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SOME THOUGHTS ON PERCEIVED DDAM PROBLEMS

P. F. Cunniff and G.J. O'Hara
Department of Mechanical Engineering

University of Maryland, College Park, MD 20742

Abstract

Commonly perceived problems associated with the Dynamic Design Analysis Method

include the following: a transient dynamic analysis is both a unique and better solution; if

a structure has repeated fixed base frequencies DDAM fails to account for them; if a

structure has two fixed base modal frequencies very close to each other, the beating

response is so long in time that the combinatorial rules for response are not realistic; and

a very small appendage attached to a larger component can cause erroneous values in shock

inputs. Basic concepts and terminology associated with normal mode analysis are presented

to demonstrate their role in DDAM, along with a procedure for developing transient

equipment-vehicle models for some simple systems that produce time history responses that

are different, and yet, equivalent to the damaging potential of a DDAM input. Having

developed this background, the perceived problems with DDAM are examined by means

of examples which should help to clarify these notions.

Introduction

The Dynamic Design Analysis method (DDAM) which was developed at the Naval

Research Laboratory [1] has been used for the past 30 years as part of the Navy's efforts to
L]

shock-harden heavy shipboard equipment. During this interval the authors have been

approached and queried by many members of the shock design community (by telephone,
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letters, and at technical meetings) concerning several perceived problems related to DDAM

which seem to give rise to possible flaws in the method. Since this situation has existed for

some time now, and since individual responses to individual enquiries does not seem to be

effective, four of the most common perceived problems are addressed in this paper. They

are:

* a transient dynamic analysis is unique and provides a better solution than DDAM for

attacks at the same shock design intensity;

* the method fails to account for fixed base normal modes with repeated frequencies;

* if a structure has two fixed base frequencies very close to each other the resulting

beating response is so long in time to the peak response that the combinatorial rules are not

realistic;

a a very small appendage attached to a large part can cause overly severe, erroneous

values in shock input.

The following outlines the approach taken to reply to each of these perceived

problems:

• a short review of the highlights of DDAM is included with particular emphasis on

those portions germane to normal mode analysis;

• a simple three-degree-of-freedom model subject to an impulse is used to examine the

transient analysis question, where the mathematical development for this model is given in

Appendix 1;

• a four-mass equipment model with repeated roots is used to examine the second

perceived problem;



* a model with closely spaced frequencies is used for the beating problem;

* the tuning of an appendage for worst case response, with the consequent effect on

DDAM shock inputs, is illustrated by a simple model, where the details of the analysis are

given in Appendix 2.

The mathematics used herein have been kept to the simplest level required so as not

to cloud the issues being addressed.

Highlights of DDAM

The Dynamic Design Analysis Method, which has been validated several times [2],

was among the first methods to employ normal mode theory [3,4] and the concept of modal

effective mass. This latter concept accounts for the structural interaction effects between

a vehicle and its equipment in accordance with carefully selected measured and analyzed

field test data along with theoretical considerations. In general, it assumes and prescribes

modal effective mass-dependent shock design values (and not time histories), in three

orthogonal directions, and accounts for type of vehicle, equipment location, i.e., hull

mounted, deck mounted, and shell plate mounted.

NRL Sum

The NRL Sum [3] combines the final modal results with the concept that the largest

modal response of a particular quantity (stress, deflection, etc.) will occur, and at that

occurance the statistical expected value of the remaining modes adds to it. For example,

the formula for stress at some point c in the structure is expressed as:
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= + [ I "(,)O I (G) ]112 (1)

where I ccb I is the largest absolute value of stress at point c caused by any mode which

is represented here by mode b. Note, however, that the NRL Sum should never be used

for an intermediate step, but only for a final result.

Modal Effective Mass

Consider an equipment attached to a vehicle at one base point as shown in Fig. 1(a).

For simplicity assume that both undamped structures have only unidirectional motion. We

now ask and answer the question: "Can the equipment be replaced by a set of independent

oscillators, as shown in Fig. 1(b), such that by observations at the base point, and/or any

point on the vehicle, we cannot tell whether the equipment or the oscillators are present?"

