
AD-A250 389

NPS-PH-92-007

NAVAL POSTGRADUATE SCHOOL
Monterey, California

t'MA STA19S DTIC

Amending the w, Velocity Scale for
Surface Layer, Entrainment Zone, and
Baroclinic Shear in Mixed Forced/Free

Turbulent Convection

by

R.F. Kamada

March 1992

Final Report for Period
October 1990 - September 1991

Approved for public release; distribution unlimited

Prepared for: U.S. Air Force, Space Division,

92-13744 Los Angeles AFB, California 
90009

92-13744



NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. W. West H. Shull
Superintendent Provost

The work reported herein was prepared for and funded by U.S. Air

Force Space Systems Division, Los Angeles, CA, 90009.

Reproduction of all or part of this document is authorized.

This report was prepared by

R. F. rAMADA,
Adjunct Research
Professor of Physics

Reviewed by: Released by:

/ /i

K. E. Woehler, Paul J.arto,
Chairman, Dean o Research
Department of Physics



UNCLASSIFIED
SECL.RTV CLASS F CAT,C% O; T" S :AGE

Form Arjoro~ed

REPORT DOCUMENTATION PAGE ,MBo 0704.0188

la REPORT SECAR TY CASSF CA O% 'b RES'-,CT yE V R *.GS

UNCLASSIFIED
2a SECURITY CLASSFtCA O% A_7-OR 

7
, 3 D.,S

T 
- C% ,\ LA B _ T OZ 0 -;_ :;7

approved for public release; distribution
2b DECLASS:FCATO',O ~D~cvGRAD,%G SCthE>,LE unlimited.

4 PERFORM:NG ORGA'. ZA 0% REPORT ,M_ 8EPS) 5 IO',TGR %G O.ZC-A. ZA- - C% P 
' 

"l'-P- %,

NPS-PH-92-007

6a NAME OP PERPORM N, OPGA%' ZAT ON 6n D CE SVBO; 7a 4A,'E OF VOX TOC:%C DPGAX' Z.- C
(f applicable)

I _USAF Space Systems Division
6c ADDRESS City, State, and ZIPCode) 7'. ADDcESSCi ty, State and ZiP Code)

Los Angeles AFB, CA 90009

8a NAME O
r 
PiUNDtG SPOSOP %G Bt OF- CE SC vB: D 9 PROCE;%'EN %SP P_ ET D;T , CA- . ". _ -i

ORGAN!ZA7 ON (If apphcable)

USAF Space Systems Div. USAF/SSD MPIR FY76169100412
8c ADDRESS(Oty State and ZIP Code) '0 S, .CE )P ' . "

EEEMEV %O %0 NO :.CC ESSON NO

Los Angeles AFB, CA 90009
11 TITLE (Include Security Cla fica*

AMENDING THE W* VELOCI'L SCALE FOR SURFACE LAYER, ENTRAINMENT ZONE, AND BAROCLINIC SHEAR
IN MIXED FORCED/FREE TURBULENT CONVECTION.
12 PERSONA, ALjTH R5S)

R. F. Kamada
13a TYPE O PEORT 3o 'Mg CO 'PED " D,!k-TE 0 PPEOR' Year Month Day) "5 PAI- C,.

--technical'O 10/90 -0 9/91 920330 14
16 SPPLEMEN Ay %OTA.G,

17 COS
-t
A CO:XtS 'b S_,E

r
C TivS Cortinue on reverse it necessary and ,detf b) bfock rumber)

P, ,0Dj S6"CPOo Convective Boundary layer, similarity, forced and free
convection scaling, turbulent velocity scale.

'9 ABSTRACU Continue on reverse if necessary and identity by block number)

We amend the free convective mixed layer velocity scale, w* to w* s to include mechanical
turbulence from forced convection. w*, has discrete surface layer, entrainment zone,
and baroclinic components and requires the length scales: z0 , L, 'h, zi , and zb, a
newly defined baroclinic length. To close the system we offer simple models for _h, the
entrainment zone depth. The Ah models show realistic diurnal hysteresis, using a
critical bulk Richardson number which exceeds unity.

