velocity of the approaching flow, thus

reducing the variation in the effective shock-normal Mach number.

For a simulation with Mt > M U - 1, shock waves no longer have well-defined

fronts in the transverse directions. Low density regions are often found behind the

mean shock position, and shock wave thickness varies quite widely in transverse

directions. Along the streamwise direction, multiple peaks in dilatation and pres-

sure are found, which are similar to those observed in the experiments of a very
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weak shock wave interacting with a highly inhomogeneous medium [Hesselink et al.

19881. 3
A comprehensive quantitative data base has been generated which may be used

to develop and test turbulence models and to further study the physics of shock/tur-

bulence interaction. I
Recommendations for Future Research

Direct numerical simulation of shock/turbulence interaction is a new area of re-

search, and many questions remain to be answered. From our work, we recommend 3
the following directions for future research.

Interactions with Significant Acoustic or Entropy Fluctuations I
In this work, upstream turbulence conditions in the simulations were restricted

to quasi-incompressible states. It is also important to study the interaction of a

shock wave both with highly compressible turbulence and with flows of large density

variations.

Towards Turbulent Boundary Layer Interaction with a Shock Wave 3
The logical next step towards understanding of shock/turbulent boundary layer

interaction is to study interaction of homogeneous turbulence under a mean shear I
with a shock wave. Through this study, one can investigate the effect of a shock

wave on turbulence anisotropy and Reynolds shear stress. 3
Large-Eddy Simulation of Shock Turbulence Interaction

Direct numerical simulation of shock turbulence interaction is restricted to low

Reynolds numbers and weak shock waves by the resolution requirements of the

shock wave structure. Subgrid-scale models have been actively under development

[Erlebacher et al. 1990, Moin et al. 1991] for the large-eddy simulation of com-

pressible turbulence. For shock turbulence interaction, the ratio of the turbulence I
length scale I = pq 3/e to the shock wave thickness 6s is

136 3
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typically O(103)-O(104) or larger in practical flows where ReT > 1000. Since the

cost of resolving the shock wave structure in large-eddy simulation is prohibitive,

one needs a subgrid-scale model for the shock wave effect on turbulence [Zeman

1991b], as well as for the effect of small scale turbulence on the large scales. Another

possible option is to use a shock capturing technique [Yee 1987, Harten al. 1987]

without any subgrid-scale model of the shock wave effect. Careful tests of these

ideas can be made by using the data obtained in the present work via linear analyses

and direct numerical simulations.
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APPENDIX A

RAPID DISTORTION THEORY

Rapid Distortion Theory (hereafter RDT) is applied to study the response of

turbulence quantities to one-dimensional compression due to a shock wave. The

state of homogeneous turbulence changes significantly when it is subjected to mean

strain, but the nonlinearity of the goverr'ng equations makes it impossible to de-

velop a rigorous theory of turbulence under straining process. For cases where

nonlinear effects are not significant, however, one can solve the exact linearized

equations.

When the time scale of turbulence, q2 /f, is long compared to that of the mean

deformation (lStq 2 /E >> 1), the turbulence has no time to interact with itself.

Thus, we need not consider the nonlinear terms in the governing equations involving

products of fluctuation quantities, and we can obtain the linear RDT equations.

The viscous terms are linear and can be included in the analysis, but are often

neglected and will be here for simplicity. RDT for one-dimensional compression is

applied to study the response of turbulence during its passage through a shock wave.

In the following, a brief review of the RDT procedure is given for one-dimensional

compression [Lee and Reynolds 1985, Lee 19891.

We consider turbulence subject to a rapid irrotational strain, where density is

uniform throughout the field but allowed to vary in tinie. Since the mean flow is

assumed to be irrotational, we use the principal axes of strain rate tensor as axes

of reference so that the mean velocity field is

aot = so (t) = ro(t)b o . (A.1)

Using the equation of continuity, we can then express the evolution of density p(t)

in the form

p(t) = poexp - S"(1')dt', (,4.2)
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where po = p(O) and the trace of mean strain rate tensor Si, signifies the expansion

rate (or the compression rate) of the mean flow field. 3
The turbulent momentum equation in the RDT is given by

Ou, Oui 1 Op
-+ Uj- jsjuj 3 - , (A.3)

and the equation of continuity is unchanged. The dynamical equation for the

fluctuating vorticity w becomes 3
wi Ow2

-+ U' W3S* - - St~,(A.4)at 3 I1]
where

wher * = - Skkbi 
(A.5)

is the deviatoric component of the mean strain rate tensor. The first term on the

right hand side of (A.4) represents the production of vorticity due to stretching by

the incompressible mean strain rate S*. The second term indicates reduction of

vorticity by isotropic expansion (or increase by compression).

We impose periodic boundary conditions and represent homogeneous turbulence

in terms of Fourier series. The dependence of U) on the position x in (A.3) and 3
(A.4), however, poses problems with this approach. To remove this, we use a

deforming coordinate system [Rogallo 1981] which follows the mean flow: I
, -r =t, (A.6)

CaI

where the factor e,, is the total strain in the a-direction defined as 3

ea(O = exp [j Fa1 '(tf)dt']I (A.70

In the deforming coordinates, the vorticity equation becomes I

a = awa, (A. 8)I
Or

14'0 I
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where

F, = rc - ro, ro = sj = r, + r2 + r3 (A.9)

are the reduced strain rate and the dilatation rate, respectively. The solution of

(A.8) is

p(r) ea ur wa( ,) = ' awa( ,0). (A.10)

Here, wa( ,O) is the initial value of wa( ,Tr), and

-= , eo = ele 2 e3 = PO (A.11)
eo p

are the reduced total strain in the a-direction and the dilatational total strain,

respectively. Note that eo 1 for an incompressible mean flow field.

Since we have the solution (A.10) for the vorticity evolution in an explicit form,

it is easy to obtain the history of turbulence statistics in terms of the initial values

and total strains. Thus, the evolution of the vorticity correlation tensor at time r

is

Vo(r ) =FaF3 VO (0), (A. 12)

where
VO (0 ) = O(,),3 ( , 0). (A. 13)

The velocity field can be deduced from the vorticity field. In the transformed

coordinates, the Poisson equation for the velocity is

2U I =1 Ow-2  1 0w3
e3 06 2 92 (A.14)

where the transformed Laplace operator is

,2 . 1 02 102 1 02 A.15)
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The equations for u 2 and u 3 can be obtained by permuting the indices. The

solution is obtained using Fourier expansions,

K~n

", = E I,",)e ' " °  (A.16)

we n

where (k is the Fourier wave number vector in the deforming reference frame,
Ka = eoakc (k,, is the wave number vector in the undeformed reference frame).

The solution for iU is

i1 2()3 (A. 17)

where 

X

2 K 2 K21

C2 e2  e2

The other components can be found by permutation of the indices.

Using (A.17), we find the velocity spectrum in -space to be

ElI(K,-r) )2 )2H2(K'-r) + (2)2 H 3 3 (Kr)- 2( 2 ) (  ) H 2 3(,r)lX 3e2 e2 e3

(A.18)

where HII(KT7) is the vorticity spectrum in Ke-space, and the relation H23 = H32

is used. The vorticity spectrum at a later time is obtained in terms of its initial

spectrum as

lt ,3(,,r)-tlc 3( ,0) c,13.(A. 19)

1,12
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The initial vorticity can be expressed in terms of initial velocities in the Fourier

space as

j(K,0) = -i'EnKmiin(,A,O). (A.20)

Therefore, we can represent the initial vorticity spectrum Hij(K, 0) in terms of the

initial velocity spectrum Eij(K, 0), for example,

HII(K,,0) = 2 E 33(,0) 3 i:E 22(-,0) - 2K-2K 3E 23 (r,, 0), (A.21)

where the relation E23 = E32 was used.

Using the relations (A.17),(A.19), and (A.20), we can obtain the evolution of

the velocity spectrum during a rapid irrotational strain.

As a special case of irrotational strain, we consider one-dimensional compression

in the xl-direction, where

Po
el P, e2 = e3  1(A.22)

P

and

_F 2 = el (A.23)

Vorticity components in the z 2 and x3 directions are amplified by a factor of

density increase during the rapid compression, while vorticity in the xl-direction

stays the same. These relations hold regardless of the specific form of the initial

spectrum. In general, amplifications of Reynolds stresses do depend on the shape

of the spectrum. However, for an isotropic ir.itial turbulence, amplifications of

Reynolds stresses are again independent of the initial spectrum: for example, to

compute u'j 2 , triple integration of (A.18) in r, space, using (A.20) and a general

form of the vorticity spectrum for an isotropic turbulence,

E(',O r

gives
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U 2  E1 1(,,r)dKjdl 2d a 3

3 2 2 3

1 E(K, 0)dK f- 2 + K 2  + 'k2 2 sin OdOdO,Jo 1010 [( 1/e1) 2 + + ]

(A.25)

where I

- I _ 2 _ 3=- 1  o =c-O, Z2 = r =sin o, 3 -co - sin O sin . g
The result is independent of K. Note that f E(-, 0)dKc= q,/2, where E(tc,0) is 3

the initial energy spectrum function and q.: uiui at t = 0.

The same result can be obtained by properly scaling the RDT result for tur- 3
bulence under incompressible axisymnnetric expansion. The one-dimensional com-

pression can be decomposed into isotropic compression Skkbij/ 3 (or density change)

Iand incompressible axisymmetric expansion S*as

Sj 0Sk k 6,jl /3 + S0

1 0 F71 /3 0 + 0 -]17/3 0 . (A.26)
( 0 0 F1/3 + 0 0 -F/3 I

The total strain can be accordingly decomposed: I

whre e =eC13e (Po/p)l/ 3 e*, (A.27)
whereI

*e -(e*, e', e*) (A.28)

is the incompressible total strain vector (i.e., e]€e = 1) and

Co =- cle 2e3 -_ PolP (A.29) 3
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is the total dilatation.

Using (A.10) and (A.20), the Fourier amplitude of velocity fluctuations under

one-dimensional compression (A.17) can be expressed as

1 [(e 3 2 +e 2 K2')^ e3 e2  1
2 2 - 3tl+3 -U--K2U 2o - -K1 Il 3 U3 o (A.30)

wher/e + e2 ±2+2/e2, and i 0 is the initial Fourier amplitude. Expres-

sions for the other two components are obtained by cyclic interchange of indices.

