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1. Executive Summary

The research described in the present report has been concerned with the /

fundamental fluid dynamics of mixing in a plane shear layer, with emphasis on novel |

approaches to mixing manipulation and control that utilize amplitude and phase
excitation. Because shear layer flows of practical interest are subjected to temporally
and spatially complex disturbances with important consequences to the mixing. our
work has also focused on the pursuit of the conceptual mechanisms of mixing transition
inv. ..1ng spanwise-nonuniform and ~nonharmonic (pulsed) excitation. This work has
been supported by AFOSR Grants 86-0324 and 83-0271.

Efficient mixing of chemical species in free shear flows at high enough Reynolds
numbers is limited by fluid motions induced by a hierarchy of large coherent vortical
structures. In the plane shear layer. mixing is accomplished by nominally two-
dimensional entrainment of irrotational fluid from both streams by the spanwise
vortices, and three-dimensional motion induced by packets of streamwise counter-
rotating vortex pairs that form in the braid region between the spanwise vortices.
Because these vortices evolve from two- and three-dimensional instabilities of the mean
flow, they are manipulated in our experiments by excitation at the flow partition.

Even though the role of the streamwise vortices in the mixing process has been
known for some time, the mechanisms by which the three-dimensional small-scale
motions develop and lead to mixing transition has been an enigma. The present
research has determined that as a result of the interaction between streamwise vortices

and adjacent spanwise vortices, the mean velocity distribution in planes normal to flow
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direction is significantly distorted. The appearance of a spanwise-regular pattern of
inflection points at the high- and low-speed edges of the layer indicates the formation
of locally unstable regions of large shear. Breakdown to turbulence is initiated in this
region as a result of a rapid amplification of broadband disturbances already present in
the base flow. Furthermore, mixing may be significantly intensified when the flow is
subjected to spanwise-nonuniform excitation.

We have demonstrated that spanwise core deformations of the primary vortices
can also lead to the formation of secondary vortical structures in the braid region.
Core deformations of the primary vortices are induced by spanwise phase distortions of
the excitation wave train, and the shape and strength of the induced secondary vortices
vary with spanwise phase distributions. Visualization of these secondary vortical
structures sheds light on the nature of "dislocations" of the primary vortices previously
observed by a number of other investigators. The appearance of small-scale structures
within the large coherent vortices in connection with the core deformations suggests that
while the appearance of streamwise vortices in the braid region as a result of localized
upstream disturbances is important for the initiation of small-scale mixing, core
deformations of the primary vortices are responsible for the continuation of the mixing
process far downstream of the mixing transition.

We have discovered that the plane mixing layer is extremely receptive to pulsed
excitation in the braid region. The ensuing disturbance spreads rapidly in the
streamwise and spanwise directions and is characterized by enhanced turbulence
intensity much like a turbulent spot in a2 laminar boundary layer. We have developed a
demodulation technique that is analogous to the wavelet transform. This technique was
applied to our experimental data and has enabled us to capture dynamical features of
the disturbance and the concomitant distortion of the two-dimensional base flow. The
rapid spatial and temporal spreading of a pulsed disturbance in the span of the flow

has been exploited in an investigation of the evolution of a temporally and spatially
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regular pattern of such turbulent structures, which may be useful from the standpoint
of mixing enhancement. We expect that this scheme will be a viable improvement over
current technology of pulsed combustion.

The present report is comprised of three major parts. In the first part (83), we
discuss the formation and evolution of the streamwise vortices and the generation of
small scale motion. In the second part (§4), we discuss the effects of spanwise-
nonuniform phase excitation. Finally, the third part (85) is concerned with pulsed
excitation. Because all three parts of the present research have been conducted in the
same experimental facility, we begin the report with a description of the experimental

hardware and techniques.




2. Facility, Actuators, and Flow Visualization

2.1. The Water Shear Layer Facility

The facility is shown in figure 2.1. The entire flow is driven by a single pump
powered by a 10-hp motor equipped with a solid-state speed controller. The velocity
of each stream can be independently varied, and test-section velocities up to 200 cm/sec
can be realized. Two interchangeable 100-cm-long test sections with cross sections of
10 cm x 22 cm and 22 cm x 22 cm are equipped with Lucite walls so that the flow can
be observed from any direction. The convergence of the test section on either side of
the shear layer can be adjusted easily in order to vary the streamwise pressure
gradient. Two interchangeable contractions (with contraction ratios of 7:1 and 9:1) have
rectangular cross sections with constant aspect ratios. Turning vanes and “turbulence
manipulators” (honeycomb and screens) upsiream of the coatraction reduce velocity
variations due to secondary flow. The turbulence level in the free streams is less than
0.15%. The replaceable trailing edges of the flow partition are configured with various
mosaics of surface heaters for flow manipulation, described in §2.2.

The facility is equipped with a suite of diagnostic instrumentation. A pressure
transducer is connected to two 12-port fast switches. These switches are computer-
controlled and allow for monitoring of the velocity on either side of the contraction exit
plane and the static pressure along the test section, as well as Pitot-static measurements
of the velocity field within the test section. The water temperature is monitored and
recorded by the laboratory computer via a digital thermometer. Fifteen dye injection
ports are available on each side of the flow partition. A computer-controlled two-axis
traverse mechanism, designed for detailed measurements of the flow field within the
test section with rakes of hot-wire probes. has been installed. Twenty channels of hot-
wire/film anemometry are available for simultaneous measurement of instantaneous
velocity distributions. A rake of 31 hot-wire sensors, 2 mm apart and suitable for use

in water, is mounted on the traverse mechanism for simultaneous cross-stream or
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spanwise measurement of the streamwise velocity. A Masscomp laboratory computer
system, including 16 channels of 12-bit A/D, 16 channels of D/A, and 32 channels of

general-purpose 1/0, is dedicated to experiment control and data processing.

2.2. Excitation by Surface Film Heaters

Excitation of streamwise and spanwise instability modes is accomplished by either
of two mosaics of surface film heating elements mounted on the flow partition. Mosaic
[ consists of 14 spanwise-uniform elements and two 16-element spanwise rows. Mosaic
II is comprised of four spanwise-uniform elements upstream of a single 32-element
spanwise row. Figure 2.2 is a schematic drawing of Mosaic II, the flow partition, and
the coordinate system. (In the present work, x, y, and z are the streamwise, cross-
stream. and spanwise coordinates, respectively; the corresponding velocity components
are u, v, and w.} The heating elements are mounted on a standard epoxy board
substrate. A thin film coating provides good heat conduction, corrosion protection, and
electrical insulation. Each heating element is wired through the epoxy board (using
through-hole plating) and the flow partition to a DC power amplifier. Thirty-two
channels of power amplifiers. each capable of continuously driving 10 A into a load of
2-4 ohms, are available. The unit’s output is limited to 2.5 kW by the power supply.
Sixteen channels of power amplifiers can be directly driven by the laboratory computer
via a D/A interface. This allows input of arbitrary temporal waveforms to the heaters
without distortion, by compensating in software for the temperature dependence of the
heater resistance and for the quadratic dependence of Joulean dissipation on input
voltage. The input power to the heaters is given by Ey(z) + E(z, t), where Ej(z) is the
mean power.

The effect of heating the surface is essentially to introduce three-dimensional
vorticity perturbations into the flow partition’s boundary layer by exploiting the

dependence of the viscosity on temperature (Liepmann, Brown & Nosenchuck 1982). It
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is important to recognize that small oscillations induced in the boundary layer amplify
or decay according to linear stability theory. Thus, forcing a shear layer from an
upstream boundary layer may not be effective if the induced waves decay appreciably
before reaching the trailing edge. Hence the forcing frequency should be within the
unstable (amplified) range of the boundary layer, the extent of which depends strongly
on the pressure gradient. By carefully extending the flow partition into the test section,
the streamwise pressure gradient can be tuned so that it becomes slightly adverse,
causing the flow partition boundary layer to become less stable and more receptive to
forcing.

The response of the flow to spanwise-uniform harmonic excitation over a range of
forcing frequencies is deduced from power spectra P(v) of the streamwise velocity 2.5
cm downstream of the flow partition and | cm above its centerline (on the high-speed
side). The free-stream velocities are U; = 30 cm/sec, and U, = 10 cm/sec. These free-
stream velocities are used in all the present experiments with the exception of the
experiments described in §3.2. Several runs over a range of forcing frequencies vy
were made. Figure 2.3 shows P(y) as a function of v, indicating the composite
receptivity of the high-speed-side boundary layer and the shear layer to spanwise-
uniform harmonic excitation. In connection with these measurements, it is important to
note that the hot-wire probe is operated at a 4% overheat ratio, which renders it
sensitive to temperature variations of the order of 0.1°C. As shown in figure 2.3, the
probe does not respond to heater excitation at frequencies outside a relatively narrow
bandwidth, and hence it may be concluded that shear layer temperature fluctuations
associated with the surface heating are very small. Furthermore, the importance of
buoyancy effects in forced convection boundary layers may be evaluated (Schlichting
1968) based on the ratio y = Gr/(Rez;a)2 where Gr is the local Grashoff number. For
the largest surface overheat, we compute ¥ < 103. Buoyancy effects can be neglected if

¥ << 1.
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Figure 2.4 shows cross-stream profiles of the dimensionless streamwise velocity
Un) = [Um - U,1/AU, plotted as a function of the usual similarity variable
n=(y - ¥o)/ix - Xg). where U(n) is the mean velocity measured at a number of
streamwise stations, X, is the virtual origin, and AU = U, - U,. Here, y;(x) is the
cross-stream elevation at which U(x, y) = (U; + U,)/2, hereinafter defined as U.. The
flow is excited near the "natural" frequency and its first subharmonic (6 and 3 Hz,
respectively) using spanwise-uniform excitation from Mosaic I (corresponding velocity
profiles using Mosaic Il are shown in figure 3.5 below). These data demonstrate that
the forced shear layer spreads more in the cross-stream direction than does the
unforced flow, in agreement with the findings of other investigators (e.g., Ho & Huang
1982).

In figures 2.5(a-c) we show power spectra P(v) of the the streamwise velocity at
x = 10.2 cm (Rey = 216), 17.8 cm (Rey = 663), and 25.4 cm (Rey = 1450), respectively,
for y = yo. The Reynolds numbers at these x-stations are based on the momentum

thickness

[» o]
‘ J [Ux) - U,][U, - Ux)dy .
-0

) = @y

The spectra in figures 2.5(d,c) correspond to spanwise-uniform harmonic excitation at
v = 6 and 3 Hz. respectively. The establishment of small-scale motion in free shear
flows is often connected with the existence of an inertial subrange in which the slope
of log P() versus log v is -5/3. At sufficiently high Reynolds numbers in a
homogeneous, stationary, and isotropic turbulent flow, the inertial subrange is the low
wave-number part of an equilibrium range of wave numbers in which negligible
viscous dissipation occurs (Batchelor 1953). Free shear flows, however, are not
homogeneous and, if forced, are not statistically stationary, so the extent of the inertial
subrange (which implies local isotropy) in laboratory flows is limited even at relatively

high Reynolds numbers (Champagne 1978). Furthermore, mixing transition does not
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depend on the existence of an inertial subrange, but rather on the presence of
turbulence or fine-scale random vortical structures, which can exist even at relatively
low Reynolds numbers. In fact, the characteristic time necessary for establishment of
an inertial subrange may lead to its appearance farther downstream from where mixing
transition takes place. In the present experiments the inertial subrange at x = 25.4 cm
is estimated to be 5 Hz < v < 32 Hz (cf, Jimenez, Martinez-Val & Rebollo 1979), and the
logarithmic slope of the power spectrum within this subrange is approximately -5/3.
Ho & Huerre (1984) assert that typical transition Reynolds numbers in liquids fall in the

range 750 < Re < 1700.

2.3. Flow Visualization

Introduction of a controlled vorticity distribution into the boundary layer of the
flow partition by the surface heaters is accompanied by small localized density
gradients in the adjacent fluid. The corresponding refractive index gradients are
exploited for flow visualization by means of a sensitive double-pass Schlieren system
(Fiedler, Nottmeyer, Wegener & Raghu 1985). This technique allows the effect of
forcing to be studied nonintrusively in planes parallel and normal to the flow span.
The Schlieren view can be thought of as a planar projection of streaklines of slightly
heated fluid elements. In the present investigation, the Schlieren view is in the
spanwise (x-z) plane of the mixing layer and comsists of a [3.2-cm-diameter circle
centered in midspan. Because the flow is forced, two Schlieren views photographed at
the same phase relative to the excitation waveform and centered 7.6 cm and 15.2 cm
downstream of the trailing edge of the flow partition can be combined into a composite
showing the flow for | cm < x < 21.8 cm.

Photographs of the flow subjected to spanwise-uniform 5-Hz harmonic excitation
are shown in figure 2.6. The flow is from left to right. In the cross-stream (x-y) plane
(figure 2.6a), the flow is visualized by dye injected into the boundary layer of the low-

speed side at midspan. In the spanwise (x-z) plane, visualization was accomplished by
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Figure 2.6
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the Schlieren technique described above. The two views have the same scale, begin (at
the left-hand side) 1 cm downstream of the flow partition, and were separately
photographed at the same phase relative to the zero crossings of the excitation signal.
At this excitation frequency, pairing of the primary vortices does not occur in the
streamwise domain shown here.

Although streaklines of colored and heated fluid elements do not necessarily mark
the presence of vorticity, they strongly suggest the formation of spanwise-coherent
vortices. It is important to recognize that the Schlieren view is a planar projection in
the cross-stream direction (i.e., a y-integration) from which depth information has been
lost. The Schlieren image of the primary vortex immediately downstream of the first
rollup (figure 2.64) is characterized by sharp intensity gradients along its upstream and
downstream edges caused by the strong curvature of the thin layer of heated fluid that
is rolled into the vortex. The slight spanwise nonuniformity in the instantaneous
visualization shown in figure 2.6(8) also characterizes the ensemble-averaged flow.
Since the excitation waveform corresponding to figure 2.6(4) is spanwise uniform, these
results also suggest the formation of naturally occurring streamwise vortices in the braid
region, as well as the evolution of spanwise nonuniformities in the cores of the primary
vortices. The development of small-scale motion within the cores of the spanwise
vortices is apparent at the downstream end of the composite Schlieren view.

As noted by Landahl (private communication, 1990), streamwise streaks in
transitional flat-plate boundary layers have been identified as regions of high- or low-
speed velocity perturbations not necessarily associated with continuous concentrations of
streamwise vorticity. Nevertheless, because of the remarkable similarity between the
present flow visualization and three-dimensional cross-stream and streamwise vorticity
concentrations in the numerical simulations of Rogers & Moser (1989) and Buell &
Mansour (1989)., we hereinafter refer to streamwise streaks in our Schlieren flow

visualization as streamwise vortices. We emphasize that reference to a "streamwise
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vortex" in the present work does not refer to a domain containing only streamwise
vorticity, nor does it imply that the axis of the vortex is parallel to the streamwise

direction.

2.4. References

Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University
Press.

Buell, J. C. & Mansour, N. N. 1989 Asymmetric effects in three-dimensional spatially
developing mixing layers. In Proc. Seventh Symp. on Turbulent Shear Flows,
Stanford University, pp. 9.2.1-9.2.6.

Champagne, F. H. 1978 The fine-scale structure of the turbulent velocity field. J.
Fluid Mech. 86, 67-108.

Fiedler, H. E., Nottmeyer, K., Wegener, P. P. & Raghu, S. 1985 Schlieren photography
of water flow. Experiments in Fluids 3, 145-151.

Ho. C.-M. & Huang, L.-S. 1982 Subharmonic and vortex merging in mixing layers. J.
Fluid Mech. 119, 443-473.

Ho, C.-M. & Huerre, P. 1984 Perturbed free shear layers. Ann. Rev. Fluid Mech. 16,
365-424.

Jimenez, J., Martinez-Val, R. & Rebollo, M. 1979 On the origin and evolution of
three-dimensional effects in the mixing layer. Final Report DA-ERO 79-G-079.
Universidad Politecnica de Madrid. AD-A096007.

Liepmann, H. W., Brown, G. L. & Nosenchuck, D. M. 1982 Control of laminar
instability-waves using a new technique. J. Fluid Mech. 118, 187-200.

Rogers, M. M. & Moser, R. D. 1989 The development of three-dimensional temporally
evolving mixing layers. In Proceedings of Seventh Symposium on Turbulent Shear
Flows, Stanford University, pp. 9.3.1-9.3.6.

Schlichting, H. 1968 Boundary Layer Theory. McGraw-Hill.




3. Evolution of Streamwise Vortices and Generation of Small-Scale Motion

3.1. Technical Background

The rate at which a reaction product is formed in the mixing layer between two
reacting streams can increase by an order of magnitude through a mixing transition
downstream of the flow partition (Roshko 1981). The small-scale three-dimensional
motion necessary for such mixing enhancement has been connected by Roshko to the
appearance of streamwise counter-rotating vortex pairs first observed by Miksad (1972)
and Brown & Roshko (1974). The streamwise vortices and the mechanisms by which
they lead to the generation of small-scale motion are the subjects of the present
experimental investigation.

Flow visualization of a chemically reacting liquid shear layer with a visible
reaction product reveals the evolution of spanwise nonuniformities along the primary
{spanwise) vortices (Breidenthal 1981). This nonuniformity (dubbed "wiggle") may be
described as being nominally sinuous, with considerable variation in spanwise
wavelength. As the sinuous structure is convected downstream, its amplitude grows
rapidly (apparently as a result of stretching by consecutive primary vortices), with no
appreciable change in spanwise wavelength. While there is no evidence that the
"wiggle" is associated with a spanwise instability of the primary vortex core, there is
no doubt that its appearance marks the formation of streamwise vortical structures. In
plan-view time-exposure photographs, these streamwise vortices appear as continuous
streaks, starting at approximately the streamwise onset of the wiggle, and have spanwise
spacings corresponding to the wiggle's undulations. Farther downstream, the streaks are
obscured by a marked increase in the (visible) reaction product.

Time-exposure photographs were also obtained by Konrad (1976) and Bernal &
Roshko (1986) over a large range of Reynolds number (Re) in a non-reactive gas mixing
‘ayer facility. These authors found that the mean onset Re of the streaks increases

with the shear layer velocity ratio, and although they are not necessarily equally spaced
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over a considerable distance downstream of the flow partition, their mean spanwise
spacing scales with the vorticity thickness at the streamwise location where they first
become visible. Similar observations were reported by Miksad (1972). Contour plots of
time-averaged streamwise velocity in a plan view at a fixed cross-stream elevation
(Jimenez 1983) closely resemble the streamwise streaks in the time-exposure
photographs. An important feature common to these observations is the preservation of
spatial coherence and spanwise spacings of the streaks, despite concomitant pairing of
the primary vortices.

Based on flow visualization and high-speed cinematography, Bernal (1981) and
Bernal & Roshko (1986) suggested that the counter-rotating streamwise vortex pairs in
the plane mixing layer are part of a vortex that continuously loops back and forth in
the braid region between adjacent spanwise vortices. The mean spanwise spacing of
the streamwise vortices appears to increase somewhat as the vortices are convected
downstream, although at a much smaller rate than the rate of change in the cross-stream
(or streamwise) dimension of the primary vortices. A somewhat different view
concerning the structure of the streamwise vortices was proposed by Hussain (1983).
Unlike the model of Bernal & Roshko, Hussain’s model emphasizes that the braid region
is comprised of slender discrete vortices (dubbed "ribs") randomly displaced with
respect to each other in directions normal to their axes.

A number of numerical and analytical studies have shown that the streamwise
vortical structures can result from nonuniformities of the spanwise vorticity in the
braid region between the primary vortices. Lin & Corcos (1984) showed that a weak
spanwise-periodic variation of streamwise vorticity in a uniform straining flow (as
between two consecutive spanwise vortices) can evolve into concentrated round
streamwise vortices. These findings were further confirmed by Ashurst & Meiburg
(1988) via simulations based on inviscid vortex dynamics. The direct Navier-Stokes

simulations of Metcalfe, Orszag, Brachet, Menon & Riley (1987) show that spanwise
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instability modes triggered by upstream nonuniformities in the spanwise vorticity are
convected with the flow, grow at rates similar to those of the two-dimensional modes,
and lead to the formation of pairs of counter-rotating streamwise vortices in the braid
region. Metcalfe et al. also remark that pairing of the primary vortices may inhibit the
three-dimensional instability, while suppression of pairing may drive the three-
dimensional modes to turbulent-like states.

Experimental evidence suggests that the streamwise vortices tend to lock onto small
geometric details (imperfections in the flow partition, orientation of screens, etc.) in the
experimental apparatus (Bernal 1981, Jimenez 1983). Lasheras, Cho & Maxworthy
(1986) showed that small vortex-generating elements mounted on the flow partition could
move the origin of these vortices considerably upstream; in the absence of these devices
and by careful removal of flow disturbances, the origin could be displaced significantly
downstream. In related flow visualization experiments, Lasheras & Choi (1988) studied
the evolution of a spanwise-periodic pattern of streamwise vortices produced by flow
partitions with corrugated and indented trailing edges. Recent experiments in a plane
mixing layer excited by a spanwise array of surface film heaters conclusively
demonstrate the ease with which a nearly arbitrary spanwise distribution of streamwise
vortices can be generated (Nygaard 1987; Fiedler. Glezer & Wygnanski 1988).

