

: • **4**

SCALING FOR SHOCK RESPONSE OF SUBMARINE EQUIPMENT

by

George J. O'Hara and Patrick F. Cunniff

92-10711

This document has been approved for public release and sale; its distribution is unlimited.

Department of

MECHANICAL ENGINEERING

of

THE UNIVERSITY OF MARYLAND

92 4 24 148

SCALING FOR SHOCK RESPONSE OF SUBMARINE EQUIPMENT

by

George J. O'Hara and Patrick F. Cunniff

April 1992

 The second į

TABLE OF CONTENTS

PROBLEM STATEMENT

BACKGROUND

LINEAR SCALING

- A. Charge Weight Scaling
- B. Equipment Weight Scaling
- C. Equipment Frequency Scaling
- D. Examples of Linear Scaling

PABABOLIC SCALING

- A. The Intercept Rule
- B. Generating Parabolic Curve from Two Reference Data Points
- C. Examples of Parabolic Scaling
- D. Extapolation to Shock Factor of 1.0

SUMMARY AND CONCULSIONS

ACKNOWLEDGEMENTS

REFERENCES

APPENI K

Accesic	n For							
NTIS CRA&I V DTIC TAB E Ullannounced [] Justification								
By Dist.ib	By Drst.ibution/							
A	vailability	Codes						
Dist Avail and jor Special								
A-1								

Statement A per telecon Dr. Philip Abraham ONR/Code 1132 Arlingtron, VA 22217-5000

NWW 5/20/92

PROBLEM STATEMENT

Previous analysis and studies at the University of Maryland and elsewhere have illustrated the difficulty in relating the equipment response at different charge weights for the same shock factor. A recent study [1] has shown a promising scaling law that appears valid over a wide range of charge sizes for the same hull. This report examines how far this range may be extended for both lower charge weights and higher charge weights; compares linear and parabolic least square fits of the data which are in the form of equipment peak acceleration response versus shock factor; introduces new scaling rules for equipment weight and equipment frequency for single-degree of freedom equipment; and points out the hazards of extrapolating over a wide range of shock factor using a limited range of data.

BACKGROUND

Two different model submarine hulls, each designed for approximately the same depth, were used in this study. Figure 1 shows the diameters, geometrical layout, and scantlings. Models B and F represent a 33-foot diameter hull and a 40.29-foot diameter hull, respectively. Each model shows a single-degree of freedom equipment as frame mounted. The earlier study [1] showed that a five frame model is adequate for the purpose of the investigation. These hulls were modeled as lumped parameter systems with a polygon of 36 sides to represent the cylindrical hull. The University of Maryland "HULL" code, which has been reported and described elsewhere [2], was the principal means used in the creation of the mathematical models.

The absolute acceleration of the equipment mass is the measure of response of the equipment as a function of the shock factor for a given charge weight. The variation of the equipment response is examined to establish trends that may affect equipment design. Figure 2 is a schematic of the shot geometry where the depth of the center line of the hull and the charge are always held at 60 feet so that the cavitation pressure remained the same in all cases. Neutral bouancy is always maintained.

The measure of the shock intensity used herein is the square root of the acoustic approximation of the energy flux density, or shock factor SF, where

$$SF = Q^{1/2}/R \tag{1}$$

as shown by Cole [3]; Q is the charge weight in pounds of TNT, and R is the distance in feet between the hull and the charge.

Table 1 is a complete listing of all charge weights and geometries used to examine the effect of the charge size studies. Appendix 1 contains the data from which the scaling rules were derived.

The following presents two approaches to scaling: linear scaling and parabolic scaling, both of which employ the method of least squares.

LINEAR SCALING

A. Charge Weight Scaling

Figure 3 shows a plot of a typical linear least square fit for the equipment response as a function of the shock factor for a given charge weight. As observed in the earlier study [1], the acoustic

pressure appears to be a key variable. Consequently, a scaling relationship is obtained by dividing the slope of the straight line for charge weight Q_a by the acoustic pressure:

Slope of line a =
$$s_a Q_a^{1/8} / (SF)$$
 (2)
Acoustic pressure

where s_a is the slope of the line for charge weight Q_a . For equal shock factor, the slope of the line for charge weight b, s_b , is related to s_a as

$$s_{b} = s_{a}(Q_{a}/Q_{b})^{1/8}$$
 (3)

This is called the one-eight charge weight scaling rule.

An initial attempt was made to examine the applicability of the one-eight scaling rule over the range of charge weights from 145-lb to 14,500-lb, and varying the shock factor out to 0.75 in increments of 0.15. Runs were made on models B and F, where the equipment weight was either 15 kips, 20 kips, or 25 kips, and the equipment frequency was either 20 Hz or 30 Hz. Figure 4 is a typical result, where for this case model B has a 20 kip, 20 Hz equipment mounted to a frame as shown in Fig.1. Figure 5 shows the linear least square fits through the data for each charge weight. Note that the symbols on this graph are used to identify each line more clearly and, consequently, are not data points. Figure 6 shows all of the slopes scaled to the 1740-lb charge by the one-eigth scaling rule.