20 . A.,A C A2'C 2A RA S, CA',()

%. T (-. ' " E S"'E - D r I; :.. UNCLASSIFIED
a % % t _EC -' - *D .!D-;" 7 : - , (include AeaCoof'I I -

R. F. Kamada (408) 646-2674 PH
DD Form 1473, JUN 86 Pre,os ei1t,ons are obsolete . , - "" . '.'- ". - , - . :

S/N 0102-LF-01-6603 UNCLASSIFIED



INTRODUCTION

Deardorff's (1972) similarity theory for convective boundary
layers (CBL)s suggests that CBL parameters are controlled by
buoyancy, B = g/8, (where g is gravitational acceleration and G
is potential temperature), surface temperature flux, w'e'0 ,
height z above the surface, and zi, the height of the inversion
base which marks the top of the mixing-layer (ML). The velocity,
temperature, and humidity scales: w., u.ML, E, , q ML, formed from
these parameters are used in universal relationships for the
gradients and fluxes of mean and turbulent quantities in the CBL.
The first of these, the convective turbulence scaling velocity

w. (13z w'E' 0)
113  1 (1)

determines much of CBL physics, including diffusion. Along with
w'8'0 , w. forms the basis for the remaining parameters used to
scale the heat, moisture, and momentum, as well as passive scalar
fluxes. However, w. neglects mechanical turbulence due to shear
and is only strictly valid for free convection induced by surface
heating. Yet, w. is used often in mixed forced/free convection
cases for lack of alternatives. Here we seek w.s, an amendment
to w., which includes mechanical turbulence contributions under
mixed forced/free convection conditions. We assume mechanical
generation comes from three sources: the barotropic, horizontally
homogeneous surface layer (SL), barotropic boundary layer
entrainment zone (EZ), and a baroclinity (BC) component. Beyond
the z and z, length scales, we propose that mixed forced/free
convection also depends on the SL roughness length, z0 , SL
Obukhov length, L = -u.3e/(gkw'e' 0) (where u. is friction velocity
and k = 0.4 is the von Karmen constant), EZ thickness, Ah, and
zh, a baroclinic length scale which we define below. We model
these mechanical sources, using relevant ratios of the length
scales, thereby fulfilling similarity requirements.

APPROACH

We outline the basic approach before discussing details. For
non-baroclinic, horizontally homogeneous, steady state cases, the
vertical profiles of the buoyancy and momentum fluxes must be
linear, if the shapes of the vertical profiles of potential
temperature and wind speed are to remain static. That is,

*fw'E' - 3w'E' 0 (1 - (1 + a,)z/zi) , (2a)

w -u'W' 0 (i - (1 + a:)z/z,) , (2b)
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where a, = -w'e',zi/we,0 and a 2 = ui1'w'Zi/ui'w'0 (see fig. ). The
subscripts "zi" and "o" refer to conditions at the inversion base
and surface. -u'w'0 = u. 2 , w''zi - WeAe, and -ui' 1Wi = Au,We,
where the CBL entrainment rate, We = zi, and E) is the potential
temperature jump across the EZ. The subscript ",t" denotes the
partial derivative with respect to time. Such notation will
refer to spatial and temporal derivatives in general. The Betts
(1974) correction, w'e'zi = (&E - Fruh)We, hardly affects eqn. 2a
since Kamada (1988a) showed that the much smaller interfacial
thickness, im, must replace the EZ depth, Ah. For lack of better
information, we assume that above zi the barotropic flux profiles
are linear with height up to H zi + &h, the top of the boundary
layer. I.e.,

z - Z i

3w,e' 3 w'e, (1 ) , (3a)

__ _ __ __z

Ah

Z - Z i

-u 1 ' W' - -u'W'zi(l - ) (3b)
4h

Using eqns. (1), (2a), and (3a), the vertically integrated
buoyancy flux or total CBL buoyancy production rate of turbulence
kinetic energy (TKE) can be written to show that the purely free
convective turbulent scaling velocity is proportional to the cube
root of the boundary layer integrated TKE production rate,

H __1 - a1 (l +- a)

Bw'E' 7 az = n w. 3  where n M
zO 2

(4)

and a = Ah/z i. n = 0.4 for mature CBLs because under such
conditions, a, - 0.2 and a - 0.1. Since this may not be true for
other conditions, we discuss n in detail below. However, here we
propose that this sort of proportionality extends to shear; that
mechanical contributions to a shear inclusive turbulent raling
velocity, w.5 , may be written in terms of the boundary liy'er
integrated mechanical generation rate of TKE. I.e.,

1/3
H H

W.I 13w'e', az + J-uw'u.z (5)
zO zOI I, Aooesslon For
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We also propose that the CBL shear generation rate can be
represented by discrete barotropic surface layer (SL),
entrainment zone (EZ), and baroclinic (BC) components.