An important feature of the time-exposure photographs of Bernal & Roshko (1986)
is the gradual disappearance of the streamwise streaks downstream of where they
exhibit remarkable spanwise coherence. Spanwise plots of time-averaged streamwise
velocity at a number of streamwise stations show a slow streamwise increase of the
characteristic spanwise spacing. indicating either loss of spanwise coherence or
disappearance of streamwise structures (Huang & Ho 1990). Bernal & Roshko further
report that, in the region where time-exposure photographs no longer show the presence
of streaks. single snapshots show streamwise vortices having mean spanwise spacing

nominally larger than that of the upstream streaks. Furthermore, the spanwise locations
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of these streamwise vortices vary with downstream distance in a manner clearly
unrelated to (fixed) structural features of the experimental apparatus.

It is clear that time-invariant spanwise vorticity nonuniformities due to
irregularities of the experimental apparatus upstream of the trailing edge of the flow
partition continucusly influence the vortex sheet, which subsequently becomes part of
the spanwise vortices and the braid region. Although spanwise vorticity
nonuniformities within the braid region lead to the formation of streamwise vortices,
experimental and numerical evidence suggests that under some conditions the same
disturbances cause little or no distortion of the primary vortices. In the vortex
simulations of Ashurst & Meiburg (1988), an initial spanwise-periodic perturbation leads
to the formation of streamwise vortices in the braid region but has little effect on the
primary vortices themselves. An out-of-phase waviness of the cores of the primary
vortices, observed in the early stages of the numerical simulations of Ashurst &
Meiburg, is also observed downstream in the experiments of Lasheras & Choi (198R).
In both of these investigations, the waviness of the primary vortices seems to decay
downstream due to the continuous rotation of their cores. We further note that in the
experiments of Lasheras & Choi, streamwise-continuous vortex pairs appear
immediately downstream of a flow partition with an indented trailing edge, considerably
upstream of the first rollup of the primary vortices. These findings suggest that
formation of streamwise vortices in close proximity to the flow partition is mainly the
result of upstream nonuniformities in either the experimental apparatus or the flow
partition’s boundary layers. On the other hand, the observations of Bernal & Roshko
(1986) regarding the appearance of streamwise vortices uninfluenced by upstream
conditions indicate that, far enough downstream of the flow partition, streamwise
vortices may result from an instability of the primary vortices. A spanwise core
instability of the primary vortices is a viable mechanism because it is accompanied by

distortion of the strain field in the braid region.
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Pierrehumbert & Widnall (1982) identified two spanwise instability modes of the
primary vortices in their analysis of a shear layer modeled by an array of Stuart
vortices. The first mode, referred to as "translative instability,” is spanwise and
streamwise periodic. The streamwise wavelength is that of the two-dimensional flow.
The most unstable translative disturbance has a spanwise wavelength equal to two-
thirds the spacing of the undisturbed vortices, although disturbances amplify within a
broad band of wavelengths. The authors suggest that the translative instability leads to
the formation of streamwise vortices observed in the experiments of Breidenthal (1981).
Corcos & Lin (1984) assert that rollup of spanwise vorticity into a streamwise-periodic
array of vortices gives rise to a translative core instability that allows spanwise
perturbations to grow in such a way that the spanwise vortices are identically distorted.
Pierrehumbert (1986) later showed that elliptic two-dimensional vortices are unstable to
three-dimensional perturbations, with spanwise wavelengths much smaller than the
characteristic vortex core dimension. Pierrehumbert proposed this short-wave
instability as a mechanism for the direct transfer of energy from the spanwise vortices
into fine-scale turbulence. The second instability mode discussed by Pierrehumbert &
Widnall corresponds to spanwise-localized pairing of the primary vortices. This
instability mode has a streamwise wavelength twice that of the two-dimensional base
flow and, in contrast to the translative instability, has a short spanwise wavelength
cutoff. Experimental evidence that the primary vortices are subject to a core instability
having a spanwise wavelength longer than the streamwise (Kelvin-Helmholtz)
wavelength is also found in the work of Chandrsuda, Mehta, Weir & Bradshaw (1978)
and Browand & Troutt (1980, 1985). Some aspects of the core instability have been
studied recently by Nygaard & Glezer (1990, 1992).

This section of the present report focuses on the evolution of streamwise vortical
structures resulting from spanwise-periodic time-harmonic disturbances upstream of the

trailing edge of the flow partition. Although the findings of Breidenthal (1981) and
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Bernal & Roshko (1986) indicate that these streamwise vortices play a crucial role in the
mixing transition of the plane shear layer, the mechanism by which small-scale motions
necessary for such transition are generated has not been studied. The present
investigation is also concerned with unanswered questions regarding details of the
formation process of the streamwise vortices, their spanwise spacings, their effect on the

two-dimensional base flow, and their interaction with the spanwise vortices.

3.2. Formation of the Streamwise Vortices

Several experimental investigations of plane mixing layers have demonstrated that
streamwise vortices in the braid region can be triggered by spanwise-nonuniform
excitation using either passive (e.g.. Lasheras & Choi 1988 and Bell & Mehta 1989) or
active (Nygaard & Glezer 1989) devices mounted on the flow partition. Because
evolution of the streamwise vortical structures appears to be phase-locked to the two-
dimensional instability of the base flow, an important attribute of active devices such as
our surface heaters is that they allow for streamwise and spanwise instability modes to
be excited relatively independently. Spanwise-uniform time-harmonic excitation
provides a powerful tool for the manipulation of some streamwise instability modes,
with dramatic global effects on the flow. In particular, forcing at the natural (most
unstable) frequency produces a region downstream of the flow partition in which the
passage frequency of the primary vortices is equal to the forcing frequency and pairing
is inhibited (e.g.. Roberts 1985). Thus, the evolution of the streamwise vortices can be
studied phase-locked to the excitation waveform and in the absence of interactions
between the primary vortices.

In a previous investigation, which was supported by AFOSR Grant 86-0324. we

studied the effect of spanwise-nonuniform harmonic excitation,

E(z.t) = A(z)sin(w;t) ,

on the evolution of the streamwise vortices at relatively low free-stream velocities (18
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and 6 cm/sec) (Nygaard 1987; Fiedler et al. 1988). The streamwise vortices form at
spanwise locations corresponding to minima of A(z) and, at least close to the flow
partition, resemble lambda vortices in transitional flat-plate boundary layers (e.g.. Saric
& Thomas 1983). Within the spanwise resolution of the heating mosaic, the shape of
the streamwise vortices was almost invariant with respect to different spanwise-periodic
waveforms, A(z), having the same spanwise wavelength, A, .

In this subsection we discuss the early stages in the formation of the streamwise
vortices. The interaction between the streamwise and spanwise vortices and the
subsequent generation of small-scale motion necessary for mixing transition are
described in 883.3-3.5. In both experiments, pairing of the spanwise vortices is
inhibited by choosing v; to be approximately equal to the natural frequency of the
mixing layer. Measurements of the streamwise velocity component are obtained using
the hot-wire rake described in §2.1. The length of the velocity time series at each
measurement point corresponds to 400 cycles of the harmonic excitation. The data are
sampled at 128 v;.

The evolution of a spanwise-isolated streamwise vortex was studied by using
heating Mosaic | to synthesize a steady 16-element discretization of Eq(@) =
I - cos(2nz/\;), where \, is equal to the width of 10 heating elements. Because phase
jitter in the passage frequency of the spanwise vortices at the measurement station
decreases with U, the velocities of the two streams are reduced to 25 and 9 cm/sec and
the corresponding excitation frequency is vy = 3.7 Hz. During excitation of the
spanwise-uniform wave train, the flow is illuminated in the x-z plane by a strobe
triggered at a phase delay relative to the zero crossings of E(z,t), and photographed
using the Schlieren technique described in §2.3. The flow in the y-z plane was
visualized by means of dye injection on the low-speed side and was photographed
separately at the same phase relative to the zero crossings of E(z,t). Figure 3.1 is a

composite of eight pairs of side (x-y) and span (x-z) views taken at equal time intervals
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during the excitation period. The field of view is between 2.5 and 12.4 cm
downstream of the flow partition.

Figure 3.1(c) suggests that spanwise-nonuniform vorticity concentrations [at the
upstream (left) end of the (x-y) view in figure 3.la], referred to below as V,, first
appear on the crest of the two-dimensional wave prior to rollup of the vortex sheet into
a primary vortex. Owing to the spanwise-nonuniform excitation, V, develops an
upstream bend about its middle as it is advected downstream. The streamwise vortices
formed during previous cycles of the excitation wave train are observed at the center
and downstream end of the Schlieren view in figure 3.1(a) (referred to below as V, and
V3. respectively). In figures 3.1(b-d). the legs of V, appear to be connected to V| and
form a nearly quadrilateral vortex structure embedded in the deformed vortex sheet,
marked by dye in the corresponding sidc view. The downstream edge of the
quadrilateral structure lies un the high-speed side of a spanwise vortex, while the
upstream edge is deforma2d and st-etched by rollup of the following spanwise vortex.

As a result of the stretching of V,; and rollup of the spanwise vortex sheet, a new
hairpin eddy-like structure forms near the region of maximum curvature of the
upstream bend (figure 3.le). Previous experimental work on the formation of
streamwise vortices in the braid region emphasizes that streamwise vortices begin to
form near a stagnation point (in a reference frame moving with U.) between two
adjacent spanwise vortices and are subsequently stretched continuously in the upstream
and downstream directions (Lasheras e al. 1986; Lasheras & Choi 1988). Figure 3.1
suggests that variations in the streamwise strain field due to the Kelvin-Helmholtz
instability lead to formation of streamwise vortices even before rollup of the primary
vortices is completed. Streamwise vortices appear near the high-speed edge of a
primary vortex during its rollup, and are then continuously stretched in the upstream
direction toward the subsequent spanwise vortex. Consistent with the numerical
simulations of Buell & Mansour (1989), we note that, at least within the streamwise
domain shown here, neither the heads nor legs of the hairpin eddies appear to be

ingested into the spanwise vortices.
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The streamwise location at which streamwise vortices first appear is probably
related to the amplitude of the upstream disturbances leading to their formation. The
appearance of streamwise vortices before rollup of the primary vortices is reported by
Huang & Ho (1990), for an unforced plane mixing layer at relatively high Reynolds
number, and is also evident in the experiments of Lasheras & Choi (1988), where
streamwise counter-rotating vortex pairs appear immediately downstream of a flow
partition with an indented trailing edge. While the Lin-Corcos mechanism for the
formation of streamwise vortices (Lin & Corcos 1984) may be valid upstream of the
rollup of primary vortices, we note that streamwise vorticity can also develop in a
spanwise- and streamwise-uniform base flow. An example is the formation of
Langmuir circulations in the surface layers of natural waters (Leibovich 1983). These
counter-rotating vortex pairs form when the wind blows over water; their axes are
nearly parallel to the wind and their crosswind (i.e., spanwise) spacing scales with the
vorticity thickness.

While there is no question that spanwise-nonuniform excitation alters the
nominally two-dimensional base flow, the extraction of a three-dimensional vortical
structure from data of a single velocity component is not a trivial matter. Nevertheless,
such a three-dimensional structure would be invaluable as a first step in understanding
the dynamics of the flow. Such a vortical structure could be distinguished from the
rest of the flow by the high intensity of the rms velocity fluctuations, u'(x,t). A scheme
by which u'(x,t) is computed relative to each individual realization and then ensemble-
averaged ({u' (x,t))) has been implemented (Glezer, Katz & Wygnanski 1989). Unlike the
conventional {u'), the ensemble-averaged ("true") rms velocity fluctuations, {(u'/), are not
prone to spurious contributions from low-frequency variations of the flow relative to its
mean (e.g.. velocity fluctuations outside the mixing layer induced by passage of
spanwise vortices).

The “true" rms velocity fluctuations, phase-averaged over the excitation period,

are computed from detailed measurements of the streamwise velocity in y-z planes.
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The data shown in figure 3.2 are measured at x = 15 cm, where Regy,, = 570 for the
harmonically excited flow. The domain of measurements is rectangular (6 cm x 5.2 cm
in the y- and z-directions, respectively), and the measurement points are equally spaced
(2mm apart) in each coordinate. The surface, {u',) = 0.085 cm/sec in y-z-t coordinates,
is shown during two periods of the spanwise-uniform and spanwise-nonuniform
excitation waveforms. MNote that in this figure, as in all phase-locked plots below, time
increases to the left in order to facilitate comparison with the Schlieren and dye views in
which the vortical structures are advected to the right. Although these are not surfaces of
constant vorticity, they seem to effectively capture three-dimensional features of the
streamwise vortices that are similar to the numerical results of Metcalfe et al. (1987)
and Buell & Mansour (1989). Our data demonstrate that the streamwise vortex resulting
from spanwise-nonuniform excitation induces substantial spanwise variations of (u',)
within the primary vortex and in the braid region. Of particular note is the expansion
of turbulent interfaces, probably corresponding to small-scale motion on the high-speed
edge of the primary vortex (figure 3.28). These modifications of the nominally two-

dimensional base flow are further discussed in §3.4.

3.3. The Effect of Spanwise Wavelength

In figure 3.3, we show the effect of A, on the ensuing streamwise vortices at
higher free-stream velocities (30 and 10 cm/sec) and excitation frequency (v = S Hz)
than discussed in §3.2. The amplitude of the excitation waveform. A(z), is piecewise-
continuous and spanwise-periodic with wavelength, \,. To define the waveform, we let
Z =125 + A\;s, where z; is an arbitrary reference and 0 <s< 1. Then in each
wavelength, A(z) is given by A(z) = Ay for 0 <s <s;. A(z) = A for s; <s<s,, and
A(z) = Ay for s, < s < 1. In the present experiments, A, is taken as the widths of 2, 4,
8. and 16 elements of Mosaic Il (figures 3.3a,b,c,d, respectively), (s, - ;)\, is equal to

the width of one heating element, and Ay = 0.3 Ay. Because of its deep minima, this
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Figure 3.3
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waveform is effective in minimizing spanwise jitter in the locations of the ensuing
streamwise vortices. All Schlieren views in figure 3.3 were obtained at the same phase
relative to the harmonic wave train.

As mentioned above, the forced streamwise vortical structures bear considerable
resemblance to lambda vortices in a transitional flat-plate boundary layer. In the
present experiments, the included angle A between the legs of the streamwise vortices
decreases with decreasing \,. For relatively long A, (e.g., figure 3.3b), A is unchanged
because spanwise interaction among streamwise vortices is reduced. The existence of
spanwise-isolated streamwise vortices for A, > Axy (figure 3.3a) indicates that these
structures are not part of a single vortex that continuously loops back and forth
between adjacent spanwise vortices, as conjectured by Bernal & Roshko (1986). Figure
3.3 further suggests that, for a given excitation frequency. virtually any spanwise
wavelength synthesizable by the heating mosaic can be excited and can lead to the
formation of streamwise vortical structures. This is supported by the flow visualization
study of Lasheras & Choi (1988), where the average spanwise spacing of the streamwise
vortices (their figure 25a) appears to be much smaller inan the spanwise wavelength of
their corrugated flow partitior.

An important aspect of spanwise-nonuniform excitation at long ), (typically longer
than Agy) is shown in figures 3.3(a,4). In figure 3.3(a). the central spanwise vortex
deforms at midspan and develops an upstream bend. As shown in the experiments of
Lasheras & Choi (1988), the three-dimensional alignment of the approximately
streamwise vortices in the braid region is determined by the orientation of the strain
field induced by the primary vortices. The spanwise undulations of the primary
vortices modify the strain field in the braid region and consequently induce a
significant increase in A. Farther downstream, the upstream bend in the spanwise
vortex (on the right) is increased, and smaller-scale vortical tubes appear to be formed

near the head of the streamwise vortex. When A, is reduced (figure 3.35), the first
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spanwise vortex downstream of the flow partition (on the left) develops spanwise
undulations having the wavelength of the excitation. As in figure 3.3(a). the forced
streamwise vortices are located at the upstream bends of these undulations, and A
increases with downstream distance.

Of particular note are additional vortex tubes that appear along the legs of the
streamwise vortex in the braid region between the spanwise vortices in the center and
left of figure 3.3(6). These vortex tubes are probably associated with rollup of the
streamwise vortices. Such a mechanism is discussed by Pullin & Jacobs (1986) in their
numerical study of the nonlinear evolution of an array of inviscid counter-rotating
vortex pairs subjected to an applied stretching strain field. This leads to rollup of
multiple "secondary" streamwise vortices near each of the legs of a "primary"
streamwise vortex. All secondary streamwise vortices associated with a given primary
leg have the same sense of rotation. Lasheras er al. (1986) studied a streamwise vortex
forced by a small hemisphere mounted on the flow partition of a plane mixing layer
and proposed an induction mechanism for its spanwise spreading. The appearance of
additional vortical tubes in the experiments of Lasheras et al. is clearly connected with
undulation of the spanwise vortex. This deformation significantly modifies the vorticity
and strain distributions in the braid region and, hence, may trigger the secondary
instability of Pullin & Jacobs. In fact, forced streamwise vortices show little spanwise
spreading when the spanwise vorticity remains approximately two dimensional (figures
3.3¢,d). An upstream bend of the spanwise vortex is also apparent in the photographs
of Lasheras et al. (their figure 15, corresponding to figure C 34 here).

The undulations of the spanwise vortices result from an instability of their cores.
Some preliminary results regarding this core instability have been obtained by Nygaard
& Glezer (1990). It appears that, as a result of this instability, the primary vortices
undergo spanwise deformation, the wavelength of which typically exceeds A\gy. and

induce secondary vortical structures through deformation of the strain field in the braid
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region. Although the core instability is apparent in a number of previous experiments
(e.g.. Chandrsuda er al. 1978, Browand & Troutt 1985, and Lasheras & Choi 1988), no
previous investigation has established its connection to the formation of streamwise

vortices in the braid region.

3.4. Modification of the Two-Dimensional Base Flow by the Streamwise Vortices
The response of the flow to spanwise-nonuniform excitation may be evaluated
from ensemble-averaged [phase-locked to E(z,t)] time series of the streamwise velocity

perturbation,

(Upert (X, 1)} = (u(x. 1)) - Ux) ,

where U(x) is the mean flow velocity computed from the ensemble-averaged data,

Ty

Ux) = -T!; L (u(x. Hdt
and
Tf - I/Uf

is the temporal period of E(z.t).

In what follows, we study the effect of spanwise-nonuniform excitation on the
nominally two-dimensional base flow. The spanwise wavelength of the excitation
waveform E(z,t) is synthesized by four-element groups of Mosaic II (\, = 2.54 cm). An
instantaneous Schlieren visualization of the forced flow is shown in figure 3.3(c).

The response of the mixing layer to spanwise-uniform and spanwise-nonuniform
excitation close to the trailing edge of the flow partition is shown in figures 3.4(a) and
3.4(d), respectively, using contour plots of (upen(z.t)) measured at x = 5.1 cm and
Y = yg(x). The duration of the ensemble-averaged time series is 4T;, and the data are
taken equidistantly (2.5 mm apart) along the span. Shaded regions (indicated by dots)

correspond to (upen(z.t)) < 0. [Despite some spanwise nonuniformity (see also figure
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Figure 3.4
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2.65). the base flow is quite two-dimensional.] Even though the contour plots in figure
3.4 are planar cross sections of a three-dimensional flow at a fixed cross-stream
elevation, they contain useful structural information. The dark spanwise bands in
figure 3.4(a) represent times of most rapid velocity increase (or decrease) and can be
associated with phase fronts of the (excited) Kelvin-Helmholtz instability. Note that the
y-elevation of the probe is such that (upen(z.t)) < 0 during passage of the (high-speed)
crest of the two-dimensional instability wave.