By using the decomposi.ion (A.26), the Fourier amplitude of turbulent velocity in

(A.30) can be expressed as a product of the isotropic dilatation and incompressible

contributions:

ii(ic,e) = (p/po)l/3 i*(K e*), (A.31)

where from (A.30), the incompressible part i* is given by,

1 [(e3.2e*\ e*
* =A: 2+ 2 K 2 lii: -3 -^2 i! , (A.32)

X e2L332 013
= 2/*2 2/e, 2 2

with X*2  */e +2 + ± +2/e* 2 . The appearance of the total dilatation

as a common factor in all components of the velocity amplitude implies 'hat the

anisotropy in a turbulent flow is not affected by isotropic compression of the mean

flow.

The energy spectrum tensor after one-dimensional compression is expressed as

Ej(K,e) = (p/po)2 /3 E!)(K e*), (A.33)

where E* is the energy spectrum tensor of turbulence subject to incompressible

axisymmetric compression.

The RDT result for turbulence under one-dimensional compression can be ob-

tained by scaling the RDT result of turbulence under incomprnssible axisymmetric

expansion (see (A.33)).
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APPENDIX B

LINEAR INTERACTION THEORY

Some aspects of the interaction of turbulence with a shock wave are amenable to

linear analysis. A fluctuating quantity in a compressible flow can be decomposed

into acoustic, entropy, and vorticity waves [Kovasznay 19531. Linear interaction

analysis (hereafter LIA) of a shock wave with various linear plane waves were per-

formed by Ribner[1953], Moore[1953], Kerrebrock[1956], Chang[1957], and McKen-

zie and Westphal[1968]. In general, whenever any one of these waves passes through

a shock, it generates the other two waves downstream. In this work, we follow the

methodology of Ribner, where the main interest is confined to the interaction of

vorticity waves with a shock. In the following, a brief description of Ribner's anal-

ysis is given first, followed by its application to the analysis of shock-turbulence

interaction.

B.1 Description of LIA- Ribner's Analysis

Ribner formulated the interaction of a plane vorticity wave with a shock wave

as a boundary-value problem for the flow in the region downstream of the shock.

The governing partial differential equation for small-perturbation rotational flow

was derived as an extension of Sears' work [1950], boundary conditions on the

velocity components just behind the shock were obtained from the oblique-shock

relations, and finally the rotation term in the governing equation was evaluated in

terms of gradients of entropy and total enthalpy with the use of the entropy change

across the shock. The initially unknown distortion of the shock wave was taken

into account in the boundary conditions and the rotation term by assuming it to

be sinusoidal with initially undetermined amplitude and phase.

B.1.1 Formulation of the Boundary-Value Problem

The inclined plane sinusoidal shear wave is schematically shown in Figure B.1.

The flow is viewed in a plane perpendicular to the shock and to the wave fronts.

The wave is supposed to be convected downstream by the mean flow with velocity

UA (most variables in this Appendix are used exclusively, and those commonly used

are listed in the Nomenclature section). The passage through the shock is evidently
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an unsteady process, since the intercepts of the inclined shear wave with the shock

wave move downward along the shock front. 3
A plane oblique sinusoidal shear wave may accompany a perturbation velocity

component normal to the plane of the figure. This velocity component, however, is 3
parallel everywhere to the shock and is unaffected as the shear wave passes through;

this component also has no effect on the shock wave and, therefore, is excluded in

the fohowing analysis without any loss of generality. In the following analysis, the I
plane shear wave is assumed to propagate in the xlx 2 -plane.

If an observer moves downward along the shock with a speed V, the flow has an I
apparent upward velocity component V. The observer speed V is to be chosen such

that the resultant mean velocity (in the observer's frame of reference) is aligned

with the velocity in the disturbance wave, that is, V = UA tan 9. The process

appears to the observer as an interaction of a steady sinusoidal shear flow with an I

oblique shock wave. Thus, by properly choosing the frame of reference, the original

unsteady flow problem has been reduced to an equivalent steady flow problem.

The analysis is aimed at calculating the flow field downstream of the shock pro-

duced by the passage of a sinusoidal shear flow through the equivalent oblique

shock. Because of the nonuniform upstream velocity field, the shock wave is cor- I
rugated and introduces vorticity downstream of the shock wave. If the upstream

disturbance wave is weak, the downstream velocity perturbations are also weak 5
compared to the mean velocity, so that a linearized treatment of the flow field is

feasible. I
Ribner derived the governing partial differential equation for small-perturbation

compressible rotational flow with gradients in entropy and stagnation enthalpy. In 3
the transformed coordinates, or in the observer's frame of reference shown in Figure

B.2, the governing equation is expressed as

(1 - M2) ) -... +q (B.1) I

(V, 02 V'/9( 2 and ' fr2'/0 1
2 ). Using Crocco theorem [Thompson 19841,

we have
I' -- W \ -i T O3 '

I
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where C is the distance in the streamwise direction, il is the distance in the per-

pendicular direction, W is the streamwise velocity, M is the corresponding Mach

number, H is the stagnation enthalpy, s is the entropy, T is the temperature, Q is

the vorticity, and v/ is a perturbation stream function defined as:

0/977-(1 -WC 2 )_/( = w,, (B.2)

where w( and w n are the perturbation velocities in ( and TI direction, respectively.

The final flow pattern depends crucially on whether W is subsonic or supersonic.

which depends on the Mach number corresponding to UA and on the wave inclina-

tion, 0.

The boundary conditions just downstream of the shock are obtained by applying

the Rankine-Hugoniot relations across the perturbed shock wave. By geometry

shown in Figure B.3, the mean velocity components normal and tangential to the

undisturbed shocks are, respectively,

UA = WA COS 9 , V = IVA sin 0.

The shear wave provides a perturbation wA to IVA, and causes indirectly a pertur-

bation o(x2) to the shock wave inclination which is defined as

tan or - Ox 2

whose magnitude is yet to be determined. The effect of or is equivalent to an

increment in 0. The associated perturbations to UA and V are

dUA =z: OA+ UA) cos(O+0') -VA cos , dV = (IVA -'A) sin(9 + ) - VA sin.

Assuming that a and WA/IVA are small, we can express the perturbations as

dUA 'L'A cos0- 1 A si 9, dV = Asi,0 4 TA cos 9. (B.3)

The change in shock-normal velocity across the shock wave is given by Rankine-

Ilugoniot relations as
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(TA y- (UA/aA)2 3
U 1+±Y (UA/aA)2

Assuming the upstream sound speed, aA = constant, the change in the downstream

shock-normal velocity due to the change in the upstream shock-normal velocity is

given by

dU dUA -2 - 1 m (B.4) I

where m = UA/U. I
Oil the downstream side of the shock, the perturbation of the velocity in the

direction, W = U cos0' + V sin 0', is

w( = (U + dU)cos(O' + a) + (V + dV)sin(O' + a) - W, (B.5a) 3
and the perturbation velocity in the 7 direction is

where, )7= -(U + dU) sin(' + a) + (V + dV)cos(O' + a), (B.5b)

0' = tan- 1 (m tan 0). (B.5c) I
Dividing both sides of (B.5a) and (B.5b) by U, expanding trigonometric identi- 3

ties using the assumption of small perturbations, and relating dU/U and dV/U to

wA/W by the use of (B.3) and (B.4), one gets g
- tan 0) 1 - 2  l71cos 0 + tan0' +mr sin 0'

UT W nA TT + 1 IV

(u__ = wa  tan 0'1 2 lm )sin0'+ tan0 + ma cos' -sec0'.
U W A  m IVA

(B.6) 3
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This is the general form of the boundary conditions for the governing equation

(B.1) downstream of the shock wave.

In the present analysis, the perturbation WA is a sinusoidal disturbance velocity

(associated with the incident shear wave) parallel to IVA,

uA
W- A cos kqAWA

where k is the wave number and A is perpendicular to WA. The corresponding

argument for the refracted shear wave involves q and an altered wave number k.

The wave length of the disturbance should match along the shock front, that is,

k2 = k'. But k2 = k cos 9 and k k' cos 0', and along the shock cos 0 = 1A/x2

and cos0' = 77/x 2 . Therefore,

k 77A = 01r

and
WA - cos k'77 (B.7)

WA

along the shock. By geometry (Figure B.1), kcos0 = k'cos9'. Since the dis-

turbance is sinusoidal, the shock inclination a is expected to be sinusoidal. For

generality, a phase shift is allowed for, so that or can be assumed to have the form

a = c(as cos 01 + bs sin k'r/). (B.8)

Substitution of (B.8) into the general form of the boundary conditions (B.6), yields

the final form of the boundary conditions. The boundary conditions imposed by

the shock wave on the perturbation velocity components parallel to ( and 71, ;m-

mediately behind the shock wave are

- -as 1 4---!-  
-

2  sino' - (I 2 7 7- C 0' s- - os0 0/ 1
tj E 4-1 ' / k + 11/ ]cos 1+ + ) Co

1 ( - 22 
2  sil o' sinll '

7,1 /
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W aS 3 - ) sin 9'
7mn + -±+1 -cos as(7 1)cos90 +2 1 -'1m sinO' cosk' 7 I

+ [-- (1 - ---1 )- c + bs(m - 1)cos0' sink'7, (B.9)M C o 01 1 1o

respectively. In (B.8), the parameters as and bs governing the shock inclination I!
are undetermined.

For the solution of the governing equation (B.1), the vorticity term 0 on the

right-hand side must be evaluated for the region behind the shock wave. Down-
stream of the shock, the stagnation enthalpy II and the entropy s (and hence the

vorticity) are constant along streamlines, and in the linear theory the streamlines I
are approximated by lines of constant 7/. Thu,, OH/Or7 and as/OrI may be evaluated

at the shock and the result also holds downstream for the same 77. 3
The total enthalpy upstream and at the shock is I

II pt 4- (IVA + "'A) 2

T CF4 +wAcp 2 \A /V

Hence, along the shock

all - Ilia ' \ A ]"(B.IO0)

The entropy upstream of the shock is constant by virtue of the assumption of

constant pressure and density there. The entropy change across the shock is given 3
in terms of the upstream velocity by

R

S - 5  -A 3

log { [OS - lJ[ + )MIos2i J

5 I (+I

1 -5 2



[Thompson 1984]. Differentiating and expanding the above expression under the

assumption of small perturbations gives

as TU, - 1 2  w WA01 T U - I WA atan 0) (B.11)

along the shock.