The answer is "Yes."

Normal mode theory [3] shows that each -uch oscillator must have a frequency that

corresponds to a fLxed base natural frequency of the equipment In addition, each oscillator

mass must have a value of

M= [ mXj 2/Z inAX2 (2)

where M, is the modal effective mass in the ath mode of the equipment. The m,'s are the

lumped parameter component masses of the equipment, and v., is the corcsponding ath

mode shape value.
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The net result of this is that the forces transmitted through the base and the motion

of the base are identical in both cases, if the set of oscillators includes all of the modes. It

is interesting to note that the sum of the modal effective masses of the equipment equals

the mass of the equipment. This property is useful when deciding on the number of modes

to include in an analysis.

Participation Factor i

The participation factor, if it exists, can have any desired number by the scaling of

the mode shape. We define it as:

p0 = 2 f, I ! miX o (3)

When P. is multiplied by Fmj Xj in each mode a, the modal effective mass results, and if

multiplied by Xqa and summed on a, then

ZXqaP = 1 (4)

When P. is zero, the mode is not excited by the base motion, has zero modal effective mass,

and does not appear in the analysis.

Characteristic Load

In general, a mode is analyzed by establishing the characteristic loads which include

the modal shock values as prescribed by empirical relationships found in ref. [5]. These

shock inputs which are used in this paper correspond to the 1963 Interim Design Values.



For a lumped parameter system each mode is loaded by the characteristic loads

defined as:

Q. = mX PNa  (5)

where the shock design value Na has units of acceleration. A static analysis is performed

for the required quantities, the NRL sum is applied, and the results compared with the

failure criteria.

Shock Input Values

A recent paper [6] illustrated a general procedure for generating shock design values

for a class of elastic structures subject to transient motion excitation. Suppose Fig. 2(a)

represents shock spectra at the fixed base frequencies for the class of hypothetical structures

that have been field tested. The pseudo-velocity values (oX, which in reality are scaled

maximum displacements, are plotted as a function of the modal effective masses, where each

value corresponds only to an equipment fixed base natural frequency. Figure 2(b) is a plot

of the same data scaled by w/g so that the absolute acceleration in g's is plotted as a

function of the modal effective niass. An upper bound curve is sketched on each of these

two figures to set the final design values for the class of structures from which the data were

derived. These two upper bound design curves are combined to form a family of design

curves as shown in Fig. 2(c), where each design curve corresponds to a modal effective mass

Ma. Each of these design curves is generated recognizing the spectral relationship between

the magnitude of the absolute acceleration N and the pseudovelocity Vmax for an undamped

modal oscillator:
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N = w2Xlg = (2rlV,.g)f (6)

where f is the fixed base frequency of the equipment in Hz, and Vm.,x is found from the

design curve in Fig. 2(a). Equation (6) provides a straight-line relationship between the

acceleration design value and the frequency, the slope being determined by the magnitude

of the pseudo-velocity. The maximum value of the acceleration Nmax is fixed by the design

curve in Fig. 2(b) so that eq. (6) is applicable up to the corner frequency f, where

f, = Ngl2-v (7)

If the fixed base frequency of the equipment is less than the corner frequency f, the

pseudo-velocity shock design value is V,, and the corresponding modal acceleration value

N is used. If the fixed base frequency is greater than fc, Vmla is reduced to V as shown in

Fig. 3 and the modal acceleration cquals Nl,,.

The following are a set of typical equations [5] used for calculating the shock design

values as a function of the modal effective weight W in kips:

(480 + Wa)
V0 = 20 (100 + W (in/s) (8a)
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(480 + W,)Aa = 10.4 4(ins) (8b)

(20 + Wa)

This set of equations is used in the examples presented herein.