At this streamwise station, the primary vortex rollup has just begun (figure 2.6a),
and the vortical structure excited by spanwise-ponuniform heating already has an
upstream bend about its middle as it is advected downstream (e.g., figure 3.1¢). The
induced velocity fluctuations, (upen(z.t)). in figure 3.4(b) are consistent with these
observations. As discussed in §3.3, the upstream bend of the streamwise vortical
structure first appears on the (high-speed) crest of the two-dimensional wave lying
above the cross-stream elevation of the probe at y = y,(x) (i.e., for (upen(z.t)) <0 iIn
figure 3.4a). Because the streamwise vortex is advected in a shearing flow, its induced
velocity field acts to move fluid down (or up) from higher (or lower) cross-stream
elevations. Hence, the streamwise velocity at a given y-elevation may be higher or
lower than it would be in the absence of spanwise-nonuniform excitation, and the
presence of the streamwise vortices is marked by local minima or maxima of (upen(z.t)).
For example, higher-momentum fluid from the high-speed side is moved down between
the counter-rotating legs of a streamwise vortex and, similarly, lower-momentum fluid
from the low-speed side is moved up between the legs of adjacent streamwise vortices.
This results in alternating local maxima and minima of velocity perturbations within the
negative (shaded) regions. The strength of velocity perturbations induced by the
streamwise vortices is time-periodic because these vortices, inclined in the streamwise
direction as they are advected past the measurement station. are themselves time-

periodic.
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Even though spanwise-nonuniform excitation has a marked effect on the phase-
averaged data close to the flow partition (cf, figure 3.49), its effect on the approximately
two-dimensional mean base flow is felt only farther downstream, as can be deduced
from cross-stream profiles of the temporal mean of the streamwise velocity. These
profiles are shown in figure 3.5(a) for spanwise-uniform excitation and figures 3.5(b,c)
for spanwise-nonuniform excitation. The velocity profiles in figures 3.5(5) and 3.5(c)
are measured at spanwise stations corresponding to passage of the head of a streamwise
vortex (i.e., its downstream tip) and halfway (A,/2) between heads of two adjacent
streamwise vortices (hereinafter referred to as the "tail"), respectively, The velocity
profiles in figure 3.5(a) are similar to those found in other investigations of mixing
layers subjected to harinonic forcing by other means (e.g.. Weisbrot 1984). Of
particular note .» ..¢ development of a slight velocity overshoot (exceeding U,) at the
high-speed <ide, reported earlier by Gaster, Kit & Wygnanski (1985) for a mechanically
forced flow. In addition to a velocity overshoot at the high-speed side, the
m :asurements of Weisbrot reveal a velocity undershoot at the low-speed side.

To the extent that streamwise derivatives of the time-averaged cross-stream
velocity component in a two-dimensional mixing layer are small compared to 8U/dy
(e.g., Townsend 1980), the mean spanwise vorticity, §1,. of the flow will be dominated
by the latter. Hence, the velocity overshoot evident in figure 3.5(c) may mark the
appearance of (small) negative values of {2, on the high- and low-speed edges of the
mixing layer. Although negative spanwise vorticity may also be present in the
unforced flow, its mean magnitude is likely to be considerably smaller owing to
substantial variation among the cross-stream widths of the primary vortices. The
phase-averaged measurements of Weisbrot (1984) indicate the existence of small
vorticity peaks at the high- and low-speed edges of the primary vortices; however, it is
not clear that these peaks are negative. On the other hand, careful measurements of

spanwise vorticity in an unforced mixing layer reveal negative concentrations of
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spanwise vorticity apparently originating from the boundary layer of the low-speed
stream on the flow partition (Lang 1985). We also note that streamwise velocity
overshoot (or undershoot) on the high-speed (or low-speed) edge of the mixing layer may
lead to a significant diminution in the momentum thickness, even though the width of
the mixing layer (as measured by the presence of vorticity) does not necessarily
decrease.

When the excitation waveform is spanwise-nonuniform, the mean velocity profiles
significantly distort downstream. Because the approximately streamwise vortices in the
braid region are inclined in the x-y plane, the profiles in figures 3.5(b,c) are most
strongly affected near their high- and low-speed edges, respectively. Furthermore,
since the streamwise vortical structures have their origin in hairpin eddies that form on
the high-speed side of the spanwise vortices {figure 3.1f), the mean profiles are first
distorted near {he high-speed edge. Because "localized" inflection points of the
distorted mean velocity profiles mark regions of large shear, their appearance has
important consequences from the standpoint of mixing transition. These regions are
associated with thin internal shear layers, in which the growth rate of small
disturbances is proportional to the local rate of strain and inversely proportional to the
shear layer thickness (Landahl & Mollo-Christensen 1986). The rapid amplification of
these small-scale disturbances is similar to the inviscid instability observed by
Klebanoff, Tidstrom & Sargent (1962) in a transitional boundary layer.

Distortion of the streamwise velocity profiles due to spanwise-nonuniform
excitation is not restricted to the cross-stream (x-y) plane. Surfaces of mean streamwise
velocity are also deformed in the y-z plane (figure 3.6 for x = 10.2 cm, and figure 3.7
for x = 17.8 cm). Spanwise-uniform excitation results in a reasonably two-dimensional
distribution of the mean streamwise velocity at x = 10.2 cm, while at x = 17.8 cm, some
nonuniformity associated with "natural" evolution of three-dimensional flow structures

is developed. The disturbances leading to these flow structures are most likely
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associated with imperfections in the experimental apparatus. The respective Reynolds
numbers based on the §panwise—averaged momentum thickness, 6(x), are 340 and 570.
When the excitation waveform is spanwise nonuniform, the temporal mean streamwise
velocity distribution develops trough- and ridge-like distortions aligned in the y-
direction and alternating in the z-direction with the spanwise wavelength of the
excitation waveform. Distortion of the mean streamwise velocity distribution resuits in
a substantial increase in 6(x) at these two streamwise locations and, consequently, in an
increase in the respective values of Ree(x) (490 and 950). Although this distortion is
strongest along the high- and low-speed edges of the mixing layer (i.e., at the heads and
tails of the streamwise vortices), it is evident throughout the entire velocity surface and
is accompanied by approximately spanwise-periodic inflection points in spanwise
profiles of the mean streamwise velocity at fixed y-elevations. As does the distortion of
the cross-stream profiles, these inflection points suggest the formation of local maxima
of spanwise strain rate and rapid amplification of small disturbances. The breakdown
of these rapidly amplifying structures leads to the generation of small-scale turbulence.
The formation of localized shear layers by interaction among the streamwise and
primary vortices is also suggested by Corcos (1988). Such shear layers may be formed
by the wrapping of spanwise vortex lines around cores of streamwise vortices.

The role of streamwise vortices in the formation of spanwise concentrations of
small-scale flow structures is demonstrated in spanwise contour plots of velocity power
spectra, P(z.v), (figure 3.8 at x = 10.2 cm, and figure 3.9 at x = 17.8 cm). These data
are plotted at y-elevations of the inflection points on the high- and low-speed edges of
the mean cross-stream velocity profiles that result from spanwise-nonuniform excitation
(cf. figures 3.56,c). Corresponding spectra for spanwise-uniform harmonic excitation
are shown for comparison in figures 3.8(a,c) and 3.9(a,c). The spanwise profile of the

mean streamwise velocity at the y-elevation of each contour plot is shown to the left.
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Bands of high-frequency spectral components that are approximately spanwise
periodic form when the flow is subjected to spanwise-nonuniform excitation. These
bands are centered around spanwise ext;ema of U, and the sharp spanwise gradients
along their edges approximately coincide with spanwise inflection points of U (figures
3.85,d and 3.95,d). Note that the spanwise positions of the bands near the high- and
low-speed edges of the mixing layer are offset by \,/2, as are the heads and tails of the
streamwise vortices. The formation of these bands near the inflection points suggests
that the inflection points play an important role in the generation of high-frequency
small-scale motion. Furthermore, at the spanwise locations of the bands, the amplitude
of the spectral components at the excitation frequency v; and its first harmonic, 2u;,
undergo considerable attenuation between x = 10.2cm and 17.8 cm, indicating
(spanwise-nonuniform) energy transfer from low to high frequencies. This process is
accompanied by a substantial reduction in the amplitude of higher harmonics of the
excitation frequency. A similar trend is apparent in the streamwise variation of the
power spectra of streamwise velocity in an unforced mixing layer undergoing small-
scale transition (Huang & Ho 1990).

Cross-stream integrated amplitudes of the spectral components of (uge(x,t)) at the
forcing frequency and its first harmonic, denoted by A, and A,, respectively, are
shown in figure 3.10 for spanwise-uniform and spanwise-nonuniform excitation (cf,
figures 3.5a-c). To the extent that the local slope of each curve is a measure of local
streamwise amplification rate (cf, e.g., Gaster et al. 1985), the value of x at which the
slope vanishes is the location of zero spatial amplification. When the flow is excited by
a spanwise-uniform wave train, A; increases somewhat between x = 5.1 cm and 7.6
cm, and then remains almost unchanged until x = 15.2 cm, where it begins to decay
(except possibly at the head location). The second harmonic content of (upen(x.t)) for
the case of spanwise-uniform excitation is indicative of nonlinear behavior of two-

dimensional spanwise vortices. It is remarkable that when the flow is subjected to
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spanwise-nonuniform excitation, streamwise distributions of A; and A, at spanwise
locations of the heads and tails of the streamwise vortices are quite similar to
corresponding amplitude distributions under spanwise-uniform excitation. This suggests
that at least within the streamwise domain considered here, the evolution of the
nominally two-dimensional spanwise vortices is almost unaffected by spanwise-
nonuniform excitation and the accompanying formation of the streamwise vortices. In
view of this finding, we conclude that attenuation of spectral components at the forcing
frequency and its higher harmonics is limited to the neighborhood of spanwise
inflection points induced by spanwise-nonuniform excitation (figures 3.8 and 3.9). The
direct numerical simulations of Riley, Mourad, Moser & Rogers (1988) show that two-
dimensional instability modes of the plane mixing layer also appear to be unaffected by
three-dimensional disturbances. We note that these conclusions may not be valid if ),

is long enough to excite the core instability (cf, figures 3.3ag-5).

3.5. The Evolution of Small-Scale Motion

The phase-averaged flow structure resulting from spanwise-nonuniform excitation
1s studied in detail in constant-x planes at x = 10.2 cm and 17.8 cm. These streamwise
locations are chosen because Schlieren visualization and preliminary measurements
indicated that the streamwise vortices are fully developed at x = 10.2 cm and. between
this station and x = 17.8 cm, three-dimensionality within the spanwise vortices and in
the braid region increases substantially. The data are taken on a rectangular grid
measuring 8.9 cm and 5.9 cm in the spanwise and cross-stream directions, respectively.

Phase-averaged turbulent fluctuations of the streamwise velocity component,
(u' (x.1)). are calculated from instantaneous velocity records (Glezer et al. 1989). This
technique uses a (digital) high-pass filter and, as discussed in §3.2, is extremely
effective in capturing small-scale streamwise motions associated with passage of large

coherent vortical structures at the measurement station. Turbulent structures can also
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be identified by an intermittency, y(x,t). defined in terms of the presence or absence of
small-scale fluctuations in space or time. In the present experiments, the temporal
intermittency is computed pointwise from the streamwise velocity, u(x.t). using the
procedure of Glezer & Coles (1990). The local rms deviation, €(x,t), from a least-
squares straight-line fit of three data points in the time series u(x,t) is computed for the
middle point and compared with a prescribed threshold. If €(x,t) exceeds the threshold,
the flow is called turbulent and the intermittency is set to unity at the middle point;
otherwise, it is set to zero The result is a time series, y(X,t), of ones and zeros. The
ensemble-averaged intermittency, {y(x.t)), varies between zero and one and may be
thought of as a measure of the probability that the flow is turbulent.

Figures 3.11(a-b), at x =10.2 cm., and figures 3.11{c-4), at x =17.8 cm, show
contour plots of {u';) and {y) in the y-t plane for spanwise-uniform excitation. At the
measurement station, passage of the spanwise vortex can be recognized by
concentrations of small-scale velocity fluctuations. Whereas at x = 10.2 cm, {u',) is
mostly concentrated in a relatively small region closer to the low-speed edge of the
vortex (figure 3.11a), at x = 17.8 cm (figure 3.11¢) the cross-stream distribution of (u’,)
within the spanwise vortex is considerably broader and has a lower maximum. The
cross-stream intermittency distribution during passage of the spanwise vortex at
x = 10.2 cm (figure 3.115) has two maxima, upstream and downstream, which appear to
be associated with entrainment of irrotational fluid from the low- and high-speed
streams, respectively. Three equally spaced, weak intermittency maxima in the braid
region correspond to higher harmonics in the velocity spectra (cf, figure 3.82) and can
be ccnnected with a Kelvin-Helmoltz instability of the material interface separating the
high- and low-speed fluid. Similar structures are also apparent in the numerical results
of Lummer discussed by Fiedler (1988). It is noteworthy that, unlike (f), corresponding
levels of (u'\) in the braid region are considerably lower than within the spanwise

vortices. This is because the intermittency data are sensitive to the presence of
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turbulent interfaces and are not a measure of turbulence intensity. As with (u',). the
cross-stream distribution of {y) at x = 17.8 cm (figure 3.11d) is broader and has a single
peak (cf, Oster & Wygnanski 1982).

That the phase-averaged structure of the base flow in the y-t plane is substantially
modified by spanwise-nonuniform excitation is demonstrated in contour plots of (u',)
and {7} at spanwise locations corresponding to heads and tails of the streamwise vortices
(figures 3.12 and 3.13, respectively). For x = 10.2 cm, at the spanwise locations of
heads of the streamwise vortices, regions of small-scale motion progressively
contaminate toward the high-speed side (figures 3.12a4,6). Farther downstream, the
heads of the streamwise vortices do not "wrap" around the spanwise vortices (as
suggested, for example, by the sketches of Lasheras & Choi 1988) but protrude in the
downstream direction toward the braid region (figures 3.12¢,d). As observed by Bernal
& Roshko (1986), the streamwise vortices tend toc move away from the spanwise
vortices, i.e., toward the high- and low-speed streams. Hence, the heads (or tails) of the
streamwise vortices are advected faster (or slower) than the spanwise vortices and can
protrude into the downstream (or upstream) braid regions. Similar behavior is evident
in the direct numerical simulation of a temporally developing mixing layer (Rogers &
Moser 1989) after pairing of the spanwise vortices.

The present results further indicate that the streamwise vortices may form closed
toroidal "ribs" around the primary vortices, which become part of "cat's-eye"-like
structures (discussed in more detail below). For x = 10.2 cm, at spanwise locations of
the tails, regions of small-scale motion are extended upstream near the low-speed edge
(figures 3.13a,6). Farther downstream (x = 17.8 cm), the tail of the streamwise vortex
has clearly moved away from the spanwise vortex and is stretched in the upstream
direction (figures 3.13c-d). While the global features, such as general orientation and
morphology of the members of a spanwise group of streamwise vortices, are preserved

during passage through the streamwise domain considered here, the detailed structure of
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individual vortices within that group may evolve and become dissimilar as the vortices
are advected downstream. This can be inferred from projections of three-dimensional
contours of (u',,} (shown in figures 3.17-3.19 and discussed below). Structural
differences between streamwise vortices of a given spanwise group can be related to
the onset of core instability of the primary vortices (cf, figures 3.3a,5).

Structural details of interfaces (or boundaries) separating turbulent and
nonturbulent fluid in shear flows can be studied by using zone-averaged turbulent

intensity (e.g., Glezer et al. 1989),

, - 'l ty(x. )
(U’ (x 0 (yx.)

Zone-averaged flow quantities are normally biased toward (and hence emphasize) flow
features near turbulent boundaries characterized by low values of {y). The values of
the zone-averaged u', where (y) = 1, are approximately equal to {u';}. Although u' and
v vanish outside turbulent regions, in the present manuscript {u',,) is calculated only
for {y) = 0.005.

Contours of (u',,) in the y-t plane are shown in figure 3.14(a) for spanwise-
uniform excitation and figure 3.14(6-¢) for spanwise-nonuniform excitation. Figures
3.14(b-e) show cross sections of a streamwise vortex at four equally spaced spanwise
locations between the head and tail of the vortex. The head of the streamwise vortex
(figure 3.144) appears to be separated from the spanwise vortex at the latter's upstream
edge, as may be inferred from a narrow region of lower turbulence intensity between
them. A cross section through a leg of the streamwise vortex (figure 3.14c¢) shows a
considerable increase in turbulence intensity in the braid region. The local peak in
turbulence intensity within the leg is due to its intersection with the y-t plane at a
small angle. The interaction between the tail of the streamwise vortex and the
spanwise vortex is shown in figures 3.14(d-¢) and is accompanied by reduction in

turbulence intensity within the core of the primary vortex. This reduction occurs at
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spanwise locations that approximately coincide with legs of the streamwise vortices at
the low-speed edge of the primary vortex (see also figure 3.15g below). Note also the
upstream extension (toward the braid region) of the low-speed edge of the primary
vortex (figure 3.14e).

The phase-averaged flow structure was also studied in y-z planes at different
phase delays relative to the zero crossings of the time-harmonic excitation, E(z,t). In
each of figures 3.15(a-#). for x = 10.2 cm, and figures 3.16(a-4), for x = 17.8 cm, we
show four pairs of contour plots of {u',,) taken at equal time intervals during the
excitation period. These times are referred to below as t|, t,, t3, and t;, and are
chosen so that t; and t3 correspond approximately to passage of the centers of the braid
region and the core of the spanwise vortex (as measured by the peak of {u',,)).
respectively. The contour plots (a-d) of each figure are for spanwise-uniform
excitation. Because cross sections in the y-z plane are extremely sensitive to spanwise
undulations of the primary vortices, the data in figures 3.15 and 3.16 are actually
plotted along lines of constant spanwise phase of the two-dimensional base flow. The
necessary phase information is obtained from a (discrete) Fast Fourier Transform of the
velocity time series measured at a y-elevation outside the mixing layer on the high-
speed side (the largest spanwise phase variation is 27°).

Spanwise concentrations of zone-averaged turbulence intensity in the braid region
are clearly associated with the legs of the streamwise vortices (figure 3.15¢). in
agreement with the observations of Breidenthal (1981). In the absence of the streamwise
vortices (figure 3.15a), there is very little turbulent activity in the braid region. The y-
z plane at t = t, is closer to the downstream spanwise vortex and. hence, the streamwise
vortices are at higher y-elevations than at t =t,. Furthermore, at t =t, (counter-
rotating) pairs of streamwise vortices are closer to each other, indicating that the heads
begin to form. We note that tails of streamwise vortices from the downstream braid
region appear at the low-speed side. The heads and tails of the streamwise vortices are

also apparent at the downstream edge of the spanwise vortex (t = t,, figure 3.15/).
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The contour plots at t = t3 (figures 3.15¢,8) represent cross sections through the
center of the core of the spanwise vortex (as may be measured by a maximum of the
turbulence intensity). Modification of the structure of the primary vortex by spanwise-
nonuniform excitation is evident in the appearance of concentrations of turbulent
intensity at spanwise locations of the heads of the streamwise vortices and from
breakdown of the primary vortex core into spanwise-periodic concentrations of small-
scale motion having a spanwise wavelength of approximately A\ /2. The spanwise
locations of these turbulence concentrations also coincide with inflection points of the
mean spanwise profile of streamwise velocity (e.g., figure 3.8). Furthermore, as
discussed in §3.5 below, breakdown of the core is connected with the formation of
approximately spanwise-periodic concentrations of all three vorticity components within
the spanwise vortex as a result of its interaction with the streamwise vortices. We
believe that this breakdown is a precursor to the rapid spreading of three-dimensional
small-scale motion within the core of the spanwise vortex, which is necessary for
mixing transition. Figures 3.16(e-4) show that at x = 17.8 cm the flow is clearly
dominated by the streamwise vortices. Of particular note is the reduction in the
spanwise periodicity of the concentrations of small-scale motion within the core of the
primary vortex (compare figure 3.16g to 3.15g), which suggests spanwise mixing. This
evolution is accompanied by a significant increase in the cross-stream width of the
mixing layer. The corresponding data for spanwise-uniform excitation (figures 3.16a-d)
show less cross-stream spreading and significantly less spanwise nonuniformity within
the primary vortex and the braid region.

As noted in §3.2, iso-surfaces of zone-averaged rms streamwise velocity
fluctuations may be useful in studying the three-dimensional structure of the flow.
Figures 3.17 and 3.18 show the surface {u',,(v.z.t)}/AU = 0.03 at x = 10.2 cm and 17.8
cm, respectively, during two periods of the excitation waveform. These and the

following iso-surface plots (figures 3.19 and 3.22 below) begin at t = t; - T;/8, i.e, at a
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cross section in the y-z plane close to the center of the braid region (cf, figures 3.15a,¢).
When the excitation is spanwise-uniform, the spanwise vortices and the braid region
are approximately two dimensional. The spanwise trough along each primary vortex
separates upstream and downstream regions of concentrated velocity fluctuations,
apparently connected with entrainment of high- and low-speed fluid, respectively, into
the spanwise vortex. Spanwise-nonuniform excitation leads to formation of structures
with substantial spanwise nonuniformity. The heads of the streamwise vortices appear
on the high-speed side of the primary vortex, with spanwise spacings approximately
equal to the excitation wavelength, \,. The legs of streamwise vortices in the braid
region are not all of equal strength, presumably due to spanwise variations in the strain
field, which is in turn affected by the primary vortices. (As shown in figirre 3.3,
spanwise undulations of the primary vortices have a substantial effect on the evolution
of the streamwise vortices.) Figure 3.17() further suggests that appearance of the
streamwise vortices results in substantial enlargement of turbulent interfaces into the
free streams.