An attempt was made to examine the response data for possible improvement of the 1/8 scaling rule. In particular, the standard deviation of $\Sigma(sQ^n)$ for different values of n are plotted in Fig.7 for model B, 20 kip, 20 Hz equipment response data. We observe that the minimum standard deviation for this plot occurs close to n = 0.1. This analysis of the data suggests that we change the 1/8th power to 1/10 power in eq.(3). Figure 8 shows a comparison of the scaled slopes for the system described in Fig.4 using both scaling laws. Figure 9 shows the upper and lower bound data points from Fig.4 and the scaled slopes using the 1/10 scaling rule.

While the 1/10 scaling rule provides improvement in the scaled slopes for the charge weights shown in Fig.4, it nevertheless was obtained from an analysis of the response data as contrasted to the physical approach used to develop the 1/8 scaling rule. Further examination of the data in a more narrow charge weight range, as shown in Table 2 where the reference charge weight equals 1,740-lb, showed that the 1/8 scaling rule provided excellent results for charge weights ranging from 600-1b to 7,250-1b of TNT when compared with the 1/10 scaling rule. While the ratio of the mean scaled slope to the standard slope for each rule shown in Table 2 was very close to each other, there was considerable improvement in the standard deviation for the 1/8th scaling of the data in the case of model B, while there is little change in the standard deviation for model F. Consequently, while the 1/10th scaling rule yields improved results over a wide range of charge weights, the following discussion on equipment weight and frequency scaling will employ the narrower range of charge weights shown in Table 2, and eq.(3) will be used for charge weight scaling. B. Equipment Weight Scaling

A rule for scaling the equipment weight was developed by observing that ordinarily two cules of different weight scale by a factor of 1/3. Since we are plotting response data as a function of the shock factor which is a function of the square root of the charge

weight as shown in eq.(1), the 1/3 scaling of the equipment weight was modified to 1/6. Consequently, given a reference slope s_a for equipment weight W_a , the scaled slope s_b for equipment weight W_b is given by

$$s_b = s_a (W_b / W_a)^{1/6}$$
 (4)

The application of the scaling rule is shown from the data in Table 3 for model B and in Table 4 for model F. The 20-kip equipment weight was used to provide the reference slope s_a . The slopes were scaled for the range of charge weights between 600-lb to 7,250-lb TNT, while the equipment frequency was 20 Hz in one case and 30 Hz in the other. The ratio of these scaled slopes to the reference slopes at 20 Hz show excellent agreement. For example, the ratios range from 0.9786 to 1.0131 for model B, 20 Hz equipment, and from 0.9838 to 1.0047 for the 30 Hz equipment as seen in Table 3. Similarly, Table 4 shows the ratios for model F, 20 Hz equipment ranging from 0.9875 to 1.0034, and 0.9899 to 1.0386 for the 30 Hz equipment.

C. Equipment Frequency Scaling

A scaling rule for the equipment frequency was developed from the data since no physical law could be found. This rule begins in the form

$$s_b = s_a (f_b/f_a)^n$$
(5)

where

- s_a = reference slope for a given charge weight, equipment
 weight, and equipment frequency f_a
- sb = slope for the same charge weight, equipment weight, but
 the equipment frequency is now fb

The first set of data analysis is shown in Tables 5 and 6 for models B and F, respectively. Here the the charge weights range from 600-1b to 7,250-1b of TNT, the equipment weights are 15, 20, and 25 kips, respectively, and the frequency is either 20 Hz or 30 Hz. The average value of n equals 1.6029 for model B, and 1.6369 for model F.

The second set of data analysis is shown in Table 7 for model B and in Table 8 for model F, each carrying a 20-kip equipment subject to charge weights equal to 1,160-lb TNT and 1,740-lb TNT. The analysis sought the value of n in eq.(5) that fit the actual slopes over the frequency range from 15 Hz to 40 Hz in 5-Hz increments. All combinations of frequency ratios were examined. The average value of n and the standard deviation are shown for each case in Tables 7 and 8. Table 9 shows the results when both runs are averaged for models B and F, respectively. The overall results for both models are also shown in Table 9, where the average value for n equals 1.5598.

Figure 10 shows the data from Table 10 plotted as a scaled pseudo-velocity as a function of the frequency scaled to 40 Hz. The data points at a given frequency ratio tend to be grouped close to each other and the scaled pseudo-velocity coordinates increase with increasing values of frequency as one would expect.

The above analysis of the data suggests that a round-off value n = 1.6 seems reasonable for both models. Thus, eq.(5) reduces to

$$s_b = s_a (f_b/f_a)^{1.6}$$
 (6)

The results of the frequency rule were applied to both models B and F over a frequency range from 15 Hz to 40 Hz in increments of 5 Hz. The results are shown in Table 10. Charge weights of 1160-lb and 1740-lb were used for both models. The ratio of the scaled slopes using the

frequency scaling rule to the actual scaled slopes show a maximum error of 5.36% for the ratio 0.9464 in the case of model B, and a maximum error of 4.44% for the ratio equal to 0.9556 Note that these maximum errors occur at the highest frequency, i.e., 40 Hz. This suggests that larger errors might occur at frequencies beyond 40 Hz for the two modelled vehicles studied herein.