Normal Mode Analysis

Consider an equipment represented in the form of a two-degree of freedom

dynamical chain as shown in Fig. 4(a). The two natural frequencies of this structure

represent the equipment's fixed base natural frequencies. Suppose this equipment is

attached to a vehicle as shown in Fig. 4(b). The equipment-vehicle combination has three

natural frequencies which are different from the equipment's fixed base natural frequencies.

We call these three frequencies the system natural frequencies. Thus, if the vehicle mass

MO is excited by an impulse, the frequency content of the ensuing motion of each mass in

Fig. 4(b) will contain the system natural frequencies and not the equipment fixed base

frequencies.

The modal model in Fig. 4(c) is dynamically equivalent to the model in Fig. 4(b) for

the time history motion of the vehicle mass M. Therefore, this motion will be the same for

the systems in Figs. 4(b) and (c). Finally, we can return to the original equipment shown

in Fig. 4(d) which is now driven by the base motion of Mo obtained from the system

equipment-vehicle system response in Fig. 4(b). The motion of each mass in Fig. 4(d) is

identical to the motion experienced by the corresponding masses in Fig. 4(b).



Development of a Transient Model

In recent years different transient analysis methods have been proposed as an

alternative to the spectral analysis technique used in DDAM. Some of these methods are

perceived as providing a unique solution, and in most cases, as providing a better solution

than the spectral analysis approach of DDAM. An example of such an approach [7] uses

a simple base mass to represent the vehicle to which the equipment is attached, and an

impulsive force applied to this base mass so as to produce shock excitation whose damaging

potential approximates the DDAM-like inputs. A recent paper [8] examined the degree of

success that could be achieved by this simple equipment-vehicle model in reproducing the

exact equivalent effect of the DDAM interim inputs by means of an impulse response

transient analysis of equipment limited to two-degrees of freedom.

Figure 4(c) shows a model of the vehicle consisting of a mass M, and spring modulus

K. supporting a two-degree of freedom equipment represented by its modal oscillators. M,

and M, are the modal effective masses, K1 and K, the modal spring moduli, and G and y

are the fixed base frequencies of the equipment, where p < y, P2 = K,/M, and Y2

K,/M. The system is excited by an impulse applied to the base mass so that the vehicle

mass experiences an initial velocity \. Note that V,, is not equal to the modal design

values Va obtained from eq. (Sa). The absolute displacement of each modal mass is y1 and

Y2, respectively, and the relative motion of each modal mass is X, = y1 - y0, and X, = Y2 -

y,,. Let the design inputs be in the form of the pseudo-velocities 3X1 for mode 1 and YX,

for mode 2.

We wish to select the base mass M0, the base frequency (P, where 02 = Ko/Mo, and
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the magnitude of the impulse velocity V0 such that the ensuing transient motion of the

modal oscillators each produces an equivalent shock damage that is predicted in a DDAM-

like analysis. A derivation of the equations of motion for the model in Fig. 4(c) is found

in Appendix 1. It is shown that the relationships for the maximum relative displacements

of each modal mass are:

jxj/v 0 I1 = RID (9a)

[X2/1 n= = QID (9b)

where R, Q, and D are expressed in terms of the system frequencies and the equipment

fixed base frequencies. Equations (9) form the ratio of the shock design values

r = PX1/yX, = P3R/yQ (10)

Knowing the shock design inputs GX1 and yX, from eq. (8), and therefore r, the problem

resolves itself to an iterative process whereby we select values of the vehicle weight W. and

the vehicle frequency ¢ (KP /,) 1,2 until the right side of eq. (10) equals the required r.

Having found Wo and 0 in this manner, the value for the impulse velocity V0 is found from

either eq. (11) or (12) (see Appendix 1). The maximum absolute relative displacements for

M and %I,. when scaled bv and y. respectively, should equal the corresponding input

values.

It is interesting( to note that as NV,--> 0, eq. (10) reduces to 6/y, where 6/y is

10



always less than one; and as W. -- > c, o = G provides an upper bound in r, and 0 = y a

lower bound as shown in Fig. 5.