For spanwise-uniform excitation, figure 3.18(a) shows that, farther downstream.
the primary vortices have developed spanwise irregularities. These appear to be
associated with formation of unforced streamwise vortices. Note the decrease in the
inclination relative to the x-direction of the major axis of the nominally oval cross
section of these vortices. Because the fundamental instability mode becomes neutral
where the major axis is oriented normal to the streamwise direction (roughly at x = 10.2
c¢m in our experiments) and decays thereafter, this change has been connected by
Weisbrot (1984) with spatial amplification of harmonically excited waves. For
spanwise-nonuniform excitation, figure 3.18(d) shows a substantial increase in the cross-
stream width of the mixing layer (as may be defined by spreading of turbulent
interfaces). although this surface does not show details of the streamwise structures.

For x = 17.8 cm, the surface (u',,(y.z.t))/AU = 0.055 (figure 3.19) indicates that the
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heads and tails of the streamwise vortices protrude into the downstream and upstream
braid regions, respectively. As discussed above, this protrusion is possible because the
heads and tails are advected at higher and lower velocities than the high-speed and
low-speed edges of the primary vortices, respectively. Figure 3.19 also suggests the
formation of approximately toroidal regions of {u',,) around the primary vortices due to
the upstream and downstream protrusion of the streamwise vortices (see also figure

3.34).

3.6. An Approximation to Cross-Stream Vorticity

We next focus attention on the phase-averaged cross-stream component of
vorticity., (Q,) = 3(u)/0z - 8(w)/dx. Owing to phase averaging, characteristic length
scales in the spanwise directionn are smaller than those in the streamwise direction.
Hence, the ensemble-averaged cross-stream vorticity components may be approximated
by (ﬁy) = Ju(x,t))/dz. Although it is clear that this approximation makes it impossible
to distinguish between vortical and irrotational distortions of the streamwise velocity
profile, its use in what follows enables us to develop a three-dimensional structure of
the streamwise vortices. Contours of (ﬁy) are shown in figures 3.20, for x = 10.2 cm,
and figures 3.21. for x = 17.8 cm, at t = t, t,, t3, and t4 (cf, figures 3.15 and 3.16). In
most of the braid region, the vorticity within the streamwise vortices is likely to have
two approximately equal components in the x- and y-directions (2, and Qy). Thus,
streamwise vortices in the y-z plane at t = t; (figure 3.20¢) may be recognized by
alternating concentrations of positive and negative <§y). coinciding with concentrations
of (u',,) in figure 3.15(¢). It should be noted that the level of (ﬁy) is quite low for
spanwise-uniform excilation (figure 3.20a). A notable feature of the results for
spanwise-nonuniform excitation (figures 3.20e-4# and 3.2le-4) is the downstream
preservation of spanwise (and streamwise) coherence of the phase-averaged flow
features. In contrast, contour plots of {u',,) have less spanwise coherence at x = 17.8

cm (figures 3.16e-A) than at x = 10.2 cm (figures 3.15e-A).
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Of particular interest is the distribution of ((NZ},) within the primary vortex core
when the mixing layer is subjected to spanwise-nonuniform excitation. [Note for
comparison the corresponding distributions for spanwise-uniform excitation in figure
3.20(c) for x = 10.2 cm and figure 3.21(c) for x = 17.8 cm.] The distribution of (éy) in
the y-z plane at t = t3 (figures 3.20g and 3.21g) is comprised of three approximately
regular spanwise rows, each consisting of approximately spanwise-periodic
concentrations of ((NZY) of alternating signs having a wavelength \,/2. Concentrations of
(5y) of the same sign in the top and bottom rows occur at approximately the same z-
coordinate and appear to be associated with streamwise vortices in the upstream and
downstream braid regions, respectively. The middle row (within the core of the
spanwise vortex) is offset in the z-direction relative to the upper and lower rows by
A, /2.

A strikingly similar distribution of the streamwise vorticity. Q. is found in direct
numerical simulations of a mixing layer (Buell & Mansour 1989) that allow for
streamwise growth. The spanwise distribution of , leads to spanwise-periodic
intensification and weakening of the spanwise vorticity, Q,. and the formation of cup-
shaped concentrations. The cups form at the center of quadrupoles comprised of four
adjacent concentrations of £, (two in the middle row), which produce positive spanwise
strain (i.e.. stretching of spanwise vorticity). The spanwise locations of the resulting
cups alternate above and below the middle row much like the heads and tails of the

streamwise vortices. The distribution of cross-stream vorticity, §2 also has a

v
quadrupolar structure very similar to that of figures 3.20(g) and 3.21(g) (Buell, private
communication, 1990). These distributions of £, and Q, within the cores of the
primary vortices may result from vortex lines looping between cups. In connection
with the spanwise-periodic concentrations of {u',,) in figure 3.15(g), we note that the
upper and lower cups in the results of Buell & Mansour appear at similar spanwise

locations and, hence. are likely related to the spreading of small-scale motion within the

core of the primary vortex.
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The existence of spanwise concentrations of (5y) in the upper and lower rows of

® figures 3.20(g) and 3.21(g) may be jointly due to tilting of spanwise vortices by
streamwise vortices and to the transpart of cross-stream vorticity along the legs of the

streamwise vortices in the upstream and downstream directions. [t should be noted that

o axial flow along the legs of the streamwise vortices (associated with vorticity transport)
can also contribute to mixing {or at least stirring) of fluid from both streams. The

apparent "tagging" of the streamwise vortices by (ﬁy) allows for study of their

® protrusion into the upstream and downstream braid regions (figure 3.19). Contour plots
of (S~Zy) at t = t; and ty (figures 3.2le,4) show vertical stacks of concentrations (pairs

and triplets) of the same sign, representing cross sections of streamwise vortices from

k ¢ the upstream and downstream braid regions. As mentioned in §3.4, the numerical
results of Rogers & Moser (1989) show that (after pairing of two primary vortices is
completed) streamwise vortices are stretched beyond the upstream and downstream
Py spanwise vortices and toward the respective upstream and downstream braid regions.

Contours of 8(v)/dz in the braid region (approximating (£, )) measured by Huang & Ho

(1990) show the appearance of cross-stream (vertical) pairs of concentrations of 2,.

Those data were obtained downstream of the first rollup of the primary vortices, and
r the authors remarked that the formation of streamwise vortices began imrmediately
dowastream of the flow partition.

Given the qualitative agreement between our measurements and the numerical
results of Buell & Mansour (1989) and Rogers & Moser (1989), we believe that. even
though (SNZY) is only an approximation for the cross-stream vorticity component, it is
nevertheless useful in marking the streamwise vortices. Figures 3.22(a,5) show plots of
the surface (gly(y.z,t)) = 4 sec’! at x = 10.2 and 17.8 cm. respectively (cf. figures 3.175
and 185). At x = 10.2 cm, the legs of the streamwise vortices in the braid region are
unmistakable. Although the primary vortices are not immediately visible here, they can

be identified by the curvature of the nearby streamwise vortices and by spanwise
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concentrations of (ﬁy) (figure 3.20g). At x = 17.8 cm, the protrusion of streamwise
vortices at some spanwise locations gives the appearance of a "cat's-eye"-like surface
around the primary vortex. In the braid region, this surface is comprised of the "local"
streamwise vortex, as well as streamwise vortices from the upstream and downstream
braid regions. A cross section of this structure in the y-t plane (at x « 17.8 cm, z =
-1.3 cm) is shown in figure 3.23. At this spanwise location, the "cat's-eye" structure is
already apparent at the high-speed edge. while the leg of the streamwise vortex at the
low-speed edge is stretched in the upstream direction. A vertical stack of three
streamwise vortices in the braid region can also be identified at some spanwise locations
in contour plots of ($~2y(y.z.t)) (figure 3.21¢) and, as mentioned above, is also evident in

the numerical results of Rogers & Moser.

3.7. Conclusions

Previous investigations have demonstrated that an unforced plane mixing layer is
extremely receptive to small perturbations originating upstream of the flow partition.
These perturbations result in spanwise concentrations of streamwise and cross-stream
vorticity downstream of the flow partition and, subsequently, in the formation of
streamwise vortices bearing considerable resemblance to lambda vortices in a
transitional boundary layer. In the present investigation, streamwise vortices are
induced by a time-harmonic heat input, which has a spanwise-periodic amplitude
distribution. using a mosaic of surface film heaters flush-mounted on the flow partition.
The streamwise vortices form downstream of the flow partition, but upstream of the
first rollup of the primary vortices, presumably due to streamwise strain induced by the
primary vortices (Lin & Corcos 1984). Following the next rollup, the streamwise
vortices reside in the braid region between consecutive primary vortices.

We have found that, for a given excitation frequency, vi:tually any spanwise

wavelength, \,. synthesizable by the heating mosaic can be excitel ard can lead to the
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formation of streamwise vortices. When the excitation wavelength is smaller than the
initial wavelength of the Kelvin-Helmholtz instability, Agy. the streamwise vortices
become narrower with decreasing \, due to spanwise interactions. At longer excitation
wavelengths, the streamwise vortices become nearly isolated in the spanwise direction,
and their shape appears to be wavelength independent. In connection with these
results, it is important to recognize that, in all laboratory facilities, spanwise-nonuniform
vorticity distributions are transported through boundary layers on the flow partition and
may undergo amplification or decay. Hence, the receptivity of these boundary layers is
inherently coupled to that of the ensuing shear layer. Furthermore, the sensitivity of
the plane mixing layer (and the upstream boundary layers) to spanwise-isolated
disturbances suggests that the streamwise growth of streamwise vortices is the result of
a localized. rather than a global, spanwise instability mechanism.

The spanwise excitation wavelength has a profound effect on the primary vortices.
When X, exceeds Agy. the primary vortices develop spanwise undulations, persisting
throughout the streamwise domain of the present observations. These undulations
appear to be associated with a (translative) core instability of the primary vortices.
Because the strain field within the braid region is dominated by the adjacent spanwise
vortices, these undulations are accompanled by an increase in the spread angle of the
streamwise vortices, and the appearance of additional vortex tubes along their legs.
When A, < A\gy. the spanwise vortices appear to be stable (as may be judged by the
absence of spanwise undulations) to upstream disturbances that lead to the formation of
streamwise vortices. Because of subsequent interaction among the streamwise and
spanwise vortices, the direct effect of these disturbances on the vorticity distribution
within the spanwise vortices cannot be assessed.

An important objective of the present experiments has been the identification of a
mechanism which, following the appearance of streamwise vortices, leads to the

generation of small-scale motion and possibly to mixing transition. We have found the
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appearance of streamwise vortices to be accompanied by significant distortions in
distributions of mean streamwise velocity. These distortions have the shape of troughs
and ridges aligned in the cross-stream direction, alternate at the excitation wavelength
\,. and are strongest at the high- and low-speed edges of the mixing layer (i.e.. at the
heads and tails of the streamwise vortices). These distortions result in spanwise-
periodic inflection points not present in corresponding velocity distributions of the
unforced flow. Inflection points of the mean velocity distribution indicate the
formation of locally unstable regions of large shear in which broadband perturbations
already present in the base flow undergo rapid amplification and breakdown to small-
scale motion. Velocity spectra at cross-stream elevations of the inflection points develop
spanwise-periodic bands of high-frequency spectral components centered around the
heads and tails of the streamwise vortices.

As a result of interaction with the streamwise vortices, the primary vortices
develop spanwise-periodic concentrations of small-scale motion having a spanwise
wavelength of approximately \,/2 within their ccres. We believe that this breakdown
of the cores of the primary vortices is a precursor to mixing transition because farther
downstream corresponding distributions of small-scale motion have less spanwise
coherance. We note that this loss of coherence does not affect other phase-averaged
quantities, such as velocity perturbations. The establishment of spanwise-periodic
concentrations of small-scale motion is probably associated with the inflectional
instability of the mean streamwise velocity distribution discussed above, because such
instability at the low- and high-speed edges of the mixing layer leads to spanwise-
periodic entrainment variations. Furthermore, these inflection points are presumably
related to spanwise-periodic concentrations of all three vorticity components within the
spanwise vortices. The evolution of these vorticity concentrations has been discovered
by direct numerical simulation (e.g., Buell & Mansour 1989), and their presence in the

flow can also be deduced from the present data. The numerical simulations predict the
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formation of cup-shaped concentrations of spanwise vorticity, the spanwise locations of
which almost coincide with concentrations of small-scale motion in the present data.
The apparent connection between spanwise concentrations of small-scale motion and the
changes in the vorticity field is indicative of the mechanisms that precede the onset of
mixing transition.

Finally, the research described here utilizes a nominally two-dimensional base flow
in which pairing of the primary vortices is inhibited by means of spanwise-uniform
harmonic excitation. Experimental results in an unforced mixing layer suggest that
small-scale transition occurs only after the first pairing of the spanwise vortices (e.g.,
Huang & Ho 1990). Because our findings indicate that mixing transition in a plane
shear layer subjected to spanwise-nonuniform excitation may be possible in the absence of
pairing, we have recently begun to investigate the effect on the generation of small-
scale motion of the pairing of primary vortices accomplished by periodic excitation at
the natural frequency and its first subharmonic. The evolution of small-scale motion is

being studied in the presence and absence of streamwise vortices.
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4. Phase Excitation of a Plane Shear Layer

4.1. Introduction

Experimental investigations of nominally two-dimensional plane shear layers
suggest that substantial spanwise deformations of the primary vortices can result from
relatively small disturbances in the free streams. Of particular note are the flow
visualization photographs of Chandrsuda, Mehta, Weir & Bradshaw (1978), which show
that spatially nonuniform entrainment into a single stream mixing layer can lead to
spanwise-nonuniform pairing and branching of the primary vortices. Browand &
Troutt (1980, 1985) used time series of instantaneous spanwise profiles of the
streamwise velocity in a two-stream mixing layer to detect irregular spanwise patterns.
which the authors described as vortex "terminations" or "branches." These patterns
were attributed in a later paper (Browand & Ho 1987) to spanwise-nonuniform pairing
interactions between adjacent primary vortices due to slight spanwise variations in the
free-stream velocities. This and other experimental evidence (e.g., Keller, Elizey, Pitz.
Shephard & Daily, 1988; Delville, Bellin, Garem & Bonnet 1988) indicate that the
characteristic spanwise wavelength of the deformations of the primary vortices is
typically larger than the streamwise wavelength of the Kelvir- Helmholtz instability A\gy
of the base flow.

The evolution of the primary (spanwise) vortices in a plane mixing layer has been
connected with the propagation and amplification of two-dimensional instability waves
(e.g.. Ho & Huerre 1984). The Strouhal number of the most-amplified wave
corresponds to the natural frequency of the mixing layer, and the associated phase
velocity is equal to the average velocity. U.. of the two streams. This implies that even
small spanwise variations in U, can lead to significant spanwise phase distortions of the
unstable wave train, and, as a result, to spanwise-nonuniform rollup and deformations
of the ensuing primary vortices. Such deformations are clearly apparent in the flow
visualization photographs of Lasheras & Choi (1988), which were taken in a shear layer

having spanwise-nonuniform free-stream velocity distributions.
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Core deformations of the primary vortices can apparently be effected by the
introduction of time-dependent spanwise phase perturbations at the trailing edge of the
flow partition. Browand & Prost-Domasky (1990) and Dallara & Browand (1992) used a
spanwise array of speakers to excite two adjacent spanwise segments of a two-stream
mixing layer with time-harmonic wave trains having slightly different frequencies.
This excitation leads to the appearance of spanwise defects in time series of
instantaneous spanwise profiles of the streamwise velocity that are similar to the
unforced patterns previously observed by Browand & Troutt (1980, 1985). The defects
first appear at spanwise positions corresponding to frequency discontinuities and are a
precursor to the appearance of additional spanwise defects farther downstream.
Because the two frequencies are very close (f, = 1.1f,), the two spanwise segments of
the excitation waveform may be thought of as two almost identical wave trains
undergoing a slow time-periodic phase shift at their beat frequency (0.1f;). Hence, it
may be argued that defects appear (at the beat frequency) at spanwise positions of
phase discontinuities of the excitation waveform.

It is important to recognize that the measurements of Browand and his co-workers
were taken at a fixed cross-stream elevation near the outer edge of the mixing layer
(Browand & Troutt 1980, 1985; Browand & Prost-Domasky 1990). Hence, ostensibly the
defects are the footprints of three-dimensional vortical structures within the shear layer.
Such structures were observed by Nygaard & Glezer (1990) in a preliminary
investigation of the effect of spanwise-nonuniform phase excitation on the evolution of
a two-stream shear layer. The excitation waveform was a time-harmonic wave train
having a piecewise continuous spanwise-periodic phase distribution with a constant
phase difference, A¢. It was found that the primary vortices undergo spanwise
deformation, the wavelength of which typically exceeds Mgy, and induce secondary
vortical structures, the shape and strength of which vary with A®. In particular, when

Ad = 180°, the primary vortices and the induced secondary vortices appear to be of
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comparable strength and diamond-shape vortex cells appear in the spanwise (x.z) plane
of the mixing layer.

Spanwise instability modes of the shear layer that can lead to core deformations of
the primary vortices have been studied analytically and numerically. In an analysis of
a shear layer modeled by an array of Stuart vortices, Pierrehumbert & Widnall (1982)
identified two such instability modes resulting from interaction of two oblique time-
harmonic wave trains having equal amplitudes and opposite wave angles. The first
mode, referred to as "translative instability," is spanwise and streamwise periodic. The
authors conjectured that the translative instability can lead to the formation of
streamwise vortices, which had been observed in the experiments of Breidenthal (1978).
In a related study. Corcos & Lin (1984) showed that the rollup of spanwise vorticity
into a streamwise-periodic array of vortices can give rise to a translative core
instability, which allows spanwise perturbations to grow 1n such a way that all
spanwise vortices are identically distorted. The second instability mode identified by
Pierrehumbert & Widnall is subharmonic, can lead to spanwise-localized pa.ring of the
primary vortices, and has a short spanwise wavelength cutoff, below which three-
dimensional disturbances do not amplify. A similar instability was also observed in a
numerical study by Meiburg (personal communication, 1990).

In numerical simulations of a temporally evolving mixing layer, Comte & Lesieur
(1990) investigated the evolution of the subharmonic instability and the topology of the
streamwise vortices. They found that the introduction of small, random three-
dimensional isotropic disturbances can lead to spanwise-nonuniform pairing of the
primary vortices with a characteristic spanwise wavelength that is four times greater
than the streamwise wavelength of the Keivin-Helmholtz instability. The addition of
two-dimensional disturbances leads to suppression of spanwise-nonuniform pairing. an
in-phase waviness of the primary vortices. and the formation of streamwise vortices in

the braid region.




- 80 -

That deformations of the primary vortices are an important ingredient in the
evolution of the flow, even at high speeds, is demonstrated by the direct numerical
simulations of a compressible mixing layer by Sandham & Reynolds (1991). Using
random noise as the initial condition, the authors found that oblique waves (which lead
to the formation of oblique primary vortices) are the most rapidly amplified instabilities
for convective Mach numbers M, > 0.6. [While we are unaware of any other previous
experiments in which a plane shear layer was forced with a time-harmonic oblique
wave train, the low-speed experiments of Roos, Kegelman & Kibens (1989) in a shear
layer facility having a flow partition with a swept trailing edge clearly demonstrate the
receptivity of the flow to oblique disturbances.] Sandham & Reynolds further propose
that the nonlinear development of a single oblique wave and pairs of equal and opposite
oblique waves leads to the formation of oblique vortices and pairs of staggered A
vortices, respectively.

The numerical and analytical investigations cited above clearly suggest that the
plane shear layer is receptive to time-harmonic excitation having spanwise nonuniform
phase distribution. while experimental evidence suggests that spanwise phase distortion
of two-dimensional instability modes can have dramatic effects on the rollup and
evolution of the primary vortices. The present work builds on these findings and
focuses on the evolution of three-dimensional vortical structures resulting from spanwise
phase nonuniformities of the fundamental and subharmonic instabilities of the base
flow.

As discussed above, experimental observations suggest that phase distortions of the
nominally two-dimensional instability modes in a plane shear layer can lead to
significant distortions of the ensuing primary and secondary vortical structures. In most
of these investigations, phase distortions resulted from uncontrollable and unknown
disturbances in the free streams. Controlled excitation of phase disturbances has been

limited to time-periodic phase distortions by means of spanwise variations of the forcing
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frequency (Browand & Troutt 1980, 1985; Browand & Prost-Domasky 1990) and to
passive excitation of oblique instability modes by means of geometrical alterations in the
flow partition (Roos er al. 1989). The present investigation focuses on the effect of
controlled phase excitation on the evolution of the primary and secondary vortices. In
most of the experiments described below, the free-stream velocities are 30 and 10

cm/sec and the excitation frequency is vy = 5 Hz.