D. Examples of Linear Scaling

The scaling rules expressed by eqs.(3), (4), and (5) are combined to form the general scaling rule:

$$s_b = s_a (Q_a/Q_b)^{1/8} (W_b/W_a)^{1/6} (f_b/f_a)^{1.6}$$
(7)

This scaling rule was applied to the examples shown in Table 11. There are four examples, respectively, for models B and F. The percent differences between the slope found using eq.(7) and the actual slope are all under 5 % for these examples.

PARABOLIC SCALING

A. The Intercept Rule

Before analyzing the response data using a parabolic least squares fit, consider a typical plot of both a linear least square fit and a parabolic least square fit through the same data (x_i, y_i) as shown in Fig.11. Let the straight line be

$$y = Cx$$

where

$$C = \Sigma x_i y_i / \Sigma x_i^2$$
 (8)

by least squares. Let the parabola be expressed as

$$y = Ax + Bx^2$$

where
$$A = \{ (\Sigma x_{i} y_{i}) (\Sigma x_{i}^{4}) - (\Sigma x_{i}^{3}) (\Sigma x_{i}^{2} y_{i}) \} / D$$
 (9)

$$B = \{ (\Sigma x_i^2) (\Sigma x_i^2 y_i) - (\Sigma x_i^3) (\Sigma x_i y_i) \} / D$$
 (10)

 $D = (\Sigma x_{1}^{2}) (\Sigma x_{1}^{4}) - (\Sigma x_{1}^{3})^{2}$

The point of intersection x_C of the two curves is

$$\mathbf{x}_{\mathbf{C}} = (\mathbf{C} - \mathbf{A}) / \mathbf{B} \tag{11}$$

Substituting eqs.(8), (9), and (10) into eq.(11) yields,

$$x_c = \Sigma x_i^3 / \Sigma x_i^2$$

Thus, x_c has the same value for each set of data provided the x_i values are identical. For most of the runs made in this study, the shock factors range from 0 to 0.75 in increments of 0.15. Consequently, $x_c = 0.61634$ for these cases. It is interesting to observe that x_c is independent of the y_i -values.

B. Generating a Parabolic Curve from Two Reference Data Points

A parabolic least squares fit is a better fit to the data. Suppose there exists a parabolic least squares fit through a given set of data as shown in Fig.12. First consider any two points on the curve: (x_1, y_1) and (x_2, y_2) . The equation for the parabola that passes through these two points is

$$y = Ex + Fx^2$$

where

$$E = [y_1 x_2^2 - y_2 x_1^2] / [x_1 x_2 (x_2 - x_1)]$$
(12)

$$F = [x_1y_2 - x_2y_1] / [x_1x_2(x_2 - x_1)]$$
(13)

In the case of the response data, the x-coordinates are the shock factors. Choose 0.3 and 0.6 for the shock factors, i.e., $x_1 = 0.3$ and $x_2 = 0.6$. Equations (12) and (13) reduce to

$$E = [4y_1 - y_2]/0.6$$
(14)

$$F = [y_2 - 2y_1]/0.18$$
(15)

where the y-coordinates represent the equipment acceleration.

Equations (14) and (15) and the scaling rules can be used to generated a parabola through two new values Y_1 and Y_2 , where Y_1 and Y_2 are coordinates obtained by applying eq.(7). For example, suppose we have the least squares parabola through the data for a system composed of charge weight Q_a , equipment weight W_a and frequency f_a . Think of this curve as the parabola shown in Fig.12. Now consider a new system composed of charge weight Q_b , equipment weight W_b , and frequency f_b . Equation (7) predicts the slope for system b. Multiplying both sides of eq.(7) by x yields the following relationship between the ordinate values:

$$Y = Y(Q_a/Q_b)^{1/8} (W_b/W_a)^{1/6} (f_b/f_a)^{1.6} = \alpha y$$
(16)

Y is the scaled ordinate through which a new parabola will be passed and y is the corresponding point on the reference parabola. Selecting the two coordinate values y_1 and y_2 from the reference parabola, we obtain the new ordinate values as

$$Y_1 = \alpha y_1$$
$$Y_2 = \alpha y_2$$

 Y_1 and Y_2 are substituted into eqs.(14) and (15) to find the equation of the new parabola.

C. Examples of Parabolic Scaling

By way of illustration, consider the example of model B, 15 kip, 20 Hz equipment, 1,160-lb charge as providing the reference data. We wish to generate a parabola for model B, 25 kip, 30 Hz equipment, 3,625-lb charge. For this case eq.(16) reduces to

Y = 1.52375 y

(17)

The parabola through the reference data is

 $y = 40.7703x + 21.6262x^2$

Choosing $x_1 = 0.3$ and $x_2 = 0.6$, we obtain $y_1 = 14.1774$ and $y_2 = 32.2476$. Substituting these values into eq.(17) yields $Y_1 = 21.6029$ and $Y_2 = 49.1374$. These Y-coordinates are substituted into eqs.(14) and (15) to yield the scaled parabola

$$Y = 62.1239x + 32.9530x^2$$

which compares with the actual parabola

$$Y = 65.0874x + 28.9880x^2$$

Figure 13 shows the plot of each of these curves. There is a close fit between the scaled parabola (Y_{est}) and the parabola generated through the data (Y_{data}) .