Substitution of (B.10) and (B.11) into the governing equation (B.1) yields

(1 - M 2 )±kC + ¢ ,7 Um2 cos2 0 9 (WA

~Ucos,(m _ 1)22  (WA atan) , (B.12)
i971 (WA)I

where the right-hand side is evaluated along the shock (x 1 = 0) and expressed as

function of 7 alone.

Substitution of (B.7) and (B.8) for WA/WA and a for the sinusoidal form of the

upstream disturbances converts (B.12) into

(1- M 2 )0(( + ,7,

( E , ( _ _ 1 )2 _ ( _ - 1 )2_, }
UE k' sec 0- +2(m - 1) cos0+ ( sin ]0 sinkl +k'bs- sin 0'cos 0Sr n o

(B.13)

where the relation tan0' = mtan0 is used to eliminate 0. Equation (B.13) is the

partial differential equation governing the flow downstream of the shock subject to

the boundary conditions (B.9), which are

077, , -1 2)
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B.1.2 Solutions to the Problem

The nature of the governing equation (B.13) depends on the sign of (1 - M2):

for flows with M < 1 the partial differential equation is elliptic, and for flows with

M > 1 it is hyperbolic. In the following, therefore, two different sets of solutions

to (B.13) are presented.

Solution when Flow Downstream of the Shock is Subsonic, M < 1

The governing differential equation (B.13) can be written in abbreviated form 5
as

32 ,'C + V',7= -k'Uf(As sin 0'r- BS cos k'77), (B.14)

where

(M - 1)2

A S =sec0' + 2(m - 1)cos0' + a S  sin9

(m- 1)2 I
B S = bS  sinG'rt

m2 = I- M1 .  (B.15)

A particular solution to (B.14) is I

Vp= --- sin -Scosk'77 (B.16)

A homogeneous solution is 3

_ cosOW-,_ sinO' os 0'

kcos /3 ((sinO' + I32r/cosO') t d'sin (- s -- + ,,71cosO ')

(B3.17)I

154 3

I



where c' and d' are the constants of integration, and f32 1 U2 /a 2 .

The complete solution for the perturbation stream function ?k = 'p + 2Pc con-

tains four undetermined parameters, aS , bs , c', and d' which are to be determined

by matching velocity components, w( = a4,/3r and wq = _'32 i9/OC, at the shock

wave = 0) using boundary conditions (B.9).

CsEs + DsFs CsFs - DsEsa s = ,n bS =mr

C 1 (aSDS - FS) = 1 bS, (B.18)
V,3k2 Cos , m k32 cos I rnD

where

Cs = - 1 + 3  (-l) tan0' 1)2+ 1 sin cos 0Cy+1 t+ 1 Y "+ 1

DS = -(M - 1) 1 + (m - 1)cos201

=2 1 1
12o

13w [2(r- 1)si 1)

FS = OW [2(m - 1).smOcosOl (B.19)

Solution when Flow Downstream of the Shock is Supersonic, Al > 1

The particular solution to (B.13) is tile same as that for Al < 1, which is

Asin k'

where the fact that the final solution yields b= 0 (and hence ts 0) is used to

delete B s term at the outset.

The complementary solution satisfying (B1.13) has the general form of
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'OC =f(C + Ow'i)+g9(( - 007),I

where W, - A12 -1. The function f represent Mach waves inclined downward by the

Mach angle uM from the (-axis and the function g represents Mach waves inclined

upward by the same angle. For upstream shear waves with inclination 0 < 0 < 7r/2,

the g-family of Mach waves represent disturbances overtaking the shock wave from I
behind (propagating upstream). However, its propagation toward upstream beyond

the shock wave is unphysical, since the Mach waves can only propagate with the

speed of sound of the medium relative to the mean flow speed while the upstream

mean flow speed is always supersonic, WA/aA > 1: Therefore, g-function must be

zero for upstream shear waves with inclination 0 < 0 < 7r/2. For the same reason,

f-function must be zero for upstream shear waves with inclination 7r/2 < 0 < r.

In the following, the discussion is limited to the specified range 0 < 0 < 7r/2 due to

the symmetry.

From (B.9) with bs = 0, the function f reduces to

f -sinja( + 3w'?)]. 3
Along the shock front, where ( = r/tanO',

a(( + 3wi) = k'7.

A suitable complementary function is therefore I

U sc" k'(( + w77) 1
C sin 3w+tan'

where c" is a constant of integration.

The complete solution for tbe perturbation stream function is 3
V, =JP + I'C UE [A sin '+c" sin k'( + 3w7)] (B.20) U

k' wf3 + tan 9 '
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where the two arbitrary parameters aS (occurring in AS of (B.15)) and c" remain

to be determined. These two parameters are determined by matching velocity

components derived from (B.20) with the boundary conditions given in (B.9). The

resulting expressions for the parameters are

+ GsF c" 1 as D' F (B.21)
a= mE' + GSD' - hcosO' M S-

where

1= 2 - m - 2[1 + (m - )cos 2 o'i
7,+1

D' = (m - 1)[1 + (m - 1)cos 2 9']

E =( 12 t of 3 - )

S  - 1) sin0 cos - (+ -- m) tan0'

F' = 2(m - 1)sin0'cos0'

3w+ tan0' = tan(ILM -0) (B.22)

with the Mach angle iM = cot- OUP

B.1.3 Summary and Discussion

The interaction of a plane shear wave and a shock wave is schematically shown in

Figure 2.1. The method of predicting the flow field downstream of the shock wave,

produced by convection of an oblique sinusoidal shear wave through the shock, has

been briefly described. In this section, the main results are summarized in more

compact form, and are simplified to help the geometrical interpretation.

Criterion on I!

Although the streamwise velocity If downstream of the specified normal shock

is always subsonic, the natuire of the flow depends primarily on the streamwise
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velocity in the transformed frame of reference (Figures B.2 and 2.1), which may

be subsonic or supersonic. Two forms of the solution for all flow quantities thus

appear: one for the subsonic range Al < 1 and the other for the supersonic range

Al > 1. Since Al depends on the initial Mach number UA/aA and the inclination

angle 0, the equation for the dividing line M = 1 gives a relation between the

critical value of 0 and the upstream Mach number UA/aA as

cr ±tan 1  (,+1)(r-1) (B.23)V F 2 m2

where m = A/U is determined by UA/aA. 3
For waves incident at angles less than the critical angle, a pressure wave generated

at time t catches up with that generated at time t + bt, because the upstream 3
shear wave travels along the shock wave slower than the pressure wave generated:

UA tan2 0 < a2 - U2 . Note that the upstream shear wave travels with the velocityAI
UTA tan 0 along the shock wave, and the generated pressure wave propagates radially

outward with the speed of sound a relative to the mean flow speed, U. In this case,

pressure waves are superposed onto each other, and disable each pressure wave 3
from propagating independently, resulting in an exponential attenuation in the

shock-normal direction. For waves incident at angles larger than the critical angle, 3
the pressure waves generated at different times propagate independently from the

others, because U tan2 0 > a2 - U 2 .

Downstream Velocity Field

By using (B.2), for Al < 1, I

Scos[k!,(1 2 - x1 tan 9') + ,] + H(zl)cos[k2(x2 - x1 tan ") + 6p]l u ' A i L -2 -I

IV J(x 1 )sin'k(x 2 - x, tan 0") +Jp, (B.24)

where (WA " " A is the ainplit11de( of the upstream sinusoidal velocity and
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Sk' cos01 = kcos0

cos0+

11(xl) COO=.d e-zk1 f3

2 2 W

S (AS)B

m S S

-2

p=tan - 1 CSI3 w -d S tan9'
dsi0 w + ctan90

with cs = c'k'3w cos ', d5 =dk3 cos 0. The functions A 5 and B 5 are given by

(B.15), and ag, bg,ce, and d' are the constants of integration given in (f.18).

For M4> 1,

S_ Scosk( 2 e xtan0')+cosk(x 2 -z 1 tan9")

1W Al

-3wIcosk2 (x 2 - 1 tan"), (B.25)

IWA I

where,

cos 0
S- AS

022

b = tk'cosO'I = kcost

cos 0 stn 0f
II -c cos(O'

U1 5 9 = , )
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off = Of - /I M

ILM = cot - 1/ , 3
with cS = c"3w, cos Of. The function AS is still given by (B.15), and a s and c" are

evaluated in (B.21).

The cosine in the first terms of (B.24) and (B.25) are constant along lines X2 -

z tan 01 = constant, which are inclined at an angle 91 with the horizontal and are I
thus parallel to the (-axis. Since w( is parallel to C and w, is parallel to 77, the first

terms represent contribution to the vorticity wave. 3
The remaining terms in (B.24) and (B.25) involving the factor H correspond to

an irrotational velocity field, or potential flow. If derivation is traced backward, 3
the Il-terms are found to originate from the complementary solution, which is a

solution with zero vorticity, Q = 0. These remaining terms in (B.24) and (B.25)

represent contributions from pressure waves. For the case M > 1, this pressure

wave propagates in the form of Mach waves with the speed of sound relative to

the stream velocity. For the case M < 1, the resultart pressure pattern does not

propagate with the speed of sound, but it can be represented as a superposition

of cylindrical sond waves which individually prop:,ga.e with sonic speed. The 3
resultant perturbation velocity attenuates exponentially with the dist.rce from the

shock wave, x 1 (see (B.24)). 3
Shock Wave Perturbation

From (B.8), the local perturbation in the shock inclination angle can be repre-
sented as 3I

qa = (a s cos k2x 2 + bssin k'x 2 ),

where a s and bs are evaluated in (B.18) for M < 1 and (B.21) for Al > 1 (bs = 0

for M > 1).