4.2. Phase Excitation Using Surface Heaters
Due to the quadratic dependence of Joulean dissipation on input voltage to the

heaters, the spanwise distribution of input excitation power is given by
E(z.1) = Eq(@)}{] + cosfws(z)t + &(2)]} .

where Ey(z) is the mean power, v;(2) = wp(z)/2r is the spanwise distribution of
excitation frequency, and ¢(z) is the spanwise phase distribution. The linear heater
array described in 82.1 is used to synthesize a 32-element discretization of E(z.1), where
Ey(z). w(z). and &(z) are, in principle, arbitrary and can be programmed from the
laboratory computer. In the experiments of Nygaard & Glezer (1991), Ey(z) was
piecewise constant and spanwise periodic, and v; and ¢ were constant. We note that
spanwise-amplitude modulation of the excitation wave train does not distort its
spanwise phase. In what follows, time-invariant phase excitation at a fixed v; is
effected by spanwise-linear and spanwise-periodic piecewise-constant phase
distributions ¢(z) and Cbsp(z). respectively. The spanwise-linear phase distribution
$,(z) = Bz results in a time-harmonic oblique wave having a spanwise wave number .
In the present experiments, 8 < 0.87 cm-!, corresponding to phase increments
Ad, < 6n1/32 between adjacent heaters. Spanwise-linear phase distributions were used
by Robey (1987) and Schneider (1989) in experimental investigations of oblique waves

in a flat-plate boundary layer.
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To define &,(z). we let z = zy+\;s, where z; is an arbitrary reference, A, is the
spanwise wavelength, and 0 <s < 1. Then, in each wavelength, $,,(z) is given by
b, =0 for 0<s<s; and s; <s <1 (Where s; <s;), and &g, = &P for 5, <s<s;.
In the present experiments, \, is taken to be the width of 2, 4, 8 and 16 elements of
the linear heating array, s,-s; = 0.5, and 0 < A® < n. With ¢(z) = d>sp(z), E(z.t) can be

expanded in Fourier series,

E(z.t) = E4[1 + e(z.0)] .

where

o0
- cos| A2 2], . fae] ) 4 1. 2@n-l)nz
e(z.t) = cos[ > ]cos [wft +5 ] + sm[ > ]sm [wft *3 ]Z[2n-l]sm x .

n=1]

Thus, for a given A®, E(z.t) is a linear superposition of a time-harmonic spanwise-
uniform wave train and pairs of equal and opposite oblique waves having spanwise
wave numbers 8, = (2n-1)2n/x,. The amplitudes of the spanwise-uniform and oblique
wave trains are proportional to cos(A®/2) and sin(Ad/2), respectively (the amplitudes of
the oblique waves also decrease like 1/n). Hence, when A® = 0, E(z,t) is a spanwise
uniform wave train and, when A® = 7, E(z.t) is a superposition of pairs of equal and
opposite oblique waves only.

We note that ¢sp(z) was chosen because, unlike continuously differentiable
waveforms (e.g.. a sinusoidal distribution), E{z,t) can be easily discretized by the heater
array for any A, that is equal to the width of an integer number of heating elements.
Furthermore, as shown in §3.3, when A¢ = n, there exists a short wavelength cutoff,
Aerir» below which E(z.t) is not amplified. Thus, it may be argued t:at there is a
corresponding cutoff spanwise wave number, B.,. such that pairs of equal and opposite
oblique waves are attenuated when B8, > B.;,. Hence, for small \,, E(z.t) is effectively
a linear superposition of a two-dimensional wave train and a single pair of oblique

waves, all at the same (excitation) frequency.
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The response of the flow to phase excitation close to the trailing edge of the flow
partition is shown in time plots of ensemble-averaged spanwise distributions of the
streamwise velocity perturbation, (upen(z‘t)) (figure 4.1). [The ensemble-averaged
streamwise velocity, {u(x,t)), is phase-locked to E(z,t) and (Upert (X, 1) = (u(x.t) - U(x),
where U(x) is the mean flow velocity.] These data are measured at x = 5.1 ¢cm and
y = ¥g [yg is the cross-stream elevation where U(x) = U, = (U;+U,)/2]. In figure 4.1,
the origins of successive profiles are equally displaced in time, producing z-t maps that
capture spanwise features of the forced flow before the rollup of the primary vortices
is completed. The centers of the dark bands correspond to extrema of (upen(z. ).

When the excitation waveform is spanwise-uniform (figure 4.1a), the flow appears
to be reasonably two dimensional. It is noted that the dark bands in the z-t maps have
been associated by Browand and his coworkers with the passage of the primary vortices
(Browand & Troutt 1980, 1985; Browand & Prost-Domasky 1990). In figure 4.1(8), ®(z)
is spanwise-linear, $,(z) = fz, where § = 0.571 radfcm, and it clearly results in
spanwise-oblique phase distribution of (upen(z‘t)). Furthermore, the dark bands in the
z-t map suggest the rollup of oblique primary vortices. In figure 4.1(c), $(z) = <]>Sp(z)
and A, = 7.62 cm is the width of 12 heating elements such that A = 7 at the center 6
elements. As discussed above, this excitation waveform corresponds a family of equal
and opposite oblique waves, and it leads to spanwise-periodic phase discontinuities of
(upm(z.t)) at the excitation wavelength, A,. The z-t maps suggest that the rollup of the

primary vortices occurs in spanwise segments of constant phase.

4.3. Spanwise-Linear Phase Excitation

The effect of a spanwise-linear phase distribution. ¢, = 8(z-z;) (where z; is an
arbitrary reference), is studied using flow visualization. The resulting excitation
waveform is a time-harmonic oblique wave train having streamwise and spanwise wave

numbers, o =2my/U. and B. In the present experiments, o = 1.57 cm-!, and the
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response of the flow to excitation with 8 = 0.29, 0.58, and 0.87 cm™! is shown in figures
4.2(a), (b). and (c), respectively. The corresponding wave angles, y = arctg(8/a), between
the wave vectors and the streamwise direction are 10°, 20°, and 29°. It is important to
recognize that, unlike excitation of two-dimensional waves, the excitation of oblique
waves in a flat-plate boundary layer gives rise to a three-dimensional vorticity
perturbation field with important consequences for the evolution of the excited flow
(Hama, Rist, Konzelman, Laurien & Meyer 1987; Robey 1987).

The most striking feature in figure 4.2 is the formation of primary vortices that
are oblique in the spanwise (X.z) plane of the shear layer and are advected in the
streamwise direction. The angles between the oblique vortices and the streamwise
direction are virtually identical to the corresponding wave angles of the excitation wave
trains and remain almost invariant throughout the streamwise domain shown here.
(Successive primary vortices downstream from the flow partition are referred to below
as V). V5. V3, etc.) As can be seen on the left-hand side of each photograph, the
rollup of V| occurs along lines of constant phase of the excitation wave train. The
rollup clearly does not occur simultaneously along the axis of each vortex. as for the
two-dimensional case, but progresses obliquely (along a line of constant phase) as the
vortex is advected downstream.

It is apparent from the present and other flow visualization photographs that the
rollup at any position along the axes of V, in figure 4.2 starts at the same streamwise
station, x = x.. Furthermore, because x, is approximately the same in each of figures
4.2(a-c). it may be concluded that spatial amplification of all oblique waves over the
range of spanwise wave numbers considered here is almost identical. When 8 exceeds
0.87 cm-!, we have observed that the flow is no longer locked to the excitation wave
train and a streamwise-regular pattern of oblique vortices no longer exists. This does
not necessarily imply that, for g > 0.87 cm-!, oblique waves are not amplified in the

plane shear layer because, in the present experiments, the receptivity of the flow
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Figure 4.2
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partition’s boundary layers is inherently coupled to that of the ensuing shear layer.
The results of Schneider (1989) indicate that the amplitude of oblique waves in a flat-
plate (Blasius) boundary layer measured at a streamwise position corresponding to
Ress = 1300 is almost invariant for ¥ < 15°, and decreases by an order of magnitude
for 15° < ¢ < 25°.

The streamwise inclination of the primary vortices is apparently accompanied by a
change in the direction of the strain field in the braid region between them, compared
to the two-dimensional case. As a result, secondary vortices that are formed in the
braid region are approximately aligned with the wave vector of the excitation wave
train. High-speed photography has shown that the rotation of these secondary vortices
is counter-clockwise when observed in the y-z plane in the downstream direction (we
shall comment on that below). We note that, in the absence of phase excitation,
virtually no secondary vortices appear in the braid region between V| and V, (see
figure 2.64). However, as B is increased, secondary vortices in the braid region
between V|, and V, become more pronounced (cf, for example, figures 4.2a and &).
These vortices are clearly associated with the rollup of V, in that they spread in the
braid region as the rollup of V| progresses. While the amplitude of E(z,1) is spanwise-
uniform, spanwise phase discontinuities Ad, = 0.688 having a characteristic length scale
equal to the width of one heating element (A; = 6.3 mm) are introduced due to the
32-element discretization of ¢,. Although the secondary vortices are formed only afrer
the rollup of V|, they are clearly triggered by A®,. as is evident from their spanwise
spacings and apparent strength.

The orientation of the secondary vortices is extremely sensitive to deformations
along the axes of the primary vortices. as is evident in the braid regions between V,
and Vj in figures 4.2(b.c). The primary vortices appear to be more susceptible to such
deformations as B8 is increased. The characteristic wavelength of these deformations is

longer than the streamwise wavelength of the Kelvin-Helmholtz instability. When
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B = 0.87 (figure 4.2¢), the primary vortex at the downstream edge of the Schlieren view
exhibits a bifurcation that is also apparent in the photograph of Chandrsuda er al. (their
figure 3). Similar bifurcations can be alse be inferred from the data of Browand &
Prost-Domasky (1990) and were also observed by Nygaard & Glezer (1990) as a result
of spanwise-nonuniform phase excitation. As will be shown in the following
subsections, such deformations can arise due to interactions between spanwise-uniform
and oblique instability waves.

In connection with the appearance of the secondary vortices in the braid region,
we consider the temporal evolution of a train of oblique vortices resulting from
excitation by an oblique wave train in an unbound, two-stream, two-dimensional shear
layer. If y is the cross-stream coordinate, X is parallel to the wave vector of the
excitation wave train (which is normal to y) and Z is normal to the X-y plane (i.e.,
parallel to the axes of the oblique vortices}). Then, as shown by Crow (private
communication, 1992), the velocity and vorticity components in the z-direction, w and E

are given by
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respectively. These equations imply that, in the absence of viscosity, the Z velocity and
vorticity components of fluid elements within the primary vortices and in the braid
region remain unchanged.  Because the oblique vortices are advected in a shearing
flow, their induced velocity field acts to move high-speed (or low-speed) fluid down (or
np) from higher (or lower) cross-stream elevations toward the braid region. The
streamwise velocity of the fluid that is moved from the free streams has components in

the z- and x-directions. Figure 4.2 suggests that shear flow in the z-direction owing to
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the difference in W across the braid region leads to rollup of secondary vortices in the
braid region, all of which have the same sense of rotation (counter-clockwise in the y-z
plane viewed in the positive X-direction). These vortices are aligned and stretched by
the strain field in the braid region, which is dominated by the velocity components in

the X-y plane.

4.4. Time- Periodic Spanwise Phase Excitation

As discussed in §4.2, when ¢ = ¢, E(z.t) is a linear superposition of a time-
harmonic spanwise-uniform wave train and pairs of equal and opposite oblique waves
having spanwise wave numbers 8, = (2n-1)2n/)\,. Recall that when A% = 0, E(z.t) is a
spanwise uniform wave train and, when A$ = n, E(z.t) is a superposition of the pairs of
oblique waves only. In this subsection. we discuss the effect of the magnitude of Ad
on the evolution of the flow. The magnitude of A¢ varies in time when, similarly to
$,,(2). the excitation frequency. wg(z) = 2nvy, is spanwise periodic (with wavelength \,)
and piecewise constant. If the spanwise frequency variation is Aw = w%-—w}, where w}
and wg are the two (piecewise-constant) frequencies of adjacent segments of the
excitation waveform, then the corresponding phase difference is Ad = (w}-w?)t. When
Aw is small, Ad is slowly varying with time between 0 and 27 over the beat period
Ty = 2n/Aw. In what follows, \, = 7.6 cm (8, = 0.82 cm-!). Schlieren photography
and velocity measurements are taken phase-locked to Aw. Phase-locking is
accomplished by a conditional trigger derived by a logical "AND" of two pulse trains
corresponding to zero-crossings with positive slope of two adjacent segments of the
excitation wave trains. The resulting pulse train has a frequency Aw and can be time-
delayed to achieve a desired phase relative to the data-acquisition clock.

The effect of excitation with v} = 4.9 Hz and v? = 5.0 Hz is shown in figure 4.3,
which is a sequence of composite Schlieren photographs taken in the x-z plane at six

equal time intervals centered around t = T}, /2 that corresponds to A® = rn (figure 4.34).




Figure 4.3
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The spanwise phase increments, A®, of figures 4.3(a-g) are 0.16n, 0.447, 0.72n, n, 1.28mn,
1.56m, and 1.84m, respectively. The spanwise field of view is approximately 1.5\, and
the frequency of the center segment is 4.9 Hz. At a given time, say t = t;, the wave
fronts of all segments of the spanwise excitation waveform are in phase. Because the
frequency of the center segment is slightly lower than the frequencies of the outer
segments., the excitation waveform at the center segment begins to develop a phase-lag
with respect to the excitation waveforms of the outer segments when t > t;. As a
result, adjacent spanwise segments of the primary vortices, which are phase-locked to
spanwise segments of the excitation waveform having different frequencies, develop
spanwise-periodic distortions. These distortions are the result of spanwise-nonuniform
rollup of the primary vortices, which (as shown in §3.1) is sensitive to spanwise phase
variations in the excitation wave train. We note that, since v} and v? are very close, it
may be assumed that the streamwise amplification of adjacent segments of the excitation
wave train are virtually identical.

In figure 4.3(a). the spanwise phase increments are relatively small and the
primary vortices are almost two dimensional. Deformations of the primary vortices that
are symmetric about the midspan are more evident in figure 4.3(6). The undulations of
the primary vortices persist and even appear to intensify with downstream distance
(figure 4.3c). Because primary vortices in an unforced plane mixing layer are advected
in a nominally two-dimensional strain field and presumably deform in a plane that is
aligned with the direction of maximum strain, the amplitude of the deformation can
increase with downstream distance. There 1s a striking similarity between the spanwise
vortices in figures 4.3(b,c) and the translatively unstable Stuart vortices studied by
Pierrechumbert & Widnall (1982). Their results suggest that the most unstable
translative disturbance has a spanwise wavelength that is equal to two-thirds of the
spacing of the undisturbed vortices, although disturbances having a broad band of

spanwise wavelengths can be amplified. Pierrehumbert & Widnall also argued that the
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translative instability can lead to the formation of secondary ("streamwise") vortices in
the braid region between adjacent primary vortices. Figure 4.3 clearly shows the
formation of secondary vortices when the primary vortices distort along their axes.

The secondary streamwise vortices form in the braid region near maxima of the
spanwise curvature of the primary vortices. Although these secondary vortices are
similar in appearance to streamwise vortices that can be triggered by spanwise-
nonuniform amplitude excitation as discussed in §3, there is a considerable difference in
the spanwise widths of the secondary vortices that result from the two different
excitation waveforms. While the spanwise widths of the former scale with the
deformation of the primary vortices, the spanwise widths of the latter (in the absence of
core deformations of the primary vortices) are significantly smaller (see figures 3.3¢.d).
It is clear that spanwise deformations of the primary vortices increase with A® (figure
4.3¢) and the induced streamwise vortices become considerably more pronounced.

When A® = n (figure 4.34), the flow is forced by pairs of oblique waves of equal
magnitude and opposite angle (without the presence of the two-dimensional excitation
wave train), and the structure of the primary vortices as viewed in the x-z plane is
drastically altered. The x-z projection of these vortical structures is comprised of a
pattern of diamond-shaped cells ("chain-link"-like structure) that repeat in the spanwise
and streamwise directions. Similar structures are also apparent in numerical
simulations of compressible and incompressible mixing layers that are forced by a pair
of oblique waves at the fundamental frequency (Sandham & Reynolds 1991; Coliis,
Lele, Moser & Roger 1991). As will be shown below, these vortical structures are
primary vortices having spanwise-periodic deformations in planes that are tilted around
the z-axis relative to the streamwise direction. The spanwise deformations of adjacent
primary vortices are 180° out-of-phase along the z-axis, thus forming the diamond-
shaped patiern in the x-z view. The deformed primary vortices may undergo pairing at

spanwise locations corresponding to streamwise edges oi the diamond-shaped cells. Of
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particular note is the fact that the number of primary vortices is actually doubled, and
their passage frequency is equal to rwice the forcing frequency. The streamwise length
of each cell. measured between its streamwise edges, is equal to Ay of the two-
dimensionally forced flow.

As mentioned in 84.1, the second spanwise instability mode identified by
Pierrehumbert & Widnall (1982) corresponds to spanwise-localized pairing of the
primary vortices. This instability mode has a streamwise wavelength that is rwice that
of the two-dimensional base flow and, in contrast to the translative instability, has a
short spanwise wavelength cutoff. There is no question that the core deformation
corresponding to A® = r is essentially similar to the pairing instability of Pierrehumbert
& Widnall, even though the :‘reamwise wavelength in the present experiments is hgy.
Similar to results of Pierrehumbert & Widnall, the next subsection confirms that core
deformation of the spanwise vortices can only be excited if the spanwise forcing
wavelength exceeds a short wavelength cutoff.

When A¢ > n, the secondary vortical structures weaken and become pairs of
hairpin-like counter-rotating vortices (figures 4.3e-f). Because the wave train in the
center segment is now leading in phase relative to its adjacent segments, the center
segment of the primary vortex is symmetrically bent around midspan in the downstream
direction. The secondary vortices appear near upstream bends corresponding to the
outer segments, and they are displaced in the spanwise direction by ),/2 compared to
secondary vortices resulting from phase excitation with Ad < n (cf, figure 4.3c).
Similar to figures 4.3(b.c), this instability of the primary vortices in figures 4.3(e,f)
appears to be "translative” in the parlance of Pierrehumbert & Widnall (1982). Finally,
as AP approaches 2n (figure 4.3g). the spanwise vortices become almost two dimensional
again.

We note in passing that the evolution of vortical structures in a plane mixing layer

is extremely sensitive to the spanwise distribution of ®(z). For example, when &(z) is
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not spanwise-periodic but has a spanwise hat-shaped phase discontinuity with A% =n in
the center segment of the excitation waveform. each of the ensuing primary vortices
bifurcates into upstream and downstream branches that form a closed diamond-shaped
vortical cell (Nygaard & Glezer 1990).

Some features of the phase-averaged three-dimensional vortical structures are
obtained from measurements of the streamwise velocity component in the y-z plane at
x = 10.2 cm (the domain of measurements is rectangular, measuring 6 cm x 8.9 cm).
The free-stream velocities for these measurements are 36 and 12 cm/sec, u} = 6.9 Hz,
u? = 7.0 Hz, and \, = 7.6 cm. Time series of the streamwise velocity component are
measured phase-locked to the beat frequency Avy, = 0.1 Hz, such that each data record
includes 4480 measurements equally spaced over the beat period. Ensemble-averaged
data are calculated from 40 such data records. The vortical structures are distinguished
by concentrations of high-frequency turbulent fluctuations of the streamwise velocity
component. {Uys(x.)), which is calculated following the procedure of Nygaard (1991).

Figure 4.4 shows the surfaces (u;rms) = 1.0 cm/sec in the y-z-t coordinates during
two consecutive periods of the excitation wave train (u% = 7 Hz). The spanwise phase
amplitudes, A, at the starting time of each of figures 4.4(6-d) are chosen so that these
figures correspond approximately to figures 4.3(c-e). Note that because time increases to
the left, the flow appears to be moving to the right. In figure 4.4(a), A® = 0 and the
excitation wave train and the primary vortices are nominally spanwise uniform.
Figures 4.4(6-d) clearly show the evolution of the secondary vortical structures. Of
particular note is what appears to be spanwise-localized pairing of the distorted
spanwise vortices when A% = 7. One may also conclude that the spanwise vortices are
distorted in planes that are inclined relative to the streamwise direction.

Figure 4.5 is a time series of phase-averaged spanwise profiles of ensemble-
averaged spanwise distributions of the streamwise velocity perturbation (Uper (z.1))

measured phase-locked to Avy, and plotted during one beat period (10 sec) of the two
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Figure 4.4(a-b)




Figure 4.4(c-o)
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excitation wave trains. These data are measured at x = 10.2 cm and at a y-elevation
corresponding to a spanwise- and time-averaged streamwise velocity of 30 cm/sec.
These types of plots have been used by Browand and his coworkers to capture
spanwise features of the primary vortices, which appear as dark bands (Browand &
Troutt 1980, 1985; Browand & Prost-Domasky 1990). At t = t;, the flow is nominally
two dimensional. As A¢ increases, the primary vortices begin to develop spanwise
undulations of wavelength A,. Note that because time increases from left to right, the
bend in the center segment of the spanwise vortex points to the right. The effect of the
secondary vortices that are apparent in figures 4.3(b,c) is not felt at this cross-stream
elevation until their strength becomes comparable with the primary vortices
(t-ty > 3 sec). When t-ty = 5 sec (AP = m), it is not possible to distinguish between the
“secondary" and "primary" vortices, and a spanwise-cellular vortex structure emerges.
The center segment appears to be "dislocated” ("vortex termination” in the parlance of
Browand & Troutt) from the outer segments. It is important to recognize, however, that
these data are a cross-section of three-dimensional flow structures at a fixed cross-
stream elevation. When A > n, the secondary vortical structures weaken (as can be
asserted by their induced velocity perturbations) and the spanwise undulations of the
primary vortices are essentially out-of-phase with respect to the undulations for
Ad < m. Although A% varies linearly in time, the spanwise response of the flow as
shown in figure 4.5 is not exactly symmetric in time with respect to the instant when
Ad = 7. This is probably the result of spanwise phase distortion élready present in the
nominally two-dimensional base flow (cf, figure 2.65). These data, along with the data
of figure 4.4, demonstrate that the “dislocations," observed in figure 4.5 and in the
work of Browand and his coworkers, are clearly connected with a three-dimensional

flow structure.
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4.5. Receptivity to Excitation Wavelength

In this subsection, we discuss the effect of the wavelength of ¢, on the evolution
of primary vortices and, in particular, the existence of a short-wavelength cutoff, below
which the spanwise vortices appear to be stable to spanwise-periodic phase excitation.
Recall that core deformations of the primary vortices in unforced mixing layers appear
to be have a characteristic spanwise wavelength, \,, which exceeds A¢y. In the present
experiments, A® is time-invariant (Ad = m) and )\, is varied by the equivalent width of
two heating elements.