The second example examines the case of model B, 25 kip, 30 Hz equipment, 1,740-lb charge used as the reference data, to project a parabola for model B, 20 kip, 20 Hz equipment, 900-lb charge. The projected parabola is

 $Y = 47.8682x + 4.8035x^2$

while the actual parabola is

 $Y = 43.0994x + 15.2513x^2$

Figure 14 shows these two parabolas that yield reasonably close curves.

D. Extrapolation to Shock Factor of 1.0

Consider the straight line fit and the parabolic fit through the data for model B, 20 kip, 20 Hz equipment subject to a charge weight of 3625-lb of TNT as shown in Fig.15. Note that the shock factor extends to unity in this case. It is apparent that if one were to use the straight line for design purposes, the prescribed accelerations for lower shock factors would be conservative relative to the parabolic curve, while the opposite holds at the high end of the shock factors.

Consider the case where there is a limited amount of data collected at low shock factors and we wish to extrapolate to higher shock factors. For example, suppose the data points exist at shock factors of 0.15, 0.30, and 0.45, and we use least squares to generate the linear fit and the parabolic fit through the data as shown in Fig.16(a). The figure also contains the actual linear and parabolic curves through the data taken out to a shock factor of one. Clearly there is a noticible difference between the extrapolated curves and the actual curves. This difference decreases as one would expect as more data points are included in the generation of the extracted curves as shown in Figs.16(b) and (c). Similar results are shown in Fig.17 for the same equipment in model F subject to a 1,160-1b charge weight.

SUMMARY AND CONCLUSIONS

The results of this study have demonstrated that useful information may be obtained by using a computer as an initial surrogate for shock testing purposes. These results show the relative changes in shock design values for different boats and attack geometries. It is emphasized that the test sections were small in size and devoid of typical equipment present in a real compartment. Consequently, the results provide only trends in shock design values rather than absolute design numbers.

Large amounts of computer generated data were collected for two submarine models each of which contained a single-degree of freedom frame-mounted equipment. One of the interesting observations made from the many plots of the least squares linear and parabolic curves is that the intersection of each pair of curves is independent of the ordinate values that were used to generate the curves, if the data were obtained at the same abscissa values.

The study attempted to develope some scaling rules for handeling field data that may exist for a given class of boat. The intent of these scaling rules is to allow greater useage of these data for different equipment subject to a variety of charge weights. Hence, a general scaling rule was developed that includes the charge weight, the equipment weight, and the equipment frequency. The general scaling rule was applied in two different ways. The first approach used eq.(7) assuming linear scaling only. The examples presented herein showed rather good results in projecting the slopes for a new model using the data from an existing model. The second approach to scaling used eq.(7) for generating a parabolic curve for a new system from the parabolic curve of an exiting system. These projected curves showed excellent corrolation with the existing parabolic curves.

A few words of caution are included with regard to using a linear curve to project shock design values for large shock factors. It is seen from the graphs that such a practice could lead to underdesigning a new equipment. Likewise, it is shown that care must be exercised when one attempts to use a limited set of response data at low shock factors to generate straight lines or parabolas to the region of high shock factors.

Further efforts are needed to develope a rational scaling law for changes in the equipment frequency. While the data generated in this study suggests the 1.6 factor over a limited range in frequency, physical understanding would be useful for a larger frequency range and for other boat designs.

ACKNOWLEDGEMENTS

This study is part of a project supported by the Office of Naval Research. The content of this report does not necessarily reflect the position or policy of the government.

Robert Wagner and Robert Pohland, mechanical engineering students, are recognized for their assistance with this project.

REFERENCES

1. O'Hara, G.J., and Cunniff, P.F., "Feasibility Study on Predicting the Response of Equipment Subjected to Various Installations and Underwater Explosions," Technical Report No. 90-5, Department of Mechanical Engineering, University of Maryland, Nov. 1990.

2. Cunniff, P.F., and O'Hara, G.J., "Hull Code Description," Technical Report No. 88-1, Department of Mechanical Engineering, University of Maryland, April, 1988.