At any point along the shock, x2, the local shock deflection from the plane

xj = 0 is obtained by integration of the slope a - O/Ox2 :

II
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Jodx2

= WAI a + b cos(k'x 2 + bsh) (B.26)kUA

where 6sh = tan-'(as/bs) is the phase shift.

For a given wave length, the amplitude of this sinusoidal corrugation in the shock
wave is proportional to the factor aS + b and also to the upstream turbulence

intensity.

B.2 Application of LIA to Shock-Turbulence Interaction

Homogeneous turbulence can be represented as a spectrum of waves with random
orientations and wave lengths. In a solenoidal (or incompressible) velocity field, a

velocity vector in Fourier space is perpendicular to its corresponding wave number

vector due to the continuity constraint. (Any incompressible velocity field can be

decomposed only into vorticity waves.) The velocity vector corresponding to a
vorticity wave in the Fourier space meets this constraint, as is schematically shown

in Figure 2.1. When turbulence is convected into a shock, the individual vorticity
waves are abruptly altered producing acoustic and entropy waves downstream of

the shock. This process is schematically sh wn in Figure 2.1. The amplitude and

wave length of downstream waves can be related to those of the upstream vorticity

wave through linear theory. Therefore, given the upstream statistics of a solenoidal

turbulence field, we can obtain its downstream turbulence statistics.

B.2.1 Turbulence Modification

An upstream vorticity wave is associated with a velocity field which can be
decomposed into three velocity components in cylindrical coordinates as shown

in Figure 2.1. Each velecity component can be represented in terms of Fourier

coefficients as

du, = di? exp(ik • x), (B.27)
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where the wave number vector k lies in the xl,r-plane, making an angle 0 with the

r-axis. The velocity of the refracted vorticity wave can also be expressed as

ti' exp(ik', x), (B.28)

where k' is the new wave iumiber vector, making an angle 0 with the r-axis. The

radial components of k' and k are equal, and the dependence of k' oni k is expressed

through the dependence of 0 oin 0:

0' -tan l(in tan 0), (B.29)

where mi j > I is tile density ratio across the shock wave.

Amplitudes )f downstream velocity coinporients associated with the vorticity 3
wave can be related to those of upstream velocity conponents as

I
, X di7 1,I

d7 : (B.30) 3
where U

Cos 0 ' sill (I

Here, we have use( B.2.1) with cos 9 sin 0

11' ' L * and I LI * I
C' ,s cos W

Interaction of a vorticitv wave with a shock also generates an acoustic wave 3
do)wnstreami of the shock. F'or a small inclination angle 0 of the upstream vorticity

wave, this aco)ustic wave atte lales exponentially with the (listamce from the shock.

Oii the ot her hi:ti, for i(IIciihatiOns greater than a certain critic;, value 0, the

acoustic wave pro)pagatos without attelllatioll.

'I'lie acou. tic velocitv fiel d can he expressed in Ilie forimi

0'' ,1 - ', ' " x .11..x)) B
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where V is the wave number vector, making an angle O" with the r-axis. Again

the radial component matches that of k. The amplitude of downstream velocity

components associated with the acoustic wave can be related to those of upstream

velocity components as

d F dii,

dU01= 0, (B.33)

where

SHe =iev cos 0' - einr/20w sin 0'

cos 0

r He P sin 0 + e csin 0 (B.34)

with n I for 0 << cr and n = 0 "or 0cr < 0 < 7r/2. That is, the transfer

functions in (B.31) and (B.34) are valid for both subsonic and supersonic cases

with the appropriate choices of 6s and bP.

Turbulence components in the Cartesian coordinates are obtained using the re-

lations

du 2 = ducos$ - duo sin( , du 3  dur sino 4 dLt coso, (B.35)

and conversely

du, = du 2 cos6 + dn 3 sing, du( -du 2 sinB du 3 cos.. (B.36)

The same relations apply to the downstream velocity components du and du".

Using (B.30) and (B.33) - (B.36), we can represent downstream waves in terms of

the amplitude and wave number of the corresponding upstream wave. Upstream

and downstream vorticity waves represented in (B.27' and (B.28) can be related

as
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d-U 1 = Xdill,

da'i = Ydi 7 cosO - daOt sine ,

d 3 = Ydir sine + dfii cos. (B.37)

The velocity fields of the corresponding acoustic wave downstream of the shock is

expressed in (B.32), where

d - E di7, I
dii= Fd= r coso,

d-J4 = Fdi, sine. (B.38)

The quantity u,(x) can be obtained from the Fouriei transform as

ui(x) A ! d i ( k ' x )

f exp(ik, x)dai(k), (B.39) I

where the triple integration is extended over (-o ,oo) in each component of k = I
(kl,k 2 ,k 3 ). By defining

dfii(k) iii(k)dk, (B.40)

we can rewrite (B.39) as I

ui(x) J i i(k)exp(ik x)dk. (B.41) I

Tf th, !"!d is homogeneous, the two-point correlation, ui(I)Nj(x') can be repre- I
sented as

u,(x)u](x') = exp[z(k.x + l.x')] ij(k)ii)(l) dkdl, (B.42)
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I where the triple integrations are extended over (- oo, oo) in each component of k

and 1, and the overline (.) means the average over an ensemble. By the use of the

orthogonality of the Fourier modes, (B.42) can be rewritten as

I ui(x)uj(x') = fexp(ik r) iii(k)ii;(k)dk, (B.43)

I where r = x'- x, il*(k) is the complex conjugate of iij(k). The energy spectrum

tensor Eij(k), the spectral density of uiuj, is defined as

Eij(k ) =_i_(k)_i(k) (B.44)

so that

I uiu J Eij(k)dk. (B.45)

In order to predict the changes in the second-order turbulence statistics through

the interaction, we multiply both sides of (B.37) by their complex conjugates and

add the last two, resulting in

duldu = X diiidiu1,
ddu 2* + d-4d-* = 1Y2 dgrdu r* + duedui. (B.46)

From geometry (see Figure 2.1),

dIr = di1 tan9,
da* = dii* tan0, (BA47

and also from the coordinate transformation (B.35) we have,

di,rd * -+ d da; = du72d * + di3d . (B.48)

Thus, using relations (B1.40), (B.45), and (B.48), the ensemble average of (B.46)

3 can be exi)ressed as
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- - 91 IXI
V, ~lldk ' = iX] ldk,

a, ,+ ^'!*)dk' =(1Y2  1) tan2 0fjiijdk + (9 2 ii + ii3 i)dk. (B.49)

If operations similar to those performed on (B.37) are applied to (B.38), we get

2I
Ul*dk" = J'E12 i jiiidk,

(t2u2 ± " ")dk" = 1112 tan 2 0 itdk. (B.50)

The mean-square veloity components associated with vorticity waves follow

directly from integration of the spectral density. Integration of both sides of (B.49)

yields

Z'- 1 1X1 2 E,,(k) dk, I

i12 +U13 u 4- u +  ( I) 1tan2O Ell(k)dk. (B.51) I
I

Similarly, integration of (B.50) yields the mean-square fluctuating velocity compo-

nents in acoustic waves:

12 -;:712 E,,(k) dk, 3

" 2 2 3  1 712 tan20E, 1(k) dk. (B.52)

Thus, the mean-square velocity fluctuations behind the shock are given in terms

of those ahead of the shock, the single-wave transfer functions X,Y,E, and I',

and the longitudinal spectral density, E1 1(k). Note that the single-wave transfer

functions are functions of k and 0, where k -- Iki.
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Due to the interaction of turbulence with a shock wave, aerodynamic noise is

produced behind the shock wave in the form of fluctuating pressure, p'. The fluc-

tuating acoustic pressure is related to the velocity fluctuation as

I pI

or

D - ,(B.53)

where wp is the C-component of the perturbation velocity associated with the

pressure fluctuation, and pD is the mean downstream pressure. (B.53) can be rec-

ognized as the linearized Bernoulli equation applied to the velocity in the acoustic

wave.

Substituting for M and W, and using (B.24) and (B.25) for wp without vorticity

wave contribution, (B.53) results in

_p L (wa l 27m (y i) cos ( 2 x a0

pD -+cos[-(x - x1 tan ) + bp], (B.54)

where downstream pressure wave is expressed in terms of the shock strength for

the corresponding upstream vorticity wave (UA U1 ). (B.54) can be interpreted

as the relation between the Fourier coefficients of the downstream pressure wave

and upstream velocity fluctuations:

il/cos 0 2yrn 1-_ H

pD = U 1  ( + 1)m771 - 1) cos-0Cxp(itp), (B.55)

where io and il are the Fourier coefficients of tihe pressure and streaniwise velocity

fluctuations, respectively. Pressure fluctuations can be calculated using the relation:

p k jp )p(k) d3 k, (1.56)

where P' is the coniplex ciijiigate of f).
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Following a similar procedure, we can relate the downstream power spectra to

the upstream power spectra, and all their derived quantities of interest (such as two-

point correlations, turbulence length scales, and dissipation rate) to their upstream

counterparts.

B.2.2 Shock Front Distortion

The local perturbation in the shock front inclination angle 0' in (B.8) can be I
considered as the shock inclination when r-axis in Figure 2.1 coincides with x 2-

axis. In general, the shock wave inclinations in xlx 2 and xlX3 -planes, 0 2 and 0"3
respectively, can be expressed as I

".2 =: f7 cos 0 and 0"3 = 0 sin.

By the use of (B.8), a (=-.2,tr3 ) can be written as I

X exp[i(kh'Xh + bsh)], (B.57)

w here 2

_q 4- - b2  (.8

( o/x 2 ,0ox 3 ), kh (, 2 ,k 3 ), xh = (x 2 ,x 3 ), is the local shock front

displacement from the mnian shock position; 171(= UA) is the mean upstream flow
speed.

For isotropic turbulnc,'., V'ri;ACeS of the local inclination angles are related by: I

I
(1 (7 2 e

2 3
°2c . (B.59)

Using (B.57), (B.58) and (B.-9), we ,-ri express the variance T for an isotropic

ul)stream tur)ulence as

I



22

1 f ---Rdk
2

1 / (a2 + b2 ) dk, (B.60)

3 defined as

k1 = ksinO, k2  kcos cos¢, k3 = kcosOsino, (B.61)

and

dk k 2 cosO dqdOdk. (B.62)

In this coordinate system, E 1 1(k) can be expressed as

E'k,, O E(k) cos 2 q, (B.63)

where

fq2 3 2

E(k)dk- 2 = 2u °'  (B.64)

and uo is the rms of the velocity fluctuations in one direction.