Figures 4.6(a-i) are Schlieren photographs in the x-z plane (10 cm < x < 18.0 cm)
where U; = 30 cm/sec, U, = 10 cm/sec, vy = 5 Hz, and Agy =4 cm. The spanwise
excitation wavelengths in figures 4.6(b-i) decrease from 10.26 cm to 1.27 cm in
increments of 1.27 cm. The response to spanwise-uniform excitation is shown for
reference in figure 4.6(a). When )\, > 5.08 cm > Ay (figures 4.656-f). the primary
vortices are deformed and diamond-shaped cells appear in the x-z planview. The
spanwise width of each cell is approximately equal to \,. When A\, < A¢y (figures
4.6g-i), the primary vortices become almost spanwise-uniform. These results indicate
that there is a critical spanwise excitation wavelength, A.;,. below which spanwise
phase disturbances that are induced by a family of pairs of equal and opposite oblique
waves apparently decay. Figures 4.6(g.h) further imply that A\ ; = A¢y. Because
Acn 2= (U;+U,)/2v;, the corresponding spanwise wave number, B, =4ru/(U,+U,),
gives a criteria for the decay of the pairs of oblique waves.

Pierrehumbert & Widnall (1982) observed a short wavelength cutoff for a
subharmonic instability in which the primary vortices are spinwise undulated out-of-
phase with respect to each other. Similar to the arguments put forth by these authors,
the short-wave cutoff in the present experiments suggests that A, increases like Agy
with downstream distance. Hence, phase disturbances of a given spanwise wavelength

gradually decay as they are advected downstream. In the present experiments, the flow
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Figure 4.6
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is forced. Hence. Agy is almost unchanged within the streamwise domain shown in
figure 4.6 and, consequently, the magnitude of the phase deformations appears to be
invariant with x. On the other hand, in an unforced mixing layer, amplification of the
three-dimensional instability mode leading to deformations of the primary vortices may
be overwhelmed by the amplifying two-dimensional instability modes.

The photographs of figure 4.6 also reveal interesting features concerning the
evolution of small-scale flow structures. As the spanwise excitation wavelength is
decreased (but is still greater than \_;). small-scale structures appear within the cores
of the primary vortices, ostensibly as a result of mean flow distortion. As will be
shown in the next subsection, such phase excitation may result in a higher-order

inviscid inflectional instability that amplifies broadband disturbances.

4.6. Time-Invariant Spanwise Phase Excitation

The response of the shear layer to spanwise-periodic (\, = 5.1 cm, 8, = 1.23 cm}),
piecewise-constant, and time-invariant phase distribution with (A® = 7/2) and without
(Ad = m) the presence of a two-dimensional excitation wave train is shown in figures
4.7(a) and (b), respectively. We note that, when A = 7/2, the amplitudes of the two-
dimensional wave train is approximately four times lower than the amplitude of the
lowest-order pair of oblique waves. Cross-stream distributions of the streamwise
velocity are measured at a number of streamwise (X) stations at three equally spaced
spanwise locations, z; =0, z; =2,+\,/4, and z3 = z;+)\,/2. Because the phase
distribution, <I>sp(z). is taken to be symmetric relative to z = 0, Ad = ®,p(2)-Pgp(2z3) and
a spanwise phase discontinuity occurs at z,. The spanwise measurement stations are
marked in figure 4.7(a) for reference.

Perspective contour plots of the phase-averaged turbulent fluctuations (u'"ms) in
the y-t planes at z;, z,, and z3 at x = 15.2 cm during two periods of the excitation
wave train are shown in figures 4.8 (Ad = 7/2) and 4.9 (A® = 7). A corresponding plot

for spanwise-uniform excitation at z; is shown for reference in figure 4.10. When
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Figure 4.8
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Figure 4.9
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Figure 4.10
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the excitation waveform is spanwise-uniform (figure 4.10), passage of the spanwise
vortices at the measurement station can be recognized by concentrations of small-scale
velocity fluctuations. At this streamwise position, the cross-stream distribution of
(u;rms) within the spanwise vortex exhibits a fairly broad, large peak displaced toward
the low-speed edge of the spanwise vortex.

When A = n/2, the y-t planes, z = z;, z,, and z3, intersect a secondary vortical
structure at its upstream edge (the "tail"), at its leg in the braid regio: and at its
downstream edge (the "head"), respectively (figure 4.8). Note that the cross section of
the primary vortex at z = z3, which corresponds to its upstream bend, is almost
unchanged, compared to the unforced case. At z = z,, the primary vortex appears to be
somewhat weaker and, at z = z;, which corresponds to the downstream bend of the
primary vortex, its core is clearly distorted by the secondary vortex. Concentrations of
(u;rms) corresponding to the tail (z = z;) and head (z =z3) of the secondary vortex appear
at the high-speed and low-speed edges of the shear layer, downstream and upstream of
the bends of the primary vortex, respectively. Note that, because of the upstream bend
of the primary vortex, the secondary vortex is spatially less developed at z = z3 than at
z = z|, and, hence, the peak of concentration of (u;rms) corresponding to the head of the
secondary vortex appears to be weaker than the corresponding peak at its tail. A
cross-section capturing of the leg of the secondary vortex in the braid region is shown
at z = z,.

When A¢ = n (figure 4.9), the planes z = z; and z3 are y-t cross sections through
successive streamwise corners of the staggered diamond-shaped cells in the x-z
planview of figure 4.7, while the plane z = z, is a y-t cross section through the sides of
these cells, halfway between z, and z3. Concentrations of {u,.) in the y-t planes
z =z, and z3 are reasonably similar and displaced in time by T;/2. The centers of the
cross sections of the vortical structures in the y-t planes z, and z3 alternate in time

between y-elevations near the high- and low-speed edges of the shear layer; in the
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plane z = z,, the centers of successive cross sections have approximately the same y-
elevations. Figure 4.9 also shows that cross sections of vortical structures in each of
the y-t planes appear twice during each excitation cycle, suggesting that, when Ad = =,
the rollup of the primary vortices occurs at twice the forcing frequency. The relative
position in time of the cross sections of the vortices in the y-t planes z = z; and z3
suggests that the corners of the diamond-shaped cells in the x-z planview are formed by
upstream and downstream bends of successive spanwise vortices. These bends occur in
planes that are tilted around the z-axis such that the downstream and upstream edges of
the bends are close to the high- and low-speed streams, respectively (see also figure
4.4),

As discussed above, spanwise phase excitation results in spanwise-nonuniform
roltlup of the primary vortices. When A® = 7 and for a relatively short excitation
wavelength, the rollup of a given spanwise vortex begins (say, at t = ty) at the centers
of segments of constant phase of the excitation wave train and continues along lines of
constant phase within the vortex sheet between the two streams. At spanwise positions
of phase discontinuities, lines of constant phase (within the vortex sheet) are inclined
relative to the streamwise direction toward spanwise segments that begin their rollup at
t; = ty+T;/2. The rollup at t =t; forces the branches of the spanwise vortex, which
began its rollup at t = t;, to be pushed downward toward the low-speed side such that,
at spanwise locations corresponding to centers of segments of constant phase of d>sp.
there is a double rollup into two separate vortices. The rollup of a given spanwise
vortex is completed when the branches are joined that form at phase discontinuities on
each side of a spanwise segment of constant phase of the excitation waveform. Figure
4.11 shows a cross-stream view of the shear layer visnalized by dye., which is injected
into the low-speed-side boundary layer at midspan (i.e., z = z;). This photograph
clearly shows the double rollup of the primary vortices and, furthermore, indicates that

spanwise-nonuniform pairing interactions may occur farther downstream.
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Figure 4.11
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We next consider the amplification of perturbations at the forcing frequency and
its first harmonic by using streamwise distributions of cross-stream-integrated
amplitudes of the spectral components of ug., (denoted A; and A,, respectively). It is
clear that this amplification includes a/l modes at the excitation frequency and its first
harmonic. Figure 4.12 shows A, (closed symbols) and A, (open symbols) for spanwise-
uniform excitation and phase excitation with A® = n/2 and 7. The data corresponding
to spanwise-uniform excitation were obtained at z =z, and are also plotted for
reference at zZ = z, and z3. When the flow is excited with a spanwise-uniform wave
train, A; increases somewhat between X = 5.1 and 7.6 cm and then remains almost
unchanged through x = 15.2 cm, where it begins to decay. The streamwise distributions
of A;(z=2)) and A|(z = z3) for Ad = 7 are reasonably similar, as may be expected
from the similarity of the flow at these x-y planes. These distributions suggest that, at
these spanwise stations, the perturbation wave train is amplified for x < 7.5 cm, decays
somewhat for 7.5 cm < x < 15 cm, and then continues to amplify through the
streamwise domain considered here. However, the corresponding distribution of
A |(z = z,) is substantially different and exhibits a decay for x > 10 cm. The important
observation here is that the amplification of pairs of oblique waves does not appear to
be spanwise uniform.

The differences between A,(z = z;) and A;(z = z3) When the flow is forced with
Ad = 7/2 are presumably associated with the differences in the evolution of the
primary vortices at these spanwise stations, namely, the formation of downstream and
upstream bends that are closer to the high- and low-speed edges of the shear layer,
respectively. Similar to the case AP = 7, the amplitude distributions at z = z; and z3
are different than the corresponding distribution at z = z,, thus suggesting that the
oblique wave disturbances are not uniformly amplified across the span of the flow.
For both cases of phase excitation, the streamwise distributions of A, do not appear to
vary significantly across the span and are similar to the corresponding distribution

resulting from spanwise-uniform excitation.
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Figure 4.12
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Composites of cross-stream contours of power spectra, P(v,y), and profiles of the
time-averaged streamwise velocity, U(x.y), at z = z;, z,, and z3 are shown in figures
4.13 and 4.14 for Ad = n/2 and =, respectively. Corresponding plots for spanwise-
uniform excitation at a single spanwise location are shown for reference in figure 4.15.
These profiles are measured at x = 10.2 cm (figures 4.13a, 14a, and 154) and 15.2 cm
(figures 4.135, 145, and 154). When the excitation waveform is spanwise-uniform, the
power spectra have pronounced peaks at the excitation frequency and some of its
higher harmonics. Note the appearance of a cross-stream band of spectral components
at higher frequencies (associated with the presence of small-scale motion) close to the
low-speed edge of the mixing layer (cf, figure 4.8).

When the flow is forced with Ad = n/2 (figure 4.13), the appearance of secondary
vortices is accompanied by distortions of cross-stream profiles of the mean streamwise
velocity. Such a distortion is apparent at z = z;, the spanwise location corresponding to
the tail of the streamwise vortex. The degree of distortion of the mean velocity profiles
indicates that the secondary vortices resulting from core deformations at the present
excitation wavelength are weaker than corresponding streamwise vortices resulting from
spanwise-nonuniform amplitude excitation (see figure 11 of Nygaard & Glezer 1991).
The appearance of the secondary vortex is accompanied by spreading of small-scale
motion (or propagation of turbulent interfaces) toward the low-speed side, thus
indicating a spanwise-localized broadening of regions where mixing may be enhanced.
At z = z3, which corresponds to the head of the secondary vortex, distortion of the
streamwise velocity profile is much less pronounced, and P(v,y) is only slightly broader
than the corresponding distribution for the unforced flow.

When A% =n (figure 4.14), the cross-stream spreading of the mixing layer
increases considerably, compared to the case of spanwise-uniform excitation. In
particular, the cross-stream width (as may be judged by the mean velocity profiles) at

z =z, and z3 is greater than at z = z,. Cross-stream broadening of P(v.y) is clearly
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Figure 4.15
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accompanied by the appearance of high-frequency spectral components. At x = 15.2
cm (figure 4.145), the spectral peaks at the excitation frequency and its higher
harmonics are considerably diminished and there is a pronounced cross-siream increase
in the amplitude of high-frequency spectral components. These high-frequency
components appear to form two cross-stream bands near the high- and low-speed edges
of the flow, which, at z =z, and z3, correspond to the appearance of additional
inflection in the cross-stream distribution of U (note that cross-stream distributions of U
at z =2z, and z3 are almost identical). The bands correspond to concentrations of
turbulent fluctuations within the cores of the primary vortices, as evidenced by the

cross-stream distributions of (u;rms} in figure 4.9.

4.7. The effect of Spanwise Phase Corrections on the Secondary Vortices

In §3.3 we show that time-harmonic excitation having spanwise-periodic amplitude
distribution, Eg(z) = E(z). leads to the formation of pairs of streamwise counter-rotating
vortical structures having spanwise spacings that are equal to the excitation wavelength,
\,. Furthermore, as shown in figure 4.16(a) (same as figure 3.35, A, = 5.1 cm). if
A, > Mgy, the spanwise vortices develop spanwise deformations at the excitation
wavelength. Because the phase of the excitation wave train is spanwise uniform, it
appears that the phase distortion necessary for the deformation of the primary vortices
is induced by the formation of the streamwise vortices upstream of the first rollup of
the primary vortices. Note that, at the downstream edge of the Schlieren view, small-
scale motion is significantly increased at spanwise locations corresponding to the heads
of the streamwise vortices. in comparison to the spanwise-uniform excitation of figure
2.6.

In what follows, we show that the suppression of the deformations of the primary
vortices has a substantial effect on the streamwise vortices and leads to a considerable

diminution in small-scale flow structure. The spanwise-periodic phase distribution,
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$p(2) = :I;(z). leading to the distortion of the primary vortices in figure 4.16(a) is
determined by using "strobed" video photography. This phase distribution is used for
phase excitation having a spanwise-uniform amplitude distribution as shown in figure
4.165. Note that the core deformations of spanwise vortices are almost identical to the
core deformations shown in figure 4.16(a), except that the secondary vortices are formed
downstream of the first rollup. As mentioned in §4.4, the shape and apparent strength
of the streamwise vortices are affected by the magnitude of deformations of the
primary vortices. In common with figure 4.16(a). figure 4.16(6) also shows the
formation of multiple longitudinal secondary vortices having the same sense of rotation
on each side of an upstream bend of the primary vortices.

In figure 4.16(c), we show the response of the mixing layer to an excitation
waveform having both spanwise-periodic amplitude and phase distributions. While the
amplitude distribution is Ey(z) = ~E(z). the spanwise phase distribution is &, (z) = -5(2)
(i.e., added out-of-phase). The most important feature in figure 4.16(c) is that the
spanwise deformations of the primary vortices are completely cancelled. It should be
emphasized that the combined excitation is not a linear superposition of the appropriate
amplitude and phase disturbances, and the combined excitation waveform is generated
from a single three-dimensional row of surface heaters. This is in contrast to the two-
dimensional boundary layer experiments of Liepmann, Brown & Nosenchuck (1982),
where a linear disturbance excited by an upstream surface heater was cancelled by a
phase-delayed input to a downstream surface heater. As a result of the combined
excitation, the spanwise vortex remains almost undistorted throughout the streamwise
domain shown in figure 4.16(c). The secondary (streamwise) vortices still form
upstream of the first rollup of the spanwise vortex, but the included angle between
their legs is smaller compared to figure 4.16(a). Furthermore, the multiple streamwise
vortices that are present in figures 4.16(a,b) are absent, and concentrations of small-
scale motions within the core of the primary vortex at the downstream edge of figure

4.16(c) are considerably smaller than in figure 4.16(a).
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4.8. Spanwise-Nonuniform Pairing of Primary Vortices

The subharmonic instability discussed by Pierrehumbert & Widnall (1982)
corresponds to spanwise-localized pairing of the primary vortices and is excited by a
superposition of two equal and opposite subharmonic oblique waves. These authors
speculate that adjacent primary vortex cores are displaced alternately above and below
the plane y = 0 and undergo spanwise-nonuniform pairing. Similar interactions were
observed in the recent numerical investigation of Comte & Lesieur (1990) as a result of
the addition of random three-dimensional disturbances to the two-dimensional base
flow. Comte & Lesieur show that successive primary vortices develop out-of-phase
spanwise undulations and assert that the undulations result in spanwise-nonuniform
pairing of the primary vortices that gives rise to a "vortex-lattice" structure.

In order to demonstrate that phase disturbances can also be imposed after the
rollup of the primary vortices is completed, the shear layer is excited simultaneously with
two time-harmonic wave trains at the fundamental (most-amplified) frequency, v;, and
its first subharmonic, v;/2. The excitation waveform at v; is spanwise-uniform. The
excitation waveform at v;/2 has either amplitude (figure 4.17) or phase (figure 4.18)
distributions, which are spanwise periodic and piecewise constant (as described in 84.2).
The fundamental excitation results in nominally spanwise-uniform rollup of the primary
vortices at v;. Because the spatial amplification rate of the subharmonic wave train is
lower than that of the fundamental, it begins to affect the evolution of the primary
vortices farther downstream and leads to their spanwise-nonuniform coalescence. In
the experiments described below, the free-stream velocities are 42 and 14 cm/sec, vy = 9
Hz, and the spanwise wavelengths of the subharmonic wave train are X.ih = 10.2 and
20.3 cm.

In figure 4.17(a), the excitation wavelength is )\;" = 20.3 cm and the amplitude
discontinuity occurs at midspan (z = 0). The normalized spanwise amplitude of the

subharmonic wave train, Ef,h(z)/Eo. is 1.0 for -20.3 cm < z < 0 (i.e., below midspan) and
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Figure 4.17
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0.3 for 0 < z < 20.3 cm. Owing to the higher amplitude of the subharmonic wave train
below midspan, the spanwise vortices begin to coalesce closer to the flow partition
below midspan than above it. The spanwise-nonuniform pairing leads to a spanwise
core deformation of the primary vortices and to the subsequent formation of secondary
vortices in the braid region. The appearance of secondary vortices presumably leads to
an increase in small-scale motions at the downstream edge of the Schlieren view.

When )\ih = 10.2 cm (figure 4.178), the center segment of the subharmonic
excitation wave train for which Ef)h(z)/Eo = 1.0 is symmetric relative to midspan and
leads to earlier pairing of corresponding segments of spanwise vortices. As a result,
spanwise cells of paired vortices, which are reminiscent of Comte & Lesieur's (1990)
vortex-lattice structure (their figure lb), are formed around midspan. The streamwise
length of each cell is approximately 2\gy. These photographs suggest that spanwise-
nonuniform pairing and core deformations (or phase distortions) of the primary vortices
far downstream from the flow par..on of an unforced plane mixing layer can result
from spanwise-amplitude nonuniformities of disturbances at the subharmonics of the
fundamental frequency. Clearly, this evolution may become even more complicated if
the streamwise amplification rate of these disturbances is spanwise nonuniform. This
may explain the wide variety of spanwise-nonuniform pairing interactions apparent in
plane mixing layers in the absence of subharmonic excitation (e.g., Chandrsuda et al.
1978; Browand & Troutt 1980, 1985; Keller er. al. 1988).

The evolution of spanwise phase nonuniformities of the subharmonic excitation
wave train is shown in figures 4.18(a,b). The spanwise distributions of <I>::(z) for each
of the two excitation wavelengths are similar to the corresponding distributions of Ef,h(z)
and A® =rn. Recall that, for AP = n, the subharmonic wave train is a linear
superposition of pairs of equal and opposite oblique waves. Assuming that the
amplitude immediately downstream of the flow partition and thes streamwise

amplification rate of adjacent segments of the subharmonic wave train are the same,
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Figure 4.18
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then pairing of spanwise segments of the spanwise vortices begins at the same
streamwise position downstream from the flow partition. Pairing of adjacent spanwise
segments alternates in time (every half period of subharmonic wave train) resulting in
pairing interactions that are clearly reminiscent of Pierrehumbert & Widnall's (1982)
subharmonic instability. Similar to the evolution of secondary streamwise vortices in
figure 4.17, the primary core deformation due to spanwise-nonuniform subharmonic
phase excitation also leads to the formation of secondary wvortical structures and

enhancement of small-scale motions.