The previously cited study [8] limited the vehicle model to a mass excited by an

impulse, i.e., the spring K0 was not present. This mass model provided unique solutions for

r > 1, but failed to provide solutions for r < 1. This limitation no longer exists for the

mass-spring model shown in Fiv. 4 (c).

Example

Let the modal effective weights for the model in Fig. 4(c) be W1 = 30 kips and W,

= 17 kips, and the equipment fixed base frequencies be 25 Hz and 58 Hz, respectively.

Using eq. (8), the pseudo-velocity inputs are GX1 = 78.4615 in/s and yX 2 = 84.9573 in/s,

so that the ratio r = 0.9235. Figure 6(a) is a plot of r as a function of the vehicle weight

W, for three arbitrarily selected values of (p, i.e.. (P = /3, 0 = )/2, and P = /14. Table 1

lists the values of W o where each p-curve intersects with the desired value of r in Fig. 6(a).

It is interesting to examine Fig. 6(b) where the ratio r is now plotted as a function of P fi.r

the values of W. found in Table 1. We observe that there are still other solutions that we

could choose from. For example, the curve NV, = 88.4 kips shows two points of intersection

with the desired value of r, each of which wkould provide acceptable design values.

Figure 7 is a typical time history motion in the form of yX 2 for Design 1. This

transient motion produced I yX, m = 84.96 in/s, agreeing with the required input. The

base velocities for each of the three possible designs considered in Table I display different

motions as shown in Figs. 8(a), (b), and (c), respectively. The shock response spectra curves

fur each of these motion, are shown in Fig. 1). We observe that each spectrum curve shows
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three peaks that correspond to the system frequencies associated with the respective

combined structure while the spectrum values at the equipment fixed base frequencies are

identical for each spectrum curve. Thus, although each base motion is different and each

provides a different shock response spectra, and different motions of m1 and in,

nevertheless, each spectrum curve yields the same shock design values.

Note that this simple example produced three different motions with the same shock

design values so that the time history motion of the equipment masses is not unique.

Repeated Fixed Base Frequencies

The perceived problem in using DDAM for those cases where repeated fixed base

frequencies exist is examined by way of the four-degree of freedom equipment model shown

in Fig. 10(a). A normal mode analysis reveals two repeated natural frequencies (2 = G-3

(k/m)"/ 2 each of which has a modal effective mass equal to zero. Hence, the modal model

attached to a vehicle consists of the two modal oscillators shown in Fig. 10(b), which

incidentally, is, at MO, dynamically equivalent to the original equipment attached to the same

vehicle shown in Fig. 10(c). By dynamical equivalence we mean that the system frequencies

for each model are the same and the time motion of W, in Fig. 10(b) is identical to the

response of W, in Fig. 10(c). \Ve conclude that for those special cases where repeated

frequencies occur, normal mode analysis produces zero modal effective masses, and

consequently, zero participation factors for those modes. Performing a DDAM analysis or

a transient analysis presents no particular problems for the analyst.
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Closely Spnced Frequencies

We now examine the perceived problem of DDAM for the case where the equipment

produces closely spaced fixed base frequencies. As mentioned earlier, an argument is made

that the combinatorial rule such as the NRL sum is unrealistic for structures with closely

spaced frequencies because of beating in the transient response. Consider the modal model

in Fig. 4(c) once again. Let the equipment's modal effective weights remain at 30 kips and

17 kips, respectively, but change the corresponding fixed base frequencies to 30 Hz and 30.2

Hz, respectively. The inputs remain unchanged, i.e., 6X1 = 78.4615, yX2 = 84.9573, and

r = 0.9235. Figure 11(a) shows the ratio r as a function of the vehicle weight W. for

selected values of the vehicle frequency p. Note the contrast of the shape of these curves

with those in Fig. 6(a). Although the equipment modal weights are the same for the two

examples, it is the frequencies that influence the differences in the r-W o curves. As pointed

out earlier, all of the curves approach G/y as Wo goes to zero. In the previous example 6/y

= 0.431 while in the present example O/y 0.993, so that the shape of the curves are

strongly affected by this property.