Now (B.60) can be rewritten as

- 2U1 OOL4 7r k2 (a2 4 b2)k2cosOd d Odk

E(k)dkJ (a2 + b2)cs 3 OdO

... .. 2  . f ,1 2 - c 3 OdO, (B.65)

4 1 1  dO
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where symmetry in 0 is used in the evaluation of the integral. Note that the

result of the integration is independent of the specific form of the upstream energy

spectrum, E(k). Since the remaining integral is only a function of the upstream

Mach number, the variance of the shock inchnation angle is dependent only on

turbulence intensity and the Mach number upstream of the shock wave.

Usii1g (B.57), the local shock displacement in (B.26) can be expressed as:
1 I

1 ihi exp[i(kh Xh + bsh)]- (B.66)

The local shock front curvature in the x 2 direction, K 2 = 0 2 /qx2, can be ob-

tained by differentiation of (B.57) as

k 2
I = i exp[i(kh' Xh + 6sh)]. (B.67)
kh

Using (B.58) and (B.66), and following the same procedure which was used I
to determine the variance of the local shock inchnation angle, we can obtain the

variance of the local shock displacement: 3

Ifo fr fo 2  E(k) cos 2  1 2 2 k2

2 0 J0 J0 4 Zrk o 2  cos2  s

S E(k)dk2  ) cosOdO. (B.68)

Using (D.58) and (B.67), *we find the variance of the shock front curvature in

the x2 direction to be

1.. ' (! 2' 2o''Jd- 2  " cos2 (k2 cos 2 Ocos 4 0) (a2  2 2

I
3 22 -(25 + k

0 J62 2E(k)dIkj (aT/2 b)cos5 OdO. (B.69)
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Note that variances of shock front displacement and shock front curvature are

dependent on the shape of the upstream turbulence spectrum as well as on the

mean flow Mach number and turbulence intensity upstream of the shock wave.
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FIGURE B. 1. Convection of plane oblique sinusoidal shear wave through the shock

wave.
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FIGURE B.2. Symbols and coordinate systeins used in LIA.
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FIGURE B.3. Geometrical relations across the shock, with and without perturba-
tion o, in the shock inchnation angle.
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APPENDIX C

REMOVAL OF ALIASING ERRORS

IN SIMULATION OF COMPRESSIBLE FLOWS

In computational fluid mechanics aliasing errors arise from the non-linear terms.

The product of two quantities resolved on a mesh of size N results in a function

with higher frequency components that can not be resolved on the mesh. These

components are then "aliased" back in the computational mesh and contaminate

the solution. Aliasing errors have been reported to lead to inaccurate simulations

[Kim et al. 1987, Spalart 19881.

In a simulation of incompressible Navier-Stokes equations, aliasing errors are pro-

duced from the product of two velocity components in the convective term. (For

simplicity, we only consider the one-dimensional problem and choose the Fourier

collocation method as the numerical differentiation scheme.) A real function de-

fined on N grid points can be represented with N/2 complex Fourier coefficients.

The multiplication of two variables generates contributions up to the wave num-

ber N which is beyond the resolution limit. These contributions lead to aliasing

errors. Since we know the exact origin and destination of aliasing errors we can

remove them. First, we expand the wave number domain from (-N/2 + 1, N/2)

to (-3N/4 + 1,3N/4) with zero Fourier coefficients for the expanded modes. Mul-

tiplication is then performed in the physical space with the expanded grid. The

result is then Fourier transformed and the additional modes are eliminated.

In a simulation of compressible Navier-Stokes equations using conservative vari-

ables, aliasing errors arise from both multiplication and division operations. Divi-

sion is necessary to get the velocity components and temperature from the conserva-

tive variables. Removal of aliasing errors stemming from multiplication is possible

in an analogous manner as in the incompressible case. However, we can not remove

all aliasing errors explicitly, since division distributes the aliasing error throughout

the wave number domain.

Good spatial resolution is helpful to minimize the effect of aliasing, since the

aliasing errors are not significant for a well-resolved flow [Canuto et al. 1988>.

Using a numerical scheme which conserves physically important quantifies, such
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as mass, kinetic energy, and total energy, helps to control the instability resulting U
from aliasing error [Feiereisen et al. 1981, Blaisdell et al. 1990.

In the following, we propose a procedure for alias-free simulations of compress-

ible turbulence. The main difficulty in controlling aliasing errors stems from the

division by density to yield velocity components and temperature from conservative

variables. If the equation for the specific volume is solved instead of the density

equation for mass conservation, we can multiply by the specific volume wherever

division by density is needed. The equation for the specific volume, v = l/p, is:

O _ V20(Pui) (C.1) I
Ot Oai

The remaining equations are the momentum and energy equations in conservative I
forms. The velocities and temperature are obtained from the conservative variables

using

-i z v (Pui) T =-yv [ET - (Puk(Puk) ](C.2)
The equation of state, (3.17), can be recast as 3

pv - - 1 )T. (C.3)

Another possible source of aliasing errors is the non-integer power law depen-

dence of viscosity on temperature. The effect of this error on the solution remains

to be investigated.

I
I
I
I
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APPENDIX D

DIRECT NUMERICAL SIMULATIONS
OF SPATIALLY EVOLVING TURBULENCE

Most direct or large eddy simulations of turbulent flows have been performed

with periodic boundary conditions [Rogallo and Moin 1984]. Direct or large eddy

simulations of flows in complex geometries require "turbulent" conditions at the

inflow boundary.

This Appendix presents a method of generating inflow turbulence with a pre-
scribed power spectrum. The results from simulations of spatially decaying turbu-

lence are then compared with those from the corresponding temporal simulation

to validate the method. The method is also validated by comparison with the ex-

perimental data for decaying isotropic turbulence in the regime where the energy

spectrum undergoes a self-similar decay [Ling and Huang 1970].

D.1 Method of Generating Inflow Turbulence

For simplicity, we consider a turbulent flow evolving in the x1 direction, the mean

flow direction, homogeneous in coordinates x 2 , x 3 , and statistically stationary in

time. At the entrance (z 1 = 0) of the computational domain, the energy spectrum

of a flow variable, Eff, is prescribed in terms of frequency and two transverse wave

numbers. The Fourier coefficients, 1(k 2 , k3 ,w, t), are prescribed by the equation

f(k 2 ,k 3 ,w,t) = V f(k 2 ,k 3 ,w)exp[4*r(k2 ,k 3 ,w,t)], (D.1)

where q, is the phase factor and i = V-. The functional dependence of <k, on time,

as well as on frequency and wave numbers, is necessary so that the signal generated

is not periodic in time. The variable t in f denotes an element of the ensemble of

realizations. In our scheme, 0, is changed only once in a given time interval, Tr, at a

random instance by a random amount, A0t, where IAOrI is bounded by a prescribed

value, Aomax. The randomized temporal dependence of each phase, 0,(k2 , k3 , w,t),
is shown schematically in Figure D.1. Because the phases are time-dependent, the

generated signal is not continuous and the frequency spectrum of the turbulence

signal generated only approximates the target spectrum, Eff(k 2 ,k 3 ,w). The fre-

quency and amplitudes of the random phase shifts determine the smoothness of
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the generated signal. If this temporal dependence is weakened, the approximation I
of the target spectrum improves, but the generated signal also approaches a tem-

porally periodic signal. The fluctuation signal, f(X 2 ,x 3 ,t), is obtained by Fourier I
transforms in the homogeneous directions (i.e., x2 and x3 ) followed by a sum over

all frequencies. The turbulence signal at the inflow plane is prescribed by adding

the fluctuation signal, f(x 2 ,X 3 ,t), to the mean flow profile, F(X 2 ,x 3 ). One can

easily generalize this method to create inhomogeneous "turbulence" as well.

The approximation of the target spectrum depends on the choices T,* woT/2ir

and Aoma x = Aomax/27r, where wo is the frequency of the peak energy. The sen-

sitivity of the approximation to Tr and Aon is shown in Figure D.2. The target I
spectrum, Ejf(w), is of the form w4 exp[-2(w/wo)2]. As the temporal dependence

of the random phase increases (small T,* and large AO*a) , the approximation of

the target spectrum worsens. The region of disagreement is localized in the non-

energetic frequencies. In the high w range, the spectrum has a w - 2 tail. Figure

D.3 shows typical turbulence signals generated at the inflow.

D.2 Simulation of Spatially Decaying Turbulence I

The first part of is section demonstrates the performance of the spatial sim- I
ulation and compares it with a corresponding temporal simulation. In the second

part, direct numerical simulation results are compared with the experimental data.

D.2.1 Comparison with Temporal Simulation Results I
The method of generating inflow turbulence described in Section II is used to

conduct simulations of spatially decaying compressible isotropic turbulence. The

governing equations are the continuity equation, three momentum equations, and

the energy equation, along with the equation of state. We assume the fluid to be

an ideal gas (-y = 1.4) with zero bulk viscosity. Viscosity is assumed to have power-

law dependence on temperature, - - = (T)0.76, while the Prandtl number, Pr, is
A0 T

kept constant at 0.70. Special attention is given to ensure numerical conservation of
mass, kinetic energy, and total energy in the inviscid limit. We approximate spatial

derivatives by a compact finite-difference scheme [Lele 1990], which has spectral-

like resolution as well as sixth-order formal accuracy. Time advancement is done

explicitly by a third-order Runge-Kutta method. Periodic boundary conditions
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are used in the X2 and X 3 directions. The mean streamwise velocity, U1, is kept

supersonic and uniform for the most rigorous application of the outflow boundary

conditions. In the example presented, the mean inflow Mach number, M, = U1/c,

is 2.0 (c is the speed of sound). Simulations conducted for subsonic inflow yield

essentially the same results. Inflow turbulence is generated with zero density and

temperature fluctuations, with a three-dimensional energy spectrum given by

E(k) - k4 exp[-2(k/k,) 2]. (D.2)

The inflow fluctuation Mach number Mt = q/c (q = where u' is a

fluctuation from the ensemble averaged velocity) and the turbulence Reynolds

number based on the Taylor microscale, Re,\ = uoAl/V, constitute two indepen-

dent parameters of the simulation, where uo is the rms fluctuation in a velocity

component. We consider several cases with the inflow fluctuation Mach numbers

Mt = 0.519, 0.346, 0.173 and Re,\ = 25.0. The size of the computational domain

is 27r in each direction with 64 grid points. Thus, the computational wave numbers

are integers, and we use the energy peak wave number, ko = 4, in prescribing the

inflow spectrum. For comparison, a corresponding computation of temporally de-

caying turbulence (Lee et al. 1991b i is conducted with the initial fluctuation Mach

number and Reynolds number Mt = 0.346 and Re, = 25.0, respectively. Taylor's

hypothesis is used to convert the downstream distance from the inflow boundary

in the spatial simulation into the evolution time, i.e., t = z 1l/U1 .