3. Cole, R.H., UNDERWATER EXPLOSIONS, Princeton University Press, 1948, pg.424.

APPENDIX

Summary of Data

Ŵ

MODEL B Raw Data

Table 1: 15 kip, 20 Hz

SF600#900#1160#1450#1740#3625#7250#0.156.39566.56866.50736.20416.02195.48306.01000.3015.571514.519913.988013.584713.267012.649311.13950.4524.819123.827523.032522.390822.226818.959718.23070.6035.644233.386332.166831.049030.314327.315723.96310.7542.700542.656042.717941.426739.470936.071430.8541

Table 2: 20 kip, 20 Hz

SF600#900#1160#1450#1740#3625#7250#0.156.39716.28606.22505.94365.78795.33645.89680.3015.142914.098613.685713.291412.977012.085610.82180.4523.615922.744022.033121.852621.342918.525517.77070.6033.958531.786830.627429.658029.381326.193523.18150.7540.740040.583640.830139.471737.588234.360829.8390

Table 3: 25 kip, 20 Hz

 SF
 600#
 900#
 1160#
 1450#
 1740#
 3625#
 7250#

 0.15
 6.2523
 6.088888
 6.0044
 5.814763
 5.6625
 5.3142
 5.7087

 0.30
 14.7866
 14.07268
 13.3875
 13.00313
 12.6960
 11.5630
 10.7310

 0.45
 22.4986
 22.21325
 21.9438
 21.34868
 20.8516
 18.1265
 17.1508

 0.60
 32.3408
 30.30576
 29.1889
 28.28132
 28.5723
 25.5814
 22.6494

 0.75
 38.8583
 38.60455
 38.9767
 37.62002
 35.8472
 33.5140
 29.1705

Table 4: 15 kip, 30 Hz

SF600#900#1160#1450#1740#3625#7250#0.1513.388713.0427212.866612.4593512.132910.845111.18420.3031.705230.1743128.685727.861827.205524.445622.44150.4546.746548.4391846.969545.6712244.592938.864134.14750.6066.441262.7358260.009958.7257261.093854.796648.57300.7579.947179.7578479.741877.1936773.468371.614062.5634

Table 5: 20 kip, 30 Hz

SF600#900#1160#1450#1740#3625#7250#0.1512.769512.4077612.236611.8491511.538510.713310.83900.3030.730128.7158227.277126.4953725.873223.279321.50120.4544.371646.1499544.753143.5186242.492936.979032.49080.6063.018459.467356.862855.8550158.223852.189946.23180.7575.625375.5675175.554273.1289469.613068.224059.5528

Table 6: 25 kip, 30 Hz

SF600#900#1160#1450#1740#3625#7250#0.1512.172911.8498211.671511.2995811.000310.136810.25170.3029.253427.3139526.033025.2798624.667122.154020.64600.4542.199943.9495642.614441.4494140.474135.202130.97650.6059.740356.4192154.093353.1601855.465049.674443.98110.7571.536571.5543271.646969.3434866.191664.994956.6587

MODEL F Raw Data

Table 1: 15 kip, 20 Hz

SF600#900#1160#1450#1740#3625#7250#0.157.89547.95677.68637.21067.12916.15146.05060.3018.123516.751315.812515.934515.628815.181613.32990.4528.823027.514826.936326.028626.578722.629521.98210.6039.315039.135137.658336.686935.876832.475930.32520.7548.018348.853749.254447.826246.681243.037136.9290

Table 2: 20 kip, 20 Hz

SF600#900#1160#1450#1740#3625#7250#0.157.60067.68377.42266.96906.81576.04745.93620.3017.461216.129915.218315.338715.017114.794112.88140.4527.759626.502125.972325.091925.445421.796621.26680.6037.735337.712736.289435.349734.474431.310329.27370.7546.212946.909847.466546.093344.899041.519035.5876

Table 3: 25 kip, 20 Hz

SF600#900#1160#1450#1740#3625#7250#0.157.32017.41877.16536.83296.65975.94445.72300.3016.823315.635915.473215.046414.719014.306112.45780.4526.730225.560825.033724.183724.530621.107520.57140.6036.243136.335434.958734.055033.282230.175228.25340.7544.467445.031845.728044.415243.272440.040734.2873

Table 4: 15 kip, 30 Hz

SF600#900#1160#1450#1740#3625#7250#0.1515.656015.695515.168714.697914.323812.785911.93430.3036.109033.600233.258532.341831.642329.171126.09840.4553.852351.826452.621751.142752.023645.405241.94570.6077.172673.177170.343168.707467.383963.990657.31100.7593.383395.001792.584689.696187.083683.961373.1756

Table 5: 20 kip, 30 Hz

SF600#900#1160#1450#1740#3625#7250#0.1515.027615.096014.027514.137113.775711.830510.97550.3034.724832.289230.709831.085430.416626.912325.12950.4551.772349.801548.684549.183950.084741.978140.17060.6073.915269.723764.116065.165663.165559.250755.14990.7590.312691.016184.997185.058481.802377.663170.3959

Table 6: 25 kip, 30 Hz

SF600#900#1160#1450#1740#3625#7250#0.1514.448414.515914.027513.594413.272611.830610.79280.3033.385431.020430.709829.869129.230226.912424.19150.4549.759347.874748.684547.307848.211841.978138.68970.6070.839966.872664.116062.662160.741659.250853.07290.7586.507087.168684.997281.521178.668177.663267.7050

Model B: 20,000 lb Equipment

1160 lb Charge Weight

SF15 Hz20 Hz25 Hz30 Hz35 Hz40 Hz0.153.8199906.2261349.08763712.23880015.47348018.5603400.308.03289313.68159020.25119027.26891034.49562041.3683500.4513.58408022.03634033.15161044.75967056.39082067.5436700.6018.98712030.65174042.47119056.90709071.58304085.5607100.7525.16286040.82001056.67162075.53585094.524930112.600300