The vehicle design was selected for p = 0.25f3, yielding W. = 276.2 kips and V.

67.555 in/s. Figures ll(h) and (c) are the time responses of ,tX 1 and yX 2 . The closely

spaced modal frequencies do not produce any unusual responses in these transient motions

since the modal model responds at the system frequencies and not the modal frequencies.

Lightweight Components Attached to Heavyweight Structures

The last perceived prohlem~i of )D\I considered here is that overly severe and
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erroneous values in the shock inputs result when a small appendage is attached to a large

structure. Consider the two-degree of freedom system in Fig. 12, where a lightweight

component represented by the upper mass m, and spring k, is attached to the main structure

which is considerably heavier. If)3 z (p, a DDAM analysis of the two-degree of freedom

system predicts very large stresses and deflections of the lightweight component and a

somewhat larger motion of the main structure than if each were considered separately. An

argument is sometimes made that this cannot be right, but of course it is right.

An analysis of the system is found in Appendix 2. We begin by examining the

interesting results in Figure 13 which show the fraction of the modal effective mass in each

mode as a function of //p for different values of the mass ratio A = m2/mj. These curves

are derived from eq. (14). We observe in Fig. 13, where g = 0.001, that the modal effective

mass M1 in mode 1 is close to zero for 6/(p < 1, and is close to the total system mass for

,6/(p > 1. Just the reverse is observed for the second modal mass M. The two curves cross-

over at 6/ , 1, where M1 and M, are equal to 0.5M. Consequently, for frequency

coincidence M1 and M, are approximately equal to 0.5M, so that both modes contribute

strongly to the upper mass acceleration. Note that as g increases in value, as shown in Fig.

13, the cross-over point of the two curves moves to the left, and the two curves separate for

I> 1.

This observation is borne out by the results of a DDAM-like analysis developed in

Appendix 2 as summarized by eqs. (15) and (16) which represent the deformations of the

lower and upper springs. Figure 14(a) shows the maximum deformation of the lower spring

as a function of 6/0. We observe that there is a build-up in the spring deformation in the
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vicinity of I/ = 1 for A = 0.001 and g = 0.01. However, the build-up of the upper spring

deformation in the vicinity of frequency coincidence is considerably greater, especially for

= 0.001, as seen in Fig. 14(b). Such a design that enhances the effect of a shock transient

is not a good one. A sensible approach of attaching the upper lightweight component would

be to make a > > ,.

If 6 satisfies eq. (17) in Appendix 2, equal modal effective masses occur and the

lower and upper maximum spring deformations appear as in Fig. 15. The lower spring

deformation shown in Fig. 15(a) does not vary appreciably as the mass ratio changes. Once

again, however, the upper spring deformation is very sensitive as A approaches zero. Note

that a mass ratio u = 1 requires # = 0, so that the end point on Fig. 15(b) is swallowed up

in the limiting process.

Conclusions

The meaning of terms such as the NRL sum, modal effective mass, participation

factor, and characteristic loads were presented in order to show how these modal properties

are incorporated into DDAM. A method was outlined for generating DDAM-like shock

design inputs from shock response spectra using carefully selected transient field data, and

in turn, how these inputs are used in a DDAM analysis. This background formed the basis

for discussing certain perceived problems associated with DDAM.

The transient analysis of a simple equipment-vehicle model was developed which

replicates the damaging potential prescribed by DDAM-like design inputs. The equipment

discussed herein was limited to two-degrees of freedom, unidirectional motion, and the
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vehicle was composed of a lumped mass-spring combination excited by an impulse. The

multitude of solutions provided by the method clearly demonstrated that there is no unique

transient model available. An example showed three distinct vehicles experiencing different

impulses applied to each vehicle mass. The ensuing vehicle motions, each of which was

different, generated different shock response curves. However, the shock response values

at the equipment fixed base frequencies were identical in each case.