SL EZ BC
H -L H H
I-u'w'ui, az = z-u 'w'u Oz + J-uiIwIu az + -u ,Iwu'b az

zO z0 zi 0
(6)

Here uibz is just the baroclinic portion of the vertical shear.

BAROTROPIC SURFACE LAYER SHEAR

We first consider the barotropic SL and assume that most of the
shear occurs below the height, -L. From SL similarity we have

U., = (u./kz)(m , with 0m =  (1 - 15z/L)' 3  , (7a,b)

(Carl et al. 1973). Some workers prefer 0m formulas involving
the -1/4 power. However, the choice is among empirical
expressions and integrals of -1/4 power expressions result in
awkward complex numbers. The accepted value in the free
convection limit is -1/3, so we choose this for theoretical
appeal as well as mathematical convenience.

Since Om is only valid for z >> z0, we set the upper integration
limit at -L, the lower limit at a somewhat arbitrary 10 z0 , and
treat the layer below 10 z0 separately. Above 10 z0 , from eqns.
(2b) and (7a), we have

-L__ u 3 -L Omc3 Z u*(u,2 - AuiWe) -L
-u,'-w'ui,3z - - + j oaz

1OzO k lozo z kz i  1OzO

u -L P..Z -L
- - - (1-a 2 )(L/zi 2)w, 3  I Oma z

k lOzO z lOzO (8)

From the L definition, u,./k = (-L/zi)w2. With the axes aligned
with the mean wind, we have -u'iw'u = -u'W'u, since (Vz w.,) <<
u in the mixed layer. If shear supplies sufficient TKE, 10 z0
<<< -L. So in eqn. (8) term (2) = 0.54 (1 - a-) (L/z)w.
Letting p = -15z/L, the first integral reduces to

4



[V3 (2 (p+l) + 1) Ln[ (p+l)2'3+ (p+i) III+ 1]

/3 ATAN I  -3J 2

-L

Ln[ (p+l)"3 _ 1]

The upper limit evaluates to = 1.51. The first two terms in the
lower limit - 1.26, if L >> 150z0 . So in eqn. (81 the first
integral = 0.25 - Ln R, where R - (1 - 150z0 /L)' - 1 << 1. A
5cm z0 and 150m L would give 150 z0 = -0.05L. Above 10 z0 , this
leads to = 4.36u.3/k from term (1) in eqn. (8). Oddly, R varies
inversely with roughness length. But from u. = ku/(ln(z/zo -
and the definition of L, we see that

nz0/L = (ngw'E'/k 2u3e) z0 (ln(z/z0 ) - 3  (9)

So for given levels of u, w'e', E, and z, the ratio nz0/L and
thus term (1) may vary much less than z0 itself.

Below 10 z0 we neglect non-neutral contributions to u. and assume
a constant value, -ui'w'u.z - u3/10kz0 . Then

lOzO ___

-u,'W'u zaZ z U.3/k (10)
0

Together, eqns. (8) and (10) give an estimate of the vertically
integrated SL shear production rate,

-u,'w'u 1 az (1.25 - Ln R)u.2/k
0

(-w. L/z,) (1.25 - Ln R) (lla,b)

Note that we have dropped term (2) from eqn. (8), since 1) the
coefficient is an order of magnitude smaller than for term (1),
2) term (2) is second order in zi, 3) usually, -L < 0.4 z, and
4) a, is of order 10-1 - 1; so some further cancellation occurs.