Stope 31.806157 51.685496 73.004571 97.740999 122.738665 146.566350

1740 lb Charge Weight

SF	15 Hz	20 Hz	25 Hz	30 Hz	35 Hz	40 Hz
0.15	3.536816	5.785707	8.564591	11.534020	14.572360	17.477400
0.30	7.792947	12.972710	19.204730	25.864690	32.680320	39.197090
0.45	13.059040	21.342920	31.483390	42.492880	53.543880	64.089390
0.60	18.006650	29.613280	43.477870	58.673440	73.949280	88.507390
0.75	23.266290	37.572980	52.038400	69.585250	87.485980	104.474800

Slope 29.897925 48.736716 69.760933 93.740855 118.035353 141.156765

MODEL F: 20,000 lb Equipment

1160 U	o Charge We	ight				
SF	15 Hz	20 Hz.	25 Hz	30 Hz	35 Hz	40 Hz
0.15	4.5009	7.4226	10.7150	14.0275	18.6056	22.6535
0.30	9.2948	15.2183	23.4892	30.7098	40.7557	49.5455
0.45	15.8356	25.9723	37.2288	48.6845	64.4935	77.9303
0.60	22.1323	36.2894	51.0868	64.1160	84.9711	103.2119
0.75	28.9117	47.4665	66.7710	84.9971	112.2898	135.7298
Slope	36.8103	60.3959	85.7675	109.4485	144.8401	175.3978

1740 LI	b Charge We	ight				
SF	15 Hz	20 Hz	25 Hz	30 Hz	35 Hz	40 Hz
0.15	4.1204	6.8157	10.1127	13.7757	17.6195	21.4542
0.30	9.1132	15.0171	22.3452	30.4166	38.7149	47.0765
0.45	15.4792	25.4454	36.7982	50.0847	63.8880	77.3359
0.60	21.1495	34.4744	49.1826	63.1655	81.0514	98.7152
0.75	27.3474	44.8990	63.1937	81.8023	104.1352	126.3284
Slope	35.1660	57.6459	82.1693	107.4590	137.1630	166.5597

	Standoff Distances (ft)										
Charge Weight	Weight Shock Factor										
(lbs TNT)	0.15	0.30	0.45	0.60	0.75	1.00					
145	80.3	40.1	26.8	20.1	16.1	12.0					
364	127.2	63.6	42.4	31.8	25.4	19.1					
600	163.3	81.6	54.4	40.8	32.7	24.5					
900	200.0	100.0	66.7	50.0	40.0	30.0					
1160	227.1	113.5	75.7	56.8	45.4	34.1					
1450	253.9	126.9	84.6	63.5	50.8	38.1					
1740	278.1	139.0	92.7	69.5	55.6	41.7					
3625	401.4	200.7	133.8	100.3	80.3	60.2					
7250	567.6	283.8	189.2	141.9	113.5	85.1					
10875	695.2	347.6	231.7	173.8	139.0	104.3					
14500	802.8	401.4	267.6	200.7	160.6	120.4					

Table 1: Charge Weights and Standoff Distances

Model B: 20 kip, 20 Hz Equipment								
Charge Weight (Ibs TNT)			Scaled Slope 1/10 Rule					
600	54.1896	47.4369	48.7165					
900	52.4582	48.3087	49.1114					
1160	51.6795	49.1255	49.6260					
1450	50.1909	49.0600	49.2841					
* 1740	48.6348	48.6348	48.6348					
3625	43.8378	48.0500	47.1764					
7250	39.1241	46.7647	45.1256					
mea	n	48.1972	48.2393					
standard dev	iation (σ)	0.8623	1.5803					
mean/r	m ₁₇₄₀	0.9910	0.9919					
N	Nodel F: 20 kip,	20 Hz Equipment						
Charge Weight (Ibs TNT)	Slope	Scaled Slope 1/8 Rule	Scaled Slope 1/10 Rule					
600	61.5524	53.8822	55.3357					
900	61.1939	56.3533	57.2898					
1160	60.3959	57.4111	57.9960					
1450	58.7621	57.4381	57.7005					
* 1740	57.6459	57.6459	57.6459					
3625	52.5893	57.6424	56.5944					
7250	47.3372	56.5818	54.5986					
mea	n	56.7078	56.7373					
standard dev	riation (σ)	1.2483	1.2072					
mean/m	1 ₁₇₄₀	0.9837	0.9842					