4.9. Conclusions

Previous experimental evidence (e.g., Chandrsuda et al. 1978; Browand & Troutt
1980, 1985) has suggested that the plane shear layer is receptive to spanwise-
nonuniform perturbations resulting from variations in the phase speed or frequency of
the fundamental instability of the two-dimensional base flow. The present work builds
on these findings and focuses on spanwise-nonuniform excitation of phase disturbances
at the flow partition that result in significant core deformations of the ensuing primary
vortices. An important consequence of these deformations is the appearance of
secondary vortical structures in the braijd region, the shape, orientation, and strength of
which depend on the magnitude of the core deformation of the primary vortices.

When the spanwise phase distribution is spanwise-linear, the excitation wave train
is a single oblique wave resulting in primary vortices that are inclined in the
streamwise direction at the wave angle of the excitation wave train and are advected in
the streamwise direction. The rollup of each primary vortex progresses along a line of
constant phase (i.e., inclined relative to the trailing edge of the flow partition) of the
excitation wave train. A flow visualization study indicates that all oblique waves
having wave angles smaller than 29° have the same the streamwise amplification. This

wave angle corresponds to streamwise inclination of approximately 3\yy; across the span
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of the test section. Secondary longitudinal vortices are formed in the braid region at
spanwise locations corresponding to discretization discontinuities in the excitation wave
train. These vortices are approximately normal to the axes of the primary vortices,
indicating the direction of principal strain in the braid region between adjacent primary
vortices.

Spanwise-periodic core deformations of the primary vortices are excited when the
phase distribution of the excitation wave train is spanwise periodic. In the present
experiments, <I>sp is piecewise constant (0.5 duty cycle) with wvariable phase
discontinuity, Ad, and spanwise wavelength, A,. The excitation waveform is a linear
superposition of a two-dimensional time-harmonic wave train and a family of pairs of
equal and opposite oblique wave trains of decreasing amplitudes and increasing wave
numbers. The relative amplitudes and phase of the two-dimensional and oblique waves
are prescribed by the magnitude of A®. In particular, when Ad = 0, the excitation is
reduced to a two-dimensional wave train and, when A® = 7, the excitation waveform
consists only of the oblique waves. In the latter case, the primary vortices appear to be
unstable to phase excitation that has a characteristic spanwise wavelength exceeding
Agy. OF a spanwise wave number below 8 = 4av; /(U +U,) (figure 4.6).

The effect of the magnitude of A% on the evolution of secondary vortices is
studied using an excitation waveform having a spanwise-periodic piecewise-constant
frequency distribution where the spanwise frequency discontinuity is small. As a
result, AP is time periodic and slowly varying (at the beat frequency between adjacent
segments). When A¢ > 7 or AP < n, the streamwise vortices resemble counter-rotating
vortex pairs that form in the unforced mixing layer, however, their strength and the
inclination of their axes relative to the streamwise direction increase with A® (and the
deformations of the primary vortices). When A® = 7, the "secondary" vortices are
indistinguishable from the primary vortices, and the vortex system in a Schlieren x-z

planview resembles chain-link-like cells. Measurements of turbulence intensity and
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flow visualization in the cross-stream plane show that the spanwise-undulated vortices
are formed at twice the excitation frequency. The spanwise-periodic deformations of
successive vortices are offset by A\,/2 in the spanwise direction, yielding out-of-phase
deformations between adjacent primary vortices. Hence, the primary vortices appear to
undergo spanwise-periodic pairings at streamwise edges of the cellular structures.

Similar to spanwise-nonuniform amplitude excitation, spanwise-nonuniform phase
excitation can result in significant spanwise and cross-stream distortion of time-
averaged profiles of the streamwise velocity. The appearance of higher-order
inflectional instabilities, where broadband perturbations already present in the base
flow are amplified, results in spanwise-nonuniform concentrations of small-scale motion.
Power spectra of the streamwise velocity component show that, when Ad = 7, the width
of the mixing layer increases substantially, as indicated by cross-stream spreading of
high-frequency spectral components associated with small-scale motion.

As was shown by Nygaard and Glezer (1991). the excitation of streamwise vortices
at spanwise wavelengths that are greater than Mgy can result in deformations of the
primary vortices and in the appearance of additional streamwise vortices. The
importance of core deformations of the primary vortices to the generation of small-scale
motion was demonstrated by its cancellation using proper phase excitation. As a result,
the strength of the secondary vortices in the braid region is apparently reduced, and
spanwise concentrations of small-scale motions farther downstream are substantially
diminished.

Deformations of the primary vortices can also occur downstream of the first
pairing of the primary vortices if the pairing is spanwise nonuniform. This may be
caused by a subharmonic disturbance (natural or forced) having spanwise phase or
amplitude nonuniformities. As a result, the ensuing (paired) primary vortices deform
and induce the formation of streamwise vortical structures. Core deformations and

spanwise-nonuniform coalescence of the primary vortices is effected using linear
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superposition of two time-harmonic excitation wave trains at the fundamental frequency
and its first subharmonic. The fundamental wave train is spanwise-uniform, while the
subharmonic has a spanwise-nonuniform phase distribution. This excitation leads to
controlled spanwise-nonuniform pairing. The primary vortices develop spanwise
undulations and induce secondary vortical structures that are ingested into the cores of
the coalesced primary vortices and lead to enhancement of concentrations of small-scale
motion farther downstream compared to spanwise-uniform pairing. Because the
secondary vortices are critical to the maintenance of small-scale mixing, this is a

plausible mechanism for the continuation of mixing downstream of mixing transition.
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5. Pulsed Excitation of the Plane Shear Layer

5.1. Introduction

Although the evolution of anharmonic disturbances in plane mixing layers is
substantially different from time-harmonic disturbances. no previous investigation has
studied the effect of the former. A fundamental understanding of the evolution of
anharmonic disturbances and their interaction with the nominally two-dimensional base
flow structure owes much of its importance to technological applications in chemical
reaction and unsteady combustion processes.

The technology of pulse combustion was known as early as World War II.
Compared to conventional combustion systems, devices using pulsed combustion yield
higher heat transfer rates, combustion intensities, and thermal efficiencies, accompanied
by lower emission levels of nitrogen oxides (Keller & Westbrook 1986: Keller, Bramlette,
Dec & Westbrook 1989). Pulsed combustion involves a three-dimensional transient flow
field that is highly turbulent and has variable physical properties (Barr, Dwyer &
Bramlette 1988). Therefore, investigations of three-dimensional transient flow fields are
important for the advancement of this attractive technology.

Modifications of the flow structure in plane mixing layers have been commonly
achieved by manipulation of instability modes via time-harmonic excitation waveforms
having spanwise-uniform (e.g., Oster & Wygnanski 1982) or spanwise-periodic (Nygaard
& Glezer 1991) amplitude distributions. Other types of time harmonic excitation have
utilized spanwise-nonuniform phase or frequency distributions (Nygaard 1991). It is
important to recognize that, within the streamwise domain of influence of the time
harmonic excitation, the flow can only evolve spatially and its temporal evolution is
restricted to the forcing frequency and its higher harmonics.

In real-time control applications of mixing layers of practical interest, the fact that
these flows are not only irregular both in time and space, but are also subjected to

temporally and spatialiy complex disturbances with important consequences to the
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mixing, is not a trivial problem. In fact, in an unforced shear layer, the large coherent
vortical structures do not appear at regular time intervals and may develop both in time
and space.

The importance of this difference in boundary layer transition was established by
Gaster & Grant (1975), who studied the evolution of a wave packet formed in a laminar
Blasius boundary layer by a momentary acoustic pulse. The flow disturbances caused
by the passage of the packet were detected by a hot-wire anemometer positioned just
outside the boundary layer. The authors observed, that at some distance downstream
from the pulse generator, the packet, which was initially smoothly contoured and with
peak amplitudes close to its center, gradually distorted and developed nonlinear
characteristics, which eventually led to the breakdown to turbulence. The authors
further stated: "The non-linear development of a wave packet and its final breakdown
into a turbulent spot involves processes akin to those of natural transition and a
controlled experiment of this regime may provide fresh insight into the various
interactive mechanisms that arise."

A theoretical linear model of a wave packet in a flat-plate boundary layer was
proposed by Gaster (1975), who compared the experimental and analytical (based on the
linear stability theory) evolutions of frequency-wave-number spectra of a flat-spectrum
input. [t was found that the overall shapes of the disturbed region of the wave packet
and the manner in which it spreads as it travelled downstream could be predicted by
the model. Gaster later (1987) concluded that an isolated wave packet may lead to
transition to turbulence much faster than a continuous wave train (Gaster, private
communication).

In an experimental study of an axisymmetric free shear layer of an air jet, Kleis,
Hussain & Sokolov (1981) showed that a momentary disturbance, resulting from the
triggering of a three-dimensional turbulent spot by a spark at the nozzle boundary layer
upstream of the exit, is amplified much faster than the flow instabilities of the

surrounding axisymmetric shear layer. In an earlier study, Sokolov, Hussain, Kleis &
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Husain (1980) found that the spot is a large-scale, elongated, turbulent structure
spanning the entire width of the shear layer, but does not appear to exhibit self-similar
characteristics.

Balsa (1989) studied analytically the evolution of three-dimensional disturbances in
a parallel mixing layer having a piecewise-linear velocity profile (Rayleigh profile). He
showed that, in contrast to the boundary layer, a wave packet that develops in a plane
shear layer has wave fronts that are approximately parallel to the spanwise direction.
Balsa also studied the receptivity of the shear layer to pulsed-type and harmonic
excitations and concluded that the shear layer is most receptive to external forcing near
its centerline (y = 0).

In an experiment on pattern evolution in the two-dimensional mixing layer,
Browand & Prost-Domasky (1990) studied the development of natural and artificially
forced vortex defects. The forced defects were acoustically introduced by a row of 16
loudspeakers mounted along the span of the wind tunnel ceiling. The most prominent
feature of such defects or dislocations is the occurrence of an interconnection of two
vortex structures (or waves). The authors observed that the influence of the original
defect appeared to spread laterally across the span as a propagation disturbance field,
which extended both upstream and downstream from the original defect.

The evolution of a momentary, spanwise-uniform disturbance in a plane mixing
layer was studied by Glezer, Wygnanski & Gu (1989). The experiment was conducted
in an open-return air facility, and the streamwise velocity component at midspan was
measured using a rake of hot-wire probes. The flow was forced by pulsed amplitude
modulation of a time-harmonic wave train using a spanwise-uniform thin flap mounted
at the trailing edge of the flow partition. The response to the modulating pulse was
decomposed to a family of modal wave packets. It was found that the fundamental
wave packet is advected with the mean velocity of the two streams, and its streamwise

extent and dominant frequencies remain virtually unchanged with downstream distance.
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An important observation of Glezer et al. was that the passage of the disturbance is
accompanied by a spatial and temporal change in the momentum thickness of the
harmonically excited flow. Cross-stream distributions of the streamwise velocity
perturbation within the spatially amplified region of the disturbance are similar to those
of the harmonically excited flow at streamwise stations having the same momentum
thickness. The authors also discovered that high turbulence levels, not prevalent in the
harmonically excited shear layer, are detected within the disturbance and suggest the
possibility of transient mixing enhancement.

The purpose of the experimental work described in §5 was to study the spatial
and temporal evolutions of three-dimensional pulsed disturbances in a plane mixing
layer, their role in the development of the flow, and the extent of their interaction with

the nominally two-dimensional flow structures,

5.2. The Excitation Waveform and Measurement Procedure

The disturbance is effected by spanwise-nonuniform pulsed amplitude modulation
of a two-dimensional time-harmonic carrier wave train. The excitation waveform is
pulsed amplitude modulation of a time-harmonic carrier wave train (figure 5.1) and is
synthesized by a mosaic of surface film heaters. This waveform is chosen because
temporal and spatial irregularities in the unforced mixing layer result in a substantial
scatter in the amplitude and arrival time of a pulsed disturbance at the measurement
station. In order to minimize this difficulty, a clear phase reference is provided by the
low-level, two-dimensional, time-harmonic wave train (Glezer et al. 1989).

Similar to §2, the excitation power is comprised of a linear superposition of

spanwise-uniform time-harmonic wave train and a time-periodic pulse,

E(z.t) = Eg [1 + sin(2nfyt)] + Ep (z.v) ,

where E; is constant. The pulse E;, ) is defined as
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Figure 5.1
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vEp. for -2AZ <z < +2AZ and t-0T <t <t +0T
Ep(z. t) =

0, otherwise

where v is a positive constant, AZ is the width of a heating element (6.35 mm), 2¢
equals the ratio between the duration of the pulse and the period of the wave train, and

t.-0T and t_+0T are the rise and fall times of the pulse, respectively. We define
tc = (A + nM )Ty, n=0123, ..,

where AT; is a time delay (A<l) between the pulse (at time t.) and a previous zero
crossing of the time-harmonic wave train, and Mp is a positive integer (the frequency
of the pulse train is f /Mp).

In the present experiments, the free-stream velocities are 30 and 10 cm/sec, and
the excitation frequency of the two-dimensional wave train is fy = 5 Hz, which
corresponds to a streamwise wavelength Axyy = 4 cm. The resistance of each heating
element is 3.6 Q. and the average power dissipated by each heating element for the
time-harmonic wave train is 5.9 watts (rms).

Cross-stream measurements of the streamwise velocity are taken with a rake of 31
hot-wire sensors, which is traversed 40 mm on each side of midspan. The pulsed
disturbance is synthesized by a group of four adjacent heating elements centered at the
midspan, i.e., 4AZ = 25.4 mm. The ratio between the power of a pulsed disturbance
and the power dissipated by the time-harmonic wave train over one period (207) is
selected to be 2, based on previous experience with two-dimensional pulsed disturbance
(Glezer et al 1989). However, unlike the previous experiments in which the duration of
the pulsed disturbance was the period of the time-harmonic wave train, in the present
experiments, 20 is 0.4 and y = 5. The time delay, AT;, between the pulsed disturbance
at t = t. and the zero crossing of the excitation wave train is selected using Schlieren
visualization downstream of the flow partition. The evolution of the disturbance

depends critically on AT;. For example, when A = 1/4 the ensuing pulsed disturbance
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is hardly visible. The disturbance appears to be strongest when A = 3/4. A reduction
in the duration or the amplitude of the pulse does not appear to alter substantially the
characteristic evolution of the ensuing disturbance, although the disturbance becomes
weaker, which makes its detection more difficult. The pulsed disturbances are repeated
every eight cycles of the two-dimensional time-harmonic wave train (M, = 8). This
repetition rate was chosen so that successive pulsed disturbances will not affect each

other.

The streamwise velocity component is measured phase-locked to the excitation
waveform at equally spaced grid points (2 mm apart) in the y-z plane. The grid is
symmetric relative to the y- and z-axes and measures 60 mm x 80 mm, respectively.
These measurements are repeated at six streamwise stations (25.4 mm apart) between
X =51 mm (= 1.3 gy) and 178 mm (4.45\gy). The first streamwise measurement
station, X = 51 mm, approximately corresponds to the location where the first rollup of
the primary vortices occurs. The sampling frequency is 300 Hz, which is equivalent to
60 data points per period of the time-harmonic wave train. Each velocity data record
contains 1024 data points and includes 17 periods of the time-harmonic wave train and
two consecutive pulsed disturbances. Fifteen hot-wire channels are sampled

simultaneously.

5.3. Evolution of Vortices: Flow Visualizaticn

The spatial evolution of the pulsed disturbance is visualized in the x-z plane using
a double-pass Schlieren system by exploiting the small changes in index of refraction
due to the surface heaters (Nygaard & Glezer 1991). The Schlieren view may be
thought of as a planar projection of streaklines of slightly heated fluid elements. Figure
5.2 shows a sequence of composite Schlieren photographs, each consisting of two
partially overlapping images having nomina! diameters of 132 mm and centered at

midspan. The flow direction in each frame is from the left to the right, and the
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streamwise domain of each composite is 10 mm < x < 218 mm (the first rollup of the
spanwise vortices in the absence of the disturbance occurs at x 2 50 mm). The
Schlieren images were obtained from a high-speed (1000 frames per second) video
movie. The time interval between two consecutive composites is 0.1 sec (= T/2).
Figure 5.2(a) was taken before the pulsed disturbance appeared in the field of view,
and the primary vortices are uniform along the span. In figure 5.2(b), the disturbance
is seen at the left-hand (upstream) edge. and the deformation of the primary vortex
immediately downstream of the disturbance is visible. The plsed disturbance first
appears in the braid region between two spanwise vortices, as shown in figure 5.2(c),
and leads to an "X"-shaped vortex, which is connected with the upstream and
downstream spanwise vortices. In figure 5.2(d), the vortex structure upstream of the
"X"-shaped vortex forms a diamond-shaped cell around midspan. Note that the
spanwise domain of influence of the disturbance is still limited at this streamwise
station. The primary vortex upstream of the disturbance is apparently not affected by
the pulse, as can be seen from figure 5.2(¢). Figures 5.2(f-j) show that the pulsed
disturbance spreads symmetrically along the spanwise direction as it is advected
downstream, and it .eems to lead to a local pairing of the two adjacent primary
vortices, which is accompanied by the generation of small-scale motions. One can
expect that the domain of influence of the pulsed disturbance is characterized by higher
turbulence levels compared to the two-dimensional base flow. Figure 5.2(j) shows that
the primary vortex upstream of the pulsed disturbance is remarkably uniform along its
span. Figures 5.2(a-j) clearly indicate that the streamwise domain of influence of the

pulsed disturbance is limited to 1-2 wavelengths of two-dimensional base flow.

5.4. The Phase-Averaged Pulsed Disturbance
The streamwise variation of the momentum thickness, 6(x), of the flow when it is

subjected to two-dimensional time-harmonic excitation is shown in figure 5.3. The
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momentum thickness is calculated from the time-averaged data of ensemble-averaged
velocity records. The slope of the linear fit to the data is d/dx = 0.012 and, for x >
76 mm (1.9)y), 6 increases linearly with x. At x = 178 mm (4.45};) . 6 = 3.5 mm,
which is approximately twice the value at x = 51 mm. Hence, within the streamwise
domain of the measurements, the Reynolds number. based on 6(x) and the averaged
free-stream velocity of the base flow U, varies from 300 to 700. Time-averaged cross-
stream profiles of the streamwise velocity U(x), for 51 mm < x < 178 mm, are shown in
figure 5.4 in similarity variables (y-yg)/260 (U=U, @ y =yy) and (U-U))/(U,-U)).
Almost all data points fall onto a single curve, which means that the streamwise
velocity profiles of the base flow are self-similar. The spanwise uniformity of the base
flow is illustrated by surface plots of time-averaged streamwise velocity, U(x), in the y-
z plane at x= 76, 127, and 178 mm, in figure 5.5. The base flow is quite uniform -
across the span at upstream stations and becomes slightly distorted farther downstream
due to small imperfections in the experimental apparatus.

Surfaces of ensemble-averaged cross-stream velocity profiles, (u(x;t)), measured at
midspan (z=0) at x= 76, 127, and 178 mm, are shown in the y-t plane in figure S.6.
Note that, in the absence of the disturbance, the phase of the streamwise velocity
fluctuations across the mixing layer changes approximately by =, as can be seen, for
example, by following a line of constant time when the velocity perturbation has a peak
on the high-speed side and a valley on the low-speed side. The temporal change in the
streamwise velocity due to passage of the pulsed disturbance is clearly distinguishable
from the response to the time-harmonic wave train, and is felt across the entire width
of the shear layer. Of particular note is the temporal evolution of the three velocity
peaks on the high-speed side associated with passage of the disturbance at the
measurement station. These peaks appear closer in time farther downstream, indicating

a possible occurrence of "local pairing” of the primary vortices.
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Ensemble-averaged profiles of the streamwise velocity perturbations, (upen(x.t)) =
{u(x,1)) - U(x), in the z-t plane y = 10 mm at x = 76, 127, and 178 mm, respectively, are
shown in figure 5.7. Spanwise profiles of (upen) are plotted at equally spaced time
intervals in figure 5.7(a). while time series of (upen) are plotted at equally spaced
spanwise stations in figure 5.7(6). These data emphasize temporal and phase variations,
respectively. Figure 5.7 shows that the pulsed disturbance affects approximately three
wavelengths of the fundamental wave train, and outside of this domain of influence the
time-harmonic wave train is spanwise-uniform. The puised disturbance is advected
downstream at approximately U.. as can be determined from the delays in its arrival
time at the downstream measurement stations. The "X"-shaped disturbance spreads
both in time (and thus in x) and in the spanwise (z) direction as it is advected
downstream and., at x = 178 mm, it affects the entire spanwise width of the
measurement domain. The streamwise length of the pulsed disturbance, however, does
nol seem to grow as dramatically and appears to be limited by the fundamental
instability of the base flow. A similar observation was also made by Glezer er al.
(1989) regarding a two-dimensional disturbance. Dallard & Browand (1992), who
studied the evolution of vortex structure of plane mixing layers in the vicinity of a
vortex dislocation, reported that the vortical "defect" grows more rapidly in the
spanwise direction than in the streamwise direction--thus preserving a tendency for
two-dimensionality.