From eqns. (2) and (3), if n = 0.4, we have the following ratio
of enhanced to unenhanced TKE contributions,

5



In - (1.25 - Ln R) L/z,1 1/3

w, = (1 + (3.1 - 2.5Ln R) (-L/zi)) 13w.
L n 

(12)

For our previous example, w s exceeds w, by a factor of - (1 +
33u.3/w.3)" /3. In this case, since U*/w. = 0.54, SL shear
generation alone may enhance w s by more than 80%.

To be useful, ws should maintain the same proportion to the mean
turbulent velocity, cui/3, in both the convective and neutral
limits. We test this by noting for the barotropic case that the
cube root of the vertically integrated production rate is usually
= 2.4 u. for SL shear. The EZ and BC terms are not relevant for
the pure neutral case. From Grant (1986) and Mason and Thompson
(1987), we find that oui/3 = 1.3 u, in the layer averaged neutral
boundary layer. This implies that aui/3 = 0.53 w.s. In the pure
convective limit, the CBL averaged value for oui/3 is - 0.55 w.
(Caughey and Palmer, 1979 and Deardorff et al. 1980). So, the
ratio of w.s to the layer averaged mean turbulent velocity is the
same in the convective and neutral limits, as required.

ENTRAINMENT ZONE SHEAR

The EZ also generates mechanical turbulence. To quantify it we
assume, moreover, that shear is constant across Ah. Thus,

H
-uj'w'uiz = We&u2/2 (13)

zi

Equation (13) suggests the need for a simple shear inclusive
model to estimate the entrainment rate, We. For this purpose we
parameterize the TKE equation,

storage buoyancy transport shear dissipation

e,= B w'e' + (ui'e + p'e/p) z - ui'u 'u i -vu~i.ui ,

(14)
at the inversion base as,

storage buoyancy transport shear dissipation

C,,w,2We/Ah -348We + CCw:3/zi + CmAU, 2We/Ah - C W*3/Z'

(15)
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The scaling arguments are that 1) again w'e' -WeAe and 2)
large mixed layer eddies drive the TKE transport rate into the
EZ. Thus TKE transport should vary with the TKE ( w.2) times
the large eddy turnover time scale, zi/w.. 3) The shear
production rate is modeled as the momentum flux, AuWe, ti,.tes the
local EZ shear, Aui/Ah. 4) To maintain a steady state inertial
subrange, the dissipation plus buoyancy destruction rates must
balance the large eddy TKE injection rate due to transport and
shear production. So in the neutral limit, dissipation should
scale like transport with the change rate of large eddy TKE,
w23/zi. Since dissipation occurs at small scales, unaffected by
buoyancy anisotropy, we retain the neutral form. For simplicity
we neglect the small TKE storage rate term. Cm estimates vary
somewhat, (Pollard et al. 1981; Kato and Phillips, 1967, Tennekes
and Driedonks, 1981), but we see little reason for departures far
from unity, so we assume Cm - 1.0. We discuss Cc and Cd below.

Tennekes and Driedonks (1981) presented a similar model, except
that here we scale the shear production locally with Ah instead
of z,. Solving for the entrainment rate gives,

(C¢ - Cd)

We = w23/zi (16)
13,& - Au,2/Ah

Therefore, from eqn. (13) we have

H (Cc - Cd) Ah 3

S -u,'w'uiz =  w 3  (17)
zi 2 (R - 1) Zi

where the bulk Richardson number,

13AEAh
R6 (18)

Au -

The EZ is transitionally turbulent by nature. Thus, we expect Rh
to fluctuate about some critical threshold turbulence value, RCh.
R,, is much larger than the 1/4 value accepted for the stable SL
because EZ TKE is mainly maintained by large eddy transport from
below. So shear generation is only part of the TKE injection
rate, and the dominant eddies are also much larger than in the
transitionally turbulent SL. Thus, the EZ's large negative
buoyancy will destroy much of the TKE during the eddy cascade
before it can be dissipated at small scales. For these reasons

7



Rcb may exceed unity in the EZ.

Indeed, our simulations to steady state using such an entrainment
model suggest a typical value of Rob = 1.3. From the results of
Turner (1968), Deardorff et al. (1980), and many others, we
suggest that C. - Cd = 0.25 in the convective limit. So in eqn.
(17) the EZ shear contribution = 0.5 aw.3, where a = &h/z,.