Table 2: Analysis of Charge Weight Scaling

* Reference Charge Weight

	Scaled Slopes for Equipment Frequency = 20 Hz								
Equipment		Charge Weight (lbs TNT)							
Weight (kips)	600	900	1160	1450	1740	3625	7250		
15	54.0802	52.4443	51.5109	49.8978	48.2771	43.5900	38.4860		
* 20	54.1896	52.4582	51.6795	50.1909	48.6348	43.8378	39.1241		
25	53.7547	52.2242	50.5736	49.9562	48.7033	44.3734	39.6378		
			Ratio of Slo	pes					
15	0.9980	0.9997	0.9967	0.9942	0.9926	0.9943	0.9837		
20	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
25	0.9920	0.9955	0.9786	0.9953	1.0014	1.0122	1.0131		
	Scaled Slopes for Equipment Frequency = 30 Hz								
Equipment			Charge V	Veight (lbs	TNT)				
Weight (kips)	600	900	1160	1450	1740	3625	7250		
15	101.9659	100.3369	98.1942	95.4414	93.8120	87.0673	76.9037		
* 20	101.5200	99.8783	97.7300	95.0861	93.5423	87.0410	76.8491		
25	99.8795	98.3512	96.3903	93.7959	92.4132	86.0157	75.9473		
			Ratio of Slo	pes					
15	1.0044	1.0046	1.0047	1.0037	1.0029	1.0003	1.0007		
20	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
25	0.9838	0.9847	0.9863	0.9864	0.9878	0.9882	0.9883		

Table 3: Verification of Equipment Weight Scaling for Model B

* Reference slope

Scaled Slopes for Equipment Frequency = 20 Hz								
Equipment		Charge Weight (Ibs TNT)						
Weight (kips)	600	900	1160	1450	1740	3625	7250	
15	61.0000	60.6360	59.7358	58.1200	57.1953	51.9332	46.7648	
* 20	61.5520	61.1940	60.3959	58.7620	57.6459	52.5893	47.3372	
25	61.4510	61.1260	60.5987	58.8480	57.7671	52.6850	47.4037	
	Ratio of Slopes							
15	0.9910	0.9909	0.9891	0.9891	0.9922	0.9875	0.9875	
20	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
25	0.9984	0.9989	1.0034	1.0015	1.0021	1.0018	1.0014	
	Scaled	d Slopes fo	or Equipm	ent Freque	ency = 30	Hz		
Equipment			Charge	Weight (lbs	TNT)			
Weight (kips)	600	900	1160	1450	1740	3625	7250	
15	118.4300	116.2420	113.6711	110.4670	108.4473	102.0326	90.6504	
* 20	119.6390	116.7340	109.4485	110.2810	107.4590	99.0191	91.4334	
25	119.0610	116.1830	113.5957	109.8920	107.2708	102.7712	91.3422	
			Ratio of S	lopes				
15	0.9899	0.9958	1.0386	1.0017	1.0092	1.0304	0.9914	
20	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
25	0.9952	0.9953	1.0379	0.9965	0.9982	1.0379	0.9990	

Table 4: Verification of Equipment Weight Scaling for Model F

* Reference slope

Table 5: Analysis of Equipment Frequency Scaling Rule on Model B Scaled Slopes

$$S_b = S_a \left[\frac{f_b}{f_a} \right]^n$$

Equipment Weight = 15 kips									
Equipment		Charge Weight (Ibs TNT)							
Frequency (Hz)	600	900	1160	1450	1740	3625	7250		
20	56.7364	55.0201	54.0409	52.3485	50.6482	45.7309	40.3762		
30	106.9740	105.2650	103.0170	100.1290	98.4290	91.3436	80.6810		
n	1.5641	1.6001	1.5911	1.5995	1.6387	1.7063	1.7073		
	Equipment Weight = 20 kips								
Equipment	1	8 8 - 144 - 14 - 14 - 14 - 14 - 15 - 15 - 1	Char	ge Weight (lbs TNT)				
Frequency (Hz)	600	900	1160	1450	1740	3625	7250		
20	54.1896	52.4582	51.6795	50.1905	48.6348	43.8378	39.1241		
30	101.5200	99.8783	97.7300	95.0861	93.5423	87.0410	76.8491		
n	1.5483	1.5881	1.5714	1.5759	1.6131	1.6916	1.6650		
		Equip	ment We	ight = 25	kips				
Equipment			Char	ge Weight (lbs TNT)				
Frequency (Hz)	600	900	1160	1450	1740	3625	7250		
20	51.7547	50.3176	49.7273	48.1324	46.9253	42.7534	38.1907		
30	96.2331	94.7606	92.8713	90.3716	89.0394	82.8755	73.1747		
n	1.5297	1.5612	1.5406	1.5537	1.5797	1.6324	1.6037		