The evolution of the pulsed disturbance is studied using surface plots of
(u;,ms(x.t)) in y-z-t coordinates (figures 5.8a-c measured at x = 76, 127, and 178 mm,
respectively) and plotted during three periods of the excitation wave train. These data
allow for a detailed study of the three-dimensional features of the flow structure
induced by the disturbance and its interaction with the spanwise vortices. As
demonstrated by the photographs of figure 5.2, at x = 76 mm, an "X"-shaped structure

is formed in the braids region. between two adjacent primary vortices, that is connected
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with the upstream and downstream primary vortices. Farther downstream (x = 127
mm), the central region of the "X" structure moves closer to the high-speed side and
appears to be catching up with the downstream primary vortex in a way that resembles
spanwise-localized pairing. This process is accompanied by a striking increase in rms
velocity fluctuations induced by the disturbance (x = 178 mm).

Contours of {u'yps(x.t)) in the y-t plane z = 0, at x = 76, 127, and 178 mm, are
shown in figure 59. At x = 76 mm, the cross-stream width of the disturbance is
comparable to that of the harmonically forced flow, and it appears between two vortices
of the base flow. The elapsed time between passage of primary vortices upstream and
downstream of the disturbance corresponds to three wavelengths of the fundamental
wave train. At x = 127 mm, the cross-stream extent of the pulsed disturbance is
approximately 1.5 times that of the two-dimensional wave train, and local pairing of the
spanwise vortices is apparent during passage of the disturbance. At x = [78 mm, the
disturbance is ahout twice as wide in the cross-stream direction as in the harmonically
forced flow. Furthermore, the turbulence intensity within the pulsed disturbance is
much higher than at the upstream locations.

The spanwise spreading rate of the disturbance may be inferred from the
distortion of the shape of the streamwise velocity profiles of the nominally two-
dimensional base flow. A cross-stream integral measure of such distortion is the

temporal momentum thickness, 8(x,z:t), defined as

+00

8(x,z:t) = J Cl(x;t)[l - ﬁ(xzt)]dy

-00
where

Gisi - Y01

and
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t+Tf /2
Ux;t) = Tlf J {u(x;m))dr
t

-T: /2
It should be noted that, if the entire integration interval of the last equation is well
removed from the disturbance, or if the flow is excited by the carrier signal only,
U(x;t) = U(x) and thus ©(x.z) = 6(x,z). Figure 5.10 is a sequence of contour plots of
AJ(X,z:t) = O(x,z;t) - 6(x,z) at a number of streamwise stations. In each frame, A6(x,z;t)
is shifted in time by Ax/U,. The contours in each frame, for a given x, are shown in
the z-t plane. Although an estimate that is based on an integral measure of the
distortion of the base flow may be conservative, it exhibits a strong spreading rate in
the spanwise direction. The slope Az/Ax = 0.2, indicating that the disturbance spreads

in both spanwise directions at a speed approximately equal to 0.2U..

5.5. Demodulation of the Pulsed Disturbance: The Fundamental Wave Packet

A demodulation technique is used to discriminate between the response of the
flow to the carrier signal and to the modulating pulse (see Appendix), and to decompose
the response of the flow to pulsed excitation into a family of modal wave packets.

Cross-stream distributions of amplitude and phase of streamwise velocity
fluctuations at the forcing frequency v; are shown in figure 5.11 (solid lines) for 6
streamwise stations. These data correspond to a single frequency component in the
power spectrum of (upen). Figure 5.11(a) shows that the amplitude of the streamwise
velocity fluctuations decays exponentially with y when the base flow is subjected to
two-dimensional time-harmonic excitation. The phase of the streamwise velocity
fluctuations of the base flow changes continuously across the mixing layer, and the
phase difference across the shear layer is approximately 180° (figure 5.118). This phase
reversal is caused by the two-dimensional spanwise primary vortices. Also shown in

figure S.11 (using symbols) are cross-stream profiles of the amplitude, Aco' and the
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phase, ‘I’cc» of a modulated velocity signal, Sy(x.t), when the flow is subjected to time-
harmonic excitation. The excellent agreement between the pairs of profiles is
noteworthy because Sy(x.1) includes all spectral components within the frequency band,
Aw, centered at the fundamental frequency, v;. This indicates that much of the
spectral broadening around the forcing frequency and its higher harmonics is due to the
pulsed amplitude modulation of the harmonic excitation signal. It should also be
mentioned that the calculation of the amplitude and the phase of Sj(x,t) is actually a
one-dimensional wavelet transform in time at the fundamental frequency (see
Appendix). The wavelet transform, however, cannot discriminate between the wave
packet and the harmonic wave train.

Perspective views of the fundamental wave packet, WPo (x,t), at a fixed cross-
stream elevation in the z-t plane are shown in figure 5.12 for 6 streamwise stations,
254 mm apart (5! mm < x < 178 mm). Also shown in figure 5.12 are the
corresponding contour plots of wPo (x.t). Note that, at the first 3 upstream stations, the
packet has one peak close to its center, while farther downstream (x = 152 mm), the
packet develops two peaks away from its spanwise center. At X = 178 mm, there are a
number of spanwise maxima having a spanwise wavelength of approximately 12.5 mm
(= 0.31\gy). The wave packet apparently develops nonlinear characteristics, which
subsequently lead to its breakdown to turbulence. It is interesting to note that, in
contrast to wave packets in boundary layers where wave fronts in the spanwise
direction are highly curved (Gaster & Grant 1975), the wave fronts within the packet in
the plane shear layer are almost parallel to the spanwise direction.

Similar to figure 5.7, profiles of wvelocity perturbations associated with the
fundamental wave packet are plotted in the y-t plane z = 0 (figure 5.13) for x = 76, 127,
and 178 mm. Amplitude features of the packet are emphasized using a time sequence
of cross-stream profiles, while cross-stream phase features are emphasized using time

profiles at a number of equally spaced cross-stream elevations. The amplitude of the
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packet is largest near y = 0, and it decreases with downstream distance. Similar to the
two-dimensional base flow, the cross-stream phase shift is approximately 7.

The spanwise spreading rate of the packet is measured using the spanwise
expansion of a selected contour level at a given cross-stream elevation. The'packet's
envelope at y = 10 mm at each streamwise station is normalized to the local maximum,
and the spanwise extent of the contour level, 0.6, is used to determine the streamwise
spreading. Figure 5.14 shows that the spreading is approximately linear with
downstream distance, having a slope 24z/Ax = 2U, /U, = 0.4, where U, is the spanwise
spreading velocity of the fundamental wave packet in either spanwise direction and
U, = 0.2U.. This is consistent with the momentum thickness measure (§5.4).

We next determine the dispersion relation for the fundamental wave packet. Since
there is no traveling wave in the cross-stream direction for plane mixing layers, the
wave number component a, may be ignored. Because the packet in the plane shear
layer appears to be almost two-dimensional. we postulate that o, must be very small
compared to a,. Therefore. only the streamwise wave number «, was determined by
measuring the streamwise variation of phase for a given frequency w. This method is
also used by Corke & Mangano (1989) in a Blasius boundary layer. Figure 5.15(a)
shows the streamwise variation in phase of the time-harmonic wave train at the fixed
{y.2) station for different frequencies. For a given w, the corresponding (local) wave
number «, is determined by the (local) slope of the curve fitted to the same set of data
(figure 5.15a). Since all local slopes in figure 5.15(a) are the same, o, is independent of
x. The normalization with w;/w in figure 5.15(a) is helpful because for, a non-
dispersive wave, all data in figure 5.15(a) should fall onto one straight line, the slope of

which is the wave number o:

Aglw) wp _ d AU SRR S
Ax  w o () w Vi W Vi (wg) o
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where the subscript f indicates a reference to the fundamental frequency of the time-
harmonic wave train and V, is the crest velocity.

The dispersion relation for the time-harmonic wave train is shown in figure
5.15(6). The crest velocity, V., = w/a, (Which is also the phase velocity for one-
dimensional plane waves), is constant for all frequencies. The groun velocity is also
equal to the crest velocity, as can be seen from the straight line in figure 5.15(5),
meaning that wave trains at different frequencies all travel at the same speed.

Similarly, the streamwise development of the phase of the fundamental wave
packet is shown in figure 5.16(a) for frequencies within the band-pass filter, and the
dispersion relation of the wave packet is shown in figure 5.16(0). The crest speed of
the wave packet at a given frequency within the frequency window is the same as the
speed of the packet. Hence, the wave packet is non-dispersive, and kinematic wave
theory may be applied (Landahl 1982). Balsa (1988) pointed out that. for free shear
layers subjected to two-dimensional external excitation. the unstable modes are non-
dispersive. The phase speed of the packet is (U;+U,)/2 = const, and its streamwise
spreading arises from variations in the growth rate rather than from variations in phase
velocity with wave number. The present experimental results are in general agreement

with his conclusions.

5.6. Temporally and Spanwise-Periodic Pulsed Disturbances

A spanwise and streamwise staggered pattern of three-dimensional pulse trains is
superimposed on a two-dimensional time-harmonic wave train (v; = 6 Hz), as shown in
figure 5.17. The top frame of the figure shows a pulse train superimposed on the two-
dimensional wave train and, in the bottom frame. dotted lines corresponding to peaks of
the two-dimensional wave train are plotted parallel to the span. The rectangles in the
bottom frame represent the relative sizes and locations of pulses in the spanwise and

streamwise directions. In the present experiments, the free-stream velocities of the base
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flow are 36 and 12 cm/s, and )‘(KH) = U./vy = 4 cm. Similar to the procedure described
in §5.2, the pulsed input to spanwise segments of four surface heaters is repeated every
four cycles of the harmonic wave train (i.e. My =4). The individual pulses are
identical to the single pulse described in §5.2 (i.e.. each pulse is synthesized by four
heating elements, ¥ = 5, and the pulse duration is 0.4T;). As can be seen from figure
5.17, the pulse trains are spanwise periodic. Because of the rapid spanwise growth of
pulsed disturbances, the smallest spanwise spacings between the (centers) of two pulse
trains of the same phases are chosen to be equal to the length of 12 heating elements (76
mm), or 1.9\y. The staggered pattern is achieved by a phase shift between two
adjacent pulse trains that corresponds to half a period. The spanwise range of
measurement of the streamwise velocity component is 120 mm, centered at the midspan.

The surface {u';;m¢) = 0.055U, in the y-z-t coordinates at x = 125 mm is shown in
figure 5.18. Each pulse is located in the braid region between adjacent primary
vortices and induces clear deformations. The pulses form a spanwise and streamwise
periodic and staggered pattern. As shown in the previous section, a single pulsed
disturbance spreads rapidly in the spanwise direction. This is no longer the case when
neighboring pulsed disturbances are allowed to interact. The present experiments show
that the spanwise growth of the individual disturbances is quenched. and surface plots
of {u'\;ms} exhibit almost no variations with x.

Figure 5.19(a) shows a time sequence of spanwise profiles of (upm). measured at
y=0 and x =125 mm, when the flow is excited with the pattern of pulsed
disturbances described above. The harmonically excited flow is shown for comparison
in figure 5.19(d). Figure 5.19a) shows three spanwise pulse trains. Velocity
fluct:..u1ons at the top and at the bottom of the frame are similar and in-phase, but out-
of-phase with respect to the velocity perturbations at the center. The elapsed time
between two peaks at z = 0, for example, is approximately equal to the period of the

pulse train. Within this time, there are three cycles with relative lower amplitude. This
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indicates that the power spectra of velocity fluctuations at the spanwise locations of the
pulse train should have very large components, not only at frequency v;/4, but also at
3v; /4. where v; is the fundamental frequency of the wave train. Notice that not only is
the flow no longer two dimensional, but there are no visible remnants of the two-
dimensional wave train. There are interactions between two adjacent (phase-shifted)
pulse trains, and between the pulse train and the fundamental wave train.

Contours of the power spectra of (upm) at y = 0 and x = 75, 125, and 175mm are
shown in the z-frequency plane (figure 5.20). As expected, in spanwise locations of the
pulse train, there are three peaks at frequency v;/4 = 1.5 Hz, which is the frequency of
pulse trains, and at 3y;/4. The power spectral component at the fundamental wave
train frequency. vy = 6 Hz, is very small at x = 75 mm, and it becomes somewhat
stronger farther downstream. There are two strong peaks in the power spectrum at
v; /2 at spanwise stations between two adjacent pulse trains. This subharmonic
component is probably generated by spanwise interaction of staggered pulse trains. As
can be seen from the surface plot of (0} in figure 5.19, the time between passage of
two vortical structures at the interface between two adjacent pulse trains is
approximately equal to 2T. Finally, figure 5.21 shows power spectra of (upen) of the
harmonically and pulsed excited flow (bottom) at x = 175 mm, (y.z) = 0. It is clear that
the pulsed disturbance leads to a drastic increase in the amplitude of spectral

components at high frequencies, suggesting a prema:ure transition to turbulence.

5.7. Conclusions

The investigation reported in §5 appears to be the first experimental study of
three-dimensional pulsed disturbances in a plane mixing layer. although related
experiments have been conducted for the flat-plate boundary layer (Gaster & Grant

1975) and for an axisymmetric jet (Sokolov et al. 1980).
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The present experiments consisted of two parts: In the first part, the evolution of
a single three-dimensional pulsed disturbance in the shear layer was studied in detail.
The second part focused on a cluster of temporally and spatially regular patterns of
pulsed disturbances. The disturbances were effected via amplitude modulation of a
spanwise-uniform time-harmonic wave train, which provided a clear phase reference
for the phase-locked velocity measurements. The amplitude of the pulse was five times
the amplitude of the wave train, and its duration was 0.4T;. We have found that the
evolution of the pulsed disturbance depends crucially on the time delay between the
medulation pulse and the carrier wave train, and that the plane mixing layer is most
receptive to pulsed excitation when the pulse appears in the braid region between
adjacent primary vortices of the base flow. The temporal change in ensemble-averaged
cross-stream profiles of the streamwise velocity due to passage of the disturbance is
clearly distinguishable from the response to the wave train alone. and it is felt across
the entire width of the shear layer.

The evolution of vortex structures was studied using flow visualization and three-
dimensional distributions of turbulence inteasity of the streamwise velocity component.
The pulsed disturbance resulted in a spanwise-localized pairing of the primary vortices
that occurred much farther upstream than for the nominally two-dimensional pairing of
the harmonically forced flow. The high levels of turbulence intensity suggests a
transient increase of mixing. An amplitude demodulation technique was used to
decompose the modulated velocity signals into a family of modal wave packets, and the
evolution of the fundamental wave packet was studied in detail. We found that the
wave packet spreads more rapidly in the spanwise direction than in the streamwise
direction. In fact, its growth in the streamwise direction is limited by the primary two-
dimensional instability of the base flow, which is in agreement with the findings of
Glezer et al. (1989) and Dallard & Browand (1992). The wave fronts of the wave

packet in plane mixing layers, as predicted by Balsa (1989), are almost parallel to the
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spanwise direction (z-axis), in contrast to a boundary layer wave packet (Gaster &
Grant 1975), where wave fronts of the packet are bowed. This feature of the shear
layer wave packet is due to the fact that the cross-stream distribution of the mean
streamwise velocity is almost antisymmetric relative to the cross-stream elevation where
U=U.,. The fundamental wave packet in the present experiment spread in the
spanwise direction at a rate approximately equal to 0.2U.. The dispersion relation of
the fundamental wave packet shows that the wave packet in the plane shear layer is
non-dispersive, in agreement with the results of Balsa (1989).

In the second part of the present experiments, three-dimensional pulsed
disturbances forming a temporally and spatially periodic and staggered pattern were
superimposed on the two-dimensional time-harmonic wave train. Contour plots of
power spectra of the streamwise velocity exhibit strong spectral components at the
frequency of the pulse train, v;/4, as well as at 3v;/4, which is a direct result of the
streamwise nonlinear interaction between the pulse train and the wave train. Also
prominent are spectral components at the subharmonic, v;/2, which are due to spanwise
interaction between two adjacent, staggered pulse trains. Finally, compared to the
harmonically excited flow, the pattern of pulsed disturbances causes a drastic increase

in the amplitudes of high frequency, suggesting turbulent mixing enhancement.
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Appendix: Demodulation Technique

A demodulation technique was developed to discriminate between the response of
the flow to the carrier signal and to the modulating pulse. The objective was to
decompose the response into a family of modal wave packets, each having a narrow
band of frequencies centered around the excitation frequency and its higher harmonics.
A similar technique was used by Kim, Khadra & Powers (1980) to study modulated
waves in a weakly ionized plasma, and by Miksad, Jones. Powers, Kim & Khadra (1982)
to study the interaction of two harmonic wave trains of different frequencies in a two-

dimenstional wake.




- 170 -
Consider an ensemble-averaged time series of the velocity perturbation

(Uper () = Cuth) - U, (A.D)

where (u(t)) is the ensemble-averaged velocity and U represents the time-averaged mean
velocity. This time series (figure A.15) has a power spectrum | (i, (w))| (figure A.la),
which suggests that the response of the flow to the excitation is primarily concentrated
in relatively narrow frequency bands, Aw, around the carrier frequency. wg. and its
harmonics, (j + 1)wg. where j is an integer. The spectral components within these
frequency bands may be obtained by applying a band-pass filter g*(w), centered at
(j+Dwg. to (Gper(w)). Figure A.l(a) shows one example of such a filter. Taking the
inverse Fourier transform, the filtered signal around the fundamental frequency wy is

wo+Aw
So(t) = 2 J (Uper (W) 8" (w) etdw . (A.2)

wo-Aw
Note that since (upm(t)) 1 real and its Fourier transform is complex conjugate in
W [{Gper(-w) = (Gpen”(W)] and. because the filter §*(w) is real and only has non-zero
values in the interval [wy-Aw, wp+Aw]. the inverse Fourier transform of (liye, (W) &% (w)
is complex. The amplitude and the phase of Sy(l) can be easily determined by its real
and imaginary parts.

On the other hand. Sy(t) in Eq.(A-2) may also be expressed as

Sot) = Ay, (0 et Yol (A.3)
where
Apgy ) = | Sp (0] (A.9)
and
Yo () = tan-! (Re{Sq()}/1m{Sy(}) - wpt . (A.S)
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The amplitude and phase of the modulated fundamental modal signal can be
written as
Amg® = Ay [1 + cot)] (A.6)
and

Yy(t) = ‘I’co + (V) . (A.7)

where A, and ¥ . which are independent of time, are the amplitude and phase of the
spectral component of (uye,(t)) within Aw. When the flow is excited by the carrier
signal only, |cq(t)] is the degree of amplitude modulation of Sg(t) resulting from passage
of the disturbance, and ¢;(t) represents the change in phase. The temporal variation of
Cy and ¢y reflects the passage of the disturbance at the measurement station. Notice
that A, o Co(t) is not the amplitude of the fundamental modal wave packet if @(t) varies
in time.

Figure A.1(0) shows the real part of Sy(t) (as dotted curve), whereas its amplitude
AMo (t) is plotted in figure A.l(c) in which the amplitude of the fundamental carrier
signal, Aco‘ is also indicated. The phase ¥(t) is shown in figure A.1(d). Note that
ACO and ‘I’co are the asymptotic values of AMo(t) and W,(t) before or after the
disturbance passes the measurement station. Furthermore, Co(t) may be negative (but
I+co(t) 2 0). indicating that the amplitude of flow response to the carrier signal may be
diminished by the disturbance.

The modulated fundamental modal wave Sy(t) can be thought of as the sum of a

(complex) fundamental modal wave train, W,:0 (1), and a (complex) wave packet, wPo (t):

Spt) = We () + Wp (1) (A.8)

with
We, = A, expli(wyt + ¥, )] (A.9)

and
wPo () = APo (t) expli(wgt + \IICO + §p(1)] (A.10)
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where Aco and Apo(t) represent, respectively, amplitudes of the fundamental modal
carrier wave train and the wave packet, and §y(t) is the relative phase between the
wave packet and the wave train.

From Equations (A-3) and (A-6) to (A-10), one obtains

A, €W = Ay @ eV A (A.11)
Therefore,
Amm-fg%mrh%f-zAwmm%am%m) (A.12)
and

AMO (t) sin ¢y (V)
AMo (t) cos ¢0(t)—AC0 )

tandy(t) = (A.13)

Notice that when ¢;(t) = 0, Eqs. (A.12) and (A.13) become

A = Ay 0 - Ag = Ag ColD)

and

50(0 - O .

The fundamental wave packet, Re{Wpo (13}, and its amplitude APo (1) are shown in figure
A.l(e). The j-th modal wave packet can be calculated similarly using the same
procedure by replacing the subscript 0 with j and letting w; = jwg.

A final note. The function S; in Eq.(A.2) is, up to a normalization factor, a
wavelet transform of (upen(t)) using a wavelet g[(t-b)/a] whose Fourier transform is
g(aw) (which has finite supports) at the scale a corresponding to the resonance frequency
wg.- The admissibility condition for the wavelet is also satisfied, i.e.,
fg(t)dt = g(w = 0) = 0. More information about the wavelet transform can be found, for

example, in Grossmann & Morlet (1984, 1985).
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