To assume that a = 0.1 - 0.2 may often suffice. Then, al = 0.2,
n = 0.4, and the barotropic EZ contribution to w., is only a few
percent. But a can exceed unity during rapid entrainment into a
near-neutral layer remaining from the previous day's CBL (Nelson
et al. 1989). During such times, entrainment models suggest that
al may exceed 40% (Kamada, 1988a). Then n = 0.1, and EZ
enhancement of w., may exceed 0.4. With SL shear this may cause
wXs to double. In this case a better diagnostic or prognostic
estimate for a is needed. For a diagnostic estimate, we begin by
assuming Rb = Rcb and solve eqn. (17) for Ah. This leaves unknown
Au, and &E, the inversion temperature jump. Ae is hard to
specify more precisely than - +/- 30% because zi and H are not
that highly resolved. Yet, we know that AG grows with the
boundary layer growth rate, H,, into the layer aloft (with lapse
rate rJ , and shrinks with the mixed layer warming rate, Ent-
So, using the simplest steady state assumption,

aO)t = FuH.t - mE,t = 0 (19)

The mixed layer warming rate is given by the surface heating
rate, plus the entrainment rate of warm air from aloft. i.e.,

Emt = (w'' 0  - w'E'I,)/z i  (20)

So, if we approximate H t as We (1 + a), we have

AO = w'e' 0 /We - FuZ,(l + a) (21)

Using eqns. (16) and (18) and combining constants, this results
in two solutions for a. We show only the physical root,

2.3Au,2  1 1/2 1
a _____ _ + I (22)Fr Z2

"  4 2

L J
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Though not explicit, eqn. (22) implicitly involves AE because it
presumes through eqns. (18 - 22) that A depends on r,, We,
w'8'0 , and zi. This assumes that the capping inversion requires
finite potential temperature and windspeed jumps, whenever there
is horizontal wind.

In eqn. (22) we must still estimate the windspeed jumps across
the EZ. Wyngaard (1988) proposed the following first order
estimate. For steady flow over a horizontally homogeneous
surface, the stress gradient is given by

-u'Wl'z = f(v - vg) , and -v'w'. = f( ug - u) , (23a,b)

where f refers to Coriolis forcing, and the subscript, g, refers
to geostropic winds (Panofsky and Dutton, 1984). For barotropic
flow with the axes aligned with the mean mixed-layer wird,

-u'w'Z = fvg (We(ug - u) + u. 2)/zi , and

-v'w'z = f(ug - u) = We(vg - v)/z i  (24a,b)

The momentum balance becomes

We(ug - u) + u.2 = -fzivg , and

-We vg = fzi(u 8  - u) (25a,b)

For barotropic cases, if Lu = (ug - u) and Av = (vg - v) across
the EZ, then the solutions to eqns. (25a,b) are to first order,

Au = We(u./fz) 2  , and

AV = us-/fz, . (26a,b)

Here, almost all of the EZ shear results from turning the wind
into the v direction. So for a mature mid-latitude BL with u.
0.4ms 1, f =14S-1, z' = 103m, e = 300 0C, and ru = 3 x 10-' -C m-0 ,
we have a 0.057. However, during growth into the near neutral
remnant mentioned earlier, conditions may be more like FU = 1 x
10-3 OC m- 1, and z, = 500m. This would result in a = 1.3. Values
spanning such a range were reported in Nelson et al. (1989).
They also observed and prognostically modeled the typical early
morning to late afternoon hysteresis found in plots of a versus
We/w.. They noted that such hysteresis is absent from previous

9



diagnostic expressions for the EZ depth which have the form a o
Ri. n, where Ri, = BziAe/w,2 and 1/4 n < 1. No hysteresis occurs
in such expressions, if we assume (see eqn. 2a) that a,, the
inversion to surface heat flux ratio, is constant because then
We/w. x 1/Ri.. Unlike such expressions, eqn. (22) shows
qualitatively appropriate hysteresis. In fact, by combining
eqns. (16), (21), (22), and (26), we see that

(27)
We/w. w'8'0Bf

2zI3

Far from being constant, aw*/We will typically increase initially
as surface heating and u* grow in the young day-time boundary
layer, but will diminish later as zi becomes large.