Figure D.4 shows evolution of velocity derivative skewness, which is a measure of

inertial nonlinearity of turbulence. Skewness varies with compressibility as well as

turbulence Reynolds number [Tavoularis et al. 1978, Erlebacher et al. 1990], having

a value of about -0.4 to -0.6 for isotropic turbulence at ReA -. 25. Turbulence

may therefore be considered realistic beyond time t/-rt = 0.4, where the turbulence

time scale is defined as rt = A/uo. The development of the velocity derivative

skewness for the spatially decaying turbulence compares favorably with that for

the temporally decaying turbulence.

Figures D.5(a) and D.5(b) present comparisons between spatial and temporal

simulations for one-dimensional spectra of vorticity and dilatation as a function

of the transverse wave number k2 . The vorticity spectra agree closely, while the

dilatation spectra show some differences.
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The evolution of turbulent kinetic energy is shown in Figure D.6. The turbu- I
lent kinetic energy in the spatial simulation compares favorably with that in the

temporal simulation. The same kind of agreement is obtained in the evolution of 3
rms vorticity and turbulence Reynolds number. These agreements contrast with a

systematic difference in the statistics of dilatation. Close comparisons are generally

found for the statistics dominated by the incompressible part of turbulence [Moyal

1952], whereas the statistics dominated by the flow compressibility tend to differ.

The level of rms dilatation of the spatial simulation when Mt = 0.346 is lower than

the corresponding temporal simulation by 15 percent.

The deviation in the dilatation statistics may be attributed to two causes. Firstly,
disturbances in incompressible turbulence are generally advected at the mean flow

speed, U1 , while fluctuations in compressible turbulence are convected at different I
speeds, U1, U + c, and U71 - c. Hence, for statistics dominated by compressibil-

ity the use of Taylor's hypothesis may be inaccurate. Secondly, as Figure D.5(b) 3
illustrates, the level of the dilatation spectrum for low wave numbers is higher in

the temporally decaying flow than in the spatially decaying flow. This higher level

of compressibility in the temporal simulation may be attributed to the inability of

the periodic boundary conditions to freely radiate the acoustic waves generated by

turbulence. The existence of one freely radiating boundary (outflow boundary) in i
the spatial simulation lowers the overall intensity of acoustic waves trapped in the

domain. Because of this difference, caution must be exercised in using periodic (or

temporal) simulation databases to examine compressibility-driven quantities such

as dilatation dissipation and pressure dilatation correlation.

D.2.2 Comparison with Experimental Data

Ling and Huang [1970] found the isotropic turbulence decay between microscale

Reynolds numbers 3 and 30 to be self-similar. At low Reynolds numbers the en- 3
ergy and dissipation scales overlap so that there is only a single characteristic leng',

scale. Domaradzki and Rogallo [1990] confirmed this finding through direct numer-

ical simulation of temporally decaying incompressible turbulence by showing that

the three-dimensional energy spectra, E(k), at different time:, can be crIlapsed us-

ing the Taylor microscale as the characteristic length scale. We init; lized a direct

I
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numerical simulation of spatially decaying isotropic turbulence with the normalized

inflow energy spectrum given by Ling and Huang [1970] as

E*(k*) = ak*(1 + k*)exp(-k*), (D.3)

where k* is the magnitude of the normalized wave number, k* = (k*,k*,k*), with

V = kiav/V(t - to), a = 3.162, E* = E(k) /v(t - to)/ul 2 , and t = xl/U1 and to

are the decay time and the virtual origin of the decay time, respectively.

The corresponding one-dimensional energy spectrum is

E1 (k*) = a exp(-k 1 ). (D.4)

The self-similarity of normalized spectra in (D.3) and (D.4) is based on the as-

sumption that turbulent kinetic energy and all the relevant turbulence length scales

evolve like t - 2 and t1/ 2, respectively.

In the simulation of the experimental conditions, we follow the same numerical

procedures as in Section D.2.1. The mean streamwise Mach number, fluctuation

Mach number, and Reynolds number at the inflow are M1 =1.20,Mt = 0.173, and

Re, = 15.0, respectively. The size of the computational domain is 21r in each

direction with 64 grid points, and the energy spectrum peaks at k = 4. An incoming

fluid particle passes through the computational domain in time, t = 2.5rt, where

rt = A /uo.

Normalized one-dimensional spectra at different downstream positions are shown

in Figure D.7. Spectra collapse onto the experimental results with some deviation

at small wave numbers because of the limited sample size. It was experimentally 2

observed that turbulent kinetic energy decays like (x 1 - xo) - 2 , i.e.,

q2 -xo )2, (D.5)q2  1- Xo

where q2/2 is the turbulent kinetic energy at inflow (i.e., x, = 0) and xo/ 1 'rj =

-4.2 in the simulation. Figure D.8 compares the turbulent kinetic energy decay

in the simulation with that expressed by (D.5). The evolution of turbulent kinetic
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energy in the numerical simulation is in excellent agreement with the experimental I
data.

We have developed a method of generating inflow turbulence fluctuations for

spatially developing turbulence computations. Using this method we performed

direct numerical simulation of spatially evolving isotropic turbulence. The com-

puted incompressible turbulence statistics are in excellent agreement with those

from the corresponding temporal simulation and the experimental data. The al-

gorithm for generating inflow turbulence is by no means unique. The significant

result is that one apparently can compute spatially developing turbulence with the

accuracy typical of present temporally evolving simulations.
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APPENDIX E

PARAMETER LIMITATIONS FOR DIRECT NUMERICAL SIMULATION

OF SHOCK TURBULENCE INTERACTION

In our direct numerical simulations of shock turbulence interaction, we have re-

quired the resolution of all the relevant scales of turbulence and the shock wave. The

resolution requirement for incompressible turbulence is far better established than

that of compressible turbulence. For weakly compressible turbulence with Mt < 0.2

where there are no significant compressibility effects on turbulence, resolution re-

quirements for compressible turbulence is comparable to that of incompressible

turbulence. Some simulations of compressible turbulence at very high Mt [Kida et

al. 1990, Blaisdell et al. 1990, Sarkar et al. 1991] were not successful in resolving

changes of the flow variables across the eddy shocklets. Since their main interests

were to study the effect of compressibility on turbulence evolution, resolving the

eddy shocklets may not have been a critical factor. In this study we investigated

the effect of turbulence on the shock wave structure as well as the effect of a shock

wave on turbulence. Therefore, proper resolution of the shock wave is necessary

for accurate results. Limitations on the availability of computer resources leads to

limitations on the choice of physical parameters in the simulation, ReA, MU and

M.

E.1 Requirements for Resolution and Sample Size

As shown in Section 3.3.1, proper resolution of the shock wave structure requires

a grid distribution which places at least three points inside the shock wave whose

thickness b, is defined by

AUI
,S J (dU1/dxl)mijnj.

Thus, 6, > 3(Axl)min, where (AXl)min is the typical streamwise grid spacing near

the shock wave. For weak shock waves, the shock thickness b, is estimated as

8 v (E.1)

3c (Ei-I
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[Thompson 1984], where v and c are the upstream kinematic viscosity and speed 1

of sound, and M is the maximum instantaneous upstream Mach number, M _

MU + Mt, where Mt is the fluctuation Mach number at the inflow.

In the numerical simulation, artificial turbulence generated at the inflow evolves

into "realistic" turbulence as it approaches the shock wave. In Appendix D, evolu-

tion of artificial inflow turbulence into realistic turbulence was found to take place

in a distance which determines the minimum streamwise computational box size

upstream of the shock wave. Using the results of Appendix D and applying Taylor's

hypothesis, we get the following relation: 5
t Xl/U 1

- -/Uo > 0.4, (E.2)

where A is the longitudinal Taylor microscale, and rt = A/uo is a turbulence time

scale. Therefore, the minimum streamwise computational box size upstream of the 1

shock wave L U is

0.4L (E.3)
Luo/Ul' (E3

where uo/U1 is the streamwise turbulence intensity at the inflow. The streamwise

distance downstream of the shock wave, L D was chosen to be the same as L U . The 1

streamwise computational box size L1 can now be expressed as

01L'+p .8A 1
L, = LU +L D- uo/U

This relation can be rewritten as

L, = 0.40 (E.4)

using the definitions of Mt and M 11
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In order to eliminate the contamination of long-time-averaged statistics across

the shock, the mean shock front should not drift in space. As the upstream fluc-

tuation Mach number, Mt, becomes comparable to M U - 1, the mean shock drift

speed increases. Therefore, the fluctuation Mach number should be bounded by

MU - 1.

Compressible turbulence of Mt < 0.2 does not contain eddy shocklets [Lee at al.

1991b] and can be resolved by a grid similar to that in incompressible turbulence at

the same Reynolds number. In our simulations turbulence Mach number is always

lower than 0.2 except possibly just behind the shock wave.

The size of the computational domain and the number of grid points in transverse

directions are determined to satisfy the requirements of sample size and resolution

of turbulence. Based on the form of inflow turbulence spectrum given in (3.32),

the integral scale A22 ,2 defined in (4.7), the longitudinal Taylor microscale A, and

the Kolmogorov length scale 77K are, respectively,

I koA 2 2 ,2 =

koA = 2 (E.5)

Sko77K = 16 / ReA 1/ 2 ,

3 where ReA is Taylor microscale Reynolds number defined in (4.1).