Table 6: Analysis of Equipment Frequency Scaling Rule on Model F Scaled Slopes

$$S_b = S_a \left[\frac{f_b}{f_a} \right]^n$$

Equipment Weight = 15 kips									
Equipment			Charg	e Weight (It	os TNT)				
Frequency (Hz)	600	900	1160	1450	1740	3625	7250		
20	63.9960	63.6140	62.6697	60.9750	60.0044	54.4839	49.0427		
30	124.2470	121.9510	119.2541	115.8930	113.7737	107.0439	95.1027		
n	1.6363	1.6050	1.5868	1.5839	1.5562	1.6656	1.6333		
	Equipment Weight = 20 kips								
Equipment			Charg	e Weight (It	os TNT)				
Frequency (Hz)	600	900	1160	1450	1740	3625	7250		
20	61.5520	61.1540	60 3959	58.7620	57.6459	52.5893	47.3372		
30	119.6390	116.7340	109.4485	110.2810	107.4590	99.0191	91.4334		
n	1.6391	1.5929	1.4663	1.5526	1.5360	1.5607	1.6236		
	•	Equip	ment Weig	ght = 25 k	ips				
Equipment			Charg	e Weight (It	os TNT)				
Frequency (Hz)	600	900	1160	1450	1740	3625	7250		
20	59.2080	58.8940	58.3864	56.7000	55.6582	50.7616	45.6731		
30	114.7140	111.9410	109.4486	105.8800	103.3546	99.0193	88.0075		
n	1.6312	1.5839	1.5498	1.5403	1.5265	1.6479	1.6177		

Model B: 20 kip Equipment							
	n - Values	for Scaling					
Frequency Ratio	Charge Wei	ght (lbs TNT)					
	1160	1740					
40/15	1.5576	1.5824					
35/15	1.5938	1.6207					
30/15	1.6197	1.6486					
40/20	1.5036	1.5342					
35/20	1.5455	1.5806					
25/15	1.6265	1.6587					
40/25	1.4827	1.4996					
30/20	1.5714	1.6132					
35/25	1.5441	1.5630					
40/30	1.4081	1.4229					
20/15	1.6877	1.6986					
25/20	1.5476	1.6072					
30/25	1.6005	1.6205					
35/30	1.4774	1.4950					
40/35	1.3282	1.3397					
average n	1.5396	1.5621					
standard deviation (σ)	0.0904	0.0905					

Table 7: Analysis of Equipment Frequency Rule

Model F: 20 kip Equipment							
	n - Values	for Scaling					
Frequency Ratio	Charge Wei	ght (lbs TNT)					
	1160	1740					
40/15	1.5918	1.5857					
35/15	1.6167	1.6064					
30/15	1.5721	1.6115					
40/20	1.5381	1.5307					
35/20	1.5631	1.5490					
25/15	1.6559	1.6614					
40/25	1.5222	1.5033					
30/20	1.4663	1.5360					
35/25	1.5573	1.5228					
40/30	1.6393	1.5324					
20/15	1.7211	1.7180					
25/20	1.5717	1.5885					
30/25	1.3373	1.4717					
35/30	1.8175	1.5833					
40/35	1.4336	1.4542					
average n	1.5736	1.5631					
standard deviation (σ)	0.1152	0.0699					

Table 8: Analysis of Equipment Frequency Rule

)

)

)

	Model B	Model F	Models B & F
Average n	1.5526	1.5683	1.5596
Standard Deviation (o)	0.0919	0.0938	0.0921

Table 9: Combined Data Anlysis of Equipment Frequency Rule

Table 10: Analysis of Equipment Frequency Rule

$$S_b = S_a \left[\frac{f_b}{f_a} \right]^{1.6}$$

Model B: Charge Weight = 1160 lbs TNT								
Frequecy (Hz)	Actual Slope	Scaled Slope	Ratio					
15	31.8062	72.0227	0.9866					
20	51.6855	73.8626	1.0118					
* 25	73.0046	73.0046	1.0000					
30	97.7410	73.0107	1.0001					
35	122.7387	71.6435	0.9814					
40	146.5664	69.0943	0.9464					
Model F: Charge Weight = 1740 lbs TNT								
Frequency (Hz)	Actual Slope	Scaled Slope	Ratio					
15	35.1660	79.6308	0.9691					
20	57.6459	82.3805	1.0026					
* 25	82.1693	82.1693	1.0000					
30	107.4590	80.2699	0.9769					
35	137.1630	80.0630	0.9744					
40	166.5597	78.5196	0.9556					

* Reference slope

Model B									
Sa	Q _a (Ib-TNT)	W _a (kips)	f _a (Hz)	Q _ь (Ib-TNT)	W _b (kips)	f _b (Hz)	S _b	S _{actual}	% diff
97.7300	1160	20	30	1740	15	20	50.9441	50.6482	0.58
42.7534	3625	25	20	1160	20	35	125.2678	122.7387	2.06
42.7534	3625	25	20	1740	20	15	30.6948	29.8979	2.70
100.1290	1450	15	30	3625	25	20	42.8644	42.7534	0.25
Model F									
Sa	Q _a (Ib-TNT)	W _a (kips)	f _a (Hz)	Q _ь (Ib-TNT)	W _b (kips)	f _b (Hz)	S _b	S _{actual}	% diff
109.4485	1160	20	30	1740	15	20	57.0526	60.0040	4.92
50.7620	3625	25	20	1160	20	35	148.7327	144.8401	2.70
50.7620	3625	25	20	1740	20	15	36.4496	35.1660	3.60
115.8930	1450	15	30	3625	25	20	49.6128	50.7620	2.26

Table 11: Examples Using Equation (7)

Model B with internal SDOF equipmment

Section

1

ł

1

Figure 1A

Section

Standard Deviation vs. n

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

......