If we require more accuracy, we can couple eqns. (16, 18, 19, 20,
and 26) with

2u. 2 v We v2,& G
H't = We + (Rh/B) I - 1 (28)

1 fz e 2
L J

to provide a complete entrainment model. Here the second term in
eqn. (28) gives the growth rate of Ah and thus a prognostic
estimate for a.

More physics may be added by revising the We expression to
include the small TKE storage rate term, Cstw 2/Ah, from eqn. (16).
However, our present focus is amending w,, rather than refining
the particulars of bulk entrainment models; so we choose to rest
with the above diagnostic and prognostic formulations for a.

In either case, hysteresis in a versus We/w, is evident, and like
Kamada (1988b, figs. 1 and 2), depends on changes in Ae and zi.
Both models include shear as well as heating due to entrainment,
and avoids ad hoc surface temperature distributions, or fixed
values of a,. Also note that eqns. (16) and (21) lets us specify
a, which, together with eqn. (22), determines n from eqn. (4).

BAROCLINIC SHEAR

If the geostrophic wind varies linearly with height according to
the thermal wind relations, u -(g/fT 0 )T., and v = (g/fT0 )T x,
then from eqn. (23) the barociinic stress profile must be
parabolic, rather than linear as in the barotropic case.
Wyngaard (1985) gave the following simple estimate for baroclinic

10



shear based on the thermal wind,

Ubz = blUg'z + b2Vgz , Vb z = b2Ugz + biVg'z , (29a,b)

where b, = 1/(m2 + 1), b, m/(m 2 + 1), m = fzi/w., and f is the
Coriolis forcing. If so, the stress can be written as

b~z (gz pfT + 2 fT p(3
-ui'w' = u. 2 + (30)

2 pfT

So the baroclinic shear contribution becomes

H gzi(bTx - bT3 (b gpzi-T. + 6pTu.-)
I -ui'w'ui~az -

0 6 pfT2  (31)

where terms in b, - 1 = -m 2 /(m 2 + 1) were considered neglectably
small. The baroclinic integral is taken over the whole vertical
range 0 to z, rather than -L to zi because the SL shear analysis
only accounts for barotropic effects based on SL similarity.
Scaling analysis of eqn. (31) shows that the squared and cubic
terms in z, are small. If so, to first order, the baroclinic
shear contribution from eqn. (31) reduces to,

H
-u,'w'u,.Z = (z,/zb)W. 3  

, (32)
0

where we can define a baroclinic length scale as,

fT w.3  w 3

Zh= (33)
u.-g(bT× - bT) u- Ubz

Usually, zh >> z,. But in coastal areas mesoscale temperature and
pressure gradients are often large. For a coastal zi of 300 m, a
3 °C/100 km horizontal cross-wind temperature gradient, We near
zero, f = 10-4 sec - , w. - 0.8 m s l , and u. = 0.4 m s-, then zh
330 m, and w., may be enhanced baroclinically by - 50%.

11



SUMMARY

In summary, we account for surface layer (SL), entrainment zone
(EZ), and baroclinic (BC) shear. Each source is given in te-ms
of a dimensionless ratio of the relevant length scales z0, L, &h,
zi, and zb. When summed and multiplied by w., this results in a
turbulent velocity scale which includes both buoyancy and shear
generation of TKE, namely,

I - (1.25 - Ln R)L/z i + 0.5Ah/z i + Zi/Zb 1/3

I Iw
(34)

1 - a,(1 + Z)
Here nl

2

a, - We&E/w'e' 0  , the zi/surface heat flux ratio,

We (cc- Cd) w 3 /zi the ML entrainment rate,

BAe- Aui2/Ah

Ae w'e'0/We - Fuzi(l + a) , the EZ 8 jump,

2. 3 (Au2 +Av2) 1 11/2
a Ah/z i  I + - - , the EZ/BL depth ratio,

I r"3z,- 41 2
L J

&u We(u*/fzi)2  , Av = u 2/fzi the EZ velocity jump,

R (1 - 150z0 /L)'
3 

- 1 an SL shear generation term,

W*
3

Z- = the baroclinic length scale.
U,- UbhZ

12
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