To have a sufficient sample of large scale structures, the computational box in3 the transverse directions were chosen to be larger than about ten integral scales,

L 2 = L3 > 10A 22 ,2. (E.6)

To resolve the smallest scale of turbulence which is comparable to r7K , we chose3 the mesh size in the transverse direction as

3Ax 2 = Ax 3 < 277K

[Lee an Reynolds 1985], or using (E.5)

193I



I

koAX2 = 0.508Re-A1/ 2. (E.7)

Using the expression for r/K in (E.5), the ratio of the cutoff wave number k, to the I
energy peak wave number ko can be expressed as

kc > Re 1/2 (E.8)

k,,2 A'

where the relation

kc = 2  (E.9)

is used (N 2 is the number of grid points in the x2 direction). Combining this with

(E.5), (E.6), (E.8) and (E.9), the number of grid points in the transverse directions

can be expressed as

N 2 = N 3 >_ 12Re1/ 2. (E.10) I
The number of grid points in the transverse directions according to (E.10) satisfies

the requirements of sample size and fine scale resolution.

A non-uniform mesh is used in the streamwise direction. The minimum mesh

size to resolve the shock wave is obtained from (E.1) as

16 Mt 1
( 9v'3ReA MU + Mt - 1

The maximum streamwise mesh spacing is equal to the mesh spacing in the trans- I
verse directions.

Turbulence statistics are obtained with averaging over a time t such that I
uot > 4,
A >4 I

and the maximum time step of the simulation is determined by the numerical

stability condition of

CFL - (U1 + c)At
(AXl)min 3
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where CFL is the Courant-Friedrichs-Lewy number. Since the smallest grid spacing

is in the zl-direction, the total number of time steps required in each simulation

Nt is estimated to be

t > 4V3 A MI + 1 (E.11)
t = - CFL (AXl)min M t

By using b, >_ 3(Ax 1)min,(E.1),(E.5),(E.8) and (E.9), one can rewrite (E.11) as

Nt > 13.5 Re, (M U + M t - 1) (M v + 1). (E.12)
- CFL M 2

In the present study with the choice of parameters given in Table 4.1, the number

of time steps ranges from 10,000 to 30,000.

The separation between the typical turbulence length scale and the shock wave

thickness requires a large grid stretching in the streamwise direction. Furthermore,

acoustic waves should be accurately resolved in the region occupied by the shock

wave, which excludes the possibility of using an implicit time advancement to take

a large time increment. Explicit time advancement with a small time increment is

the main reason for the large CPU time required for direct numerical simulation of

realistic shock/turbulence interaction.

In a three-dimensional direct numerical simulation, storage of all the flow vari-

ables in the core requires a large memory. On the Cray Y-MP/832, this problem is

alleviated by using the Solid State Device (SSD) I/O. In the present computations,

the SSD I/O takes about 15% of the total CPU time used.

The code performance is about 130 megaflops with 129 x 64 x 64 grid points, and

uses about 45 CPU seconds of Cray Y-MP/832 for each time step. It takes about

100 to 200 CPU hours of Cray Y-MP/832 to obtain adequate turbulence statistics

for one case.

E.2 Limitations of the Physical Parameters: RcA, M)r , M t

To 01.,zs thc limitations of the physical parameters. we use as a reference the

simulated case: RCA = 25.0, MV( = 1.20, and Aft = 0.173. In realistic problems
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with shock/turbulence interaction, the turbulence Reynolds number is higher, and I
the shock strength is usually stronger with a wider range of M.

Increase in the Reynolds number, ReA, results in an increase in the number of I
grid points (ref. (E.10)) in all directions which leads to an increase in the CPU time

per time step. Increasing the upst'eam Mach number, M U , requires a larger grid I
stretching ratio in the streamwise direction due to the increased scale separation

between turbulence and the shock wave (ref. (E.1)) and more CPU time per time

step. Increasing the Mach number to MET = 1.40 requires at least twice the CPU

time required for the reference case.

Lowering the upstream fluctuation Mach number, Mr, with fixed upstream tur-

bulence length scale requires a longer computational box size in the streamwise

direction (ref. (E.4)), which leads to the increase of the number of grid points.

Higher Air requires more grid points in the streamwise direction to resolve the in-

stantaneous shock wave structure (ref. (E.1)). The upper limit of All is usually set I
by the condition of shock stationarity, M < M U - 1.

As shown in Table 4.1, the ranges of inflow parameters used in the simulations

were I
16 <ReA < 25,

1.05 <M U < 1.20,

0.087 <A 1 < 0.173.

I
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APPENDIX F

TURBULENCE STATISTICS IN KINEMATIC OSCILLATION

OF A PLANE SHOCK WAVE

In the interaction of turbulence with a shock wave, the shock front is distorted

and undergoes an oscillatory movement. The oscillation of the shock front produces

an intermittent time history of the flow variables at a fixed point in a reference

frame fixed at the mean shock position, and it leads to overprediction of turbulence

statistics (see Section 4.1 and [Debieve et al. 1986]). This large fluctuation (which is

not turbulence) is driven by the upstream turbulence, and undergoes rapid viscous

decay since its time and length scales are small.

In order to identify the effects of the shock oscillation or, turbulence statistics, a

plane shock wave was moved back and pro in a sinusoidal fashion in the streamwise

direction, and the budget of terms in the RlI equation in (4.9) was computed. The

profiles of the flow variables across the shock wave were obtained as the laminar

solution of the one-dimensional Navier-Stokes equations for MU = 1.20 (see Section

3.2.2 for more details on the solution procedure). And the solution U = (p, u 1 , p)T is

expressed in terms of the relative position with respect to the shock center position

x8 as (x1 - x,)/Ib, where & is the shock thickness. The oscillatory movement of

the shock wave is emulated by externally driving the shock wave to move back and

forth in time as

xs(t) = XS(0) + asbf(t), (F.1)

where arb, is the spatial amplitude of the oscillation, and f(t) is a periodic function

with f(t) = 0. Statistical samples were taken at fixed points xi , which were apart

by about a tenth of the shock thickness. The flow variables at a sampling point near

the shock wave vary in time due to changes in the relative positions with respect to

the shock wave. The sampling points far away from the shock wave are not affected

by the shock wave oscillation. The sampling time interval was chosen so that 100

samples were taken per oscillation period of the shock wave. The statistics were

not found to be sensitive to the choice of the parameter, as, and the function, f(t).

In the following, a sinusoidal function is used for f(t) with a, = 0.25.
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Figure F.1 shows the statistics of the streamwise velocity, dilatation, pressure, I
density, and temperature. As found in Section 4.2, all the statistics peak inside the

zone of shock oscillation. The peak values were also comparable to those from the

direct numerical simulation (see Figures 4.4 and 4.24).

Figure F.2 shows the budget of terms in the R 1 1 equation. The behaviors of all

the terms in the equation were found to be consistent with those computed from the

direct numerical simulations (see Figure 4.8(a)). The pressure work term, -0 P

was found to be the dominant term inside the shock wave.

Figure F.3 shows the decomposition of the pressure work term into the pressure

transport term, -(p'u"), 1 , and the pressure-dilatation correlation, p'uffl" Again,

behaviors of the two decomposed terms are in agreement with the results from the

simulations (see Figure 4.7(a)).

It can be concluded that the large levels of fluctuations in the shock zone in

the direct numerical simulations were mainly due to the oscillatory movement of a I
plane shock wave.

I
I

I

I
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APPENDIX G

EFFECT OF A REFINED OUTFLOW BOUNDARY CONDITION

As described in Section 3.2.4, Thompson's non-reflecting boundary condition
[1987] was used in the present work. This boundary condition was successful in

suppressing the reflection of nonphysical acoustic waves in test problems, where

the vortical and entropy waves were passed through the outflow boundary (see Sec-

tion 3.3.2). However, in the simulations of shock wave turbulence interaction, the

statistics which are associated with acoustic waves, such as pressure work (Figure

4.6(b)) and dilatation (Figure 4.10), show anomalous behavicrs near the outflow

boundary. In order to assess the extent of influence of downstream boundary con-

ditions on turbulence evolution, the more refined boundary conditions of Giles

[1990] were implemented and turbulence statistics from these computations were

compared with those using Thompson's boundary conditions. In this Appendix, a

brief description of Giles' boundary condition is given first, followed by a compari-

son of the statistics using Giles' boundary condition with those using Thompson's

boundary condition.

G.1 Description of Giles' Boundary Condition

I The original derivation of Giles' boundary condition is based on the analysis of

the linearized Euler equations; here the viscous terms were added. We begin with

Giles' analysis on the three-dimensional Euler equations which can be written in

terms of the primitive variables asI aU Oa ~U

a_ +A au+ B + C au O, (G. 1)a t ax a2 x 3

where U (bp,Muu 2, u 3 , bp)T,I
/ Il P 0 0 0\

0 u1  0 0 i/p
A 0 0 u1  0 0 (G.2)

0 0 0 u 1  0
S0 - p 0 0 u 1
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(U2 0 p 0 0I
0 U2 00 0

B= 0 0 U2 0 1/p (G.3)
0 0 0 U2 /

and

/'u3 0 0 p 0
0 u3 0 0 0

C 0 U3  0 0 (G.4)
0 0 u3 11P0 0 0 11P u3 ) I

The elements of the vector U represent perturbations from uniform flow condi-

tions, and the matrices A, B, and C are evaluated using uniform flow conditions. I
We consider wave-like solutions of the form

U(x , x 2 ,x3, t)= exp[i(klx 1 + k 2 x 2 + k 3 x 3 - wt)luR, (G.5)

where u R is a constant column vector. Substituting this into the differential equa-

tion (G.1), we obtain I
(-wI + klA + k 2B + k 3C)uR = O, (G.6)

which has a nontrivial solution, provided that I

det(-woI + klA + k2 B + k3 C) = 0. (G.7)

The vector uR is also an eigenvector of the matrix I
H = A- 1 (-wI + kjA + k2 B + k3 C) (G.8)

corresponding to the eigenvalue k1 . I
Suppose that the differential equation is to be solved in the domain z1 < LI,

and one wants to construct boundary conditions at x1 = L 1 to minimize or ideally I
prevent the reflection of outgoing waves. At the boundary xj = L 1 , U can be

decomposed into a sum of Fourier modes with different values of k2 ,k 3 , and w.