An examination of the special case of repeated natural frequencies showed that the

modal effective masses, the participation factors, and the characteristic loads are zero at

these repeated roots. Hence, these modes do not contribute to the deflections and stresses

in a DDAM analvsis. In the case of closely spaced frequencies, the transient model

provided responses that were composed of the system natural frequencies, and therefore did

not pose any special problems, such as a resonance build-up effect even though the

equipment's frequencies were closely spaced.

The case for a light-weight appendage to a rather heavy-weight structure was

examined for the case when the frequency of the appendage was approximately equal to the

structure's frequency. The analysis shows that such a design is a poor one and that a change

in the frequency of the appendage should avoid the large deformations that would otherwise

he predicted by DDAM.
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TABLE 1

Three arbitrarily selected designs for Example 1.

Design , Wo  Vo
(Hz) (kips) (in/s)

1 25 64.72 60.026

12.5 88.40 68.998

3 6.25 150.19 74.301
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Appendix 1

Derivation of the equations for the transient modal model

Figure 14 shows a base model consisting of a mass Mo and spring K. supporting a

two-degree of freedom equipment represented by its modal oscillators, where M1 and M,

are the modal effective masses, K1 and K2 are the modal springs, and G and y are the fixed

base frequencies of the equipment where p < y. The system is excited by an impulse

applied to the base mass. The frequency equation for the three-degree of freedom system

can be arranged as follows:

(4 2 -_ 2) (p[ 2 - 2 ) (Y 2 W) - p2%. 2 (y 2*-*W2) - 'Y2 ) 2(p2-,) 2) =0

where g, = M,/M o, and T = M,/M(,. A general schematic locating the roots co , (A2, and &)3

is shown in Fig. 16. The region for the equipment ffxed base frequency f, where W, < P <

w,, and the frequency y, where w2 < y < W3, are shown along with the base frequency (P.

The response of the equipment modal mass M, relative to the base mass is:

-X21Vo = (A/w,) sin wit + (B/w 2 ) sin wt + (C/w 3 ) sin Wst

where
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= 4- _ p2)/[(0 2 - 2) (W2

B (4- 2)/[(w2 - 2) (W2 _

C = (W 
2 p2)/[( 2 _ 2) 2() _ 2*)

It can be shown that

Y X2 1V Irim = QID

where

2 2 2 22 4 2

3(3[3 (W3co wl I 2
Q=((2t23-) ( g3,"O2(3 ( t 4 2-2 ) ( -D) 3D +

D 2 2 2 2 2 2D (jlW2 03( W2- 1 (( 3-( I (1 3- 2)

Likewise,

X11VO 1, = RID

where

R=(YW;O _W) (W2 W)2"3 + (yW_ (W _ ) 3 W 1 W(y (O - 1l (.3 ,.2 2,)3  , 2 2 3 1 32

(+A2 2 t¥ -2 -o)3o

3 - 3 ¥ ) ( tW 2 - l)w ltt ,

The ratio of the shock design inputs is

r = PX1/yX 2 = PR/yQ

2)



The impulse velocity of the base mass is found by

Vo = (PX1)D/ (PR) (11)

or

V0 = (yX 2)D/ (yQ) (12)
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Appendix 2

Derivation of the equations for lightweight components

attached to heavyweight structures

Modal Effective Masses

Consider the differential equations of motion for the system in Fig. 12.

m1Y1 + k1 Y + k2(Y 1 - Y2) = o

in Y + K ( 2 - Y )= o

The normal mode solution is obtained by letting Y, = Xi sin &t, which leads to

_.3 2 X2 + (,2 + .pp2 _ cW2)X = o

( 2 - 2) - X= o

and the frequency equation

-4 _ 62(p2  + p2 
+ 42) + p24,2  =

Let the expressions for the mode shapes be

I- 2 pXI , = 1 / P2,,

X2" = 1

where a = 1,2. The modal participation factors are



p' = [1 + - (%/3) 2]/[t - (1 - (a/p) 2)2] (13)

The expression for the modal effective masses is:

M,, = m[132(1 + 11) -
2 /[p2 ()2 + .3 41 (14)

where the natural frequencies are

2 _ 2 + p 2 (1+V) + [(( 2 + p 2 (1+V))
2  - 4 2p2]1/2

0a 2

Spring Deformations

It can be shown that a DDAM-like analysis of the system in Fig. 12 yields the

following expressions for the upper and lower spring deformations in inches:

(Y2-Y1) = (,/3) 2 F, I + I ( 2/p)2Fz 1 (15)

(vt -yo) = [1-(°/p)2]F I [1 -(c2/p) 2F2  (16)

where

F,= PIV 1/2Hol

F,= PV 2/2H1-w

The pseudo-velocity shock design values are [51
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V = 20(480 W W) / (100 + W) (11s)

and the modal effective weights are in kips. The corner frequency is

f = 31.954(100 + Wa) / (20 + W)

Equal Modal Masses

Let m, and k, in Fig. 12 be chosen such that equal modal masses result and therefore

the pseudo-velocity shock design values are equal, i.e., V, = V2. This leads to

, =(1 - 0)1 2 / (1 + ) (17)

Note that 610 < 1. The system frequencies are

= - (V)12]112 / (1 + L)1-2

0 2 = ( [1 + (1)'/2
1 '- / (1 + V) 1/2

This solution exists only for ,u < 1.
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Figure Captions

l(a) Equipment E attached to vehicle V at the base

-(b) Modal oscillators of the equipment attached to the vehicle

2(a) - Undamped shock design values in terms of wX versus modal effecive mass

2(b) - Undamped shock design values in terms of Ng = W2X/g versus modal effective
mass

2(c) - Shock design curves as a function of the fixed base frequencies

3 - Shock designing curves for fixed base frequency < corner frequency and for
fixed base frequency > corner frequency

4(a) - Two-degree of freedom equipment attached to a fixed base

4(b) - Two-degree of freedom equipment attached to a vehicle

4(c) - Modal oscillator representation of the equipment attached to a vehicle

4(d) - Two-degree of freedom equipment driven by the base motion y.

- Upper and lower bound curves of the shock , esign ratio r as W. -- > co

6(a) - Shock design ratio r versus vehicle weight Wo for selected values of the
vehicle frequency (p

6(b) - Shock design ratio r versus 0/p for selected values of the vehicle weight W.

7 - Transient response of mode 2 modal oscillator, yX,.

8(a) - Transient motion of the base velocity for design 1.

8(h) - Transient motion of the base velocity for design 2.

8(c) - Transient motion of the base velocity for design 3.

9 - Shock spectrum curves for the base mOtior., of designs 1, 2, and 3

10(a) - Example of a four-degree of freedom equipment with two repeated natural
frequencies



10(b) - Modal oscillators for the equipment with two repeated natural frequencies
attached to a vehicle

10(c) - Four-degree of freedom equipment attached to the vehicle

11(a) - Shock design ratio r versus vehicle weight Wo for selected values of (p.

11(b) - Transient response of mode 1 modal oscillator, pX x.

11 (c) - Transient response of mode 2 modal oscillator, yX 2.

12 - Lightweight component m, attached to a heavy weight structure m1

13(a) - Fraction of the modal effective mass versus 6/,,u =0.001

13(b) - Fraction of the modal effective mass versus 6/c,, g=0.1

13(c) - Fraction of the modal effective mass versus 6/0, g = 1

13(d) - Fraction of the modal effective mass versus B/C, -2

14(a) - Lower spring deformation (y,-yo) versus 6/0 for selected mass ratios

* 14(b) - Upper spring deformation (Y2"YI) versus 6/1 for selected mass ratios

15(a) - Lower spring deformation (yl-yo) versus 6/(p for equal modal effective masses

15(b) - Upper spring deformation (Y2"YI) versus k/¢ for equal modal effective masses

16 - Schenatic showing the location of and y relative the roots ol , w, and Wo3
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