Consider a single wave with particular choice of k2 ,k 3 , and ,,. In this case, the

most general form for U is
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IE n
nI[ZnueIk)n1 e, k2z2+k3z3-t (G9

where (kl)n is one of the roots of the dispersion relation for the given values of

k2 , k3 , and w, and uR is the corresponding right eigenvector.

The ideal nonreflecting boundary condition would specify an = 0 for each n that

corresponds to an incoming wave. The construction of such a boundary condition

requires the vector v L , which is an eigenvector of HT. It is well known from linear

algebra that the eigenvectors of H and HT corresponding to different eigenvalues

are orthogonal, that is,

(V$L)TuR = 0, (G.10)

where vL and u R are the left and right eigenvectors corresponding to different

solutions (ki)m and (ki)n of the dispersion relation, (G.7).

At the boundary, xj = L1, orthogonality leads to

InI

a[(vL)TuR I e'(kl)nLi e(k2X2±ka33Wt). (G.11)

Therefore, an equivalent specification of nonreflecting boundary condition is

(vL)TU =o (G.12)

for each n corresponding to an incoming mode.

In principle, these exact boundary conditions can be implemented in a numerical
method. The problem is that, in general, v depends on 12= k2 /w and 13 k

and the implementation would involve Fourier transforms in x 2 and X3 and Laplace

transform in f. Computationally, this is both difficult and expensive to implement.

In the following, an approximation used for general situations is described.
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A sequence of approximate, nonreflecting boundary conditions can be obtained I
by expanding vL in a Taylor series as a function of 12 and 13 as

v(2,1) (0,0) + 120-4 (0, 0) + 13b-3 (0,0) + O( ,1213,t3). (G.13)
812 4913 I

The first-order approximation, obtained by keeping only the leading term, gives

Thompson's boundary condition. The second-order approximation is,

k2 OvL (0,0) + -V- k (0,0) U = 0. (G.14)

yn(o~o) + -5 ± -- 01

Multiplying by -iw and replacing ik 2 ,ik 3 , and iw by 0/0x2,0/0x 3 , and - 8/Ot,

respectively, gives

(vL)T(O a)~ (vL)T aU _ (vL)TI
(,0 a2 T 10x2 913 0,0) 3 = 0. (G.15)

This is a local boundary condition of the same differential order as the governing I
equations. These boundary conditions are only approximately nonreflecting and

may produce nonphysical reflections of outgoing waves for which 12 and/or 13 are

far from zero.

Using (G.2)-(G.4), the dispersion relation (G.7) for the system of equations,

(G.1), can be written as I
(uk, + u2 k2 + u3 k3 - w)3 [(uki + u2k2  u3 k3 - w)2 - k + k + k)] 0.

(G.16) I
Three of the five roots are identical, i.e.,

( -- u 2 k 2 - u 3 k 3

(kl)l,2, 3  =l (G.17)
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For ul > 0, these correspond to right-travelling waves.

The other two roots are

(kl) 4 - (w - U2k2 - u 3k3)(-ul + cD) (G.18)
4C2 - U

and

(k1 )5  (w - u 2 k2 - u3k 3 )(-u 1 - cD) (G.19)

where
D = ¢V - (c2 

-)(k2 + k2)(w u2 k2  u 3 k 3 )2 . (G.20)_k -2 2k (G.20

For 0 < u1 < c, which corresponds to subsonic flow normal to the boundary, the

fifth root is a left-travelling wave, provided the correct branch of the complex square

root function is used in defining D. (D is defined as the positive root for D2 > 0

and as the one with negative imaginary part otherwise, so that it represents a

left-traveling wave with finite amplitude.) This wave is of interest in implementing

Giles' boundary condition at the subsonic outflow boundary. The left null-vector

defined in (G.9) for (kl) 5 , which correspond to an upstream travelling pressure

wave, is

(5)T (0, pc(-w + u 2 k2 + u 3k3 ), -pcu jk 2 , -pcu 1k3 , (w -u 2 k2 - u3k3 ).I)). (G.21)

The second-order approximation of (G.21) in the form of (G.15) is

au u au(0,~ ~ O _ C ,0 )a (0, pcu2-, pcu1,0, -_U2 )_ax2 - (0, pcu 3, 0, -pu PC ,-u3) x3 = 0.(o,-pc,0o,0o 1)-OL a

(G.22)

For convenience of implementation and for comparison with Thompson's bound-

ary condition, we define one-dimensional characteristic variables,

C = (Cl,C2,C3,C4,C5)T ,

as
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Poo loU1G23
0 0 Pc 0 0 Ic= 0 0 0 PC 0 U (G.23)

0 Pc 0 0 1
0 -Pc 0 0 1/

and 0

0 0 0 1/(2c2 ) -1/(2p c )
U= 0 1/(pc) 0 0 P) 0 c. (G.24)

0 0 1/(pc) 0 0
0 0 0 1/2 1/2 I

We can express the boundary condition (G.22) using a characteristic variable as

O9c5 ac O9c I
8C- + (Ou 1,OOu 2 ) 49 + (O,0,u,0,u3) 49 = 0. (G.25)

The corresponding expression for Thompson's boundary condition is U
0-c5 

+  (0±c'0'0'u2)o19C +  (0' 0, c, 0, u3 ) ac = 0, (G.26)

which simply replaces the velocity ul in (G.25) with c. I
The actual boundary conditions used in the present code were those given by

(G.22) with viscous terms added. The implementation of Thompson's boundary

conditions also included the viscous terms.

G.2 Comparison of Turbulence Statistics I
The code used in the present study was modified to include the more accurate I

Giles' boundary condition instead of Thompson's boundary condition. One of the

saved fields for the case A which used Thompson's boundary condition was used

as the initial field. Except for the outflow boundary condition, the same algorithm

was used. After a transient period, statistical samples of flow variables were ac-

cumulated. Turbulence statistics are compared with those from case A which are

computed from samples taken for exactly the same time interval.
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Figure G.1 compares the evolution of mean square vorticity for the two different

outflow boundary conditions. The difference is negligible throughout the domain

which indicates that the improved boundary conditions for removing acoustic wave

reflections have virtually no effect on the evolution of vortical waves.

Figure G.2 compares the evolution of the streamwise velocity fluctuations. The

anomalous increase towards the outflow boundary is reduced by applying Giles'

boundary condition. This improved behavior is, however, localized near the outflow

boundary and does not affect the evolution of turbulence downstream of the shock.

Apparently, the anomalous behavior of the streamwise velocity fluctuations near

the outflow boundary is caused by the pressure work term (see Figure 4.8(a)). Fig-

ure G.3 compares the statistics of pressure work term, -pju2 in the TKE trans-

port equation. The sudden increase in the pressure work term towards the outflow

boundary is reduced by half by using Giles' boundary condition instead of Thomp-

son's boundary condition. This improvement is also localized near the outflow

boundary.

As shown in Figure 4.10, the variance of the fluctuating dilatation increases by

a factor of 10 near the outflow boundary due to nonphysical reflection of acoustic

waves. Figure G.4 shows the improvement resulting from removing the acoustic

wave reflection by the use of Giles' boundary condition.

In conclusion, Thompson's boundary condition used in the present study is found

to be acceptable because reflections of acouAic waves at the outflow boundary do

not appear to affect turbulence statistics downstream of the shock.
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APPENDIX H

DRIFT IN THE SHOCK POSITION AND THE OUTFLOW CONDITION

In our numerical setup, there is no external mechanism to fix the position of

the shock wave. From numerical experiments with a one dimensional shock wave

interacting with a sinusoidal en' ropy wave, we found that poor resolution of the

shock and a high amplitude flu-tuation lead to the shock movement. If the shock

wave drifts in the streamwise direction, the inflow mean Maclh number is not the

true upstream Mach number of the system. Moreover, the statistics obtained at

a fixed point in space become contaminated because the relative distance to the

shock wave is changing in time. The drift of the shock wave position in time is

represented as the mismatch of the upstream and downstream mass fluxes in the

chosen reference frame of the simulation, which reflects the fact that the mean

turbulent shock propagation speed is different from the specified laminar shock

propagation speed. The shock drift speed can be related to the the mass flow rate

difference by integrating the continuity equation in time and sFace, as

Jff [p(t) - p(to)] dxldx2 dx 3 = - ,j J { (pui)D - ( p u l )U] dxdx3dt"

(H.1)

The left side of (H.1) can be expressed in terms of the mean shock drift speed Us

as

J I J [p(t) - p(to)] dxldx2dx 3 z -(P --fi)UsL 2 L 3 (t - to), (H.2)

which represents the mass decrease in the computational domain due to the mean

drift of the shock wave (The shock wave drift in the +x 1 direction leads to a decrease

of the total mass in the computational domain). The statistically averaged quantity

is defined as

f t f fpdx,)dx 3 dt

L 2 L 3 (t - to)
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The right side of (H.1) can be rewritten in terms of the statistically averaged U
quantities as I

- 1:1 f f [ - (pu)U] dx2 dx3 dt = (piD - )L2 L 3 (t - to). (H.3)

Using (H.1) - (H.3), the mean shock drift speed can be obtained as

-D -U (H.4)us = PUO _ PU-(H4
PD-PU

Figure H.1 shows the mismatch in the mass fluxes across the shock wave for the i
worst case among the simulations. The shock drift speed in this case is about 0.7%

of the average upstream speed. 3
Since the flow variables at the outflow boundary are not explicitly specified, they

may drift in time. For the simulations of subsonic inflow-outflow condition, Poinsot 3
et al. [1990] proposed to add an extra term to Thompson's boundary condition in

order to force the exit pressure to relax to an equilibrium pressure. Figure H.2 3
shows the time history of the mean exit pressure over three eddy turnover times.

The drift in the mean exit pressure is about 0.2% of the mean exit pressure, which

is not significant. Therefore, no modifications were introduced to the Thompson

boundary condition at the outflow.
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